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Abstract: In this paper, a (switching) sliding mode controller, applied to a mechanical system
with additive white process noise, is investigated. The practical relevance of this study is a
statistical characterization of system performance in terms of the stationary variance of the
control error.
The system is modeled with a two-dimensional stochastic differential equation, whose coordinate
functions to an extend are analyzed separately. In order to determine the stationary variance of
one of the coordinate functions, the auto-correlation function for the other coordinate function
is approximated with a Fourier series. Finally, analytical results are compared to results from
Euler-Maruyama simulation over a wide range of model parameter settings.
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1. INTRODUCTION

Sliding mode control is a nonlinear control method which
typically applies a discontinuous control signal to force
a system to behave according to prescribed closed loop
dynamics. Essentially, the control procedure consists of
two parts: Firstly, the controller forces the system state
to approach a so called sliding surface and, secondly, to
slide along the surface towards the operating point. Near
the operating point, the main purpose of the sliding mode
controller is to keep this position and respond accordingly
to any external disturbance (noise) which affects the
system. The sliding surface is found as the sub-manifold of
the desired closed loop dynamics. Robustness to external
disturbances is achieved by the design of a feedback
control, which is discontinuous across the sliding surface.
The discontinuity creates in practice rapid switching and
in theory additional challenges w.r.t. e.g. existence and
uniqueness of solutions to model equations.

The discontinuity induced by the controller brings the
main challenges in the analysis of the system and is a
main motivation behind the investigations of the switching
dynamics. A solid amount of literature exists on the
application and analysis of sliding mode control. Among
others, see Utkin et al. (1999); Liu and Wang (2012).
Recent papers on application of sliding mode control are
Herrera et al. (2015); Sakamoto et al. (2016).

In this paper, the system is modeled with stochastic differ-
ential equations (SDEs). Solutions to the SDE’s are then
considered by using appropriate approximations of prac-
tical implementations of switching, where the latter may
include various imprecisions such as delay, hysteresis and
continuous approximation of switching discontinuity. As a
result, the system is represented with a two-dimensional

SDE with discontinuous drift coefficient and constant dif-
fusion coefficient.

Solutions to SDEs have over a long period been a subject
of great interest, both in the form of existence, unique-
ness, explicit closed form solutions and construction of
numerical approximations, see Kloeden and Platen (1992);
Øksendal (2003); Mao and Yuan (2006). Whereas exis-
tence and uniqueness are established for the discontinu-
ous bounded drift case (see Zvonkin (1974); Veretennikov
(1981)), it is not yet proven for SDEs with unbounded
discontinuous drift coefficients. Neither specific charac-
teristics such as transient and stationary distributions,
nor auto- and cross-covariance characteristics have been
established for SDEs with discontinuous drift coefficient.

In order to apply some of the known results on SDEs with
discontinuous bounded drift, a coordinate transformation
of the system is introduced. This transformation implies
that the discontinuous dynamics is isolated to only one
of the coordinate functions of the two-dimensional SDE,
which, additionally, has bounded drift coefficient. By this
approach we are able to initiate the study of the two-
dimensional SDE through well-known existence results of
one of its coordinate functions. We apply the theory of
Fourier series to the Fokker-Planck equation for the SDE
with discontinuous bounded drift coefficient (Sundarara-
jan (2001); Risken (1989)). This gives, by approximation
methods, a time-dependent conditional density function
from which an estimate on the auto-correlation is deduced.
Finally, by including the auto-correlation function into
the analysis of the variance, an estimate of the stationary
variance is determined.

Notation: Let x : Ω×R+ → S denote a (stochastic) process
on a probability space (Ω,Σ, P ) with values in the state
space S. Throughout this paper we suppress the processes
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dependency on the variable from the measure space (Ω,Σ),
that is, we write x(t) in place of x(·, t).
The outline of the paper is as follows: In section 2 we
provide the definition of the system, which is subject to
subsequent analysis. In section 3 we initiate the analysis of
system (3) through a coordinate transformation producing
new coordinate functions η1 and η2. In section 4 the η1
coordinate function is analyzed in order to give a bound
on its variance. To estimate the variance of η1, an estimate
of the autocorrelation function of η2 is needed, which is
presented in section 5 and 6. Finally, the main result is
presented in section 7. Numerical results are presented in
section 8 and compared with results generated by Euler-
Maruyama simulations.

2. SYSTEM DEFINITION

Consider the idealized model of a mechanical system
(with mass 1) given by the (control) system of first order
differential equations

ẋ1 = x2 (1a)

ẋ2 = F (x, u), (1b)

where x1 : [0, T ] → R is the position at time t ∈ [0, T ],
x = (x1, x2) : [0, T ] → R2, u is the control variable and
F : R2 → R comprises control forces, conservative forces,
friction forces and other deterministic external forces.

However, any realistic model describing the behavior of
a mechanical system should include the influence of non-
deterministic (random) forces. Such forces are often mo-
deled by means of the Wiener process (appearing as white
noise in some expositions). Therefore, let W : [0, T ] → R
(with W (t) = Wt) denote a real valued standard Wiener
process with initial value W0 = 0 and consider, instead of
(1), the (control) system of SDEs

dx1 = x2dt (2a)

dx2 = F (x, u)dt+ dWt. (2b)

In the sequel, we study the stochastic behavior of the SDE
given in (2) when a sliding mode controller is applied.
The analysis is limited to the case where the force F
comprises only friction force modeled as −αx2 where α > 0
is a viscous friction coefficient as well as feedback control
forces. In summary, we consider the system

dx1 = x2dt (3a)

dx2 = −αx2dt+ udt+ dWt . (3b)

The control u is designed as a sliding mode controller with
switching across a sliding surface

S = {(x1, x2) : ax1 + x2 = 0},
where the design constant a is chosen to ensure S to
be a stable manifold. To ensure reaching the surface and
maintain sliding, the control u is designed as

u = −k sgn(ax1 + x2),

with k being a constant gain. Next, we fix a = α. This
brings useful properties to the dynamics of the system
which is advantageous in the following analysis of the
system. However, there is a tradeoff as this implies that
the ability to influence the control variable u is restricted
to the constant gain k.

