
 

  

 

Aalborg Universitet

Low Voltage Ride-Through of Two-Stage Grid-Connected Photovoltaic Systems
Through the Inherent Linear Power-Voltage Characteristic
Yang, Yongheng; Sangwongwanich, Ariya; Liu, Hongpeng; Blaabjerg, Frede

Published in:
Proceedings of the 32nd Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2017)

Publication date:
2017

Document Version
Peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Yang, Y., Sangwongwanich, A., Liu, H., & Blaabjerg, F. (2017). Low Voltage Ride-Through of Two-Stage Grid-
Connected Photovoltaic Systems Through the Inherent Linear Power-Voltage Characteristic. In Proceedings of
the 32nd Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2017) (pp. 3582-3588).
IEEE Press.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 30, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/80578319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/low-voltage-ridethrough-of-twostage-gridconnected-photovoltaic-systems-through-the-inherent-linear-powervoltage-characteristic(6da516e8-c3a0-49ab-b52e-d12e4f5cd19c).html


Low Voltage Ride-Through of Two-Stage

Grid-Connected Photovoltaic Systems Through the

Inherent Linear Power-Voltage Characteristic

Yongheng Yang∗, Member, IEEE, Ariya Sangwongwanich∗, Student Member, IEEE,

Hongpeng Liu†, Member, IEEE, and Frede Blaabjerg∗, Fellow, IEEE

∗Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark
†Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China

yoy@et.aau.dk; ars@et.aau.dk; lhp602@hit.edu.cn; fbl@et.aau.dk

Abstract—In this paper, a cost-effective control scheme for two-
stage grid-connected PhotoVoltaic (PV) systems in Low Voltage
Ride-Through (LVRT) operation is proposed. In the case of
LVRT, the active power injection by PV panels should be limited
to prevent from inverter over-current and also energy aggregation
at the dc-link, which will challenge the dc-link capacitor lifetime
if remains uncontrolled. At the same time, reactive currents
should be injected upon any demand imposed by the system
operators. In the proposed scheme, the two objectives can be
feasibly achieved. The active power is regulated automatically
through a proportional controller according to the voltage sag
level and PV inherent characteristics (i.e., the voltage and power
droop). Compared to prior-art LVRT schemes, the proposed
method is cost-effective, as it is achieved by simply plugging the
proportional controller into a maximum power point tracking
controller without significant hardware or software modifications.
In this way, the PV system will not operate at the maximum
power point, whereas the inverter will not face any over-current
challenge but can provide reactive power support in response to
the grid voltage fault. Simulations have been performed on a 3-
kW two-stage grid-connected single-phase PV system in the case
of LVRT operation, where the results have verified the proposed
control scheme in terms of fast dynamics and seamless operation
mode transitions.

Index Terms—Low voltage ride-through; active power control;
grid-connected photovoltaic (PV) systems; droop characteristics;
maximum power point tracking; two-stage PV systems.

I. INTRODUCTION

Advanced functionalities that can be provided by grid-

connected PhotoVoltaic (PV) systems are becoming of high

demand in some countries [1]–[4]. Commonly, it can be

summarized that in most cases the PV systems should be

multi-functional as an active player to participate in grid

regulation beyond solely generating energy [3], [5]–[9]. For

instance, the Low Voltage Ride-Through (LVRT) capability

in response to grid voltage sags has been extended as one
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ancillary service to grid-connected PV systems. Currently, this

functionality can be seen in three-phase PV systems [7]–[17],

single-phase PV systems [6], [18], [19] and even PV modules

[20]. At the beginning, this LVRT demand was only for wind

power systems, where due to large physical inertia, additional

devices (e.g., dc-chopper or crowbar) are required for power

dissipation during the LVRT operation [21]. Although PV

systems are still connected to low-voltage and medium-voltage

level networks and do not have much physical inertia, the

excessive energy should also be taken care of in the case of

fault ride-through operation; otherwise, it may cause the dc-

link voltage go excursion as well as over-current since the

energy will aggregate at the dc-link [22]. Following, it may

trigger the system protection scheme, leading to a failure of

LVRT operation (or even system collapse).

Thus, many LVRT schemes have been developed in litera-

ture for both three-phase and single-phase grid-connected PV

systems. For three-phase systems, the presence of positive- and

negative-sequence voltages/currents under grid faults should

be properly coped with, which in return also provides much

flexibility for power injections during LVRT [8], [11]–[16].

