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ENGLISH SUMMARY 

Chronic obstructive pulmonary disease (COPD) is a growing health problem 

worldwide, and in 2030, it is expected to be the third leading cause of mortality. 

Tobacco abuse is the main cause of COPD, but prolonged exposure to fumes and 

chemical dust has also been proved to cause COPD. COPD is a treatable but not 

curable disease that is characterized by airway obstruction and loss of lung tissue 

elasticity. The main manifestations of COPD are emphysema and chronic 

bronchitis. 

The diagnosis and assessment of disease severity and progression rely on a 

pulmonary function test (PFT), clinical estimation and chest imaging. The most 

common PFT is spirometry, which has been used for many years as the sole test to 

diagnose and classify COPD. However, spirometry only provides information about 

obstruction in the lungs. In contrast, high-resolution computed tomography (HRCT) 

scans are a powerful tool to assess the global and local quantification of COPD. 

HRCT scans are used clinically to assess emphysema and the extension of it. This 

qualitative assessment is performed visually by radiologists. However, the 

qualitative interpretation is time-consuming and relies on the ability and experience 

of the radiologist, making it prone to errors and introducing intra- and inter-

observer variability. Therefore, automated quantitative methods to characterize 

COPD are desired. 

This thesis aims to provide automatic methods to quantify emphysema and chronic 

bronchitis using HRCT scans. Three studies were conducted as part of this Ph.D. 

thesis. The first study investigates the relationship between the airway wall 

thickness measured in inspiratory scans and the air trapping quantified in expiratory 

scans and how the measurements are related with spirometry. The second study 

presents an automatic method to segment lungs affected by COPD. Although lung 

segmentation is not required for clinicians to assess emphysema or chronic 

bronchitis, it is a major step for the automatic quantification of diseases in the lung 

parenchyma. The lung segmentation method introduced in the second study is used 

as the starting point of the third study. In the final study, the focus is to quantify 

emphysema lesions in the lung parenchyma. Traditional automatic emphysema 

quantification relies on manual annotations of emphysema areas. In the study 

presented in this thesis, the automatic quantification of emphysema uses HRCT 

scans that do not contain manual annotations.  

In conclusion, this Ph.D. thesis presents automatic methods to bring objectivity in 

the assessment of COPD.  

 



 

 

 

 

 

 

 

 

 

 

 

 



DANSK RESUME 

Kronisk obstruktiv lungesygdom (KOL) er et voksende sundhedsproblem og 

forventes i 2030 at være den tredje hyppigste dødsårsagglobalt. Tobakseksposition 

er den hyppigste årsag til KOL, men også længerevarende eksponering med 

kemiske dampe eller støv er blevet påvist at kunne forårsage KOL. KOL kan 

behandles men ikke kureres og er karakteriseret ved luftvejsobstruktion og tab af 

elasticitet i lungevævet. KOL kendetegnes primært ved emfysem og kronisk 

obstruktiv bronkitis.  

Diagnostik, bedømmelse af sværhedsgrad og sygdomsudviklingen afhænger af 

lungefunktionstest, klinisk vurdering og skanninger af brystkassen. . Den mest 

anvendte lungefunktionstest er spirometri, der har været anvendt i mange år som 

den eneste test til diagnostik og klassificering af KOL. Det er imidlertid blevet 

påvist, at spirometri kun kan beskrive lungernes obstruktivitet. I modsætning hertil 

giver høj opløsning computertomografi (HRCT) skanninger et stærkt værktøj til at 

kvantificere både globale og lokale forekomster af KOL. Normalt anvendes HRCT 

skanninger til at bedømme forekomsten og udbredelsen af emfysem. Denne 

kvalitative bedømmelse foretages visuelt af radiologer. En sådan kvalitativ 

bedømmelse er imidlertid tidskrævende og afhænger af radiologens erfaring og 

formåen, hvilket resulterer i en tilbøjelighed til fejl og indebærer inter- og 

intraobservatørvariationer. Det er derfor ønskværdigt at have en automatisk 

kvantitativ metode til at karakterisere KOL. 

Denne afhandling har til formål, at udvikle automatiske metoder til at kvantificere 

emfysem og kronisk obstruktiv bronkitis ved at bruge HRCT skanninger. Tre 

studier er derfor blevet udført som en del af denne Ph.d. afhandling. Det første 

studie undersøger forholdet mellem luftvejsforsnævring målt under inspiratoriske 

skanninger og luftvejsobstruktion målt under ekspiratoriske skanninger, samt 

hvordan begge målinger relaterer til resultaterne fra spirometri. Andet studie er en 

automatisk metode til segmentering af lunger med KOL. Segmentering af lungerne 

er ikke en forudsætning for klinisk bedømmelse af emfysem og kronisk obstruktiv 

bronkitis, men er et stort skridt i retningen af automatisk kvantificering af 

sygdomme i lungeparenkymet. Lungesegmenteringen fra andet studie benyttes 

derfor som grundlag for tredje studie. I det tredje og sidste studie fokuseres der på, 

at kvantificere emfysem i lungeparenkymet. Traditionelt har automatisk 

emfysemkvantificering været afhængig af manuel annotation af det emfysem ramte 

område. I det tredje studie i denne afhandling benytter den automatiske 

kvantificering af emfysem HRCT skanninger uden manuel annotation. 

Denne Ph.d. afhandling præsentere automatiske værktøjer, der forventes at kunne 

hjælpe i den kliniske bedømmelse af KOL på en objektiv måde. 



 

 

 

 

 

 

 

 

 

 

 

 



PREFACE 

This Ph.D. thesis has been submitted for assessment in partial fulfillment of the 

Ph.D. degree at the Department of Health Science and Technology, Aalborg 

University, Denmark. This thesis presents the work conducted during this Ph.D. 

study during the period of August 2013 to August 2016. This Ph.D. was supervised 

by Lasse Riis Østergaard, Jesper Carl and Ulla Møller Weinreich, Aalborg 

University. 

The work was conducted in collaboration with the Pulmonary Department at 

Aalborg University Hospital and the Radiological Department at Vendsyssel 

Hospital in Frederikshavn. Both departments collaborated with the data used in all 

studies during this Ph.D. Part of this Ph.D. research was performed at the 

Biomedical Imaging Group Rotterdam, Erasmus MC, The Netherlands, under the 

supervision of Associate Professor, Ph.D., Marleen de Bruijne.  