3. PRELIMINARY ANALYSIS OF THE SYSTEM

In system 3, the control function u contributes with discon-
tinuous dynamics driven by both coordinate functions. In
order to simplify this challenge, we introduce a coordinate
transformation of the system.

Let a (linear) coordinate transformation from (x1, x2)
coordinates to (η1, η2) coordinates be defined by

(
η1
η2

)
=

[
1 −α
α 1

](
x1

x2

)
. (4)

The coordinates are defined such that the η1-axis is parallel
with the sliding surface and the η2-axis is perpendicular
to the sliding surface.

The new coordinates system 3 then reads

dη1 = dx1 − αdx2

= (−αη1 + η2)dt− αudt− αdWt (5a)

dη2 = αdx1 + dx2 = udt+ dWt . (5b)

where u : [0, T ] → R is the control signal given by

u = −k sgn(η2),

with k being a constant gain.

3.1 The η2 coordinate function

The SDE given in (5b) depends only on η2 and the
Wiener process Wt and, therefore, it can be treated as an
independent one-dimensional SDE. The drift coefficient is
bounded and discontinuous and the diffusion coefficient is
equal to the identity. For such an SDE, it is proven by
A. J. Veretennikov that a strongly unique solution exists
(Veretennikov (1981)). Furthermore, for the particular
discontinuous SDE in (5b) some additional information
has previously been obtained.

Firstly, the stationary density function is known (see
Simonsen et al. (2013)), and is given by

Φη2(η2) = I(η2<0)ke
2kη2 + I(η2>0)ke

−2kη2 , (6)

where I(·) denotes the indicator function. From the statio-
nary density function, the stationary mean and variance
are determined to be

E[η2] = 0 and Var[η2] =
1

2k2
. (7)

Secondly, it is proven that numerical solutions produced
with the Euler-Maruyama method converge to the strong
solution of (5b) (see Simonsen et al. (2014)).

However, there are still open questions regarding the
auto- and cross-correlation functions for the η2 coordinate
function. The auto-correlation analysis is addressed in
Section 6 of this paper.

3.2 The η1 coordinate function

Investigations of the dynamics in the η1 coordinate func-
tion is the main contribution of this paper. More specif-
ically, we will derive an estimate of the system behavior
near the system’s operating point based on an analysis of
the variance.

The following section initiates this analysis by application
of Ito calculus to the η1 coordinate function.
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1. INTRODUCTION

Sliding mode control is a nonlinear control method which
typically applies a discontinuous control signal to force
a system to behave according to prescribed closed loop
dynamics. Essentially, the control procedure consists of
two parts: Firstly, the controller forces the system state
to approach a so called sliding surface and, secondly, to
slide along the surface towards the operating point. Near
the operating point, the main purpose of the sliding mode
controller is to keep this position and respond accordingly
to any external disturbance (noise) which affects the
system. The sliding surface is found as the sub-manifold of
the desired closed loop dynamics. Robustness to external
disturbances is achieved by the design of a feedback
control, which is discontinuous across the sliding surface.
The discontinuity creates in practice rapid switching and
in theory additional challenges w.r.t. e.g. existence and
uniqueness of solutions to model equations.

The discontinuity induced by the controller brings the
main challenges in the analysis of the system and is a
main motivation behind the investigations of the switching
dynamics. A solid amount of literature exists on the
application and analysis of sliding mode control. Among
others, see Utkin et al. (1999); Liu and Wang (2012).
Recent papers on application of sliding mode control are
Herrera et al. (2015); Sakamoto et al. (2016).

In this paper, the system is modeled with stochastic differ-
ential equations (SDEs). Solutions to the SDE’s are then
considered by using appropriate approximations of prac-
tical implementations of switching, where the latter may
include various imprecisions such as delay, hysteresis and
continuous approximation of switching discontinuity. As a
result, the system is represented with a two-dimensional

SDE with discontinuous drift coefficient and constant dif-
fusion coefficient.

Solutions to SDEs have over a long period been a subject
of great interest, both in the form of existence, unique-
ness, explicit closed form solutions and construction of
numerical approximations, see Kloeden and Platen (1992);
Øksendal (2003); Mao and Yuan (2006). Whereas exis-
tence and uniqueness are established for the discontinu-
ous bounded drift case (see Zvonkin (1974); Veretennikov
(1981)), it is not yet proven for SDEs with unbounded
discontinuous drift coefficients. Neither specific charac-
teristics such as transient and stationary distributions,
nor auto- and cross-covariance characteristics have been
established for SDEs with discontinuous drift coefficient.

In order to apply some of the known results on SDEs with
discontinuous bounded drift, a coordinate transformation
of the system is introduced. This transformation implies
that the discontinuous dynamics is isolated to only one
of the coordinate functions of the two-dimensional SDE,
which, additionally, has bounded drift coefficient. By this
approach we are able to initiate the study of the two-
dimensional SDE through well-known existence results of
one of its coordinate functions. We apply the theory of
Fourier series to the Fokker-Planck equation for the SDE
with discontinuous bounded drift coefficient (Sundarara-
jan (2001); Risken (1989)). This gives, by approximation
methods, a time-dependent conditional density function
from which an estimate on the auto-correlation is deduced.
Finally, by including the auto-correlation function into
the analysis of the variance, an estimate of the stationary
variance is determined.

Notation: Let x : Ω×R+ → S denote a (stochastic) process
on a probability space (Ω,Σ, P ) with values in the state
space S. Throughout this paper we suppress the processes
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dependency on the variable from the measure space (Ω,Σ),
that is, we write x(t) in place of x(·, t).
The outline of the paper is as follows: In section 2 we
provide the definition of the system, which is subject to
subsequent analysis. In section 3 we initiate the analysis of
system (3) through a coordinate transformation producing
new coordinate functions η1 and η2. In section 4 the η1
coordinate function is analyzed in order to give a bound
on its variance. To estimate the variance of η1, an estimate
of the autocorrelation function of η2 is needed, which is
presented in section 5 and 6. Finally, the main result is
presented in section 7. Numerical results are presented in
section 8 and compared with results generated by Euler-
Maruyama simulations.

