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Abstract—Virtual impedance, angle droop and frequency 
droop control play important roles in maintaining system 
stability, and load sharing among distributed generators (DGs) in 
microgrid. These approaches have been developed into three 
totally independent concepts, but present strong relevance. In this 
letter, their similarities and differences are significantly revealed. 
Some new findings are established as follows: 1) angle droop 
control is intrinsically a virtual impedance method; 2) virtual 
impedance method can also be regarded as a special frequency 
droop control with a power derivative feedback; 3) the 
combination of virtual impedance method and frequency droop 
control is equivalent to the proportional–derivative (PD) type 
frequency droop, which is introduced to enhance the power 
oscillation damping. As a whole, these analogous relationships 
provide the new insight into the design of these three controllers.  
 

Index Terms—Droop control, microgrid, virtual impedance.  

I.  INTRODUCTION 
ICROGRID is a future trend of integrating renewable 
generation units in distribution energy system, which 

generally consists of various inverter-based distributed 
generators (DGs). In islanded microgrid, the voltage/frequency 
stability and accurate load sharing are two important tasks. As 
three dominated solutions, virtual impedance, angle droop and 
frequency droop control have been separately developed for 
over a decade. 

Virtual impedance method is early introduced to shape 
desired output impedances in uninterruptible power systems 
[1]. Then, it’s widely utilized to decouple P-Q and eliminate 
reactive-power differences in microgrid due to the line 
impedance mismatch [2]-[3].  

The angle droop control is developed to ensure proper load 
sharing in a rural distribution networks with highly resistive 
lines [4]. As it directly regulates the converter output voltage 
angle, a significant steady-state frequency drop is avoided.  

The conventional P-ω frequency droop control is firstly 
proposed to achieve power sharing in parallel inverters without 
communication [5]. The basic idea of this control manner is to 
mimic the behavior of synchronous generators [6]. In addition, 
a larger value of droop gains improves power sharing accuracy, 
but increases the deviation of frequency/voltage from their 
normal values, resulting in a tradeoff [7].  

Generally, virtual impedance method, angle droop and 
frequency droop control are utilized with different purposes in 
microgrid. But, sometimes they produce similar effects: 1) 
both virtual impedance and angle droop control are practicable 
to the highly resistive lines of microgrid; 2) the reactive power 
sharing can be ameliorated by regulating virtual impedance 
and Q-V droop gain, respectively. To explain these phenomena, 

the analogous relationships among them are discussed in this 
letter. Firstly, this study provides a new insight to treat virtual 
impedance. In fact, virtual impedance can be regarded as a P-δ 
and Q-V feedback control, which is similar to angle droop. 
Secondly, after taking the derivative form of angle droop, the 
equivalent character of virtual impedance is inherently a 
derivative type P-ω frequency droop and proportional type Q-
V droop control. Thirdly, by combining frequency droop and 
virtual impedance method, a modified PD type P-ω frequency 
droop control is obtained to improve transient stability.  

II.  COMPARING VIRTUAL IMPEDANCE WITH DROOP CONTROL 
A.  Fundamental Concept of Frequency Droop 

The conventional frequency droop control is expressed as 
follows in the inductive wires of AC microgrid [5]. 

*                             (1)r mPω ω= −
 

*                            (2)rV V nQ= −
 

where ωr and Vr are the angular frequency and voltage 
amplitude references of a voltage source inverter (VSI), 
respectively. ω* and V* represent values of ω and V at no load, 
and m and n are droop gains of P-ω and Q-V, respectively. P 
and Q are the output average active and reactive power of VSI. 

VSI
+
-
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Fig. 1.  Equivalent output voltage source considering virtual impedance. 

B.  Equivalence of Virtual Impedance and Angle Droop 
The virtual impedance method is used to shape the output 

impedance of a VSI, as shown in Fig.1 [1]. It drops the output 
voltage reference proportionally to the output current. 

                                  (3)o r v ov v Z i= −  
where v v vZ R jX= + is the virtual impedance. o o ov V δ= ∠  and 

oi  are the output voltage and current, respectively. r r rv V δ= ∠
is the voltage reference of voltage-current dual closed loop.  