This thesis is based on three studies conducted during the Ph.D. research, which 

resulted in three articles. In addition to the articles, the thesis includes an 

introduction with an overview of the research field and a discussion of the 

presented work, as well as limitations, future perspectives, and conclusions.  
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CHAPTER 1. INTRODUCTION 

In the last 40 years, medical imaging modalities, such as computed tomography 

(CT), magnetic resonance imaging (MRI) and positron emission tomography (PET), 

have improved the diagnosis of many diseases. Medical imaging provides clinicians 

an inside view of the human body in a noninvasive way. Moreover, it provides a 

more detailed view of the anatomy affected by the disease, enabling a more accurate, 

rapid diagnosis and precise treatment options. Therefore, medical imaging has 

become the standard approach to assessing all major medical conditions and 

diseases.  

Chest imaging is often used as part of the diagnosis, to assess disease progression, 

for treatment planning and as a screening method for lung diseases. The most 

common chest image technique is X-ray because it is cheap and easy to perform. It 

is used as a primary diagnostic method, often to exclude some pathologies. 

However, X-ray is limited in the diagnosis of some diseases due to the 

superimposition of different structures. Therefore, imaging methods, such as CT or 

MRI scans, which provide more information in 3D are often used.  

Humans are good at recognizing objects and patterns in an image. Radiologists are 

the experts who inspect medical images, and they can recognize a disease by the 

changes that appear in the lung parenchyma. They also delineate anatomical 

structures and tumors for diagnostic purposes. These tasks are time-consuming and 

subjective. Automatic and semi-automatic computer methods have been developed 

to help radiologists to identify and quantify diseases. Usually, computer methods 

first segment the organ of interest to use it for treatment planning, for example, in 

image-guided radiotherapy, or for further analysis of the disease. A common 

approach to analyzing lung diseases is texture analysis, which can use the 

differences in the intensities of scans to identify and quantify diseases.  

Chronic obstructive pulmonary disease (COPD) is a lung disease in which medical 

imaging plays a key role in monitoring the evolution. The preferred imaging 

technique is high-resolution computed tomography (HRCT) scans, which can 

acquire images with less than one millimeter resolution. The major conditions 

associated with COPD are emphysema and chronic bronchitis. Radiologists can 

identify signs of chronic bronchitis as thickening in the airways in inspiratory HRCT 

scans or as air trapping in expiratory HRCT scans. To identify emphysema, 

radiologists look at the whole lung in the inspiratory HRCT scans, searching for 

areas with low-intensity values inside the lung parenchyma. Automatic methods will 

aid radiologists by providing an objective, time-saving and quantitative evaluation 

of COPD. 
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This thesis presents automatic methods that may support radiologists in the 

assessment of COPD. The thesis is based on three studies; the first study aims to 

establish the relationship between airway wall thickness and air trapping. Both 

descriptors can be quantified in HRCT scans using image analysis methods, and 

their relationship is investigated by applying statistical models. The second study 

presents a method to segment lungs from patients with COPD. An accurate 

segmentation of the lungs makes it more convenient to conduct further 

investigations. The focus of the third study is to analyze and classify textures to 

identify emphysema lesions. In this thesis, the lungs are segmented as a whole, 

omitting the segmentation of their lobes. The lung segmentation is used as a first 

step in the identification of emphysema lesions and is intended to be performed in 

the full lung and not at specific anatomical locations.   
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CHAPTER 2. BACKGROUND 

This chapter gives an overview of the background for the thesis. It aims to provide a 

description of chronic obstructive pulmonary disease (COPD), the role of images in 

the diagnosis of COPD and the state of the art of how the diagnosis and treatment of 

lung disease can benefit from image analysis and the methods developed.   

 

2.1. COPD OVERVIEW 

COPD is a worldwide health issue that is caused mostly by tobacco consumption, 

although long-term exposure to dust, chemical particles, and fumes has also been 

demonstrated to be a risk factor [1]. COPD is in the top five causes of mortality and 

is expected to become the third leading cause of death in 2030  [2].  COPD is an 

irreversible disease, but it can be prevented and treated to control the progression of 

the disease. It is a multicomponent disease that includes airway inflammation, 

obstruction and structural changes due to parenchymal destruction [3]. Airway 

inflammation and obstruction have been closely related to chronic bronchitis and 

lung parenchymal destruction with emphysema, see Figure 1. 

 

 

 

Figure 1: Overview and main manifestations of COPD. Image adapted from [4]. 
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Chronic bronchitis is the most common representation of airway diseases. It is 

characterized by inflammation and irritation, with an increase of mucus in the 

bronchi that causes coughing and sputum production [5]. In COPD patients, the 

symptoms of chronic bronchitis are associated with thickening of the airway walls 

[6].  

Emphysema is a destruction of the lung parenchyma, specifically a loss of elasticity 

and increased compliance of the alveoli [5]. Emphysema can be categorized into 

three types: centrilobular, paraseptal and panlobular. Examples of centrilobular 

emphysema and paraseptal emphysema can be seen in Figure 2A and 2B, 

respectively. It is common in patients with severe disease that both types of 

emphysema co-habit [6,7].  

 

 

 

Figure 2: Examples of emphysema patterns for the different types of emphysema; A) 
centrilobular emphysema, B) Paraseptal emphysema. Emphysema can be seen as dark areas 
surrounded by normal lung tissue (gray areas). White pixels represent vessels and airway 
walls.Scans from the Frederikshavn dataset in study III.  

 

A pulmonary function test (PFT) is required to verify the diagnosis of COPD and to 

assess its severity; the most common PFT is spirometry. Because the diagnosis of 

COPD is defined as a chronic airway obstruction, it cannot be established without 

this PFT. To diagnose airflow limitations, the ratio between the forced expiratory 

volume in the first second (FEV1) and the forced vital capacity (FVC) should be less 

than 0.7, with FEV1 <80% [8]. The severity classification of airflow limitation is 
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categorized into four groups, 1-4, ranging from mild to very severe. This GOLD 

stages have served to classify COPD for many years [3]. However, despite being an 

objective measure of airflow limitation, spirometry alone cannot be used to assess 

COPD severity. FEV1 poorly correlates with COPD symptoms, such as dyspnea [9], 

and it does not provide information about the extent of the airflow limitation [10]. 

Therefore, to classify patients with COPD, more information than the values of 

airflow limitation is needed; thus, a combined COPD assessment is recommended. 

The combined assessment includes lung function, symptoms, dyspnea score and 

exacerbation history to stratify patients into four categories, A-D, where A represent 

the least severe and D the most severe [3,11].  