2. SYSTEM DEFINITION

Consider the idealized model of a mechanical system
(with mass 1) given by the (control) system of first order
differential equations

ẋ1 = x2 (1a)

ẋ2 = F (x, u), (1b)

where x1 : [0, T ] → R is the position at time t ∈ [0, T ],
x = (x1, x2) : [0, T ] → R2, u is the control variable and
F : R2 → R comprises control forces, conservative forces,
friction forces and other deterministic external forces.

However, any realistic model describing the behavior of
a mechanical system should include the influence of non-
deterministic (random) forces. Such forces are often mo-
deled by means of the Wiener process (appearing as white
noise in some expositions). Therefore, let W : [0, T ] → R
(with W (t) = Wt) denote a real valued standard Wiener
process with initial value W0 = 0 and consider, instead of
(1), the (control) system of SDEs

dx1 = x2dt (2a)

dx2 = F (x, u)dt+ dWt. (2b)

In the sequel, we study the stochastic behavior of the SDE
given in (2) when a sliding mode controller is applied.
The analysis is limited to the case where the force F
comprises only friction force modeled as −αx2 where α > 0
is a viscous friction coefficient as well as feedback control
forces. In summary, we consider the system

dx1 = x2dt (3a)

dx2 = −αx2dt+ udt+ dWt . (3b)

The control u is designed as a sliding mode controller with
switching across a sliding surface

S = {(x1, x2) : ax1 + x2 = 0},
where the design constant a is chosen to ensure S to
be a stable manifold. To ensure reaching the surface and
maintain sliding, the control u is designed as

u = −k sgn(ax1 + x2),

with k being a constant gain. Next, we fix a = α. This
brings useful properties to the dynamics of the system
which is advantageous in the following analysis of the
system. However, there is a tradeoff as this implies that
the ability to influence the control variable u is restricted
to the constant gain k.

3. PRELIMINARY ANALYSIS OF THE SYSTEM

In system 3, the control function u contributes with discon-
tinuous dynamics driven by both coordinate functions. In
order to simplify this challenge, we introduce a coordinate
transformation of the system.

Let a (linear) coordinate transformation from (x1, x2)
coordinates to (η1, η2) coordinates be defined by

(
η1
η2

)
=

[
1 −α
α 1

](
x1

x2

)
. (4)

The coordinates are defined such that the η1-axis is parallel
with the sliding surface and the η2-axis is perpendicular
to the sliding surface.

The new coordinates system 3 then reads

dη1 = dx1 − αdx2

= (−αη1 + η2)dt− αudt− αdWt (5a)

dη2 = αdx1 + dx2 = udt+ dWt . (5b)

where u : [0, T ] → R is the control signal given by

u = −k sgn(η2),

with k being a constant gain.

3.1 The η2 coordinate function

The SDE given in (5b) depends only on η2 and the
Wiener process Wt and, therefore, it can be treated as an
independent one-dimensional SDE. The drift coefficient is
bounded and discontinuous and the diffusion coefficient is
equal to the identity. For such an SDE, it is proven by
A. J. Veretennikov that a strongly unique solution exists
(Veretennikov (1981)). Furthermore, for the particular
discontinuous SDE in (5b) some additional information
has previously been obtained.

Firstly, the stationary density function is known (see
Simonsen et al. (2013)), and is given by

Φη2(η2) = I(η2<0)ke
2kη2 + I(η2>0)ke

−2kη2 , (6)

where I(·) denotes the indicator function. From the statio-
nary density function, the stationary mean and variance
are determined to be

E[η2] = 0 and Var[η2] =
1

2k2
. (7)

Secondly, it is proven that numerical solutions produced
with the Euler-Maruyama method converge to the strong
solution of (5b) (see Simonsen et al. (2014)).

However, there are still open questions regarding the
auto- and cross-correlation functions for the η2 coordinate
function. The auto-correlation analysis is addressed in
Section 6 of this paper.

3.2 The η1 coordinate function

Investigations of the dynamics in the η1 coordinate func-
tion is the main contribution of this paper. More specif-
ically, we will derive an estimate of the system behavior
near the system’s operating point based on an analysis of
the variance.

The following section initiates this analysis by application
of Ito calculus to the η1 coordinate function.
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4. ITO CALCULUS ON THE η1 COORDINATION
FUNCTION

In the following, Ito’s lemma (Øksendal, 2003, Thm.4.1.2)
is applied to the stochastic process Y (η1, t) = η1e

αt,
where Y : R2 → R; (z, t) �→ zeαt and η1 is given as in
(5a). We remark that the SDE in (5a) can be treated
independently of (5b) in Ito’s lemma, as long as the local
drift and diffusion coefficient are non-anticipating. For
further information see (Arnold, 1974, p.102).

Application of Ito’s lemma gives

dY = eαt (η2 − αu) dt− αeαtdWt .

which, when multiplied with e−αt, yields the following
integral expression for the η1 coordinate function

η1(t) = η1(0)e
−αt +

∫ t

0

eα(s−t) (η2 − αu) ds

−
∫ t

0

αeα(s−t)dWs . (8)

By a similar procedure, Ito’s lemma is applied to Z(η1, t) =
η21 to obtain

dZ =
(
−2αη21 + 2η1 (η2 + αk sgn(η2)) + α2

)
dt

−2η1αdWt . (9)

Next, we substitute the expression of η1 given in (8)
into (9) to obtain an integral form for r ∈ [0, T ]. Then,
taking the expectation of η1(t) and Z(η1, r) and thereafter
applying Fubini’s theorem gives

E[η1] = η1(0)e
−αt +

∫ t

0

eα(s−t)E [η2 − αu] ds

−E
[∫ t

0

αeα(s−t)dWs

]
,

and

E[Z(η1, r)]

= E[Z(η1, 0)] +

∫ r

0

−2αE[Z(η1, t)]dt

+ 2

∫ r

0

∫ t

0

eα(s−t)E

[
(η2(t) + αk sgn(η2(t)))

· (η2(s) + αk sgn(η2(s)))

]
dsdt

− 2

∫ r

0

E
[∫ t

0

αeα(s−t) (η2(t) + αk sgn(η2(t))) dWs

]
dt

+

∫ r

0

E[α2]dt− 2E
[∫ r

0

η1(t)αdWt

]
.

