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Abstract

The combined presence of Line-of-Sight (LOS) and Non-Laf&ight (NLOS) components in the
radio propagation environment can severely degrade thea-Dknse Networks (UDNs) performance.
Backed by a stochastic geometry model, we show that when @®/NLOS propagation components
are taken into account, and as the cell density increase$ysUsiffer from low coverage and the
Area Spectral Efficiency (ASE) grows sub-linearly. Howewee show that this performance drop can
be compensated by increasing the frequency reuse factoy stelering the network into the partial
load regime, which occurs when the base stations outnurhleeugers. In the former, it emerges that
frequency reuse improves the ASE vs coverage trade-offlbfleasification with respect to a traditional
full frequency reuse, provided there is a degree of freedonthe density of cells; in addition, this
trade-off improves with the frequency reuse facidr Finally, we investigate the energy efficiency of
UDNSs for which we show that, as a combined result of LOS/NL@&ppgation and partial load regime,
up to two optimal base station densities exist. As a whole,veark provides novel insights on how
to overcome the limitations and to take advantage of extreefledensification in the upcoming 5G

wireless networks.

Index Terms

Ultra-dense, LOS/NLOS, Area Spectral Efficiency, partteld, energy efficiency, coverage.

. INTRODUCTION

Ultra-Dense Networks are foreseen as a key enabler for they&neration (5G) wireless
networks [1], [2], where a 1000-fold increase in data rated a 10-fold increase in energy

efficiency are expected with respect to current 4G systemsABhough a concept rather



than a precise definition, the terblitra-Dense Network§UDNS) is used to describe networks
characterized by a massive and dense deployment of sntigllH-cewhich the density of Base
Stations (BSs) may exceed the density of user devices [4. ddgree of deployment density
can be used to classify UDNs into two regimes:f(i)l load regime i.e., networks in which
all the BSs are active; and (ipartial load regime i.e., networks in which some BSs might be
inactive, due to the BSs outnumbering the users.

In [5] it was shown that the Area Spectral Efficiency (ASE) wsolinearly with the BS
deployment density. This observation was the result of gkiied propagation model. Recent
works [6]-[9], which assume realistic propagation modklye shown more conservative ASE
gains. Furthermore, when the BS deployment density ineseagyond the user density — the
network enters the partial load regime — the network willengnce a coverage improvement
at the expense of reduced ASE gains [4], [10]. This trend iespthat a larger density of BSs
will be required so to meet the targeted rates, translatingigher network infrastructures costs.
In this paper we show that this performance deteriorationt overcome by: (1) steering the

network into a partial load regime and (2) leveraging thevoek frequency reuse.

A. Related Work

In recent years, stochastic geometry has been gradualgptect as a mathematical tool for
performance assessment of wireless networks. In fact, aheecstone of the cell densification
studies can be found in [5], where the authors proposed aa$tic geometry-based framework
to model single-tier cellular wireless networks. The sifyplg assumption of a single slope
path loss model, has led the authors to conclude that the ASEahliinear dependence with
the cell deployment density. Yet, in subsequent studiegrevimulti-slope path loss models are
assumed [6]-[9], it was shown that the ASE exhibits insteatba-linear behavior with the
cell deployment density. This has been observed for bothnmeter-wave [6], [11] and sub-6
GHz [8], [9] propagation models. In [6], the authors extahtiee stochastic geometry framework
in [5] to a multi-slope path loss model. The authors in [11yaleped a stochastic geometry
framework for path-loss including Line-of-Sight (LOS) ambn-Line-of-Sight (NLOS). The
effect of NLOS propagation on the outage probability haststadied in [7], where the authors

1This can be the result of a reduced load in terms of users ornséissive deployment of BSs.



propose a function that gives the LOS probability at a givemipdepending on the distance
from the source, the average size of the buildings and tlegalogment density. In our previous
work [8] and in [9], the performance of the network with a candal LOS/NLOS has been
modeled and evaluated.

All these studies assume that all base stations are activdnare at least one user to serve,
which is not always the case in a ultra-dense network setlimgact, some recent studies
indicate [4], [12] that the Base Station (BS) deploymentsitgnin 5G wireless networks, is
expected to increase even beyond that of the users; imptiisigsome BSs will have no users
to serve and will therefore remain inactive. Motivated big thve broaden in this paper the body
of work on UDNs towards networks onartial load regime

Previous work on stochastic geometry for partially loadedworks has appeared in [4],
[10], [13], [14]. The authors in [13] studied the coveragesingle-tier networks, while multi-
tier networks are addressed in [14]. An analysis of the ASkpaitially loaded networks has
been carried out in [4], while in [10] the authors have extshthe stochastic geometry-based
model further to include multi-antenna transmission, aavehalso assessed the energy efficiency.
Overall, the authors in [10], [13], [14] have shown that thetwork coverage improves as the
BS deployment density increases beyond the user densityevas, the ASE gain turns out to be
reduced and grows logarithmically with the BS deploymemisity. Nonetheless, the authors in
[10], [13], [14] modeled the propagation according to a Erejope path-loss model and did not
investigate the effect of LOS/NLOS propagation when thevoek is in a partial load regime.

We reckon that the study of UDNs should not ignore the joiféa$ that both LOS/NLOS
propagation and partial load regime have on the networkopmdnce. This paper is to our
knowledge the first contribution that combines these tweat$f and provides a complete analysis

of its effect on the behavior of the ASE, coverage, and eneffigiency in a UDN setting.

B. Our Contribution

In this paper we investigate the cell densification procasdDNs and evaluate the effect of
LOS/NLOS propagation on the coverage, spectral efficieA8f, and energy efficiency. Overall,
the major contributions of our work can be summarized in tieWing points:

1) Stochastic geometry-based model for UDNs with LOS/NLOSppagation: The model

we propose allows us to study the Signal-to-Interfererius-poise-Ratio (SINR) distribution,



the spectral efficiency and the ASE of UDNs with the LOS/NLO®pagation components.
Our model is suited to investigate the performance trendetivork densification in 5G-like
scenarios, while modeling UDNSs in both full and partial laagimes.

2) Investigation on the combined effect of LOS/NLOS propagton, partial load regime
and frequency reuse on UDNs performanceWe show that the LOS/NLOS propagation affects
the UDNSs’ key performance metrics negatively. Specificalg ASE exhibits sub-linear gain and
a drastic coverage drop as the deployment density goes 88@hBSs/km. This performance
deterioration can be circumvented by leveraging frequeaage and steering the UDN towards a
partial load regime. For instance, increasing the BS dghsiyond that of the users increases the
network coverage and negates the impact of LOS/NLOS prdjpegd-urther, frequency reuse
achieves better ASE vs. coverage trade-offs as the fregueuse factor increases, compared
to a reuse factor 1. Hence, we provide design guidelines am thoovercome the inherent
limitations and take advantage of extreme cell densificatio

3) Investigation on the effect of LOS/NLOS path-loss on UDNenergy efficiency:We show
that, as a consequence of the LOS/NLOS propagation, the\emdiiciency has a maximum
value that occurs at a given base station density; beyondiémesity, the energy efficiency drops
considerably with respect to the case of single slope metb-Imaking cell-densification costly
from an energetic stand-point. Further, we show that, in riigbdoad regime, a second local
maximum of the energy efficiency can be achieved, provided tthe inactive base stations are
put into standby mode to save energy. In conclusion, ouryaisaprovides insights on how to
optimize the BS deployment density so to achieve optimaignefficiency.

C. Paper Structure

The remainder of this paper is organized as follows. In $acti we describe the system
model. We show our formulation for computing the SINR, SE &8E in Section Il and we
address the energy efficiency in Section IV. In Section V wesent and discuss the results

while the conclusions are drawn in Section VI.

[I. SYSTEM MODEL

We assume a network of small-cell base stations deployeardiog to a homogeneous and
isotropic Spatial Poisson Point Process (SPPP), denotdd@®?, with intensity \. Each BS

2The partial load regime has been identified as one of thedyitenarios in 5G wireless networks [4], [12].



transmits with an isotropic antenna and powery; we focus our analysis on the downlink.