 

In addition to the tests that are required to stratify the patients according to the 

GOLD guidelines, additional investigations are recommended to more precisely 

determine the disease severity and to gain a better understanding of its extent. These 

investigations include lung volume and diffusing capacity and imaging. Lung 

volume can be obtained by a test called body plethysmography, which measures the 

static volumes of the lung by measuring changes in pressure in a closed system 

during different respiratory maneuvers. It provides information on the functional 

residual capacity (FRCpleth), specific airway resistance (sRaw), total lung capacity 

(TLC), residual volume (RV), and inspiratory capacity (IC) [12,13]. The diffusing 

capacity for carbon monoxide (DLCO) test provides information about the gas 

exchange between the lungs and the bloodstream, which occurs in the alveoli. 

DLCO can detect emphysema in patients with airflow obstruction. A significant 

relationship between DLCO and emphysema lesions in COPD patients has been 

demonstrated in several studies [6,14–16].  

 

Imaging diagnostics are available, including chest X-ray and computed tomography 

(CT) scans. However, chest X-ray may only be used for acute pulmonary changes 

and some comorbidities; it is not useful to diagnose COPD due to the poor 

resolution, which prevents the identification of changes in the lung parenchyma 

[11].  In contrast, CT scans, specifically HRCT scans (see Figure 3), provide a 

detailed image of the lungs, where changes, such as alveoli enlargement, which 

occurs in emphysema, can be seen [5]. However, CT scans are not routinely ordered 

in the assessment of COPD due to the cost and radiation exposure of the patient 

[17]. Although image quality is directly linked to the radiation dose, several studies 

have shown that it is possible to obtain chest CT scans with acceptable image quality 

at a low radiation dose. It is possible to adjust the radiation dose and the exposure 

time based on the patient size and disease [18].  
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Figure 3: An example of a chest HRCT scan from a subject with COPD. A) axial view, B) 
coronal view, and C) sagittal view. Scan from study II. 

 

 

2.2. COPD QUANTIFICATION USING IMAGING IN CHEST CT 
SCANS 

As stated in section 2.1, CT scans can capture the bronchial tree and lung 

parenchyma with a high level of detail. Moreover, HRCT scans produce chest 

images quickly with a resolution of less than one millimeter, which for an adult, 

typically results in a scan with approximately 300 axial slices. These scans with very 

fine resolution enable the identification of small lesions and changes that occur in 

the airways and the lung parenchyma. Therefore, the use of CT scans has increased 

to assess COPD manifestation, such as emphysema, air trapping and airway 

thickening [7,19,20].  
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The assessment of CT lung images is usually performed visually by expert 

radiologists who identify emphysema as low attenuation areas (LAA) in the lung 

parenchyma. Although radiologists are good at identifying diseases and assessing 

severity, the quantification of volumetric diseases such as emphysema is 

challenging, subjective, time-consuming and prone to errors due to intra-observer 

and inter-observer variability [21–24]. Therefore, automatic and semi-automatic 

methods to quantify lung disease using CT are needed for a faster and more reliable 

assessment of the disease and to overcome the limitations of visual assessment. 

 

 

 

2.2.1. Airway Quantification 

Bronchial wall thickness is one of the most common manifestations of chronic 

bronchitis in COPD patients. Therefore, measurement of the airway wall is 

important to assess structural changes and to adjust treatment. Usually, airway wall 

measurements are performed manually by pulmonologists or radiologists. However, 

this process is time-consuming and has poor reproducibility [20]. Chest CT scans 

enable the noninvansive and repeated assessment of the airway wall thickness. The 

most common methods used to measure airway walls automatically are the full-

width at half maximum (FWHM) [25], model-based, integral-based, phase 

congruency, contour matching, and geometric deformable models [26,27]. The 

parameters that are usually measured by these methods in the segmental or 

subsegmental branches are the bronchial lumen diameter, bronchial wall thickness, 

and total bronchial area [28], see Figure 4. 

 

Figure 4: Airway wall thickness measurements. On the left, a cross-sectional view of the 
airway from the apical bronchus in an HRCT scan from study I. On the right, representation 
of the measurements. D=bronchial external diameter; L=bronchial lumen diameter; 
WT=bronchial wall thickness; Ao=airway outer area; Ai=airway inner area; WA=bronchial 
wall area. 
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Airway obstruction in patients with COPD usually occurs in the small airways, 

typically smaller than 2 mm. Therefore, it is difficult to identify airway obstruction 

in CT scans because these airways are not visible. However, Nakano et al. [29] 

demonstrated that thickening of large airways might be an alternative for assessing 

small airway abnormalities. Thus, measurement of wall thickening by CT could be a 

predictor of small airway obstruction. Alternatively, small airway obstruction can be 

quantified by measuring air trapping [30]. Air trapping appears in expiratory CT 

scans as LAA, see Figure 5, and it can be measured as LAA<-856 Hounsfield Unit 

(HU) [31]. However, air trapping can be affected by emphysema areas. Therefore, 

the measurement of air trapping needs to be corrected to account for emphysema 

[32,33]. 

  

 

Figure 5: Expiratory HRCT scans from a COPD patient. This subject shows large areas of 
air trapping, which are indicated by white arrows. Scan from study I. 
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Based on these approaches for quantifying airway wall thickness and air trapping, 

study I of this thesis aimed to investigate the relationship between these two 

obstruction biomarkers by applying statistical methods. To measure the wall 

thickness in the bronchi, study I used the FWHM method, which is based on rays 

moving from the lumen center in all directions. The inner wall of the airway is 

assumed to be located where the intensity is half way between the local minima in 

the lumen, and the outer wall of the airway is considered to be at half way between 

the local maxima within the lung parenchyma [32,34], see Figure 1Figure 6. 

Measurements of the inner wall area, outer wall area, and bronchial wall area were 

computed from the airway delineations given by the FWHM method.  

 

Figure 6: Illustration of the full-width at half maximum (FWHM) method. The red line 
represents the boundary of the inner wall of the airway; the green line represents the 
boundary of the outer wall of the airway. The thickness of the airway is the difference 
between the two boundaries. 

Statistical analysis is used in the studies of this thesis to answer questions about the 

relationship between the quantified measurements of the COPD manifestations. In 

the case of study I, statistical methods were used to describe the association between 

the measurements of the airway wall thickness and air trapping and to model the 

relationship between these two measurements and PFTs. 

