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Abstract
This paper presents an architecture and implementation 
details for MORA, a novel coarse grained reconfigurable 
processor for accelerating media processing applications. 
The MORA architecture involves a 2-D array of several 
such processors, to deliver low cost, high throughput 
performance in media processing applications. A 
distinguishing feature of the MORA architecture is the co-
design of hardware architecture and low-level 
programming language throughout the design cycle. The 
implementation details for the single MORA processor, 
and benchmark evaluation using a cycle accurate 
simulator are presented.

1. Introduction 
Recent advances in reconfigurable computing have 

led to the development of increasingly sophisticated 
reconfigurable platforms for media processing and other 
applications. Due to the rapid advances in algorithms and 
applications in DSP, there has been an increasing demand 
for the computing platforms to be easily adaptable, low 
cost while consistently delivering maximum performance 
at all times. Coarse grained reconfigurable (CGRA) 
solutions cater to this demand to some extent, with their 
high level of flexibility and more efficient routing 
structures.

Several coarse grained solutions have been previously 
proposed. Based on their architectures CGRAs can be 
classified as either linear systems or mesh based systems. 
MORA[12] is a 2-D mesh-based CGRA system, 
consisting of an array of reconfigurable cells arranged in 
four 4�4 quadrants, shown in Fig.1. Within its category, 
MORA bears resemblance to MATRIX[1] and Silicon 
Hive[2] which both have in-memory processing. However 
MORA’s processing element is much more powerful than 
MATRIX and less complex than Silicon Hive. In addition 
to this, a distinguishing feature of MORA is the massive 
reduction in the number of actual transistors per core. In 
fact with each MORA core requiring just over 60,000 
transistors, the entire array of 64 cells requires only a 
fraction of the resources of architectures like Ambric[3] 
and  DAPDNA[5]. MORA provides for most of the basic 
arithmetic and logic functions required by the target 
domain of media processing, while providing reasonably 
high throughput with minimum resource utilization. 
Another feature that sets MORA apart from existing 

CGRAs as well as FPGAs is the simple application 
mapping. Unlike most of the other architectures, MORA 
acts more as a general platform and does not optimize for 
a particular algorithm for maximum throughput 
implementation of an application. This ability allows 
MORA to remain a low-cost generalized platform for the 
media processing (and other application) domain. 

This paper presents the custom design and 
implementation of the MORA reconfigurable cell. Each 
RC consists of an 8-bit Processing Element, 256�8 dual 
port data memory and a central controller.  An important 
feature of the work is that hardware and software were co-
designed throughout the design cycle. The paper also 
provides an overview of the development of the MORA 
assembly language and evaluation for DCT, DWT and 
H.264 benchmarks, using a cycle accurate simulator for 
MORA. 

The rest of the paper is organized as follows. Section 
2 describes the implementation of the Processing 
Element. The Control unit and the Memory organization 
are detailed in Sections 3 and 4 respectively. Section 5 

Figure 1: 2-D array of MORA processors 
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discusses in brief the development of the MORA 
assembly language. Performance results and comparisons 
with competing architectures are presented in Section 6.  

2. Processing Element 
The Processing Element (PE) is the main 

computational unit of the RC. Its structure is inherently 
based on the data path unit proposed in [6]. A significant 
improvement is the ability to implement a full range of 
signed and unsigned integer arithmetic, as well as 
provisions for logical, shifting and comparison operations.  
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Figure 2: Top level organization of Processing 
Element 

Fig. 2 shows the top level organization of the 
Processing Element. The PE is organized into a logic 
section and an arithmetic section. A combination of 
multiplexers and demultiplexers controlled by vectors 
S[13:0] efficiently route the operands through the two 
sections. The following sub-sections detail the 
organization and implementation of the logic and 
arithmetic sections of the PE. 
2.1. Logic Unit: Implementation Strategies 

The logic unit provides for bitwise AND/NAND, 
OR/NOR, XOR/XNOR, shifting and comparison 
operations on 8-bit operands A and B. The logical unit is 
comprised of a comparator, logarithmic shifter and an 
array of AND, OR, XOR gates. Multiplexers at each stage 
route the operands to perform shifting, comparison or 
simple bit-wise logic operations. At each stage, 
multiplexers also serve an additional purpose of reducing 
the total loading on the operands by reducing the total 
number of gates to be driven by each stage. Although this 
scheme trades off slightly the performance of the logic 

path, the delay is still within the total worst case delay of 
the data path. 