Let us note that, by definition of the SPPP, each point is iaddpnt of any other point of the
process and, as a result, base stations may turn out to bedoerher too close to or too far
from one another. This might not be in line with real deploytseof cellular networks, where
base station locations tend to be planned in such a way to lidisignt from one another, so
as to provide uniform coverage. Despite this drawback, SAHRRe been shown to model the
network performance metrics with a good level of accuracygrenprecisely, they provide a more
conservative prediction of the real network performancmpgared to the less tractable standard
hexagonal cell grid, which instead gives an overestimaté |&]. Thanks to its good trade-off
between the mathematical tractability and accuracy, weainbe small-cell base station network
as an SPPP.

A. Channel model
In our analysis, we consider the following path loss model:

Kyd with probability py,(d),
PL(d) = L Y ypr(d) (1)
Kypd P5t with probabilityl — py(d),

where 51, and By, are the path-loss exponents for LOS and NLOS propagati@pectively;
K1, and Ky, are the signal attenuations at distarnte- 1 m for LOS and NLOS propagation,
respectively;pr,(d) is the probability of having LOS as a function of the distadcdhe model
given in (1) is recommended in 3GPP to model the LOS/NLOS ggapion, for example, in
scenarios with Heterogeneous Networks [15, Table A.213).. The incorporation of the NLOS
component in the path loss model accounts for possible wtigins of the signal due to large
scale objects (e.g. buildings), which will result in a higla¢tenuation of the NLOS propagation
compared to the LOS path. A visualization of the LOS and NLO&y@agation as a result of
the obstruction from buildings is given in Fig. 1.

We further assume that the propagation is affected by Rgtyli@iding, which is exponentially
distributed~ exp(u). Although Ricean or Nakagami models would more accurately describe
the small-scale fading effect of the LOS propagation, Rghlanodel has the advantage of
being more tractable than the former ones from a mathenhgtaat of view. In addition to
it, Rayleigh fading provides a conservative prediction leé system performance, as it gives a

lower bound of the SINR for system models with Nakagamfading [16].



TABLE |

LIST OF NOTATIONS

Symbol

Meaning

®, &p, OnL

SPPP of base stations, of base stations in LOS with the uskpfabase stations in LOS wit!

the user, respectively

)\, AL (l’), ANL (l)

Density of BSs, of BSs in LOS with the user and of the BSs in LAt whe user, respectively

AA, AL, AU Density of active BSs, of the interfering BSs, and of the sisegspectively

PL, PNL LOS and NLOS probability functions, respectively

Ku, Knw, Keq Signal attenuation at distance 1 for LOS propagation, foOiSLpropagation and for equivalent
model, respectively

BL, BNL, Beq Path-loss coefficients, for LOS propagation, for NLOS pgateon and for equivalent model,
respectively

L LOS likelihood paramter

Jea(z), deq(d)

Equivalent point and equivalent distance, respectivelytfie NLOS-to-LOS mapping

Jed (), deg (d)

NLOS point and reversed distance, respectively, for thavafgnt-to-NLOS mapping

o,

Asymptotical slope of ASE and of the transmit power, respelst as functions of the cell densit

Prx, Pr Transmit power per base station (as a function of the celit@rand component (of the transmiit
power per base station) independent of the cell densitpemsely

Pror, Po, Prr Total Transmit power of the network, fixed component of the@®er consumption and power
consumption per BS due to emitted RF signal, respectively

Krr Power loss of the power amplifier

p Power saving factor of a base station in stand-by mode

Yy Yth SINR and SINR threshold defining the network coverage, ety

DA Probability of a base station being active

1A, MEE Area Spectral Efficiency (ASE) and Energy Efficiency, resipety

E[C] Average cell spectral efficiency or average typical usez rat

BWa, BWy, N Available bandwidth, used bandwidth and frequency factoise, respectively

Regarding the shadow fading, it has been shown that in nksawith a deterministic, either
regular or irregular, base station distribution affectgddn-normal shadow fading, the statistic
of the propagation coefficients converges to that of a ndkwath SPPP distribution as the
shadowing variance increases [17]. In other words, thisFSipRinsically models the effect of

shadow fading.



e

Building

a8

4 -~
~ Building —~
-~

—

\
(8]

Building
Building
\

w
%))
/ \\
\
Building

N \Building
Building 8

[
c
UE in LOS 2
n o 5
67 with BS Building @

8 UE in NLOS

77777 with BS

Fig. 1. Representation of the LOS and NLOS propagation in a urbanmasice LOS propagation occurs where there is clear
sight between the base station and the user, while NLOS ®athere some large scale objects like buildings are obsigict

the path between the transmitter and the receiver.

B. LOS probability function

To ensure that our formulation and the outcomes of our stuel\yganeral and not limited to a
specific LOS probability pattern, we consider two differe@S probability functions. The first
one— which we refer to a1.OS Case 1— is proposed by the 3GPP [15, Table A.2.1.1.2-3]

to assess the network performance in pico-cell scenariespnavide its expression below:

d d
prsc(d) = 0.5 —min (0.5, 5 exp {—EO]) + min (O.S, 5exp {—d—]) , (2)
1

whered, andd; are two parameters that allow (2) to match the measureméat dafortunately,

this function is not practical for an analytical formulatioT herefore, we chose to approximate
it with a more tractable one, namely:
pL(d) = exp (—(d/L)?) , (3)
where L is a parameter that allows (3) to be tuned to match (2), asusisd in Section V (see
Table Il). The second functior- which we referred to asOS Case 2— is also suggested by
the 3GPP [15, Table A.2.1.1.2-3] and is given below:
pr(d) = exp(—d/L). 4)



From a physical stand point, the parameieran be interpreted as the LOS likelihood of a given

propagation environment as a function of the distance.

C. User distribution, fully and partially loaded networks

In our model, we assume that: (i) the users are uniformlyridigied according to a homoge-
neous SPPP of intensity; and (ii) each user connects only to one base station, therone f
which the path-loss is the minimum. Whenever we consider itefareaA, Ny indicates the
average number of users in the network. We also assume the argeserved with full buffer,
i.e., the base station has always data to transmit to the asel makes full use of the available
resources.

Depending on the ratio between the density of users and thsitgdeof basestations, we
distinguish two cases, nameliyll load and partial load regime By full load we refer to the
case where each BS has at least one user to serve. With fei@ia real scenario, networks
in full load model the case where there are many more userslibge stations, so that each
base station serves a non-empty set of users. However, \mbattensity of users is comparable
or less than of the base stations; some base stations mayavetany users to serve and will
become inactive (not transmitting nor generating interiee). When this occurs, we say that the
network is in a partial load regime. The modeling of the netwia this regime allows the study
of those scenarios characterized by high density of bag®rstaand, in particular, scenarios
where the density of base stations exceeds the density of, i eh as in UDNSs.

To define formally the concepts of full and partial load regjrwve start by introducing:

Definition 1 (Probability of a base station being activéhe probability of a base station being
active, denoted ag,, Is the probability that a base station has at least one ueeserve. This

event implies that the base station is active and transroiitstusers.

Definition 2 (Full load regime) The network is said to be in full load regime if each base simti

has at least one user to serve; this is equivalenp to= 1.
Definition 3 (Partial load regime)The network is said to be in partial load regimepif < 1.

Remark 1. To ensurep, = 1, the density of userdy should tend to infinity. But, as we will

discuss in Section IlI-E2, it is reasonable to assyme= 1 when Ay > \.



I11. SINR, SPECTRAL EFFICIENCY ANDASE

In this section we develop the analytical model used to campiue SINR Complementary
Cumulative Distribution Function (CCDF), which will allous to assess key performance metrics

such as coverage, spectral efficiency and ASE.

A. Procedure to compute the SINR CCDF

We compute the SINR tail distribution (i.e., the ComplenaentCDF), by extending the
analytical framework first proposed in [5] to include the L@$J] NLOS components. From the
Slivhyak’s Theorem [18, Theorem 8.10], we considertipcal useras the focus of our analysis,
which for convenience is assumed to be located at the origie. procedure is composed of
two steps: (i) we compute the SINR CCDF for the typical userditioned on the distance from
the user to the serving base station, denoted; d8) using the PDF of the distance from the
closest BSf,.(R), which corresponds to the serving BS, we can average the SI8BF over
all possible values of distance

Let us denote the SINR by; formally, the CCDF ofy is computed as:

Ply >yl =E[Ply >ylr]] = /OMOIP’ [y > ylr = R] f.(R)dR. (5)

The key elements of this procedure are the PDF of the distanttee nearest base statign R)
and the tail probability of the SINR conditioned on P [y > y|r = R]. The methodology to

compute each of these elements and model the LOS/NLOS canfsowill be exposed next.