Recall that the stochastic Ito integral I(f) =
∫ t

0
f(·, s)dWs

is a martingale if E[
∫ t

0
f2(·, s)ds] < ∞ and f(·, s) is non-

anticipating. Hence, in this case the expectation of I(f)
is zero and the last terms in the expression of E[η1]
and E[Z(η1, r)] vanish. Therefore, the expectation E[η1]
is reduced to

E[η1] =η1(0)e
−αt +

∫ t

0

eα(s−t) (E[η2] + αkE[sgn(η2)]) ds

=η1(0)e
−αt,

under stationary assumption on the η2 coordinate function
(see (6) and (7)).

Furthermore, using the result of Appendix A (see (A.8))
we have

E[Z(η1, r)]

≈ Z(η1, 0) +

∫ r

0

−2αE[Z(η1, t)]dt

+ 2

∫ r

0

∫ t

0

eα(s−t)
(
E [η2(t)η2(s)]

+ αkE[sgn(η2(t))η2(s)] + αkE[η2(t) sgn(η2(s))]

+ α2k2E[sgn(η2(t)) sgn(η2(s))]
)
dsdt

− 2

∫ r

0

α(αk2 + 1)

α+ k2
dt+

∫ r

0

α2dt,

By differentiating observe that

d

dt
E[Z(η1, t)]

≈− 2αE[Z(η1, t)] + 2

∫ t

0

eα(s−t)
(
E [η2(t)η2(s)]

+ αkE[sgn(η2(t))η2(s)] + αkE[η2(t) sgn(η2(s))]

+ α2k2E[sgn(η2(t)) sgn(η2(s))]
)
ds

− 2
α(αk2 + 1)

α+ k2
+ α2 , (10)

and, therefore, an approximated stationary variance of
η1 can be determined from 0 = d

dtE[Z(η1, t)] =
d
dtE[η

2
1 ]

whenever the four auto- and cross-covariance terms in the
integrand are known.

Since all auto- and cross-covariances only depend on the
η2 coordinate function, the density of η2 is analyzed in the
following section. This analysis will be based on a Fourier
series expansion of the density obtained via the Fokker-
Planck equation.

5. A DISCRETE FOURIER SERIES
REPRESENTATION OF THE MARGINAL DENSITY

FUNCTION FOR η2

The Fokker-Planck equation related to η2(t) is

∂

∂t
p(η2, t) =

∂

∂η2
[k sgn(η2)p(η2, t)] +

1

2

∂2

∂η22
p(η2, t)

=k

[
∂

∂η2
sgn(η2)

]
p(η2, t)

+ k sgn(η2)
∂

∂η2
p(η2, t) +

1

2

∂2

∂η22
p(η2, t) ,

(11)

where p(η2, t) is the marginal density function for the η2
coordinate function. A truncated version of the density
function can be represented as a Fourier series over the
interval [−L,L],
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p(η2, t) =
a(t)

2
+

∞∑
n=1

bn(t) cos
(πnη2

L

)

+
∞∑

n=1

cn(t) sin
(πnη2

L

)
, (12)

where

a(t) =
1

L

∫ L

−L

p(η2, t)dη2 , (13a)

bn(t) =
1

L

∫ L

−L

p(η2, t) cos
(πnη2

L

)
dη2 , (13b)

cn(t) =
1

L

∫ L

−L

p(η2, t) sin
(πnη2

L

)
dη2 . (13c)

Furthermore, over the interval [−L,L], the sign-function
sgn(η2) and its (distributional) derivative ∂

∂η2
sgn(η2) =

2δ, with δ denoting the Dirac delta distribution, can be
represented as the Fourier series

sgn(η2) =

∞∑
n=1

2(1− cos(πn))

πn
sin

(πnη2
L

)
, (14)

and

∂

∂η2
sgn(η2) = 2δ(η2) =

1

L
+

2

L

∞∑
n=1

cos
(πnη2

L

)
. (15)

We now outline how the coefficient function

b1(t), c1(t), b2(t), c2(t), . . .

from (13) and, therefore, also the density in (12), can be
approximated as solutions to a system of linear ordinary
differential equations. Details are omitted due to limited
space.

We write p(η2, t) in terms of its Fourier series represen-
tation including the series for sgn(η2) and ∂

∂η2
sgn(η2) =

2δ(η2) in the Fokker-Planck equation (11). Then for the se-
ries representation we expand the derivatives of the Fokker
Planck equation and finally collect a truncated (finite)
subset of trigonometric terms to obtain the following linear
coefficient dynamics

d

dt

(
z
a

)
=

[
A b
0 0

](
z
a

)
, (16)

where A ∈ R2�×2� (with � representing the number of
terms),

z =




b1(t)
b2(t)
...

b�(t)
c1(t)
c2(t)
...

c�(t)




, b =




k
k
...
k
0
0
...
0




, z(t0) =




cos

(
πη2(t0)

L

)

cos

(
2πη2(t0)

L

)

...

cos

(
�πη2(t0)

L

)

sin

(
πη2(t0)

L

)

sin

(
2πη2(t0)

L

)

...

sin

(
�πη2(t0)

L

)




and a(t0) =
1
L . The solution to (16) is given explicitly by

(
z(t)
a(t)

)
= exp

([
A b
0 0

]
t

)(
z(t0)
a(t0)

)
,

thus determines an approximated conditional density func-
tion p̃ given by

p̃(η2(t)|η2(t0)) =
a

2
+

�∑
n=1

bn(t, η2(t0)) cos
(πnη2

L

)

+

�∑
n=1

cn(t, η2(t0)) sin
(πnη2

L

)
,

where {bn(t, η2(t0)), cn(t, η2(t0)) : n ∈ {1, . . . , �}} are the
approximated coefficients.

In the following section, we return to the main problem to
determine the auto- and cross-covariance terms appearing
in the expression of d

dtE[Z(η1, t)] = d
dtE[η

2
1 ]. More pre-

cisely, the approximated conditional density function will
be applied to determine approximations of E[η2(t)η2(s)],
E[η2(t) sgn(η2(s))] and E[sgn(η2(t)) sgn(η2(s))] for t, s ∈
[0, T ].

