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ABSTRACT  

Grapes quality and yield are affected by bunch rot disease caused by the necrotrophic fungus 

Botrytis cinerea. Primary infections are mostly initiated at blooming by airborne conidia from 

overwintered sources. The fungus often remains quiescent from bloom until maturity and 

egresses at ripe where it causes bunch rot. Here, it is reported molecular analyses of the 

interaction between B. cinerea and the flower/berry of the cultivated grapevine (Vitis vinifera L.), 

in a controlled infection system, using confocal microscopy and integrated transcriptomic and 

metabolic analysis of the host and the pathogen. Open flowers from fruiting cuttings of the cv. 

Pinot Noir were infected with GFP labeled B. cinerea and samples taken at 24 and 96 hours post 

inoculation (hpi) (infected flowers), at 4 weeks post inoculation (wpi) (asymptomatic hard-green 

berries), and at 12 wpi (pre-egression and egression of the fungus on ripe berries) were studied. 

The observed penetration of the flower epidermis by B. cinerea coincided with increased 

expression of fungal genes encoding virulence factors, representing the effort of the pathogen to 

invade the host. Grapevine flowers responded with a rapid defense reaction involving genes 

associated with the accumulation of PR proteins, phenylpropanoids including stilbenoids, reactive 

oxygen species and cell wall reinforcement. At 96 hpi the transcriptional reaction appeared 

largely diminished both in the host and in the pathogen and a new status of asymptomatic 

coexistence is established. Afterwards, infected berries continued their developmental program 

without any visible symptom, although the presence of B. cinerea could be ascertained by plating 

out on selective media. Nonetheless, at the transcriptional level, the expressed quiescent fungal 

transcriptome highlighted that the fungus was modifying its cell wall to evade plant chitinases, 

besides maintaining basal metabolic activities. Also hard-green berries maintained activated 

response based on the expression of several PR family genes and genes involved in monolignol, 

flavonoid and stilbenoid biosynthesis pathways, in order to keep the pathogen quiescent. At 12 

wpi, the transcripts of B. cinerea in the pre-egressed samples showed that virulence-related genes 

were expressed again, suggesting pathogenesis was resumed. The egressed B. cinerea expressed 

almost all virulence and growth related genes to enable the pathogen to colonize the berries. In 

response to egression, ripe berries reprogram different defense responses, though futilely. In 

conclusion, this study showed that the defense responses occurring in the grapevine flower and 

hard-green berry were able to restrict invasive fungal growth at the epidermal tissues, thus forcing 

the fungus to enter quiescence. However the pathogen was able to perceive and exploit ripening 

associated modifications, such as fruit’s cell wall self-disassembly, and favorable external 

conditions, such as high humidity induced by cluster bagging practice, to recover an active 

metabolism and pathogenic activity, and eventually caused bunch rot. 
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1. GENERAL INTRODUCTION 

1.1. Grapevine cultivation – production and uses 

Grapevines (Vitis spp.) have evolved in several areas of the world, leading to the development of 

many different species including V. labrusca (L.) and V. vinifera (L.) (Mullins et al., 1992). The 

latter one being one of the most worldwide-grown perennial fruit crops whose origin of 

cultivation is probably in southern Caucasia, a region located on the border of Eastern Europe and 

Western Asia (Mullins et al., 1992). The other well-known species, V. labrusca, which is widely 

used for juice production, is native to North America (Creasy and Creasy, 2009). This species as 

other American species such as V. riparia, V. berlandieri, is much more resistant to pests and 

diseases than V. vinifera (Creasy and Creasy, 2009). Actually, many of the non V. vinifera 

species, which are usually not used for grape production, including V. labrusca, are used in 

breeding to confere resistance to soil-related conditions and pests for commercial cultivars 

(Creasy and Creasy, 2009). V. vinifera (here synonymously referred as grapevine) is a highly 

adaptable species. Cultivation limitations imposed by climatic conditions that are different from 

its center of origin are usually compensated by agronomic practices. Currently grapevine is 

cultivated throughout the world in a wide range of climates (from temperate to tropical climates), 

countries of the Mediterranean basin being the world’s main producers (Bouquet, 2011). 

