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Systems with Uncertain Communication �

Christoffer Sloth and Rafael Wisniewski

Section of Automation & Control, Aalborg University, Denmark
(e-mail: {ces,raf}@es.aau.dk)

Abstract: This paper presents conditions for determining the stability of a networked control
system. We assume that a given system is designed to be stochastically stable, when disregarding
the implementation of the controller on a network. Based on the system description and an
associated Lyapunov function, we provide conditions for the quality of the network under which
the networked system is stable. In particular, we provide a valid inter-sampling interval, mean
communication delay, and a set to which the system converges in the mean.

Keywords: Control over networks; Communication constraints; Stochastic stability

1. INTRODUCTION

Advanced control is being implemented in vast spatially
distributed systems such as the electricity grids. Such
systems might use wireless communication or some shared
communication link between subsystems to reduce the cost
of the system. It is a challenge to design control systems
that exploit unreliable and limited communication, since
the information exchange including delays, packet loss,
and sampling effects must be taken into account in the
controller design. On the other hand, when the need for
wireless information exchange arises in an already existing
system design, it is relevant to determine the quality of
service requirements for the communication such that the
system maintains its functionality.

There are several works on the analysis and design of
networked control systems. An overview of methods for
stability analysis for networked control systems is provided
in Zhang et al. (2001), where network-induced delays and
packet losses are considered in the model of the transmis-
sion path. In Walsh et al. (2002), a detailed analysis is
accomplished for maximum-error-first scheduling with the
try-once-discard protocol, and bounds on the maximum
allowable transfer interval are given for maintaining sta-
bility.

Also work on networked control systems with stochastic
elements has been conducted. In Antunes et al. (2012),
necessary and sufficient conditions are provided for the
stability of impulsive renewal systems, and it is shown that
the model formalism can be used for stability analysis of
linear networked systems with stochastic inter-sampling
times. Similar sufficient conditions are given for systems
with nonlinear dynamics in Hespanha and Teel (2006).

In addition, there is much work on modeling and analy-
sis of different classes of hybrid systems with stochastic
elements and different notions of stability. A survey is
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provided in Teel et al. (2014), where different notions
of stability are considered for different classes of hybrid
systems with stochastic elements. Finally, literature also
exists for controlling particular stochastic processes Han-
son (2007).

In this work, we consider jump diffusion processes de-
scribed by Øksendal and Sulem (2007) for modeling net-
worked control systems similar to Hespanha (2006). We do
not go to the full generality of this formalism - as the jumps
have finite intensity, we model the jumps by a compound
Poisson process.

Along the lines of Walsh et al. (2002), we assume that
the closed loop system is asymptotically stable (in prob-
ability), when network-induced effects are neglected, and
provide a specification of a communication network under
which the system remains stable. We provide two differ-
ent conditions, where the first condition gives results on
stability in the mean and the second condition provides
a condition for mean square stability based on Hespanha
and Teel (2006).

The paper is organized as follows. Section 2 provides a
problem formulation and introduces networked control
systems; subsequently, jump diffusion processes are re-
called for consistency in Section 3, and used for modeling
networked control systems in Section 4. The main stability
results of the paper are presented in Section 5, and finally
conclusions are provided in Section 6.

2. PROBLEM FORMULATION

This section presents the considered problem of analyzing
the stability of a networked control system subject to
communication with stochastic delays.

We consider a scenario, where the sensors and the con-
troller are physically separated, as shown in Fig. 1.

Due to the spatial distribution of the system, some com-
munication network is necessary for information exchange.
The communication network introduces a delay that might
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Fig. 1. Diagram of a system where measurements are
exchanged between sensors and a controller via a
communication network.

be stochastic; in particular, if the network is wireless the
communication delay might vary significantly and packets
will be lost. A timing diagram of the communication is
shown in Fig. 2. We consider a setup where the sensor is
clock-driven, and the controller and actuators are event-
driven, i.e., the controller and actuator computes new
outputs immediately after receiving an input.

ttk rk

τk

tk+2 rk+2

τk+2

Transmission

Reception

tk+1 rk+1

τk+1

Fig. 2. Timing diagram of communication between the
sensors and the controller. Only sensor information
is sent over the network.