6. THE AUTO-CORRELATION FUNCTION AND
RELATED EXPRESSIONS

The auto-correlation function is given by

E[η2(t)η2(s)] =
∫ ∞

−∞

∫ ∞

−∞
η2yfη2(t),η2(s)(η2, y)dη2dy

=

∫ ∞

−∞
yfη2(s)(y)

∫ ∞

−∞
η2fη2(t)|η2(2)(η2|y)dη2dy

=

∫ ∞

−∞
yfη2(s)(y)E[η2(t)|y]dy,

where fη2(s)(y) is the density function for the distribution
of η2(s), which by assumption is equal to Φη2

given in
(6). The density fη2(t)(η2|y) is substituted with p̃(η2(t)|y),
which is the approximated conditional density function
given an initial condition y = η2(s). Therefore, the con-
ditional expectation, E[η2(t)|y] can be approximated by

E[η2(t)|y]≈
∫ L

−L

η2p̃(η2(t)|y)dη2 =

∫ L

−L

η2
a(t)

2
dη2

+

�∑
m=1

∫ L

−L

η2bm(t, y) cos
(πmη2

L

)
dη2

+

�∑
m=1

∫ L

−L

η2cm(t, y) sin
(πmη2

L

)
dη2

=

�∑
m=1

cm(t, y)
−2L2

πm
cos(πm) .

From this

E[η2(t)η2(s)]

≈
∫ ∞

−∞
yΦη2

(y)

�∑
m=1

cm(t, y)
−2L2

πm
cos(πm)dy , (17)

where Φη2 is the stationary density function for η2 given in
(6). Since coefficients cm(t) appear as solutions to (16), the
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cn(t) =
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∫ L
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Furthermore, over the interval [−L,L], the sign-function
sgn(η2) and its (distributional) derivative ∂

∂η2
sgn(η2) =

2δ, with δ denoting the Dirac delta distribution, can be
represented as the Fourier series

sgn(η2) =
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2(1− cos(πn))
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sin

(πnη2
L

)
, (14)

and
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∂η2
sgn(η2) = 2δ(η2) =

1

L
+

2
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∞∑
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cos
(πnη2

L

)
. (15)

We now outline how the coefficient function

b1(t), c1(t), b2(t), c2(t), . . .

from (13) and, therefore, also the density in (12), can be
approximated as solutions to a system of linear ordinary
differential equations. Details are omitted due to limited
space.

We write p(η2, t) in terms of its Fourier series represen-
tation including the series for sgn(η2) and ∂

∂η2
sgn(η2) =

2δ(η2) in the Fokker-Planck equation (11). Then for the se-
ries representation we expand the derivatives of the Fokker
Planck equation and finally collect a truncated (finite)
subset of trigonometric terms to obtain the following linear
coefficient dynamics

d

dt

(
z
a

)
=

[
A b
0 0

](
z
a

)
, (16)

where A ∈ R2�×2� (with � representing the number of
terms),

z =




b1(t)
b2(t)
...

b�(t)
c1(t)
c2(t)
...

c�(t)




, b =




k
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...
k
0
0
...
0




, z(t0) =




cos

(
πη2(t0)
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)
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(
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L
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...
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(
�πη2(t0)

L

)
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(
πη2(t0)

L

)
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(
2πη2(t0)

L

)

...
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(
�πη2(t0)

L

)




and a(t0) =
1
L . The solution to (16) is given explicitly by

(
z(t)
a(t)

)
= exp

([
A b
0 0

]
t

)(
z(t0)
a(t0)

)
,

thus determines an approximated conditional density func-
tion p̃ given by

p̃(η2(t)|η2(t0)) =
a

2
+

�∑
n=1

bn(t, η2(t0)) cos
(πnη2

L

)

+

�∑
n=1

cn(t, η2(t0)) sin
(πnη2

L

)
,

where {bn(t, η2(t0)), cn(t, η2(t0)) : n ∈ {1, . . . , �}} are the
approximated coefficients.

In the following section, we return to the main problem to
determine the auto- and cross-covariance terms appearing
in the expression of d

dtE[Z(η1, t)] = d
dtE[η

2
1 ]. More pre-

cisely, the approximated conditional density function will
be applied to determine approximations of E[η2(t)η2(s)],
E[η2(t) sgn(η2(s))] and E[sgn(η2(t)) sgn(η2(s))] for t, s ∈
[0, T ].

6. THE AUTO-CORRELATION FUNCTION AND
RELATED EXPRESSIONS

The auto-correlation function is given by

E[η2(t)η2(s)] =
∫ ∞

−∞

∫ ∞

−∞
η2yfη2(t),η2(s)(η2, y)dη2dy

=

∫ ∞

−∞
yfη2(s)(y)

∫ ∞

−∞
η2fη2(t)|η2(2)(η2|y)dη2dy

=

∫ ∞

−∞
yfη2(s)(y)E[η2(t)|y]dy,

where fη2(s)(y) is the density function for the distribution
of η2(s), which by assumption is equal to Φη2

given in
(6). The density fη2(t)(η2|y) is substituted with p̃(η2(t)|y),
which is the approximated conditional density function
given an initial condition y = η2(s). Therefore, the con-
ditional expectation, E[η2(t)|y] can be approximated by

E[η2(t)|y]≈
∫ L

−L

η2p̃(η2(t)|y)dη2 =

∫ L

−L

η2
a(t)

2
dη2

+

�∑
m=1

∫ L

−L

η2bm(t, y) cos
(πmη2

L

)
dη2

+

�∑
m=1

∫ L

−L

η2cm(t, y) sin
(πmη2

L

)
dη2

=

�∑
m=1

cm(t, y)
−2L2

πm
cos(πm) .

From this

E[η2(t)η2(s)]

≈
∫ ∞

−∞
yΦη2

(y)

�∑
m=1

cm(t, y)
−2L2

πm
cos(πm)dy , (17)

where Φη2 is the stationary density function for η2 given in
(6). Since coefficients cm(t) appear as solutions to (16), the
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integrand appears as a weighted sum of products of linear
functions and complex exponentials and in that way gives
a closed form solution.

A similar procedure can be applied to determine

E[sgn(η2(t))η2(s)]
for s ≤ t. Observe that

E[sgn(η2(t))η2(s)] =
∫ ∞

−∞
yE[sgn(η2(t))|y]Φη2

(y)dy.

