

Chalamalasetti, S.R., Purohit, S., Margala, M. and Vanderbauwhede, W.
(2009) MORA - an architecture and programming model for a resource
efficient coarse grained reconfigurable processor. In: 2009 NASA/ESA
Conference on Adaptive Hardware and Systems, 29 July 2009 - 1 Aug.
2009, San Francisco, CA, USA. IEEE Computer Society, Piscataway,
N.J., USA, pp. 389-396. ISBN 9780769537146

http://eprints.gla.ac.uk/40011/

Deposited on: 16 December 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/12645.html

MORA – An Architecture and Programming Model for a Resource Efficient
Coarse Grained Reconfigurable Processor

Sai Rahul Chalamalasetti, Sohan Purohit, Martin Margala
Dept. of Electrical and Computer Engineering

University of Massachusetts Lowell, MA 01854
martin_margala@uml.edu

Wim Vanderbauwhede
Dept. of Computing Science
University of Glasgow, UK

wim@dcs.gla.ac.uk

Abstract
This paper presents an architecture and implementation
details for MORA, a novel coarse grained reconfigurable
processor for accelerating media processing applications.
The MORA architecture involves a 2-D array of several
such processors, to deliver low cost, high throughput
performance in media processing applications. A
distinguishing feature of the MORA architecture is the co-
design of hardware architecture and low-level
programming language throughout the design cycle. The
implementation details for the single MORA processor,
and benchmark evaluation using a cycle accurate
simulator are presented.

1. Introduction
Recent advances in reconfigurable computing have

led to the development of increasingly sophisticated
reconfigurable platforms for media processing and other
applications. Due to the rapid advances in algorithms and
applications in DSP, there has been an increasing demand
for the computing platforms to be easily adaptable, low
cost while consistently delivering maximum performance
at all times. Coarse grained reconfigurable (CGRA)
solutions cater to this demand to some extent, with their
high level of flexibility and more efficient routing
structures.

Several coarse grained solutions have been previously
proposed. Based on their architectures CGRAs can be
classified as either linear systems or mesh based systems.
MORA[12] is a 2-D mesh-based CGRA system,
consisting of an array of reconfigurable cells arranged in
four 4�4 quadrants, shown in Fig.1. Within its category,
MORA bears resemblance to MATRIX[1] and Silicon
Hive[2] which both have in-memory processing. However
MORA’s processing element is much more powerful than
MATRIX and less complex than Silicon Hive. In addition
to this, a distinguishing feature of MORA is the massive
reduction in the number of actual transistors per core. In
fact with each MORA core requiring just over 60,000
transistors, the entire array of 64 cells requires only a
fraction of the resources of architectures like Ambric[3]
and DAPDNA[5]. MORA provides for most of the basic
arithmetic and logic functions required by the target
domain of media processing, while providing reasonably
high throughput with minimum resource utilization.
Another feature that sets MORA apart from existing

CGRAs as well as FPGAs is the simple application
mapping. Unlike most of the other architectures, MORA
acts more as a general platform and does not optimize for
a particular algorithm for maximum throughput
implementation of an application. This ability allows
MORA to remain a low-cost generalized platform for the
media processing (and other application) domain.

This paper presents the custom design and
implementation of the MORA reconfigurable cell. Each
RC consists of an 8-bit Processing Element, 256�8 dual
port data memory and a central controller. An important
feature of the work is that hardware and software were co-
designed throughout the design cycle. The paper also
provides an overview of the development of the MORA
assembly language and evaluation for DCT, DWT and
H.264 benchmarks, using a cycle accurate simulator for
MORA.

The rest of the paper is organized as follows. Section
2 describes the implementation of the Processing
Element. The Control unit and the Memory organization
are detailed in Sections 3 and 4 respectively. Section 5

Figure 1: 2-D array of MORA processors

2009 NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3714-6/09 $25.00 © 2009 IEEE

DOI 10.1109/AHS.2009.37

389

discusses in brief the development of the MORA
assembly language. Performance results and comparisons
with competing architectures are presented in Section 6.

2. Processing Element
The Processing Element (PE) is the main

computational unit of the RC. Its structure is inherently
based on the data path unit proposed in [6]. A significant
improvement is the ability to implement a full range of
signed and unsigned integer arithmetic, as well as
provisions for logical, shifting and comparison operations.