The timing diagram shows that sensor information is send
at times tk for k = 1, 2, . . . and that the information is
received by the controller at times rk for k = 1, 2, . . .
after being delayed τk by the communication network.
Subsequently, a new control input is applied to the plant,
i.e., the input is piecewise constant. In lines with Persis
et al. (2010), it is decided that the sampling rate of the
sensor should depend on the state of the system, such that
the sampling rate is higher when the state is close to the
desired setpoint; for details see Section 4. The case of fixed
sampling intervals is covered by Corollary 1.

An example of a system output being measured and send
to the controller is illustrated in Figure 3. It is seen in
the figure that the sampling time of the sensor is shorter
when y is small, and that the information available to the
control is updated at irregular time intervals.

There are several works describing the distribution of
different components of communication delays for different
types of networks. In Walsh et al. (2002), the packet arrival
events are modeled with a Poisson process, and in Wang
et al. (2012) the delay of a particular wireless network is
shown to have an exponential distribution.

The purpose of this paper is to verify the stability (in a
stochastic sense) of a networked control system with the
presented properties. Thus, we aim at solving the following
problem, which is restated formally later.

Problem 1. Derive an algorithm for verifying the stability
of a networked control system with stochastic communi-
cation delays.

0
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2

y
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1

2

y s
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Time

0

1

2

y c

Fig. 3. Graph of an output y that is measured at output-
dependent time intervals (dashed lines) giving the
piecewise constant sensor output ys. The sensor out-
put is send to the controller, which updates its in-
formation about the plant output yc. The variable yc
is updated at varying time intervals due to varying
communication delays.

The next section presents jump diffusion processes that
are subsequently used for modeling the networked control
system.

3. JUMP DIFFUSION PROCESSES

The considered system is modelled by a jump diffusion
process. We define a Poisson random measure P(dt, dq) ≡
P(dt, dq;P,Q) on the Borel sets of R×Rd: For a compound

Poisson process
∑P (t)

j=1 Qj , where P (t) is a Poisson process

and Q ≡ (Qj) is a sequence of i.i.d. Rd vectors, we count
the number of jumps occurring in the time-interval A that
have value in the set B

P(A,B) =

∞∑
j=1

δ(Tj ,Qj)(A×B),

where Tj are the time-instances of jumps. The studied
networked system will be described by the stochastic
differential equation

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t)

+

∫

Rd

h(X(t), t, q)P(dt, dq),
(1)

where X(t) ∈ Rn is the jump diffusion process, W (t) ∈ Rn

is a standard Wiener process. The first term of (1) is the
deterministic drift, the second term is the stochastic diffu-
sion, and the third term introduces jumps. The functions
f, g, h are assumed to satisfy the linear growth and the
Lipschitz continuity conditions as in Theorem 1.19 of exis-
tence and uniqueness solutions of (Lévy) SDEs Øksendal
and Sulem (2007). The jump times are given by the jump
rate of the Poisson process P (t). We consider a space-
dependent Poisson process, i.e., the intensity (jump rate)
λ(t, x) is state dependent; hence, the survivor function of

the jump is exp
−
∫ t

0
λ(s,X(s))ds

. The jump destinations are
given the random variables (Qj), each of which is assumed
to have probability density function φQ.

A realization of a jump diffusion process is illustrated in
Fig. 4, where the process is initialized at X(0) and jumps
at times t1 and t2.
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Fig. 4. Realization of jump diffusion process X(t) with
jump rate λ(X(t)). The realization has jumps at times
t1 and t2.

We use the standard stochastic integration. This allows a
reformulation of the integral solution as

X(t) = X(0) +

∫ t

0

f(x(s), s)ds+

∫ t

0

g(X(s), s)dW (s)

+

P (t)∑
k=1

h(X(t−k ), tk, Qk),

where h(X(t−k ), tk, Qk) is the jump amplitude of the kth

jump at time tk, X(t−k ) is the prejump value of the state,
and P (t)(ω) is the state-dependent number of jumps up
to time t.

To analyze jump diffusion processes in Section 5, we rely
on the following result on the backward generator given
by Theorem 7.1 in Hanson (2007).