For instance, a peak current limit control scheme which can

inject the required current and negative sequence current was

employed in [12] also to suppress the negative sequence grid

voltages during LVRT. In contrast, there are fewer control

variables (i.e., grid voltage and current) in single-phase grid-

connected PV systems, and thus the control becomes chal-

lenging under low voltage faults. Nevertheless, as a general

and intuitive approach, a control switching unit is employed

to directly change the operational mode from the Maximum

Power Point Tracking (MPPT) with unity power factor to

LVRT with reactive power injection, once a voltage fault

is detected. For example, in [11], [14] and [18], when an

instantaneous fault is identified, the reference signals will be

generated instantaneously, which may induce large overshoots.

Thus, it calls for advanced control schemes that should enable

a smooth operation transition. Additionally, the PV panel

dynamics are rarely considered in these LVRT schemes, which

however may affect the entire system performance.



Fig. 1. Schematic and overall control structure of a single-phase two-stage
grid-connected PV system with an LCL filter.

Fig. 2. Detailed control structure of the single-phase two-stage grid-connected
PV system (CC - Current Controller with harmonic compensation), where vgm

is the instantaneous amplitude of the grid voltage.

In light of the above, this paper proposes a cost-effective

LVRT scheme for two-stage single-phase PV systems in § II.

The proposed solution adopts a simple proportional controller

designed according to the grid voltage sag level and the inher-

ent power-voltage characteristics of the PV panels, and it is

plugged into an MPPT controller. Hence, it enables a seamless

operation mode transition with fast dynamics. Simulations

have been performed on a 3-kW two-stage grid-connected

single-phase PV system to verify the proposed LVRT scheme.

Results are presented in § III. Finally, concluding remarks are

provided in § IV.

II. PROPOSED LOW VOLTAGE RIDE-THROUGH STRATEGY

A. Control of Two-Stage Single-Phase PV Systems

Since the power ratings of string PV inverters are of up to

6 kW, it is common to connect the PV systems to single-

phase feeders using a two-stage configuration [23], [24].

In this sense, the proposed LVRT scheme is described and

demonstrated on a single-phase system, which as mentioned

has two stages: a dc-dc boost stage and a dc-ac inversion stage.

Fig. 1 shows the configuration of the two-stage single-phase

PV system and its overall control structure. Notably, the boost

converter not only enables a flexible active power control but

also extends the system operating hours (i.e., the PV system

can still feed power into the grid under very weak solar

irradiance). Accordingly, the MPPT control is implemented

in the control of the boost stage as shown in Fig. 2, where km

is the MPPT control gain.

For the inverter control, a cascaded dual-loop controller is

adopted, where the outer loop controls the dc-link voltage vdc

through a Proportional Integral (PI) controller with the feed-

forwarded PV power Ppv. Then, the reference i∗g for the inner

loop current controller of the dual-loop control structure is

generated according to the single-phase PQ theory [18], as it

is shown in Fig. 2. The PI controller (GPI(s)) for the dc-link

voltage can be expressed as

GPI(s) = kp +
ki
s

(1)

in which kp and ki are the proportional and integral control

gain, respectively. Moreover, it should be noted that, in Fig. 2,

vgα = vg, and vgβ is a virtual voltage that is in-quadrature with

the real grid voltage vg , and

vgm =
√

v2gα + v2gβ (2)

being the grid voltage amplitude. In addition, the Current

Controller (CC) like a Proportional Resonant (PR) controller

and a dead beat controller that work in the αβ reference frame

can be adopted, and also in consideration of the current qual-

ity, harmonic compensation like Multiple Parallel Resonant

Controllers (MPRC) and a Repetitive Controller (RC) can be

employed [21], [25]. In this paper, a PR controller (GPR(s))
has been used as the fundamental-frequency current controller,

and an RC (GRC(s)) has been employed to compensate the

harmonics. The entire CC can then be given as

GCC(s) = GPR(s) +GRC(s)

= kpr +
kir

s2 + ω2

0

+
krcQ(s)e−sT0

1−Q(s)e−sT0

·Gf(s)
(3)

where kpr and kir are the proportional and resonant control

gain for the PR controller, respectively, with ω0 being the

fundamental grid frequency; krc is the control gain for the

RC with T0 = 2π/ω0 being the fundamental period, Q(s) is a

low pass filter, and Gf(s) = esTc is a phase-lead compensator

with Tc being the compensation time [25]. Notably, Q(s) and

Gf(s) can enhance the controller robustness.

