

Aalborg Universitet

Generalized Approximate Message Passing

Oxvig, Christian Schou; Arildsen, Thomas; Larsen, Torben

DOI (link to publication from Publisher):
10.5278/VBN.GAMPTechReport

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Oxvig, C. S., Arildsen, T., & Larsen, T. (2017). Generalized Approximate Message Passing: Relations and
Derivations. DOI: 10.5278/VBN.GAMPTechReport

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 30, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/80578182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.5278/VBN.GAMPTechReport
http://vbn.aau.dk/en/publications/generalized-approximate-message-passing(f0b1388f-23b1-42ea-b570-3617a6d41968).html

Generalized Approximate Message Passing
Relations and Derivations

Tech Report

Christian Schou Oxvig, Thomas Arildsen, Torben Larsen

Department of Electronic Systems
Aalborg University

Denmark

April 6, 2017

Generalized Approximate Message Passing: Relations and Derivations
Tech Report
Version: 1.00, April 6, 2017
doi:10.5278/VBN.GAMPTechReport

Christian Schou Oxvig, Thomas Arildsen, Torben Larsen
Department of Electronic Systems, Aalborg University, Denmark

Author Contributions

Christian Schou Oxvig defined the research which led to the novel contribu-
tions presented in this tech report and was the main contributor to the proposed
solutions. He defined and detailed the outline of the GAMP elements to include in
the review parts of the tech report. Finally, he wrote the entire draft of the tech
report with the exception of Section 3.3 “MMSE Channel Functions in General”
and revised the draft according to comments from co-authors.

Thomas Arildsen and Torben Larsen supervised the work on the novel con-
tributions presented in this tech report. They contributed several ideas that were
used in the proposed solutions. They took part in several discussions of the outline
of the review parts of the tech report. Finally, these authors performed several
reviews of drafts of the tech report and proposed several changes that were used
in the final version of the tech report. Torben Larsen wrote Section 3.3 “MMSE
Channel Functions in General”.

Copyright c© 2017 Christian Schou Oxvig, Thomas Arildsen, Torben Larsen
This work is open-access and licensed under the Creative Commons Attribution 4.0
International License which permits unrestricted use, distribution, and reproduction
in any medium provided that the original authors and source are credited. To view
a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or
send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

http://dx.doi.org/10.5278/VBN.GAMPTechReport
http://creativecommons.org/licenses/by/4.0/

Contents

Contents i

1 Introduction 1
1.1 Contributions Overview . 1
1.2 Background . 1
1.3 Motivation . 2
1.4 Derivation . 2
1.5 Notation . 5

2 The GAMP Iteration 7
2.1 Relation to Donoho/Maleki/Montanari AMP . 8
2.2 Relation to IST, ISTA, and ADMM . 10

3 MMSE Channel Functions 11
3.1 Input Side Channel Functions . 11
3.2 Output Side Channel Functions: . 11
3.3 MMSE Channel Functions in General . 12
3.4 General Sparse Input Channel . 14
3.5 General Weighted Sparse Input Channel . 15
3.6 Analytic Expressions for Common Output Channels 16
3.7 Analytic Expressions for Common Input Channels 17

4 Sum Approximations 27
4.1 The Sum Approximation by Krzakala et al. 27
4.2 The Sum Approximation by Rangan . 28

5 Implementations of the GAMP Iteration 31
5.1 Stop Criteria . 32
5.2 Damping and Other Methods for Improving Convergence 33

6 Parameter Learning 35
6.1 Variance Estimates . 35
6.2 Expectation Maximization (EM) . 35
6.3 Parameter Initialisation . 49

7 GAMP Software 51
7.1 Magni GAMP Implementation . 51
7.2 GAMPMatlab Implementation . 52
7.3 BPCS AMP Implementation . 52
7.4 Vampyre . 52

8 GAMP Extensions 53

References 54

1 Introduction

This tech report details a collection of results related to the Generalised Approximate Message
Passing (GAMP) [1] algorithm. It is a summary of the results that the authors have found critical
in understanding the GAMP algorithm. In particular, emphasis is on the details that are crucial
in implementing the GAMP algorithm on a computer but which are oftentimes left out from the
literature focusing on the more theoretical aspects of GAMP. Thus, this tech report is not meant
to comprehensively cover all the published works on GAMP and related algorithms.

The Generalised Approximate Message Passing (GAMP) [1] algorithm by Rangan is a general-
isation of Approximate Message Passing (AMP) algorithm, independently described by Donoho et
al. [2], [3], [4] and Krzakala et al. [5], [6]. The generalisation allows for arbitrary output channels
to be used with AMP.

1.1 Contributions Overview

The primary focus of this tech report is on giving more elaborate derivations and discussions of
GAMP key relations found in the existing literature - with an emphasis on implementation details.
However, a few new results are presented. Specifically, our new contributions are:

1. The proposed General Weighted Sparse (GWS) GAMP input channel described in Section
3.5 and all of its related derivations including the EM updates described in Sections 6.2.2.2
and 6.2.2.3 and the relations described in Sections 3.7.1.2 and 3.7.2.1.

2. The Sparse Bernoulli-Laplace input channel derivations given in Section 3.7.1 and the related
EM update derivations given in Sections 6.2.2.4 and 6.3.4.

3. The methods for efficiently computing the Frobenius norm of various system matrices de-
scribed in Section 4.2.2.

1.2 Background

We consider the undersampling reconstruction problem of estimating α ∈ Cn×1 from the measure-
ments y ∈ Cm×1 when m ≤ n (typically m� n) and y = Aα+ e with:

• A ∈ Cm×n - the system matrix

• e ∈ Rm×1 - an additive measurement noise

The system matrix A may be further decomposed into the matrix product of the sampling operator
matrix Φ ∈ Rm×p and the dictionary matrix Ψ ∈ Cp×n, i.e. A = ΦΨ. The dictionary matrix is
chosen such that the coefficient vector α has some sort of structure, e.g. α is sparse. Introducing
the signal of interest, x ∈ Cp×1, as well as the noiseless measurements, z ∈ Cm×1, the setup is
described by the following set of equations:

y = Aα+ e (1.1)
= z + e (1.2)
= ΦΨα+ e (1.3)
= Φx + e (1.4)

x = Ψα (1.5)
z = Aα (1.6)

2 Chapter 1. Introduction

1.3 Motivation

For probabilistic inference/recovery/reconstruction problems as those described in Section 1.2, one
can generally observe a phase transition [7] (in the large system limit n → ∞ for fixed δ = m/n)
separating the problems for which successful inference can be done from those for which it is
impossible [5], [6]. This separation is determined by the available information about the inference
problem. If too little information is available, it is generally not possible to solve the inference
problem. The overall goal is then to find algorithms that are able to reach the phase transition
boundary, i.e., they must be able to solve the inference problems when provided with just enough
information to be able to succeed. The AMP algorithm is of interest in this regard primarily due
to [5], [8]:

• It finds Bayes optimal (maximum a posterior (MAP) or minimum mean squared error
(MMSE)) estimates in probabilistic inference/recovery/reconstruction problems and is (un-
der certain conditions) able to reach the phase transition boundary.

• The number of messages in the underlying message passing problem that is being approxi-
mated scales linearly with the problem size. Thus, it is a computationally feasible algorithm.

See e.g. [5] or [8] for a more detailed motivation.

1.4 Derivation

Here we give a brief overview of a more heuristic derivation of the AMP following [5] and [9].
Rigorous proofs are given in [10], [11].

1.4.1 MMSE and MAP GAMP
We consider a Bayesian probabilistic approach to reconstructing a vector α from measurements y
in a setup described by the set of Equations (1.1)-(1.6). In particular, we consider the posterior
distribution:

p(α|y) = p(y|α)p(α)
p(y) (1.7)

= 1
Z
p(y|α)p(α) (1.8)

for a normalisation constant Z, the likelihood p(y|α), and p(α) - a prior on α. As is usually the
case in Bayesian methods, it all boils down to finding ways to handle the otherwise intractable
integretions/summations needed to determine the value of such normalisation constants as well as
marginals or expectations.

Even though the posterior marginals of α may be of interest as such, one usually finds point
estimates from these marginals. In particular, the minimum mean squared error (MMSE) or the
maximum a posteriori (MAP) estimates are often used:

αMMSE
j =

∫
αj

αjp(αj |y)dαj (1.9)

αMAP
j = arg max

αj

p(αj |y) (1.10)

where the (conditional) marginals are obtained as

p(αj |y) =
∫
{αj′}:j′ 6=j

p(α|y)dα (1.11)

Thus, we are interested in finding MMSE (or MAP) estimates of α which entails the need for (at
least indirectly) finding the marginals. In rest of this tech report, we generally focus on GAMP
for finding MMSE estimates.

1.4.2. The Message Passing Interpretation 3

1.4.2 The Message Passing Interpretation
In general, the system matrix A defines a dense bipartite factor graph with variables α1, . . . , αn
and factors y1, . . . , ym [9]. Had this factor graph contained no loops, it would have been possible
to obtain exact inference of the marginals in Equation (1.11) (and MMSE estimates) in a single
pass over the graph by use of the sum-product message passing algorithm (sometimes also known
as belief propagation) [12], [13]. However, due to the loops in the factor graph, iterative message
passing over the graph only results in approximate inference. In the loopy sum-product message
passing, one iteratively passes the following messages (full probability distributions) along the
edges of the factor graph:

mi→j(αj) = 1
Zi→j

∫
{αk}:k 6=j

p(yi|zi)
∏
k 6=j

mk→i(αk) factor to variable message (1.12)

mj→i(αj) = 1
Zj→i

p(αj |[θI]j)
∏
l 6=i

ml→j(αj) variable to factor message (1.13)

where the zi = [Aα]i’s are the noiseless measurements, [θI]j are some parameters of the prior
distribution on αj and Zi→j , Zj→i are normalisation factors. The use of this iterative message
passing scheme poses two problems:

1. One has to track full probability distributions (the messages mi→j(αj), mj→i(αj) are full
probability distributions on αj , i.e. functions on the real axis).

2. There is a total of 2mn messages that must be passed in each iteration (all m factors sends
a message to all n variables and vice versa).

Thus, it is intractable to use the above message passing scheme as is. However, under certain
assumptions, it is possible to use a different message passing scheme involving onlym+n messages.
Furthermore, these messages are means and variances, i.e, they are scalars which provides for a
much more tractable algorithm.

The derivation of such a message passing scheme relies on the assumption that the individual
element of A becomes insignificant for n → ∞. That is, it is assumed that all elements of A
scale like 1√

n
such that each element seen in isolation becomes insignificant in the large system

limit n → ∞. In other words, the information is spread equally throughout the graph. The
use of various Taylor approximations and applications of the central limit theorem then gives the
resulting new message passing scheme. All the details are given in [2], [3], [4], [5], [6], [9], [14], [15].

Most importantly from an implementation perspective, the workload reduces to the iteration
of the mean and variance updates ᾱj and α̃j (along with a few other states as detailed below) for
finding the MMSE estimate1 of αj , j = 1, . . . , n

ᾱj = fᾱj (sj , rj ; [θI]j) (1.14)
α̃j = fα̃j (sj , rj ; [θI]j) (1.15)

for scalar non-linear functions fᾱj , fᾱj . These updates may be iterated to a fixed point resulting
in the reconstructed signal ᾱ = [ᾱ1, . . . , ᾱn]T . The estimated variance of the elements of ᾱ is then
given by α̃ [16]. This variance may be used to quantify the accuracy of the reconstructed signal
(it should be small). In summary, ᾱj ends up being an approximation of αMMSE

j in Equation (1.9)
with α̃j expressing something about the quality of this approximation.

As hinted by the scalar functions in Equations (1.14) and (1.15), one introduces additional
states that represent local beliefs about means and variances at the variables and factors:

sj : Prior side (/ AMP field / variable field) variance

rj : Prior side mean

vi: Factor side (/ Channel side / factor field) variance
1The GAMP framework of Rangan [1], [16] allows for both MMSE and MAP estimates by choosing different

channel functions.

4 Chapter 1. Introduction

oi: Factor side mean

Note that there is one such state for each j = 1, . . . , n, i = 1, . . . ,m. Thus, the number of states
in the AMP algorithm that must be tracked and updated in each iteration is O(m+ n). Only the
compact (and simplified) AMP iteration by Donoho/Maleki/Montanari has exactlym+n messages
that must be tracked in each iteration [2] - see also Section 2.1. The full GAMP iteration is given
in Section 2 (Equations (2.1) - (2.12)). The generalisation in GAMP introduces further states as
well as a pair of scalar output side channel functions fz̄i , fz̃i in addition to the input side channel
functions fᾱj , fᾱj . Details about these channel functions are given in Section 3.

1.4.3 State Evolution
From a theoretical perspective, the probably most appealing part of the AMP algorithm is its State
Evolution (SE) formalism [2], [4], [9] which provides precise convergence guarantees for AMP. It
turns out that in the large system limit n→∞ and under certain conditions, a certain state (the
unthresholded α̂) in the AMP algorithm may be interpreted as a AWGN corrupted version of the
true α for any iteration. Thus, the reconstruction error may be tracked by the mean squared error
(MSE) of the estimate. This is, however, a purely analytical construction that may be used to
theoretically characterise the AMP algorithm in the large system limit for a given problem. A
rigorous proof of the SE is given in [10].

1.4.4 Theoretical Guarantees for Arbitrary System Matrices
The AMP algorithm has been rigorously proved to converge for i.i.d. Gaussian system matrices
(entries are drawn i.i.d. zero-mean Gaussian) in the large system limit n→∞ [17], [18] as well as
for i.i.d. sub-Gaussian system matrices [10], [11]. For i.i.d. Gaussian system matrices of finite size,
it can be shown that the probability of deviation from the SE described in Section 1.4.3 decreases
exponentially in n [19].

For various other types of system matrices, a damping strategy may be used to guarantee
convergence of the GAMP algorithms [20] (more details are given in Section 5.2). The S-AMP
algorithm described in [21] and [22] is an attempt at generalising GAMP to more general system
matrix ensembles. A similar attempt at an AMP algorithm for more general system matrix en-
sembles is the ADMM-GAMP algorithm [23]. Yet another attempt is the Orthogonal AMP [24]
algorithm which is somewhat similar to the Vector AMP algorithm2. Generally, these alterna-
tives have significantly higher computationally complexity than GAMP. Thus, they all present a
trade-off between convergence guarantee and computational complexity.

The fixed points of GAMP with arbitrary matrices is discussed in [25] whereas general com-
pressed sensing phase transitions for deterministic matrices are discussed in [26]. Details about
when AMP algorithms provide theoretically optimal recovery guarantees are given in [6], [27].
Finally, empirical results suggest that GAMP also converges for various other system matrices
[10], [28] including matrices related to structured random matrices [29] and structurally random
matrices [30].

1.4.5 Additional Practicality Notes on GAMP
The AMP algorithm is based on a zero mean assumption on A, i.e., the entries of A are assumed
to be zero mean. For non-zero mean A, one may use a transformation to a new problem with a
zero mean system matrix, see e.g. [5] or [31].

In the derivation of AMP, Krzakala et al. assume a 1√
n
scaling of the entries of A [6] whereas

Montanari et. al assume a 1√
m

with a fixed δ = m
n [9]. Theoretically, the two assumptions are

equivalent (in the sense of an element becoming insignificant) for n→∞ as long asm scales linearly
with n, i.e., δ is fixed. However, in practice (with finite n) for low δ, the difference between m and
n is large enough to impact the convergence of the AMP algorithm3.

2See the pre-print available at https://arxiv.org/abs/1610.03082
3Empirical phase transition simulations reported on in a submitted but yet to be published manuscript by the

authors of this tech report confirms this observation. See also Chapter 4 for a more elaborate discussion of the
impact of these assumptions.

https://arxiv.org/abs/1610.03082

1.5. Notation 5

The in- and output channels are required to be separable. That is, the channel defining prob-
abilities must be conditionally independent [1]:

p(α|θI) =
∏
j

p(αj |[θI]j) (1.16)

p(y|z;θo) =
∏
i

p(yi|zi; [θo]i) (1.17)

Thus, we consider a setup in which we imagine that a random α is generated according to the
input channel specification in Equation (1.16). This α is measured through the linear transform
in Equation (1.6). The observation y is then generated from z according to the output channel
specification in Equation (1.17) which is a generalisation of the additive noise used in Equation
(1.1). That being said, one may consider the θI ’s and θo’s to be random variables themselves and
define hyperpriors on them. This allows for arbitrary structures (subject to the above separability
constraint) on the prior of α, e.g. a Markov chain prior [32]. For updating the beliefs across such
priors, one may use the Turbo GAMP framework [33]. See also Chapter 8 for more references
to works on structured priors. Independently of the choice of prior, it is important to keep in
mind that the GAMP estimates, when MMSE- or MAP-optimal, are optimal under the model
assumption which may only approximate the problem attempted solved.

1.5 Notation

The notation used across publications by a given author is typically consistent. Unfortunately,
notation varies between different authors. Table 1.1 gives a comparison of the different notations
used by some of the authors responsible for a significant part of the published works on GAMP.
Also included in the table is our “unified” notation used in this note. This notation is a combination
of the other notations as well as elements from the notation that is customary in the compressed
sensing literature with a focus on imaging applications.

6 Chapter 1. Introduction

Quantity Our notation Krzakala Schniter Rangan Donoho

System matrix A F A A A
Abs. entrywise squared A |A|◦2 or Aasq |A|2
Dictionary coefficients α x or s x x or s x or s
Noiseless measurements z z z
Noisy measurements y y y y y
Additive noise e ξ w w w
Image as a vector x
Image width w
Image height h
Image as a matrix M
Number of measurements m M m or M m n
Number of coefficients n N n or N n N
Number of non-zeros k K k or K k
Undersampling ratio δ = m

n
α δ

Sparsity level ρ = k
m

ρ
Signal density τ = k

n
ρ λ ρ

Dictionary Φ
Sampling matrix Ψ
Input (/prior) parameters θI q q
Output parameters θo
Factor-side state #1 v / v V / V̄ µp / µp τ p / τp γ
Factor-side state #2 o ω p̂ p̂
Channel function f f g F/G or (η)‡
Factor-side mean z̄ ẑ
Factor-side variance z̃ µz

Output channel state #1 q ŝ ŝ
Output channel state #2 u / u µs / µs τ s / τs
Variable-side state #1 s / s Σ2 / Σ2 µr / µr τ r / τr
Variable-side state #2 r R r̂ r̂
Variable-side mean ᾱ a x̂ x̂ x
Variable-side variance α̃ v µx (τx)†
Onsager-corrected residual χ v̂ z
(Marginal) prob. density p(x) φ(x) pX(x) pX(x)
Joint prob. density p(x, y) P (x, y) pX,Y (x, y) pX,Y (x, y)
Conditional prob. density p(x|y; θ) P (x|y, θ) pX|Y ;θ(x|y; θ)
Normalisation factor Z Z Z Z Z
AWGN noise variance σ2 ∆ µw or ψ τw σ2

Gaussian mean θ̄ x̄ θ̂ or θ q

Gaussian variance θ̃ σ2 µθ or φ τx0

Laplacian rate parameter λ λ β
Laplacian mean parameter µ
Convergence tolerance ε τgamp
Iteration index t t t t
Maximum iterations Tmax Tmax
Step-size parameter κ β
Dirac delta δDirac δ δ δ

‡ Only under certain conditions is the η threshold functions equivalent to the GAMP channel functions - see
Section 2.1.
† Rangan uses slightly different states to allow for both MMSE and MAP estimates. See [1], [16], [20].

Table 1.1: Comparison of notations typically used by the different research groups working on
(G)AMP.

2 The GAMP Iteration

The AMP iteration is given in [5]. Here we state the MMSE Generalised AMP (GAMP) iteration
following Parker’s presentation [15]. Rangan was the first to state the GAMP iteration [1]. How-
ever, Rangan uses special output functions which allow for both MMSE and MAP estimates. The
relation between the below MMSE GAMP iteration and Rangan’s more general GAMP iteration
is elaborated on in Section 3. The optional use of parameter value updates is described in [5] and
[28]. The MMSE GAMP iteration consists of the state updates in Equations (2.1)-(2.12).

Output (factor) side updates:

vt+1
i =

∑
j

|aij |2α̃tj (2.1)

ot+1
i =

∑
j

aijᾱ
t
j − vt+1

i qti (2.2)

z̄t+1
i = fz̄i(vt+1

i , ot+1
i ; yi, [θo]ti) (2.3)

z̃t+1
i = fz̃i(vt+1

i , ot+1
i ; yi, [θo]ti) (2.4)

qt+1
i = z̄t+1

i − ot+1
i

vt+1
i

(2.5)

ut+1
i = vt+1

i − z̃t+1
i

(vt+1
i)2 (2.6)

Input (variable) side updates:

st+1
j =

[∑
i

|aij |2ut+1
i

]−1

(2.7)

rt+1
j = ᾱtj + st+1

j

∑
i

a∗ijq
t+1
i (2.8)

ᾱt+1
j = fᾱj (st+1

j , rt+1
j ; [θI]tj) (2.9)

α̃t+1
j = fα̃j (st+1

j , rt+1
j ; [θI]tj) (2.10)

Optional parameter value updates (using e.g. EM - see also Section 6):

[θo]t+1
i = . . . (2.11)

[θI]t+1
j = . . . (2.12)

where a∗ij is the complex conjugate of aij .