 

2.2.2. Emphysema Quantification 

The most common approach to quantify emphysema for many years has been based 

on a threshold [35]. Müller et al. showed in 1988 that emphysema identified using a 

threshold of -910 HU correlated well with emphysema detected using a histologic 

sample for the same subject [36]. Additional studies have investigated different 

thresholds to find the best correlation with emphysema lesions. Although some 
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variations are accepted for individual lobes, a threshold of -950 HU is commonly 

used as a reference to quantify emphysema in CT scans with full inspiration [36,37], 

see Figure 7. 

 

Figure 7: Example of emphysema quantification using a threshold of -950 HU from a scan in 
study III. On the left, original HRCT scan; on the right, results of the thresholding inside the 
lung mask. 

 

Nevertheless, the density-based method is sensitive to noise and the scan parameters 

[38]. Therefore, additional approaches using image analysis methods have been 

proposed to automatically identify changes in the lung parenchyma. Several of these 

approaches use texture analysis to detect emphysema and, in some cases, the 

emphysema type. However, one major problem of texture analysis is that it is 

susceptible to noise derived from the surrounding anatomical structures [39]. To 

avoid this effect, texture analysis is applied to previously segmented lungs. In 

section 2.3, a review of lung segmentation methods is presented, which introduces 

the state- of- the- art for study II of this thesis.  

Emphysema is quantified in CT scans by measuring certain characteristics extracted 

from the lung parenchyma. These characteristics are represented as feature vectors 

in a vector space, where each dimension belongs to a specific characteristic. 

Although there is no agreement with respect to the definition of texture, it can be 

explained as a pattern that has a specific characteristic [40]. Many studies have used 

texture features to quantify emphysema, mostly by assessing changes in the intensity 

level [41,42]. The most common methods are the first- and second-order statistics, 

which include gray-level co-occurrence matrices (GLCM), gray-level run-length 

matrices (GLRLM), and intensity level histograms [23,43–48]. Chabat et al. [43] 

used 13 texture parameters derived from the first- and second-order to differentiate 
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between two types of emphysema and bronchiolitis. Similarly, in [44], first-order, 

second-order, and shape features were computed to identify emphysema in patients 

with mild and severe disease. A similar approach was used in [23], where second-

order features were obtained to detect centrilobular emphysema and nodularity 

automatically. A technique that extracts first-order, second-order, and fractal 

features based on an adaptive multiple feature method (AMFM) was proposed in 

[46]. Other examples of texture features used to characterize the lung parenchyma 

affected by emphysema have been proposed in [49–56]. For example, Sørensen et 

al. [49] classified in 2D the three types of emphysema using local binary patterns 

(LBP) as texture features. A later study [51], which aimed to identify subjects with 

COPD, they used texture features in 3D based on Gaussian filter bank (GFB) due to 

the difficulty in extrapolating LBP to 3D. Another alternative was introduced in [52] 

using a combination of Gabor filters (CGF), which encode local intensity 

information given by LBPs. 

Machine learning methods have been applied to classify image features into healthy 

or emphysematous tissue. This is an automatic method to assist the visual 

interpretation of radiologists in assessing emphysema in COPD patients. Traditional 

classifier methods, such as Bayesian classifiers, artificial neural networks, and 

support vector machines, have been broadly used to classify emphysema and its 

types [57,58]. However, these types of classifiers require annotated training data to 

classify unknown CT scans. These annotations are usually performed by clinical 

experts and are time-consuming and not feasible for longitudinal studies. Therefore, 

more recent approaches use different types of annotations, for example, those 

derived from PFTs [59–61], to classify emphysema. This new approach is utilized in 

study III of this thesis to identify emphysema in non-annotated HRCT scans. The 

proposed classifiers use global labels extracted from PFT instead of manual 

annotations, and they classify different textural features computed from the 

segmented lung parenchyma. These classifiers are a subtype of multiple instance 

learning (MIL) classifiers, which are explained in more detail in section 2.4. Figure 

8 shows an overview of the methodology used in study III. The textural features 

computed are GLCM and GFB. GLCM is based on the occurrence of a pair of gray-

level pixels or voxels at a determined distance and orientation in the HRCT scan. 

GLCM aims to represent the changes in intensities in the pair of voxels. Texture 

features, such as energy, entropy and homogeneity among others, are extracted from 

the results of the computed occurrences in all the distances and orientations. In 

contrast, GFB uses a convolution of the HRCT scans with a Gaussian function. GFB 

aims to represent the structures presented in the image, i.e., edges. After the 

convolution, texture features, such as gradient magnitude, Laplacian of Gaussian or 

Gaussian curvature among others, are computed.  
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Figure 8: Simplified version of the method used in study III. Texture features are extracted 
from the lung parenchyma. Two MIL classifiers are trained and tested on previously unseen 
scans. 

 

 

2.3. LUNG SEGMENTATION 

Segmentation in medical images is used to isolate organs of interest or lesions in the 

organs for further analysis. Automatic lung segmentation is a challenging task due to 

the large variability in volume produced by differences in pulmonary inflation. In 

addition, some diseases make the segmentation task very challenging, such as 

pleural plaques or ground-glass opacities. These diseases appear in a CT scan with 

different intensity than the rest of the lung tissue; they have an intensity similar to 

the tissue surrounding the lungs, which can lead to an inaccurate delineation of the 

lung. Moreover, for an automatic method, the task of segmenting lungs with severe 

or very severe pathologies remains challenging. It is important to have a precise 

segmentation of the organ or lesion of interest because an error in the segmentation 

can result in an inaccurate quantification of the disease. Therefore, a lung 

segmentation method is presented in study II to provide an accurate segmentation 

for further analysis in study III to identify emphysema.  

In chest CT scans, the anatomical parts that require segmentation are the lungs, 

airways, vessels and lung lobes [62]. The segmentation of the vessels, lung lobes, 

and airways is out of the scope of this thesis. Information on the segmentation of 

these anatomical structures can be found in [26,35,63–69]. A more detailed lung 

segmentation analysis from previous studies will be given below. Based on the 
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review by Mansoor et al. [70], lung segmentation methods can be categorized as 

follows. Although some specific methods will be presented, most studies combine 

several methods or use the methods as part of a pipeline that includes pre-processing 

and/or post-processing. 

Thresholding-based methods use the differences in intensity between the lungs or 

the bronchial tree that appear as black regions surrounded by other tissues with 

brighter intensities. These methods use a threshold based on HU, which is applied to 

a whole scan to create a binary image. Armato et al. [71] used thresholding of LAA 

to segment the lungs. To refine the segmentation, they used morphological 

operations and eliminated the trachea and main bronchi, the anterior junction line, 

and the diaphragm.   