B. SPPPs of base stations in LOS and in NLOS with the user

The set of the base stations locations originates an SPRéh wie denote byd = {z,,}.2 As
a result of the propagation model we have adopted in our sisafgee Section II-A), the user
can either be in LOS or NLOS with any base statignof ®. Now, we perform the following
mapping: we first define the set of LOS points, namely and the set of NLOS point®yr..
Then, each point,, of ® is mapped intod;, if the base station at location, is in LOS with
the user, while it is mapped tdy;, if the base station at locatian, is in NLOS with the user.
Since the probability that,, is in LOS with the user i9y,(||z||), it follows that each point:,,
of ® is mapped with probabilityy,(||z||) into &, and probabilitypxy,(||z]]) = 1 — pL(||z]|]) into

3Whenever there is no chance of confusion, we drop the syvscand user and instead of:,, for convenience of notation.



®yp,. Given that this mapping is performed independently forhepaint in ®, then from the
"Thinning Theorem" [18, Theorem 2.36] it follows that theopessesb;, and ®y;, are SPPPs
with density A, (z) = A\pp(||z||) and Axp(z) = A (1 — pr(||z]|)), respectively. Note that, because
of the dependence of;,(z) and Ay, (z) on x, ®;, and ®y;, are inhomogeneous SPPPs. Further,
we make the assumption thét, and ¢y, are independent processes; the reasons of this choice
are given in the following. First, each point @f, is independent of each point dfy;,, because
®p, anddyy, are the result of an independent sampling from the proeess which each point is
independent of one another. Second, the union of two indkp#rSPPPs processes is an SPPP
of which the density is the sum of the densities of the indialdSPPPs [19, Preposition 1.3.3],
the union of®;, and®yy, is an SPPP of density,(z) + Axw(z) = A, i.e., it is an SPPP with the
same density as that of the original procéssThe validity of the assumption of independence
betweend;, and ®yy, is also supported by the close matching with simulationltesas shown

in our previous work [8].

C. Mapping the NLOS SPPP into an equivalent LOS SPPP

Given that we have two inhomogeneous SPPP processes, it tevi@ to obtain the distri-
bution of the minimum distance of the user to the serving lsaggon, which will be necessary
later on to compute the SINR CDF. In fact, assuming the usdretan LOS with the serving
base station at a distande, there might be an interfering BS at a distanke< d; which is
in NLOS with the user. This is possible because the NLOS mwatien is affected by a higher
attenuation than the LOS propagation.

Hence, to make our problem more tractable, we map the setiofspof the proces®yy,,
which corresponds to the NLOS base stations, into an equivalOS proces®.,; each point
x € @y, located at distancéy;, from the user is mapped to a point, located at distancé,
from the user, so that the BS locatedaaf provides the same signal power to the user with
path-losskd, - as if the base station were locatedzawith path-lossK . dy ™.

Definition 4 (Mapping functionf.,). We define the mapping functigiy, : ®xi, — P, as:

T

fea() = mdeq(HxH), (6)

K 1/8L
dald) = (1) ™
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1. I
eq - q)eq — Py IS

Definition 5 (Inverse mapping function.,). The inverse functiog., =

defined as:
M
eq(T) = mdeql (Il (8)
. K, 1/BNL
d;q (d) _ < X, ) JPu/ BN — Keqdﬁeq’ (9)

K 1/BNL .
where K, = ( e ) while S, = /AN
Note that from the "Mapping Theorem" [18, Theorem 2.3#}, is still an SPPP.

D. PDF of the distance from the user to the serving BS

Using the mapping we introduced in Section III-C, we can cotapghe PDFf.(R) of the
minimum distance- between the user and the serving B®. this end, we first compute the
probabilityP [» > R], which is the probability that the serving base station tated at a distance
larger thanR from the userthe PDF can be ultimately obtained from the derivativé&® ¢f > R|
as f.(R) = -=(1 — P[r > R]). P[r > R] can be computed as the probability that no BS is
included within the radiug? —i.e., no point of the LOS procesB;, and no LOS equivalent
point of the NLOS proces®;,. In mathematical terms, 1e8(0, () be the ball of radiug centred
at the origin(0, 0). Moreover, we use the notatich(.A) to refer to the number of points € ¢
contained inA [18]. Using the mapping we introduced in Section I1I-C thelpability P [» > R]

can be found as:

Plr > R] = P[®y, (B(0, R)) = 0N ®oq (B (0, R)) = 0]

W p @, (B(0, R)) = 0N &y, (B (0,d22(R))) = 0]

) eq

O P [®y (B(0,R)) = 0] - P [Byy, (B (0,ds (R))) = 0], (10)

) Yeq
where equality(a) comes from the mapping defined in (8) and in (9), while equdli} comes
from the independence of the procesdgsand ®y;,. By making use of the independence and
by applying the probability function of inhomogeneous SHP®, Definition 2.10% to each of

the factors in (10), we obtain the following
P[r > R] = exp (— / )\L(x)dx) exp <— / /\NL(x)dx). (11)
B(0,R) B(0,deq (R))

4Given an inhomogeneous SPRP of density \(z), the probability of having no points within a compact sBtis
P[® (B) = 0] = exp (— [ A(z)dz)
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From (11), we can obtailfi.(R), first, by integrating and, second, by computing its firsivdgive
in R. The formulation in (11) is general and thus can be appliedeeral LOS probability
functionspy,(d). Below, we provide the expression of the PDF of the distamom fthe UE to

the serving BS for the LOS functions (3) and (4), respeciivel

Result 1. If the LOS probability function is as i(8) and if we denotel_/(R) by R.,, the PDF

of the distance to the serving BS is:

_R2 _Req
2 2 2
f(R) =~ (e“L L .e“Req> (12)

7K§ R2Beq

2 q
(—27T)\R€%W)\KquBeqR2Beq_leT — TAK? 2ﬁeqR26eq_1) .

q

Result 2. If the LOS probability function is as i) and if we denotel | (R) by R.,, the PDF

of the distance to the serving BS is:

9mAL2e~ T 9mALRe T AR2 omALZe” 1 AL Roge >
fT<R) — e T e . e T € . e*ﬂ' eq . 67 T e . 67 v eqe (13)

pis
L

( —27ALe T — 27A(L — R)e™ T — ﬂAKﬁqQﬁeqR%eqﬂ

Beq

KegR Keq RPea
+2TALK o Beq RP4e™ T + 2T ALK o Beq RP0 ™ (KoqR? — L)e™— T )

We refer to the Appendix for the details of thfg( R) we have given in (12) and in (13).

E. Spatial process of the interfering base stations and efdttive base stations

The model we propose in this paper can be extended to the abpasdial load regime and of
frequency reuse, which herein we treat separately. In daddo so, we first need to identify the
process of active base statioasd theprocess of the base stations interfering with the typical
user, which will be required to obtain the coverage and the arextsal efficiency. We define
the active base stations as those BSs having one or more tossesve. A BS which is not
active does not transmit and, therefore, does not genemgténterference. On the other hand,
an active BS can potentially, but not necessarily, be seemnasterferer by the typical user;
in particular, an active BS (excluding the one serving theruacts as an interferer if that BS
transmits over the same band used to serve that user. Inltbeif@, we denote byb, the set

of active BSs, while we denote b¥; the set of the interfering BSs.
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1) Frequency reusein this case we assume that all the BSs are active, but where afa
these only uses a portion of the spectrum, in order to reduegférence in the network. Since
all the BSs are active, the proceds is the same a%. Further, we assume that each BS
selects a channel randomly [20]; using a frequency reuderfat¢ N, each BS use$ out of
N channels, chosen independently of the other BSs. Hench, B&cinterferes with a given
user with probabilityl /N; this is equivalent to carrying out a thinning of the oridipaocess
¢ with probability 1/N; from the Thinning Theorem [18, Theorem 2.36], we obtairt thais
a homogeneous process with density= \/N.

