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Preface 
 

This report presents a summary of results pertaining to future electric power systems of 

the strategic research project “Coherent Energy and Environmental System Analysis” 

which was conducted in 2007-2011 and funded by the Danish Council for Strategic 

Research together with the participating parties. 

 

The project was interdisciplinary and involved more than 20 researchers from seven 

different universities or research institutions in Denmark. Moreover, the project was 

supported by an international advisory panel. 

 

The work was carried out as an interaction between five work packages. In this work 

package on future electric power systems, researchers from the Department of Energy 

Technology, the Department of Development and Planning (both Aalborg University) 

as well as from the Department of Electrical Engineering (The Technical University of 

Denmark) participated.  

 

A number of reports, papers and tools were reported separately from each part of the 

project. A list of the main background reports is given at the end of this preface while a 

complete list of all papers and reports can be found at www.ceesa.dk.  

 

This report details the articles and papers that were written specifically for this work 

package. 

 

List of background reports: 

 

Part 1: CEESA 100% Renewable Energy Scenarios towards 2050  

Part 2: CEESA 100% Renewable Energy Transport Scenarios towards 2050  

Part 3: Electric power systems for a transition to 100% renewable energy systems in 

Denmark before 2050 

Part 4: Policies for a Transition to 100% Renewable Energy Systems in Denmark 

Before 2050 

Part 5: Environmental Assessment of Renewable Energy Scenarios towards 2050 

 

November 2011 

 

Poul Alberg Østergaard 

Work package coordinator, WP3 – Future Electric Power Systems  
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1.  Introduction 
 

The Danish electricity system has undergone a transition from being primarily based on 

few and large centrally dispatched power generators based on synchronous generators to 

being based 40-50% on generators that are either producing according to momentary 

wind or according to decentralised production strategies as shown in Figure 1.  
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Figure 1: Danish electricity supply. Based on data from Danish Energy Authority. 

 

Concurrent with the increasing wind penetration, development has supported wind 

turbines with improved electro-technical abilities going from the early fixed blade wind 

turbines with directly connected asynchronous generators to pitch-controlled wind 

turbines grid connected through power electronic interfaces. Likewise, local CHP plants 

have evolved from operating according to a set three-tier tariff system to largely 

operating on the spot market and thus with incentives to produce when desirable from a 

system power balancing perspective.  
 

There has also been a transition from a spatially very centralised system with 17 

centrally dispatched power plants and 15 local CHPs in 1985 to 17 central and around 

300 local CHP plants above 0.5 MW in 2009. Wind turbines have furthered this 

development with most of the wind turbines being erected in windy but sparsely 

populated areas. 

 

The transition towards geographically distributed power generation as well as the 

transition towards production beyond the control of the central dispatch is a challenge 

from a TSO perspective and, in the light of the CEESA scenarios, a challenge that will 

grow in the future with a focus on distributed generation and electricity consuming 

devices like electric vehicles and heat pumps with prospects for integrating fluctuating 

sources of electricity.  
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The main purpose of the analyses presented in this report and in the accompanying 

analyses is to investigate the design space of scenarios for future electricity systems. 

The three main contributions from this work package are: 

 

- Analyses of and recommendation for electric grids in future power systems with 

a focus on storage facilities/electric vehicles 

- Requirement analysis, method development and recommendations for the 

control architecture of future power systems 

- Improved integration of system stability and short-term balancing considerations 

into the EnergyPLAN model 

 

In order to study the effects of the envisioned measures in the CEESA project on the 

electricity system, the measures can be classified into a number of different classes of 

change. The impact of these changes will then be mapped to different aspects of the 

electricity grid (impact categories).  

 

A. Central Generation 

- In the CEESA 2050 Ideal scenario, solid oxide fuels cells are used throughout 

the system for power generation 

- In the CEESA 2050 Conservative scenario, combined cycle gas turbines are 

used in combination with gasification 

- Expansion from district heating from a level of approximately 50% of the total 

heating demand to between 63 and 70% 

 

B. Renewable Electricity (uncontrolled, central and distributed) 

- Increase offshore wind power to a level of 9710 MW in 2050 compared to 868 

MW in 2010 

- Increase onshore wind power to 4454 MW in 2050 compared to 2900 MW in 

2010 

- Increase wave power to 300 MW by 2050 

- Increase photovoltaics from 4.6 MW in 2009 to 5000 MW in the ideal scenario 

or none in the conservative scenario 

 

C. (controllable) Distributed Generation 

- In the CEESA 2050 Ideal scenario, solid oxide fuels cells are used throughout 

the system for power generation 

- In the CEESA 2050 Conservative scenario, combined cycle gas turbines are 

used in combination with gasification 

 

D. Demand Reduction 

- Reduce electricity demand by 50 % in private households  

- Reduce electricity demand by 45 % in industry 

 

E. Demand flexibility 

- Flexible demand in households and in industry 

- Heat pumps  

 

F. Electric Transportation – V2G  
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- In the CEESA Ideal scenario, transportation needs are covered by electricity,  

V2G, and synthetic fuels 

 

These measures grouped in categories A-F map into the following technical impact 

categories. The areas identified are: 

 

I. Network 

The AC network represents the physical aspects of the transmission system, 

including different voltage levels, transmission capacities, transformers and the 

equipment necessary to support the network such as shunt capacitors or voltage 

regulators. 

 

i. Import/Export (interconnection capacity) 

Cross-border exchange within synchronous areas as well as HVDC-based 

transmission across synchronous areas.  

 

ii. Transmission Networks (transmission capacity) 

A change in the location of central generation and load areas changes the 

loading patterns of the transmission network. Additional overhead trans-

mission lines are not accepted in Denmark, and any further transmission 

capacity has to be underground, which is significantly more costly and 

harder to control. 

 

iii. Sub-transmission and Distribution Networks (today passive infrastructure) 

At lower voltage levels, resistive losses are larger. Sub-transmission and 

distribution networks will on the one hand be subjected to higher loads due 

to EVs and heat pumps but will on the other also be used differently as flows 

may be bi-directional due to power generation at household level.  

 

II. Intermittency – Balancing (Active Power Balance)  

Power system operation is aimed at maintaining the balance between power 

supply and demand at all times, whilst observing transmission limitations. 

 

i. Inertia 

Synchronous machines have rotating inertia and are electrically coupled to 

rotate at the same speed. The synchronous machines thus commonly provide 

an energy buffer to the overall system, making it more “patient” with respect 

to imbalances. 

 

ii. Disturbance and Balancing Resources (Reserves) 

Control resources need to be kept available at all times to counter 

unpredicted disturbances. These reserves correspond to idle generation 

capacity, but may also be substituted by controllable demand. 

 

iii. Controllability issues 

Traditional power system operation is based on long-standing operation 

principles which may not be prepared for incorporation of new resources or 

to counter new types of disturbances.  
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III. Operational stability (e.g. Voltage Control) 

i. Impacts on voltage and load angle stability 

ii. Impact on distribution level  

iii. Reactive flows and congestion management  

 

IV. Protection Systems 

i. Changing flows 

Particularly reverse flows are critical for today’s protection systems. Also a 

higher probability of exceeding operational range (e.g. overloading/voltage 

dips) is expected with higher penetration of electric vehicles and distributed 

generation. 