B. Proposed Low Voltage Ride-Through Strategy

As mentioned previously, in the case of LVRT, the PV

system has to reduce its active power injection but to provide

reactive power; otherwise, the PV inverter may experience

over-current. In practice, the single-phase PV systems (with

the rated power typically below 6 kW) are connected to low

voltage feeders with a large R/X ratio, meaning that the grid

is mainly resistive. In that case, the injected active power Pg

has a droop relationship with the grid voltage level vgm [26],

[27] that is represented by

vgm = v0gm − kd

(

Pg − P 0

g

)

(4)

in which kd is the active power droop coefficient, Pg is the

injected active power, and the superscript “0” denotes the

initial value. It should be noted that the droop controller in (4)

is not used in the control of the two-stage grid-connected PV

system shown in Fig. 2. Here, only is it used to demonstrate

the droop characteristic between the grid voltage amplitude

and the injected active power.

Additionally, according to the Power-Voltage (P-V) charac-

teristics of the PV panels shown in Fig. 3, the PV output power



Fig. 3. Power-Voltage (P-V) characteristic of the PV panels and the theoretical
(ideal) operating point (A or B) for the PV panels of two-stage grid-connected
PV systems in the case of LVRT, where vpv and Ppv are the PV voltage and
power, respectively, with the superscript “m” denoting the voltage and power
at the maximum power point.

also inherently has an approximately linear droop relationship

with the PV voltage in the low voltage region. The inherent

linear droop relationship can be expressed as

vpv ≈ vmpv + kpv

(

Ppv − Pm
pv

)

(5)

where vpv and Ppv are the PV voltage and power, respectively,

kpv is the P-V droop coefficient, and m represents the PV

voltage and power at the maximum power point (can be

obtained from the MPPT unit).

When assuming that the power losses are negligible (i.e.,

Pg ≈ Ppv in steady-state) and according to (4) and (5), the grid

voltage level deviation ∆vgm is proportional to the changes of

the PV voltage ∆vpv as

∆vgm ≈ −
kd

kpv

∆vpv (6)

with ∆vgm = vgm − v0gm and ∆vpv = vpv − vmpv . Clearly, in the

normal operation mode, the grid voltage amplitude is almost

constant at the nominal value (i.e., vgm = v0gm), and hence,

the PV voltage will be maintained by the MPPT controller

(i.e., vpv = vmpv). In that case, the PV voltage reference is the

MPPT controller output as v∗pv = vmpv . By contrast, in the case

of LVRT, the grid voltage level reduces, and ∆vgm 6= 0. Thus,

it is straightforward to maintain the voltage relationship in

(6) so that a seamless operational mode transition is ensured.

That is to say, the active power of the PV panels will be

automatically regulated in the case of LVRT. According to

(6), the PV voltage reference should be adjusted as

v∗pv = vmpv − k∆vgm = vmpv − k
(

vgm − v0gm

)

(7)

in which k = kpv/kd is the control gain for the proposed

strategy and vmpv is obtained from the MPPT controller. Com-

pared to the control of the boost converter in the normal

operation mode, the proposed LVRT control scheme for the

boost converter simply plugs in a proportional controller (i.e.,

the control gain is k). Fig. 4 then shows the boost converter

control structure of the proposed LVRT scheme.

Fig. 4. Implementation of the proposed LVRT scheme plug-in the MPPT
control of the boost converter for two-stage grid-connected PV systems.

Clearly, as shown in Fig. 3, there are two LVRT possibilities

for the PV voltages, i.e., Point A corresponding to a low

voltage in the region of low dPpv/dvpv and Point B corre-

sponding to a high voltage in the region of high dPpv/dvpv.

The PV system can be controlled at both points, depending

on the polarity of the gain k. If the PV system is controlled to

operate at Point A in LVRT mode, the PV power variation will

be smaller compared to that when operating at Point B. As a

consequence, the PV system has been controlled to operate at

Point A, where thus the control gain k should be positive.

According to Fig. 4, the voltage sag will increase the PV

voltage reference v∗pv, corresponding to an increase of the duty-

cycle db. Hence, the PV voltage vpv will be moved to the left

side of the maximum power point in practice.