Arithmetic
Block

AS0(S0)

AS1(S1)

AS2(0)

AS3(S0)

AS4(S1)

AS5(S1)

AS6(S2)
AS7(S3)

AS8(S4)

Logic_Block

Logarithmic
Shifter

1 0

Arithmetic_
Comparator

1 0

1 0

1 0

S7

S6

S5

S10

S9

S8

S11

S12

S13

S13

1 0S11

Additional Logic
for comparator

1 0

S
12

S121 0 1 0

00000000 00000000

00000000

A0[7:0]

B0[7:0]

A1[7:0]

B1[7:0]

A[7:0] B[7:0]

Result[15:0]
(YL[7:0]&YR[7:0])

Figure 2: Top level organization of Processing
Element

Fig. 2 shows the top level organization of the
Processing Element. The PE is organized into a logic
section and an arithmetic section. A combination of
multiplexers and demultiplexers controlled by vectors
S[13:0] efficiently route the operands through the two
sections. The following sub-sections detail the
organization and implementation of the logic and
arithmetic sections of the PE.
2.1. Logic Unit: Implementation Strategies

The logic unit provides for bitwise AND/NAND,
OR/NOR, XOR/XNOR, shifting and comparison
operations on 8-bit operands A and B. The logical unit is
comprised of a comparator, logarithmic shifter and an
array of AND, OR, XOR gates. Multiplexers at each stage
route the operands to perform shifting, comparison or
simple bit-wise logic operations. At each stage,
multiplexers also serve an additional purpose of reducing
the total loading on the operands by reducing the total
number of gates to be driven by each stage. Although this
scheme trades off slightly the performance of the logic

path, the delay is still within the total worst case delay of
the data path.

Shifting uses an 8-bit logarithmic shifter built with
2:1 multiplexers. This implementation of the logarithmic
shifter can only support one type of shifting operation at a
time, i.e. Round Shift or Shift Out. Supporting both types
of shifting therefore means including additional logic to
convert from round shifting to shift out and vice versa.
After considering the trade-offs in each approach, we
implemented the round shifting topology, and use the
logic block to additionally support shift-out operations. A
sample shifting operation is demonstrated below.

Round Shift:
SHIFT 4 A (FFh)� Round Right shift Operation
00001011 � operand A(value to be shifted)
4� number of bits to be shifted
10110000� Intermediate result of shifter …(1)
11111111� operand B (Logical AND with (1))
10110000� final result
Shift-Out:
SHIFT 4 A (0Fh)� Right shift Operation
10111111� operand A(value to be shifted)
4� number of bits to be shifted
11111011� Intermediate result of shifter. …(2)
00001111� operand B (Logical AND with (2))
00001011 � final result.

Another useful operation supported by the MORA RC
is comparison. This ability also extends the applications
of MORA beyond media processing, to other domains
like encryption, pattern matching, network intrusion
detection, etc which involve heavy, dedicated comparison
operations on incoming data sets. For this purpose the
MORA PE uses a specially designed comparison block.
Different structures of comparators were studied for area
and power consumption. A comparison operation can
essentially be considered as an extension of simple 2’s
complement subtraction. The subtraction operation A-B
will result in a borrow Bout of 0 or 1 depending on
whether A is less than equal to or greater than B. The
result of the subtraction, if 0 implies the two numbers are
equal. If not zero, the state of the Bout decides A<B or
A>B. Using this approach allows us to use the results of
the subtractor along with the gates from the logic block to
clearly define three outputs of the comparator, i.e. A=B,
A<B and A>B. Since the most important bit is the Bout,
we eliminate the excess circuitry from the subtractor and
build only the carry path instead. This approach allows
significant savings in delay, power and area. A potential
error in comparison for negative numbers is eliminated by
using the sign bit of the operands, and inverting the
decision logic for negative numbers. This implementation
of comparison is chosen to eliminate the need for
additional area for a dedicated comparator, and also
encourage reuse and maximum utilization of the available
hardware resources.