 

Mapping the various measures of the CEESA scenario into technical impact categories 

gives the following impact matrix: 
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Power system simulations are conducted on selected Danish power and distribution 

networks to verify the technical changes and challenges given in the impact matrix in 

Work Package 3.1. Some of the worst-case power system operating control scenarios 

for an increasing amount of renewable energy systems, especially the wind power in 

Denmark, is used for simulations in the work package. These scenarios provide the 

basis to validate the ability of electric vehicle based battery storages as alternate and 

flexible power balancing solutions. The technical challenges and issues as given in 

categories I and II of the impact matrix, like the limited prospects of network capacity 

expansion and the decreasing conventional balancing reserves, are accounted by the 

electric vehicle based future ancillary services study in WP3.1. The studies in WP3.1 

were based on system perspective and aggregated levels rather than the secondary local 

distribution levels which limits a detailed analysis of categories III and IV of the impact 
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matrix in WP3.1. The scenarios, simulation studies and results of WP3.1 are presented 

in Section 2 of this document. 

 

In Work Package 3.2, the overall requirements for the control of a power system for the 

CEESA scenario have been analysed, with a focus on impact category Balancing (II.) 

and capacity aspects of the Network (I.). It was found that for changes at the scale 

required in the CEESA scenarios, several aspects of today’s grid operation principles 

will be severely challenged, and that there will be a need for revising control 

architecture of power systems. Section 3 discusses which aspects have to be considered 

in the design and summarises two modelling methods for control architecture 

representation and analysis that have been proposed in the course of this work. 

2.  Simulation of power systems  
 

In the future Danish power systems, the integration of more wind power is replacing the 

large conventional generators and the expansion of interconnections with neighbouring 

countries is limited. These factors demand new power balancing solutions for the 

reliable and stable operation of power systems. The energy systems have to be made 

more flexible and intelligent in the power distribution levels to incorporate more 

variable and uncertain wind power.  The intelligent systems can efficiently incorporate 

more renewable sources with the help of local balancing solutions distributed across 

heat, transport and electricity sectors. Some of the popular examples include heat pumps 

in the heat sector and electric vehicles in the transportation sector.  To validate these 

concepts, there is an increased interest among the utilities, industries and the scientific 

community to test and operate the distribution networks as self-sustainable systems with 

the support of local balancing solutions. The CEESA project estimates that Denmark 

can be self-sufficient with a renewable energy system based on domestic resources.  

  

As part of the CEESA project, the simulation studies of power systems in WP3.1 are 

used to analyse the integration of the transport sector with the electricity sector. This is 

carried out as a PhD study where the objective is to investigate the use of battery 

storage of electric vehicles represented as Vehicle-to-Grid (V2G) systems to provide 

active power balancing to support large-scale wind penetration in Denmark. This 

research work is divided into five different case studies analysed in selected Danish 

electricity networks with high penetration of wind power. They are conducted as static 

or dynamic simulation studies for islanded as well as interconnected power system 

operation.  

 

Case 1: The role of Vehicle-to-Grid systems as primary regulation reserves is verified 

for ensuring frequency stability in a Danish distribution system with high wind power 

penetration [17].  

The short-term dynamic simulations were applied to the tested distribution system 

operated in an islanded mode with 48% and 65% of wind power penetration scenarios. 

The analyses were conducted based on the different power system events like step load 

change, loss of combined heat and power (CHP) and loss of wind farm units. Based on 

the simulation results, the V2G systems provide a fast, robust and stable frequency 

control better than the conventional generation units in the distribution network. The 
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rate of change of frequency and the frequency deviations are minimal for simulation 

results using V2G systems when compared to using only the conventional generation. 

The V2G systems could operate as either controllable load or generation based on the 

system’s balancing power requirement.  

  

Case 2: The application of Vehicle-to-Grid systems as secondary regulation reserves in 

an interconnected power system operation of Western Denmark is analysed [16]. 

The long-term dynamic power system simulations were used to investigate the 

integration of V2G systems in a Load Frequency Control model. The simulation 

scenarios were defined based on two typical days with low and high wind power, which 

are characterised by large power exchange deviations with Germany (UCTE control 

area) and periods of continuous up-regulation and down-regulation requirements. The 

simulation results show that the power exchange deviations between West Denmark - 

UCTE control areas were substantially reduced (within acceptable limits - ±50MW) 

using V2G as regulation reserves. The regulation power requirements from 

conventional generators are also significantly reduced with the integration of V2G 

systems participating in Load Frequency Control. If the electric vehicles have battery 

storage duration of four hours connected at 10kW each, less than 10% of the total 

Danish vehicle fleet converted to V2G based vehicles is sufficient to satisfy the 

regulation needs of the examined scenarios. The operating characteristics like quick 

start and fast ramp up or down capabilities of battery storages provide superior 

performance compared to that of the conventional generators delivering power system 

ancillary services. 

 

Case 3: The Vehicle-to-Grid system is analysed for an islanded power system operation 

on the Danish island of Bornholm [13].  

The long-term dynamic simulations were conducted to provide a qualitative and 

quantitative analysis of V2G system performance when replacing conventional reserves 

and when determining the storage capacity required to support large integration of wind. 

The worst-case scenarios of reduced power balancing reserves, periods of coincident 

peak demand and wind ramps, and battery storage constraints are considered in this 

study. The results of the simulations reiterate that the desired frequency quality in an 

islanded mode of power system operation was ensured using V2G systems responding 

to power system operation scenarios with high wind and high reserve power 

requirements. A minimum battery power capacity of 30-40% of the installed wind 

power capacity is estimated for a stable power system operation for the studied case. 

More than 80% of conventional generation reserves were replaced by the V2G systems 

for power system regulation services. These analyses could be representative to other 

small or large isolated distributed power systems where the wind power outputs are 

strongly correlated. The overall generation control efficiency could be improved in a 

wind dominated power system like Bornholm using a quick response V2G frequency 

regulation which is an attractive alternative to reserves from the conventional power 

plants. 

 

Case 4: The impacts of increased penetration of electric vehicles as loads on a Danish 

primary distribution network are investigated [18]. 

The steady-state power system simulations are conducted on the primary distribution 

network of Bornholm for an increasing amount of electric vehicles load of different 
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power ratings in the range of 0-50%. The charging strategies of uncontrolled (dump) 

and controlled (smart) were examined in the case study. It could be inferred that the 

electric vehicle penetration levels depend not only on the battery storage capabilities, 

market mechanisms or policies but also on the various safe operational limits of power 

system network parameters and the battery charging profile. Controlled charging is 

found to be more effective than uncontrolled charging when integrating more electric 

vehicles on a moderate level. The electric vehicle integration of only 10% is possible in 

the studied distribution network for uncontrolled charging, whereas 40% was possible 

with controlled charging. The voltage drops in the network are more critical than the 

line loading for same levels of EV integration as obtained from the simulation results. 

The impacts of electric vehicle integration at the low voltage secondary distribution and 

weak networks may yield more conservative results. 

 

Case 5: The results from power system dynamic simulation studies with future power 

regulation strategies like electric vehicles are used here to compare the results from 

hourly simulations of energy planning tools to validate the future energy planning 

scenarios [19]. The key findings of this case study are discussed in detail in the section 

“Dynamic simulations vs. EnergyPLAN model” of this document. 