2) Partial and full load regime:In the partial load regime, we recall from Section 1I-C that a
fraction of the base stations might be inactive and will nengrate interference. Assuming all
the BSs transmit over the same band, then only the BSs activgemerate interference to the
users — with the exception of the serving BS. Thus, we carewitit= ®, \ x¢, wherex, is the
serving base station; moreover, from the Palm Theorem [@88nd ®, have the same density.
To obtain the process of active BSs, from the original proces®, we first assume that each
user deployed in the network connects to the BS with the mininpath-loss; finally, only the
BSs which are assigned one or more users will be picked to tbenset®,. However, the fact
that a BS is picked to be part df, depends on the positions of the neighboring BSs, which
implies that the BSs belonging b, are not picked independently of one another [13].

As the independence among the points of a process is a ngcessalition in order to
have an SPPP, it follows thdt, cannot be formally regarded as such; to circumvent thiseissu
and make®, more mathematically tractable, in some previous work [I08] the authors
proposed to approximaté, with an SPPP. Specifically, the authors in [13] have showiy tha
(i) the probabilityp, of a base station to be active (i.e., to have users to servepeawell
approximated once the density of usagsand density of base stationsare know; and (ii) the
processb, of active base stations can be well approximated by an SRR&ned through the
thinning the original proces$ with probability p,, which is given below [13]:

)\U —3.5
pA:1—<1+—35/\) | (14)

Although (14) has been proved to be a valid approximatiorsingle slope path-loss models—

for which the user association to the BS is based on the mmmirdistance—we extend the
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use of this approximation to the LOS/NLOS path-loss modetgiin (1)°> Hence we model the
process of active BSs as an SPPP, which, based on the Thifingayem, has density, = pa A;
moreover, as mentioned in Section IlI-ER, and®; have the same density, i.8;, = \a. Fig. 2

shows how the probability, and the); vary as functions of the ratia/Ay.

Remark 2. Based on Fig. 2, we consider fully loaded networks as a spease of partially
loaded networks when the density of usg¢sis greater thari0\, for which the approximation
pa = 1 holds. For fully loaded network, the processes of the adtage stations and of interfering

base stations have densitiegg = A\ and \; = )\, respectively.
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Fig. 2. Probability of a BS being activB4 and density of interfering BS; vs BS density for partially loaded networks. The
probability pa drops as the ratid/Au is close to or greater than 1, i.e., Asapproaches\u. As a result of this, the density

of active BSs as well as the density of interfering BSs caywdp Ay as A approaches or overcomes.

F. SINR complementary cumulative distribution function

The probabilityP [y > y|r = R] can be computed as in [5, Theorem 1]; we skip the details
and provide the general formulation:

gKLR*ﬁL
CT2 +]R

whereg is the Rayleigh fading, which we assume to be an exponeatialam variable- exp(u);

Ply>ylr=R| =P [ > y] = ¢ WK L) (uy KR, (15)

o2 is the variance of the additive white Gaussian noise nomedlwith the respect to the transmit

SWe refer the reader to Appendix B for the numerical validatis (14) in a LOS/NLOS path-loss model.
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power; I is the interference conditioned on distangeof the user to the serving BS and can
be computed as the sum of the interference from the BSs in L@% thve user and of the
interference from the BSs in NLOS with the usee.,

In = 3 gi || P + 3 gi Kzl (16)

{i: 2;€DLND 4, ||l2:|| >R} {jt feq(z;)EPNLNPA, || foq(z5)[|>R}

where g; and g; are independent and identically distributedexp(y:) fading coefficients.To
ensure that the serving BS is excluded from the interfemrergl6), /z accounts only for the
LOS BSs (i.e.,{i : x; € &, N P, ||a;]] > R}) and for the LOS-equivalent points (i.e.,
{7+ fe(mj) € Onp N Py, ||feq(z;)|| > R}) whose distance from the user is greater than
R; note that only the active base stations are included amloagnterferers. By applying the

inverse mapping introduced in Definition 5 to the second tefrthe sum in (16), we obtain

Ir = > gl |77+ > gile |z~ (17)

{i5 T, €PLNP4, H$1”>R} {] T EONLNDA, ijH>de_q1 (R)}

The Laplace transfornt;,(s) if the interferencel/r can be written as follows:
‘C’IR(S) = EIR [exp(_S]R)]

- ECI)LQCDAv‘I)NLm‘I)Avgivgj |:eXp ( - Z giKLH:EiH_BL)

{irzi€@LNPa, [l2i||> |20}
o (- 3 sl ) |
{j: 2, €ONLNDA, [laj]|>deq’ (R)}
Given that®;, and oy, are two independent SPPP, we can separate the expectatitaio:

() = Bouron o, [exp ( NS giKLnxiHﬁL)] (18)

{i: T, €EP,NPy, H331||>R}
Eoyindag, [GXP < —s > QJKNLijHﬁNL)] :
{j: z;€PnLNPA, |75l >deq (R)}
By applying the Probability Generating Functional (PGFa) $PPP (which holds also in case
of inhomogeneous SPPP [18]) to (18) and after some symbaddigipulation, we obtain the

following result:

®Given an SPPR and a functionf(z), the Probability Generating Functional allows us to corapilie expectation of the
product, i.e.E[[],cq] = exp(—=A [p2 (1 — f(z))dz).
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Result 3. The Laplace transfornt;, (s) for LOS/NLOS propagation with model given(i is:

+oo
sKpv P
Lr.(s) =exp <— 2\ / [SKLUL_T‘HJ pL(v)vdv>
R
e K —BL
SIANTL,U
exp ( — 27\ / |:3KNLUﬁNL n /J pNL(v)vdv>. (29)

deq' (R)
The Laplace transform in (19) along with (11) and (A.4) canphegged in (5) to obtain the
SINR CCDF through numerical integration.

G. Average Spectral Efficiency and Area Spectral Efficiency

First, we define the ASE over a given ardaas the overall network throughput normalized
over the area and the available bandwidth, i.e.,

T  E[C]-BWy-M
A-BW,  A-BW,

whereT is the throughput of the networl3W, is the available bandwidtBWy is the used

na(4) = 7 (20)

bandwidth,E[C] is the average cell spectral efficiency/ is the number of active BSs operating
within A. The ASE of the network can be written as a function of the BB8sdg and of the
average spectral efficiency as follows:

@ .. EB[C]-BWy-M @) Ay -E[C]
= Jjim A-BW, N (21)

where equality(a) is obtained by replacing, = lima_,., 2, while equality(b) follows from

na £ lim na(A)
A—o00

the definition of frequency reuse factdr = %. Similarly to [5, Section 1V], the average rate

E[C] can be computed as:
+oo
BIC) = Bllogy(1+)] = [ Pllogy(1+7) > ol du
0
+00 +00
_ / / Pllogy(1+7) > ulr — R] f.(R)dRdu
0 0

+o0o +oo
= / / e M DKL £ (20 — 1) KU RPY) f.(R)dRdu (22)
0 0

where Ly, (s) is given in (19). Similarly to the SINR CCDF, (22) can be ewéd numerically.

’In the system model we assume in this paper, the averagepeeiiral efficiency is the rate of a typical mobile user.
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IV. ENERGY EFFICIENCY WITHLOS/NLOSPROPAGATION
A. Computing the transmit power per base station

We start by evaluating the BSs transmission power, in olé&etable to compute the overall
power consumption of the network. Ideally, tRex should be set in order to guarantee operation
within the interference-limited reginfej.e. the transmit power should be high enough so that
the thermal noise power at the user receiver can be neglegtedespect to the interference
power at the receiver. In fact, when the network is in therfatence-limited regime, the transmit
power is high enough that any further increase of it would di@ffess in terms of enhancing the
SINR, since the receive power increment is balanced by thetesame interference increment.