C. Parameter Design Considerations

Under normal grid conditions (i.e., vgm = v0gm), the output

of the plug-in LVRT scheme will be null according to (7)

and Fig. 4, meaning that the PV system is operating at MPPT

mode. However, when a grid voltage sag occurs (i.e., vgm <
v0gm), the proposed LVRT control scheme will automatically

adjust the PV reference voltage v∗pv according to (7), and thus

the PV output power will be regulated to a lower level (i.e.,

Point A in Fig. 3), as aforementioned. Once the grid voltage

fault is cleared (i.e., the voltage level recoveries), the proposed

plug-in LVRT scheme will seamlessly change the operation

mode back to the MPPT mode.

For the controller design, since a seamless operational

mode transition is ensured, the MPPT control gain km can

be designed when considering the system without the plug-

in LVRT control scheme. This became a conventional design

issue for a MPPT controller (e.g., a Perturb and Observe -

P&O method), which is not the focus of this paper. Hence, the

design of the MPPT controller is directed to [28]–[30]. In this

sense, the proposed LVRT control scheme is simple, since only

the droop coefficients (i.e., kd and kpv) have to be determined.

Actually, the P-V droop coefficient kpv is already fixed by

the panel specifications and system operating conditions (i.e.,

ambient temperature and solar irradiance), as exemplified in

Fig. 5. More specific, the P-V droop coefficient kpv can be

calculated as

kpv =
vmpv

Pm
pv

. (8)

It is clear that this droop coefficient can be updated according

to the MPPT controller (i.e., the outputs: vmpv and Pm
pv ).



Fig. 5. Relationship between the P-V droop coefficient kpv for the proposed
LVRT scheme and the operating conditions, i.e., weak solar irradiance (blue)
and strong solar irradiance (red) with a constant ambient temperature, where
δv is the perturbation step-size of the MPPT controller (e.g., the P&O MPPT
method).

However, as it is shown in Figs. 3 and 5, approximating

the droop coefficient using the MPPT outputs will result in an

inaccurate voltage reference. That is to say, the real operating

point in LVRT will be slightly shifted towards the maximum

power point (see Fig. 3). In order to alleviate this impact, the

P-V droop coefficient obtained from (8) should be adjusted.

Considering the most commonly-used MPPT scheme (i.e., the

P&O MPPT method) [30], the adjustment can be achieved as

shown in Fig. 5 and given by

kpv =
vmpv − δv

Pm
pv

(9)

where δv is the perturbation step-size of the P&O MPPT

controller. Notably, since there will be oscillations in the PV

output power as indicated in Fig. 5 and also the output voltage

(due to perturbation), the voltage and power at the maximum

power point in (9) should be taken from averaged data (at least

three samples) for higher accuracy. It is also worth noticing

that an accurate droop coefficient may be attained through

advanced estimation techniques like a quadrature curve-fitting

method in [31] and a complete modeling of the PV charac-

teristic curves as it is in [32]. Alternatively, corrections can

be programmed as a look-up table, which simplifies practical

implementations. Nevertheless, the P-V droop coefficient kpv

is fixed but it can be obtained following the above analysis.

Substituting (9) into (7) yields

v∗pv = vmpv −
vmpv − δv

kdPm
pv

(vgm − v0gm) (10)

which implies that only the active power droop coefficient kd

has to be designed in the proposed LVRT scheme. This can

be done through a small-signal analysis of the system, which

will be an extended study of the proposed LVRT method.

D. Reactive Power Injection

Upon demands, reactive power can be injected in the case

of grid faults, according to the control scheme in Fig. 2. In that

TABLE I
PARAMETERS OF A TWO-STAGE SINGLE-PHASE GRID-CONNECTED PV

SYSTEM (FIG. 1).

Parameter Symbol Value Unit

Grid voltage amplitude v0gm 325 V

Grid frequency ωg 314 rad/s

Boost inductor L 2 mH

DC-link capacitor Cdc 2200 µF

DC-link voltage reference v∗
dc

450 V

LCL filter

L1 4.76 mH

Cf 4.28 µF

L2 4 mH

Boost converter switching frequency fb 16 kHz

Inverter switching frequency finv 8 kHz

Sampling frequency fs 8 kHz

TABLE II
PARAMETERS OF THE SOLAR PV PANEL USED IN SIMULATIONS AT

STANDARD TEST CONDITION (1 KW/M2 , 25 ◦C).