8 Chapter 2. The GAMP Iteration

2.1 Relation to Donoho/Maleki/Montanari AMP

Rangan states that GAMP [16] is closely related to the AMP algorithm by Donoho/Maleki/Montanari
[2], [3], [4], [9], [34]. Parker [15] gives the below elaboration on this claim in relation to the MMSE
GAMP (see also [35]).

We consider the MMSE GAMP with the AWGN output channel given in Equations (3.57)
and (3.60) (used in computing z̄ and z̃). The equivalence to the DMM AMP is based on a few
simplifications of some of the GAMP states. In particular, v, u, and s become scalars (which do
not depend on the index j)

vt+1 := 1
m

∑
j

α̃tj ≈
∑
j

|aij |2α̃tj (2.13)

ut+1 := vt+1 − z̃t+1

(vt+1)2 =
vt+1 − σ2vt+1

σ2+vt+1

(vt+1)2 =
vt+1σ2+(vt+1)2−vt+1σ2

σ2+vt+1

(vt+1)2 = 1
σ2 + vt+1 (2.14)

st+1 := 1
ut+1 = σ2 + vt+1 ≈

[
1
m

∑
i

ut+1
i

]−1

≈

[∑
i

|aij |2ut+1
i

]−1

(2.15)

These simplifications are closely related to the sum approximations by Krzakala et al. in Equations
(4.7) and (4.8), though the scaling (i.e. the assumed variance of the the entries in A) is slightly
different: 1

m vs 1
n . Based on the above simplifications, the update of the rj state becomes

rt+1
j = ᾱtj + st+1

∑
i

a∗ijq
t+1
i (2.16)

= ᾱtj + st+1
∑
i

a∗ij
z̄t+1
i − ot+1

i

vt+1 (2.17)

= ᾱtj + st+1
∑
i

a∗ij
ot+1
i + vt+1

σ2+vt+1 (yi − ot+1
i)− ot+1

i

vt+1 (2.18)

= ᾱtj + st+1
∑
i

a∗ij
yi − ot+1

i

σ2 + vt+1 (2.19)

= ᾱtj +
∑
i

a∗ij(yi − ot+1
i) (2.20)

= ᾱtj +
∑
i

a∗ijχ
t+1
i (2.21)

for

χt+1
i := yi − ot+1

i (2.22)

2.1. Relation to Donoho/Maleki/Montanari AMP 9

Now, for χt+1
i , we have

χt+1
i = yi − ot+1

i (2.23)

= yi −

∑
j

aijᾱ
t
j − vt+1qti

 (2.24)

= yi −
∑
j

aijᾱ
t
j + vt+1 z̄

t
i − oti
vt

(2.25)

= yi −
∑
j

aijᾱ
t
j + vt+1 yi − oti

σ2 + vt
(2.26)

= yi −
∑
j

aijᾱ
t
j + vt+1

st
χti (2.27)

= yi −
∑
j

aijᾱ
t
j +

1
m

∑
j α̃

t
j

st
χti (2.28)

= yi −
∑
j

aijᾱ
t
j +

1
m

∑
j s
tg′in(rtj ,θI , st)
st

χti (2.29)

= yi −
∑
j

aijᾱ
t
j + 1

m

∑
j

g′in(rtj ,θI , st)χti (2.30)

= yi −
∑
j

aijᾱ
t
j + n

m
〈g′in(rtj ,θI , st)〉χti (2.31)

= yi −
∑
j

aijᾱ
t
j + 1

δ
〈g′in(ᾱt−1

j +
∑
i

a∗ijχ
t
i,θI , s

t)〉χti (2.32)

where we have used Rangan’s GAMP g′in channel in Equation (3.26) and 〈·〉 denotes the average.
Similarly for ᾱt+1, we have

ᾱt+1
j = fᾱj (st+1

j , rt+1
j ;θI) (2.33)

= gin(rt+1
j ,θI , s

t+1
j ,) (2.34)

= gin(ᾱtj +
∑
i

a∗ijχ
t+1
i ,θI , s

t+1
j) (2.35)

where we have used Rangan’s GAMP gin channel in Equation (3.25). Now in matrix-vector
notation, Equations (2.32) and (2.35) read

χt = y−Aᾱt-1 + 1
δ
〈g′in(ᾱt-2 + AHχt-1,θI , st-1)〉χt-1 (2.36)

ᾱt = gin(ᾱt-1 + AHχt,θI , st) (2.37)

where H denotes the Hermitian transpose (complex conjugated transpose), χ is the so-called
Onsager-corrected residual and st is a length m vector with all entries equal to the scalar in
Equation (2.15). Here we note that from Equations (2.13) and(2.15), using similar steps as in
deriving Equation (2.32), we have

vt+1 = 1
δ
st〈g′in(ᾱt−1

j +
∑
i

a∗ijχ
t
i,θI , s

t)〉 (2.38)

= 1
δ

(σ2 + vt)〈g′in(ᾱt−1
j +

∑
i

a∗ijχ
t
i,θI , σ

2 + vt)〉 (2.39)

Thus, in order to compute the channel value based on s, one may introduce the additional recursion
on the state v. If we take ηt(·) = gin(·,θI , st) for the threshold function ηt in [2], then Equations

10 Chapter 2. The GAMP Iteration

(2.36) and (2.37) constitute the Donoho/Maleki/Montanari AMP update in Equations [2] and [1],
respectively, in [2]1.

The threshold function, ηt is in general a conditional expectation [3] (as is gin(·,θI , st)) in
MMSE GAMP. However, in AMP for the Basis Pursuit and LASSO problems [2], [3] (closely
linked to instances of the MAP GAMP [1], [16], the threshold function becomes the soft threshold
operator for which the threshold level is chosen slightly differently - see [9] for more details. See
also [15] for a further discussion of some of these subtle details in the choice of threshold function.

2.2 Relation to IST, ISTA, and ADMM

The iterative soft thresholding (IST) algorithm [36] is similar in structure to the DMM AMP
updates in Equations (2.36) and (2.37). Specifically, the corresponding IST updates read

χt = y−Aᾱt-1 (2.40)
ᾱt = ηt(ᾱt-1 + AHχt) (2.41)

for ηt being the soft threshold operator. Thus, the difference to AMP is the lack of the Onsager
correction 1

δ 〈g
′
in(ᾱt-2 + AHχt-1,θI , st-1)〉χt-1. It is this correction that gives rise to the interpre-

tation of ᾱt-1 +AHχt being a AWGN corrupted version of the true α as discussed in Section 1.4.3
[2].

GAMP may also be interpreted as certain variants of the iterative shrinkage and thresholding
algorithm (ISTA) [37] and the alternating direction method of multipliers (ADMM) algorithm [38]
as detailed in [25].

1In [2], ᾱt is computed prior to χt which accounts for the iteration index shifts.

3 MMSE Channel Functions

The MMSE GAMP channel functions, fᾱ, fα̃, fz̄, fz̄, used in Equations (2.1)-(2.12) are given in
terms of special conditional expectations and variances since these are at the core of the MMSE
GAMP as described in Section 1.4.1. The MMSE GAMP channel functions follow the AMP
channel function definitions by Krzakala et. al in [5] but differs from GAMP the channel function
definitions used by Rangan [1] as elaborated on in Section 3.3.1. All channel functions are scalar
functions. Thus, in this chapter we drop the notational dependence on the index as well as the
notational dependence on iteration. When the presented channel expressions are used with the
GAMP iteration in Equations (2.1)-(2.12), the appropriate dependencies should be taken into
account.

3.1 Input Side Channel Functions

The GAMP input side channel functions are:

fᾱ(s, r;θI) = Eα|s,r,θI [α] := 1
ZI

∫
α

αp(α;θI)N (α; r, s)dα (3.1)

fα̃(s, r;θI) = Varα|s,r,θI (α) := 1
ZI

∫
α

|α|2p(α;θI)N (α; r, s)dα− |fᾱ(s, r;θI)|2 (3.2)

where ZI =
∫
α
p(α;θI)N (α; r, s)dα is a normalisation constant that ensures that the product

p(α;θI)N (α; r, s) is a proper probability measure and

N (α; r, s) = 1√
2πs

exp
(
−1

2
(α− r)2

s

)
(3.3)

Thus, from Equation (3.1) we find that in GAMP, the true marginal posterior p(α|y;θI) is ap-
proximated by:

p(α|y; s, r,θI) := p(α;θI)N (α; r, s)∫
α
p(α;θI)N (α; r, s)dα

(3.4)

which has the interpretation that if Ã is a random variable distributed according to p(α;θI) and
B̃ = Ã + W with W a zero-mean Gaussian noise with variance s, then Equation (3.1) is the
conditional mean of Ã given B̃ = r, i.e. E[Ã|B̃ = r]. Similarly Equation (3.2) is the conditional
variance Var(Ã|B̃ = r) [3], [16].

Note that the input channel parameters θI may depend on the coefficient, i.e. the [θI]j ’s
may be different for each j = 1, . . . , n. In Equation (3.4) it is to be understood that θI is the
vector/matrix of all input channel parameters independently of whether or not they depend on
the index j.

All the input channel functions are scalar functions. When used with vectors as arguments, it
is to be understood that a channel function is used on each element of the vector.

3.2 Output Side Channel Functions:

The GAMP output side channel functions are:

fz̄(v, o; y,θo) = Ez|o,v,y,θo [z] := 1
Zo

∫
z

zp(y|z;θo)N (z; o, v)dz (3.5)

fz̃(v, o; y,θo) = Varz|o,v,y,θo(z) := 1
Zo

∫
z

|z|2p(y|z;θo)N (z; o, v)dz − |fz̄(v, o; y,θo)|2 (3.6)

12 Chapter 3. MMSE Channel Functions

where Zo =
∫
z
p(y|z;θo)N (z; o, v)dz is a normalisation constant that ensures that the product

p(y|z;θo)N (z; o, v) is a proper probability measure and

N (z; o, v) = 1√
2πv

exp
(
−1

2
(z − o)2

v

)
(3.7)

Thus, from Equation (3.5) we find that in GAMP, the true marginal posterior p(z|y;θo) is approx-
imated by:

p(z|y; o, v,θo) := p(y|z;θo)N (z; o, v)∫
z
p(y|z;θo)N (z; o, v)dz

(3.8)

which has the interpretation that if Ỹ is a random variable distributed according to p(y|z;θo)
and Z̃ is a Gaussian random variable with mean o and variance v, then Equation (3.5) is the
conditional mean of Z̃ given Ỹ = y, i.e. E[Z̃|Ỹ = y]. Similarly, Equation (3.6) is the conditional
variance Var(Z̃|Ỹ = y) [16].

Note that the output channel parameters θo may depend on the coefficient, i.e. the [θo]i’s
may be different for each i = 1, . . . ,m. In Equation (3.8), it is to be understood that θo is the
vector/matrix of all output channel parameters independently of whether or not they depend on
the index i.

All the output channel functions are scalar functions. When used with vectors as arguments,
it is to be understood that a channel function is used on each element of the vector.

3.3 MMSE Channel Functions in General

From Equations (3.1) and (3.2) as well as Equations (3.5) and (3.6), we find that in the MMSE
case, evaluating the channels functions amounts to evaluating conditional means and variances.
Thus, in relation to the in- and output channel functions, we may, for a given channel distribution
p(u;θ), in general, define

Z(v ,w ,θ) :=
∫

u
p(u;θ)N (u; v ,w)du ∈ R (3.9)

N1(v ,w ,θ) :=
∫

u
up(u;θ)N (u; v ,w)du ∈ C (3.10)

N2a(v ,w ,θ) :=
∫

u
|u|2p(u;θ)N (u; v ,w)du ∈ C (3.11)

for which we may find mean and variance functions as

Eu|v,w ,θ[u] = N1(v ,w ,θ)
Z(v ,w ,θ) ∈ C (3.12)

Varu|v,w ,θ(u) = N2a(v ,w ,θ)
Z(v ,w ,θ) − |Eu|v,w ,θ[u]|2 ∈ R (3.13)

3.3.1. Relation to Rangan’s Channel Functions 13

The expression for the conditional variance stems from

Varu|v,w ,θ(u) :=
∫

u |u − Eu|v,w ,θ[u]|2p(u;θ)N (u; v ,w)du∫
u p(u;θ)N (u; v ,w)du

(3.14)

N2(v ,w ,θ) :=
∫

u
|u − Eu|v,w ,θ[u]|2p(u;θ)N (u; v ,w)du (3.15)

=
∫

u
|u|2p(u;θ)N (u; v ,w)du

− Eu|v,w ,θ[u]
∫

u
u∗p(u;θ)N (u; v ,w)du

+ |Eu|v,w ,θ[u]|2
∫

u
p(u;θ)N (u; v ,w)du

− Eu|v,w ,θ[u]∗
∫

u
up(u;θ)N (u; v ,w)du (3.16)

=
∫

u
|u|2p(u;θ)N (u; v ,w)du

− Eu|v,w ,θ[u]Eu|v,w ,θ[u]∗Z(v ,w ,θ)
+ |Eu|v,w ,θ[u]|2Z(v ,w ,θ)
− Eu|v,w ,θ[u]∗Eu|v,w ,θ[u]Z(v ,w ,θ) (3.17)

=
∫

u
|u|2p(u;θ)N (u; v ,w)du − |Eu|v,w ,θ[u]|2Z(v ,w ,θ)∗ (3.18)

N2(v ,w ,θ) = N2a(v ,w ,θ)−N2b(v ,w ,θ) (3.19)
N2b(v ,w ,θ) := |Eu|v,w ,θ[u]|2Z(v ,w ,θ)∗ = |Eu|v,w ,θ[u]|2Z(v ,w ,θ) (3.20)

Varu|v,w ,θ(u) = N2(v ,w ,θ)
Z(v ,w ,θ) (3.21)

= N2a(v ,w ,θ)−N2b(v ,w ,θ)
Z(v ,w ,θ) (3.22)

= Na2(v ,w ,θ)
Z(v ,w ,θ) − |Eu|v,w ,θ[u]|2Z(v ,w ,θ)

Z(v ,w ,θ) (3.23)

= Na2(v ,w ,θ)
Z(v ,w ,θ) − |Eu|v,w ,θ[u]|2 (3.24)

where ∗ denotes complex conjugation.

3.3.1 Relation to Rangan’s Channel Functions

Rangan’s GAMP allows for obtaining both MAP and MMSE estimates depending on the choice
of channel functions. For MAP estimates the channel functions are found from certain probability
maximisation problems and are, thus, closely related to typical optimisation formulations used in
e.g. sparse inference [1], [16]. For MMSE estimates the channel functions are expectations and
variances as seen in the channel functions given in Sections 3.1 and 3.2. To allow for both types
(MAP and MMSE) of channel functions, Rangan uses the differently defined channel functions
gin, g

′
in, gout, g

′
out [1], [16]. For the MMSE case, we have the following relations:

gin(r,θI , s) = fᾱ(s, r;θI) (3.25)

g′in(r,θI , s) = fα̃(s, r;θI)
s

(3.26)

gout(o, y, v) = fz̄(v, o; y,θo)− o
v

= q (3.27)

g′out(o, y, v) = fz̃(v, o; y,θo)− v
v2 = −u (3.28)

14 Chapter 3. MMSE Channel Functions

3.4 General Sparse Input Channel

Sparsity is a typical structure assumed on α in the reconstruction problem described in Section
1.2. Thus, when using GAMP to solve such reconstruction problems, one usually uses a sparsity
promoting prior. For that reason, many of the input side channels presented in the literature are
described by a probability density function which is a mixture of a Dirac delta function at zero
and some other known proper density function [5], [28], i.e.

p(α;θI) = (1− τ)δDirac(α) + τϕ(α;θI) (3.29)

where τ ∈ [0; 1] is the signal density and ϕ(α;θI) is e.g. Gaussian, Laplace, Student’s t or even itself
a mixture density. Such a prior is sometimes also referred to as a spike-and-slab prior because of
the (sparsity promoting) spike at zero and a slab part ϕ(α;θI). The spike part is typically referred
to as the Bernoulli part as in e.g. a sparse Bernoulli-Gaussian prior [39]. In using the expression
in Equation (3.29), it is important to realise that any manipulations are to be understood as being
done “inside” an integral (such as an expectation) which makes the use of the Dirac delta function
well defined.

Since the Dirac delta function integrates to 1 over the real line, it is easily seen that p(α;θI) in
Equation (3.29) integrates to 1 for any proper probability density function ϕ(α;θI) and is, thus,
a proper probability density itself. The GAMP approximated posterior in Equation (3.4) for the
general sparse prior in Equation (3.29) is

p(α|y; s, r,θI) = ((1− τ)δDirac(α) + τϕ(α;θI))N (α; r, s)
ZI

(3.30)

= ((1− τ)δDirac(α) + τϕ(α;θI))N (α; r, s)
(1− τ)

∫
α
N (α; r, s)δDirac(α)dα+ τ

∫
α
ϕ(α;θI)N (α; r, s)dα

(3.31)

= (1− τ)δDirac(α)N (α; r, s) + τϕ(α;θI)N (α; r, s)
(1− τ)Zδ + τZϕ

(3.32)

= (1− τ)N (α; r, s)δDirac(α)
(1− τ)Zδ + τZϕ

+ τN (α; r, s)ϕ(α;θI)
(1− τ)Zδ + τZϕ

(3.33)

= (1− τ)Zδ
(1− τ)Zδ + τZϕ

N (α; r, s)δDirac(α)
Zδ

+ τZϕ
(1− τ)N (0; r, s) + τZϕ

N (α; r, s)ϕ(α;θI)
Zϕ

(3.34)

=
(

1− τZϕ
(1− τ)Zδ + τZϕ

)
N (α; r, s)δDirac(α)

Zδ

+ τZϕ
(1− τ)N (0; r, s) + τZϕ

N (α; r, s)ϕ(α;θI)
Zϕ

(3.35)

= (1− π(r, s,θI))δ′Dirac(α) + π(r, s,θI)ϕα|y;s,r,θI (α;θI) (3.36)
= (1− π(r, s,θI))δDirac(α) + π(r, s,θI)ϕα|y;s,r,θI (α;θI) (3.37)

for

ZI :=
∫
α

((1− τ)δDirac(α) + τϕ(α;θI))N (α; r, s)dα (3.38)

Zδ :=
∫
α

δDirac(α)N (α; r, s)dα = N (0; r, s) (3.39)

Zϕ :=
∫
α

ϕ(α;θI)N (α; r, s)dα (3.40)

π(r, s,θI) := τZϕ
(1− τ)N (0; r, s) + τZϕ

= 1
1 + (1−τ)N (0;r,s)

τZϕ

= 1

1 +
(

τZϕ
(1−τ)N (0;r,s)

)−1

(3.41)

3.5. General Weighted Sparse Input Channel 15

ϕα|y;s,r,θI (α;θI) := N (α; r, s)ϕ(α;θI)
Zϕ

(3.42)

δ′Dirac(α) := N (α; r, s)δDirac(α)
Zδ

(3.43)

The equality of Equations (3.36) and (3.37) is based on the manipulations being done “inside” an
integral. In this case, the sampling property of the Dirac delta function δDirac(α) “sifts” the value
at α = 0 which means that the δ′Dirac(α) function provides a scaling of N (0; r, s) which is cancelled
by Zδ = N (0; r, s) essentially reducing δ′Dirac(α) to δDirac(α).

Thus, as reported in [28], for the general sparse prior in Equation (3.29), we find that the
GAMP posterior in Equation (3.37) is again a sparse density consisting of a Dirac delta at zero
and the GAMP posterior ϕα|y;s,r,θI (α;θI) of ϕ(α;θI) with a posteriori signal density (posterior
support probabilities) π(r, s,θI). As is seen from Equation (3.41), we have π(r, s,θI) ∈ [0; 1] as
along as τ ∈ [0; 1] and ϕ(α;θI) is a proper density since all quantities are non-negative. Thus, the
GAMP approximated posterior p(α|y; s, r,θI) remains a proper density.

3.5 General Weighted Sparse Input Channel

If we assume that α in the reconstruction problem in Section 1.2 is not only sparse but structured
sparse in the sense that some of the coefficient values in α are more likely to be sparse than others,
we may consider an independent but non-identical general sparse weighted (GWS) input channel,
i.e.

p(αj ;θI) = (1− wjτ)δDirac(αj) + wjτϕ(αj ; [θI]j) (3.44)

where τ ∈ [0; 1] models the overall signal density and the wj ∈ [0; 1], j = 1, . . . , n are individual
weights that model the belief about the sparsity of the individual coefficients. We note that
the general weighted sparse input channel in Equation (3.44) reduces to the general sparse input
channel in Equation (3.29) if ∀j, wj = 1. Since the Dirac delta function integrates to 1 over the real
line, it is easily seen that p(αj ; [θI)]j in Equation (3.44) integrates to 1 for any proper probability
density function ϕ(αj ; [θI]j) and is, thus, a proper probability density itself.