Shifting uses an 8-bit logarithmic shifter built with 
2:1 multiplexers. This implementation of the logarithmic 
shifter can only support one type of shifting operation at a 
time, i.e. Round Shift or Shift Out. Supporting both types 
of shifting therefore means including additional logic to 
convert from round shifting to shift out and vice versa. 
After considering the trade-offs in each approach, we 
implemented the round shifting topology, and use the 
logic block to additionally support shift-out operations. A 
sample shifting operation is demonstrated below. 

Round Shift: 
SHIFT 4 A  (FFh)� Round Right shift Operation 
00001011 � operand A(value to be shifted) 
4� number of bits to be shifted 
10110000� Intermediate result of shifter …(1) 
11111111� operand B (Logical AND with (1)) 
10110000� final result      
Shift-Out:
SHIFT 4 A (0Fh)� Right shift Operation 
10111111�  operand A(value to be shifted) 
4� number of bits to be shifted 
11111011� Intermediate result of shifter. …(2) 
00001111�   operand B (Logical AND with (2)) 
00001011 �   final result. 

Another useful operation supported by the MORA RC 
is comparison. This ability also extends the applications 
of MORA beyond media processing, to other domains 
like encryption, pattern matching, network intrusion 
detection, etc which involve heavy, dedicated comparison 
operations on incoming data sets. For this purpose the 
MORA PE uses a specially designed comparison block. 
Different structures of comparators were studied for area 
and power consumption. A comparison operation can 
essentially be considered as an extension of simple 2’s 
complement subtraction. The subtraction operation A-B 
will result in a borrow Bout of 0 or 1 depending on 
whether A is less than equal to or greater than B. The 
result of the subtraction, if 0 implies the two numbers are 
equal. If not zero, the state of the Bout decides A<B or 
A>B. Using this approach allows us to use the results of 
the subtractor along with the gates from the logic block to 
clearly define three outputs of the comparator, i.e. A=B, 
A<B and A>B. Since the most important bit is the Bout, 
we eliminate the excess circuitry from the subtractor and 
build only the carry path instead. This approach allows 
significant savings in delay, power and area. A potential 
error in comparison for negative numbers is eliminated by 
using the sign bit of the operands, and inverting the 
decision logic for negative numbers. This implementation 
of comparison is chosen to eliminate the need for 
additional area for a dedicated comparator, and also 
encourage reuse and maximum utilization of the available 
hardware resources. 
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2.2. Arithmetic Unit 
A bulk of operations that need to be supported in the 

domain of media processing involves repetitive 
arithmetic. The design of arithmetic data paths is 
therefore critical to the performance of the entire system. 
We suggest 8 bits bit as an ideal operand size for our 
category of reconfigurable structures. A detailed analysis 
and design of 8-bit data path has been presented in [6]. 
The data path used in the current architecture builds on 
the data path presented in [6]. The signed arithmetic data 
path in [6] is limited to being a 7 bit data path due to the 
loss of one bit position as a sign bit. As a result the range 
of numbers to be represented by this data path drops down 
from 0-255 to 0-127. In order to overcome this 
shortcoming, we propose a new adaptable data path 
structure to support both 8-bit signed and unsigned 
arithmetic operations. The data path is shown in Fig. 3. It 
consists of two 8�4 hybrid multipliers, a compressor stage 
and 16- bit carry linked adders. The hybrid multiplier 
structure based on [7] uses control signal S8 and switches 
between signed and unsigned multiplication modes. 
During multiplication, the two multipliers provide the 
intermediate products B[7:0] � A[7:4] and B[7:0] � A[3:0].
The intermediate products are then compressed using the 
3:2 compressor stage. The final 16- bit carry linked adders 
compute the result of the multiplication. The data path 
uses a control signal specified by the control unit and 
instruction word, to indicate signed or unsigned 
operations. This saves a bit position from being lost to the 
sign bit, limits the operand size to 8 bits, and allows 
flexible switching between signed and unsigned 
operations.

For addition and subtraction, the multipliers provide 
A[7:4] � 00000001 and B[7:0] � 0001. The adders 
combine these partial products and produce the final 
result of the addition or subtraction operation. For 
subtraction, the operand A is negated and input carry Cin 
is set to 1, therefore performing 2’s complement 
subtraction. 