In practice, the outage probability= P [y < ] is used to constraint the power necessary to
operate within the interference limited regime. When the gover is low, small increments of
Prx yields large improvements of the outag@ehowever, asPrx increases, the corresponding
outage gain reduces, until eventually converges to its optimal valdé, which is reached in
absence of thermal noise. It is reasonable to assume thaetierk is the interference-limited

regime when the following condition is met:
0" — 0] < A, (23)

where/\ is a tolerance measure setting the constraint in terms ofmd@dsamum deviation of)
from the optimal valué*. Eq. (23) provides us with a metric to compute the transmitgrpbut
does not give us any indication on how to fiflx as a function of the density. Unfortunately,
we cannot derive a closed-form expression for the transowtep that satisfies (23), as we do
not have any closed-form solution for the outage probabllit= P [y < ~,,]. We then take a
different approach to calculate the minimum transmit power

In Alg. 1 we propose an iterative algorithm that finds the minm transmit power satisfying
(23) by using the numerical integration of (5). This algwomit computes the outage probability
corresponding to a giverx; starting from a low value of power, it gradually increades
by a power stepAp, until (23) is satisfied. To speed up this procedure, the gtapularity is
adjusted from a coarse sté&p up to the finest stefp,, which represents the precision of the

power value returned by Alg. 1.

8This guarantees that the network performance is not lintitethe transmitted power.
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Algorithm 1 Steps to compute the transmit power.
INPUTS:
1) Vector of the power steps in dBm = [Py, --- Py,], N}, is the length of vectop;

2) Outage SINR thresholg,;, and outage tolerancAgy;
Initialize variables:
1) P..rr = Pn,, WherePy, is the AWGN power in dBm over the bandwidBWy
2) Pan = Peyrr
Find optimal outag#* = P [y < v,,] by integrating (5) with parameter® = 0
for k=1,---,Np do
Find 0(P..,.) = P [y < %] by integrating (5) with parameter? = 10~ Pepger

Set granularity of the power stefyp = py
while [0* — 0(Peyrr)| > Ay do
Increase the current power with stéype, i.e, Poyrr = Peyrr + Ap
Find 0(P...) = P[y < vu1] by integrating (5) with parameter® = 10— 746
Update the final value of power, i.ePs, = P.ypr
Remove the last power increment before increasing the tgatwi.e., Poyyr = Peyrr — Ap

OUTPUT: Py, is the power in dBm s.t. (23) is satisfied.

B. Energy efficiency

We now characterize the energy efficiency of the network asnation of the BS density
to identify the trade-off between the ASE and the power coresiby network. We define the
energy efficiencys the ratio between the overall throughput delivered bynéttevork and the

total power consumed by the wireless network, i.e., we ddfieeenergy efficiency as follows:

2 TN
) £ oy

whereT'()\) is the network throughput, given 8§\) = A- BW -7 (\), with BW denoting the
bandwidth andj, (\) denoting the ASEPror is the total power consumption of the network.

(24)

When we compute the power consumption of each BS, we needkeaoiritp account that a
fraction of the BSs may be inactive and model the power copsiom accordingly. For active
BSs, we model the power consumptiéis o of the BS assuming thabss 4 is the sum of two
components, i.e.Pgs o = Fy + Prp: (i) The first, denoted by, takes into account the energy
necessary for signal processing and to power up the basenstatcuitry. This powerF, is

modelled as a component being independent of the transmiempand of the BS load [21];



18

(i) The second component, denoted By, takes into account the power fed into the power
amplifier before the signal is transmitted. The pow&ji. is assumed to be proportional to the
power transmitted by the BS; we can thus wilg: = Kyrr Prx, Where Ky takes into account
the losses of the power amplifier (i.e., we assuifig: to be the inverse of the power amplifier
efficiency). In the case of inactive base stations, we asdhatethe BS switches to a standby
state for energy saving purposes [22], in which it does ravgmit (i.e.,Prr = 0) and reduces
the circuitry power consumption. Therefore, the power meglto maintain the standby state
can be modelled a&pss = pFy, Wherep is a power saving factor that reproduces the relative
power consumption of the circuitry with respect to the axivase; note that < p < 1. Finally,

the total power consumption due to both active and inacti8ecBn be expressed as follows:
PTOT = A)\APBS,A + A()\ — AA)PBS,S = A)\APO + AAAPTXKRF + A()\ — )\A)pPO (25)

The energy efficiency for the full and partial load regimesdslressed in the next sub-sections.

C. Energy efficiency in full load regime

We now study the energy efficienay:z(\) trend as a function of\; we focus on the full
load regime, i.e.ppn = 1 and Ay = A. Unfortunately, the analysis of the derivativegfs is not
straightforward, as we have a closed-form solution neifbethe throughput/’(\) nor for the
transmit powerPrx (\). One feasible way to get around this burden is to approxiriiate and
Prx(A) with functions in the form:

f(2) = az’. (26)

The model in (26) has two advantages: (i) it can be diffeegatl and, thus, is apt to investigate
the existence of optima; (ii) it is well suited to fit the nandar behaviour of ASE and TX
power. In fact, we have shown in our previous work [23] thathb®(\) and Prx(\) can be
approximated with a piece-wise function in the form (26)sthpproximation holds for both
single-slope and LOS/NLOS model (1) for path-loss. OncediwwesT(\) and Prx(A) have
been computed using numerical integration, according 19 &hd Algorithm 1, respectively,
the parametersa and b can be obtained, for instance, by linear regression in tgarlthmic

domain for a given range of values af
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We approximate the throughput Z%)\) = ATyA“ and the transmit power aBrx ()\) = PrA°,
within a given interval ofA [23]. Under these assumptions, the energy efficiency besome
ToA o 110)\06_1

A\) = — . 27
s (A) APy + MKrpPrAS P+ Kpp PrAd (27)

The derivative ofygr()) is given below:
dT]EE()\) . TQP()(O[ — ]_)/\Ol_2 + T()KRFPT(O[ — 5 — ].)/\OH—(S_2 (28)

dx (Py 4+ KppPr\)?
Let us note thatly, F,, Krr and Pr are positive; moreover it is reasonable to assume that
a > 0 (i.e., the ASE is an increasing function of the density) dmaté < 0, i.e., the transmit
power per BS is a decreasing function of the density. In thleviing paragraphs, we study
the behaviour of the energy efficiency as function of the dgns by analyzing the derivative
nee(A). We distinguish the following three cases:

1) The energy efficiency is a monotonically increasing fionctThis occurs if the ASE growth
is linear or superlinear, i.e., it > 1. It follows thata > 1 > 1 + ¢ holds true; in this case,
nee(A) is strictly positive, meaning that the energy efficiencyr@ases with the density.

2) The energy efficiency is a monotonically decreasing fanctThis occurs if the ASE
growth is sublinear, i.e., if < 1, and, in additiono < 1+ 6. Then,ne(A) is strictly negative
and so the energy efficiency is a monotonically decreasingtion of the density\.

3) The energy efficiency exhibits an optimum poilitASE gain is sublinear (i.ea < 1)

but grows with a slopev sufficiently high, (i.e.,« > 1 + §), then we obtain that the derivative

B Py(1—a) /e
Ao = (KRFPT (a—0— 1)) ’ (29)

is positive for\ < Ay and is negative foA > \;; and where), is a global maximum ofjgg ().

’]7/EE()\) nulls for

As a whole, the behavior of the spectral efficiency is due tw e growths of the ASE
and the TX power relate among each other\dacreases. If the ASE grows rapidly enough to
counterbalance the total power increase of the networkngbyethe addition of new BSs, then
thengr(A) increases with the BS density; this means that adding eX3si8 profitable in terms

of nge()\); else, adding BSs turns not to be profitable from ghg()\) point of view.
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D. Energy efficiency in partial load regime

In this regime, we only analyze the case where- \y, as the opposite case of < Ay
leads back to the full load regime. By using L'Hopital’s rulene can show that (14) can be
approximated by, = A\p\~!, for )\ sufficiently greater thany. By applying this approximation
to (25), we obtain:

Pror = MuPo(1 = p) + A\pPy + AuKgp Pr\°. (30)

It is known from [21] that, as the BS density increases, thenmantribution to the total power
consumption is due to the circuitry powéi,, while the transmit power becomes negligible
for the overall power balance. Therefore, to make the probieore tractable, we can further
approximate the total power in (30) &or = Ay FPo(1 — p) + A\pPy. From (24), by using the
approximationl'(\) = ATy A“ for the throughput an@®ror = Ay Py (1—p) + Ap P, for the power,
we obtain the following expression for the energy efficiency

N TO)\a—l
APl = p) + APy’

To analyze the behaviour of the energy efficiency as a funafo\, we follow the same approach

nee () (32)

as in Section IV-C and we compute the derivativengf(\), which is given below:
dypp(\) _ Tod* (Ap(a — 1) + adu(1 — p))
dA (AuPo(1 — p) + ApPp)? .