Region-based methods are similar to thresholding-based methods, but they include 

information between pixels. The most popular method is region growing, which 

based on a starting point called seed that is situated inside the lung parenchyma, 

segments the lungs by adding the neighbor pixels that fulfill a similarity criterion. 

Van Rikxoort et al. [72] used region growing to segment lungs. However, the 

performance of the method was not accurate in unhealthy subjects. Therefore, they 

applied multi-atlas segmentation as a refinement of the region growing 

segmentation. Other region-based methods include watershed and graph-cuts. 

Watershed finds the segmentation boundaries by following the gradient until it 

reaches a local minima. Chen et al. [73] developed a watershed method to identify 

the lungs, the background, and the trachea. Then, they used connected components 

to smooth the lung segmentation and removed the background and trachea. Graph-

cut uses the information between neighboring pixels; thus, when the contrast 

between two neighbor pixels is high, they are more likely to be assigned to different 

classes. In [74–77], the graph-cut method was used as a refinement of a coarser lung 

segmentation. The graph-cut was used for energy minimization of an anatomical 

framework based on thresholds and region-based [74], shape prior model [75], 

multiple sub-graphs built from mesh surfaces, and atlas-based [77]. 

Shape-based methods incorporate prior shape knowledge of the lungs. The most 

common shape methods are atlas-based, snakes, active contours and level sets. 

Atlas-based uses a template of the lungs as prior shape knowledge. First, the 

template is registered to the image that needs to be segmented; then, the labels from 

the template propagates to the target image. Sluimer et al. [78] proposed a voxel 

classification based on multi-atlas registration to segment pathological lungs. 

Snakes, active contours, and level sets use energy functions to determine the contour 

of the lungs. Snakes and active contours must be initialized with a prior shape 

contour. The level-set method was used in [79,80] to identify the lung boundaries. 

Neighboring anatomy-guided methods use the information of the surrounding 

anatomical structures, such as the rib cage, heart, liver and spine, to find the optimal 
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boundary where the lungs should be segmented. Sun et al. [81] used the 

identification of the chest cage to initialize the active shape model to segment the 

lungs. 

Machine learning-based methods learn from the data by using features extracted 

from image patches to identify structures and diseases patterns. These methods use 

training data to classify pixels or voxels from unknown data into a class label, such 

as soft tissue, normal lung tissue or unhealthy lung tissue. Pathological lungs were 

segmented in [82] using a machine learning approach based on texture patterns and 

a discriminative classifier. 

In study II, lung segmentation based on a combination of shape-based and region-

based methods is used. Thus, the segmentation method uses multi-atlas, graph-cut, 

and region growing techniques. The multi-atlas and graph-cut methods to segment 

the lung parenchyma follow the method presented in [83–85], where the 

combination of the two approaches was used to segment other organs and tissues in 

the body. In study II region growing is added to the multi-atlas and graph-cut 

methods to segment and eliminate the main airways.  

The graph-cut method consists of a combination of the graph and the cut. The graph 

consists of a set of voxels, called nodes, and a set of labels linked to the voxels, 

called terminals. In the case of lung segmentation, the graph contains two terminals: 

the lung parenchyma (source, s), and the background (sink, t). In the graph, all edges 

have a cost, and there are usually two types of edges, the n-links and the t-links. The 

n-links are the edges that link the voxels of the image, and the t-links are the edges 

that connect the voxels with the terminals. The cost of the n-links is generated by the 

gap between close voxels, and the cost of the t-links is given by the allocation of a 

label to the voxel. The cut of a graph with two terminals consists of dividing the 

graph into two subsets, one belonging to s and the other to t. The minimum cut is 

based on finding the minimum cost through all the cuts of the graph, see Figure 9. 

This approach is also known as maximum flow [86].  
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Figure 9: Illustration of the graph-cut method with nine nodes and two terminals. S=source; 
T=sink; black lines represent the t-links; gray lines represent the n-links; the blue line 
represents the minimum cut applied on the graph. 

 

In study II, the graph-cut is built based on the association potential and interaction 

potential. The association potential combines spatial prior knowledge obtained from 

the registration of multiple atlases with the target image and intensity information, 

which provides a probability of the voxels being inside or outside the lungs. The 

interaction potential provides information of the costs for the n-links and t-links 

from the target image. The segmentation is completed by eliminating the segmented 

trachea, and main bronchi by region growing. The aim of eliminating the trachea 

and main bronchi is to achieve an accurate segmentation of the lungs in a difficult 

area, such as the hilum. Therefore, a coarse airway tree segmentation is conducted. 

For this purpose, the airway tree does not need to be segmented accurately; the 

trachea and the airway tree containing the major airways are sufficient. Region 

growing is used where the seed point is settled in the trachea, which is automatically 

identified. The region growing stops when major leakages in the bronchi occur. An 

example of lung segmentation from study II is shown in Figure 10. 
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Figure 10: Result of the lung segmentation (yellow delineations) proposed in study II using 
shape-based and region-based methods. A) axial view, B) coronal view, and C) sagittal view. 

 

2.4. MULTIPLE INSTANCE LEARNING 

Supervised machine learning systems learn from data or given examples. A 

supervised classifier requires a vector of feature values, called instances, and labels 

representing the categories where each feature belongs, called bags [87]. In medical 

imaging, classifiers are typically used to identify patients as suffering from a disease 

or not and to identify diseases. For example, a classifier learns that high blood 

pressure and a large amount of protein in the urine (instances) in pregnant women 

after week 20 indicate a high risk of preeclampsia (bag).  The supervised classifier 

can classify an unknown pregnant woman as having a risk or not of suffering 

preeclampsia. Supervised methods can also identify diseases (bags), but they require 

examples of the representation of the disease (instances), which are provided as 

delineations in the images. Traditionally, annotations of diseases are performed 

manually by radiologists or clinicians, which is very time-consuming and subjective. 