The results of the PE are available at the output of the 
registers. These can then be sent to memory of the same 
or different RC, as specified by the instruction. Media 
processing often requires that these arithmetic and logic 
operations be carried out in a repetitive manner. For this 
purpose the registers at the input and output of the RC are 
synchronized with each other, so as to allow accumulation 
operations. The registers also allow data from output 
register of one RC to be routed through to the input 
register of another RC directly, thus bypassing the 
memory. These operations are managed centrally by the 
control unit which synchronizes both the internal and 
external handshake mechanisms within the architecture,
thereby making each RC behave as a small independent 
DSP style processor. The following section describes the 
design and implementation of the control unit. 

3. Control Unit 
The Control unit shown in Fig, 4 is the main decision 

making block of the reconfigurable cell, and ensures 
complete synchronization within each component of the 
RC. It consists of a small refreshable Instruction Memory, 
a finite state Instruction Machine, Instruction Decoder, 
and Address generator. 

The instruction memory is a 16 word SRAM with 
each instruction word being 92 bits wide. The instruction 
word consists of fields for instruction code, base 
addresses of the operands A and B, base address for 
storing the output, address descriptors for traversing the 
data memory, and other fields to describe the number of 
times an operation is to be performed. The RC supports a 
total of 28 instructions, including all arithmetic, logic and 
memory instructions. Table 1 shows the list of supported 
instructions and a brief description of the action 
performed. Each arithmetic operation has an unsigned 

Figure 4: Control Unit Design 

Figure 3: Design of Arithmetic Unit 
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counterpart (suffix _U). 
The arithmetic and logic instruction set is 

supplemented with the instructions to perform jumps 
(JMP) and conditional branches (JMPIF), as well as 
moving data within internal memory. These features of 
the instruction set, together, with the ability to perform 
multiple executions of a single instruction, makes the RC 
extremely versatile and adaptable and greatly simplifies 
the programming model. The flexibility comes at the cost 

of a longer instruction word, and a slightly larger control 
and synchronization circuit, but considering the benefits 
obtained, this is a small price to pay. 
The Instruction machine is a small state machine that 
controls the instruction fetch operations, synchronizes the 
other integral components of control unit and control the 
external handshake signals to communicate with other 
RC’s. The most important function of this unit is to 
coordinate access to the instruction memory and control 
the instruction queue. It also handles the external 
communication to other RCs. The basic operation of the 
Instruction memory is illustrated as a flow chart in Fig. 5. 
Depending upon the information in the instruction word, 
the Memory Communication block controls the flow of 
signals to and from the data memory for read, write and 
move operations. The opcode is extracted from the 
Instruction word, and converted into a set of 14 
meaningful control vectors S[13:0] by the Instruction 
Decoder.  

A special feature of the control unit is the address 
generator. Fig. 6 shows the block diagram of the address 
generator. The address generator accepts the base address 
or initial memory address to fetch operands. Depending 
upon the number of times the same operation is to be 
performed, and using the address descriptors Step, Skip 
and Subset it calculates the address of the memory 
location from where the next data sets are to be fetched, 
or next outputs are to be stored. The control unit utilizes 
two copies of the address generator, one each for the 
operands A and B and a third copy for the output C. 

The RC performs Read and Write operations in 
opposite phases of the clock. As a result the output 
address generator and the operand address generators are 
also made to work out of phase with each other. The 
address descriptors Step, Skip, Subset allow the control 
unit to traverse the entire memory space, in either 
direction. This proves particularly important and useful, 
considering the large amount of matrix based operations 
involved in the target application domain. 

Besides the internal synchronization signals, the 
control unit also handles asynchronous handshake signals 
to communicate with adjacent cells. These signals are 
used by the RCs to indicate to communicate to the 
neighboring RC about availability of data either in its data 

Table 1: Description of supported instructions 
Instruction Description Instruction Description 
ADD,SUB,MUL Add, subtract, multiply  MOVE_B Move  (Bank to Bank) 
(ADD,SUB,MUL)ACC Add, sub, mult with  

Accumulate 
MOVE_O Move (RAM to output) 

NOT, AND, OR,NAND, 
NOR,XNOR 

Combinatorial operations PASS_TROUGH  Simple Data pass 

CMP Compare JUMP Jump to particular Inst 
SHIFT Shift JUMPIF Cond. Jump to part. Inst.  

Figure 5: Instruction Machine sequential 
operation.
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memory or the output registers. The neighboring RC then 
sends an acknowledge signal, once the data transfer is 
completed. These signals are asynchronous and allow 
each RC to continue with its own independent execution 
cycle. It can be seen from the above discussion, that the 
control unit provides a large amount of intelligence and 
flexibility to each RC, transforming it into a tiny DSP 
style processor that can work independently during a 
program execution. Another important feature of the RC 
that allows it to be so flexible is efficient memory 
organization and is presented in the subsequent section. 