As the ASE (and so the throughput) is known to be sub-lineahépartial load regime [4],

(32)

[10], we assumé® < « < 1; moreover, the power saving factprsatisfies) < p < 1. Therefore,
the derivativen;, nulls for: . alu(l - p)
p(1—a)

is positive for A < \* and negative for\ > \*. Hence,\* is a local maximum of the energy

(33)

efficiency for the partial load regime and the energy efficyedecreases for densities> \*.

Note that, this result holds fox sufficiently greater thany.

V. RESULTS

In this section we present and discuss the results we obtdipentegrating numerically the
expressions of outage probability, of the Spectral Efficye(SE), and of the ASE. In Section
V-A, V-C and V-D we assume the network to be interferencettioh while the noise is taken into

account in Section V-E and V-Hn regards to the validation of the analytical model presént
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in Section Ill, we benchmarked it with simulation results. particular, in the simulation we
reproduced the same system model as described in Sectwithlonly a couple of differences
with respect to the analytical one, namely
(i) For LOS Case 1, the LOS probability function is modelled gsr{Zhe simulations, while
we used (3) for the mathematical framework. For LOS Case&s#ime LOS probability
function (i.e., (4)) is used for both analytical and simeathimodels;
(i) the average number of BSs deployed within the network isiteffior the analytical model,
while it is limited to 10° for the simulated one.
Let us note that we set the parameterfor the LOS probability function in (3) so as to
make it reproduce as closely as possible the function (2) thié related values recommended
by the 3GPP standard [15]; we adopted the same valué @r (4) as well. These details
along with the remaining parameter settings we used to mlta results are specified in
Table Il. Both numerical integrations and simulations haeen carried out using Matlab; in
regards to the simulations, the network performance haes lmbtained, first, by deploying
a network of users and base stations with the specified pilapadistributions and, second,
by evaluating the SINR and spectral efficiency —las,(1 + SINR) — of the users. Since
the whole mathematical framework is based on the evaluatidhe SINR, we carried out the
benchmark by computing the empirical SINR from the simolagiand, then, by comparing the
coverage probabilities (i.€P, [SINR, < Threshold]) obtained from the numerical integrations and

the simulations, respectively.

A. Spectral efficiency, outage probability and ASE

In this subsection we assume the network to be in the full l@gpime and with frequency
reuse 1. We compared the results for two LOS probability ions, namely (3) and (4); we also
compared the results for LOS/NLOS propagation with thoseinbd with a the single slope
path-loss model. We first analyze the outage probabilitfifdd asfd = P [y < v4,]) results,
which have been obtained by numerical integration of (5).

We show the outage probability results in Fig. 3a, where we abmpare the analytical results
with those obtained through simulations. In this plot, wa sae the impact of the LOS/NLOS
propagation with respect to the single slope Path-Loss.(Rlibh single-slope PL, the outage
is constant with the BS density. In contrast, with LOS/NLO®pagation, there is a minimum
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TABLE Il
PARAMETERS FOR RESULT SECTION

Parameter Value
Path-loss - Single slope PLsr(dim) = 140.7 + 36.71og(dxm), 8 = 3.67, Ksr, = 107407 [15], for both

analytical and simulated model

Path-loss - Combined LOS/NLOS Eq. (1) withd in km, K1, = 107938 8, = 2.09, Knr, = 107'*%*, By = 3.75
LOS function for LOS Case 1: Eq. (3) for the analytical modedj. (2) withdy =
0.156km, di1 = 0.03km [15] for the simulated model

LOS function for LOS Case 2: Eq. (4) for both analytical anchdated models

Parametet for eq. (3) and (4) 82.5m, set so that (2) and (3) intersect at the point corretipg to probability 0.5.

BandwidthBW 10 MHz centered at 2 GHz

Noise Additive White Gaussian Noise (AWGN) with -174 dBm/Hz Pov&pectral Density|
Noise Figure 9dB

Antenna at BS and UE Omni-directional with 0 dBi gain

SINR threshold Yn = —8dB

Number of simulation snapshots | 10°

Krr 10 [21]

Py 10W [21]

in the outage curves, which is achieved for density 50-100BSs/krf, depending on the LOS
probability function. Within this range of densities, theeu is likely to be in LOS with the
serving BS and in NLOS with most of the interfering BS, meanihat the interference power
is lower than the received power.

At densities) greater than 200BSs/Kimthe outage starts growing drastically and, depending
on the LOS probability function, can reach 38-40%. This is tluan increase on the likelihood
of the interfering BSs entering the LOS region, causing agrall/interference growth and thus
a reduction of the SIR. At densities smaller than 100BSs/kinthe serving BS as well as the
interfering BSs are likely to be in NLOS with the user. Be@o$ this, both the receive power
and the overall interference increase at the same’mau#, as a consequence, the SIR remains
constant, and so does the outage. Let us note that, the LAgalplioy function affects the

outage curves at intermediate values of the BS density {8400 BSs/kr#). At low densities,

°If both serving BS and interfering BS are in NLOS with the uske path-loss exponents of the serving BS-to-user channel
and of the interfering BS-to-user channels are the samethatkfore, the power or the interference and of the recesiguhl

varies with the same slope as a function of the density.
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Fig. 3. (a) Outage probability and (b) ASE vs base statiorsitierfior different LOS probability function. In (a), the dgtcal
results are shown to match those obtained through simottiwith only a small deviation for blue curve, which is duethe

approximation of the LOS probability function (2) with (3).

all the BSs are likely to be in NLOS with the user, while at hdgnsities the serving BS and
the strongest interferers are likely to be in LOS with theruse

The results of the ASE are shown in Fig. 3b. Compared to thglesisiope PL, which shows
a linear growth of the ASE with the densify, with the LOS/NLOS propagation we observe a
different behaviour of the ASE. In particular, we observeoadr steepness of the ASE curve
at high BS densities, which is due to the effect of the intante BSs entering the LOS region
and, thus, increasing the total interference power.

To assess steepness of the ASE, we can use linear regressigierpolate the ASE curve
with the model given in (26). In particular, we can approxienthe ASEn, (\) with a piece-wise
function of the kindna () = na oA*, wheren, o anda are given for given intervals ok. We
specifically focus onv, which gives the steepness of the ASE curve. With referem¢be ASE
curve (solid-blue curve in Fig. 3b) obtained with (3) as a L@8bability function, the value
of the parameten turns to be 1.15 within the range af1-50 BSs/km, 0.48 within the range
50-500 BSs/krhand 0.81 within the range 500-10000 BSstkm
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Fig. 4. Spectral efficiency vs base station density for fully loadedworks. These curves have been obtained using (3) as
LOS probability function, for which we used three differemtiues of the LOS likelihood parametér

B. Effect of different LOS profiles

In this paper we obtained the results by considering a giaued. for the LOS probability
function (see Table Il) which, as explained at the beginmhdsection V, is set in order to
calibrate the analytical model with the system model presitty 3GPP for urban pico-cellular
scenario. In this subsection, we investigate the effedt e parameter. has on the network
performance; the related results are shown in Figure 4,evbiee can observe that the behaviour
of the SE curve is influenced by the LOS probability. In facg motice that the density giving
the highest spectral efficientydepends on the LOS likelihood paramefer To explain this,
we should consider the optimal SE point, which occurs at gledensity where the user enters
the LOS region around the serving BS but remains in NLOS witistnof the interfering BSs.
In denser propagation environments (ef.= 40m in Figure 4), the user will enter the LOS
region of the serving BS in at higher cell densities, comgdcethe case of dense propagation
environments; hence, the optimal value of the spectralieffoy will be reached at a higher BS

density, and vice-versa.