MIL classifiers are an alternative to supervised classifiers when the data only have 

labeled bags available. MIL classifiers are ruled by the standard assumption, where 

a bag is considered positive if and only if it contains at least one positive instance 
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[88]. Other alternative assumptions have been proposed, see e.g. [89]; however, the 

standard assumption is used in this thesis. MIL methods can be categorized into two 

approaches: instance-level and bag-level [60,90]. The instance-level approaches 

build an instance classifier based on the relation between the labels of the bags and 

the instances of these bags in the training dataset. The instance classifier classifies 

instances and then combines the instance labels into a bag label to classify a 

previously unseen test bag. The bag-level approaches treat bags as a whole; they 

assume that bags from the same class have similar characteristics and apply 

supervised classifiers to the bags. In study III, a popular instance-level classifier, 

miSVM, and a bag-level classifier, MILES, were used to identify emphysema in 

HRCT scans using only global labels. A representation of the miSVM is showed in 

Figure 11. A new version of these two classifiers was proposed because miSVM and 

MILES may suffer from false positives by enforcing the MIL standard assumption 

too strictly. For example, in MILES, defining the similarity between a bag and a 

prototype instance as the maximum similarity between that bag's instances and the 

prototype might be too sensitive to noise. Consider a situation where the task is to 

learn a concept given positive and negative bags of instances. Both positive and 

negative bags have instances close to the concept, but the instances of positive bags, 

on average, are closer to the concept. Due to the maximum operator, a true positive 

bag and a true negative bag with a single noisy instance may have the same 

representation, despite the differences in their distributions. 

 

Figure 11: Example of miSVM. In study III, the bags refer to the patients and the instances to 
healthy or emphysematous tissue. 
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CHAPTER 3. THESIS OBJECTIVES 

COPD is a worldwide problem that is most commonly caused by tobacco, with main 

manifestations of chronic bronchitis and emphysema. COPD is diagnosed using a 

combination of tests, including PFTs, questionnaires, and imaging. HRCT scans 

allow radiologists to visually identify emphysema and the phenotypes of chronic 

bronchitis, such as airway wall thickness and air trapping. HRCT scans are used not 

only to verify the diagnosis of COPD but to quantify the extend of the lesions and 

assess disease progression. However, the visual assessment of HRCT scans is 

subjective, time-consuming and results in errors due to inter- and intra-observer 

variability, which can affect the reproducibility of a diagnostic test and lead to a lack 

of individualized treatment and sometimes to overmedicated patients. Therefore, the 

motivation for this thesis is to bring objectivity to the detection and quantification of 

lung conditions derived from COPD, such as emphysema and chronic bronchitis, 

using HRCT scans. 

Automatic and semi-automatic image analysis methods may bring objectivity to the 

current problem of intra- and inter-observer variability of visual assessment, as one 

of the main limitations of visual scoring is the observer dependence. Therefore, the 

objectives of this thesis are to: 

 Investigate methods to quantify chronic bronchitis phenotypes, such as air 

trapping and bronchial wall thickness, in patients with COPD. 

 

 Develop an approach to accurately segment lungs affected by COPD. 

 

 Develop a method to quantify and identify the distribution of emphysema in 

patients with COPD. 
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CHAPTER 4. PAPER CONTRIBUTIONS 

This chapter presents an overview of the three studies that were conducted as part of 

this Ph.D. thesis. The studies aim to develop a solution to expert variability and 

subjectivity of the current assessments. Therefore, the following studies attempt to 

address the objectives presented in Chapter 3. 

 

4.1. STUDY I: PAPER A 

Chronic bronchitis is one of the most significant manifestations of COPD. It is 

characterized by inflammation and narrowing of the airways. In HRCT scans, 

chronic bronchitis can be identified by quantifying the air trapped in the alveoli and 

by looking at the thickness of the airway walls. Study I aimed to investigate how the 

airway wall thickness is related to air trapping and how these two manifestations of 

airway obstruction influence PFTs, in particular, spirometry.  

Study I included 21 subjects diagnosed with COPD who had a pair of inspiratory 

and expiratory HRCT scans and PFTs performed. This study was a retrospective 

study in which the HRCT scans were not conducted for the purposes of the study but 

as part of the clinical routine. Therefore, the PFTs were performed several months 

before the HRCT scans. In fact, some of the patients did not have some of the PFTs 

performed, as indicated in paper A.   

To quantify the airway wall thickness, two bronchi, the apical bronchus of the right 

upper lobe and one bronchus from the sixth-generation in the superior lower lobe of 

the left lung, were manually selected by a pulmonologist in the inspiratory scans. 

The selected bronchi in the axial slices of the inspiratory scans were analyzed using 

the free open-source software “Airway Inspector” [91]. This software uses the 

FWHM method to analyze the wall area and to measures different parameters.  

Air trapping was quantified as a percentage of LAA in the expiratory scans using a 

combination of two thresholds to avoid areas affected by emphysema. The 

quantification of air trapping was performed inside the lung area. The lungs were 

segmented using a semi-automatic region growing method.    

Spearman correlation and multi-regression analysis were conducted to investigate 

the relationships between the measurements of the wall thickness and air trapping 

with the PFTs. The findings of the study are described in paper A.  
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4.2. STUDY II: PAPER B 

In general, automatic identification and quantification of emphysema and 

phenotypes of chronic bronchitis, such as air trapping, rely on differences in 

intensities inside the lung parenchyma. Moreover, the lungs must be accurately 

segmented to obtain a precise disease quantification. The lungs have a well-

delineated shape. However, the hilum region, where the bronchial tree enters into 

the lungs, is a very difficult area to segment due to its variability in shape. 

Therefore, study II introduced a method for automatic lung segmentation in patients 

with COPD using HRCT scans, where the segmentation had a particular emphasis 

on the hilum region of the lungs. 

The segmentation method presented in study II was based on multi-atlas and graph-

cut approaches which have been successfully used in previous studies to segment 

other organs and tissues [83–85]. The method proposed in study II combined 

information about the shape of the lungs from multi-atlas, intensity information of 

the voxels using graph-cut and airway shape information from a region growing 

method. Figure 12 presents an overview of the methodology used in study. The 

graph-cut method segmented the lung parenchyma using intensity and neighborhood 

information provided by the association potential and interaction potential, 

respectively. Concurrently, the main airways were segmented from the target image. 

Finally, the segmentation was completed by extracting the trachea and the main 

airways from the segmentation result provided by the graph-cut.   

A novel multi-atlas was presented in study II. The multi-atlas was built using 12 

HRCT scans from non-COPD subjects. Additionally, 14 HRCT scans from COPD 

patients with different degrees of COPD severity were used to evaluate the proposed 

segmentation. Moreover, manual segmentation of these scans was performed by an 

experienced radiologist for validation and comparison purposes. The segmentation 

presented in study II was compared to two segmentation methods: multi-atlas 

segmentation using majority voting and multi-atlas registration and graph-cut. Three 

quantitative measurements were used to evaluate the agreement between the manual 

segmentation and the three methods. Furthermore, statistical analysis was performed 

to evaluate the differences between the three segmentation methods.  