Theorem 1. Let X(t) be a jump diffusion process satisfy-
ing (1), with continuous differentiable coefficients f, g, h.
Let v(x, t) be twice continuously differentiable in x and
once in t. Then the conditional expectation of the com-
posite process v(X(t), t) satisfies

E[v(X(t), t)| X(t0) = x0] = v(x0, t0)

+ E
[∫ t

0

(
∂v

∂t
(X(s), s) + L(v)(X(s), s)

)
ds| X(t0) = x0

]

where

L(v)(x, t) := f(x, t)
∂v

∂x
(x, t) +

1

2
Tr

(
g(x, t)gT (x, t)

∂2v

∂x2
(x, t)

)

+ λ(t, x)

∫

Rd

(v(x+ h(x, t, q), t)− v(x, t))φQ(q)dq.

In this paper, we will make no explicit use of probability
spaces. We will neither address any issues related to
the existence and uniqueness of stochastic differential
equations. However, it is assumed that such a unique
solution exists for the system at hand. Therefore, we will
not make a distinction between weak and strong solutions
and simply write a solution.

4. SYSTEM DESCRIPTION

The purpose of this section is to describe the networked
control system presented in Section 2 as a jump diffusion
process on the form presented in Section 3. To simplify no-
tation, we assume that the stochastic differential equation
is time homogeneous.

The dynamics of the system are given by

dX(t) = f(X(t))dt+ g(X(t))dW (t) + h(X(t))u(t)dt (2)

Y (tk) = r(X(tk)) + ξ(tk), (3)

where the process X(t) ∈ Rn represents the system state,
u(t) ∈ Rm is the control, W (t) ∈ Rn is the process
noise, Y (t) ∈ Rp is the measurement, and ξ(t) ∈ Rp

is the measurement noise. It is assumed that a control
k : Rp → Rm is given, and as described in Section 2,
the control is only updated when new measurements are
acquired. Thus, the control is given by

u(t) = k(Y (tk)) ∀t ∈ [tk + τk, tk+1 + τk+1)

where tk is the kth sample time of the sensors, and τk is
a random variable - the stopping time - associated to the
communication delay.

To model (2) as a jump diffusion process, we extend the
state vector of the system to preserve the Markov property
of the system, when taking into account delays. Thus, we
define a new stochastic differential equation, with state
Z = (X,Y, Z) as follows[

dX(t)
dY (t)
dU(t)

]
=

[
f(X(t)) + h(X(t))U(t)

0
0

]
dt+

[
g(X(t))

0
0

]
dW (t)

+

∫

Rp

[
0 0

hy(Z(t), q) 0
0 hu(Z(t))

][
Py(dt, dq)
Pu(dt)

]
,

where the jump maps are given by

hy : ((x, y, u), q) �→ r(x) + q − y

hu : (x, y, u) �→ k(y)− u.

and Py is the Poisson random measure defined by a Pois-
son process Py(t) and the family (Qk) of i.i.d random
variables, which represents measurement noise with dis-
tribution φQ. The family (Qk) may also be used to model
packet loss as in Hespanha and Teel (2006). The random
measure Pu is defined by Pu(A) =

∑∞
j=1 δTj (A), where

(Tj) is the sequence of jumps in a Poisson process Pu(t).

As initially explained, the jump rate of the Poisson process
Py depends on X(t); however, the jump rate of the Poisson
process Pu is assumed to be constant. Thus, the expected
number of jumps of Pu in a time interval only dependents
on the length of the interval. If Pu makes several jumps
between two jumps of Py, then U(t) will not change
its value, since Y (t) is constant in the considered time
interval. The Poisson process Py(t) making several jumps
without Pu(t) making a jump corresponds to discarding
old measurements, which is reasonable in this application.

5. STABILITY ANALYSIS

This section provides two stability results. First, we pro-
vide a condition for stability in the mean, and subsequently
a condition for mean square stability.

To lighten the notation, we simplify the system described
in the previous section by assuming that there is only one
Poisson process P (t) ≡ Py(t). In addition, the jump rate
λ is independent of the state.

We strive to examine asymptotic behaviour of X(t). To
this end, we will study both E[X(t)] and E[X2(t)]. We
will show that there is time T such that for t > T ,
E[X(t)] ∈ Br1(λ) and E[X2(t)] ∈ Br2(λ), where Bri(λ)
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is a disk of radius ri, and λ is the jump rate of the Poisson
process P (t). The radii ri (i = 1, 2) can be made arbitrarily
small by making λ sufficiently large. In particular, apart
from having information about the expectation of the
process X(t) by the application of the Markov inequality,
we are able to evaluate the probability of X(t) getting
values greater than some ε

P[||X(t)|| > ε] ≤ 1

ε2
E[X2(t)].