According to Fig.1, we have  
*( )r r o o

v v

V V
o o R jXV P jQδ δδ ∠ − ∠

+∠ = +                     (4) 

     By substituting output power for output current in (3), 
power flowing through virtual impedance yields the associated 
voltage drop V∆ and phase angle difference vδ . Simplifying 
(4) yields the following equations 

                     (5)v v
r o

o

R P X Q
V V V

V
+

∆ = − ≅  

                      (6)v v
v r o

o r

X P R Q
V V

δ δ δ
−

= − ≅  
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where rV ,and rδ  are magnitude and angle of  the reference 
voltage, respectively. oV  and oδ  are magnitude and angle of  
the output voltage, respectively. 

For simplicity, rV and oV are replaced by *V because their 
voltage magnitude lie in the acceptable range of the nominal 
voltage deviation. Moreover, when the virtual impedance is 
pure inductance, (5)-(6) are given by 

                           (7)o r dm Pδ δ= −  
                            (8)o r dV V n Q= −  

where 

*2 * ;                            (9)v v
d d

X X
m n

V V
= =

 
From (7) and (8), virtual impedance is regarded as a P-δ 

and Q-V feedback control. Especially, the form of (7) is 
equivalent to angle droop in [4], and the form of (8) is the 
conventional Q-V droop control. Reference [4] has proved 
that larger coefficients dm and dn can greatly improve the 
power sharing. Actually, it means that a larger virtual 
inductance is adopted to ameliorate line impedance 
mismatches. Thus, the equivalence provides a physical-
based insight to tune the parameters of angle droop control.

 
C.  Analogy between Angle Droop and Frequency Droop 

By taking the derivative from the both sides of (7), the 
equivalent character of virtual inductance is given by 

                           (10)o r d
dPm
dt

ω ω= −  

where rω is the angular frequency of voltage reference. 
Usually, a pure derivative term of active power is replaced by 
a high-pass filter to suppress interference. Thus, the transient 
droop function (10) takes the form 

                       (11)d
o r

c

m s
P

s
ω ω

ω
= −

+
 

where cω is the cutoff frequency of the high-pass filter. 
From (11), virtual inductance method can be viewed as a 

special P-ω frequency droop control, whose droop gain is a 
washout high-pass filter [8]. In contrast to the static feedback 
of (1), the washout filter-based active power sharing doesn’t 
cause the frequency deviation. In addition, it should be noted 
that the proposed washout filter-based reactive power sharing 
in [8] cannot improve the reactive power sharing.  

D.  Improved Droop Control by Combining Virtual Impedance 
Method and Frequency Droop 

Usually, virtual impedance and frequency droop control are 

simultaneously adopted. Therefore, a modified droop control is 
presented as follows by substituting (1)-(2) into (8)-(10) 

*                        (12)o d
dPmP m
dt

ω ω= − −  

*= ( )                                 (13)o dV V n n Q− +  
Clearly, the P-ω droop is changed to a PD type frequency 

droop control in (12). According to (13), an equivalent Q-V 
droop gain nd resulting from virtual impedance, is added to 
improve reactive power sharing. 

III.  SMALL SIGNAL ANALYSIS  
Small-signal analysis of (12) is an effective tool to reflect 

the power angle response. According to Fig.1, the output 
active power of VSI is expressed as [1] 

2

cos( ) cos            (14)o g g
l

V V V
P

Z Z
θ δ θ= − −  

where Z andθ are the magnitude and phase of the output line 
impedance. g gV δ∠  is the common bus voltage. lδ is the power 
angle, expressed as 

                             (15)l o gδ δ δ= −  
Using the linearized model (14)-(15), the corresponding 

transient model around the steady-state is formed. 
1 ;   - ( - )      (16)P l l o g o gP k
sδ δ δ δ δ ω ω∆ = ∆ ∆ = ∆ ∆ = ∆ ∆  

where /P lk Pδ δ= ∂ ∂ is a differential coefficient. 
In consideration of the low-pass power filter, the output 

characteristic of modified droop in (12) is given by 
*                   (17)

1
d

o
m m s

P
s

ω ω
τ
+

∆ = ∆ − ∆
+

 