390

2.2. Arithmetic Unit
A bulk of operations that need to be supported in the

domain of media processing involves repetitive
arithmetic. The design of arithmetic data paths is
therefore critical to the performance of the entire system.
We suggest 8 bits bit as an ideal operand size for our
category of reconfigurable structures. A detailed analysis
and design of 8-bit data path has been presented in [6].
The data path used in the current architecture builds on
the data path presented in [6]. The signed arithmetic data
path in [6] is limited to being a 7 bit data path due to the
loss of one bit position as a sign bit. As a result the range
of numbers to be represented by this data path drops down
from 0-255 to 0-127. In order to overcome this
shortcoming, we propose a new adaptable data path
structure to support both 8-bit signed and unsigned
arithmetic operations. The data path is shown in Fig. 3. It
consists of two 8�4 hybrid multipliers, a compressor stage
and 16- bit carry linked adders. The hybrid multiplier
structure based on [7] uses control signal S8 and switches
between signed and unsigned multiplication modes.
During multiplication, the two multipliers provide the
intermediate products B[7:0] � A[7:4] and B[7:0] � A[3:0].
The intermediate products are then compressed using the
3:2 compressor stage. The final 16- bit carry linked adders
compute the result of the multiplication. The data path
uses a control signal specified by the control unit and
instruction word, to indicate signed or unsigned
operations. This saves a bit position from being lost to the
sign bit, limits the operand size to 8 bits, and allows
flexible switching between signed and unsigned
operations.

For addition and subtraction, the multipliers provide
A[7:4] � 00000001 and B[7:0] � 0001. The adders
combine these partial products and produce the final
result of the addition or subtraction operation. For
subtraction, the operand A is negated and input carry Cin
is set to 1, therefore performing 2’s complement
subtraction.

The results of the PE are available at the output of the
registers. These can then be sent to memory of the same
or different RC, as specified by the instruction. Media
processing often requires that these arithmetic and logic
operations be carried out in a repetitive manner. For this
purpose the registers at the input and output of the RC are
synchronized with each other, so as to allow accumulation
operations. The registers also allow data from output
register of one RC to be routed through to the input
register of another RC directly, thus bypassing the
memory. These operations are managed centrally by the
control unit which synchronizes both the internal and
external handshake mechanisms within the architecture,
thereby making each RC behave as a small independent
DSP style processor. The following section describes the
design and implementation of the control unit.

3. Control Unit
The Control unit shown in Fig, 4 is the main decision

making block of the reconfigurable cell, and ensures
complete synchronization within each component of the
RC. It consists of a small refreshable Instruction Memory,
a finite state Instruction Machine, Instruction Decoder,
and Address generator.

The instruction memory is a 16 word SRAM with
each instruction word being 92 bits wide. The instruction
word consists of fields for instruction code, base
addresses of the operands A and B, base address for
storing the output, address descriptors for traversing the
data memory, and other fields to describe the number of
times an operation is to be performed. The RC supports a
total of 28 instructions, including all arithmetic, logic and
memory instructions. Table 1 shows the list of supported
instructions and a brief description of the action
performed. Each arithmetic operation has an unsigned

Figure 4: Control Unit Design

Figure 3: Design of Arithmetic Unit

391

counterpart (suffix _U).
The arithmetic and logic instruction set is

supplemented with the instructions to perform jumps
(JMP) and conditional branches (JMPIF), as well as
moving data within internal memory. These features of
the instruction set, together, with the ability to perform
multiple executions of a single instruction, makes the RC
extremely versatile and adaptable and greatly simplifies
the programming model. The flexibility comes at the cost

of a longer instruction word, and a slightly larger control
and synchronization circuit, but considering the benefits
obtained, this is a small price to pay.
The Instruction machine is a small state machine that
controls the instruction fetch operations, synchronizes the
other integral components of control unit and control the
external handshake signals to communicate with other
RC’s. The most important function of this unit is to
coordinate access to the instruction memory and control
the instruction queue. It also handles the external
communication to other RCs. The basic operation of the
Instruction memory is illustrated as a flow chart in Fig. 5.
Depending upon the information in the instruction word,
the Memory Communication block controls the flow of
signals to and from the data memory for read, write and
move operations. The opcode is extracted from the
Instruction word, and converted into a set of 14
meaningful control vectors S[13:0] by the Instruction
Decoder.