We consider two systems Σ1:

dZ(t) = (f(Z(t)) + k(Z(t)))dt+ g(Z(t))dW (t) (4)

and its Poisson-sampled counterpart Σ2 :[
dX(t)
dY (t)

]
=

[
(f(X(t)) + k(Y (t)))dt+ g(X(t))dW (t)

(X(t)− Y (t))P(dt)

]
(5)

The stochastic differential equation Σ2 can be seen as a
realisation of Σ1 with piecewise-constant control k(Y (t))
as Y (t) is a compound Poisson process taking on constant
values between sample-times tk, where the time intervals
tk+1 − tk are exponentially distributed with some jump
rate λ.

5.1 Stability in the Mean

We want to formally verify that if the system Σ1 is
stochastically asymptotically stable, then the realisation
of Σ2 will almost surely converge to a disk D containing
the equilibrium 0. The radius ofD will depend on the jump
rate λ - the bigger jump rate, the smaller radius of D.

We suppose that Σ1 is stochastically asymptotically stable
(asymptotically stable in probability) in the large Khas-
minskii (2012), i.e., the next two conditions are satisfied

(1) for every ε > 0,
limc→0 P

[
sup0≤t<∞ ||Z(t)|| ≤ ε| Z(0) = c

]
= 1,

(2) P [limt→∞ Z(t) = 0] = 1,

where ||Z(t)|| denotes the Euclidian norm. In other words,
we assume that to prove stochastic asymptotic stability of
Σ1, the designer has applied a positive definite function
v with the following property L(v)(z) ≤ −w(z) for some
positive definite function w, where

L :=
∑
i

(fi + ki)
∂

∂zi
+

1

2

∑
i,j

[ggT ]ij
∂2

∂zi∂zj
. (6)

The following assumptions about the Lyapunov function
v, the drift f , and the diffusion g will be instrumental.

Assumption 1.

||f(x)− f(y)|| ≤ K||x− y||, (7a)

||f(x)|| ≤ M (7b)

||k(x)|| ≤ H (7c)

v(x) ≥ W ||x|| (7d)

||v(x)− v(y)|| ≤ F ||x− y|| (7e)

||∂v
∂x

(x)− ∂v

∂x
(y)|| ≤ N ||x− y|| (7f)

∣∣∣∣∣

∣∣∣∣∣
[
∂2v(x)

∂xi∂xj

]

ij

−
[
∂2v(y)

∂xi∂xj

]

ij

∣∣∣∣∣

∣∣∣∣∣ ≤ R||x− y||; (7g)

||g(x)gT (x)− g(y)gT (y)|| ≤ S||x− y|| (7h)

||g(x)|| ≤ T. (7i)

When stability analysis is carried out on a compact subset,
Assumption 1 is not considered conservative. The first
stability result is formulated in the following proposition.

Proposition 1. Consider the systems Σ2 in (5). Suppose
that on a subset U ⊆ Rn, there is a positive definite
function v : U → R of Class C2 such that L(v)(z) ≤
−w(z) on U , where L is defined in (6). Suppose also that
Assumption 1 holds on U , and the Poisson process P (t)
has a jump rate λ. Then there is a disk D(λ) containing
0 such that for each x0 ∈ U , there is T̄ > 0 such that
E[||X(t)|| | X(t0) = x0] ≤ d(λ) for t > T̄ . Furthermore,
d(λ) converges to 0 as λ → ∞.

Proof 1. We shall evaluate the function v on the realisa-
tions of Σ2 between the samples, which correspond to the
Poisson jumps at {ti}i∈N0

. Subsequently, at each sampling
instant ti, X(ti) = Y (ti). To this end, we use that X(t),
t < tk is independent of tk (jump rate λ of P (t) is inde-
pendent of X(t)). The expectation of v(X(tk+1(ω))(ω)) is
by the calculus of conditional expectations, Eq. 6.8.14 in
Section 6.8 in Hoffmann-Jørgensen (1994)

E [v(X(tk+1))| tk = t0, X(tk) = x0] = E[φ(tk+1)], where

φ(t) = E [v(X(t))| tk = t0, X(tk) = x0] .