 

The results of the case studies have shown that the Vehicle-to-Grid systems provide 

better performance than the conventional generation sources when balancing the power 

system with high levels of variable wind power. The Vehicle-to-Grid systems possess 

fast, quick start and flexible characteristics to provide smooth and robust grid regulation 

services which could be considered as one of the alternate solutions for replacing the 

conventional power reserves. The methods, scenarios and control strategies used in the 

above case studies were applied to selected Danish electricity networks which can be 

representative in applying the ideas to other similar small and large power systems, 

where a high level of wind power integration is desired. The Western Denmark and 

Bornholm power systems used as test cases in the PhD study could be regarded as the 

ideal electricity systems to validate the interconnected and islanded system operation 

with high wind penetration, respectively. The various percentages obtained as results of 

the case studies in this work package are more specific or dependent on the selected 

Danish electricity networks. It is hard to generalise the results as they may vary or a 

more conservative outcome may be produced when an analysis is made on other 

electricity networks. Instead, it could provide fairly reasonable results and trends which 

can act as “working tools” to simplify the complexity of multivariable and dynamic 

power system analyses. This could act as a base or reference case for a final synthesis of 

future power system planning and operation. 

 

3.  Future control strategies of power systems 
 

The control architecture of today’s power systems is based on a paradigm of 

controllable central generation and fluctuating demand. The energy mix for Denmark 

developed in the present scenario studies tends to be strongly based on fluctuating 

renewable energy, mainly wind power, and includes a variety of flexible demand 

options due to active integration with the heat and transport sectors. This mix requires 
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new control strategies, because the formerly clear roles of controllable generation vs. 

fluctuating demand are no longer given simply by the structure and location of 

components in the power system. In order to develop such control strategies, we need a 

different understanding of the operation of electricity systems in which both the 

identification of system regulation needs and the allocation of appropriate roles to 

available resources can be handled dynamically. This work focuses on a rigorous top-

down approach to both identifying these requirements and providing means to 

modelling these new control structures.  

 

Behind the idea of studying ‘future’ control structures is the task to find or design these 

control structures in the first place. In recent years, a number of proposals for new 

control and operation schemes aiming at the coordination of more distributed and 

fluctuating resources with power system control requirements appeared, but their scope 

tends to be limited to specific use cases and challenges. The challenges considered are 

typically formulated either in a market perspective, or in a technology perspective 

focusing on grid issues or information and communication aspects. In their way, all of 

these schemes may contribute to the control architecture of future power systems. 

However, even though it seems likely that the final design will be composed partially of 

a number of these existing proposals, it is quite unclear to which extent and which role 

these partial solutions will play. What seemed missing was an approach with a broader 

scope that could provide a meaningful and formally precise representation of power 

system control architecture, in which roles and interactions of those different concepts 

with respect to the overall system control could be represented and evaluated.  

 

The approach developed in this work aims to bridge the common chasm between 

intuitive insights (such as “more wind power leads to a need for more flexibility”) 

drawn from simplistic modelling approaches and (too often misleading) results of 

detailed simulation studies based on today’s operational framework, which require 

numerous opaque assumptions and typically hardly accessible data. The first step in the 

design process is to identify overall goals and to relate those to tangible design 

objectives. As the overall goals and objectives are very abstract, their refinement to 

more structured requirements depends on an appropriate representation of the system 

structure. A methodological basis for this representation was found in means-ends 

functional modelling [8], which provides a framework for modelling power system 

functions and their relations at different levels of abstraction. The explicit means-ends 

perspective makes it possible to relate control objectives and control functions to 

networks of more basic functions at the appropriate level of abstraction. The 

representation of functions is designed to strictly conform to first principles of physical 

conservation laws, causality and intention as well as linguistic concepts of action. The 

method has previously been applied to a range of different processes. In the course of 

this work, the method has been adapted and extended for application to the control of 

power systems. Due to the scope of energy scenario studies, the depth of analysis was 

limited to energy storage and flows, however, there is a potential for adapting the 

method to voltage control as well as for the representation and integration of other 

energy systems [8,2,7].  

 

The following insights were generated from the application of means-ends functional 

models to the study of power system control:  
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- Aggregation concepts, which are typically at the core of forward-looking control 

schemes, are inherently based on a functional understanding. Functional 

modelling provides a logical and consistent framework for modelling these 

schemes in proper context [9,5]. 

- The aggregates of functions and their relation present a formal way of modelling 

different (engineering) perspectives in energy systems [7]. 

- Means-ends functional modelling can serve as an information modelling method 

for control service description, fault analysis and situation awareness of control 

agents in future power system automation [5]. 

- The consistent means-ends decomposition based on such functional models 

presents a clear interface to resource allocation problems, analogous to the way 

in which a cooking recipe can be interpreted as a shopping list. With this 

property, functional modelling should facilitate market design by providing a 

transparent representation also for the complex but structured environment of 

power systems [10,9,1]. 

- Energy storage is a functional element that is not explicitly recognised in current 

operation principles of power systems. If energy limited units are to provide 

regulation capabilities, an explicit consideration of energy limitations in future 

operation concepts is required [3]. 

 

The qualitative framework has been extended to include prediction and scheduling of 

variable energy resources which are important for the continuous power system 

operation with uncertain and fluctuating energy resources [6]. Altogether, this 

framework provides a complete formalism to qualitatively describe and analyse energy 

control structures for power systems.  

 

An insight of the studies of this project is the effective transition of electric energy 

systems from the simple supply-follows-demand logic to a power system operation 

paradigm that includes the management of energy storages at all scales to continuously 

buffer mismatches between energy supply and demand. Here it is important to realise 

that operational flexibility may be gained both from reversible (bi-directional) and 

irreversible (buffering) energy storage. Adaptation of the operation logic in future 

power systems will lead partially to new control structures, with much finer granulation 

than today, needed for aggregating and managing the diverse resources  and operated 

more autonomously by means of intelligent agent technology. Along with the adapted 

operation methods, new operation models, markets, visualisation and operator support 

tools will also be required.  

 

By harvesting these insights from the qualitative modelling and analysis, a new 

modelling framework has been developed that combines classic network-oriented power 

system models with generic scalable energy storage models [3,4]. Based on the 

qualitative modelling insights, this simulation framework is going to include a 

structured interface for the modelling of alternative control structures. The generic 

model structure provides standard evaluation functions enabling the comparison and 

evaluation of either alternate storage technologies or alternate regulation strategies.  

The framework is going to be applied to a comparative study of wind integration with 

thermal storage buffering and flexible electricity for electric transport, potentially also 



15 

 

comparing a small number of control schemes to evaluate their performance in terms of 

resource efficiency.  

 

3.1. Engineering requirements for energy scenarios 
Questions typically requested of WP3 contributors were those about realizeability, or 

feasibility: “Is it technically possible to do this?”, “What is necessary to make it 

possible?”, and those questions about relations between technologies: “How many 

electrical vehicles for xx% of wind power?” 
 

The work described in the previous section aimed at interpreting the main directions of 

the CEESA energy scenarios in terms of their implications for power system operation 

and control and the development of methods appropriate for this purpose. The following 

discussion will highlight other aspects of the relation between energy scenarios and 

power engineering.  