4. Memory Organization 
A striking difference between MORA and several 

competing architectures in the same category is that 
MORA does not use a centralized RAM system. Instead 
each RC is provided with a 256�8 bits data memory bank. 
This allows each RC to work as a tiny Processor In 
Memory (PIM[11) [8], i.e. operations are be performed 
close to memory. The approach allows each RC to work 
independently of the others, and eliminates the possibility 
of contention for memory resources among RCs, thus also 
bypassing the need for special contention resolving logic. 
The result is an optimized cell performance in terms of 
power, area, memory access time, and reduction in 
complexity of the interconnect switches. Considering that 
the RCs during program execution may require data from 
each other, a dual port memory topology is preferred, to 
allow easier memory access to the RCs. Fig. 7 shows the 
organization of data memory in each RC. The data 
memory is made up of 256�8 dual port SRAM array. 
Each port has individual address decoders and read, write 
control signals. Multiplexers controlled by signal S4 
control data flow into the memory. Depending on the 
instruction word, these multiplexers write the result of the 
current PE operation or data from external RC into the 
specified memory address, through the specified port. 

Similarly the output multiplexer controlled through S6 
controls the flow of data out of the data memory by 
directing it either into the PE of the same RC or into the 
PE or data memory of a neighboring RC. Since media 
processing often requires operations based on matrices 
and vectors, it is necessary for the RC to be able to move 
data within its data memory. This is implemented using 
an additional multiplexer controlled through S6, which 
allows the RC to read data from a memory location 
through the left port, and transfer it to another memory 
location, internally through the right. The read and write 
operations are performed during opposite phases of the 
clock signal. This allows the RC to perform the MOVE 
operation in a single clock cycle. The alternately phased 
read and write allows the RC to perform the read-execute-
write sequence in a single clock cycle. As a result, each of 
the 28 instructions mentioned earlier take exactly one 
clock cycle to complete. 

Bit-line loading is a common problem with building 
large memory arrays. Addressing this problem, requires a 
careful design of a strong driving circuit and stable sense 
amplifier. Several solutions have been proposed to 
counter this problem at the organizational level. [9]. Our 
approach was to divide the 256 locations into four banks 
of 64 words each. The two MSB bits, A7 and A6 of the 
address A[7:0] are used to select the appropriate bank. 
This bank select signal is further AND gated with the 
Write_Enable  and  Data to control the writing of data 
into the memory. The AND gates are sized to be strong, 
along-with an appropriately sized inverter at the output, to 
be robust enough to drive the bit-lines. This allows us to 
provide an efficient driving scheme for the memory, with 
inherent control signaling. It should be noted that to the 
outside circuitry, i.e. Processing Element and Control 
Unit, as well as to the programmer, it appears as a single 
array of 256 memory locations. This eliminates the need 
of any special precautions or programming styles to 

Figure 6: Address Generator. 

Figure 7: Organization of RC Memory 
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handle the memory banking. Fig. 8 shows the internal 
arrangement of the 4 RAM banks. The individual memory 
cells use 8T dual port SRAM topology. This topology is 
preferred primarily due to a perfect combination of size, 
speed, simplicity and robustness. The memory array 
provides a read access time of 0.8ns with an average 
power dissipation of 1.56 mW at 166 MHz. 

5. Programming Model 
5.1 Co-design of RC and Assembly Language 

To ensure that MORA can be programmed 
efficiently, the RC and the assembly language were co-
designed from an early stage. The design of the assembly 
language informed in particular the choice of non-
arithmetic instructions in the instruction set, the address 
generator design and the virtual register/ virtual memory 
bank system.  
5.2 Expression language 

The MORA expression language is an imperative 
language with a very regular syntax similar to other 
assembly languages: every line contains an instruction 
which consists of an operator followed by list of 
operands. The main differences are:  
� Typed operators: the type indicates the wordsize on 
which the operations is performed, e.g. bit, nybble, byte, 
short, long (resp. B, N, C, S, L). 
� Typed operands: operands are actually tuples indicating 
not only the address space but also the data type, i.e. 
word, row, column, or matrix and the scan direction 
(forward or reverse)  
� Virtual registers and address banks: MORA has no 
directly accessible registers. Operations take the RAM 
addresses as operands; however, “virtual” registers 
indicate where the result of an operation should be 
directed (RAM bank A/B, output L/R)  
� All arguments are optional: the MORA assembler will 
infer defaults for non-specified arguments, considerably 
simplifying the most common instructions. 