A special feature of the control unit is the address
generator. Fig. 6 shows the block diagram of the address
generator. The address generator accepts the base address
or initial memory address to fetch operands. Depending
upon the number of times the same operation is to be
performed, and using the address descriptors Step, Skip
and Subset it calculates the address of the memory
location from where the next data sets are to be fetched,
or next outputs are to be stored. The control unit utilizes
two copies of the address generator, one each for the
operands A and B and a third copy for the output C.

The RC performs Read and Write operations in
opposite phases of the clock. As a result the output
address generator and the operand address generators are
also made to work out of phase with each other. The
address descriptors Step, Skip, Subset allow the control
unit to traverse the entire memory space, in either
direction. This proves particularly important and useful,
considering the large amount of matrix based operations
involved in the target application domain.

Besides the internal synchronization signals, the
control unit also handles asynchronous handshake signals
to communicate with adjacent cells. These signals are
used by the RCs to indicate to communicate to the
neighboring RC about availability of data either in its data

Table 1: Description of supported instructions
Instruction Description Instruction Description
ADD,SUB,MUL Add, subtract, multiply MOVE_B Move (Bank to Bank)
(ADD,SUB,MUL)ACC Add, sub, mult with

Accumulate
MOVE_O Move (RAM to output)

NOT, AND, OR,NAND,
NOR,XNOR

Combinatorial operations PASS_TROUGH Simple Data pass

CMP Compare JUMP Jump to particular Inst
SHIFT Shift JUMPIF Cond. Jump to part. Inst.

Figure 5: Instruction Machine sequential
operation.

392

memory or the output registers. The neighboring RC then
sends an acknowledge signal, once the data transfer is
completed. These signals are asynchronous and allow
each RC to continue with its own independent execution
cycle. It can be seen from the above discussion, that the
control unit provides a large amount of intelligence and
flexibility to each RC, transforming it into a tiny DSP
style processor that can work independently during a
program execution. Another important feature of the RC
that allows it to be so flexible is efficient memory
organization and is presented in the subsequent section.

4. Memory Organization
A striking difference between MORA and several

competing architectures in the same category is that
MORA does not use a centralized RAM system. Instead
each RC is provided with a 256�8 bits data memory bank.
This allows each RC to work as a tiny Processor In
Memory (PIM[11) [8], i.e. operations are be performed
close to memory. The approach allows each RC to work
independently of the others, and eliminates the possibility
of contention for memory resources among RCs, thus also
bypassing the need for special contention resolving logic.
The result is an optimized cell performance in terms of
power, area, memory access time, and reduction in
complexity of the interconnect switches. Considering that
the RCs during program execution may require data from
each other, a dual port memory topology is preferred, to
allow easier memory access to the RCs. Fig. 7 shows the
organization of data memory in each RC. The data
memory is made up of 256�8 dual port SRAM array.
Each port has individual address decoders and read, write
control signals. Multiplexers controlled by signal S4
control data flow into the memory. Depending on the
instruction word, these multiplexers write the result of the
current PE operation or data from external RC into the
specified memory address, through the specified port.

Similarly the output multiplexer controlled through S6
controls the flow of data out of the data memory by
directing it either into the PE of the same RC or into the
PE or data memory of a neighboring RC. Since media
processing often requires operations based on matrices
and vectors, it is necessary for the RC to be able to move
data within its data memory. This is implemented using
an additional multiplexer controlled through S6, which
allows the RC to read data from a memory location
through the left port, and transfer it to another memory
location, internally through the right. The read and write
operations are performed during opposite phases of the
clock signal. This allows the RC to perform the MOVE
operation in a single clock cycle. The alternately phased
read and write allows the RC to perform the read-execute-
write sequence in a single clock cycle. As a result, each of
the 28 instructions mentioned earlier take exactly one
clock cycle to complete.

Bit-line loading is a common problem with building
large memory arrays. Addressing this problem, requires a
careful design of a strong driving circuit and stable sense
amplifier. Several solutions have been proposed to
counter this problem at the organizational level. [9]. Our
approach was to divide the 256 locations into four banks
of 64 words each. The two MSB bits, A7 and A6 of the
address A[7:0] are used to select the appropriate bank.
This bank select signal is further AND gated with the
Write_Enable and Data to control the writing of data
into the memory. The AND gates are sized to be strong,
along-with an appropriately sized inverter at the output, to
be robust enough to drive the bit-lines. This allows us to
provide an efficient driving scheme for the memory, with
inherent control signaling. It should be noted that to the
outside circuitry, i.e. Processing Element and Control
Unit, as well as to the programmer, it appears as a single
array of 256 memory locations. This eliminates the need
of any special precautions or programming styles to

Figure 6: Address Generator.