 

Normally, energy planning studies provide design requirements for power system 

planning, such as the development of the transmission infrastructure. A typical relation 

between engineering and scenario studies is that the scenarios provide design 

requirements for the engineering. The questions above point in a different direction: to 

derive requirements from engineering knowledge to scenario studies. Are the scenario 

assumptions technically feasible, and can the assumptions be improved? For the sake of 

the following argument, this question may be divided into two ways of addressing 

technical feasibility in energy scenarios:  1) For a given scenario, to find out whether or 

not it would be technically feasible, “can it be done?”, and 2) by providing constraints 

and options to be considered in the generation of “feasible scenarios”.  

3.1.1. Can it be done?  

Simulation studies are a practical approach to evaluating the feasibility of a given 

scenario. In a simulation study, first a base case that realistically reflects known system 

behaviour needs to be established. Aspects of the base case are altered incrementally to 

reflect the effects of changes to the given case. The more complex and ‘nonlinear’ the 

base case model, the more difficult it is to reflect changes. Alternatively, model 

simplifications can be performed by additional modelling assumptions, which enable 

more flexible modifications of the base case. A typical modelling assumption is for 

example that a lower-level control objective is always fulfilled (e.g. the voltage is 

within operation limits) – and sometimes it is questionable if the original assumptions 

remain valid for the altered system. Further, it is often overlooked that simulation 

approaches require the definition of control objectives and algorithms. These controls 

are in part oriented to existing physical needs and, especially in power systems, also to 

(organisational/legal/market) regulations, both of which could be subject to change. For 

a simulation study, all these part-assumptions have to be considered to judge the 

generality and precision of respective conclusions. 

 

In every step of adapting a base case to a new scenario, the engineer implicitly answers 

the question “How should it be done?”. By answering this question, incremental design 

choices are made, usually on the basis of existing and learned engineering knowledge 

and procedures. It is thus important to recognise the design problem implicit in every 
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“Can it be done?”. In case of major steps in the scenario requirements, an incremental 

development may not be feasible on the basis of existing domain knowledge. As energy 

systems are complex, the design space to be explored is vast and the complexity of 

models may make it hard to evaluate alternatives. Here, model simplifications are used 

systematically as abstractions in the design process to incrementally structure the design 

space. In a structured design space, requirements can be mapped to respective model 

abstractions. Also the methods introduced above are tools to facilitate the structuring of 

the design space by providing building blocks for a systematic representation of the 

processes that form energy systems.  

3.1.2. Feasible scenarios 

Also a scenario tool is aimed at structuring the design space of future energy scenarios. 

Generally, a scenario tool models the constraints of energy systems at some level of 

abstraction so that technological alternatives can be evaluated. It simulates the 

interactions between different technologies based on a number of built-in relations 

(constraints) and regulation objectives, and calculates figures that serve as decision 

criteria. The relations and objectives are naturally based on the assumptions built into 

the scenario model. While the decision process often revolves around the figures, it is 

the structure of these underlying assumptions which gives rise to the formulation of 

such figures. 

 

While a scenario model is considered a simplification of the ‘real world’, its goal is to 

capture major quantitative interactions in energy systems. In analogy to the model 

simplifications employed for the technical reasoning, these simplifications are aimed at 

providing insight for quantitative decision-making. The difference is thus that scenario 

models are built to approximate the quantitative outcome, not to simulate the actual 

process. The abstraction level is chosen as high as possible to allow for simple 

computations whilst providing numerical results as accurate as necessary. The purpose 

is not the evaluation of alternative system designs but to assess alternative resource 

allocations on a given approximate system.  

 

Here, the engineering approach may provide insight by comparing the “approximate 

design” (scenario model) to potential future engineering realisations, investigating 

critical points that would render a scenario infeasible and pointing at developing more 

fundamental decision figures. In this perspective, the following section discusses some 

potential improvements to the EnergyPLAN model. 

 

4.  Grid stability in scenario analyses 
 

The EnergyPLAN model uses a simplification to assess dynamic grid stability; a 

minimum production during all hours in large CHP or condensing mode power plants as 

frequency forming units and a minimum share of the total power generation coming 

from frequency regulating units. This ensures a certain proportionality between non-

frequency forming units and frequency forming units as well as a provision regulating 

power to balance intra-hour imbalances between supply and demand. 
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EnergyPLAN does not model: 

 

- the uncertainty of prediction of fluctuating resources, 

- limitations to the flexibility of generating units, 

- power system events, such as sudden outages or the effect of a storm front on 

the wind power production.  

 

The prediction uncertainty of wind power is rather low if the reaction time of the power 

system operation and resource allocation can be reduced. It can also be said that both 

the increase in distributed generation and flexible demand will lead to high availability 

of highly responsive regulating units and that for a high number of smaller units the 

ramping limitations and startup times known from today’s large scale generators do not 

apply to the generation mix proposed in the CEESA scenarios. 

 

In future systems without large synchronous generators, the fundamental issue of 

missing frequency forming units is present. The less synchronous machines, the less 

inertia of the system, the more sensitive the system will be and the faster it should 

respond. 

Analyses for this work package have primarily focused on the extent to which fewer, 

smaller plants in combination with electricity storages in electric vehicles connected to 

the grid through power electronics may ensure dynamic stability. 

This has resulted in the EnergyPLAN model having been upgraded with new system 

parameters qualifying the additional resources required for the technical and minute-to-

minute operation of power systems. These are thus issues with an impact on the main 

scenarios, and restrictions that need to be imposed on the design of the general CEESA 

project scenarios so adequate allowances are given grid stability issues. 

 

4.1. Grid stabilisation using V2G technology 
Extensive work on V2G has demonstrated the technology’s ability to add frequency 

stability to electricity systems due to the energy storage capacity of electric vehicles 

combined with a quick response time. The analyses have even shown that most 

conventional generator reserves may be replaced by V2G systems and that the V2G 

systems have better performance in terms of rapid reaction to imbalances.  

Applying the V2G technology reduces the power imbalances that would otherwise be 

imposed on neighbouring control areas. It is important though, that electric vehicles are 

charged and discharged intelligently as so-called dumb charge electric vehicles would 

not add to frequency stability but rather impose a large burden on the electricity system 

due to coordinated charging. 

The technology is modelled in more detail with a focus on impacts on future scenarios 

as modelled with the EnergyPLAN model. This is presented in the next section. 
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4.2. Dynamic simulations vs EnergyPLAN scenario modelling 
In order to validate EnergyPLAN scenarios designed and analysed using the model’s 

simplified representation of grid stability, an analysis was made where a national 

Danish scenario was mapped to Bornholm and subsequently analysed using both the 

EnergyPLAN model and a dynamic simulation model evaluating the frequency 

response of the system [19]. While the EnergyPLAN ensures power balance at an 

hourly level, the power balance must be maintained in all time frames in actual systems, 

and the frequency stability of systems is an indicator of the system’s ability to do this. 

With a starting point in the mentioned national CEESA scenario, future scenarios for 

increasing penetration of wind power supported by increasing Vehicle-to-grid 

regulation capacity were analysed. As cut-off criteria for comparison of the two models, 

the excess electricity production parameter in the EnergyPLAN model and the standard 

deviation of the frequency in the dynamic power system model were employed. 

 

The wind power capacity integration ability obtained from the dynamic simulation 

resulted in about 50% less than what was obtained from the hourly simulation results 

for the scenarios analysed without V2G regulation. If the V2G regulation is 

implemented, more wind power production is feasible. A wind power penetration of 

82% and 70% is possible from the simulation results of hourly and dynamic models, 

respectively.  