By Itô formula and the mean value theorem, we have

φ(t)− v(x0) = Ex0

[∫ t

t0

L(v)(X(s))ds

]

= (t− t0)Ex0
[L(v)(X(t∗))] , (8)

where t∗ is a random variable with values in (t0, t), and
Ex0 denotes the conditional expectation, conditioned on
X(t0) = x0. We use the definition of L on the right hand
side of (8)

Ex0

[∑
i

(fi(X(t∗) + ki(x0))
∂v(X(t∗))

∂xi

+
1

2

∑
i,j

[g(X(t∗))gT (X(t∗))]ij
∂2v(X(t∗))

∂xi∂xj


 .

Firstly, we focus on the drift part

Ex0

[∑
i

(fi(X(t∗)) + ki(x0))
∂v((X(t∗))

∂xi

]

=
∑
i

(fi(X(t0)) + ki(X(t0)))
∂v(X(t0))

∂xi

+Ex0

[∑
i

(fi(X(t∗))− fi(X(t0)))
∂v(X(t0))

∂xi

]

+Ex0

[∑
i

(fi(X(t∗)) + ki(x0))

(
∂v(X(t∗))

∂xi

−∂v(X(t0))

∂xi

)]

:=A1 +A2 +A3.

We will evaluate the upper bounds of the terms A2 and
A3 using Assumption 1, and observe

A2 ≤ KFEx0 [||X(t∗)−X(t0)||].
We use Itô formula to evaluate

Ex0
[||X(t∗)−X(t0)|| ≤

n∑
i=1

Ex0
[||Xi(t

∗)−Xi(t0)||]

≤ nM(t− t0).
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is a disk of radius ri, and λ is the jump rate of the Poisson
process P (t). The radii ri (i = 1, 2) can be made arbitrarily
small by making λ sufficiently large. In particular, apart
from having information about the expectation of the
process X(t) by the application of the Markov inequality,
we are able to evaluate the probability of X(t) getting
values greater than some ε

P[||X(t)|| > ε] ≤ 1

ε2
E[X2(t)].

We consider two systems Σ1:

dZ(t) = (f(Z(t)) + k(Z(t)))dt+ g(Z(t))dW (t) (4)

and its Poisson-sampled counterpart Σ2 :[
dX(t)
dY (t)

]
=

[
(f(X(t)) + k(Y (t)))dt+ g(X(t))dW (t)

(X(t)− Y (t))P(dt)

]
(5)

The stochastic differential equation Σ2 can be seen as a
realisation of Σ1 with piecewise-constant control k(Y (t))
as Y (t) is a compound Poisson process taking on constant
values between sample-times tk, where the time intervals
tk+1 − tk are exponentially distributed with some jump
rate λ.

5.1 Stability in the Mean

We want to formally verify that if the system Σ1 is
stochastically asymptotically stable, then the realisation
of Σ2 will almost surely converge to a disk D containing
the equilibrium 0. The radius ofD will depend on the jump
rate λ - the bigger jump rate, the smaller radius of D.

We suppose that Σ1 is stochastically asymptotically stable
(asymptotically stable in probability) in the large Khas-
minskii (2012), i.e., the next two conditions are satisfied

(1) for every ε > 0,
limc→0 P

[
sup0≤t<∞ ||Z(t)|| ≤ ε| Z(0) = c

]
= 1,

(2) P [limt→∞ Z(t) = 0] = 1,

where ||Z(t)|| denotes the Euclidian norm. In other words,
we assume that to prove stochastic asymptotic stability of
Σ1, the designer has applied a positive definite function
v with the following property L(v)(z) ≤ −w(z) for some
positive definite function w, where

L :=
∑
i

(fi + ki)
∂

∂zi
+

1

2

∑
i,j

[ggT ]ij
∂2

∂zi∂zj
. (6)

The following assumptions about the Lyapunov function
v, the drift f , and the diffusion g will be instrumental.