Figure 7: Organization of RC Memory

393

handle the memory banking. Fig. 8 shows the internal
arrangement of the 4 RAM banks. The individual memory
cells use 8T dual port SRAM topology. This topology is
preferred primarily due to a perfect combination of size,
speed, simplicity and robustness. The memory array
provides a read access time of 0.8ns with an average
power dissipation of 1.56 mW at 166 MHz.

5. Programming Model
5.1 Co-design of RC and Assembly Language

To ensure that MORA can be programmed
efficiently, the RC and the assembly language were co-
designed from an early stage. The design of the assembly
language informed in particular the choice of non-
arithmetic instructions in the instruction set, the address
generator design and the virtual register/ virtual memory
bank system.
5.2 Expression language

The MORA expression language is an imperative
language with a very regular syntax similar to other
assembly languages: every line contains an instruction
which consists of an operator followed by list of
operands. The main differences are:
� Typed operators: the type indicates the wordsize on
which the operations is performed, e.g. bit, nybble, byte,
short, long (resp. B, N, C, S, L).
� Typed operands: operands are actually tuples indicating
not only the address space but also the data type, i.e.
word, row, column, or matrix and the scan direction
(forward or reverse)
� Virtual registers and address banks: MORA has no
directly accessible registers. Operations take the RAM
addresses as operands; however, “virtual” registers
indicate where the result of an operation should be
directed (RAM bank A/B, output L/R)
� All arguments are optional: the MORA assembler will
infer defaults for non-specified arguments, considerably
simplifying the most common instructions.

Instruction structure
An instruction is of the general form

instr ::= op nops? dest? opnd*

op ::= uop:(B|N|C|S|I|L)?

dest ::= virtreg? addrtup?

opnd ::= addrtup|const

virtreg ::= Y|YL|YR|YA|YB

addrtup ::= (ram_id:)?addr(:type)?

ram_id ::= A|B

addr ::= 0..(MEMSZ-1)

type ::= (W|C|R|M|MT|Q|QT)(R|F)?

const ::= C:num

num ::= -(MEMSZ/2-1)..(MEMSZ/2-1)

For example, the instruction for signed addition of two
bytes would be:

ADD 1 Y A:0:W A:0:W B:0:W

The arguments represent the number of operations, the
virtual destination register, the output address and the
operand addresses. However, because of the “reasonable
defaults” strategy, this can simply be written as

ADD

Similarly, a multiply-accumulate of the first row of an
N�N-matrix in bank A with the first column of a matrix
in bank B would in full be

MULACC 8 Y A:0:W A:0:R B:0:C

but can simply be written as
MULACC R C

The MORA assembler will infer defaults for all implicit
fields.

Address Types
As discussed in Sec. 3, the RC supports complex

address scan patterns through the use of 4 fields in the
instruction word: base_address, step, subset and skip.
The MORA assembler supports a subset of all possible
values of Step, Subset and Skip through its type system.
The type component of the address tuple (W|C|R|M|MT)
indicates the nature of the datastructure referenced by the
base address (ram_id:addr):

W: word (single byte)
C: Column (N�1)
R: Row (1�N)
M: N�N matrix (MT: transposed matrix M�)
Q: N/2�N/2 matrix (QT: transposed matrix Q�)

The type suffix (F|R) indicates a forward or reverse scan
direction. Thus MORA’s simple address type system

Figure 8: Internal structure of RC RAM banks

394

supports the typical vector operations required for N�N
matrix manipulation.
Operation Types

The operator of an instruction can be explicitly typed,
indicating the length of the word on which the operation
should be performed. This information is used to generate
the step and the virtual output register. As the MORA
RAM is byte-addressable, operation types B (bit) and N
(nybble) have no effect on the address generation but
result in single-byte output; operations on multiple bytes
(types S and L, resp. 2 and 4 bytes) result in a step of the
number of bytes; the assembler generates the individual
byte-operations that make up the multi-byte operation.
5.3 Generation Language