Parameter Symbol Value Unit

Rated maximum power Pmpp 65 W

Voltage at the maximum power vmpp 17.6 V

Current at the maximum power impp 3.69 A

Open-circuit voltage voc 21.7 V

Short-circuit current isc 3.99 A

case, the maximum apparent power of the PV inverter denoted

as Smax determines the capacity of reactive power [3]. This

relationship is given as

|Q∗| ≤
√

S2
max

− (P ∗)2. (11)

Thus, if a reactive current is required during LVRT operation,

the reactive power reference Q∗ can be generated in consid-

eration of (11) and then implemented in Fig. 2.

III. RESULTS

A. System Description

In order to verify the proposed LVRT control scheme,

simulations have been carried out referring to Figs. 1 and 2.

The system parameters are given in Table I. The environmental

condition is considered as constant during LVRT (i.e., solar

irradiance level: 1 kW/m2 and ambient temperature: 25 ◦C).

According to the PV panel parameters shown in Table II, the

maximum power under this condition is 2.91 kW (there are

three strings in parallel and each string has 15 panels in series).

The corresponding voltage at the maximum power is 264 V

(i.e., vmpv = 15 × 17.6).

A PI controller is adopted to regulate the dc-link voltage as

shown in Fig. 2, and a PR controller with an RC harmonic

compensator has been used as the current controller. A second

order generalized integrator based Phase Locked Loop (PLL)

system has been employed to generate the virtual voltage

vgβ in respect to the real grid voltage vg . The P&O MPPT

algorithm has been adopted to track the maximum power of

the PV panels. Controller parameters are provided in Table III.



TABLE III
CONTROLLER PARAMETERS FOR SIMULATIONS.

Controller Symbol Value

DC-link PI controller
kp 60

ki 250

PR controller
kpr 20

kir 4500

RC compensator gain krc 6.5

MPPT control gain km 0.00167

PV droop coefficient kpv 0.09

Active power droop coefficient kd 0.0317

B. Simulation Results

Firstly, the grid-connected PV system is controlled to always

operate at unity power factor (i.e., without reactive power

injection during LVRT). The simulation results are shown in

Fig. 6, where as mentioned there is no reactive power injected

in this case. At the beginning, the PV system is operating at

the MPPT mode, and the steady-state duty-cycle should be

db = 1 − 264/450 ≈ 0.41, which can be read from Fig. 6.

It means that the MPPT controller is properly designed and it

can effectively track the maximum power before the voltage

sag. Notably, during this operation period, the proposed LVRT

scheme is already plugged-into the MPPT controller according

to Fig. 4. It is thus demonstrated that the proposed LVRT

controller will not affect the MPPT controller in the normal

operation mode, where the voltage level deviation is almost

null (i.e., ∆vgm ≈ 0).

By monitoring the instantaneous grid voltage level estimated

by the PLL system, the grid voltage fault can be detected. Once

a grid voltage sag occurs, the output of the plug-in LVRT

controller will increase the duty-cycle. Consequently, the PV

voltage will move to the left side of the maximum power

point in order to maintain the dc-link voltage level, which has

been discussed previously. As a result, the PV output power

is reduced. To verify this, a voltage fault has been enabled at

a time instant of t1, and it lasts for 200 ms. Fig. 6 shows the

dynamic performance in the case of this fault. Observations

from the grid voltage profile vg in Fig. 6 indicate that the

voltage amplitude drops to around vgm = 195 V from its

initial nominal value v0gm = 325 V, corresponding to a voltage

sag level of 0.4 p.u.. Obviously, it is verified that the single-

phase two-stage grid-connected PV system shown in Fig. 1

with the proposed LVRT control scheme can ride-through this

temporary grid fault. The duty-cycle is increased in the period

of low grid voltage as analyzed above, which in return reduces

the PV output power. Moreover, the operational mode change

from MPPT to LVRT (or reversely) is accomplished within

a few line cycles, indicating that the proposed LVRT scheme

has a very fast dynamic. At the same time, it is found that the

dc-link voltage vdc has also been maintained around 450 V

with an overshoot of about 5.6%.