Assumption 1.

||f(x)− f(y)|| ≤ K||x− y||, (7a)

||f(x)|| ≤ M (7b)

||k(x)|| ≤ H (7c)

v(x) ≥ W ||x|| (7d)

||v(x)− v(y)|| ≤ F ||x− y|| (7e)

||∂v
∂x

(x)− ∂v

∂x
(y)|| ≤ N ||x− y|| (7f)

∣∣∣∣∣

∣∣∣∣∣
[
∂2v(x)

∂xi∂xj

]

ij

−
[
∂2v(y)

∂xi∂xj

]

ij

∣∣∣∣∣

∣∣∣∣∣ ≤ R||x− y||; (7g)

||g(x)gT (x)− g(y)gT (y)|| ≤ S||x− y|| (7h)

||g(x)|| ≤ T. (7i)

When stability analysis is carried out on a compact subset,
Assumption 1 is not considered conservative. The first
stability result is formulated in the following proposition.

Proposition 1. Consider the systems Σ2 in (5). Suppose
that on a subset U ⊆ Rn, there is a positive definite
function v : U → R of Class C2 such that L(v)(z) ≤
−w(z) on U , where L is defined in (6). Suppose also that
Assumption 1 holds on U , and the Poisson process P (t)
has a jump rate λ. Then there is a disk D(λ) containing
0 such that for each x0 ∈ U , there is T̄ > 0 such that
E[||X(t)|| | X(t0) = x0] ≤ d(λ) for t > T̄ . Furthermore,
d(λ) converges to 0 as λ → ∞.

Proof 1. We shall evaluate the function v on the realisa-
tions of Σ2 between the samples, which correspond to the
Poisson jumps at {ti}i∈N0

. Subsequently, at each sampling
instant ti, X(ti) = Y (ti). To this end, we use that X(t),
t < tk is independent of tk (jump rate λ of P (t) is inde-
pendent of X(t)). The expectation of v(X(tk+1(ω))(ω)) is
by the calculus of conditional expectations, Eq. 6.8.14 in
Section 6.8 in Hoffmann-Jørgensen (1994)

E [v(X(tk+1))| tk = t0, X(tk) = x0] = E[φ(tk+1)], where

φ(t) = E [v(X(t))| tk = t0, X(tk) = x0] .

By Itô formula and the mean value theorem, we have

φ(t)− v(x0) = Ex0

[∫ t

t0

L(v)(X(s))ds

]

= (t− t0)Ex0
[L(v)(X(t∗))] , (8)

where t∗ is a random variable with values in (t0, t), and
Ex0 denotes the conditional expectation, conditioned on
X(t0) = x0. We use the definition of L on the right hand
side of (8)

Ex0

[∑
i

(fi(X(t∗) + ki(x0))
∂v(X(t∗))

∂xi

+
1

2

∑
i,j

[g(X(t∗))gT (X(t∗))]ij
∂2v(X(t∗))

∂xi∂xj


 .

Firstly, we focus on the drift part

Ex0

[∑
i

(fi(X(t∗)) + ki(x0))
∂v((X(t∗))

∂xi

]

=
∑
i

(fi(X(t0)) + ki(X(t0)))
∂v(X(t0))

∂xi

+Ex0

[∑
i

(fi(X(t∗))− fi(X(t0)))
∂v(X(t0))

∂xi

]

+Ex0

[∑
i

(fi(X(t∗)) + ki(x0))

(
∂v(X(t∗))

∂xi

−∂v(X(t0))

∂xi

)]

:=A1 +A2 +A3.

We will evaluate the upper bounds of the terms A2 and
A3 using Assumption 1, and observe

A2 ≤ KFEx0 [||X(t∗)−X(t0)||].
We use Itô formula to evaluate

Ex0
[||X(t∗)−X(t0)|| ≤

n∑
i=1

Ex0
[||Xi(t

∗)−Xi(t0)||]

≤ nM(t− t0).
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We conclude that

A2 ≤ nKFM(t− t0).

Similarly,

A3 ≤ (M +H)NEx0
[||X(t∗)−X(t0)||]

≤ n(M +H)NM(t− t0).

In the next step, our focus is on the diffusion part

Ex0


∑

i,j

[g(X(t∗))gT (X(t∗))]ij
∂2v(X(t∗))

∂xi∂xj




=
∑
i,j

[g(X(t0))g
T (X(t0))]ij

∂2v(X(t0))

∂xi∂xj

+Ex0


∑

i,j

([g(X(t∗))gT (X(t∗))]ij

−[g(X(t0))g
T (X(t0))]ij)

∂2v(X(t0))

∂xi∂xj

]

+Ex0

[
[g(X(t∗))gT (x(t∗))]ij

(
∂2v(X(t∗))

∂xi∂xj

−∂2v(X(t0))

∂xi∂xj

)]

=B1 +B2 +B3.