 

A thorough description of the method and the findings of the study is presented in 

paper B.   
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Figure 12: Overview of the methodology proposed in study II for segmenting lungs from 
COPD patients. 
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4.3. STUDY III: PAPER C 

Emphysema is usually quantified visually by radiologists, which, as mentioned 

previously, is subjective and results in inter- and intra-observer variability. 

Therefore, automatic methods to identify and quantify emphysema are proposed as 

objective methods. In general, the methods proposed in other studies have used 

supervised classifiers, which can identify emphysema in unseen scans after training. 

However, these supervised classifiers learn using annotated data, and the annotations 

are usually performed manually, which is a time-consuming and subjective process. 

Study III focused on quantifying emphysema automatically without using manual 

annotated HRCT scans. 

In study III, two versions of MIL classifiers, miSVM and MILES, were presented. 

Both classifiers are sensitive to producing false positives; therefore, in paper C, a 

more robust version of these classifiers was presented by adapting the standard 

assumption. The classifiers used textural features to characterize emphysema tissue 

in the lung parenchyma. Two types of features were used in study III, co-occurrence 

features and Gaussian filter banks.  

Two datasets acquired from different hospitals in Frederikshavn and Aalborg were 

used in study III. One of the datasets contained eight COPD patients and eight non-

COPD subjects, and the other dataset contained 72 COPD patients. The classifiers 

learned from weak labels extracted from PFTs instead of from manual annotations. 

The PFTs used were spirometry and DLCO, which were binarized to 

positive/negative and high/low respectively. The classifier performance was 

evaluated at the bag level and instance level. The bag-level performance was 

evaluated based on the AUC, and the instance-level performance was evaluated by 

an additional measurement introduced in study III called Separability. Based on this 

evaluation, the best classifier was used to validate the results of the classifier when 

identifying emphysema lesions. All the experiments in study III were performed 

using 4-fold cross-validation. The percentage of emphysema quantified by the best 

classifier trained using weak labels extracted from spirometry and DLCO was 

compared against the results obtained by a method using a threshold of LAA and the 

manual annotations made by two experienced radiologists. Statistical analysis was 

used to assess the relationships between the results of the quantitative methods and 

the PFTs and the relation between the results of the proposed classifiers and the 

manual annotations made by the experts. 

A full description of the method and the experiments, and the findings from study III 

are described in paper C.  
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CHAPTER 6. DISCUSSION AND 

CONCLUSIONS 

6.1. DISCUSSION 

The papers presented in this thesis investigate methods to assess COPD patients by 

automatically quantifying the most common manifestations of COPD, namely, 

emphysema and chronic bronchitis. The objective of this Ph.D. thesis is to 

investigate and develop methods to bring objectivity to the assessment of COPD to 

reduce intra-and inter-observer variability.  

HRCT scans are the imaging method used in this thesis to quantify COPD. 

Historically, the method used to assess the evolution of COPD has been spirometry. 

However, spirometry poorly correlates with patient symptoms, i.e., dyspnea [92]. 

Moreover, spirometry cannot discriminate between emphysema and small airway 

diseases. In contrast, HRCT scans provide detailed information about anatomical 

and structural changes in the lungs. Moreover, HRCT scans may detect emphysema 

even before a change in lung function occurs. Some studies have shown that 

emphysema quantification based on CT scans can identify patients with a high risk 

of rapid worsening COPD and lung cancer, even when these subjects present normal 

spirometry [93]. However, HRCT and CT imaging have been limited in the clinic 

for the diagnosis and monitoring of COPD. The main reason for these limitations is 

the radiation exposure during the scan acquisition [94]. In general, there is a tradeoff 

between the radiation dose and the quality of the image; a lower radiation dose 

increases the noise in the image. Nevertheless, advances in the technology and 

adjustments based on patient size and clinical indications enable high-quality images 

at low radiation doses [18,95].  

 

6.1.1. Airway analysis 

In this thesis, several approaches are introduced to automatically quantify chronic 

bronchitis and emphysema. First, chronic bronchitis was investigated by studying its 

manifestations, namely, airway wall thickness and air trapping. Previous studies 

showed that although airway obstruction occurs in the small airways, which are 

usually not visible on CT scans, the obstruction is well correlated well with the wall 

thickness of the larger bronchi, such as the apical bronchus. The apical bronchus is 

easily identified in the axial views of CT scans [14]. Free open-source software is 

available to measure airway walls, such as the software used in study I to quantify 

the thickness of the bronchi. However, in clinical practice, measuring different 



CHAPTER 6: DISCUSSION AND CONCLUSIONS 

46 
 

bronchi to assess whether there is thickening of the airways is more time-consuming 

than looking at the expiratory scans to determine if there is air trapping in the lungs.  

Therefore, in study I, the relationship between the airway wall thickness and air 

trapping was investigated to determine how these two manifestations of airway 

obstruction were related with spirometry. Spirometry was used in the validation of 

study I because it is the mandatory PFT in the diagnosis of COPD and is the most 

commonly used PFT to evaluate disease severity. The study showed that air trapping 

alone could predict spirometry; therefore, measurement of the wall thickness can be 

omitted.  

The study presented some limitations. Air trapping was quantified by the percentage 

of LAA based on thresholds from previous studies [96–98], which is accepted as a 

reliable method to quantify air trapping. However, other studies [99–101] have used 

the expiratory to inspiratory ratio of mean lung density as a more consistent 

measurement of air trapping. Therefore, the use of both methods is desirable to 

support the findings of the study. The lungs were segmented using a semi-automatic 

region growing method in 2D. However, a more robust and automatic lung 

segmentation method in 3D is desired for more reliable and faster segmentation. The 

greatest limitation of the study was the amount of data. It was a retrospective study, 

and only 21 COPD patients that had undergone HRCT scans and PFTs could be 

included.   

 

6.1.2. Lung segmentation 

A robust lung segmentation was presented in paper B, which described an approach 

that combines shape and intensity information from the lung and the main airways. 

Although lung segmentation has been a hot topic in recent years, it remains a 

challenging problem. Many of the proposed methods in the literature perform well 

in healthy and moderately pathological lungs. However, these methods produce 

weaker results in severe cases of lung disease, such as interstitial lung disease and 

pleural effusion. 