%The reason why the spectral efficiency is not constant bushasximum value with the cell density is the same as for the

minimum coverage we can observe in Figure 3a; the readerafanto the explanation we gave above.
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C. Frequency reuse

To have a comprehensive view of the frequency reuse as arfeirgiece mitigation scheme,
we need to assess the trade-off between the ASE and the Retoxerage probability, defined
asl—P [y < ). The results of this trade-off are shown in Fig. 5, where wtptl the network

coverage against the ASE for different frequency reusefaand base station densities.
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Fig. 5. ASE vs coverage trade-off for frequency reuse. Thdetoff curves have been plotted for BS density equal to 1, 2,
5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000 BSs/&amd compare the combined LOS/NLOS model with the single

slope one.

Firstly, we focus on the LOS/NLOS propagation; we can nofroen this plot that, if we
fix the BS density, higher frequency reuse factors enhaneendtwork coverage but, on the
other hand, determine a drop of the ASE. This is in line withatvbne would expect from
frequency reuse. Nonetheless, if we have no constrainterchioice of the BS density, the ASE
vs coverage trade-off improves as the frequency reuserfactmcreases. In fact, the trade-off
curve we obtain for a given reuse factdr lies on the top-right hand side with respect to the
curve for reuse factolV — 1. This means that, by increasing the reuse factor and thedbaisen
density at the same time, it is possible to achieve bettdopeance than with a lower frequency
reuse factors; note, though, that this is true when thereisamstraint in terms of BS density.
This is actually a surprising results, as one might think thereasing the frequency reuse factor
leads to a drastic drop of the area spectral efficiency, dubaaisage of only oné/-th of the
available bandwidth. However, it turns out that the intexfee reduction obtained by limiting

each cell spectrum usage counterbalances the spectramfficdecrease due to this spectrum
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(a) Outage vs base station density (b) Spectral efficiency vs base station density.

Fig. 6. The probabilityps given by (14) is reported as ax™ on each curve. The outage probability has been obtained for
vn = —8dB. In (a), the analytical results are shown to match closege obtained through simulations.
limitation and, thus, provides an overall gain in the ASE saverage trade-off, as the density
increases. From the plot in Fig. 5 we can conclude that frecqu&LOHA turns to be a simple
but effective resource management technique for denseonietywvhich would otherwise face
serious coverage issues due to the effect of LOS/NLOS padjuay

By looking at the single slope PL curve in Fig. 5, it appeast tiigher frequency reuse factors
should still be preferred in order to improve the ASE vs cager trade-off. However, unlike
with the LOS/NLOS path loss, increasing the BS density eoésithe ASE with no loss in terms
of network coverage. Yet, modelling the signal propagatigth the combined LOS/NLOS path

loss yields different results than with the single-slope PL

D. Partial load regime

In this subsection we show the results for the partial logéhme with LOS/NLOS propagation.
Differently from the case of full load regime, we recall tlzafraction of the BSs may be inactive
and, thus, the density of interfering BSs does not necessary follow the trend of BS density
A (see Section llI-E and Fig. 2). In Fig. 6a and 6b we show theageitprobability and the
ASE curves, respectively, as functions of the BS densitydftierence user densities. To better
understand the effect of the partial load on the networkqoerédnce, we compare these curves
with those of the full load regime. Furthermore, we higligihe values of the probability, of

a BS being active over the outage and ASE curves.
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We observe that, as long ag > 0.9, the deviation from the full load regime is minimal.
However, as soon as approaches the value of user density, the probabilityp, drops and,
as a consequence, the density of interferlpdSs grows slowly with\, up to the point where
it saturates and converges ¥ (see Fig. 2). At the same time, asincreases, the distance
from UE to the serving BS tends to decrease, leading to arenment of the received power.
Overall, the fact thaf\; saturates whereas the received power keeps growingimsreases has
a positive impact on the SIR; as a result, the outage prabalsiee Fig. 6a) and the spectral
efficiency improve once the density approaches or overcomes;. Based on the results we
show in Fig. 6a, we can notice that the partial load regimeoatnsompletely compensates the
huge outage growth occurring at high densities due to LOS/SIlpropagation. Although this
would be achieved at the cost of a massive BS deploymentjrsgebe networks into the partial
load regime represents an effective strategy to combateheonk coverage issues resulting as
a consequence of the LOS/NLOS propagation.

In regards to the ASE trend, we show the results in Fig. 6boAding to (21), the ASE trend
is the combined outcome of the increase of the spectral esfitgi and of the density of the
active base stations. As the density of base stations iseseand approaches the user density
Au, the density of active base stations will converge\to(see Fig. 6a); given that the density
of active BSs remains constant, the only contribution toAlsE increase will be given by the
spectral efficiency improvement. As a matter of fact, we cam that, with respect to full load
regime, the ASE curves show a lower gain when the densiypproaches\y.

To assess steepness of the ASE, we applied linear regrdsstbe ASE curves in order to
obtain the value of the parametercorresponding to different intervals of we specifically
consider the approximation for the curve corresponding\to= 1000UEs/kn? (red curve in
Fig. 6b). These values ake = 1.15 within the density range 1-50 BSs/kRmm = 0.43 within
the density range 50-500 BSs/krand o = 0.46 within the density range 500-10000 BSsAm

E. Transmit power per base station

In Fig. 7 we show the simulation results of the transmit poparbase statio#rx (), which
has been computed by using Algorithm 1 exposed in SectioA.I\4 this figure we compare
the results we obtained using teangle slopeand thecombined LOS/NLO$ath loss models.

As we can see from this plot, the behaviour of the transmitgyoas a function of the BS
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Fig. 7. Transmit power per BS. The power has been obtainddamitSINR threshold.,, = —8dB and for tolerance\y = 0.1%.
The plot compares the TX power per BS for single slope-slape lZOS/NLOS path-loss for fully loaded networks. It also
provides the curve for frequency reuse factor 2 and 3 and ddtighly loaded network with\i: = 1000UES/KnT.
density)\ is different in the two cases of single slope and combined/NDOS propagation. With
reference to Fig. 7, with single slope path loss, the poweradeses linearly (in logarithmic scale)
with the density; in the case of combined LOS/NLOS propagatihe transmit power exhibits
different slopes as the base station density increasess®delimear regression to assess the slopes
of the TX power curves (indicated hy, as explained in Section IV-C) within different density
intervals. With reference to the curve corresponding ttyfldaded networks with LOS/NLOS
propagation (solid-blue curve in Fig. 7), the values & (4) are (9.3 - 107 —1.9) within
the A range 1-60 BSs/kf (4.4 - 10717, —3.9) within the X range 60-300 BSs/kfmand (1.15 -
1079, —1.44) within the range 300-10000BSs/Km

The fact that the transmit power per base station decays ardess steeply with the density
A depends on how quickly the interference power increases@edses with. As we explained
in Section IV-A, the transmit power per base statiy(\) has to be set so that the network is
interference limited. Thus, if the channel attenuatiomieein the interferer and the user decreases
quickly as the density increases, a lower transmit powek lvél enough to guarantee that the
interference power is greater than the noise power. In otbeds, if the interferer-to-user channel
attenuation tends to decrease quickly as the density isesea0 does the transmit power and
vice-versa. For instance, for € [60, 300|BSs/kn¥, the probability of having interferers in LOS

with the user rises and, as a consequence, we have a loweuatiten of the channel between
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(a) Energy efficiency for fully loaded networks. (b) Energy efficiency for partially loaded networks.

Fig. 8. (a) Energy efficiency vs BS density in full load reginide plot compares the energy efficiency for LOS/NLOS with
single slope path-loss. The energy efficiency is given atsofrfequency reuse factors 2 and 3. (b) Energy efficiency vs BS

density for partially loaded networks. Curves are given Xor= 1000UEs/kn? and for three values gf.

the interfering base station and the user. Hence,Rhg\) which guarantees the interference-
limited regime will also decrease steeply with= —3.9 as A\ increases. On the contrary, for
A > 300 BSs/knt, most of the interferers will have already entered the LOSezoneaning that
the interferer-to-user channel attenuation drops lessllsathan for A\ < 300 BSs/kn¥; for this
reason, als@rx(A) will decrease less rapidly with = —1.44.

Let us note that, with increasing reuse factdisthe TX power decreases, as indeed a smaller

bandwidth is used and, thus, the noise power is lower.