Instruction structure 
An instruction is of the general form  

instr ::= op nops? dest? opnd*  

op ::= uop:(B|N|C|S|I|L)?  

dest ::= virtreg? addrtup?  

opnd ::= addrtup|const   

virtreg ::= Y|YL|YR|YA|YB  

addrtup ::= (ram_id:)?addr(:type)?  

ram_id ::= A|B  

addr ::= 0..(MEMSZ-1)  

type ::= (W|C|R|M|MT|Q|QT)(R|F)?  

const ::= C:num  

num ::= -(MEMSZ/2-1)..(MEMSZ/2-1)  

For example, the instruction for signed addition of two 
bytes would be:  

ADD 1 Y A:0:W A:0:W B:0:W 

The arguments represent the number of operations, the 
virtual destination register, the output address and the 
operand addresses. However, because of the “reasonable 
defaults” strategy, this can simply be written as  

ADD 

Similarly, a multiply-accumulate of the first row of an 
N�N-matrix in bank A with the first column of a matrix 
in bank B would in full be  

MULACC 8 Y A:0:W A:0:R B:0:C 

but can simply be written as  
MULACC R C 

The MORA assembler will infer defaults for all implicit 
fields.

Address Types 
As discussed in Sec. 3, the RC supports complex 

address scan patterns through the use of 4 fields in the 
instruction word: base_address, step, subset and skip.
The MORA assembler supports a subset of all possible 
values of Step, Subset and Skip through its type system. 
The type component of the address tuple (W|C|R|M|MT) 
indicates the nature of the datastructure referenced by the 
base address (ram_id:addr):

W: word (single byte)  
C: Column (N�1)
R: Row (1�N)
M: N�N matrix (MT: transposed matrix M�)
Q: N/2�N/2 matrix (QT: transposed matrix Q�)

The type suffix (F|R) indicates a forward or reverse scan 
direction. Thus MORA’s simple address type system 

Figure 8: Internal structure of RC RAM banks 
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supports the typical vector operations required for N�N
matrix manipulation.  
Operation Types 

The operator of an instruction can be explicitly typed, 
indicating the length of the word on which the operation 
should be performed. This information is used to generate 
the step and the virtual output register. As the MORA 
RAM is byte-addressable, operation types B (bit) and N 
(nybble) have no effect on the address generation but 
result in single-byte output; operations on multiple bytes 
(types S and L, resp. 2 and 4 bytes) result in a step of the 
number of bytes; the assembler generates the individual 
byte-operations that make up the multi-byte operation.  
5.3 Generation Language 

This component of the language is in itself an 
imperative mini-language with a simple and clean syntax 
inspired mainly by Ruby1. The language acts similar to 
the macro mechanism in C, i.e. by string substitution, but 
is much more expressive. 
The current MORA RC does not support registered 
memory access and hence addressing is completely static. 
While this is not an issue for run-time performance, it 
would make algorithm implementation repetitive and 
cumbersome. The generation language allows instructions 
to be generated in loops or using conditionals. 
Example: matrix multiplication 

Because of the parallelism in MORA, 8�8 matrix 
multiplication can be done very efficiently by splitting the 
matrices into 4�8 and perform 4 partial multiplications in 
parallel. 
The C code for such a partial multiplication is: 

for (int i=0;i<4;i++) { 

 for (int j=0;j<4;j++) { 

  m[i][j]=0; 

  for (int k=0;k<8;k++) { 

   m[i][j]+=a[i][k]*b[k][j]; 

  }  

 } 

} 

In MORA assembly, this becomes: 
for j in 0..24 step 8 

    for i in 0..3 

        out=i+j 

        k=i*8 

        MULACC A:out:W A:j:R B:k:R 

    end 

end 

The MORA RC performs this computation in 128 clock 
cycles.