 

The possible levels of renewable energy integration as well as the required reserve 

margins differ in these two simulation model types. Since the dynamic model considers 

the short-term fluctuations from the wind power rather than the hourly aggregated data 

used in the EnergyPLAN, the results from the former reflect the need for faster and 

greater balancing capacity (reserves) to ensure a continuous balancing of wind power 

variations. It should be noted that the difference between the results from the two 

models was reduced, when the fast and quick start V2G regulation was applied.  This 

also indicates that electric vehicles may have an important role to play in future energy 

system scenarios due to their fast response in comparison to conventional generators 

which at present are the main source of balancing power.  

 

It was also noted that the conventional control architecture which was utilised in the 

dynamic frequency simulation to control the power output of the electric vehicles led to 

a saturation of the electric vehicle charging capacity. This effect seems to result from an 

ineffective utilisation of the available energy resources. Including a different control 

architecture that ensures an improved utilisation of the energy storage capacity of the 

electric vehicles could be considered for future studies. EnergyPLAN optimises the 

storage capacity utilisation of electric vehicles directly. To improve the capability of 

EnergyPLAN to represent the intra-hour regulation capacity offered by energy storage 

such as electric vehicles, it may be considered to allocate a fraction of the accounted 

energy storage capacity inside EnergyPLAN for grid regulation instead of optimisation. 

That fraction would be a function of the power capacity of the respective device, of the 

system interconnection type and of the energy mix in the system. Estimates for this 

fraction can be obtained from further comparative studies that isolate the intra-hour 

operation from optimisation of energy storages in order to avoid the saturation of energy 

storage capacities.  
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In the EnergyPLAN model, for the technical optimisation strategy the electricity is 

exchanged for technical reasons, whereas for the economic optimisation, the aim is to 

optimise the profit by participating in the external electricity market. However, the 

transmission capacity and the imports/exports model in EnergyPLAN are aggregated 

and static which does not account for scheduled power exchange flow in the 

interconnectors. In order to conduct similar comparative analyses for interconnected 

systems, the excess electricity production in EnergyPLAN could be compared with 

power exchange deviations in the dynamic simulation model. For such an investigation, 

the provision for representing different power scheduled exchanges has to be included 

as a modification to the EnergyPLAN model, instead of the existing single aggregated 

interconnector.  

 

4.3. Grid stabilisation in the EnergyPLAN model 
As mentioned, EnergyPLAN does not make dynamic simulations of grid stability issues 

but rather relies on hourly simulations in which certain requirements are being met. The 

model has three main requirements to ensure that the system works from a grid stability 

perspective. These are  

 

- Minimum grid stabilisation share, 

- Minimum production on central CHPs, and 

- Minimum production on central condensing mode power plants. 

 

In the minimum grid stabilisation, users detail the fraction of power production that for 

each hour of the year as a minimum must come from production units able to ensure 

grid stability. In addition, users may specify minimum productions on the units that are 

typically equipped with large synchronous generators – central CHPs and central 

condensing mode power plants. 

 

These are thus the requirements that must be met during all hours of the year. If the 

demands are not met based on simple load balancing necessities, central CHPs or 

central condensing mode power plants will increase production in the given hour until 

the minimum share is reached. 

 

In addition to the central CHPs and condensing mode power plants – that by default are 

assumed to be able to provide grid stability – there are three technologies that also 

provide grid stability if present. These are  

 

- Nuclear power 

- Geothermal power 

- Hydro power 

 

All plants of these types are also assumed to be able to provide grid stability, however 

there is no technical minimum they must abide by. Finally there are a number of 

technologies that may or may not provide grid stability. These are  

 

- Decentral CHP 
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- Wind, wave, river hydro, tidal and solar power 

 

Each of these technologies may provide a user-defined grid stabilising contribution 

between 0 and 100% of the hourly production depending on how advanced the user 

considers the given technology to be. 

 

As a part of the CEESA project and as a consequence of the analyses of electric 

vehicles, the model has been expanded with the ability to include the following 

technologies in grid stabilisation: 

 

- Smart charge electric vehicles 

- V2G 

- Interconnections 

- Waste incineration CHP 

 

As opposed to some of the other technologies, electric vehicles, V2G and 

interconnection do not relate to the actual use of these in the given hour but rather to the 

connected capacity in the given hour. A given stock of vehicles connected to the grid 

and an interconnection capacity to surrounding systems can thus be modelled having a 

grid stabilising ability even if they are not used in the given hour. Waste CHP, on the 

other hand, is modelled like most technologies meaning that the grid stabilising ability 

is proportional to the actual production in the given hour. 

 

Electric vehicles account for approximately one quarter of the energy demand for 

transportation in the CEESA scenarios, and if these are considered grid stabilising, the 

impact may be significant. In the standard CEESA scenario, however, grid stabilisation 

is not considered so for these analyses an alternative 30% production share from grid 

stabilising units is required throughout the year. Half of the installed offshore wind and 

local CHP capacity is assumed to have a grid stabilising ability as detailed in Table 1. 

 

  Stabilisation share of different technologies 
 Min 

share 

CHP2  Onshore 

wind 

Offshore 

wind 

Waste CHP EV/V2G Interconnection 

Standard 0 0% 0% 0% 0% 0% 0% 

Alternative 30% 50% 0% 50% 0% Varying 0% 

Table 1: Grid stabilising ability in the main CEESA scenario and in an alternative with a varying 

share from electric vehicles. 

 

Under such circumstances, the system may experience hours of the year when the 

minimum grid stabilising share is not reached, causing power plants to operate extra for 

the system to remain within the 30% boundary condition. This in turn may give cause to 

additional export and additional power plant operation in condensing mode.  

 

Figure 1 shows how export and condensing mode operation decrease with more and 

more electric vehicles modelled as having a grid stabilising ability. Due to the 

significant installed capacity on electric vehicles, the system experiences saturation 

even when only 5% of the vehicle stock is considered grid stabilising.  
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Figure 2: Condensing mode operation and export vs grid stabilising ability of electric vehicles. 

 

The work has also included a more general discussion on grid stabilisation or system 

stability in EnergyPLAN scenario analyses. The actual modifications to the model have 

been made within the model’s current topology of grid stability as described before with 

a minimum hourly share from units designated as being grid stabilising as well as a 

minimum production on certain units.   

 

The EnergyPLAN model does not explicitly incorporate or distinguish between issues 

such as frequency control, upward regulation, downward regulation, primary reserves, 

secondary reserves, tertiary reserves, voltage control, short-circuit power and to some 

extent technical minima of production technologies.  

 

The EnergyPLAN model operates at an aggregate level where technologies are grouped 

into a number of general categories including e.g. offshore wind turbines, small-scale 

CHP plants and condensing mode power plants. Minimum production of large CHP 

units may be specified using the minimum CHP production, however that is more 

intended from a grid stability perspective than a minimum partial load specification. 

Partial load is in most cases handled by the circumstance that each group may 

encompass a number  of units each of which may be operated within its technical limits 

– including being shut down – thereby realising all operating points between zero and 

full load. 

 

However, the minimum production may be more explicitly separated from technical 

minima to ensure full distinction between the two non-related issues. 