We evaluate upper bounds of the terms B2, and B3

B2 ≤ SNE[||X(t∗)−X(t0)||] ≤ nSNM(t− t0)

B3 ≤ RT 2E[||X(t∗)−X(t0)||] ≤ nRT 2M(t− t0).

From the above evaluations and the initial hypothesis that

L(v)(X(t0)) ≤ −w(X(t0)),

we have the following evaluation of the expected value of
φ(tk+1)

E[v(X(tk+1))| X(tk) = x0] (9)

≤ v(x0)− w(x0)E[tk+1 − tk] +M ′E[(tk+1 − tk)
2]

= v(x0)−
1

λ
w(x0) +

2

λ2
M ′,

where M ′ ≡ n(KF + (M +H)N + 1
2SN + 1

2RT 2)M .

The argument above shows that the expected value of the
process v(X(t)) governed by the system Σ2 decays to

2
λ2M

′

or below. On the other hand, W ||x|| ≤ v(x) on U . Define
d(λ) ≡ 2

λ2W M ′. Now, it follows that

E[||X(t)|| | X(t0) = x0] ≤
1

W
E[v(X(t))| X(t0) = x0] ≤ d(λ)

for sufficiently big t.

�

The sampling schedule indicated in Section 2, is slightly
different than the one addressed in Proposition 1. To
accommodate for the schedule that involves the sampling
of the sensor data with a constant delay and subsequently
sending the data to the actuator with the Poisson distri-
bution, we define the following process. Let Ts > 0 be
the inter-sampling time, and let (Wi) be a family of i.i.d.
exponentially distributed random variables with jump rate
λ. Suppose that Tm ≡

∑m
i=1 Wi and P (t) is the following

process
P (t) = �{n ∈ N0| nTs + Tn ≤ t} (10)

where �A denotes the number of elements in A. In other
words, P (t) is a process kept constant in the time interval
[tk, tk+1) with tk+1 = Ts +Wk+1. By (9)

E[v(X(tk+1))| X(tk) = x0] ≤ v(x0)− w(x0)(Ts +
1

λ
)

+M ′(T 2
s +

2

λ2
+ Ts

2

λ
),

whereM ′ = n(KF+(M+H)N+ 1
2SN+ 1

2RT 2)M , and the
coefficients H,K,F,M, S,R, T are given in Assumption 1.
As a consequence, we have the corollary.

Corollary 1. Let Ts > 0. With the same assumptions as
in Proposition 1 and P (t) defined by (10), there is a disk
D(λ, Ts) containing 0 such that for each x0 ∈ U , there is
T̄ > 0 such that E[||X(t)|| | X(t0) = x0] ≤ d(λ, Ts) for
t > T̄ . Furthermore, d(λ, Ts) converges to 0 as λ → ∞ and
Ts → 0.

Corollary 1 can be used for determining a ball to which
the realizations of a networked control system converges
to. The size of the ball depends both on the sampling time
Ts and T̄ .

5.2 Mean Square Stability

This section provides a guideline for choosing the jump
rate to ensure that a given dynamical system is stable in
a mean square sense. The stability condition is derived
based on Proposition 2 below. It leans upon Theorem 3
and Corollary 2 in Hespanha and Teel (2006), and its main
component is Theorem 1 in Section 3.

Proposition 2. Suppose that that there exists a nonnega-
tive function w : Rn → R and constants L ∈ R, c, l ≥ 0
such that for all x ∈ Rn

∂w

∂x
(x)f(x) +

1

2

∑
i,j

[ggT ]ij(x)
∂2w

∂xi∂xj
(x) ≤ Lw(x) + c

(11a)∫

Rd

w(h(x, q))φQ(q)dq ≤ lw(x) (11b)

w(x) ≥ α||x||2 (11c)

and that l
1−LT̄

< 1. Then every solution process X(t) to

(1) with λ = 1
T̄

for which E[w(x0)] < ∞ is mean-square
stable and satisfies

E[||X(t)||2] ≤ e−εt

αa
E[w(x0)] +

cb

εαa
, ∀t ≥ 0

for some constants ε > 0, 0 < a ≤ b < ∞.