This component of the language is in itself an
imperative mini-language with a simple and clean syntax
inspired mainly by Ruby1. The language acts similar to
the macro mechanism in C, i.e. by string substitution, but
is much more expressive.
The current MORA RC does not support registered
memory access and hence addressing is completely static.
While this is not an issue for run-time performance, it
would make algorithm implementation repetitive and
cumbersome. The generation language allows instructions
to be generated in loops or using conditionals.
Example: matrix multiplication

Because of the parallelism in MORA, 8�8 matrix
multiplication can be done very efficiently by splitting the
matrices into 4�8 and perform 4 partial multiplications in
parallel.
The C code for such a partial multiplication is:

for (int i=0;i<4;i++) {

 for (int j=0;j<4;j++) {

 m[i][j]=0;

 for (int k=0;k<8;k++) {

 m[i][j]+=a[i][k]*b[k][j];

 }

 }

}

In MORA assembly, this becomes:
for j in 0..24 step 8

 for i in 0..3

 out=i+j

 k=i*8

 MULACC A:out:W A:j:R B:k:R

 end

end

The MORA RC performs this computation in 128 clock
cycles.

1 www.ruby-lang.org

5.4 Coordination Language
MORA's coordination language is a compositional,
hierarchical netlist-based language inspired by hardware
design languages such as Verilog and VHDL. The
language consists of primitives definitions, module
definitions, module templates and instantiations.
Primitives describe a MORA RC and are defined as
prim_name { ... }, e.g. a primitive to compute a
determinant of a 2x2 matrix would be:

DET2x2 {

MULT YB B:0 A:0 A:9

MULT YB B:1 A:1 A:8

ADD YR A:0 B:0 B:1

}

Instances are defined as (netout1,...) = name (netin1,...);
unconnected ports are marked with a '_'.
Modules are groupings of instantiations, very similar to
non-RTL Verilog. As modules can have variable numbers
of input and output ports (but no inout ports), the
definition is module_name (inport1, inport2...) {...}
(ouport1, outport2 ...). For example, a module to compute
16-bit addition can be built out of 8-bit addition
primitives (ADD8) as follows:

ADD16 (b1,b0,a1,a0) {

(c0,z0) = ADD8 (b0,a0)

(c1,s1) = ADD8 (b1,a1)

(_,z1) = ADD8 (c0,s1)

} (c1,z1,z0)

6. Performance Results
A full custom design of the entire RC was carried out

in IBM’s 0.13µm CMOS process. For ease of simulation
and verification, a test instruction sequence was executed
using an external ROM as the instruction memory. Each
individual block was evaluated for speed and power
performance at 166 MHz. The results are presented in
Table 2. To emphasize the resource efficiency of the
proposed cell, we have included the transistor count of
each block.

For estimating the performance of the MORA
architecture, a cycle accurate simulator was developed.
Using the MORA assembly language, several benchmarks
were coded into the compiler/simulator. Table 3 presents
a performance analysis of MORA when performing
popular benchmark applications.

Table 2: Block wise power and transistor count
Component Transistors Power (mW)
PE 11,662 0.425
Control Unit 24,140 1.185
DPRAM 27,010 1.558

395

The MORA architecture is evaluated for 8�8 2-D
DCT, 4�4 H.264 2-D integer transform and 32�32 8-point
LeGall (5,3) DWT applications. The DCT and H.264
transforms are implemented as simple 8-bit integer matrix
multiplications, 2-D DCT: C.X.CT and H.264:
(H.X.HT)�E. The matrix multiplication is split into a
number of parallel operations as explained in the previous
section. Note that the direct product does not require extra
time on MORA as it is integrated with the operations for
combining the partial results. The table shows two
different optimizations for DCT and H.264, minimal
delay and maximal throughput. The first implementation
(minimum delay) uses as many RCs as possible to process
a single image block; the second implementation
(maximum throughput) uses as few RCs as possible per
image block in order to maximize the number of image
blocks processed in parallel, leading to a higher
throughput (more than double for H.264).

The 8-point wavelet transform is implemented using a
pipeline of 4 RCs, each RC computes following equations
using 6 single-cycle operations:

yi = xi – (xi-1+xi+1)/2
yi-1 = xi-1 + (yi+yi-2)/4

To maximize throughput, 16 blocks are processed in
parallel.