Substituting (17) in (16) yields 

*
2

( 1)
( )       (18)

(1 )
P

g
d P P

s k
P

s m k s mk
δ

δ δ

τ
ω ω

τ
+

∆ = ∆ −∆
+ + +  

For a typical second-order model of characteristic equation 
in (18), the damping ratio ζ  is obtained 

1
                                 (19)

2
d P

P

m k
mk

δ

δ

ζ
τ

+
=  

By tuning parameters, τ and md, the transient response can 
be regulated appropriately without compromising steady state. 
The function of the derivative feedback is to enhance the 
damping of power oscillation and dynamic stability. 
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TABLE I.    
The Analogous Relationships Among Virtual Impedance Method, Angle Droop and Frequency Droop In AC Microgrid 

Equivalent feedback control Advantages Potential drawbacks 

Virtual impedance control (3)  Without communication 
 Constant frequency regulation 
 Improved power sharing performance 
 Not affected by the physical parameters 

 One DOF  Cannot guarantee accuracy power sharing 
 Require global positioning system (GPS) 

signals to synchronize DGs 
 Marginally stable system, poor robustness 
 Slow dynamic response 

Angle droop control (7) 
 Two DOF 

Washout filter-based method (11) 

Frequency droop+ Virtual impedance 
(1)+(3) 

 Without communication 
 Accuracy active power sharing 
 Satisfactory transient progress 
 Robust to system parameters 

 One DOF  Frequency deviation 
 Require relatively high bandwidth for 

controller PD type frequency droop (13)  Two DOF 

Furthermore, as virtual inductance only provides one degree 
of freedom (DOF) in (9), md and nd are dependent. Therefore, 
transient response and reactive power sharing cannot be 
separately regulated by virtual inductance. Alternatively, the 
modified droop control in (12)-(13) should be adopted. On the 
whole, the analogous relationships among these control 
strategies are presented in Table I. 

IV.  SIMULATION RESULTS 
To verify the unified control law between the conventional 

droop control with virtual impedance and the modified droop 
control (12)-(13), the control scheme and simulation model 
with three parallel-connected DGs are built in Fig. 2.  

Firstly, the frequency droop control (1)-(2) with gains 
43 10m −= ×  and 31 10n −= ×  is tested as shown in Fig. 3(a.1)-

(c.1). Secondly, virtual reactance 0.9 vX = Ω  is added in Fig. 
3(a.2)-(c.2). Finally, according to equivalent relationship of (9), 

51 10dm −= ×  and 33 10dn −= ×  are adopted，instead of virtual 
impedance, whose results are shown in Fig. 3(a.3)-(c.3).  

Fig.3 reveals that frequency droop plus virtual impedance 
have the equivalent functions to the modified droop (12)-(13) 
in respects of improving the transient response and reactive 
power sharing accuracy.  

V.  CONCLUSION 
After comparing three different concepts, virtual impedance 

method, angle droop and frequency droop control, the inherent 
relationships are established in this letter. Three important 

viewpoints are pointed out: 1) virtual impedance, angle droop 
and washout filter-based method are equivalent each other; 2) 
virtual impedance is in consistency with the Q-V droop gain to 
improve power sharing; 3) an improved frequency droop with  
a power derivative feedback is introduced to damp the power 
oscillatory and improve the transient response. 

VI.  REFERENCES 
[1] J. M. Guerrero, L. GarciadeVicuna, and J. Matas, "Output impedance 

design of parallel-connected UPS inverters with wireless load-sharing 
control," IEEE Trans. Ind. Electron., vol.52, no.4, pp.1126-1135, 
Aug.2005. 

[2] J. He and Y. Li, "Analysis, design, and implementation of virtual 
impedance for power electronics interfaced distributed generation," IEEE 
Trans. Ind. Appl., vol.47, no.6, pp. 2525-2538, Nov. 2011. 

[3] H. Mahmood, D. Michaelson, and J. Jiang, "Accurate reactive power 
sharing in an islanded microgrid using adaptive virtual impedances," 
IEEE Trans. Power Electron., vol.30, no.3, pp. 1605-1617, Mar.2015. 