 

The circumstance that the EnergyPLAN model does not distinguish between upward 

and downward regulation means that some technologies are likely operated in operating 

points where they only have the possibility of one of these. Full-load production on a 

given unit – or maximum generation on a fluctuating energy source – means that the 

technology cannot provide additional upward regulation though it would be able to 
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provide downward regulation to the extent that the given technology is used. 

Conversely, downward regulation may only be provided if the production technology is 

producing or the consumption technology is not consuming at full load.  

 

If a more rigorous grid stability system was to be implemented in the EnergyPLAN 

model, such segregation could be implemented, however it would also mean that 

technologies providing either upward or downward regulation should not be operated to 

the full extent possible. Wind turbines would e.g. need to be operated sub-optimally to 

be able to provide upward regulation, thereby reducing the actual production. That 

would naturally be a more fair representation of how they were to be operated in a 

system where they were to provide regulating power. 

 

A last consideration is reserve capacity for contingency situations or for n-1 situations, 

which is not explicitly included in the EnergyPLAN model. If a large unit trips offline, 

there is little to ensure that its production may be replaced by production from other 

units. Ensuring sufficient reserve capacity for contingency situations would not affect 

energy system dynamics in EnergyPLAN unless coupled with the possibility of 

stochastic events, however this latter would be beyond the scope of EnergyPLAN. 

Nonetheless, there could be additional capacity costs and/or additional fuel costs for 

such reserve capacity. 

 

4.4. Grid stabilisation and the CEESA scenario 
The CEESA scenarios contain many significant changes compared to the present 

system, and the dynamic impacts of all of these changes have not been analysed, so 

while the scenario has been verified in hourly energy terms, it has not been verified in 

power terms. Analyses focusing on the role of electric vehicles in power systems have 

demonstrated, however, that these may have a role to play in future power systems.    

 

With a high reliance on wind power in the CEESA scenarios, the behaviour of this 

resource and technology is particularly important. EnergyPLAN does not capture the 

intra-hour fluctuations that wind power has, however studies of measured wind power 

time series have shown that the amplitudes of fluctuations scale with the timescale. That 

is, fluctuations decrease with decreasing timescale so that fluctuations below the one-

hour level will tend to be smaller than the fluctuations already accommodated for in the 

EnergyPLAN modelling. 

 

5.  Articles and papers written as part of the 

work in WP3 
 

The list below details the articles and papers written as part of the work in this work 

package on future electric power systems. In general, the articles are also included in the 

PhD theses that form the main part of the documentation of the work. The articles are 

listed alongside the abstracts. 



23 

 

[1] Heussen, K.; Saleem, A. & Lind, M., System-awareness for agent-based power 

system control, Bulk Power System Dynamics and Control (iREP) - VIII (iREP), 2010 

iREP Symposium, 2010, 1 -15  

Operational intelligence in electric power systems is focused on a small 

number of control rooms that coordinate their actions. A clear division of 

responsibility and a command hierarchy organise system operation. With 

multi-agent based control systems, this control paradigm may be shifted to a 

more decentralised open access collaboration control paradigm. This shift 

cannot happen at once, but must also fit with current operation principles. In 

order to establish scalable and transparent system control architecture, 

organising principles have to be identified that allow for a smooth transition. 

This paper presents a concept for the representation and organisation of 

control and resource allocation, enabling computational reasoning and system 

awareness. The principles are discussed with respect to a recently proposed 

Subgrid operation concept. 

[2] Heussen, K. & Lind, M. (2010), Representing Causality and Reasoning about 

Controllability of Multi-level Flow-Systems, in 'Proceedings of the 2010 IEEE 

Conference on Systems, Man and Cybernetics, Istanbul, Turkey'. 

Safe operation of complex processes requires operators to maintain 

situational awareness even in highly automated environments. Automatic 

reasoning can support operators as well as the automation system itself to 

react effectively and appropriately to disturbances. However, knowledge-

based reasoning about control situations remains a challenge due to the 

entanglement of process and control systems that co-establish the intended 

causal structure of a process. Due to this entanglement, reasoning about such 

systems depends on a coherent representation of control and process. This 

paper explains modelling of controlled processes with multilevel flow models 

and proposes a new framework for modelling causal influence in multilevel 

flow models on the basis of a flow/potential analogy. The results are 

illustrated by examples from the domain of electric power systems. 

[3] Heussen, K.; Koch, S.; Ulbig, A. & Andersson, G. (2010), Energy Storage in Power 

System Operation: The Power Nodes Modelling Framework, in 'IEEE PES Conference 

on Innovative Smart Grid Technologies Europe, Gothenburg'. 

A novel concept for system-level consideration of energy storage in power 

grids with dispatchable and non-dispatchable generators and loads is 

presented. Grid-relevant aspects such as power ratings, ramp-rate constraints, 

efficiencies, and storage capacities of the interconnected units are modelled, 

while technology-dependent and physical unit properties are abstracted from. 

This allows for the modelling of a technologically diverse unit portfolio with 

a unified approach. The concept can be used for designing operation 

strategies for power systems, especially in the presence of non-dispatchable 

generation and signicant storage capacities, as well as for the evaluation of 

operational performance in terms of energy efficiency, reliability, 

environmental impact, and cost. After introducing the modelling approach 

and a taxonomy of unit types, a simulation example is presented for 

illustration. 
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[4] Stephan Koch, Kai Heussen, Andreas Ulbig and Göran Andersson, “Unified 

System-Level Modeling of Intermittent Renewables and Energy Storage in Power 

System Operation”. (Accepted for to “IEEE Systems Journal – Special Issue on 

Renewable Energy Systems”) 

The system-level consideration of intermittent renewable energy sources and 

small-scale energy storage in power systems remains a challenge as either 

type is incompatible with traditional operation concepts. Non-controllability 

and energy constraints are still considered contingent cases in market-based 

operation. The design of operation strategies for up to 100 % renewable 

energy systems requires an explicit consideration of non-dispatchable 

generation and storage capacities, as well as the evaluation of operational 

performance in terms of energy efficiency, reliability, environmental impact 

and cost. By abstracting from technology-dependent and physical unit 

properties, the modelling framework presented and extended in this paper 

allows for the modelling of a technologically diverse unit portfolio with a 

unified approach, whilst establishing the feasibility of energy storage 

consideration in power system operation. After introducing the modelling 

approach, a case study is presented for illustration. 

 

[5] Kai Heussen and Daniel Kullmann, On the Potential of Functional Modeling 

Extensions to the CIM for Means-Ends Representation and Reasoning, Workshop on 

Energy Informatics, Oldenburg, Nov. 2010 

This paper introduces Functional Modeling with Multilevel Flow Models as 

an information modelling approach that explicitly relates the functions 

embedded in components of a system to their design objectives. It is 

suggested that a functional modelling based extension of CIM may form a 

conceptual basis for the integration of distributed energy resources with 

system operation and market concepts.  

 

[6] Kai Heussen, Henrik Niemann, On The Formulation of Control and Reserve 

Requirements for Future Grid Operation Scenarios, submitted to Power System 

Computation Conference (PSCC2011), (submitted) 

Contemporary scenarios for the composition and operation of future electric 

energy systems tend to have several aspects in common. These entail largely 

increased amounts of fluctuating renewable generation, increased 

controllability down to the load and small-scale generation as well as 

suggestions to revise the system’s control architecture to accommodate for 

the new resources. This paper introduces a generic formalisation of active 

power related control functions, enabling a structured simulation framework 

for the comparison of alternate control architectures. 