The Proposition 2 provides a very strong stability condi-
tion, which is desirable to satisfy. Thus, the next propo-
sition provides easy computable conditions under which a
given system can be implemented as a networked control
system, with stochastic jumps. Again, we consider the
systems Σ1 and Σ2 introduced in (4) and (5).

Proposition 3. Let Σ1 be given by (4). Suppose that a
nonnegative function w : Rn → R and constants L ∈ R,
α, α, c ≥ 0 are such that

∂w

∂z
(z)(f(z) + k(z)) +

1

2

∑
i,j

[ggT ]ij(z)
∂2w

∂zi∂zj
(z)

≤ Lw(z) + c

(12a)

α||z||2 ≥ w(z) ≥ α||z||2 (12b)
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for all z ∈ Rn and that
∂w

∂z
(z)(k(z)− k(y)) ≤ K2||(z, y)||2 +K1||(z, y)|| (13)

for all z, y ∈ Rn. Suppose that there exists γ := γ(T̄ ) > 0
such that

0 <
γα

β − (K + Lα)T̄
< 1, (14)

and β := min(1, γ)α. Then every weak solution process
(X(t), Y (t)) to the networked system Σ2 in (5) is mean-
square stable and satisfies

E[||x||2] ≤ e−εt

βa
E[w(x0)] +

(c+ c′)b

εβa
, ∀t ≥ 0

for mean inter-sampling interval T̄ = 1
λ and some con-

stants ε > 0, 0 < a ≤ b < ∞.

Proof 2. We prove the stability of Σ2 by showing that
v : (x, y) �→ w(x) + γw(y) for some γ > 0 is a nonnegative
function that complies with Proposition 2 for Σ2, i.e.

∂w

∂x
(x)(f(x) + k(y))

+
1

2

∑
i,j

[ggT ]ij(x)
∂2w

∂xi∂xj
(x) ≤ L2v(x, y) + c

(15a)

v(0, x− y) ≤ lv(x, y) (15b)

β||(x, y)||2 ≥ v(x, y) ≥ β||(x, y)||2. (15c)

It is seen from the definition of v and (12b) that (15c) is
satisfied for β := min(1, γ)α and β̄ := max(1, γ)ᾱ.

We use (12b) and (15c) to bound the terms in (15b) as

v(0, x− y) = γw(x− y) ≤ γα||(x, y)||2

lv(x, y) ≥ lβ||(x, y)||2.
This implies that (15b) is satisfied if l ≥ γα

β .

From (12a) it is known that

∂w

∂x
(x)(f(x) + k(y)) +

1

2

∑
i,j

[ggT ]ij(x)
∂2w

∂xi∂xj
(x)

≤ ∂w

∂x
(x)(k(y)− k(x)) + Lw(x) + c

which by (13) and the existence of constants K and c′ such
that K2||(x, y)||2 + K1||(x, y)|| ≤ K||(x, y)||2 + c′ implies
that
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(x)(f(x) + k(y)) +
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2

∑
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[ggT ]ij(x)
∂2w

∂xi∂xj
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≤ K||(x, y)||2 + Lw(x) + c+ c′

≤ K||(x, y)||2 + Lα||x||2 + c+ c′

≤ (K + Lα)||(x, y)||2 + c+ c′

≤ (K + Lα)

β
v(x, y) + c+ c′.

Thus, the system is stable for mean T̄ satisfying
γα

β − (K + Lα)T̄
< 1.

�

The presented condition is concerned with mean-square
stability, which is a very strong notion of stability. There-
fore, it might be relevant to only use it for local stability

analysis in a sufficiently small neighborhood of 0. It is
seen from Proposition 3 that a stabilizing controller can
be implemented by means of a communication network
with stochastic delay, if the mean inter-sampling interval
T̄ satisfies (14).

6. CONCLUSIONS

In this paper, two stability conditions for networked con-
trol systems modeled by jump diffusion processes were pre-
sented. The conditions provide easy checkable conditions
under which a given system is stable when implemented
in a networked control setting. Both conditions provide a
compromise between the size of an expected value (or the
variance) of the state and the mean sampling rate.
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for mean inter-sampling interval T̄ = 1
λ and some con-

stants ε > 0, 0 < a ≤ b < ∞.
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