The expectation E[sgn(η2(t))|y] is given by

E[sgn(η2(t))|y] =
∫ ∞

−∞
sgn(η2)fη2(t)|y(η2)dη2,

and can be approximated by

E[sgn(η2(t))|y]

≈
∫ L

−L

sgn(η2)p̃(η2(t)|y)dη2 =

∫ L

−L

sgn(η2)
a

2
dη2

+

�∑
m=1

∫ L

−L

sgn(η2)bm(t, y) cos
(πmη2

L

)
dη2

+

�∑
m=1

∫ L

−L

sgn(η2)cm(t, y) sin
(πmη2

L

)
dη2

=

�∑
m=1

cm(t, y)
2L

πm
(1− cos(πm)).

Hence

E[sgn(η2(t))η2(s)]

≈
∫ ∞

−∞
yΦη2(y)

�∑
m=1

cm(t, y)
2L

πm
(1− cos(πm))dy. (18)

By the same procedure we obtain

E[η2(t) sgn(η2(s))]

≈
∫ ∞

−∞
sgn(y)Φη2(y)

�∑
m=1

cm(t, y)
−2L2

πm
cos(πm) dy,

(19)

and

E[sgn(η2(t)) sgn(η2(s))]

≈
∫ ∞

−∞
sgn(y)Φη2

(y)

�∑
m=1

cm(t, y)
2L

πm
(1− cos(πm)) dy .

(20)

In the sequel, the approximations of the expectations will
be applied to determine an upper bound on the stationary
variance of η1.

7. THE MAIN RESULT

For s < t let C(t − s) be the sum of the auto- and cross-
covariance terms appearing in (10), that is

C(t− s) = E [η2(t)η2(s)] + αkE[sgn(η2(t))η2(s)]
+ αkE[η2(t) sgn(η2(s))]
+ α2k2E[sgn(η2(t)) sgn(η2(s))].

Notice that C(t − s) can be approximated by the sum of
(17)-(20) and by this approximation C(t− s) is bounded.

Substituting C(t− s) into (10) yields

d

dt
E[η21 ]

≈ −2αE[η21 ]− 2
α(αk2 + 1)

α+ k2
+α2 +2

∫ t

0

eα(s−t)C(t− s)ds

≈ −2αE[η21 ]− 2
α(αk2 + 1)

α+ k2
+ α2 + g(t),

where g(t) denotes the integral term. Since boundedness of
C implies a well defined limit, g∞, of g(t) for t → ∞, the
approximated stationary variance of η1 can be determined
as

E[η21 ] ≈ −αk2 + 1

α+ k2
+

α

2
+

g∞
2α

. (21)

7.1 Original coordinates

The analysis above also gives approximated stationary
variances of the original coordinates. From (4) we get

x1 =
1

1 + α2
η1 +

α

1 + α2
η2

x2 = − α

1 + α2
η1 +

1

1 + α2
η2,

implying

Var[x1] =
1

(1 + α2)2
Var[η1] +

α2

(1 + α2)2
Var[η2]

+
2α

(1 + α2)2
E[η1η2],

with a similar expression for Var[x2]. The first two terms
are given in (21) and (7). The last term can be approxima-
ted by identifying the term η1η2 from (9), and then using
(17) and (19). More precisely

E[η1η2] ≈ lim
t→∞

∫ t

0

eα(s−t)C̃(t− s)ds .

with C̃(t− s) approximated by the sum of (17) and (19),
that is

C̃(t − s) = E [η2(t)η2(s)] + αkE[η2(t) sgn(η2(s))].

In the following section, system (5) will be simulated with
the Euler-Maruyama method to illustrate the validity of
the method.

8. SIMULATION

This section presents a comparison between the stationary
variance (21) and an estimated variance determined from
simulations via the Euler-Maruyama method.

The (η1, η2) coordinate functions are simulated with the
Euler-Maruyama method with step size h = 2−10 for
t ∈ (0, 50). For fixed value of k and α, the simulations
are repeated 4000 times and the variance of the end-points
of the realizations is determined. The estimated variances
are presented in Table 1. The stationary variances given
by (21) and (7) are presented in Table 2 for comparison.

Similar, from section 7.1 and the values in Table 1 and 2 we
also get Table 3 and 4 comprising estimated and stationary
variances of the original x1 coordinate.

Finally, figures 1 and 2 show simulated trajectories for
η1, η2 and x1, x2 respectively and a variation of values of
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k\α 0.1 0.3 0.5 0.7

0.1 (4438, 49.82) (538.43, 50.27) (209.09, 53.31) (99.76, 49.82)

0.3 (322.30, 5.68) (50.14, 5.84) (20.00, 5.72) (10.77, 5.68)

0.5 (68.95, 2.08) (13.02, 2.08) (5.72, 2.03) (3.47, 2.08)

0.7 (20.19, 1.01) (4.90, 1.01) (2.33, 1.04) (1.53, 1.08)

Table 1. The (Euler-Maruyama) estimated
variance of (η1(50), η2(50)) determined for dif-

ferent values of k and α.

k\α 0.1 0.3 0.5 0.7

0.1 (4482, 50) (531.5, 50) (194.3, 50) (100.0, 50)

0.3 (324.96, 5.56) (49.95, 5.56) (19.73, 5.56) (10.68, 5.56)

0.5 (70.02, 2) (13.20, 2) (7.5, 2) (3.44, 2)

0.7 (23.30, 1.02) (5.18, 1.02) (2.47, 1.02) (1.57, 1.02)

Table 2. The stationary variance of (η1, η2)
calculated for different values of k and α.

k\α 0.1 0.3 0.5 0.7

0.1 4439 538.74 209.06 100.00

0.3 322.20 50.17 19.78 10.45

0.5 68.97 13.00 5.59 3.22

0.7 20.20 4.84 2.21 1.36

Table 3. The (Euler-Maruyama) estimated
variance of x1(50) determined for different val-

ues of k and α.

k\α 0.1 0.3 0.5 0.7

0.1 4483 531.9 194.7 100.3

0.3 325.03 50.21 20.04 10.89

0.5 70.02 13.69 6.13 3.63

0.7 23.32 5.30 2.65 1.72

Table 4. The stationary variance of x1 calcu-
lated for different values of k and α.
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Fig. 1. Simulated η1, η2. Initial values shown by red circle
and final values shown by green circle.

k and α. Initial values are in all cases (x1(0), x2(0)) =
(10, 10). Notice that for k = 0.1 and α = 0.1 the reaching
and sliding behavior are hidden in large fluctuations,
whereas for the remaining cases reaching and sliding
phases are observable.