Furthermore, seen from the grid-side, if the PV panels are

still operating in the MPPT mode during the LVRT, the PV

inverter will be overloaded (i.e., over-current) as mentioned

Fig. 6. Simulation results of the two-stage single-phase grid-connected PV
system with the proposed LVRT control scheme under a grid voltage fault
(voltage sag level: 0.4 p.u., that is, the amplitude residual voltage is 195 V):
duty cycle db [0.25/div]; PV output power Ppv [750 W/div]; DC-link voltage
vdc [25 V/div]; grid voltage vg [200 V/div]; grid current ig [20 A/div];
time [50 ms/div]. No reactive current injection in this case.

above, since the voltage level is low. In contrast, when the

proposed LVRT control scheme shown in Fig. 4 is plugged-in,

the PV output active power Ppv has been effectively reduced to

a certain level so that the PV inverter will not experience any

severe over-current, as it is shown in Fig. 6. Also, it is stated

above that there is no reactive power injection in this case, the

grid current ig and the grid voltage vg are in phase under the

grid fault. When the grid voltage recoveries, the system again

operates at the MPPT mode.

In addition, it should be mentioned that, single-phase PV

systems are commonly connected to low-voltage feeders,

which are mainly resistive (i.e., with a high R/X ratio). There-

fore, injecting reactive power to the grid may not contribute

significantly to the grid voltage recovery. Nevertheless, the

proposed LVRT scheme can also enable the injection of

reactive power if demanded during fault ride-through, as it

is demonstrated in Fig. 7. In this case, in order to prevent



Fig. 7. Simulation results of the two-stage single-phase grid-connected PV
system with the proposed LVRT control scheme under a grid voltage fault
(voltage sag level: 0.4 p.u., that is, the amplitude residual voltage is 195 V):
duty cycle db [0.25/div]; PV output power Ppv [750 W/div]; DC-link voltage
vdc [25 V/div]; grid voltage vg [200 V/div]; grid current ig [20 A/div];
time [50 ms/div]. An amount of reactive power is injected during the LVRT
operation, where the grid current amplitude is kept the same as that before
the grid fault.

the PV inverter from over-current shutdown, the grid current

amplitude is maintained as it was (before the voltage sag). It

can be seen in Fig. 7 that the PV system with the proposed

LVRT scheme allows reactive power injection, since it is

almost independent of the active power reduction of the PV

panels. The dynamic of the system with the reactive power

injection is also not comprised, as it is observed in Fig. 7.

C. Discussions

In order to better understand the dynamics of the system

under LVRT, the operational trajectory of the PV panels of

the grid-connected system is depicted in Fig. 8. It can be seen

that from the MPPT to LVRT operation, there are periods of

very low voltage and very low power (also can be observed

in Figs. 6 and 7). This might be explained by the following.

Typically, there is a capacitor at the output terminals of PV

Fig. 8. Operational trajectory of the PV panels in the case of LVRT with the
proposed control scheme.

panels (represented by Cpv). In the case of voltage sags, the

duty-cycle db will experience a large step-up change, which

will lead to a sudden drop in the PV voltage. The PV voltage

change then creates an amount of energy at the capacitor Cpv.

The energy will be gradually dissipated in the system, affecting

the PV voltage profile. Similarly, when the grid voltage level

comes to its nominal, a step-down change of the duty-cycle

db occurs, forcing the PV operating point move to the high-

voltage region (see Fig. 8). In this time period, the energy will

be released gradually until the system reaches the maximum

power point. In order to alleviate this impact, the PV output

capacitor should not be too large, which is also valid in

practical cases.

From the above simulations, it is known that the proposed

LVRT scheme does not require to calculate the grid active

power, but by monitoring the grid voltage amplitude, the

PV output power is regulated. However, when the PV in-

verter is controlled by a droop controller, the calculation is

inevitable. In that case, the active power droop coefficient kd is

readily available. Notably, the active power droop coefficient

employed in this paper is not optimal, and it is related to

the inverter system characteristics. Notice that the PV output

power and the dc-link voltage contain double-line frequency

components, a notch filter has been employed to mitigate these

unwanted harmonics in this paper.

IV. CONCLUSIONS

In this paper, a cost-effective LVRT control scheme has

been proposed for single-phase two-stage grid-connected PV

systems, which can simply be plugged into a pre-designed

MPPT controller, being easy for implementation. The pro-

posed LVRT strategy is built upon the droop characteristics

of PV systems (grid-side droop: active power and grid voltage

level, PV-side inherent linear power-voltage droop: PV power

and PV voltage). Hence, the plug-in LVRT enables seamless

operation mode transitions, but also reactive power injection

upon demands. Simulations on a 3-kW PV system have

demonstrated the effectiveness of the proposal.
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