F. Energy efficiency

One of the most surprising outcomes of our study on LOS/NL@fpggation for ultra-dense
networks is the effect of cell-densification on the enerdicieincy within the full load regime,
of which we show the results in Fig. 8a. The difference betwte energy efficiency with
single-slope and with LOS/NLOS path-loss is noticeablethin case of single-slope PL, due to
the linear growth of the ASEygr(\) is @ monotonically increasing function of the densky
(see Section IV-C1). In the case of LOS/NLOS propagatiommfi=ig. 8a we observe that the
energy efficiency exhibits a maximum, which is achieved f@ieen density)\,.

To explain this, we consider the case of frequency revise 1 (solid-blue curve in Fig. 8a);
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from (29) and with the values of the parameté&sqgiven in Table Il),Pr andé (given in Section
V-E), anda (given in Section V-A), the optimal point, is approximately 100BSs/kinBeyond
this point, the ASE gain is too low to compensate power comdiom increase in the network,
leading to a drop in terms of energy efficiency. From Fig. 8a,can note that frequency reuse
reduces the energy efficiency comparedMo= 1. As a result of the lower ASE achieved at
higher frequency reuse factorg, the energy efficiency drops &§ increases.

In Fig. 8b we show the energy efficiency for the partial loagimes, for a user densityy of
1000 UEs/km. As we are dealing with networks in the partial load regime,awe interested in
the BS densities\ > Ay, where energy efficiency strongly depends on the power gaeaictor
p of the BSs in stand-by state. This is because the parametetermines the energy saving of

the inactive BSs, which become more numerous as the deksitgreases. Depending on the

aiu(1-p)
p(l—c) -~

With p = 0.1 and with the values ofr given in Section V-D, the local maximum turns to

value of p, according to (33) a local maximum may even occuhat=

be \* = 7300BSs/knt. For higher values of), \* is smaller than or too close tdy to be
considered as a reliable estimate of a maximum; we recath fBection 1V-D that this estimate
can be reckoned as reliable onlyXf is sufficiently greater thany. In fact, we observe from
Fig. 8b that there is no local maximum beyoid for p = 0.3 or 0.6. Based on our system
model for ultra-dense networks which includes both LOS/ISLfropagation and partial load
regime, from the results in Fig. 8b, we show the existencevofdptimal operating points which
turn to be convenient in terms of energy efficiency for themogk operator. The first one can
be achieved in full load regime, provided that the operaaplays the network with BS density
given by (29); the second, by (33), occurs in the partial loegime and can be achieved only

if the power saving factor is low enough (e.g.x 0.1).

VI. CONCLUSIONS

In this paper, we have proposed a stochastic geometry-fesmméwork to model the outage
probability and the Area Spectral Efficiency (ASE) of Ullbense Networks (UDNSs), which
can operate either in the full or partial load regimes, anén@tthe signal propagation accounts
for LOS and NLOS components.

As the main findings of our work, we have shown that, with LOSI$ propagation, massive

cell densification determines a deterioration of the netwamverage at high cell densities, if
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the network is fully loaded. Moreover, the ASE grows leseghe than a linear function at

high cell densities, which implies that a larger number ofebatations would be required to
achieve a given throughput target with respect to the casgngle slope path-loss. However,
from our results it also emerges that the coverage issuedadu®S/NLOS propagation can
be mitigated by steering the network into the partial loagime; in addition, provided there is
no constraint in terms of BS density, we showed that frequexl®OHA with frequency reuse

factor N enhances the ASE vs. coverage trade-off with respect tol drégjuency reuse case;
moreover, this improvement further increases with theudesgy reuse factoi.

We have extended our study also to the energy efficiency ascidn of the BS density. We
have shown that, as a combined effect of the LOS/NLOS prdmagand of the partial load
regime, there are two optimal points of the energy efficiemeye of which occurs in the full
load regime, while the second is achieved at higher dessitthen the network is in the partial
load regime. Our work gives an insight in terms of the optichathsity as a design parameter to

optimize the energy efficiency of ultra-dense networks.
APPENDIX A
PDF OF THE DISTANCE TO THE SERVINGBS

Once the LOS probability function is known, from (11) we abtthe PDF of the distance to

the closest BS as follows:

P> m=ew (<[ near)ew (<2 f L 0-nai). @

Assuming the integrals in (A.1) can be solved in a closedifavith some symbolic manipulation,

(A.1) solves in its general form as follows:

Plr> R = ] exp(fm(R)). (A.2)
By taking the derivative of (A.2), we obtain:
5 [Plr> Rl =1 gexp<fm<R>> = m§zj 15 [xP(fn(R))] ngimexpm(m) =
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> (R (H exp(fn<R>>) =P[r>R]>_ fL(R). (A.3)

The PDF of the distance to the serving BS can finally be obthase

fr(R> = _ﬁ [

M
Plr>R]|=-P[r>R] ) fL(R). (A.4)
m=1
If we assume the LOS probability to be given by (3), we canhierrtdevelop (A.1) by solving
the integrals in (A.1) and, with further symbolic manipudat we obtain:

2
R? Req

]P)[T’ > R] — ew)\Lgeiﬁ X 6_71—)\[,2@7]472 . 6—7T>\qu7 (A5)
where R, = d_/(R). Let us define the functiong (R), f>(R), f3(R) and their first derivatives
fi(R), f5(R), and f}(R), respectively, as follows:

2 R2, )
fHi(R) = TALPe 12, fo(R) = —wAL?e” 2, f3(R) = —wARS, fi(R) = _9rARe 17,
~ K2 Rr?Peq
fé(R) = WAK§q2/BeqR2Beq_1€_ L2 , fé(R) — _7T)\Ke2q2/66qR26eq_1.

By plugging (A.5) andf|(R), f5(R), and f;(R) in (A.4), we obtain the PDF of the distance to
the serving BS.

When the LOS probability function is given by (4), we obtalre tPDF of distance to the
closest BS station as follows. First, by solving the intégia (A.1) and by some additional

algebraic operations, we obtahr > R| as follows:

_R _R _Req _Req
Plr> R] = p2mAL%e"L | 2nALRe” L | —7ARZ,  —2mAL?¢ "L —27ALReqe” L (A.6)
Then, we define the function (R), f2(R)---, fs(R) and we compute their respective deriva-

tives f{(R), f5(R) -+, fi(R) as follows:

=

Fi(R) =2rAL% %, fl(R)=—2rALe L, fo(R)=2rALRe %, fL(R)=—2rA(L—R)e

f3(R) - _ﬂ-)‘quv fé(R) - _WAKquBeqR2Beq_la f4(R) = _277-)\[/26_%7

KeqRPea Req

FI(R) = 27ALK g BeqR™e™ T, f5(R) = —27ALReqe” T,
q/-eq q

Keq R»Beq

FHUR) = 2T ALK oo Boq RP (Ko RP* — LYe™ =,

Finally, the PDF can be obtained by pluggifif ?), f5(R) ---, fi:(R) and (A.6) in (A.4).
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APPENDIX B

BENCHMARK OF PROBABILITY pa

In this paper we assume that the user associates to the bisa tom which the path-loss is
the minimum. When the path-loss is modelled as a single dlop&tion, user association based
on minimum path-loss is equivalent to user association asethe minimum distance from
the base station [5], [13]. Using an empirical expressiartlie PDF of the Voronoi's cell area
(which can be found in [24]), the authors of [13] computed ppraximation of the probability
of a Voronoi cell being empty, which corresponds to the camp@ntary event of a base station
being active defined in Section II-C.

Nevertheless, when the path-loss has both LOS and NLOS awmnps) the user association
is no longer equivalent to the minimum distance associatiten Moreover, it makes no longer
sense to talk about Voronoi’s cells, as the path-loss ing1g stochastic process, meaning the
it is not possible to define the boundary of the cells in a deit@stic way. It follows that (14)
needs to be further validated in order to extend its use td. @8/NLOS propagation case.

Motivated by our simulation results, we have noticed thotlgtt the effect of the propagation
model given in (1) and (2) has a marginal effect on the on tbagility p, with respect to what
given by (14) for the minimum distance user association.ithd; we compared the simulation
results of the probability, in the case of LOS/NLOS with (14) for various values of theebas
station density\; as we can see from this plot, the maximum deviation from {&4gss than
2%, meaning that the model in (14) can be considered a reliapproximation ofp, also in

case of LOS/NLOS propagation.
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