9. PERSPECTIVES

In this paper, we give an estimate of the control error
which is induced by the application of a sliding mode
controller to a mechanical system. The significance of this
result is rooted in the attempt to describe (or estimate)
the collected behavior of a family of physical systems
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Fig. 2. Simulated x1, x2. Initial values shown by red circle
and final values shown by green circle.

connected via certain switching laws, which are governed
by some kind of sliding mode control.

The presented results are for a two-dimensional system
with the control input isolated to one coordinate function.
Thereby, it is possible to introduce a coordinate transfor-
mation which reduces the complexity of the discontinuous
dynamics provided by the sliding mode controller. For
systems of higher dimension with the same structure, i.e.
system that can be formulated in the Phase Variable Form,
a corresponding coordinate transformation will result in
a similar simplification of the discontinuous challenges.
Thus, by the same procedure presented in this paper, an
estimate of the system behavior can be evaluated.

Appendix A

Consider the integral term appearing in the expression of
E[Z(η1, r)]∫ t

0

αeα(s−t) (η2(t) + αk sgn(η2(t))) dWs (A.1)

= αk sgn(η2(t))x(t) + η2(t)x(t),

where the process x is defined by

x(t) =

∫ t

0

αeα(s−t)dWs.

It is easily recognized that x is the solution of the following
SDE

dx = −αxdt+ αdWt, x(0) = 0. (A.2)

Let the functions F,Q : R2 → R be defined by

F (z) = z1z2 and Q(z) = z1 sgn(z2).

The gradients and Hessians are

Fz(z) =

[
z2
z1

]
and Qz(z) =

[
sgn(z2)
z1δ(z2)

]
,

Fzz(z) =

[
0 1
1 0

]
and Qzz(z) =

[
0 δ(z2)

δ(z2) z1δ
′(z2)

]
,

with δ′ denoting the distributional derivative of the Dirac
delta distribution.

Using (5b) and (A.2) we see that the process z defined by

z =

[
x
η2

]
, satisfies the SDE
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k\α 0.1 0.3 0.5 0.7

0.1 (4438, 49.82) (538.43, 50.27) (209.09, 53.31) (99.76, 49.82)

0.3 (322.30, 5.68) (50.14, 5.84) (20.00, 5.72) (10.77, 5.68)

0.5 (68.95, 2.08) (13.02, 2.08) (5.72, 2.03) (3.47, 2.08)

0.7 (20.19, 1.01) (4.90, 1.01) (2.33, 1.04) (1.53, 1.08)

Table 1. The (Euler-Maruyama) estimated
variance of (η1(50), η2(50)) determined for dif-

ferent values of k and α.

k\α 0.1 0.3 0.5 0.7

0.1 (4482, 50) (531.5, 50) (194.3, 50) (100.0, 50)

0.3 (324.96, 5.56) (49.95, 5.56) (19.73, 5.56) (10.68, 5.56)

0.5 (70.02, 2) (13.20, 2) (7.5, 2) (3.44, 2)

0.7 (23.30, 1.02) (5.18, 1.02) (2.47, 1.02) (1.57, 1.02)

Table 2. The stationary variance of (η1, η2)
calculated for different values of k and α.

k\α 0.1 0.3 0.5 0.7

0.1 4439 538.74 209.06 100.00

0.3 322.20 50.17 19.78 10.45

0.5 68.97 13.00 5.59 3.22

0.7 20.20 4.84 2.21 1.36

Table 3. The (Euler-Maruyama) estimated
variance of x1(50) determined for different val-

ues of k and α.

k\α 0.1 0.3 0.5 0.7

0.1 4483 531.9 194.7 100.3

0.3 325.03 50.21 20.04 10.89

0.5 70.02 13.69 6.13 3.63

0.7 23.32 5.30 2.65 1.72

Table 4. The stationary variance of x1 calcu-
lated for different values of k and α.
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Fig. 1. Simulated η1, η2. Initial values shown by red circle
and final values shown by green circle.

k and α. Initial values are in all cases (x1(0), x2(0)) =
(10, 10). Notice that for k = 0.1 and α = 0.1 the reaching
and sliding behavior are hidden in large fluctuations,
whereas for the remaining cases reaching and sliding
phases are observable.

9. PERSPECTIVES

In this paper, we give an estimate of the control error
which is induced by the application of a sliding mode
controller to a mechanical system. The significance of this
result is rooted in the attempt to describe (or estimate)
the collected behavior of a family of physical systems
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−20
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Fig. 2. Simulated x1, x2. Initial values shown by red circle
and final values shown by green circle.

connected via certain switching laws, which are governed
by some kind of sliding mode control.

The presented results are for a two-dimensional system
with the control input isolated to one coordinate function.
Thereby, it is possible to introduce a coordinate transfor-
mation which reduces the complexity of the discontinuous
dynamics provided by the sliding mode controller. For
systems of higher dimension with the same structure, i.e.
system that can be formulated in the Phase Variable Form,
a corresponding coordinate transformation will result in
a similar simplification of the discontinuous challenges.
Thus, by the same procedure presented in this paper, an
estimate of the system behavior can be evaluated.

Appendix A

Consider the integral term appearing in the expression of
E[Z(η1, r)]∫ t

0

αeα(s−t) (η2(t) + αk sgn(η2(t))) dWs (A.1)

= αk sgn(η2(t))x(t) + η2(t)x(t),

where the process x is defined by

x(t) =

∫ t

0

αeα(s−t)dWs.

It is easily recognized that x is the solution of the following
SDE

dx = −αxdt+ αdWt, x(0) = 0. (A.2)

Let the functions F,Q : R2 → R be defined by

F (z) = z1z2 and Q(z) = z1 sgn(z2).