According to FAOSTAT (2014), the total world grapes production was estimated about 77 

million tons in 2013, where Italy was the second top producer next to China (Food and 

Agriculture Organization of the United Nations Statistics Division, FAOSTAT, 2014, 

http://faostat3.fao.org/home/E). 

The economic benefits obtained from grapevine derive from its berry. The nature of grape berry 

development is represented by two successive sigmoidal growth cycles, each with distinctive 

characterstics separated by a lag phase (Figure 1.1) (Coombe, 1992; Coombe and McCarthy, 

2000). In the first cycle, berry formation, cell division and enlargement occur in pericarp tissue 

which determines a berry’s final size and shape. The cycle lasts about 60 days after bloom, while 

the berry is hard and green and accumulates organic acids. The second cycle lasts from véraison 

(color change) to ripening. This cycle begins with the onset of berry softening, sugar 

accumulation, acids degradation, and berry colouring. Phenols and anthocyanin (in black-skinned 

http://faostat3.fao.org/home/E
http://faostat3.fao.org/home/E
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grapes) are also accumulated in this growth phase. Toward the end of the second growth cycle, 

aroma and flavor compounds are also produced. 

 

 

 

 

The unique ability of grapevine berry to accumulate sugar, pectin (depending on cultivars), acids 

(particularly tartaric acid), and a wide range of aromatic compounds when ripe makes grapevine 

suitable for different uses (Creasy and Creasy, 2009). Major economic benefits come from wine 

and related fermented products, but also from fresh fruit, raisins, fruit juices and jams. To 

consumers, it has numerous nutritional and health benefits due to antioxidant polyphenols such as 

Figure 1.1. Diagram showing berry growth stages from flowering to ripening. Shown are: the relative 

size and color of berries at 10 days interval from flowering; periods when compounds accumulate; the 

level of juice brix; an indication of the rates of inflow of xylem and phloem vascular saps into the 

berry; and the rate of softness, sugar accumulation and acidity (Adopted from Kennedy, 2002) 
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flavonoids and resveratrol (Yadav et al., 2009). However, grapevine production can be 

jeopardized by adverse environmental conditions and biotic threats. 

Disease and pest management consumes a large proportion of grapevine cultivation costs (Creasy 

and Creasy, 2009). Damage to grapevines can occur below and in the above-ground parts. Biotic 

stresses of grapes include diseases caused by bacteria, fungi, oomycets, viruses, and pests from 

insects, arthropods, birds, and mammals. The major diseases caused by fungi and oomycetes are 

briefly reviewed in the next section.  

1.2. Grapevine diseases 

Fungi and oomycetes represent the major cause of damage and losses in grape cultivation. The 

biotrophic oomycete pathogen, Plasmopara viticola, causes downy mildew in grapevine 

provoking severe leaf, shoot, and cluster damage. When leaves are infected, the pathogen causes 

a characteristic yellowish oily spots on the upper surface and massive sporulation on the 

underside, which looks like downy white (Pearson and Goheen, 1988; Ash, 2000). Infected 

berries and shoots have also a similar downy white appearance. Downy mildew is primarily a 

disease of warm and humid growing regions, and the absence of rainfall and high humidity 

reduces the spread of the disease (Pearson and Goheen, 1988). However, should there be a need 

to use fungicide, mostly copper-containing formulates are used (Ash, 2000). 

Grapevine powdery mildew, also called oidium, is a devastating disease caused by Erysiphe 

necator (syn. Uncinula necator), an obligate biotroph fungus that can infect all grapevine green 

tissues (Gubler et al., 1999; Gadoury et al., 2012). Infection compromises photosynthesis and 

often leads to premature senescence and abscission of leaves; on berries it causes crack, acidity 

increase, and decrease anthocyanin and sugar content at ripe, with an overall impact on yield and 

quality (Lakso et al., 1982; Gubler et al., 1999; Calonnec et al., 2004). Most cultivated varieties 

are susceptible to powdery mildew, and growers make use of synthetic fungicides to control the 

disease (Gubler et al., 1999; Gadoury et al., 2012). 

The ubiquitous Botrytis cinerea is another important grapevine’s fungal pathogen, which causes 

Botrytis bunch rot or gray mold. This pathogen is the focus of this study, and is discussed in 

detail in the next section. Other grapevine diseases caused by fungal pathogens include cane and 
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leaf spot (Phomopsis viticola), dieback (Eutypa lata), black rot (Guignardia bidwellii), 

anthracnose (Elsinoë ampelina), and blackfoot disease (Cylindrocarpon spp.).  