The analysis presents the performance of the MORA
processor in terms of total computational time and overall
system throughput. Another important point to be noted is
that all the algorithms are implemented for maximum
resource utilization. The benchmarks are programmed to
minimize the number of cores idle during execution time,
thereby guaranteeing a high utilization factor.

7. Conclusion
This work presented the organization and VLSI
implementation of the MORA processor core. The circuit
was evaluated for speed and power performance; the
architecture was evaluated for popular benchmark
applications implemented in the MORA assembly
language using a cycle accurate simulator. The proposed
architecture builds on its predecessor proposed in [10] and
extends the functionality to further suit the demands of
media processing applications and algorithms. The
architecture is extremely light in terms of actual silicon

resources, while still maintaining high throughput
efficiency.

Future work in hardware as well as software
development aims to build on these encouraging
preliminary results, to provide a scalable, low-cost, highly
programmable reconfigurable platform for media
processing. We also aim to explore the possible
applications of MORA beyond the media processing
domain.

8. References
[1] E. Mirsky and A. DeHon, “MATRIX: a reconfigurable
computing architecture with configurable instruction distribution
and deployable resources,” in Proc. IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 157–166, 1996.
[2] M. Cocco, J. Dielissen, M. Heijligers, A. Hekstra,J. Huisken,
S. Hive, and N. Eindhoven, “A scalable architecture for LDPC
decoding,” in Proceedings of Design, Automation and Test in
Europe Conference and Exhibition, vol.3,pp- 88-93, 2004.
[3] Mike Butts, "Synchronization through Communication in a
Massively Parallel Processor Array," IEEE Micro, vol. 27, no. 5,
pp. 32-40, September/October, 2007.
[4] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J.
Webb, E. Work, D. Truong, T. Mohsenin, B. Baas, "AsAP: An
Asynchronous Array of Simple Processors,"IEEE Journal of
Solid-State Circuits (JSSC), vol. 43, no. 3, pp. 695-705, 2008.
[5] DAPDNA-2 Dynamically Reconfigurable Processor product
brochure, IPFlex Inc., 13th March 2007.
http://www.ipflex.com/en/E1-products/dd2Arch.html.
[6] S. Purohit, S. Chalamalasetti, M. Margala, P.
Corsonello,"Power-Efficient High Throughput Reconfigurable
Datapath Design for Portable Multimedia Devices," in
Proceedings of International Conference on Reconfigurable
Computing and FPGAs, pp. 217-222, 2008.
[7] S. Krithivasan, M.J Schulte, "Multiplier architectures for
media processing," Record of the 37th Asilomar Conference on
Signals, Systems and Computers, pp. 2193-2197, 2003.
[8] M. Lanuzza, S. Perri, P. Corsonello, M. Margala, "A New
Reconfigurable Coarse-Grain Architecture for Multimedia
Applications," 2nd NASA/ESA Conference on Adaptive
Hardware and Systems, pp-119-126, 2007.
[9] A. Karandikar, K.K Parhi, "Low power SRAM design using
hierarchical divided bit-line approach ," Proceedings of
International Conference on Computer Design, pp. 82-88, 1998.
 [10] M. Lanuzza, S. Perri, P. Corsonello,” MORA- A New
Coarse Grain Reconfigurable Array for High Throughput
Multimedia Processing”, Proceedings of International
Symposium on Systems, Architecture, Modeling and
Simulation,(SAMOS), pp-159-168, 2007.

Table 3: Performance analysis of MORA processor core for benchmark applications @ 166 MHz

Benchmark Total
Delay (ns)

Total
Latency (ns)

Blocks processed
in parallel

Throughput
(MOPS)

RCs
utilized

8�8 2-D DCT,min. delay 432 216 1 4.63 56
8�8 2-D DCT max. throughput 1536 1536 8 5.21 64
4�4 H.264 2-D IT min. delay 108 54 1 18.52 56
4�4 H.264 2-D IT max. throughput 192 192 8 41.67 64
32�32 DWT LeGall (5,3) 14,592 13,056 16 1.23 64

396

	citation_temp.pdf
	http://eprints.gla.ac.uk/40011/