 

[7] Heussen, K. & Lind, M., Functional Modeling of Perspectives on the Example of 

Electric Energy Systems, in T. Yao, ed., Zero-Carbon Energy Kyoto, Springer 2009  

The integration of energy systems is a proven approach to gain higher overall 

energy efficiency. Invariably, this integration will come with increasing 

technical complexity through the diversification of energy resources and their 

functionality. With the integration of more fluctuating renewable energies, 

higher system flexibility will also be necessary. One of the challenges ahead 
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is the design of control architecture to enable the flexibility and to handle the 

diversity. This paper presents an approach to model heterogeneous energy 

systems and their control on the basis of purpose and functions which enables 

a reflection on system integration requirements independent of particular 

technologies. The results are illustrated by examples related to electric energy 

systems. 

 

[8] Heussen, K.; Saleem, A. & Lind, M., Control Architecture of Power Systems: 

Modeling of Purpose and Function, in Proceedings of the IEEE PES General Meeting 

2009  

Many new technologies with novel control capabilities have been developed 

in the context of “smart grid” research. However, often it is not clear how 

these capabilities should best be integrated in the overall system operation. 

New operation paradigms change the traditional control architecture of power 

systems and it is necessary to identify requirements and functions. How does 

new control architecture fit with the old architecture? How can power system 

functions be specified independent of technology? What is the purpose of 

control in power systems? In this paper, a method suitable for semantically 

consistent modelling of control architecture is presented. The method, called 

multilevel flow modelling (MFM), is applied to the case of system balancing. 

It was found that MFM is capable of capturing implicit control knowledge, 

which is otherwise difficult to formalise. The method has possible future 

applications in agent-based intelligent grids. 

 

[9] Heussen, K. & Lind, M., Decomposing Objectives and Functions in Power System 

Operation and Control, in Proceedings of the IEEE PES/IAS Conference on Sustainable 

Alternative Energy, Valencia, Spain 2009  

The introduction of many new energy solutions requires the adaptation of 

classical operation paradigms in power systems. In the standard operation 

paradigms, a power system is seen as some equivalent of a synchronous 

generator, a power line and an uncontrollable load. This paradigm is being 

questioned by a diverse mix of challenges posed by renewable energy 

sources, demand response technologies and smart grid concepts, affecting all 

areas of power system operation. Both new control modes and changes in 

market design are required eventually. A proper redesign should start with a 

coherent approach to modelling. This paper presents a mean-ends perspective 

on the analysis of the control structures and operation paradigms in present 

power systems. In a top-down approach, traditional frequency and area 

control mechanisms are formalised. It is demonstrated that future power 

system operation paradigms with different generation control modes and 

controllable demand can be modelled in a coherent way. Finally, the 

discussion is opened up towards a formalisation of service exchange between 

market participants. 

 

[10] Heussen, K. & Knebel, P., On Markets and Market Mechanisms for Operational 

Services in the "Smart" Electrical Power System, in Energizing Markets 2008 

(Proceedings not published)  
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We investigate the possible application of markets to support the operation of 

electrical power systems in the future. A potential purpose of those markets 

would be the allocation of resources for balancing renewable energy infeed, 

along with the integration of a high number of smaller distributed resources. 

In this context we raise two questions: First, how is it possible to establish 

markets in an environment governed by close technical and dynamical 

constraints? The design of a market for such ancillary services requires a 

close consideration of the regulatory framework, and appropriate market 

mechanisms. Further, how should these distributed resources be integrated in 

the market – via direct participation or via aggregation through larger market 

players? This paper highlights technical aspects of a functional integration of 

system operation and markets. 

 

[11] Heussen, K., Situation-Aware Assessment of Balancing Need and Resource, in 

Nordic Wind Power Conference, Bornholm, Denmark 2009  

Distributed generation and renewable energy sources are both new 

disturbance and new regulation resource. Most renewable energy sources are 

quite unlike classical power plants but often have capabilities enabling the 

provision of ancillary services. For example, modern wind turbines could 

provide limited fast active power reserves, similar to inertia or primary 

reserves. If considered disturbance or resource, ultimately depends on the 

system operator’s capability to oversee the need for and availability of such 

reserves. Wind power may at times provide a certain share of system 

stabilisation, but it must also be seen that this contribution is limited and that 

it fluctuates with the available wind. Moving towards the design of tools that 

may provide such information, this paper proposes a functional modelling 

approach to identify situational control requirements for a power system with 

a high share of fluctuating energy resources. 

 

[12] Pillai, J.R. & Bak-Jensen, B., Vehicle-to-grid in Danish Electric Power Systems, in 

Proceedings of International Conference on Renewable Energies and Power Quality, 

Valencia, Spain 2009  

The integration of renewable energy systems is often constrained by the 

variable nature of their output. This demands for the services of storing the 

electricity generated from most of the renewable energy sources. Vehicle-to-

grid (V2G) power could use the inherent energy storage of electric vehicles 

and its quick response time to balance and stabilise a power system with 

fluctuating power. This paper outlines the use of battery electric vehicles in 

supporting large-scale integration of renewable energy in the Danish electric 

power systems. The reserve power requirements for a high renewable energy 

penetration could be met by an amount of V2G based electric vehicles less 

than 10% of the total vehicle need in Denmark. The participation of electric 

vehicles in ancillary services would earn the vehicle owner significant 

revenues. The power balancing services of electric vehicles in an electricity 

network with a large variable 

 

[13] Pillai, J.R. & Bak-Jensen, B., Vehicle-to-Grid for islanded power system operation 

in Bornholm, IEEE PES General Meeting, Minnesota, 25-29 July 2010  
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Vehicle-to-Grid (V2G) systems are an emerging concept of utilising the 

battery storage of electric vehicles (EVs) for providing power system 

regulation services. This technology could be used to balance the variable 

electricity generated from various renewable energy sources. This article 

considers a model of an aggregated electric vehicle based battery storage to 

support an isolated power system operating with a large wind power 

penetration in the Danish island of Bornholm. The simulation results show 

that the EV battery storages represented by the V2G systems are able to 

integrate more fluctuating wind power. The islanded Bornholm power system 

operates satisfactorily for the case of replacing most of the conventional 

generator reserves with V2G systems, which may represent a future operation 

scenario. 

 

[14] Pillai, J.R. & Bak-Jensen, B., Electric Vehicle based Battery storages for future 

power system regulation services, in Proceedings of Nordic Wind Power Conference, 

Bornholm, Denmark 2009  

The large grid integration of variable wind power adds to the imbalance of a 

power system. This necessitates the need for additional reserve power for 

regulation. In Denmark, the growing wind penetration aims for an expedited 

change of displacing the traditional generators which are currently supplying 

the reserve power requirements. This limited regulation service from 

conventional generators in the future power system calls for other new 

reserve power solutions like Electric Vehicle (EV) based battery storages. A 

generic aggregated EV based battery storage for long-term dynamic load 

frequency simulations is modelled. Further, it is analysed for regulation 

services using the case of a typical windy day in the West Denmark power 

system. The power deviations with other control areas in an interconnected 

system are minimised by the characteristics of the EV battery storage of faster 

up and down regulation. 