Since the input channel acts independently on each element of α, s, r, everything still decouples
in manipulations involving Equation (3.44). Thus, following the same path of derivations as was
done in deriving Equation (3.29), we find that GAMP approximated posterior for the GWS prior
in Equation (3.44) is

p(αj |y; sj , rj , [θI]j) = (1− πw
j (rj , sj , [θI]j))δDirac(αj)

+ πw
j (rj , sj , [θI]j)ϕαj |y;sj ,rj ,[θI]j (αj ; [θI]j) (3.45)

for

πw
j (rj , sj , [θI]j) :=

wjτZϕj
(1− wjτ)N (0; rj , sj) + wjτZϕj

=
wjτZϕj
ZIj

(3.46)

= 1
1 + (1−wjτ)N (0;rj ,sj)

wjτZϕj

= 1

1 +
(

wjτZϕj
(1−wjτ)N (0;rj ,sj)

)−1 (3.47)

ZIj :=
∫
αj

((1− wjτ)δDirac(αj) + wjτϕ(αj ; [θI]j))N (αj ; rj , sj)dαj

(3.48)

Zϕj :=
∫
αj

ϕ(αj ; [θI]j)N (αj ; rj , sj)dαj (3.49)

ϕαj |y;sj ,rj ,[θI]j (αj ; [θI]j) := N (αj ; rj , sj)ϕ(αj ; [θI]j)
Zϕj

(3.50)

Thus, for the GWS prior in Equation (3.44), the GAMP posterior in Equation (3.45) is again a
sparse density with posterior signal densities πw

j (rj , sj , [θI]j), j = 1, . . . , n. Again, it is clear from
Equation (3.46) that πw

j (rj , sj , [θI]j) ∈ [0; 1] as long as wjτ ∈ [0; 1] and ϕαj |y;sj ,rj ,[θI]j (αj ; [θI]j)

16 Chapter 3. MMSE Channel Functions

is a proper density since all quantities in πw
j (rj , sj , [θI]j) are non-negative. Thus, the GAMP

approximated posterior p(αj |y; sj , rj , [θI]j) remains a proper density.
Now defining

N1ϕj :=
∫
αj

αjϕ(αj ; [θI]j)N (αj ; rj , sj)dαj (3.51)

N2aϕj :=
∫
αj

|αj |2ϕ(αj ; [θI]j)N (αj ; rj , sj)dαj (3.52)

(3.53)

and using Equations (3.12), (3.13), and (3.45), we find that the MMSE GAMP input channel mean
and variance functions are given by

fᾱj (sj , rj ; [θI]j) = πw
j (rj , sj , [θI]j)

N1ϕj
Zϕj

(3.54)

fα̃j (sj , rj ; [θI]j) = πw
j (rj , sj , [θI]j)

N2aϕj
Zϕj

− |fᾱj (sj , rj ; [θI]j)|2 (3.55)

since the Dirac delta at zero does not contribute to the mean or the variance. Thus, the GWS
input channel mean and variance functions may be expressed as scaled versions for the slab-part
mean and variance functions with the scaling given by the posterior signal densities. This may be
exploited in an implementation of the GWS input channel to separate the slab-part update from
the GWS updates making it easy to re-use the GWS updates with different slab-part updates.

3.6 Analytic Expressions for Common Output Channels

In an implementation of the MMSE GAMP, one may in general have to resort to numerical
integration to evaluate output the channel functions fz̄, fz̄. However, for some channels, it is
possible to derive analytic solutions to the integrals involved in evaluating the channel functions.
Here we present some output channels for which analytic solutions to the channel evaluation
functions exist.

3.6.1 AWGN Output Channel

For an additive white Gaussian noise (AWGN) output channel with noise variance σ2 (θo = [σ2]),
i.e.

p(y|z;θo) = 1√
2πσ2

exp
(
− (y − z)2

2σ2

)
(3.56)

we have channel functions [1], [16] (Eqs. (41), (42), (43)):

fz̄(v, o; y,θo) = vy + σ2o

σ2 + v
(3.57)

= o+ v

σ2 + v
(y − o) (3.58)

fz̃(v, o; y,θo) = σ2v

σ2 + v
(3.59)

= 1
1
σ2 + 1

v

(3.60)

Note that Equations (3.58) and (3.60) are the expressions suggested by Parker in [15]. However,
in EM-BG/GM-GAMP [28] Equations (3.58) and (3.59) are mentioned. Mathematically, there is
no difference in this choice. Numerically, however, there may be.

3.6.2. AWLN Output Channel 17

3.6.2 AWLN Output Channel
For an additive white Laplacian noise (AWLN) output channel with rate parameter λ > 0, (θo =
[λ]), i.e.

p(y|z;θo) = λ

2 exp(−λ|y − z|) (3.61)

we have channel functions [40] (Eqs. (22), (23)):

fz̄(v, o; y,θo) = y + Zo
Zo

o−√v φN
(
−o√
v

)
ΦN
(
−o√
v

)
+ Z̄o

Zo

ō+
√
v
φN

(
ō√
v

)
ΦN
(

ō√
v

)
 (3.62)

fz̃(v, o; y,θo) = −(y2 − fz̄(v, o; y,θo))2

+ Zo
Zo

v
1−

φN

(
−o√
v

)
ΦN
(
−o√
v

)
 φN

(
−o√
v

)
ΦN
(
−o√
v

) − o√
v

+

o−√v φN
(
−o√
v

)
ΦN
(
−o√
v

)
2

+ Z̄o
Zo

v
1−

φN

(
ō√
v

)
ΦN
(

ō√
v

)
 φN

(
ō√
v

)
ΦN
(

ō√
v

) + ō√
v

+

ō+
√
v
φN

(
ō√
v

)
ΦN
(

ō√
v

)
2
(3.63)

for
Zo = Zo + Z̄o (3.64)

Zo = λ

2 exp
(

1
2λ

2v + ǒλ

)
ΦN
(
−o√
v

)
(3.65)

Z̄o = λ

2 exp
(

1
2λ

2v − ǒλ
)

ΦN
(
ō√
v

)
(3.66)

ǒ = o− y (3.67)
o = ǒ+ λv (3.68)
ō = ǒ− λv (3.69)

ΦN (x̌) =
∫ x̌

−∞
φN (t) dt = 1√

2π

∫ x̌

−∞
exp
(
− t

2

2

)
dt (3.70)

φN (x̌) = N (x̌, 0, 1) = 1√
2π

exp
(
− x̌

2

2

)
(3.71)

The derivation of these channel functions is similar to the derivation of the channel functions for the
i.i.d. Sparse Bernoulli-Laplace input channel in Section 3.7.1. Note that the scaled complementary
error function may be used to achieve better numerical accuracy in an implementation as detailed
in Section 3.7.1.1.

3.7 Analytic Expressions for Common Input Channels

In an implementation of the MMSE GAMP, one may in general have to resort to numerical inte-
gration to evaluate the input channel functions fᾱ, fα̃,. However, for some channels, it is possible
to derive analytic solutions to the integrals involved in evaluating the channel functions. Here we
present some input channels for which analytic solutions to the channel evaluation functions exist.

3.7.1 I.i.d. Sparse Bernoulli-Laplace Input Channel
We now consider an i.i.d. BL input channel with signal density τ , Laplace mean µ, and rate
parameter λ > 0, (θI = [τ, µ, λ]T), i.e. an input channel described by

p(α;θI) = (1− τ)δDirac(α) + τ
λ

2 exp(−λ|α− µ|) (3.72)

18 Chapter 3. MMSE Channel Functions

We derive the channel functions following the general procedure described in Section 3.3. Towards
this end, we make use of various tricks and techniques used in the derivation of the elastic net
prior in [41] as well as in the derivation of the ALWN output channel in [40]. Starting with the
product of the prior and the Gaussian GAMP field, we observe that

p(α;θI)N (α; r, s) = (1− τ)δDirac(α)N (α; r, s) + τ
λ

2 exp(−λ|α− µ|)N (α; r, s) (3.73)

= (1− τ)δDirac(α̌+ µ)N (α̌; ř, s) + τ
λ

2 exp(−λ|α̌|)N (α̌; ř, s) (3.74)

where in Equation (3.74), we have shifted everything to align with the Laplace mean µ, i.e.,
α̌ = α− µ, ř = r − µ. Then the normalisation constant in Equation (3.9) is given by

ZI = (1− τ)
∫ ∞
−∞

δDirac(α̌+ µ)N (α̌; ř, s)dα̌+ τ

∫ ∞
−∞

λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.75)

= (1− τ)
∫ ∞
−∞

δDirac(α)N (α; r, s)dα+ τ

∫ ∞
−∞

λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.76)

= (1− τ)N (0; r, s) + τ

∫ ∞
−∞

λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.77)

where we have used the sampling property of the generalised Dirac delta function. The absolute
value in the integrand in Equation (3.77) requires considering the two cases: α̌ < 0, α̌ > 0,
separately. For α̌ < 0, we have

λ

2 exp(λα̌)N (α̌; ř, s) = 1√
2πs

λ

2 exp
(
− (α̌− ř)2 − λα̌2s

2s

)
(3.78)

= 1√
2πs

λ

2 exp
(
− α̌

2 + ř2 − 2α̌(ř + λs)
2s

)
(3.79)

= 1√
2πs

λ

2 exp
(
− (α̌− (ř + λs))2 − (λs)2 − 2řλs

2s

)
(3.80)

= 1√
2πs

λ

2 exp
(
− (α̌− r)2

2s

)
exp
(

1
2λ

2s+ řλ

)
(3.81)

= λ

2 exp
(

1
2λ

2s+ řλ

)
N (α̌; r, s) (3.82)

for r = ř + λs. Note that 1
2λ

2s+ řλ = r2−ř2

2s . Similarly, for α̌ > 0, we have

λ

2 exp(−λα̌)N (α̌; ř, s) = 1√
2πs

λ

2 exp
(
− (α̌− ř)2 + λα̌2s

2s

)
(3.83)

= 1√
2πs

λ

2 exp
(
− α̌

2 + ř2 − 2α̌(ř − λs)
2s

)
(3.84)

= 1√
2πs

λ

2 exp
(
− (α̌− (ř − λs))2 − (λs)2 + 2řλs

2s

)
(3.85)

= 1√
2πs

λ

2 exp
(
− (α̌− r̄)2

2s

)
exp
(

1
2λ

2s− řλ
)

(3.86)

= λ

2 exp
(

1
2λ

2s− řλ
)
N (α̌; r̄, s) (3.87)

for r̄ = ř − λs. Note that 1
2λ

2s− řλ = r̄2−ř2

2s .

3.7.1. I.i.d. Sparse Bernoulli-Laplace Input Channel 19

Now returning to the Equation (3.77), we may split the integral in a lower and an upper part

ZI = (1− τ)N (0; r, s)

+ τ

(∫ 0

−∞

λ

2 exp(λα̌)N (α̌; ř, s)dα̌+
∫ ∞

0

λ

2 exp(−λα̌)N (α̌; ř, s)dα̌
)

(3.88)

= (1− τ)N (0; r, s)

+ τ

(
λ

2 exp
(

1
2λ

2s+ řλ

)∫ 0

−∞
N (α̌; r, s)dα̌

+ λ

2 exp
(

1
2λ

2s− řλ
)∫ ∞

0
N (α̌; r̄, s)dα̌

)
(3.89)

= (1− τ)N (0; r, s)

+ τ

(
λ

2 exp
(

1
2λ

2s+ řλ

)
ΦN
(
−r√
s

)
+ λ

2 exp
(

1
2λ

2s− řλ
)(

1− ΦN
(
−r̄√
s

)))
(3.90)

= (1− τ)N (0; r, s)

+ τ

(
λ

2 exp
(

1
2λ

2s+ řλ

)
ΦN
(
−r√
s

)
+ λ

2 exp
(

1
2λ

2s− řλ
)

ΦN
(
r̄√
s

))
(3.91)

= (1− τ)N (0; r, s) + τ(ZI + Z̄I) (3.92)

for

ZI = λ

2 exp
(

1
2λ

2s+ řλ

)
ΦN
(
−r√
s

)
(3.93)

Z̄I = λ

2 exp
(

1
2λ

2s− řλ
)

ΦN
(
r̄√
s

)
(3.94)

where we have introduced the cumulative distribution function (cdf) ΦN (x̌) =
∫ x̌
−∞ φN (t) dt =

1√
2π

∫ x̌
−∞ exp

(
− t

2

2

)
dt of a standard normal distribution (with probability density function (pdf)

φN (x̌) = N (x̌, 0, 1) = 1√
2π exp

(
− x̌

2

2

)
). Note that we have the following symmetry relations

φN (−x̌) = φN (x̌) (3.95)
ΦN (−x̌) = 1− ΦN (x̌) (3.96)

Using techniques similar to those used above for deriving ZI , we have the following expression for
the N1 quantity in Equation (3.10)

N1 = (1− τ)
∫ ∞
−∞

(α̌+ µ)δDirac(α̌+ µ)N (α̌; ř, s)dα̌

+ τ

∫ ∞
−∞

(α̌+ µ)λ2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.97)

= (1− τ)
∫ ∞
−∞

αδDirac(α)N (α; r, s)dα

+ τ

∫ ∞
−∞

(α̌+ µ)λ2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.98)

= τ

∫ ∞
−∞

(α̌+ µ)λ2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.99)

= µτ

∫ ∞
−∞

λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌+ τ

∫ ∞
−∞

α̌
λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.100)

= µτ(ZI + Z̄I) + τ

∫ ∞
−∞

α̌
λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.101)

20 Chapter 3. MMSE Channel Functions

= τµ(ZI + Z̄I)

+ τ

(∫ 0

−∞
α̌
λ

2 exp(λα̌)N (α̌; ř, s)dα̌+
∫ ∞

0
α̌
λ

2 exp(−λα̌)N (α̌; ř, s)dα̌
)

(3.102)

= τµ(ZI + Z̄I) + τ

(
λ

2 exp
(

1
2λ

2s+ řλ

)∫ 0

−∞
α̌N (α̌; r, s)dα̌

+ λ

2 exp
(

1
2λ

2s− řλ
)∫ ∞

0
α̌N (α̌; r̄, s)dα̌

)
(3.103)

= τµ(ZI + Z̄I)

+ τ

λ
2 exp

(
1
2λ

2s+ řλ

)
ΦN
(
−r√
s

)∫ 0

−∞
α̌
N (α̌; r, s)
ΦN
(
−r√
s

) dα̌
+ λ

2 exp
(

1
2λ

2s− řλ
)

ΦN
(
r̄√
s

)∫ ∞
0

α̌
N (α̌; r̄, s)
ΦN
(
r̄√
s

) dα̌
 (3.104)

= τµ(ZI + Z̄I) + τ

ZI ∫ 0

−∞
α̌

1√
s
φN

(
α̌−r√
s

)
ΦN
(
−r√
s

) dα̌+ Z̄I
∫ ∞

0
α̌

1√
s
φN

(
α̌−r̄√
s

)
ΦN
(
r̄√
s

) dα̌

 (3.105)

= τµ(ZI + Z̄I) + τ

ZI ∫ 0

−∞
α̌

1√
s
φN

(
α̌−r√
s

)
ΦN
(
−r√
s

) dα̌+ Z̄I
∫ ∞

0
α̌

1√
s
φN

(
α̌−r̄√
s

)
1− ΦN

(
−r̄√
s

)dα̌
 (3.106)

Now, consider the double truncated normal distribution with probability density function [42]

T N (x̌, ξ, σ2, a, b) =

0, x̌ < a

1√
2πσ2

exp
(
− (x̌−ξ)2

2σ2

)
∫ b
a

1√
2πσ2

exp
(
− (t−ξ)2

2σ2

)
dt

= φN(x̌−ξσ)
σ(ΦN(b−ξσ)−ΦN(a−ξσ)) , a ≤ x̌ ≤ b

0, x̌ > b

(3.107)

with mean and variance [42]

E[x̌] =
∫ ∞
−∞

x̌T N (x̌, ξ, σ2, a, b)dx̌ (3.108)

= ξ + σ
φN

(
a−ξ
σ

)
− φN

(
b−ξ
σ

)
ΦN
(
b−ξ
σ

)
− ΦN

(
a−ξ
σ

) (3.109)

Var(x̌) =
∫ ∞
−∞

(x̌− E[x̌])2T N (x̌, ξ, σ2, a, b)dx̌ (3.110)

= σ2

1 +
a−ξ
σ φN

(
a−ξ
σ

)
− b−ξ

σ φN

(
b−ξ
σ

)
ΦN
(
b−ξ
σ

)
− ΦN

(
a−ξ
σ

) −

 φN

(
a−ξ
σ

)
− φN

(
b−ξ
σ

)
ΦN
(
b−ξ
σ

)
− ΦN

(
a−ξ
σ

)
2 (3.111)

Returning to Equation (3.106), we find that the integrals in that equation correspond to the mean
values of two singly truncated normal distributions

N1 = τµ(ZI + Z̄I) + τ

(
ZI
∫ 0

−∞
α̌T N (α̌, r, s,−∞, 0)dα̌+ Z̄I

∫ ∞
0

α̌T N (α̌, r̄, s, 0,∞)dα̌
)

(3.112)

3.7.1. I.i.d. Sparse Bernoulli-Laplace Input Channel 21

Thus, using the expression in Equation (3.109) (handling φN (∞) properly as a limit - see also
[43]), we have

N1 = τµ(ZI + Z̄I) + τ

ZI
r +

√
s
−φN

(
−r√
s

)
ΦN
(
−r√
s

)
+ Z̄I

r̄ +
√
s

φN

(
−r̄√
s

)
1− ΦN

(
−r̄√
s

)
 (3.113)

= τµ(ZI + Z̄I) + τ

ZI
r −√s φN

(
−r√
s

)
ΦN
(
−r√
s

)
+ Z̄I

r̄ +
√
s
φN

(
r̄√
s

)
ΦN
(
r̄√
s

)
 (3.114)

Using techniques similar to those used above for deriving N1, we have the following expression for
the N2a quantity in Equation (3.11)

N2a = (1− τ)
∫ ∞
−∞

(α̌+ µ)2δDirac(α̌+ µ)N (α̌; ř, s)dα̌

+ τ

∫ ∞
−∞

(α̌+ µ)2λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.115)

= (1− τ)
∫ ∞
−∞

α2δDirac(α)N (α; r, s)dα

+ τ

∫ ∞
−∞

(α̌+ µ)2λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.116)

= τ

∫ ∞
−∞

(α̌+ µ)2λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.117)

= τ

∫ ∞
−∞

(µ2 + 2µα̌+ α̌2)λ2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.118)

= τµ2(ZI + Z̄I) + 2µ(N1 − τµ(ZI + Z̄I))

+ τ

∫ ∞
−∞

α̌2λ

2 exp(−λ|α̌|)N (α̌; ř, s)dα̌ (3.119)

= −τµ2(ZI + Z̄I) + 2µN1

+ τ

(∫ 0

−∞
α̌2λ

2 exp(λα̌)N (α̌; ř, s)dα̌+
∫ ∞

0
α̌2λ

2 exp(−λα̌)N (α̌; ř, s)dα̌
)

(3.120)

= −τµ2(ZI + Z̄I) + 2µN1

+ τ

ZI ∫ 0

−∞
α̌2

1√
s
φN

(
α̌−r√
s

)
ΦN
(
−r√
s

) dα̌+ Z̄I
∫ ∞

0
α̌2

1√
s
φN

(
α̌−r̄√
s

)
1− ΦN

(
−r̄√
s

)dα̌
 (3.121)

The integrals in Equation (3.121) correspond to the second moments of two singly truncated normal
distributions

N2a = −τµ2(ZI + Z̄I) + 2µN1

+ τ

(
ZI
∫ 0

−∞
α̌2T N (α̌, r, s,−∞, 0)dα̌+ Z̄I

∫ ∞
0

α̌2T N (α̌, r̄, s, 0,∞)dα̌
)

(3.122)

22 Chapter 3. MMSE Channel Functions

Thus, using E[x̌2] = Var(x̌) + E[x̌]2 together with Equation (3.111), we get

N2a = −τµ2(ZI + Z̄I) + 2µN1

+ τ

ZI
s
1 +

−−r√
s
φN

(
−r√
s

)
ΦN
(
−r√
s

) −

−φN
(
−r√
s

)
ΦN
(
−r√
s

)
2+

r −√s φN
(
−r√
s

)
ΦN
(
−r√
s

)
2

+ Z̄I

s
1 +

−r̄√
s
φN

(
−r̄√
s

)
1− ΦN

(
−r̄√
s

) −
 φN

(
−r̄√
s

)
1− ΦN

(
−r̄√
s

)
2+

r̄ +
√
s
φN

(
r̄√
s

)
ΦN
(
r̄√
s

)
2

(3.123)

= 2µN1 − τµ2(ZI + Z̄I)

+ τ

ZI
s
1−

φN

(
−r√
s

)
ΦN
(
−r√
s

)
 φN

(
−r√
s

)
ΦN
(
−r√
s

) − r√
s

+

r −√s φN
(
−r√
s

)
ΦN
(
−r√
s

)
2

+ Z̄I

s
1−

φN

(
r̄√
s

)
ΦN
(
r̄√
s

)
 φN

(
r̄√
s

)
ΦN
(
r̄√
s

) + r̄√
s

+

r̄ +
√
s
φN

(
r̄√
s

)
ΦN
(
r̄√
s

)
2

 (3.124)

Finally, we arrive at the following expressions for the i.i.d. BL channel functions based on Equations
(3.12) and (3.13)

fᾱ(s, r;θI) = N1

ZI
(3.125)

=
τµ(ZI + Z̄I) + τ

(
ZI
(
r −
√
s
φN
(−r
√
s

)
ΦN
(−r
√
s

))+ Z̄I
(
r̄ +
√
s
φN
(
r̄√
s

)
ΦN
(
r̄√
s

)))
ZI

(3.126)

= τ

µ (ZI + Z̄I)
ZI

+ ZI
ZI

r −√s φN
(
−r√
s

)
ΦN
(
−r√
s

)
+ Z̄I

ZI

r̄ +
√
s
φN

(
r̄√
s

)
ΦN
(
r̄√
s

)