1 www.ruby-lang.org

5.4 Coordination Language 
MORA's coordination language is a compositional, 
hierarchical netlist-based language inspired by hardware 
design languages such as Verilog and VHDL. The 
language consists of primitives definitions, module 
definitions, module templates and instantiations. 
Primitives describe a MORA RC and are defined as 
prim_name { ... }, e.g. a primitive to compute a 
determinant of a 2x2 matrix would be: 

DET2x2 { 

MULT YB B:0 A:0 A:9 

MULT YB B:1 A:1 A:8 

ADD YR A:0 B:0 B:1 

} 

Instances are defined as (netout1,...) = name (netin1,...);
unconnected ports are marked with a '_'. 
Modules are groupings of instantiations, very similar to 
non-RTL Verilog. As modules can have variable numbers 
of input and output ports (but no inout ports), the 
definition is module_name (inport1, inport2...) {...} 
(ouport1, outport2 ...). For example, a module to compute 
16-bit addition can be built out of 8-bit addition 
primitives (ADD8) as follows: 

ADD16 (b1,b0,a1,a0) { 

(c0,z0) = ADD8 (b0,a0) 

(c1,s1) = ADD8 (b1,a1) 

(_,z1) = ADD8 (c0,s1) 

} (c1,z1,z0) 

6. Performance Results
A full custom design of the entire RC was carried out 

in IBM’s 0.13µm CMOS process. For ease of simulation 
and verification, a test instruction sequence was executed 
using an external ROM as the instruction memory. Each 
individual block was evaluated for speed and power 
performance at 166 MHz. The results are presented in 
Table 2. To emphasize the resource efficiency of the 
proposed cell, we have included the transistor count of 
each block.  

For estimating the performance of the MORA 
architecture, a cycle accurate simulator was developed. 
Using the MORA assembly language, several benchmarks 
were coded into the compiler/simulator. Table 3 presents 
a performance analysis of MORA when performing 
popular benchmark applications. 

Table 2: Block wise power and transistor count
Component Transistors Power (mW) 
PE 11,662 0.425 
Control Unit 24,140 1.185 
DPRAM 27,010 1.558 
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The MORA architecture is evaluated for 8�8 2-D 
DCT, 4�4 H.264 2-D integer transform and 32�32 8-point 
LeGall (5,3) DWT applications. The DCT and H.264 
transforms are implemented as simple 8-bit integer matrix 
multiplications, 2-D DCT: C.X.CT and H.264: 
(H.X.HT)�E. The matrix multiplication is split into a 
number of parallel operations as explained in the previous 
section. Note that the direct product does not require extra 
time on MORA as it is integrated with the operations for 
combining the  partial results. The table shows two 
different optimizations for DCT and H.264, minimal 
delay and maximal throughput. The first implementation 
(minimum delay) uses as many RCs as possible to process 
a single image block; the second implementation 
(maximum throughput) uses as few RCs as possible per 
image block in order to maximize the number of image 
blocks processed in parallel, leading to a higher 
throughput (more than double for H.264). 

The 8-point wavelet transform is implemented using a 
pipeline of 4 RCs, each RC computes following equations 
using 6 single-cycle operations:  

yi = xi – (xi-1+xi+1)/2 
yi-1 = xi-1 + (yi+yi-2)/4  

To maximize throughput, 16 blocks are processed in 
parallel. 

The analysis presents the performance of the MORA 
processor in terms of total computational time and overall 
system throughput. Another important point to be noted is 
that all the algorithms are implemented for maximum 
resource utilization. The benchmarks are programmed to 
minimize the number of cores idle during execution time, 
thereby guaranteeing a high utilization factor. 

7. Conclusion 
This work presented the organization and VLSI 
implementation of the MORA processor core. The circuit 
was evaluated for speed and power performance; the 
architecture was evaluated for popular benchmark 
applications implemented in the MORA assembly 
language using a cycle accurate simulator. The proposed 
architecture builds on its predecessor proposed in [10] and 
extends the functionality to further suit the demands of 
media processing applications and algorithms. The 
architecture is extremely light in terms of actual silicon 

resources, while still maintaining high throughput 
efficiency.

Future work in hardware as well as software 
development aims to build on these encouraging 
preliminary results, to provide a scalable, low-cost, highly 
programmable reconfigurable platform for media 
processing. We also aim to explore the possible 
applications of MORA beyond the media processing 
domain. 
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Table 3: Performance analysis of MORA processor core for benchmark applications @ 166 MHz 

Benchmark Total 
Delay (ns) 

Total 
Latency (ns) 

# Blocks processed 
in parallel 

Throughput 
(MOPS) 

# RCs 
utilized 

8�8 2-D DCT,min. delay 432 216 1 4.63 56 
8�8 2-D DCT max. throughput 1536 1536 8 5.21 64 
4�4 H.264 2-D IT min. delay 108 54 1 18.52 56 
4�4 H.264 2-D IT max. throughput 192 192 8 41.67 64 
32�32 DWT LeGall (5,3) 14,592 13,056 16 1.23 64 
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