 

[15] Pillai, J.R. & Heussen, K., Bornholm as a Model for 100% Renewable Energy 

Scenarios in Denmark, in Proceedings of Nordic Wind Power Conference, Bornholm, 

Denmark 2009  

An energy system planning tool, “EnergyPLAN”, is used for the analysis of 

energy scenarios to study the generation and consumption of energy on the 

island of Bornholm. First, the model is verified on the basis of the energy mix 

on Bornholm today, where the Bornholm energy system is studied both as a 

connected and as an islanded energy system. Future energy scenarios are 

analysed to develop a feasible technology mix for a very high share of wind 

power. Finally, the results of the hourly simulations are crosschecked with 

dynamic frequency simulations. The goal of this project is to improve the 

energy system tool to study future energy scenarios. 

 

 [16] Jayakrishnan R. Pillai and Birgitte Bak-Jensen, "Integration of Vehicle-to-Grid in 

Western Danish Power System", IEEE Transactions on Sustainable Energy, TSTE-

00015-2009, DOI 10.1109/TSTE.2010.2072938 (Status: Accepted for publication) 

The Danish power system is characterised by a high level of wind power 

penetration. As the nature of the wind power is unpredictable, more balancing 
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power is desired for a stable and reliable operation of the power system. The 

present balancing power in Denmark is provided mostly by the large central 

power plants followed by a number of decentralised combined heat and 

power (CHP) units and connections from abroad. The future energy plans in 

Denmark aim for 50% wind power capacity integration which will replace 

many conventional large power plant units. The limited control and 

regulation power capabilities of large power plants in the future demand new 

balancing solutions like Vehicle-to-Grid systems. In this article, aggregated 

electric vehicle based battery storage representing a Vehicle-to-Grid system is 

modelled for the use in long-term dynamic power system simulations. 

Further, it is analysed for power system regulation services for typical days 

with high and low wind production in the Western Danish power system. The 

results show that the regulation needs from conventional generators and the 

power deviations between West Denmark and UCTE (Union for the 

Coordination of Electricity Transmission) control areas are significantly 

minimised by the faster up and down regulation characteristics of the electric 

vehicle battery storage.  
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Power and Propulsion Conference, Lille, 1-3 Sept. 2010  

Electric vehicles (EVs) have gained significant attention in recent years due 

to their prospects of reducing greenhouse gas emissions benefitting the 

transportation sector directly and the electricity sector indirectly. Vehicle-to-

grid (V2G) systems using the battery storages of electric vehicles could 

provide power system ancillary services in the form of power balancing 

reserves to support the large-scale integration of variable renewable energy 

sources like wind power. This paper investigates the dynamic frequency 

response of an islanded Danish distribution system operation with a large 

amount of wind power supported by the Vehicle-to-grid systems. The power 

system simulations are analysed for scenarios with 48% and 65% wind power 

penetration. The simulation results show that the V2G systems provide a 

faster and stable frequency control than the conventional generation units. 

V2G systems can be considered as a flexible solution for frequency 

regulation in future electric power systems. 
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Electric vehicles (EVs) are the most promising alternative when replacing a 

significant amount of gasoline vehicles to provide cleaner, CO2 free and 

climate friendly transportation. When integrating more electric vehicles, the 

electric utilities must analyse the related impacts on the electricity system 

operation. This paper investigates the effects on the key power distribution 

system parameters like voltages, line drops, system losses etc. by integrating 

electric vehicles in the range of 0-50% of the cars with different charging 

capacities. The dump as well as smart charging modes of electric vehicles are 

applied in this analysis. A typical Danish primary power distribution system 
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is used as a test case for the studies. The simulation results show that no more 

than 10% of electric vehicles could be integrated in the test system for the 

dump charging mode. About 40% of electric vehicle loads could be 

accommodated in the network with the smart charging mode. The extent of 

integrating EVs in an area is constrained by the EV charging behaviour and 

the safe operational limits of electricity system parameters. 
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Energy system analyses on the basis of fast and simple tools have proven 

particularly useful for the interdisciplinary collaboration work with frequent 

iterations and re-evaluation of alternative scenarios. As such a tool, 

"EnergyPLAN" is used for hourly balanced and spatially aggregated annual 

analyses of energy scenarios. For the relatively fast dynamics of electrical 

energy systems, additional requirements are formulated to justify the 

technical feasibility of the respective scenario. In this article, the generation 

and consumption of energy on the Danish island of Bornholm are studied. 

First, the model is verified on the basis of the existing energy mix on 

Bornholm as an islanded energy system. Future energy scenarios for the year 

2030 are analysed to study a feasible technology mix for a higher share of 

wind power. Finally, the results of the hourly simulations are crosschecked 

with dynamic frequency simulations. The results of this investigation are used 

to improve the EnergyPLAN model with respect to how it handles stability 

and ancillary services to study future energy scenarios. 
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Denmark is in a situation with many scattered sources of electricity that are 

not controlled by the central load dispatch. At the same time, Denmark is 

being used as an electricity transit corridor between the hydro based systems 

of Norway/Sweden and the thermal systems of Germany and continental 

Europe. Through energy systems analyses and load-flow analyses, it is 

determined that if geographically scattered load balancing utilising the 

regulation ability of hitherto locally controlled plants is introduced while also 

introducing new dispatchable loads in the form of electric vehicles and heat 

pumps, electricity transit is enabled to a higher degree than if central load 

balancing is maintained. This is the case of an intact transmission system as 

well as a system with inoperative transmission lines. With an intact system, 

the average load of the system is approximately halved when applying 

scattered load balancing. Utilising the regulating capacity of local plants thus 

improves the role of the Danish system in the Northern European system. 

 



The CEESA project (Coherent Energy and Environmental System Analysis) presents technical 

scenarios as well as implementation policies and a road map of Denmark’s transition from a fossil 

fuel-dominated energy system to a supply system based completely on renewable energy with a 

dominating part of intermittent sources like wind and solar power. Energy conservation and a 

certain technological development are prerequisites for this transition. The CEESA scenarios show 

how the transition can be performed before the year 2050 mainly by the use of known technologies 

combined with significant energy conservation.  

The CEESA project has a focus on, among others, transport, electricity power systems and 

environmental assessment. The need for new systems thinking and new planning principles for 

energy investments is among the important observations in this scenario project. With dominant 

contributions from intermittent sources and limited amounts of biomass available, storage problems  

are solved by integrating the electricity, heat and transport sectors much more than in traditional 

supply systems based on fossil fuels. The CEESA project shows how this can be done in an 

efficient and economical way.  

CEESA is a multidisciplinary co-operation which combines the forces of leading Danish 

researchers in the fields of energy and environment. The project is financed by the Danish Council 

for Strategic Research together with the participating parties and was conducted in the period 2007-

2011.  

The results of the CEESA project are presented in 5 background reports and a main summary 

report. 

CEESA main report: 

 Coherent Energy and Environmental System Analysis 

 

CEESA background reports: 

 

 Part 1: CEESA 100% Renewable Energy Scenarios towards 2050  

 Part 2: CEESA 100% Renewable Energy Transport Scenarios towards 2050  

 Part 3: Electric power systems for a transition to 100% renewable energy systems in Denmark before 2050 

 Part 4: Policies for a Transition to 100% Renewable Energy Systems in Denmark Before 2050 

 Part 5: Environmental Assessment of Renewable Energy Scenarios towards 2050 
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