The gradients and Hessians are

Fz(z) =

[
z2
z1

]
and Qz(z) =

[
sgn(z2)
z1δ(z2)

]
,

Fzz(z) =

[
0 1
1 0

]
and Qzz(z) =

[
0 δ(z2)

δ(z2) z1δ
′(z2)

]
,

with δ′ denoting the distributional derivative of the Dirac
delta distribution.

Using (5b) and (A.2) we see that the process z defined by

z =

[
x
η2

]
, satisfies the SDE
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dz = µdt+GdWt =

[
−αx

−k sgn(η2)

]
dt+

[
α
1

]
dWt.

Hence, by Ito’s lemma

dF = (Fz(x, η2)
Tµ+

1

2
tr(GTFzz(x, η2)G))dt

+ Fz(x, η2)
TGdWt

= (−αF − kQ+ α)dt+ Fz(x, η2)
TGdWt,

and

dQ = (Qz(x, η2)
Tµ+

1

2
tr(GTQzz(x, η2)G))dt

+Qz(x, η2)
TGdWt

= (−(α+ kδ(η2))Q

+
1

2
(2αδ(η2) + xδ′(η2)))dt+Qz(x, η2)

TGdWt.

Taking expectations, differentiating and solving for sta-
tionarity yields

E[F ] =
α− kE[Q]

α
, (A.3)

and

E[(α+ kδ(η2))Q] =
1

2
E[(2αδ(η2) + xδ′(η2))]. (A.4)

Let Px|η2
and Pη2

denote the conditional distribution of x
given η2 and the marginal distribution of η2 respectively.
We then get

E[δ(η2)Q] =

∫ ∫
x sgn(η2)dPx|η2

δ(η2)dPη2

=

∫
E[x|η2] sgn(η2)δ(η2)dPη2

= 0, (A.5)

Moreover

E[xδ′(η2))] =
∫ ∫

x dPx|η2
δ′(η2) dPη2

=

∫
E[x|η2] δ′(η2) Φη2

dη2

=−E′[x|η2 = 0] Φη2
(0)− E[x|η2 = 0] Φ′

η2
(0)

=−E′[x|η2 = 0] Φη2(0), (A.6)

where Φη2 is the (stationary) marginal density of η2 and
′ indicates the derivative with respect to η2. Using (A.5)
and (A.6) in (A.4) we obtain

αE[Q] = αE[δ(η2)] +
1

2
E[xδ′(η2)]

= αΦη2
(0)− 1

2
E′[x|η2 = 0] Φη2

(0)

= k(α− 1

2
E′[x|η2 = 0]).

And with the following approximation

E′[x|η2 = 0] ≈ E[xη2]
Var[η2]

=
E[F ]

Var[η2]
,

we obtain

αE[Q] ≈ k(α− k2E[F ]). (A.7)

Solving (A.3) and (A.7) yields

E[F ] ≈ α

α+ k2
, and E[Q] ≈ kE[F ] .

The expectation of the integral appearing in the expression
of E[Z(η1, r)] is therefore

E
(∫ t

0

αeα(s−t) (η2(t) + αk sgn(η2(t))) dWs

)

≈ αkE[Q] + E[F ] ≈ (αk2 + 1)E[F ] ≈ α(αk2 + 1)

α+ k2
(A.8)

REFERENCES

Arnold, L. (1974). Stochastic differential equations: theory
and applications. Wiley-Interscience [John Wiley &
Sons], New York. Translated from the German.

Herrera, M., Chamorro, W., Gmez, A.P., and Camacho,
O. (2015). Sliding mode control: An approach to con-
trol a quadrotor. Computer Aided System Engineering
(APCASE), 2015 Asia-Pacific Conference on, 314–319.
doi:10.1109/APCASE.2015.62.

Kloeden, P.E. and Platen, E. (1992). Numerical solution
of stochastic differential equations, volume 23 of Appli-
cations of Mathematics (New York). Springer-Verlag,
Berlin.

Liu, J. and Wang, X. (2012). Advanced Sliding Mode
Control for Mechanical Systems : Design, Analysis and
MATLAB Simulation. Springer Berlin, Berlin. 11,N15.

Mao, X. and Yuan, C. (2006). Stochastic differential
equations with Markovian switching. Imperial College
Press, London.

Øksendal, B. (2003). Stochastic differential equations.
Universitext. Springer-Verlag, Berlin, sixth edition. doi:
10.1007/978-3-642-14394-6. An introduction with appli-
cations.

Risken, H. (1989). The Fokker-Planck equation, volume 18
of Springer Series in Synergetics. Springer-Verlag,
Berlin, second edition. doi:10.1007/978-3-642-61544-3.
Methods of solution and applications.

Sakamoto, N., Niimura, T., Ozawa, K., and Takamori, H.
(2016). Robust feedback control for the subsidy policy
about plug-in electric vehicle using sliding mode control.
Elect. Eng. Jpn., 194(1), 10–17. doi:10.1002/eej.22773.

Simonsen, M., Leth, J., Schioler, H., and Cornean, H.
(2013). A Simple Stochastic Differential Equation with
Discontinuous Drift. ArXiv e-prints.

Simonsen, M., Schioler, H., Leth, J., and Cornean,
H. (2014). A convergence result for the Euler-
Maruyama method for a simple stochastic differen-
tial equation with discontinuous drift. American
Control Conference (ACC), 2014, 5180–5185. doi:
10.1109/ACC.2014.6859208.

Sundararajan, D. (2001). The discrete Fourier transform.
World Scientific Publishing Co., Inc., River Edge, NJ.
doi:10.1142/9789812810298. Theory, algorithms and
applications.

Utkin, V.I., Guldner, J., and Shi, J. (1999). Sliding
mode control in electromechanical systems. The Taylor
& Francis systems and control book series. Taylor &
Francis, London, Philadelphia, PA.

Veretennikov, A.J. (1981). On strong solutions and
explicit formulas for solutions of stochastic integral
equations. Math. USSR Sb., 39(3), 387–403. doi:
10.1070/SM1981v039n03ABEH001522.

Zvonkin, A.K. (1974). A transformation of the phase space
of a diffusion process that will remove the drift. Mat.
Sb. (N.S.), 93(135), 129–149, 152.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

739