(3.127)

fα̃(s, r;θI) = N2a

ZI
− fᾱ(s, r;θI)2 (3.128)

= 2µfᾱ(s, r;θI) + τ

{
− µ2 (ZI + Z̄I)

ZI

+ ZI
ZI

s
1−

φN

(
−r√
s

)
ΦN
(
−r√
s

)
 φN

(
−r√
s

)
ΦN
(
−r√
s

) − r√
s

+

r −√s φN
(
−r√
s

)
ΦN
(
−r√
s

)
2

+ Z̄I
ZI

s
1−

φN

(
r̄√
s

)
ΦN
(
r̄√
s

)
 φN

(
r̄√
s

)
ΦN
(
r̄√
s

) + r̄√
s

+

r̄ +
√
s
φN

(
r̄√
s

)
ΦN
(
r̄√
s

)
2}

− fᾱ(s, r;θI)2 (3.129)

for

ZI = (1− τ)N (0; r, s) + τ(ZI + Z̄I) (3.130)

ZI = λ

2 exp
(

1
2λ

2s+ řλ

)
ΦN
(
−r√
s

)
(3.131)

3.7.1.1. Numerical Accuracy Considerations for the i.i.d. BL Input Channel 23

Z̄I = λ

2 exp
(

1
2λ

2s− řλ
)

ΦN
(
r̄√
s

)
(3.132)

ř = r − µ (3.133)
r = ř + λs (3.134)
r̄ = ř − λs (3.135)

3.7.1.1 Numerical Accuracy Considerations for the i.i.d. BL Input Channel

When implementing these channel functions, one has to pay attention to fractions of the type
φN(x̌)
ΦN(x̌) . For such fractions, improved numerical accuracy may be obtained1 by using a reasonable
implementation2 of the scaled complementary error function [44]

erfcx(x̌) := exp
(
x̌2) 2√

π

∫ ∞
x̌

exp
(
−t2

)
dt (3.136)

For the scaled complementary error function, we have

erfcx
(
−x̌√

2

)
= exp

((
−x̌√

2

)2
)

2√
π

∫ ∞
−x̌√

2

exp
(
−t2

)
dt (3.137)

= exp
(
x̌2

2

)
2√
π

∫ x̌√
2

−∞
exp
(
−t2

)
dt (3.138)

= exp
(
x̌2

2

)
2√
2π

∫ x̌

−∞
exp
(
−
(

t√
2

)2
)
dt (3.139)

= exp
(
x̌2

2

)
2√
2π

∫ x̌

−∞
exp
(
− t

2

2

)
dt (3.140)

= exp
(
x̌2

2

)
2ΦN (x̌) (3.141)

which means that

φN (x̌)
ΦN (x̌) =

1√
2π exp

(
− x̌

2

2

)
erfcx
(
−x̌√

2

)
2exp
(
x̌2
2

) (3.142)

=
2√
2π exp

(
− x̌

2

2

)
exp
(
x̌2

2

)
erfcx

(
−x̌√

2

) (3.143)

=
2√
2π

erfcx
(
−x̌√

2

) (3.144)

1This use of complementary error function was inspired by its use in the ElasticNetEstimIn.m file in the
GAMPMatlab Toolbox version 20161005 available at https://sourceforge.net/projects/gampmatlab/. See also
Section 7.2 for more information about the GAMPMatlab Toolbox.

2See: http://scipy.github.io/devdocs/special.html#error-function-and-fresnel-integrals and http://
ab-initio.mit.edu/wiki/index.php/Faddeeva_Package

https://sourceforge.net/projects/gampmatlab/
http://scipy.github.io/devdocs/special.html#error-function-and-fresnel-integrals
http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package
http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package

24 Chapter 3. MMSE Channel Functions

3.7.1.2 BL Expressions for use with the GWS Input Channel

Based on the result in Equations (3.127) and (3.129), we may identify the following i.i.d BL channel
updates to be used in the GWS framework described in Section 3.5

fᾱj (sj , rj ; [θI]j) = πw
j (rj , sj , [θI]j)

{

µj +
ZIj
Zϕj

rj −√sj φN
(−r

j√
sj

)
ΦN
(−rj√

sj

)
+

Z̄Ij
Zϕj

r̄j +√sj
φN

(
r̄j√
sj

)
ΦN
(
r̄j√
sj

)
} (3.145)

fα̃j (sj , rj ; [θI]j) = 2µfᾱj (sj , rj ; [θI]j) + πw
j (rj , sj , [θI]j)

{
− µ2

j

+
ZIj
Zϕj

sj
1−

φN

(−r
j√
sj

)
ΦN
(−rj
√
sj

)
 φN

(−r
j√
sj

)
ΦN
(−r

j√
sj

) − rj√
sj

+

rj −√sj φN
(−r

j√
sj

)
ΦN
(−r

j√
sj

)
2

+
Z̄Ij
Zϕj

sj
1−

φN

(
r̄j√
sj

)
ΦN
(
r̄j√
sj

)
 φN

(
r̄j√
sj

)
ΦN
(
r̄j√
sj

) + r̄j√
sj

+

r̄j +√sj
φN

(
r̄j√
sj

)
ΦN
(
r̄j√
sj

)
2}

− fᾱj (sj , rj ; [θI]j)2 (3.146)
for

Zϕj = ZIj + Z̄Ij (3.147)

ZIj = λj
2 exp

(
1
2λ

2
jsj + řjλj

)
ΦN
(−rj√

sj

)
(3.148)

Z̄Ij = λj
2 exp

(
1
2λ

2
jsj − řjλj

)
ΦN
(
r̄j√
sj

)
(3.149)

řj = rj − µj (3.150)
rj = řj + λjsj (3.151)
r̄j = řj − λjsj (3.152)

3.7.2 I.i.d. Sparse Bernoulli-Gauss Input Channel
For an i.i.d. BG input channel with signal density τ and Gaussian mean θ̄ and variance θ̃ (θI =
[τ, θ̄, θ̃]T), i.e.

p(α;θI) = (1− τ)δDirac(α) + τ
1√
2πθ̃

exp
(
− (α− θ̄)2

2θ̃

)
(3.153)

we have channel functions [5]3 (Eqs. (68), (69))

fᾱ(s, r;θI) =
τab 1

s+θ̃ c

(1− τ)d + τba
(3.154)

fα̃(s, r;θI) =
τ(1− τ)dab 1

(s+θ̃)2 (θ̃s(s+ θ̃) + c2) + τ2aθ̃b4

((1− τ)d + τba)2 (3.155)

for

a := exp
(
− (r − θ̄)2

2(s+ θ̃)

)
(3.156)

3In [5] the full expressions for the channel functions are given, i.e. the intermediate variables a, b, c, d are not
used. These variables have been introduced by the authors of this note.

3.7.2. I.i.d. Sparse Bernoulli-Gauss Input Channel 25

b :=
√
s√

s+ θ̃
(3.157)

c := θ̄s+ rθ̃ (3.158)

d := exp
(
− r

2

2s

)
(3.159)

Manoel and Tramel suggested the following implementation4 of the i.i.d. BG input channel func-
tions

fᾱ(s, r;θI) =
c

s+θ̃
f + 1 (3.160)

fα̃(s, r;θI) = f f2
ᾱ(s, r;θI) + e

f + 1 (3.161)

for

e := θ̃s

s+ θ̃

[
= θ̃b2] (3.162)

f := 1− τ
τ

√
θ̃

e
exp
(
−1

2

(
r2

s
− (r − θ̄)2

s+ θ̃

))[
= 1− τ

τ

1
b

d
a

]
(3.163)

Parker suggested the following implementation of the i.i.d. BG input channel functions [15]

fᾱ(s, r;θI) =
g
k

(3.164)

fα̃(s, r;θI) = g2 k − 1
k 2 + h

k
(3.165)

for

g :=
θ̄
θ̃

+ r
s

1
θ̃

+ 1
s

[
= c
s+ θ̃

]
(3.166)

h := 1
1
θ̃

+ 1
s

[= e] (3.167)

k := 1 + 1− τ
τ

√
θ̃

h
exp
(

1
2

[
(r − θ̄)2

θ̃ + s
− r2

s

])[
= 1 + 1− τ

τ

1
b

d
a

]
(3.168)

However, in EM-BG-GAMP [39], the following slightly modified implementation of the i.i.d. BG
input channel is suggested

fᾱ(s, r;θI) = lg
[
=

g
k

]
(3.169)

fα̃(s, r;θI) = l (h + |g |2)− l 2|g |2
[
=

h + |g |2

k
−
|g |2

k 2 =
kh + |g |2(k − 1)

k 2 = |g |2 k − 1
k 2 + h

k

]
(3.170)

for

l := 1

1 +
(

τ
1−τ

1√
θ̃+s

exp
(
− 1

2
(r−θ̄)2
θ̃+s

)
1√
s

exp
(
− 1

2
r2
s

))−1

= 1

1 +
(

τ
1−τ b a

d

)−1 = 1
k

 (3.171)

Note that the l in Equation (3.171) corresponds to the π(r, s,θI) in Equation (3.41). Also note
that the absolute values are included for generality since the case of real valued Gaussians may be
extended to the case of circular-complex-Gaussians [39], [28].

4See: https://github.com/eric-tramel/SwAMP-Demo/blob/master/python/amp.py

https://github.com/eric-tramel/SwAMP-Demo/blob/master/python/amp.py

26 Chapter 3. MMSE Channel Functions

3.7.2.1 BG Expressions for use with the GWS Input Channel

Based on the result in Equations (3.170) and (3.170) as well as the multiplication rule for two
Gaussian densities given in [28], we may identify the following i.i.d. BG channel updates to be
used in the GWS framework described in Section 3.5

fᾱj (sj , rj ; [θI]j) = πw
j (rj , sj , [θI]j)

 θ̄j
θ̃j

+ rj
sj

1
θ̃j

+ 1
sj

 (3.172)

fα̃j (sj , rj ; [θI]j) = πw
j (rj , sj , [θI]j)

 1
1
θ̃j

+ 1
sj

+

 θ̄j
θ̃j

+ rj
sj

1
θ̃j

+ 1
sj

2− fᾱj (sj , rj ; [θI]j)2 (3.173)

4 Sum Approximations

From an implementation point of view, a critical element in the GAMP iteration in Equations
(2.1)-(2.12) is the application of the entrywise absolute value squared system matrix

|A|◦2 = Aasq =

 |a11|2 · · · |a1n|2
...

. . .
...

|am1|2 · · · |amn|2

 (4.1)

If the system matrix A is given explicitly, one may easily find |A|◦2 using Equation (4.1). However,
oftentimes (especially when considering large problem sizes) it is a necessity to use a fast transform
for implementing the matrix-vector products involving A and AH in the GAMP algorithm in
order to achieve acceptable reconstruction times and reasonable memory requirements [28], [29].
For instance, one may use a Fast Fourier Transform (FFT) based method to implement a matrix-
vector product involving a Discrete Fourier Transform (DFT). However, such fast transforms
are not always available for implementing the matrix-vector products involving |A|◦2. As an
alternative, one may use sum approximation (also known as uniform variance) GAMP. The idea,
then, is to approximate the matrix-vector products involving |A|◦2 by certain sums.

4.1 The Sum Approximation by Krzakala et al.

In [5], Krzakala et al. consider the case where A is a homogeneous matrix with i.i.d. random entries
having zero mean and variance 1

n . In this case, the ensemble average of different realisations of
|A|◦2 is

E[|A|◦2] =

E[|a11|2] · · · E[|a1n|2]
...

. . .
...

E[|am1|2] · · · E[|amn|2]

 (4.2)

=

Var(a11) · · · Var(a1n)
...

. . .
...

Var(am1) · · · Var(amn)

 (4.3)

=

1
n · · · 1

n
...

. . .
...

1
n · · · 1

n

 (4.4)

since the entries of A are zero mean. Now, one may consider an approximation of e.g. the GAMP
factor side update in Equation (2.1)

v̄t+1 =
∑
j

E[|A|◦2]ijα̃tj (4.5)

= 1
n

∑
j

α̃tj (4.6)

Since the variance (vt+1
i − v̄t+1)2 is of order O

(1
n

)
(see the details in Eq. (55) in [5]), in the large

system limit as n→∞, one may consider all vt+1
i equal to their average v̄t+1. Similar arguments

may be used for other GAMP updates that involve |A|◦2. Thus, one may replace all GAMP
instances of |A|◦2 with sums scaled by 1

n , which yields the following alternatives to the GAMP

28 Chapter 4. Sum Approximations

updates in Equations (2.1) and (2.7)

v̄t+1 = 1
n

∑
j

α̃tj (4.7)

s̄t+1 =
[

1
n

∑
i

ut+1
i

]−1

(4.8)

which may then be used in place of all vt+1
i , st+1

j respectively, in the GAMP iteration in Equations
(2.1)-(2.12). Note that the sum approximation by Krzakala et al. (with an assumed variance of
1
m instead of 1

n) is closely related to the Donoho/Maleki/Montanari AMP as described in Section
2.1.

4.2 The Sum Approximation by Rangan

In [16], Rangan considers a sightly different approximation based on the assumption that |aij |2 ≈
||A||2F
mn for all i, j, where ||A||2F is the Frobenius norm of the matrix A. Rangan then forces all

variance related components for each GAMP state to be the same. That is, vt+1
i = v̆t+1, ut+1

i =
ŭt+1, st+1

j = s̆t+1, α̃t+1
j = ᾰt+1 for all i, j. Specifically, Rangan’s MMSE GAMP iteration with

scalar variances reads

Output (factor) side updates:

v̆t+1 = 1
m
||A||2F ᾰt (4.9)

ot+1
i =

∑
j

aijᾱ
t
j − v̆t+1qti (4.10)

z̄t+1
i = fz̄i(v̆t+1, ot+1

i ; yi, [θo]ti) (4.11)
z̃t+1
i = fz̃i(v̆t+1, ot+1

i ; yi, [θo]ti) (4.12)

qt+1
i = z̄t+1

i − ot+1
i

v̆t+1 (4.13)

ŭt+1 = 1
m

∑
i

v̆t+1 − z̃t+1
i

(v̆t+1)2 (4.14)

Input (variable) side updates:

s̆t+1 =
[

1
n
||A||2F ŭt+1

]−1
(4.15)

rt+1
j = ᾱtj + s̆t+1

∑
i

a∗ijq
t+1
i (4.16)

ᾱt+1
j = fᾱj (s̆t+1, rt+1

j ; [θI]tj) (4.17)

ᾰt+1 = 1
n

∑
j

fα̃j (s̆t+1, rt+1
j ; [θI]tj) (4.18)

Optional parameter value updates (using e.g. EM - see also Section 6):

[θo]t+1
i = . . . (4.19)

[θI]t+1
j = . . . (4.20)

In [16], Rangan claims that simulations show that this simplified GAMP iteration works as well as
the full (non-uniform variance) GAMP iteration in Equations (2.1) - (2.12). Unfortunately, neither
the specific simulations nor any details about their nature are given in [16].

4.2.1. The Connection Between Sum Approximations by Krzakala et al. and Rangan 29

4.2.1 The Connection Between Sum Approximations by Krzakala et al. and Rangan
Rangan’s simplifications are closely related to simplifications by Krzakala et al. To see this, note
that for an m× n system matrix A with i.i.d. random entries having zero mean and variance σ2,
we have

σ2 ≈ 1
mn

∑
i

∑
j

|aij |2 = 1
mn
||A||2F (4.21)

Thus, if σ2 = 1
n as in the sum approximation by Krzakala et al. and vt+1

i ≈ v̆t+1, st+1
j ≈ s̆t+1 for

all i = 1, . . . ,m and j = 1, . . . , n, we have

v̄t+1 = σ2
∑
j

α̃tj (4.22)

≈ 1
mn
||A||2F

∑
j

α̃tj (4.23)

≈ 1
m
||A||2F ᾰt (4.24)

= v̆t+1 (4.25)

s̄t+1 =
[
σ2
∑
i

ut+1
i

]−1

(4.26)

≈

[
1
mn
||A||2F

∑
i

ut+1
i

]−1

(4.27)

≈
[

1
n
||A||2F ŭt+1

]−1
(4.28)

= s̆t+1 (4.29)

An interpretation of this result is that Rangan’s sum approximation adapts to the system matrix
A (and its variance) through ||A||2F .

4.2.2 Efficiently Computing the Frobenius Norm of the System Matrix
The need for finding ||A||2F may make it infeasible to use Rangan’s sum approximation in practical
applications. For instance, if one attempts to use Rangan’s method in order to avoid explicitly
storing |A|◦2 in memory on a computer because it is infeasible to do so, a method for implicitly
finding ||A||2F is needed. If no such method is available and one has to explicitly store A in
memory in order to estimate ||A||2F , no progress is made in using Rangan’s sum approximation.
We now discuss a few structured system matrices that allow for efficient (in terms of memory and
computation requirements) ways to compute ||A||2F .

If A is defined by a Kronecker product, i.e. A = B⊗C ∈ Cm×n for B ∈ Co×p, C ∈ Cq×r with
m = o · q, n = p · r, then we have

||A||2F =
m−1∑
i′=0

n−1∑
j′=0
|ai′j′ |2 (4.30)

=
o−1∑
i=0

p−1∑
j=0

q−1∑
k=0

r−1∑
l=0
|bijckl|2 (4.31)

=
o−1∑
i=0

p−1∑
j=0

q−1∑
k=0

r−1∑
l=0
|b|2ij |c|2kl (4.32)

=

o−1∑
i=0

p−1∑
j=0
|b|2ij

(q−1∑
k=0

r−1∑
l=0
|c|2kl

)
(4.33)

= ||B||2F ||C||2F (4.34)

30 Chapter 4. Sum Approximations

Using an inductive argument, it is easy to see from the above computations that this property of
the Frobenius norm generalises to Kronecker products of more than two matrices.

Now consider all matrices that are arbitrary-sign adjusted, permuted, and scaled identity ma-
trices, i.e. any matrix G ∈ Cn×n formed from an identity matrix by scaling all diagonal entries by
an arbitrary factor b ∈ C, followed by arbitrary sign changes on the diagonal entries, followed by
an arbitrary permutation of either rows and/or columns. Now since we are only moving around
and scaling (with a common absolute value of the scaling factor) all entries of the identity matrix,
we have the following property of the Frobenius norm of the matrix products H1G, GH2 for any
H1 ∈ Cm×n, H2 ∈ Cn×m:

||H1G||2F =
m−1∑
i′=0

n−1∑
j′=0
|h1i′j′ · b|

2 (4.35)

= |b|2
m−1∑
i′=0

n−1∑
j′=0
|h1i′j′ |

2 (4.36)

= |b|2 · ||H1||2F (4.37)

||GH2||2F =
n−1∑
i′′=0

m−1∑
j′′=0

|b · h1i′′j′′ |
2 (4.38)

= |b|2 ·
n−1∑
i′′=0

m−1∑
j′′=0

|h1i′′j′′ |
2 (4.39)

= |b|2 · ||H2||2F (4.40)
(4.41)

with the i′, j′ indexing H1 according to the permutations applied by G and the i′′, j′′ indexing H2
according to the permutations applied by G.

Finally, we consider the Structurally Random Matrices (SRMs) detailed in [30]. These matrices
are defined by

A = DΩFR (4.42)

with DΩ ∈ Rm×n a sub-sampling matrix that selects a (random) subset of the rows from FR
according to the indexing set Ω, i.e. it is an identity matrix with the rows not indexed by Ω
removed, F ∈ Rn×n an orthogonal matrix, and R ∈ Rn×n a prerandomization matrix, i.e. either
an identity matrix with uniformly random sign changes on the diagonal entries or a permutation
matrix that permutes the columns of F at (uniformly) random. From Equation (4.37), we have
||FR||2F = ||F||2F . The sub-sampling by DΩ results in keeping only a fraction of m

n of the (unit
vector) rows in FR. Thus, for A a SRM, we get

||A||2F = ||DΩFR||2F (4.43)

= m

n
||FR||2F (4.44)

= m

n
||F||2F (4.45)

= m

n
n (4.46)

= m (4.47)

If F is not an orthogonal matrix, Equation (4.45) is not in general valid. However, if we assume
that all entries of |F|◦2 are of approximately the same size, i.e. |fij |2 ≈ ||F||

2
F

n2 for all i, j (essentially
the same assumption that is used in Rangan’s sum approximation), we have

||A||2F ≈
m

n
||F||2F (4.48)

for any such F. Furthermore, if F is defined by a Kronecker product, we may use Equation (4.34)
to compute ||F||2F .

5 Implementations of the GAMP Iteration

The GAMP iteration given in Equations (2.1)-(2.12) may be implemented in a number of ways. One
may elect to combine some of the states, introduce new ones, or introduce convergence supporting
heuristics. In this section, we present some of the implementations of the GAMP iteration that
may be found in the literature.

The algorithms presented in this section are described using matrix-vector notation with Numpy
broadcasting rules1, e.g. multiplying two (column) vectors amounts to entrywise multiplication.
The matrix-vector notation takes precedence over broadcasting2, e.g. multiplying a matrix with a
vector amounts to a matrix-vector multiplication - not a broadcast along the last axis. All vectors
are column vectors. Also θI and θo are to be understood as being the relevant channel parameters
for the given iteration as detailed in Sections 3.1 and 3.2. The channel functions fz̄, fz̃, fᾱ, and
fα̃ are scalar functions as noted in Section 3. Thus, when used on vectors these functions operate
on each element of the vectors and produce a result vector having the individual scalar results as
its entries. Consequently, the result is a vector of the same size as the input vectors.