[4] R. Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti, and F. Zare, 
"Droop control of converter-interfaced microsources in rural distributed 
generation, " IEEE Trans. Power Del., vol. 25, no. 4, pp.2768-2778, Oct. 
2010. 

[5] M. C, Chandorkar, D. M. Divan, and R. Adapa, "Control of parallel 
connected inverters in standalone ac supply systems," IEEE Trans. Ind. 
Appl., vol.29, no.1 pp.136-143, Jan.1993. 

[6] S. D’Arco and J. A. Suul, "Equivalence of virtual synchronous machines 
and frequency-droops for converter-based microgrids, " IEEE Trans. 
Smart Grid, vol. 5, no. 1, pp. 394-395, Jan. 2014. 

[7] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. 
Castilla, "Hierarchical control of droop-controlled AC and DC 
microgrids—A general approach toward standardization," IEEE Trans. 
Ind. Electron.,vol. 58, no. 1, pp. 158-172, Jan. 2011. 

[8] M. Yazdanian and A. Mehrizi-Sani,"Washout filter-based power 
sharing," IEEE Trans. Smart Grid, vol.7, no.2, pp.967-968, Mar.2016. 

 

fC
g

v

fL

Average
Power 

Calculation

oi
fi

Droop 
Control
(1)-(2)

Voltage 
Control

Loop

Current 
Control

Loop

P
W
M

1
s+

+

−

−
Q

P
2

dm s
s +

dn

−

rω

rV

Power 
Control Loop

−
−

Virtual Impedance
50

vX s
s +

+ -

Common 
Load

2lineL2lineR

3lineL3lineR

Line Impedance

DG-2

0.3 0.44j+ Ω

0.4 0.56j+ Ω

0.5 0.63j+ Ω

DG-3

VSI

ReferenceVoltage 

r
v

ov
Output Voltage 

Bus Voltage 

DG-1

3mH

20 Fm

 
Fig. 2.  Control schematic and test model of simulations in Matlab/simulink.  
 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yazdanian%2C%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mehrizi-Sani%2C%20A..QT.&newsearch=true


www.microgrids.et.aau.dk 

A
ct

iv
e 

Po
w

er
 

(k
W

)

0.5

1.5

2.5

0 0.5 1 1.5 2(a.1)

0 0.5 1 1.5 2 2.5 3

R
ea

ct
iv

e 
Po

w
er

 
(k

V
ar

)

0.5
1.5
2.5
3.5

(b.1)

Load change

Load change
0 0.5 1 1.5 2

R
ea

ct
iv

e 
Po

w
er

 
(k

V
ar

)

1

2

3
0 0.5 1 1.5 2 2.5

A
ct

iv
e 

Po
w

er
 

(k
W

)

0.5

1.5

2.5

(a.3)

(b.3)
Load change

Load change

R
ea

ct
iv

e 
Po

w
er

 
(k

V
ar

)

Load change
0 0.5 1 1.5 2

1

2

3

(b.2)

0 0.5 1 1.5 2

A
ct

iv
e 

Po
w

er
 

(k
W

)

0.5

1.5

2.5

Load change

(a.2)

Conventional Frequency Droop (1)-(2) Frequency Droop +Virtual Reactance (1)-(2) + (3) Modified Frequency Droop (12)-(13)

(c.1)
Time (s) Time (s)

(c.2)
Time (s)

(c.3)

P1
P2
P3

P1
P2
P3

P1
P2
P3

Q1
Q2
Q3

Q1
Q2
Q3

Q1
Q2
Q3

-5
0
5

10
15
20 x 10-3

 P
ow

er
 A

ng
le

 
(r

ad
)

0 0.5 1 1.5 2 2.5 3

1gδ
2gδ
3gδ

2
4
6
8

10
12 x 10-3

0 0.5 1 1.5 2 2.5 3

 P
ow

er
 A

ng
le

 
(r

ad
)

1gδ
2gδ
3gδ

x 10-3

2
4
6

10
12

8

0 0.5 1 1.5 2 2.5 3

 P
ow

er
 A

ng
le

 
(r

ad
)

1gδ
2gδ
3gδ

 
Fig. 3.  Comparisons of (a) active power, (b) reactive power, and (c) power angle under three methods.  
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