Automatic lung segmentation is a difficult task due to the differences in shape 

caused by lung inflation and effects of diseases. Furthermore, there are areas in the 

lung, for example, the hilum, that are difficult to segment, even in COPD patients, 

whose phenotypes do not affect the shape of the lungs. Therefore, study II focused 

on that region. It is important to segment only the lung parenchyma, without the 

airways, if the segmentation is part of a pipeline for further analysis, i.e., disease 

quantification. The atlas-based method is based on manual segmentation of non-

COPD subjects. The atlas-based method produces an overall accurate shape of the 

lungs, but it often deviates slightly from the boundary of the lungs. To correct these 

deviations, study II used a combination of the atlas-based method and graph-cut in 
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which the graph-cut added intensity information of the neighbor voxels from the 

segmentation provided by the multi-atlas. Graph-cut successfully corrected the 

errors introduced by the multi-atlas registration. However, it added small areas to the 

segmentation from the hilum region that do not belong to the lung parenchyma 

because graph-cut relies on the intensity of the lung, which has nearly the same 

intensity as the airways in a CT scan. Therefore, the graph-cut fails to accurately 

segment the lung parenchyma. To solve this overestimation introduced by the graph-

cut, in study II, the segmentation approach was refined by adding an automatic 3D 

region growing method to segment the trachea and the main airways of the bronchial 

tree.  

A comparison between simple multi-atlas segmentation, a combination of multi-

atlas and graph-cut and the proposed method, which includes main airway 

extraction, was performed to evaluate the performance of the method. The three 

methods were compared with manual delineations made by an expert radiologist. 

The radiologist was asked to delineate the lung parenchyma freely; thus, no specific 

conditions in the hilum area were introduced. The process was performed to 

demonstrate how the hilum area is a difficult area to segment, even by experts. Due 

to these manual segmentations, the results of study II are more difficult to elucidate. 

Although the proposed method performed better than the other two methods, as 

shown by the qualitative analysis, the quantitative analysis does not indicated an 

improvement in the multi-atlas and graph-cut method.  

The limitations of this study are based on the size of the data. Both the atlas and the 

validation of the segmentation rely on manual segmentations made by experts, 

which are very time-consuming. Therefore, a limited number of results are provided 

in the datasets. Moreover, only one radiologist was available to perform the manual 

delineations, so some potential variability was not identified due to the lack of more 

manual annotations to perform comparisons. Another limitation is the time that the 

algorithm requires to segment a new subject. In a clinical environment, if the 

segmentation is part of a pipeline for the identification of a disease in the lung 

parenchyma, it needs to be a quick step to allow precise and fast diagnosis.  

 

6.1.3. Emphysema quantification 

Study II laid the foundation for study III, which used the proposed segmentation 

method to segment the HRCT scans used in study III. The focus of study III was to 

identify and quantify emphysema. Previous studies have presented different methods 

to quantify emphysema. However, these studies used manual annotations of 

emphysema to train supervised classifiers. Manual annotations are time-consuming 

and need to be performed by experts. Therefore, study III aimed to quantify 

emphysema using HRCT scans without manual annotations. Weak labels were used 
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instead of manual annotations to train the classifiers. Thus, the classifiers have a 

global annotation for the whole scan but not for emphysema areas. The weak labels 

were extracted from two PFTs: spirometry and DLCO. Spirometry was successfully 

used as a weak label in [51,60] to classify subjects as COPD or healthy.  

In this study, two datasets acquired from different hospitals in Frederikshavn and 

Aalborg were used. The datasets were combined in to obtain a homogeneous group. 

Experiments were set-up using two types of textural features and two types of 

classifiers. The unsupervised classifiers presented in this study were newer versions 

of two MIL classifiers. miSVM and MILES were adapted to be more precise in 

avoiding false positives. For MIL classifiers, a bag is considered positive if there is 

one positive instance. In study III, a bag represents the full scan, and the instances 

are small patches along the lung parenchyma.   

The results of the experiments were validated by correlating with the PFT values 

and by comparing with the manual annotations of two expert radiologists and a 

traditional method based on LAA. The two experts annotated a specific number of 

slices per scan for a full dataset. They were asked to annotate the emphysema 

lesions that they could find in the lung parenchyma. No information about how the 

automatic method classified emphysema was given to obtain manual annotations as 

performed for clinical purposes. The annotation process was blinded for the two 

radiologists. The results highlight the problem of inter-observer variability, with a 

Dice coefficient of 0.34. Therefore, the PFTs were used as a reliable measurement to 

validate the results of the proposed method.  

The data were the main limitation of this study. Both datasets were acquired from 

different hospitals with different protocols, which may have affected the 

classification performance. The datasets had different sizes and groups. One dataset 

did not contain controls. Moreover, the available controls were not healthy subjects 

but non-COPD persons. Therefore, their scans could add some errors to the 

classification.  

 

6.2. CONCLUSIONS 

This thesis has presented work using HRCT scans as a tool to automatically quantify 

airway obstruction and emphysema. It has been shown that air trapping computed 

from expiratory scans can be used to quantify obstruction due to chronic bronchitis. 

Emphysema has been successfully quantified using inspiratory scans without 

manual annotations. The emphysema quantification provided better results than the 

density-based method that is commonly used by medical doctors to quantify 

emphysema. Moreover, a lung segmentation method adapted from [84,85,102] is 

presented to accurately segment the lungs, even in difficult locatios, such as the 
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hilum region, which other studies do not consider. The work performed in this thesis 

is expected to provide objectivity and to reduce the variability in the assessment of 

COPD manifestations.  

 

6.3. FUTURE PERSPECTIVES  

HRCT scans are the most sensitive imaging method to assess COPD in vivo. In 

recent years, many investigations have proposed automatic and semi-automatic 

methods to quantify chronic bronchitis and emphysema. However, in clinical 

practice, few automatic or semi-automatic methods are used, and the assessment 

relies on the experience and subjectivity of radiologists. In a way, this happens 

because the differences in the image acquisition of scanners ad scanning protocols. 

One way to address these problems is to investigate the use of transfer learning. 

Transfer learning aims to improve the process of learning new tasks based on 

previous experience obtained from a similar problem.  

 

In the future, methods to detect the evolution of emphysema in HRCT before it is 

perceptible to the human eye are desirable. Follow-up scans from the same 

population are needed, preferably from several years after the first scan.  

 

The methods presented in this thesis can be adapted and extended to assess other 

lung diseases, such as cystic fibrosis and interstitial lung disease. These methods can 

help clinical experts other than radiologists, e.g., oncologists for the assessment of 

parenchyma changes due to radiation pneumonitis.   
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