Algorithm 1 details the implementation of the MMSE GAMP from [1], [16] as described by
Parker [15]. Algorithm 1 is the GAMP variant used in Schniter’s and Vila’s EM-BG-AMP and
EM-GM-AMP algorithms [39], [45], [28].

Algorithm 1 - MMSE GAMP [1], [15]
1 initialise: ᾱ0 = Eα|θI [α], α̃0 = Varα|θI (α), q0 = 0m # marginal conditional expectations
2 for t = 1 . . . Tmax do
3 vt = Aasqα̃t-1
4 ot = Aᾱt-1 − vtqt-1
5 z̄t = fz̄(vt,ot; y,θo)
6 z̃t = fz̃(vt,ot; y,θo)
7 qt = z̄t−ot

vt
8 ut = vt−z̃t

v2
t

9 st = [AT
asqut]−1

10 rt = ᾱt-1 + stAHqt
11 ᾱt = fᾱ(st, rt;θI)
12 α̃t = fα̃(st, rt;θI)
13 if stop criterion is met then
14 break
15 end if
16 end for

Parker introduced some further modifications for numerical robustness of the GAMP algorithm
[15]. This modified algorithm is detailed in Algorithm 2. Compared to Algorithm 1, two modifi-
cations are made:

• Introduction of a step-size (or damping) parameter κ.

• Re-scaling of several of the states to better handle high SNR cases.

The simplified sum approximation GAMP algorithms described Section 4 have similar implemen-
tations to the algorithms presented so far. In particular, the sum approximation by Krzakala et
al. in Equations (4.7) and (4.8) may be implemented in Algorithm 1 be replacing Aasq with 1

n1Tn
and replacing AT

asq with 1
n1Tm which means that vt and st become scalar. Rangan’s simplified sum

1See: http://docs.scipy.org/doc/numpy-1.10.1/user/basics.broadcasting.html
2The way to think of it: Whenever you encounter an undefined operation in matrix-vector notation, then use

the broadcasting rules.

http://docs.scipy.org/doc/numpy-1.10.1/user/basics.broadcasting.html

32 Chapter 5. Implementations of the GAMP Iteration

Algorithm 2 - Numerically Robust MMSE GAMP with damping [15]
1 initialise: ᾱ0 = Eα|θI [α], α̃0 = Varα|θI (α), q0 = 0m, µ0 = 1, v0 = 0m # marginal

conditional expectations
2 for t = 1 . . . Tmax do
3 vt = κAasqα̃t-1 + (1− κ)vt-1
4 µt = 1

mvT
t 1m

5 ot = Aᾱt-1 − 1
µt

vtqt-1
6 z̄t = fz̄(vt,ot; y,θo)
7 z̃t = fz̃(vt,ot; y,θo)
8 qt = κµt

z̄t−ot
vt + (1− κ)qt-1

9 ut = κµt
vt−z̃t

v2
t

+ (1− κ)ut-1
10 ᾰt = κᾱt-1 + (1− κ)ᾰt-1
11 st = [AT

asqut]−1

12 rt = ᾰt + stAHqt
13 ᾱt = fᾱ(st, rt;θI)
14 α̃t = µtfα̃(st, rt;θI)
15 if stop criterion is met then
16 break
17 end if
18 end for

approximation GAMP iteration in Equations (4.9)-(4.20) may be implemented in a similar way to
Algorithm 1 as detailed in Algorithm 3.

Algorithm 3 - MMSE GAMP with Rangan sum approximations [16]
1 initialise: ᾱ0 = Eα|θI [α], ᾰ0 = 1

n

∑(
Varα|θI (α)

)
, q0 = 0m # marginal conditional

expectations
2 for t = 1 . . . Tmax do
3 v̆t = 1

m ||A||
2
F ᾰt-1

4 ot = Aᾱt-1 − v̆tqt-1
5 z̄t = fz̄(v̆t,ot; y,θo)
6 z̃t = fz̃(v̆t,ot; y,θo)
7 qt = z̄t−ot

v̆t

8 ŭt = 1
m

∑(
v̆t−z̃t
v̆2
t

)
9 s̆t = [1

n ||A||
2
F ŭt]−1

10 rt = ᾱt-1 + s̆tAHqt
11 ᾱt = fᾱ(s̆t, rt;θI)
12 ᾰt = 1

n

∑
(fα̃(s̆t, rt;θI))

13 if stop criterion is met then
14 break
15 end if
16 end for

5.1 Stop Criteria

The GAMP iteration in Equations (2.1)-(2.12) is to be iterated until convergence. However, in a
practical setup one may terminate the iteration once the algorithm is sufficiently close to conver-
gence. The challenge is then to find some criterion that describes when the algorithm has (almost)
converged. Here we discuss a few such stop criteria that may be used with Algorithms 1-3. For a
more general introduction to stop criteria for iterative methods see e.g. [46].

5.1.1. Mean Squared Error Stop Criterion 33

5.1.1 Mean Squared Error Stop Criterion
Since the GAMP iteration converges to a fixed point [25], it seems natural to stop the iteration
once the change in the solutions between iterations becomes sufficiently small. If the change in
the solution between iterations is measured in the 2-norm, we have a mean squared error (MSE)
stop criterion

1
n
||ᾱt-1 − ᾱt||22 < ε (5.1)

for some tolerance ε.
Note that if the algorithm stalls for some iterations, too early termination may occur when

using this MSE stop criterion. It is the authors’ experience that this may indeed happen with
GAMP in some cases.

5.1.2 Normalised Mean Squared Error Stop Criterion
A stop criterion related to the MSE stop criterion in Equation (5.1) is the normalised mean squared
error (NMSE) stop criterion used in e.g. [28], [31], [40]

||ᾱt-1 − ᾱt||22
||ᾱt-1||22

< ε (5.2)

for some tolerance ε.
Note that this criterion is subject to a potential division by zero problem if ᾱt-1 = 0 which

happens if the solution vector is initialised to the zero-vector. It is the authors’ experience that
this stop criterion is more robust towards stalls than the MSE criterion in Equation (5.1).

5.1.3 Residual Stop Criterion
If an additive measurement noise is assumed, as e.g. when using the AWGN GAMP output
channel, one may define a stop criterion based on noise power. The GAMP iteration should then
be terminated once the residual may be regarded as a reflection of the noise, i.e. once it has a
signal power smaller than the noise power. Thus, we have the residual stop criterion

1
m
||y−Aᾱt||22 < ε (5.3)

for some tolerance ε reflecting the noise power, e.g. ε = σ2 for an AWGN with variance σ2.

5.1.4 Residual Measurements Ratio Stop Criterion
In [47] it is suggested to use the following residual measurments ratio stop criterion in iterative
reconstruction methods

||y−Aᾱt||22
||y||22

< ε (5.4)

for some tolerance ε.
Note that if the initial solution vector is chosen to be the zero-vector, this stop criterion

expresses the ratio of the residual at iteration t to the residual at iteration one. Thus, convergence
is determined based on the reduction in the residual. Also note that such a residual ratio stop
criterion reflects the error in the solution through the condition number of the system matrix (for
a non-singular system matrix) as detailed in [46].

5.2 Damping and Other Methods for Improving Convergence

The MMSE GAMP in Algorithm 2 incorporates damping of the GAMP updates by virtue of κ. It
has been shown that the application of sufficient damping guarantees convergence of GAMP for
arbitrary system matrices, A, and with a Gaussian distributed vector, α, as well as for some other

34 Chapter 5. Implementations of the GAMP Iteration

distributions on the vector α under certain conditions [20]. Note that the GAMP states that are
damped in [20] are slightly different from those that are damped in Algorithm 2.

An adaptive damping scheme is proposed in [31] along with a scheme for removing any non-
zero mean of the system matrix. Such non-zero mean system matrices may significantly impede
convergence of the GAMP algorithm [31], [48]. Another method for improving the convergence of
the GAMP algorithm is to use a sequential updating scheme [48] where each of the elements in
the GAMP states are updated one at a time instead of in parallel. This is the idea used in the
Swept AMP from [49].

6 Parameter Learning

For the GAMP algorithm to converge, it is essential to use some learning or estimation scheme to
update the AWGN output channel noise level (when using the AWGN output channel)1. Further-
more, several studies have shown that Expectation Maximization (EM) may be used to effectively
learn input channel parameters [6], [28], [39], [45], [50] to the point where oracle-like performance is
achieved. An alternative adaptive GAMP strategy for learning the channel distributions is detailed
in [51] and [52].

6.1 Variance Estimates

For the AWGN output channel given in Equations (3.57) and (3.59) with noise variance σ2, one
may use a per iteration estimate of the noise variance. This may e.g. be done using the sample
variance estimator

(σ2)t+1 = 1
m
||y−Aᾱt+1||22 (6.1)

Another option is to use the median based estimator often preferred by Donoho and Montanari
[9], [47], [53]:

(σ2)t+1 =
(
median

(
|y−Aᾱt+1|
Φ−1
N (0.75)

))2

(6.2)

In Equation (6.2), the absolute value is entrywise and Φ−1
N is the inverse standard normal cumu-

lative distribution function.

6.2 Expectation Maximization (EM)

The Expectation Maximization (EM) algorithm may be used to find maximum likelihood (ML)
estimates of parameters in probabilistic models [54] (see also [55] for an introduction to EM). Here
we give an introduction to the use of EM to learn GAMP channel parameters as presented in [28],
[39], [45].

The complete vector of GAMP channel parameters θC is the concatenation of the input channel
parameter vector(/matrix) θI and the output channel parameter vector(/matrix) θo, i.e. θC =
[θTI ,θTo]T . Now, the goal in using EM is to maximise the likelihood p(y|θC) with respect to θC .
This is done using an iterative scheme in which each iteration has an E-step and an M-step that is
guaranteed to increase the likelihood (if not at a stationary point already). One may elect to use
a partial E-step in an “incremental” EM scheme [56] for improved convergence and/or to obtain a
more computationally tractable problem. A partial M-step (known as the expectation conditional
maximisation (ECM) algorithm [57]) is also an option to obtain a more computationally tractable
problem. Both of these partial schemes are also guaranteed to increase the likelihood (if not at a
stationary point already), though not necessarily maximise it, in each iteration.

For the general GAMP channel parameter optimisation problem, the EM algorithm manifests
as the recursion of the following optimisation problem2 [28]

θt+1
C = arg max

θ
Eα|y,θt

C
[ln(p(y,α;θ))] (6.3)

where y is the vector of observed variables (the measurements) and α is the vector of the latent
(unobserved or hidden) variables. Specifically, α is the coefficient vector in Equation (1.1). Now,

1At least that is what the authors of this tech report have experienced in an extensive set of simulations
2Strictly speaking, this is the M-step in the EM algorithm consisting of both an E-step and the M-step. However,

the E-step amounts to trivially choosing the distribution p(α|y; θtC) for the expectation [28].

36 Chapter 6. Parameter Learning

if we consider only updating the input channel parameters (a partial M-step approach), we have

θt+1
I = arg max

θ
Eα|y,θt

C
[ln(p(y,α;θ))] (6.4)

= arg max
θ

∫
α

p(α|y;θtC) ln(p(y,α;θ))dα (6.5)

= arg max
θ

∫
α

p(α|y;θtC) ln(p(y|α;θo)p(α;θ))dα (6.6)

= arg max
θ

(∫
α

p(α|y;θtC) ln(p(y|α;θo))dα+
∫

α

p(α|y;θtC) ln(p(α;θ))dα
)

(6.7)

= arg max
θ

∫
α

p(α|y;θtC) ln(p(α;θ))dα+ const. (6.8)

= arg max
θ

∫
α

p(α|y;θtC) ln(p(α;θ))dα (6.9)

= arg max
θ

Eα|y,θt
C

[ln(p(α;θ))] (6.10)

since, by definition, θI is only used in the specification of the prior p(α;θI). That is, given a
specific value of α, the value of y no longer depends on θI . Thus, w.r.t. elements of θI , p(y|α;θo)
is a constant.

In order to find a similar expression for a separate update of the output channel parameters
(i.e. a partial M-step approach update of θo), one must realise that the distribution of y depends
only on α through z since z = Aα (a deterministic relation) as specified in Equation (1.6). Due to
the separability assumption of GAMP (see the discussion below Equations (1.16) and (1.17)), we
then have a Markov chain α→ z→ y meaning that p(α,y|z) = p(α|z)p(y|z). The deterministic
relation z = Aα also means that the joint distribution p(α, z) is degenerate3. All of this makes for a
series of mathematical subtleties in the below expression. However, in accepting these expressions,
it is probably most important to realise that the distribution of y depends only on α through z.

θt+1
o = arg max

θ
Eα|y,θt

C
[ln(p(y,α;θ))] (6.11)

= arg max
θ

∫
α

p(α|y;θtC) ln(p(y,α;θ))dα (6.12)

= arg max
θ

∫
α

p(α|y;θtC) ln(p(y|α;θ)p(α;θI))dα (6.13)

= arg max
θ

(∫
α

p(α|y;θtC) ln(p(y|α;θ))dα+
∫

α

p(α|y;θtC) ln(p(α;θI))dα
)

(6.14)

= arg max
θ

∫
α

p(α|y;θtC) ln(p(y|α;θ))dα+ const. (6.15)

= arg max
θ

∫
α

p(α,y;θtC)
p(y;θtC) ln(p(y|α;θ))dα+ const. (6.16)

= arg max
θ

∫
α

∫
z

p(α,y, z;θtC)
p(y;θtC) dz ln(p(y|α;θ))dα+ const. (6.17)

= arg max
θ

∫
α

∫
z

p(α,y|z;θtC)p(z;θtC)
p(y;θtC) dz ln(p(y|α;θ))dα+ const. (6.18)

= arg max
θ

∫
α

∫
z

p(α|z;θtC)p(y|z;θtC)p(z;θtC)
p(y;θtC) dz ln(p(y|α;θ))dα+ const. (6.19)

3To see this, consider the simple example that α = [α1, α2]T with p(α1, α2) = p(α1)p(α2), p(α1) = N (α1; 0, 1),
p(α2) = N (α2; 0, 1), and z = α1 + α2. Now, p(z) is well defined since it is simply the convolution of p(α1) and
p(α2). However, p(α, z) is degenerate in the sense the “density” is restricted to values for which z = α1 + α2.
Similarly, p(α|z) = p(α,z)

p(z) as well as p(z|α) = p(α,z)
p(α) are degenerate for the same reason. Thus, they act as a sort

of sampling that squeezes the domain of α into the domain of z since z is deterministically derived from α. In a
sense they have a “sampling property” similar to that of the generalised Dirac delta function.

6.2. Expectation Maximization (EM) 37

= arg max
θ

∫
α

∫
z
p(α|z;θtC)p(z|y;θtC)dz ln(p(y|α;θ))dα+ const. (6.20)

= arg max
θ

∫
z
p(z|y;θtC)

∫
α

p(α|z;θtC) ln(p(y|α;θ))dαdz + const. (6.21)

= arg max
θ

∫
z
p(z|y;θtC) ln(p(y|z;θ))dz + const. (6.22)

= arg max
θ

∫
z
p(z|y;θtC) ln(p(y|z;θ))dz (6.23)

= arg max
θ

Ez|y,θt
C

[ln(p(y|z;θ))] (6.24)

where the constant is due to p(α;θI) being constant w.r.t. elements of θo.
Now since we are using GAMP which is trying to (indirectly) find the true posteriors p(α|y,θC)

and p(z|y,θC), we only have the GAMP approximated posteriors in Equations (3.4) and (3.8),
respectively, available. Thus, these GAMP approximations are used in computing the expectation
in the EM update [28], i.e., the E-step becomes approximate4. We then have the final GAMP EM
channel parameter recursions

θt+1
I = arg max

θ
Eα|y,s,r,θt

I
[ln(p(α;θ))] (6.25)

= arg max
θ

n∑
j=1

Eα|y,s,r,θt
I
[ln(p(αj ; [θ]j))] (6.26)

θt+1
o = arg max

θ
Ez|y,v,o,θto [ln(p(y|z;θ))] (6.27)

= arg max
θ

m∑
i=1

Ez|y,v,o,θto [ln(p(yi|zi; [θ]i))] (6.28)

where we have used the separability properties of the in- and output channels as described in
Equations (1.16) and (1.17). Note that the GAMP approximated posteriors p(z|y,v,o,θto) and
p(α|y, s, r,θtI) by definition are separable (as everything else in the in- and output channels). Also
note that one may use several GAMP iterations to find p(α|y, s, r,θtI) and p(z|y,v,o,θto) for each
EM update in Equations (6.26), (6.28) [28].

Furthermore, Schniter and Vila [28] as well as Krzakala et al. [5] use a “complete” partial
M-step in the sense that the elements of θC are updated one at a time, i.e. they essentially use the
expectation/conditional maximization (ECM) algorithm [57]. Thus, in the following, our focus is
on finding recursions based on Equations (6.26) and (6.28) for one parameter (one element of θC)
at a time. When using such a scheme, the ordering of the updates of the elements of θC become
important since all parameter updates should be based on the latest value of all other parameters.
The particular choice of update order may be arbitrary, but the all updates must be based on
the most recent values of all other parameters that they depend on. Note, though, that Schniter
and Vila [28] use the GAMP approximated posteriors p(z|y,v,o,θto) and p(α|y, s, r,θtI) based on
iteration t for the all parameter updates. That is, they do not recompute the GAMP posteriors
between the parameter updates.

4It is not clear whether or not this falls under the framework of partial E-steps from [56] guaranteed to increase
the likelihood.

38 Chapter 6. Parameter Learning

6.2.1 EM Updates for Common Output Channels
We now state EM updates for several commonly used GAMP output channels.

6.2.1.1 AWGN Output Channel

For the AWGN output channel given in Equations (3.57) and (3.59) with noise variance σ2, Krza-
kala suggested the following EM recursion on the noise variance [5] (Eq. 77)

(σ2)t+1 =

∑
i

(yi−ot+1
i

)2(
1+ 1

(σ2)t
vt+1
i

)2∑
i

1
1+ 1

(σ2)t
vt+1
i

(6.29)

Manoel and Tramel suggested the following implementation5 of the EM recursion in Equation
(6.29):

(σ2)t+1 = (σ2)t
∑
i

(
yi−ot+1

i

(σ2)t+vt+1
i

)2

∑
i((σ2)t + vt+1

i)−1 (6.30)

which in matrix-vector + Numpy broadcast notation is:

σ2
t = σ2

t-1

∑(
y−ot
σ2
t-1+vt

)
∑

(σ2
t-1 + vt)−1 (6.31)

Note that vt becomes scalar when using the sum approximation GAMP described in Section 4 and
Algorithm 3. Thus, one must make sure to implement the denominator sum in Equation (6.31)
such that it acts as if vt was a vector (a sum over m elements - not just a single element).

Schniter and Vila suggested the following EM recursion on the noise variance [28] (Eq. (27)),
[39] (Eq. (38))

(σ2)t+1 = 1
m

∑
i

(|yi − z̄t+1
i |2 + z̃t+1

i) (6.32)

However, in [40] it is reported that the closely related expression

(σ2)t+1 = 1
m

(||y−Aᾱt+1||22 +
∑
i

[|A|◦2α̃t+1]i) (6.33)

is supposed to yield improved performance in low SNR cases (SNR < 10 dB). Note how this
expression is an extension of Equation (6.1).

6.2.1.2 AWLN Output Channel

For the AWLN output channel given in Equations (3.62) and (3.63) with rate parameter λ, Vila
and Schniter suggested the following EM recursion on the rate parameter [40] (Eq. (52))

λt+1 = m∑
i

(
ΦN
(
−ẑi
vi

)(
ẑi +√vi

φN
(
ẑi√
vi

)
ΦN
(
ẑi√
vi

))− ΦN
(
ẑi
vi

)(
ẑi −

√
vi
φN
(−ẑi√

vi

)
ΦN
(−ẑi√

vi

))) (6.34)

for
ẑ := Aα− y (6.35)

5See: https://github.com/eric-tramel/SwAMP-Demo/blob/master/python/amp.py

https://github.com/eric-tramel/SwAMP-Demo/blob/master/python/amp.py

6.2.2. EM Updates for Common Input Channels 39

6.2.2 EM Updates for Common Input Channels

We now state EM updates for several commonly used GAMP input channels.

6.2.2.1 General i.i.d. Sparse Input Channel

As noted in [28], one may find a general expression for the EM update of the signal density τ in
the general sparse i.i.d. input prior in Equation (3.29). In particular, we have

τ t+1 = arg max
τ∈[0,1]

n∑
j=1

Eα|y,s,r,θt
I
[ln
(
p(αj ; τ,θtI\τ)

)
] (6.36)

= arg max
τ∈[0,1]

n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI) ln
(
(1− τ)δDirac(αj) + τϕ(αj ;θI\τ)

)
dαj (6.37)

Setting the derivative of the objective equal to zero, we obtain

0 = ∂

∂τ

n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI) ln
(
(1− τ)δDirac(αj) + τϕ(αj ;θI\τ)

)
dαj (6.38)

=
n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI)
∂

∂τ
ln
(
(1− τ)δDirac(αj) + τϕ(αj ;θI\τ)

)
dαj (6.39)

where we have used Leibniz’s integral rule to exchange differentiation and integration. Leibniz’s
integral rule requires the integrand and its partial derivative w.r.t. τ to be continuous in both αj
and τ which is not strictly true for the above objective due to the Dirac delta function. However, as
noted in [40], one may justify its use by considering an approximation of the Dirac delta function
δDirac(α) ≈ N (α, 0, ε) for a fixed arbitrarily small ε > 0. For the partial derivative, we have

∂

∂τ
ln
(
(1− τ)δDirac(αj) + τϕ(αj ;θI\τ)

)
=

ϕ(αj ;θI\τ)− δDirac(αj)
(1− τ)δDirac(αj) + τϕ(αj ;θI\τ) (6.40)

=
ϕ(αj ;θI\τ)
δDirac(αj) − 1

(1− τ) + τ
ϕ(αj ;θI\τ)
δDirac(αj)

(6.41)

=
{
−1
1−τ , αj = 0
1
τ , αj 6= 0

(6.42)

Following [28], we may define a closed ball Bε := [−ε, ε] and its complement Bε = R\Bε which may
be used to evaluate the integral in Equation (6.39) as ε→ 0. Then using the GAMP approximated
posterior in Equation (3.37), we get

0 =
n∑
j=1

(
−1

1− τ

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)dαj + 1
τ

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)dαj

)
(6.43)

=
n∑
j=1

(
−1

1− τ (1− π(rj , sj ,θtI))
∫
αj∈Bε

δDirac(αj)dαj+

1
τ
π(rj , sj ,θtI)

∫
αj∈Bε

ϕαj |y;sj ,rj ,θtI (αj ;θ
t
I)dαj

)
(6.44)

=
n∑
j=1

(
−1

1− τ (1− π(rj , sj ,θtI)) + 1
τ
π(rj , sj ,θtI)

)
(6.45)

=
n∑
j=1

(
−τ

1− τ (1− π(rj , sj ,θtI)) + π(rj , sj ,θtI)
)

(6.46)

40 Chapter 6. Parameter Learning

= −τn
1− τ −

−τ
1− τ

n∑
j=1

π(rj , sj ,θtI) +
n∑
j=1

π(rj , sj ,θtI) (6.47)

= −τn+ τ

n∑
j=1

π(rj , sj ,θtI) +
n∑
j=1

π(rj , sj ,θtI)− τ
n∑
j=1

π(rj , sj ,θtI) (6.48)

= −nτ +
n∑
j=1

π(rj , sj ,θtI) (6.49)

with π(rj , sj ,θtI) defined in Equation (3.41). Note that in going from Equation (6.44) to Equation
(6.45), we have assumed that ϕ(αj ;θtI) is well behaved at αj = 0 such that∫

αj∈Bε
ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)dαj =

∫
αj

ϕαj |y;sj ,rj ,θtI (αj ;θ
t
I)dαj = 1 (6.50)

Solving for τ , we get the final expression for its EM update

τ t+1 = 1
n

n∑
j=1

π(rj , sj ,θtI) (6.51)

The update in Equation (6.51) is intuitively pleasing since it states that the signal density τ is
the average of the posterior signal density (posterior support probabilities) π(rj , sj ,θtI). Also note
that since π(rj , sj ,θtI) ∈ [0; 1],∀j, we have that τ t+1 ∈ [0; 1].

6.2.2.2 General Weighted Sparse Input Channel

An EM update of the common signal density τ in the GWS input prior in Equation (3.44) may be
found using similar derivations as those used for the general i.i.d. sparse input channel detailed in
Section 6.2.2.1. In particular, we have

τ t+1 = arg max
τ∈[0,1]

n∑
j=1

Eα|y,s,r,θt
I
[ln
(
p(αj ; τ,θtI\τ)

)
] (6.52)

= arg max
τ∈[0,1]

n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI) ln
(
(1− wjτ)δDirac(αj) + wjτϕ(αj ;θI\τ)

)
dαj

(6.53)

Setting the derivative of the objective equal to zero, we obtain

0 = ∂

∂τ

n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI) ln
(
(1− wjτ)δDirac(αj) + wjτϕ(αj ;θI\τ)

)
dαj (6.54)

=
n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI)
∂

∂τ
ln
(
(1− wjτ)δDirac(αj) + wjτϕ(αj ;θI\τ)

)
dαj (6.55)

where we again have used Leibniz’s integral rule to exchange differentiation and integration. For
the partial derivative, we have

∂

∂τ
ln
(
(1− wjτ)δDirac(αj) + wjτϕ(αj ;θI\τ)

)
=

wjϕ(αj ;θI\τ)− wjδDirac(αj)
(1− wjτ)δDirac(αj) + wjτϕ(αj ;θI\τ) (6.56)

=
wj

ϕ(αj ;θI\τ)
δDirac(αj) − wj

(1− wjτ) + wjτ
ϕ(αj ;θI\τ)
δDirac(αj)

(6.57)

=
{ −wj

1−wjτ , αj = 0
1
τ , αj 6= 0

(6.58)

6.2.2.2. General Weighted Sparse Input Channel 41

Again, using the closed ball Bε := [−ε, ε] and its complement Bε = R\Bε in evaluating the integral
in Equation (6.55) as ε→ 0 and using the GAMP approximated posterior in Equation (3.45), we
get

0 =
n∑
j=1

(
−wj

1− wjτ

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)dαj + 1
τ

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)dαj

)
(6.59)

=
n∑
j=1

(
−wj

1− wjτ
(1− πw

j (rj , sj ,θtI)) + 1
τ
πw
j (rj , sj ,θtI)

)
(6.60)

=
n∑
j=1

(
−wjτ

1− wjτ
(1− πw

j (rj , sj ,θtI)) + πw
j (rj , sj ,θtI)

)
(6.61)

=
n∑
j=1

(
−wjτ

1− wjτ
− −wjτ

1− wjτ
πw
j (rj , sj ,θtI) + πw

j (rj , sj ,θtI)
)

(6.62)

=
n∑
j=1

(
−wjτ + wjτπ

w
j (rj , sj ,θtI) + πw

j (rj , sj ,θtI)− wjτπw
j (rj , sj ,θtI)

)
(6.63)

= −τ
n∑
j=1

wj +
n∑
j=1

πw
j (rj , sj ,θtI) (6.64)

with πw
j (rj , sj ,θtI) defined as in Equation (3.46). Solving for τ , we get the final expression for its

EM update:

τ t+1 =
∑n
j=1 π

w
j (rj , sj ,θtI)∑n
j=1 wj

(6.65)

Note that the GWS τ EM update in Equation (6.65) reduces to the general sparse channel τ EM
updates in Equation (6.51) for the choice of weights ∀j, wj = 1.

In order for the GAMP updates to be stable, the GAMP posterior must remain a proper density
which requires that wjτ t+1 ∈ [0; 1], ∀j as described in Section 3.5. If the requirement on the choice
of weights is wj ∈ [0; 1], ∀j, then one must also require that τ t+1 ∈ [0; 1]. Now, consider the case
of having just a single element in the coefficient vector. The τ EM update then becomes

τ t+1 = πw
1 (r1, s1,θ

t
I)

w1
∈ [0; 1

w1
] (6.66)

Thus, if the GAMP posterior support probability πw
1 (r1, s1,θ

t
I) is large and we have chosen a small

w1, we may end up with τ t+1 > 1. That is, if there is a significant mismatch between our prior
belief about the support probability (expressed by w1 and the actual posterior support probability
πw

1 (r1, s1,θ
t
I), it may potentially violate the requirement that τ t+1 ∈ [0; 1]. In generalising this

result to arbitrary length vectors we may consider

τ t+1 =
∑n
j=1 π

w
j (rj , sj ,θtI)∑n
j=1 wj

=
1
n

∑n
j=1 π

w
j (rj , sj ,θtI)

1
n

∑n
j=1 wj

(6.67)

That is, if the average GAMP posterior support probability becomes larger than our prior average
belief about the support probabilities (expressed by the wj ’s), it may violate the requirement that
τ t+1 ∈ [0; 1]. Note that, as discussed in Section 6.2.2.1, this problem is not present if wj = 1, ∀j.

At least two strategies for handling this violation can be identified

1. We may force τ t+1 = 1 whenever τ t+1 > 1. This may be interpreted as forcing the prior
belief on the support probabilities. Note that since τ models the overall average sparsity of
the signal, forcing τ ≤ 1 has the effect of forcing the average sparsity in the next GAMP
iteration to be no larger than the average of the weights.

2. We may adjust the weights towards wj = 1, ∀j according to some scheme detailing the weights
update. This strategy allows for the weighted model to adapt towards a non-weighted model,
if the data suggest such a change.

42 Chapter 6. Parameter Learning

One scheme for adjusting the weights towards wj = 1, ∀j is to apply Algorithm 4 which attempts
to increase all weights such that τ = 1. Worst case using this scheme, we get wj = 1, ∀j after n
iterations of the while loop. In a practical implementation of Algorithm 4, it may be beneficial to
introduce some other stop criterion.

Algorithm 4 - A scheme for adjusting the weights towards wj = 1, ∀j in the general weighted
sparse GAMP input channel.

1 while τ > 1 do
2 for j ∈ 1, . . . , n do
3 wj = τwj
4 if wj > 1 then
5 wj = 1
6 end if
7 end for
8 τ =

∑n

j=1
πw
j (rj ,sj ,θtI)∑n

j=1
wj

9 end while

6.2.2.3 EM updates of other channel parameters in the GWS channel

The derivation of EM updates for channel parameters in a general sparse input channel as detailed
in [28], [39], [45] may be summarised as follows:

1. Pick a parameter to update.

2. Write down the single step EM-update as in e.g. Equation (6.53).

3. Take the partial derivative, set equal to zero, and apply Leibniz’s integral rule to interchange
integration and differentiation (assuming that this interchange is valid) as in e.g. Equation
(6.55).

4. Compute the partial derivative as in e.g. Equation (6.58).

5. Handle the discontinuity at zero by splitting the integration and treating a closed ball around
zero separately from the remaining domain as in e.g. Equations (6.59).

6. Compute the integrals and solve for the parameter of interest to obtain the EM update as
in e.g. Equation (6.65).

For this recipe to work for other channel parameters than τ , the partial derivative must conform to
a certain structure. Specifically, consider the channel defined by p(αj ;θI) = (1−wjτ)δDirac(αJ) +
wjτf1(θI)exp(f2(αj ,θI)) for some well-behaved functions f1 and f2. This channel has partial
derivatives for each of the k parameters in θI

∂

∂θk
ln(p(αj ;θI)) = ∂

∂θk
ln((1− wjτ)δDirac(αJ) + wjτf1(θI)exp(f2(αj ,θI))) (6.68)

=
∂
∂θk

f1(θI)exp(f2(αj ,θI))
(1− wjτ)δDirac(αJ) + wjτf1(θI)exp(f2(αj ,θI))

(6.69)

=
{

0, αj = 0
∂
∂θk

f1(θI)exp(f2(αj ,θI))
wjτf1(θI)exp(f2(αj ,θI)) , αj 6= 0

(6.70)

Now consider the case in which f1 and f2 have structure such that

0 =
n∑
j=1

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)0dαj+

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)
∂
∂θk

f1(θI)exp(f2(αj ,θI))
wjτf1(θI)exp(f2(αj ,θI))

dαj (6.71)

6.2.2.4. I.i.d. Sparse Bernoulli-Laplace input channel 43

=
n∑
j=1

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)0dαj +
∫
αj∈Bε

p(αj |y, sj , rj ,θtI)(f3(αj)− θk)dαj (6.72)

for some function f3 which does not depend on θk. In this case we find that

0 =
n∑
j=1

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)(f3(αj)− θk)dαj (6.73)

=
n∑
j=1

πw
j (rj , sj ,θtI)

∫
αj∈Bε

ϕαj |y;sj ,rj ,θtI (αj ;θ
t
I)(f3(αj)− θk)dαj (6.74)

θt+1
k =

∑n
j=1 π

w
j (rj , sj ,θtI)

∫
αj∈Bε ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)f3(αj)dαj∑n

j=1 π
w
j (rj , sj ,θtI)

∫
αj∈Bε ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)dαj

(6.75)

=
∑n
j=1 π

w
j (rj , sj ,θtI)

∫
αj
ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)f3(αj)dαj∑n

j=1 π
w
j (rj , sj ,θtI)

(6.76)

=
∑n
j=1 π

w
j (rj , sj ,θtI)

∫
αj
ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)f3(αj)dαj

τ t+1∑n
j=1 wj

(6.77)

where we have assumed that all the integrands are well-behaved at zero and that τ is the first
parameter to be updated. From Equation (6.77), we find that this EM update separates into a
slab-part only element (

∫
αj
ϕαj |y;sj ,rj ,θtI (αj ;θ

t
I)f3(αj)dαj) and the posterior support probabilities

πw
j (rj , sj ,θtI). Furthermore, since it turns out that these slab-part elements are typically computed

in the GAMP channel update, all elements needed in the EM-update are already available following
a GAMP channel update which allows for efficient implementations of the EM update. This is the
case for the sparse Bernoulli-Gauss channel as shown in [28] and detailed in Section 6.2.2.5. The
above imposed structure on the partial derivatives is somewhat limiting in terms of the possible
ϕ(αj ; [θI]j) that one may consider. However, as is done in some updates in [28] as well as for
the sparse Bernoulli-Laplace input channel detailed in Section 6.2.2.5, one may apply various
approximations to impose this structure.

An implementation in which the GWS τ EM update is decoupled from the slab-part EM updates
is slightly more tricky than the corresponding channel updates since we assume common channel
parameters shared across all n coefficients effectively requiring a reduction from all n elements to
a single element. However, if the slab-part channel has the structure discussed above, one may
store the relevant channel update elements and reuse those in the common EM updates which still
provides an efficient implementation in which the GWS framework may be easily combined with
different slab-part priors.

6.2.2.4 I.i.d. Sparse Bernoulli-Laplace input channel

For the i.i.d. BL input channel given in Equations (3.127) and (3.129), we consider the following
parameter update order: τ, λ, µ. For the EM updates of the signal density parameter τ , we may
(via Equation (3.41)) use the general result in Equation (6.51)

τ t+1 = 1
n

n∑
j=1

π(rj , sj ,θtI) (6.78)

= 1
n

n∑
j=1

τ t(ZI + Z̄I)
(1− τ t)N (0; rj , sj) + τ t(ZI + Z̄I)

(6.79)

for ZI , Z̄I given in Equations (3.93), (3.94), respectively, and with appropriately indexed rj , sj in
ZI , Z̄I .

Using some of the ideas from [40] (which address a AWLN output channel) and [41] (which
address an elastic net input channel), we may find the EM updates for the remaining parameters,

44 Chapter 6. Parameter Learning

λ, µ. For the EM update of λ, we have

λt+1 = arg max
λ>0

n∑
j=1

Eα|y,s,r,θt
I
[ln
(
p(αj ;λ,θtI\λ)

)
] (6.80)

= arg max
λ>0

n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI) ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ

2 exp
(
−λ|αj − µt|

))
dαj (6.81)

Setting the derivative of the objective equal to zero, we obtain

0 = ∂

∂λ

n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI) ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ

2 exp
(
−λ|αj − µt|

))
dαj

(6.82)

=
n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI)
∂

∂λ
ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ

2 exp
(
−λ|αj − µt|

))
dαj

(6.83)

Where we have used Leibniz’s integral rule to exchange differentiation and integration using the
same argument as for Equation (6.39). Now for the partial derivative, we have

∂

∂λ
ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ

2 exp
(
−λ|αj − µt|

))
(6.84)

=
τ t+1 1

2exp(−λ|αj − µt|)− τ t+1 λ
2 exp(−λ|αj − µt|) |αj − µt|

(1− τ t+1)δDirac(αj) + τ t+1 λ
2 exp(−λ|αj − µt|)

(6.85)

=
τt+1

2 exp(−λ|αj − µt|) (1− λ|αj − µ|)
(1− τ t+1)δDirac(αj) + λ τ

t+1

2 exp(−λ|αj − µt|)
(6.86)

=

τt+1
2 exp(−λ|αj−µt|)(1−λ|αj−µ|)

(1−τt+1)δDirac(αj)

1 + λ τ
t+1
2 exp(−λ|αj−µt|)

(1−τt+1)δDirac(αj)

(6.87)

=
{

0, αj = 0
1
λ − |αj − µ

t|, αj 6= 0
(6.88)

Following [28], we may define a closed ball Bε := [−ε, ε] and its complement Bε = R \ Bε which
may be used to evaluate the integral in Equation (6.83) as ε→ 0

0 =
n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI)
∂

∂λ
ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ

2 exp
(
−λ|αj − µt|

))
dαj

(6.89)

=
n∑
j=1

(∫
αj∈Bε

p(αj |y, sj , rj ,θtI)0dαj +
∫
αj∈Bε

p(αj |y, sj , rj ,θtI)(
1
λ
− |αj − µt|)dαj

)
(6.90)

=
n∑
j=1

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)(
1
λ
− |αj − µt|)dαj (6.91)

=
n∑
j=1

(
1
λ

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)dαj −
∫
αj∈Bε

p(αj |y, sj , rj ,θtI)|αj − µt|dαj

)
(6.92)

(6.93)

6.2.2.4. I.i.d. Sparse Bernoulli-Laplace input channel 45

=
n∑
j=1

(
1
λ
π(rj , sj ,θtI)−

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)|αj − µt|dαj

)
(6.94)

= 1
λ
nτ t+1 −

n∑
j=1

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)|αj − µt|dαj (6.95)

Solving for λ, we get

λt+1 = nτ t+1∑n
j=1

∫
Bε p(αj |y, sj , rj ,θ

t
I)|αj − µt|dαj

(6.96)

The integral in the denominator in Equation (6.96) is exactly the expectation from Equation
(3.127) with four exceptions:

1. The Dirac delta contribution should be left out since the integration is over Bε instead of
the entire real line. This is, however, not important since the Dirac delta contribution turns
out to be zero anyway.

2. The integral involves the expectation of |αj − µt| instead of αj . Thus, applying a shift
α̌j = αj − µt eliminates the contribution from a non-zero µt.

3. The absolute value in |αj − µt| must be addressed. Specifically, after having done the shift
α̌j = αj − µt, one must handle the absolute value |α̌j | in (what corresponds to) Equation
(3.102) correctly by changing the sign of the integral over the negative part of the real line.

4. The integration in (what corresponds to) (3.102) is done from −∞ to 0− and 0+ to ∞.
However, since the GAMP posterior p(αj |y, sj , rj ,θtI) without the Dirac delta contribution
at αj = 0 is well behaved, this makes no difference and we may integrate over the entire real
line.

Thus, we have∫
αj∈Bε

p(αj |y, sj , rj ,θtI)|αj − µt|dαj

= τ t

 Z̄I
ZI

r̄j +√sj
φN

(
r̄√
sj

)
ΦN
(
r̄j√
sj

)
− ZI

ZI

rj −√sj φN
(−rj√

sj

)
ΦN
(−r

j√
sj

)
 (6.97)

for
řj = rj − µt (6.98)
r̄j = řj − λts (6.99)
rj = řj + λtsj (6.100)

and ZI , ZI , and Z̄I as defined in Equations (3.92), (3.93), (3.94) (with appropriate indices on the
variables), respectively. Finally, we have the EM update for λ

λt+1 = nτ t+1

∑n
j=1 τ

t

 Z̄I
ZI

r̄j +√sj
φN

(
r̄√
sj

)
ΦN
(

r̄j√
sj

)− ZIZI
rj −√sj φN

(
−r
j√
sj

)
ΦN
(
−rj√
sj

) (6.101)

For the EM update of µ, we have

µt+1 = arg max
µ

n∑
j=1

Eα|y,s,r,θt
I
[ln
(
p(αj ;µ,θtI\µ)

)
] (6.102)

= arg max
µ

n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI) ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ
t+1

2 exp
(
−λt+1|αj − µ|

))
dαj (6.103)

46 Chapter 6. Parameter Learning

The partial derivative with respect to µ of the integrand in Equation (6.103) is unfortunately not
continuous (even if using the same argument for the Delta function as in Equation (6.39)) due to
the absolute value causing problems at αj = µ. Thus, we may not apply Leibniz’s integral rule.
However, in order to derive a reasonable EM update for µ, we apply the quadratic approximation
|αj − µ| ≈ (αj − µ)2. Now, using Leibniz’s integral rule, taking the partial derivative of the
objective, and setting equal to zero, we obtain

0 = ∂

∂µ

n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI) ln
(

(1− τ t+1)δDirac(αj)

+ τ t+1λ
t+1

2 exp
(
−λt+1(αj − µ)2))dαj (6.104)

=
n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI)
∂

∂µ
ln
(

(1− τ t+1)δDirac(αj)

+ τ t+1λ
t+1

2 exp
(
−λt+1(αj − µ)2))dαj (6.105)

For the partial derivative, we have

∂

∂µ
ln
(

(1− τ t+1)δDirac(αj) + τ t+1λ
t+1

2 exp
(
−λt+1(αj − µ)2)) dαj (6.106)

=
τ t+1 λt+1

2 exp
(
−λt+1(αj − µ)2) (−2λt+1(α− µ)(−1))

(1− τ t+1)δDirac(αj) + τ t+1 λt+1

2 exp(−λt+1(αj − µ)2)
(6.107)

=
τ t+1 λt+1

2 exp
(
−λt+1(αj − µ)2) (2λt+1(α− µ))

(1− τ t+1)δDirac(αj) + τ t+1 λt+1

2 exp(−λt+1(αj − µ)2)
(6.108)

=
τt+1 λt+1

2 exp(−λt+1(αj−µ)2)(2λt+1(α−µ))
(1−τt+1)δDirac(αj)

1 + τt+1 λt+1
2 exp(−λt+1(αj−µ)2)

(1−τt+1)δDirac(αj)

(6.109)

=
{

0, αj = 0
2λt+1(αj − µ), αj 6= 0

(6.110)

Again, using the closed ball Bε, we may evaluate the integral in Equation (6.105) as ε→ 0

0 =
n∑
j=1

∫
αj

p(αj |y, sj , rj ,θtI)
∂

∂µ
ln
(

(1− τ t+1)δDirac(αj)

+ τ t+1λ
t+1

2 exp
(
−λt+1(αj − µ)2))dαj (6.111)

=
n∑
j=1

(∫
αj∈Bε

p(αj |y, sj , rj ,θtI)0dαj (6.112)

+
∫
αj∈Bε

p(αj |y, sj , rj ,θtI)(2λt+1(αj − µ))dαj

)
(6.113)

=
n∑
j=1

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)(αj − µ)dαj (6.114)

=
n∑
j=1

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)αjdαj − µ
n∑
j=1

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)dαj (6.115)

=
n∑
j=1

∫
αj∈Bε

p(αj |y, sj , rj ,θtI)αjdαj − µπ(rj , sj ,θtI) (6.116)

6.2.2.4. I.i.d. Sparse Bernoulli-Laplace input channel 47

Thus, we have the following update of µ

µt+1 =
∑n
j=1

∫
αj∈Bε p(αj |y, sj , rj ,θ

t
I)αjdαj

π(rj , sj ,θtI)
(6.117)

=
∑n
j=1

∫
αj∈Bε p(αj |y, sj , rj ,θ

t
I)αjdαj

nτ t+1 (6.118)

The numerator in Equation (6.118) is the expectation from Equation (3.127) with the exception of
leaving out αj = 0 in the integration. However, since the remaining part of the GAMP posterior
p(αj |y, sj , rj ,θtI) (leaving out the Dirac delta contribution) is well-behaved, we find that∫

αj∈Bε
p(αj |y, sj , rj ,θtI)αjdαj (6.119)

= τ t

µt (ZI + Z̄I)
ZI

+ ZI
ZI

rj −√sj φN
(−rj√

sj

)
ΦN
(−rj√

sj

)
+ Z̄I

ZI

r̄j +√sj
φN

(
r̄j√
sj

)
ΦN
(
r̄j√
sj

)

(6.120)
for

řj = rj − µt (6.121)
r̄j = řj − λts (6.122)
rj = řj + λtsj (6.123)

and ZI , ZI , and Z̄I as defined in Equations (3.92), (3.93), (3.94) (with appropriate indices on the
variables), respectively. Finally, we have the EM update for µ

µt+1 =

∑n
j=1 τ

t

µt (ZI+Z̄I)
ZI + ZI

ZI

rj −√sj φN
(
−rj√
sj

)
ΦN
(
−r
j√
sj

)+ Z̄I
ZI

r̄j +√sj
φN

(
r̄j√
sj

)
ΦN
(

r̄j√
sj

)
nτ t+1

(6.124)

Based on the results in Equations (6.101) and (6.124), we may identify the following Laplace EM
updates to be used in the GWS EM update framework described in Section 6.2.2.2

λt+1 =
τ t+1∑n

j=1 wj∑n
j=1 π

w
j (rj , sj ,θtI)

 Z̄I
Zϕj

r̄j +√sj
φN

(
r̄√
sj

)
ΦN
(

r̄j√
sj

)− Z
I

Zϕj

rj −√sj φN
(
−rj√
sj

)
ΦN
(
−r
j√
sj

)
(6.125)

µt+1 =

∑n
j=1 π

w
j (rj , sj ,θtI)

µt + Z
I

Zϕj

rj −√sj φN
(
−rj√
sj

)
ΦN
(
−rj√
sj

)+ Z̄I
Zϕj

r̄j +√sj
φN

(
r̄j√
sj

)
ΦN
(

r̄j√
sj

)
τ t+1∑n

j=1 wj
(6.126)

48 Chapter 6. Parameter Learning

6.2.2.5 I.i.d. Sparse Bernoulli-Gauss Input Channel

For the i.i.d. BG input channel given in Equations (3.154) and (3.155), Krzakala et al. suggested
the following EM recursions on the channel parameters [5] (Eqs. (74), (78), (79))6

τ t+1 =

∑n
j=1

1
θ̃t

+ 1
s
t+1
j

r
t+1
j

s
t+1
j

+ θ̄t

θ̃t

ᾱt+1
j

∑n
j=1

1− τ t + τt√
θ̃t

√
1
θ̃t

+ 1
st+1
j

exp

(
r
t+1
j

s
t+1
j

+ θ̄t

θ̃t

)2

2

(
1
θ̃t

+ 1
s
t+1
j

) − (θ̄t)2

2θ̃t

−1 (6.127)

θ̄t+1 =
∑n
j=1 ᾱ

t+1
j

nτ t+1 (6.128)

θ̃t+1 =
∑n
j=1(α̃t+1

j + (ᾱt+1
j)2)

nτ t+1 − (θ̄t+1)2 (6.129)

Note that Krzakala et al. do not make it clear (in either of [5], [6]) whether or not the iteration
dependence on the channel parameters (and thereby the ordering of the updates) are as given in
Equations (6.127) - (6.129). In [5] it is noted that the following heuristic rules should be used
together with the Equations (6.127), (6.128), (6.129)

• If the variance, θ̃t+1, becomes negative, it should be set to zero.

• If the signal density, τ t+1, becomes larger than the undersampling ratio δ, it should be set
to δ.

• A damping of 0.5 should be used on all EM updates. That is, the updated parameter values
should be taken to be the mean of the values of the updates in Equations (6.127), (6.128),
(6.129) and the respective previous values.

Schniter and Vila suggested the following EM recursions on the channel parameters for the i.i.d.
BG input channel [28] (Eqs. (34), (41), (47)), [39] (Eqs. (19), (25), (32))

τ t+1 = 1
n

∑
j

l (rt+1
j , st+1

j ; τ t, θ̄t, θ̃t) (6.130)

θ̄t+1 = 1
nτ t+1

n∑
j=1

l (rt+1
j , st+1

j ; τ t+1, θ̄t, θ̃t)g(rt+1
j , st+1

j ; τ t+1, θ̄t, θ̃t) (6.131)

θ̃t+1 = 1
nτ t+1

n∑
j=1

l (rt+1
j , st+1

j ; τ t+1, θ̄t+1, θ̃t)
(

|θ̄t+1 − g(rt+1
j , st+1

j ; τ t+1, θ̄t+1, θ̃t)|2 + h(rt+1
j , st+1

j ; τ t+1, θ̄t+1, θ̃t)
)

(6.132)

Where l , g , h are as defined in Equations (3.171), (3.166), and (3.167), respectively.
Based on the results in Equations (6.131) and (6.132), we may identify the following Gauss EM

6Eq. (74) in [6] lacks a set of parentheses to be equal to Equation (6.127). However, Eqs. (71) and (72) in [6]
suggest that Eq. (74) is to be interpreted as in Equation (6.127).

6.3. Parameter Initialisation 49

updates to be used in the GWS EM update framework described in Section 6.2.2.2

θ̄t+1 =

∑n
j=1

πw
j (rj , sj ,θtI)

θ̄t
j

θ̃t
j

+
rj
sj

1
θ̃t
j

+ 1
sj

τ t+1∑n

j=1 wj
(6.133)

θ̃t+1 =

∑n
j=1 π

w
j (rj , sj ,θtI)

∣∣∣∣∣∣∣θ̄t+1 −

 θ̄
t+1
j

θ̃t
j

+
rj
sj

1
θ̃t
j

+ 1
sj

∣∣∣∣∣∣∣
2

+ 1
θ̃t
j
+ 1
sj

τ t+1∑n

j=1 wj
(6.134)

(6.135)

6.3 Parameter Initialisation

Since the GAMP and EM algorithms are only guaranteed to converge to local optima, proper
parameter initialisation is important. The various proposed ways to initialise the GAMP states
are reproduced in the respective GAMP implementations in Algorithms 1, 2, and 3. Below we
summarise the various proposed EM initialisations.

6.3.1 EM Initialisation of the AWGN Output Channel Parameters
For the AWGN output channel EM update in Equation (6.32), Vila and Schniter [28] (Eq. (71))
suggested the following initialisation

σ2
0 = ||y||22

m(SNR0 + 1)
(6.136)

For some assumed true signal-to-noise ratio SNR0 = ||Aα||22
||e||22

. In lack of knowledge of the true
signal-to-noise ratio, SNR0 = 100 is proposed.

6.3.2 EM Initialisation of the AWLN Output Channel Parameters
For the AWLN output channel EM update in Equation (6.34), Vila and Schniter [40] (Eq. (67))
suggested the following initialisation

λ0 = 1 (6.137)

6.3.3 EM initialisation of the i.i.d. Sparse Bernoulli-Gauss Input Channel
Parameters

For the i.i.d. BG input channel EM updates in Equations (6.127) - (6.129), Krzakala et al. [5]
(Eq. (80)) suggested the following initialisation

τ0 = δ

10 (6.138)

θ̄0 = 0 (6.139)

θ̃0 = ||y||22
τ0||A||2F

(6.140)

Vila and Schniter [39] (Eqs. (39), (40)), [28] (Eqs. (70), (71)) suggested the following initialisation

τ0 = δρSE(δ) (6.141)
θ̄0 = 0 (6.142)

θ̃0 = ||y||
2
2 −mσ2

0
τ0||A||2F

(6.143)

50 Chapter 6. Parameter Learning

when using the AWGN output channel EM initialisation in Equation (6.136) and with ρSE the
theoretical LASSO phase transition curve [2] given by

ρSE(δ) = max
c>0

1− ζ
δ [(1 + c2)ΦN (−c)− cφN (c)]

1 + c2 − 2[(1 + c2)ΦN (−c)− cφN (c)] (6.144)

for ζ = 2 (sparse signed vectors). When using the AWLN output channel, Schniter and Vila
suggested using σ2

0 = 1 [40] (Eq. (67)).

6.3.4 EM Initialisation of the i.i.d. Sparse Bernoulli-Laplace Input Channel
Parameters

For the i.i.d. BL input channel EM updates in Equations (6.127), (6.101), and (6.124) when used
with an AWGN output channel, we suggest the following initialisation

τ0 = δρSE(δ) (6.145)
µ0 = 0 (6.146)

λ0 =
√√√√ 2
||y||22−mσ2

0
τ0||A||2F

(6.147)

That is, an initialisation based on Equations (6.141)-(6.143) but with λ initialised based on the
variance of a Laplace distributed random variable being 2

λ2 .

7 GAMP Software

Various software packages include implementations of the GAMP algorithms described in this
note. Here we briefly describe a few of them.

7.1 Magni GAMP Implementation

Magni is a Python package which enables reconstruction of undersampled Atomic Force Microscopy
(AFM) images [58]. The magni.cs.reconstruction.gamp and magni.cs.reconstruction.amp
subpackages, which are part of Magni version ≥ 1.6.0, provide an implementation of GAMP in
Python by the authors of the present tech report. The Magni package is fully documented, has
an extensive test suite, makes use of an input validation framework [59], and comes with tools for
aiding in making computational results reproducible [60]. Related links are:

• Online documentation: http://magni.readthedocs.io/en/latest/

• Official source repository: http://dx.doi.org/10.5278/VBN/MISC/Magni

• GitHub repository: https://github.com/SIP-AAU/Magni

7.1.1 Magni GAMP Overview
The magni.cs.reconstruction.amp subpackage provides an implementation of the AMP algo-
rithm by Donoho/Maleki/Monatnari described in Section 2.1. As of Magni version 1.7.0, the
subpackage consists of the following modules:

• _algorithm: The base algorithm implementation which is available through
magni.cs.reconstruction.amp.run.

• _config: Configuration module available through magni.cs.reconstruction.amp.config
for choosing stop criterion, max iterations, threshold, etc.

• stop_criterion: Implementations of the stop criteria discussed in Section 5.1.

• threshold_operator: Implementations of threshold operators for DMM AMP as discussed
in Section 2.1.

• util: Utilities for use in the AMP algorithm.

The magni.cs.reconstruction.gamp subpackage provides an implementation of the MMSE GAMP
algorithm detailed in Algorithm 1 and the MMSE GAMP with Rangan sum approximations de-
tailed in Algorithm 3. For both algorithms it also offers the damping option from [20]. As of
Magni version 1.7.0, the GAMP subpackage consists of the following modules:

• _algorithm: The base algorithm implementation which is available through
magni.cs.reconstruction.gamp.run.

• _config: Configuration module available through magni.cs.reconstruction.gamp.config
for choosing stop criterion, max iterations, in- and output channels, etc.

• channel_initialisation: Implementations of the in- and output channel EM initialisations
described in Section 6.3.

• input_channel: Implementations of the input channels discussed in Sections 3.1, 3.4, 3.5,
and 3.7 with EM updates as discussed in Section 6.2.2.

• output_channel: Implementations of the output channels discussed in Sections 3.2 and 3.6
with EM updates as discussed in Section 6.2.1

• stop_criterion: Implementations of the stop criteria discussed in Section 5.1.

http://magni.readthedocs.io/en/latest/
http://dx.doi.org/10.5278/VBN/MISC/Magni
https://github.com/SIP-AAU/Magni

52 Chapter 7. GAMP Software

7.2 GAMPMatlab Implementation

The GAMPMatlab Toolbox is an implementation of GAMP in MATLAB [61]. The GAMPMatlab
Toolbox is maintained by Phillip Schniter and Sundeep Rangan and has contributions from several
coauthors of the various GAMP algorithms and extensions. Related links are:

• Online documentation: http://gampmatlab.wikia.com/wiki/Generalized_Approximate_
Message_Passing

• Official source repository: https://sourceforge.net/projects/gampmatlab/

• SVN repository: svn.code.sf.net/p/gampmatlab/code/

7.3 BPCS AMP Implementation

The BPCS AMP package is another MATLAB based implementation of AMP which has been
developed by Jean Barbier in connection with his PhD studies [62]. Related links are:

• GitHub repository: https://github.com/jeanbarbier/BPCS/

7.4 Vampyre

Vampyre is a joint collaboration on a Python implementation of GAMP algorithms by many of the
authors of the works on GAMP. It has yet to kick-off, but may potentially become the reference
GAMP implementation.

• GitHub repository https://github.com/GAMPTeam/vampyre

http://gampmatlab.wikia.com/wiki/Generalized_Approximate_Message_Passing
http://gampmatlab.wikia.com/wiki/Generalized_Approximate_Message_Passing
https://sourceforge.net/projects/gampmatlab/
svn.code.sf.net/p/gampmatlab/code/
https://github.com/jeanbarbier/BPCS/
https://github.com/GAMPTeam/vampyre

8 GAMP Extensions

A significant number of works on various extensions of the GAMP algorithm for specific appli-
cations have been published. Here, as a reference, we list (in no particular order) some of these
works.

• Markov-tree / Markov-random-field priors [33], [63], [64].

• Learning based priors [65]

• Phase retrieval [66].

• Hyperspectral image unmixing [67], [68].

• Linearly constrained non-neagtive sparse signals [40], [69].

• Non-stationary signals [70], [71].

• Multiple measurement vectors [72], [73].

• Classification and feature selection [74], [75].

• Low rank matrix completion [76].

• Spatially coupled structured operators [77].

• Total Variation like prior [78]

• Analysis compressive sensing [79].

• Quantized measurements [80], [81].

• Magnetic resonance imaging [82].

References

[1] S. Rangan, “Generalized Approximate Message Passing for Estimation with Random Linear
Mixing,” in IEEE International Symposium on Information Theory (ISIT), St. Petersburg,
Russia, Jul. 31 – Aug. 5, 2011, pp. 2168–2172. doi:10.1109/ISIT.2011.6033942

[2] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed
sensing,” Proceedings of the National Academy of Sciences of the United States of America,
vol. 106, no. 45, p. 18914–18919, Nov. 2009. doi:10.1073/pnas.0909892106

[3] ——, “Message Passing Algorithms for Compressed Sensing: I. Motivation and Construction,”
in IEEE Information Theory Workshop (ITW), Cairo, Egypt, Jan. 6 – 8, 2010, p. 5.
doi:10.1109/ITWKSPS.2010.5503193

[4] ——, “Message Passing Algorithms for Compressed Sensing: II. Analysis and Validation,”
in IEEE Information Theory Workshop (ITW), Cairo, Egypt, Jan. 6 – 8, 2010, p. 5.
doi:10.1109/ITWKSPS.2010.5503228

[5] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, “Probabilistic reconstruction
in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices,”
Journal of Statistical Mechanics: Theory and Experiment, vol. P08009, pp. 1–57, Aug. 2012.
doi:10.1088/1742-5468/2012/08/P08009

[6] F. Krzakala, M. Mézard, F. Sausset, Y. F. Sun, and L. Zdeborová, “Statistical-Physics-
Based Reconstruction in Compressed Sensing,” Physical Review X, vol. 2, no. 2, pp.
(021 005–1)–(021 005–18), May 2012. doi:10.1103/PhysRevX.2.021005

[7] D. Donoho and J. Tanner, “Observed universality of phase transitions in high-dimensional
geometry, with implications for modern data analysis and signal processing,” Philosophical
Transactions of the Royal Society A, vol. 367, no. 1906, pp. 4273–4293, Nov. 2009.
doi:10.1098/rsta.2009.0152

[8] L. Zdeborová and F. Krzakala, “Statistical physics of inference: Thresholds and algorithms,”
Jul. 2016, arxiv:1511.02476v4.

[9] A. Montanari, “Graphical models concepts in compressed sensing,” in Compressed Sensing:
Theory and Applications, Y. C. Eldar and G. Kutyniok, Eds. Cambridge University Press,
2012, ch. 9, pp. 394–438.

[10] M. Bayati and A. Montanari, “The Dynamics of Message Passing on Dense Graphs, with
Applications to Compressed Sensing,” IEEE Transactions on Information Theory, vol. 57,
no. 2, pp. 764–785, Feb. 2011. doi:10.1109/TIT.2010.2094817

[11] M. Bayati, M. Lelarge, and A. Montanari, “Universality In Polytope Phase Transitions And
Message Passing Algorithms,” The Annals of Applied Probability, vol. 25, no. 2, pp. 753–822,
Feb. 2015. doi:10.1214/14-AAP1010

[12] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and the Sum-Product
Algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519, Feb.
2001. doi:10.1109/18.910572

[13] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
1st ed., ser. Morgan Kaufmann Series in Representation and Reasoning. San Francisco,
California, USA: Morgan Kaufmann Publishers, Inc., 1988.

[14] F. Krzakala, A. Manoel, and E. W. Tramel, “Variational Free Energies for Compressed
Sensing,” in IEEE International Symposium on Information Theory (ISIT), Honolulu,
Hawaii, USA, Jun. 29 – Jul. 4, 2014, pp. 1499–1503. doi:10.1109/ISIT.2014.6875083

[15] J. T. Parker, “Approximate Message Passing Algorithms for Generalized Bilinear Inference,”
Ph.D. dissertation, Graduate School of The Ohio State University, 2014.

http://dx.doi.org/10.1109/ISIT.2011.6033942
http://dx.doi.org/10.1073/pnas.0909892106
http://dx.doi.org/10.1109/ITWKSPS.2010.5503193
http://dx.doi.org/10.1109/ITWKSPS.2010.5503228
http://dx.doi.org/10.1088/1742-5468/2012/08/P08009
http://dx.doi.org/10.1103/PhysRevX.2.021005
http://dx.doi.org/10.1098/rsta.2009.0152
http://dx.doi.org/10.1109/TIT.2010.2094817
http://dx.doi.org/10.1214/14-AAP1010
http://dx.doi.org/10.1109/18.910572
http://dx.doi.org/10.1109/ISIT.2014.6875083

References 55

[16] S. Rangan, “Generalized Approximate Message Passing for Estimation with Random Linear
Mixing,” Aug. 2012, arXiv:1010.5141v2.

[17] M. Bayati, M. Lelarge, and A. Montanari, “Universality in Polytope Phase Tran-
sitions and Iterative Algorithms,” in IEEE International Symposium on Information
Theory (ISIT), Cambridge, Massachusetts, USA, Jul. 1 – 6, 2012, pp. 1643–1647.
doi:10.1109/ISIT.2012.6283554

[18] A. Javanmard and A. Montanari, “State evolution for general approximate message passing
algorithms, with applications to spatial coupling,” Information and Inference, vol. 2, no. 2,
pp. 115–144, Dec. 2013. doi:10.1093/imaiai/iat004

[19] C. Rush and R. Venkataramanan, “Finite-Sample Analysis of Approximate Message
Passing,” in IEEE International Symposium on Information Theory (ISIT), Barcelona,
Spain, Jul. 10 – 15, 2016, pp. 755–759. doi:10.1109/ISIT.2016.7541400

[20] S. Rangan, P. Schniter, and A. Fletcher, “On the Convergence of Approximate Message
Passing with Arbitrary Matrices,” in IEEE International Symposium on Information
Theory (ISIT), Honolulu, Hawaii, USA, Jun. 29 – Jul. 4, 2014, pp. 236–240.
doi:10.1109/ISIT.2014.6874830

[21] B. Cakmak, O. Winther, and B. H. Fleury, “S-AMP: Approximate Message Passing
for General Matrix Ensembles,” in IEEE Information Theory Workshop (ITW), Hobart,
Tasmania, Australia, Nov. 2 – 5, 2014, pp. 192–196. doi:10.1109/ITW.2014.6970819

[22] ——, “S-AMP for Non-linear Observation Models,” in IEEE International Symposium
on Information Theory (ISIT), Hong Kong, China, Jun. 15 – 19, 2015, pp. 2807–2811.
doi:10.1109/ISIT.2015.7282968

[23] S. Rangan, A. K. Fletcher, P. Schniter, and U. S. Kamilov, “Inference for Generalized Linear
Models via Alternating Directions and Bethe Free Energy Minimization,” IEEE Transactions
on Information Theory, vol. 63, no. 1, pp. 676–697, Jan. 2017. doi:10.1109/TIT.2016.2619373

[24] J. Ma and L. Peng, “Orthogonal AMP,” IEEE Access, vol. 5, pp. 2020–2033, Jan. 2017.
doi:10.1109/ACCESS.2017.2653119

[25] S. Rangan, P. Schniter, E. Riegler, A. Fletcher, and V. Cevher, “Fixed Points of
Generalized Approximate Message Passing with Arbitrary Matrices,” in IEEE International
Symposium on Information Theory (ISIT), Istanbul, Turkey, Jul. 7–12, 2013, pp. 664–668.
doi:10.1109/ISIT.2013.6620309

[26] H. Monajemi, S. Jafarpour, M. Gavish, S. C. . Collaboration, and D. L. Donoho,
“Deterministic matrices matching the compressed sensing phase transitions of Gaussian
random matrices,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 110, no. 4, p. 1181–1186, Jan. 2013. doi:10.1073/pnas.1219540110

[27] Y. Wu and S. Verdú, “Optimal Phase Transitions in Compressed Sensing,” IEEE
Transactions on Information Theory, vol. 58, no. 10, pp. 6241–6263, Oct. 2012.
doi:10.1109/TIT.2012.2205894

[28] J. P. Vila and P. Schniter, “Expectation-Maximization Gaussian-Mixture Approximate
Message Passing,” IEEE Transactions on Signal Processing, vol. 61, no. 19, pp. 4658–4672,
Oct. 2013. doi:10.1109/TSP.2013.2272287

[29] H. Rauhut, “Compressive Sensing and Structured Random Matrices,” in Theoretical Founda-
tions and Numerical Methods for Sparse Recovery, ser. Radon Series on Computational and
Applied Mathematics, M. Fornasier, Ed. De Gruyter, 2010, vol. 9, pp. 1–92.

[30] T. T. Do, L. Gan, N. H. Nguyen, and T. D. Tran, “Fast and Efficient Compressive Sensing
Using Structurally Random Matrices,” IEEE Transactions on Signal Processing, vol. 60,
no. 1, pp. 139–154, Jan. 2012. doi:10.1109/TSP.2011.2170977

[31] J. Vila, P. Schniter, S. Rangan, F. Krzakala, and L. Zdeborová, “Adaptive
Damping and Mean Removal for the Generalized Approximate Message Passing
Algorithm,” in IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), South Brisbane, Queensland, Australia, Apr. 19 – 24, 2015, pp. 2021–2025.
doi:10.1109/ICASSP.2015.7178325

http://dx.doi.org/10.1109/ISIT.2012.6283554
http://dx.doi.org/10.1093/imaiai/iat004
http://dx.doi.org/10.1109/ISIT.2016.7541400
http://dx.doi.org/10.1109/ISIT.2014.6874830
http://dx.doi.org/10.1109/ITW.2014.6970819
http://dx.doi.org/10.1109/ISIT.2015.7282968
http://dx.doi.org/10.1109/TIT.2016.2619373
http://dx.doi.org/10.1109/ACCESS.2017.2653119
http://dx.doi.org/10.1109/ISIT.2013.6620309
http://dx.doi.org/10.1073/pnas.1219540110
http://dx.doi.org/10.1109/TIT.2012.2205894
http://dx.doi.org/10.1109/TSP.2013.2272287
http://dx.doi.org/10.1109/TSP.2011.2170977
http://dx.doi.org/10.1109/ICASSP.2015.7178325

56 References

[32] S. Som and P. Schniter, “Compressive Imaging Using Approximate Message Passing and a
Markov-Tree Prior,” IEEE Transactions on Signal Processing, vol. 60, no. 7, pp. 3439–3448,
Jul. 2012. doi:10.1109/TSP.2012.2191780

[33] P. Schniter, “Turbo Reconstruction of Structured Sparse Signals,” in 44th Annual Conference
on Information Sciences and Systems (CISS), Princeton, New Jersey, USA, Mar. 17 – 19,
2010, p. 6. doi:10.1109/CISS.2010.5464920

[34] A. Maleki and A. Montanari, “Analysis of Approximate Message Passing Algorithm,” in
44th Annual Conference on Information Sciences and Systems (CISS), Princeton, New York,
USA, Mar. 17–19, 2010. doi:10.1109/CISS.2010.5464887

[35] M. R. Andersen, “Sparse inference using approximate message passing,” Master’s thesis, Tech-
nical University of Denmark, Department of Applied Mathematics and Computer Science,
Matematiktorvet, Building 303B, DK-2800 Kgs. Lyngby, Denmark, 2014.

[36] I. Daubechies, M. Defrise, and C. D. Mol, “An Iterative Thresholding Algorithm for
Linear Inverse Problems with a Sparsity Constraint,” Communications on Pure and Applied
Mathematics, vol. 57, no. 11, pp. 1413–1457, Nov. 2004. doi:10.1002/cpa.20042

[37] A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear
Inverse Problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, Mar.
2009. doi:10.1137/080716542

[38] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Optimization and
Statistical Learning via the Alternating Direction Method of Multipliers,” Foundations and
Trends(R) in Machine Learning, vol. 3, no. 1, pp. 1–122, Jul. 2011. doi:10.1561/2200000016

[39] J. Vila and P. Schniter, “Expectation-Maximization Bernoulli-Gaussian Approximate
Message Passing,” in Forty Fifth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), Pacific Grove, California, USA, Nov. 6 – 9 2011, pp. 799–803.
doi:10.1109/ACSSC.2011.6190117

[40] J. P. Vila and P. Schniter, “An Empirical-Bayes Approach to Recovering Linearly
Constrained Non-Negative Sparse Signals,” IEEE Transactions on Signal Processing, vol. 62,
no. 18, pp. 4689–4703, Sep. 2014. doi:10.1109/TSP.2014.2337841

[41] J. Ziniel, “Message Passing Approaches to Compressive Inference Under Structured Signal
Priors,” Ph.D. dissertation, Graduate School of The Ohio State University, 2014.

[42] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, 2nd ed.,
ser. Wiley Series in Probability and Mathematical Statistics. Wiley-Interscience, 1994, vol. 1.

[43] D. R. Barr and E. T. Sherrill, “Mean and Variance of Truncated Normal Dis-
tributions,” The American Statistician, vol. 53, no. 4, pp. 357–361, Nov. 1999.
doi:http://doi.org/10.2307/2686057

[44] M. R. Zaghloul, “On the calculation of the Voigt line profile: a single proper integral with a
damped sine integrand,” Monthly Notices of the Royal Astronomical Society, vol. 375, no. 3,
pp. 1043–1048, Mar. 2007. doi:10.1111/j.1365-2966.2006.11377.x

[45] J. Vila and P. Schniter, “Expectation-Maximization Gaussian-Mixture Approximate Message
Passing,” in 46th Annual Conference on Information Sciences and Systems (CISS), Princeton,
New Jersey, USA, Mar. 21 – 23, 2012, p. 6. doi:10.1109/CISS.2012.6310932

[46] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations. SIAM, 1995.
[47] A. Maleki and D. L. Donoho, “Optimally Tuned Iterative Reconstruction Algorithms for

Compressed Sensing,” IEEE Journal Selected Topics in Signal Processing, vol. 4, no. 2, pp.
330–341, Apr. 2010. doi:10.1109/JSTSP.2009.2039176

[48] F. Caltagirone, L. Zdeborová, and F. Krzakala, “On Convergence of Approximate Message
Passing,” in IEEE International Symposium on Information Theory (ISIT), Honolulu,
Hawaii, USA, Jun. 29 – Jul. 4, 2014. doi:10.1109/ISIT.2014.6875146

[49] A. Manoel, F. Krzakala, E. W. Tramel, and L. Zdeborová, “Swept Approximate Message Pass-
ing for Sparse Estimation,” in 32nd International Conference on Machine Learning (ICML),
Lille, France, Jul. 6 – 11, 2015, p. 1123–1132.

http://dx.doi.org/10.1109/TSP.2012.2191780
http://dx.doi.org/10.1109/CISS.2010.5464920
http://dx.doi.org/10.1109/CISS.2010.5464887
http://dx.doi.org/10.1002/cpa.20042
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1109/ACSSC.2011.6190117
http://dx.doi.org/10.1109/TSP.2014.2337841
http://dx.doi.org/http://doi.org/10.2307/2686057
http://dx.doi.org/10.1111/j.1365-2966.2006.11377.x
http://dx.doi.org/10.1109/CISS.2012.6310932
http://dx.doi.org/10.1109/JSTSP.2009.2039176
http://dx.doi.org/10.1109/ISIT.2014.6875146

References 57

[50] J. P. Vila, “Empirical-Bayes Approaches to Recovery of Structured Sparse Signals via Approx-
imate Message Passing,” Ph.D. dissertation, Graduate School of The Ohio State University,
2015.

[51] U. Kamilov, S. Rangan, A. Fletcher, and M. Unser, “Approximate Message Passing with
Consistent Parameter Estimation and Applications to Sparse Learning,” in Advances in Neural
Information Processing Systems (NIPS) 25, P. Bartlett, F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, Eds. Lake Tahoe, California, USA: MIT Press, Dec. 3 – 6, 2012, pp. 2447–
2455.

[52] U. S. Kamilov, S. Rangan, A. K. Fletcher, and M. Unser, “Approximate Message
Passing With Consistent Parameter Estimation and Applications to Sparse Learning,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2969–2985, May 2014.
doi:10.1109/TIT.2014.2309005

[53] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse Solution of Underdetermined
Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit,” IEEE
Transactions on Information Theory, vol. 58, no. 2, pp. 1094–1121, Feb. 2012.
doi:10.1109/TIT.2011.2173241

[54] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete Data
via the EM Algorithm,” Journal of the Royal Statistical Society. Series B (Methodological),
vol. 39, no. 1, pp. 1–38, 1977.

[55] C. M. Bishop, Pattern Recognition and Machine Learning, ser. Information Science and Statis-
tics. Springer, 2006.

[56] R. M. Neal and G. E. Hinton, “A View of the EM Algorithm that Justifies Incremental,
Sparse, and Other Variants,” in Learning in Graphical Models, M. I. Jordan, Ed. MIT
Press, 1999, pp. 355–368. doi:10.1007/978-94-011-5014-9_12

[57] X.-L. Meng and D. B. Rubin, “Maximum Likelihood Estimation via the ECM Algorithm: A
General Framework,” Biometrika, vol. 80, no. 2, pp. 267–278, Jun. 1993. doi:10.2307/2337198

[58] C. S. Oxvig, P. S. Pedersen, T. Arildsen, J. Østergaard, and T. Larsen, “Magni: A Python
Package for Compressive Sampling and Reconstruction of Atomic Force Microscopy Images,”
Journal of Open Research Software, vol. 2, no. 1, p. e29, Oct. 2014. doi:10.5334/jors.bk

[59] P. S. Pedersen, C. S. Oxvig, J. Østergaard, and T. Larsen, “Validating Function Arguments
in Python Signal Processing Applications,” in Proceedings of the 15th Python in Science
Conference, Austin, Texas, USA, Jul. 11 – 17, 2016, pp. 106–113.

[60] C. S. Oxvig, T. Arildsen, and T. Larsen, “Storing Reproducible Results from Computational
Experiments using Scientific Python Packages,” in Proceedings of the 15th Python in Science
Conference, Austin, Texas, USA, Jul. 11 – 17, 2016, pp. 45–50.

[61] J. Ziniel, S. Rangan, and P. Schniter, “A Generalized Framework for Learning and Recovery
of Structured Sparse Signals,” in IEEE Statistical Signal Processing Workshop (SSP), Ann
Arbor, Michigan, USA, Aug. 5 – 8, 2012, pp. 325–328. doi:10.1109/SSP.2012.6319694

[62] J. Barbier, “Statistical Physics And Approximate Message Passing Algorithms for Sparse
Linear Estimation Problems in Signal Processing and Coding Theory,” Ph.D. dissertation,
École Normale Supérieure, 2015.

[63] S. Som, L. C. Potter, and P. Schniter, “Compressive Imaging using Approximate Message
Passing and a Markov-Tree Prior,” in Forty Fourth Asilomar Conference on Signals, Systems
and Computers (ASILOMAR), Pacific Grove, California, USA, Nov. 7 – 10, 2010, pp.
243–247. doi:10.1109/ACSSC.2010.5757509

[64] S. Som and P. Schniter, “Approximate Message Passing for Recovery of Sparse Signals with
Markov-Random-Field Support Structure,” in International Conference on Machine Learning
(ICML), Bellevue, Washington, USA, Jul. 2, 2011.

[65] E. W. Tramel, A. Dremeau, and F. Krzakala, “Approximate message passing with restricted
Boltzmann machine priors,” Journal of Statistical Mechanics: Theory and Experiment, vol.
2016, no. 7, pp. 1–15, Jul. 2016. doi:10.1088/1742-5468/2016/07/073401

http://dx.doi.org/10.1109/TIT.2014.2309005
http://dx.doi.org/10.1109/TIT.2011.2173241
http://dx.doi.org/10.1007/978-94-011-5014-9_12
http://dx.doi.org/10.2307/2337198
http://dx.doi.org/10.5334/jors.bk
http://dx.doi.org/10.1109/SSP.2012.6319694
http://dx.doi.org/10.1109/ACSSC.2010.5757509
http://dx.doi.org/10.1088/1742-5468/2016/07/073401

58 References

[66] P. Schniter and S. Rangan, “Compressive Phase Retrieval via Generalized Approximate
Message Passing,” IEEE Transactions on Signal Processing, vol. 63, no. 4, pp. 1043–1055,
Feb. 2015. doi:10.1109/TSP.2014.2386294

[67] J. Vila, P. Schniter, and J. Meola, “Hyperspectral Image Unmixing via Bilinear Generalized
Approximate Message Passing,” in Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery XIX, Proceedings of the SPIE, S. S. Shen
and P. E. Lewis, Eds., vol. 8743, Baltimore, Maryland, USA, Apr. 29, 2013, pp.
(87 430Y–1)–(87 430Y–9). doi:10.1117/12.2015859

[68] ——, “Hyperspectral Unmixing via Turbo Bilinear Approximate Message Passing,” IEEE
Transactions on Computational Imaging, vol. 1, no. 3, pp. 143 – 158, Sep. 2015.
doi:10.1109/TCI.2015.2465161

[69] J. Vila and P. Schniter, “An Empirical-Bayes Approach to Recovering Linearly Constrained
Non-Negative Sparse Signals,” in IEEE International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing (CAMSAP), St. Martin, France, Dec. 15 – 18, 2013, pp.
5–8. doi:10.1109/CAMSAP.2013.6713993

[70] J. Ziniel, L. C. Potter, and P. Schniter, “Tracking and Smoothing of Time-Varying Sparse
Signals via Approximate Belief Propagation,” in Forty Fourth Asilomar Conference on
Signals, Systems and Computers (ASILOMAR), Pacific Grove, California, USA, Nov. 7 – 10,
2010, pp. 808–812. doi:10.1109/ACSSC.2010.5757677

[71] J. Ziniel and P. Schniter, “Dynamic Compressive Sensing of Time-Varying Signals Via
Approximate Message Passing,” IEEE Transactions on Signal Processing, vol. 61, no. 21, pp.
5270–5284, Nov. 2013. doi:10.1109/TSP.2013.2273196

[72] ——, “Efficient Message Passing-Based Inference in the Multiple Measurement Vector
Problem,” in Forty Fifth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), Pacific Grove, California, USA, Nov. 6 – 9, 2011, pp. 1447–1451.
doi:10.1109/ACSSC.2011.6190257

[73] ——, “Efficient High-Dimensional Inference in the Multiple Measurement Vector Problem,”
IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 340–354, Jan. 2013.
doi:10.1109/TSP.2012.2222382

[74] J. Ziniel, P. Schniter, and P. Sederberg, “Binary Linear Classification and Feature Selection
via Generalized Approximate Message Passing,” in 48th Annual Conference on Information
Sciences and Systems (CISS), Princeton, New Jersey, USA, Mar. 19 – 21, 2014, pp. 1–6.
doi:10.1109/CISS.2014.6814160

[75] E. Byrne and P. Schniter, “Sparse Multinomial Logistic Regression via Approximate Message
Passing,” IEEE Transactions on Signal Processing, vol. 64, no. 21, pp. 5485–5498, Nov. 2016.
doi:10.1109/TSP.2016.2593691

[76] S. Rangan and A. K. Fletcher, “Iterative Estimation of Constrained Rank-One Matrices in
Noise,” in IEEE International Symposium on Information (ISIT), Cambridge, Massachusetts,
USA, Jul. 1 – 6, 2012, pp. 1246–1250. doi:10.1109/ISIT.2012.6283056

[77] J. Barbier, C. Schulke, and F. Krzakala, “Approximate message-passing with spatially
coupled structured operators, with applications to compressed sensing and sparse
superposition codes,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2015,
no. 5, p. P05013, May 2015. doi:10.1088/1742-5468/2015/05/P05013

[78] J. Barbier, E. W. Tramel, and F. Krzakala, “Scampi: a robust approximate message-passing
framework for compressive imaging,” in International Meeting on High-Dimensional
Data-Driven Science, ser. Journal of Physics: Conference Series, vol. 699, Kyoto, Japan,
Dec. 14 – 17, 2015, pp. 1–13. doi:10.1088/1742-6596/699/1/012013

[79] M. Borgerding, P. Schniter, J. Vila, and S. Rangan, “Generalized Approximate Message
Passing for Cosparse Analysis Compressive Sensing,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Queensland, Australia,
Apr. 19 – 24, 2015, pp. 3756–3760. doi:10.1109/ICASSP.2015.7178673

http://dx.doi.org/10.1109/TSP.2014.2386294
http://dx.doi.org/10.1117/12.2015859
http://dx.doi.org/10.1109/TCI.2015.2465161
http://dx.doi.org/10.1109/CAMSAP.2013.6713993
http://dx.doi.org/10.1109/ACSSC.2010.5757677
http://dx.doi.org/10.1109/TSP.2013.2273196
http://dx.doi.org/10.1109/ACSSC.2011.6190257
http://dx.doi.org/10.1109/TSP.2012.2222382
http://dx.doi.org/10.1109/CISS.2014.6814160
http://dx.doi.org/10.1109/TSP.2016.2593691
http://dx.doi.org/10.1109/ISIT.2012.6283056
http://dx.doi.org/10.1088/1742-5468/2015/05/P05013
http://dx.doi.org/10.1088/1742-6596/699/1/012013
http://dx.doi.org/10.1109/ICASSP.2015.7178673

References 59

[80] U. Kamilov, V. K. Goyal, and S. Rangan, “Generalized Approximate Message Passing
Estimation from Quantized Samples,” in 4th IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), San Juan, Puerto Rico, Dec. 13
– 16, 2011, pp. 365–368. doi:10.1109/CAMSAP.2011.6136027

[81] ——, “Optimal Quantization for Compressive Sensing under Message Passing Reconstruc-
tion,” in IEEE International Symposium on Information Theory (ISIT), St. Petersburg,
Russia, Jul. 31 – Aug. 5, 2011, pp. 459–463. doi:10.1109/ISIT.2011.6034168

[82] K. Sung, B. L. Daniel, and B. A. Hargreaves, “Location Constrained Approximate Message
Passing for Compressed Sensing MRI,” Magnetic Resonance in Medicine, vol. 70, no. 2, p.
370–381, Aug. 2013. doi:10.1002/mrm.24468

http://dx.doi.org/10.1109/CAMSAP.2011.6136027
http://dx.doi.org/10.1109/ISIT.2011.6034168
http://dx.doi.org/10.1002/mrm.24468

	Front page
	Contents
	1 Introduction
	1.1 Contributions Overview
	1.2 Background
	1.3 Motivation
	1.4 Derivation
	1.5 Notation

	2 The GAMP Iteration
	2.1 Relation to Donoho/Maleki/Montanari AMP
	2.2 Relation to IST, ISTA, and ADMM

	3 MMSE Channel Functions
	3.1 Input Side Channel Functions
	3.2 Output Side Channel Functions:
	3.3 MMSE Channel Functions in General
	3.4 General Sparse Input Channel
	3.5 General Weighted Sparse Input Channel
	3.6 Analytic Expressions for Common Output Channels
	3.7 Analytic Expressions for Common Input Channels

	4 Sum Approximations
	4.1 The Sum Approximation by Krzakala et al.
	4.2 The Sum Approximation by Rangan

	5 Implementations of the GAMP Iteration
	5.1 Stop Criteria
	5.2 Damping and Other Methods for Improving Convergence

	6 Parameter Learning
	6.1 Variance Estimates
	6.2 Expectation Maximization (EM)
	6.3 Parameter Initialisation

	7 GAMP Software
	7.1 Magni GAMP Implementation
	7.2 GAMPMatlab Implementation
	7.3 BPCS AMP Implementation
	7.4 Vampyre

	8 GAMP Extensions
	References