1.3. Botrytis cinerea 

The genus Botrytis comprises about 28 species (Beever and Weeds 2004). However, with the 

exception of B. cinerea, most Botrytis species have a limited host range (Beever and Weeds, 

2004). Botrytis cinerea (Pers.:Fries) represents one of the first described ascomycetes and is an 

economically relevant plant pathogen worldwide (Hennebert, 1973). Taxonomically, it is 

classified under kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: 

Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis; and species: Botrytis 

cinerea (Williamson et al., 2007; Elad et al., 2016). Other species of Botrytis that are known to 

cause significant losses in crops are listed in Table 1.1. 

       Table 1.1. Lists of important Botrytis species with their hosts (Adopted from Dewey and      

        Grant-Downton, 2016) 

Species Date of description Major plant host (genus/genera name) 

Botrytis aclada 1850 Allium 

Botrytis allii 1917 Allium 

Botrytis byssoidea 1925 Allium 

Botrytis caroliniana 2012 Rubus, Fragaria 

Botrytis cinerea 1794 Multiple host 

Botrytis convoluta 1932 Iris 

Botrytis deweyae 2014 Hemerocallis 

Botrytis elliptica 1881 Lilium 

Botrytis fabae 1929 Vicia 

Botrytis fabiopsis 2010 Vicia 

Botrytis gladiolorum 1941 Gladiolus 

Botrytis globosa 1938 Allium 

Botrytis hyacinthi 1928 Hyacinthus 

Botrytis narcissicola 1906 Narcissus 

Botrytis paeoniae 1897 Paeonia 

Botrytis pelargonii 1949 Pelargonium 

Botrytis polyblastis 1926 Narcissus 

Botrytis porri 1949 Allium 

Botrytis sinoallii 2010 Allium 

Botrytis sinoviticola 2014 Vitis 

Botrytis sphaerosperma 1949 Allium 

Botrytis squamosa 1925 Allium 

Botrytis tulipae 1913 Tulipa 

Botrytis sp. Group S 2013 Fragaria, Vitis, likely multiple others 
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B. cinerea can undergo both sexual and asexual lifecycle. In the asexual cycle, the fungus 

produces numerous asexual conidia (macroconidia) that are borne at the tips of branching 

conidiophores, specialized hyphae (Figure 1.2). Conidia are short-lived propagules and their 

survival depends on temperature, moisture availability, sunlight exposure and microbial activity 

(Holz et al., 2004). They are metabolically dormant fungal structures and are considered as 

survival structures (Holz et al., 2004). B. cinerea can also produce temporary resting structures 

having thickened (hyaline) walls, called chlamydospores (Urbasch, 1983). Chlamydospores are 

often found in ageing cultures and suited to survive short drought periods (Urbasch 1983; Beever 

and Weeds, 2004). Another survival structures used for overwintering are sclerotia. These are 

structures resistant to adverse environmental condition, and are produced by melanized resting 

bodies (Holz et al., 2004).  

 

            

 

 

On the other hand, the fruiting structures in the sexual life cycle of Botrytis spp. are not 

commonly seen in nature (Lorbeer, 1980). Microconidia, are uninucleate and act as spermatia 

(Fukumori et al., 2004), are produced by macroconidia, old hyphae, and sclerotia (Lorenz and 

Figure 1.2. Diagram showing life cycle of Botrytis cinerea and interactions of different 

developmental stages in the life cycle (Adopted from Dewey and Grant-Downton, 2016). 

Macroconidia refer to conidia.  
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Eichhorn, 1983; Fukumori et al., 2004) (Figure 1.2). The structure provides an alternative 

microscopic propagule when the fungus is under stress, in ageing culture or in cultures 

contaminated by other organisms (Holz et al., 2004). The fertilization of spermatia with receptive 

sclerotia give rise to apothecia from which asci, containing ascospores, are produced (Urbasch, 

1983). Since most isolates of B. cinerea are naturally heterothallic, i.e. self-sterile, they can 

produce ascospore only when crossed with the opposite mating type, with the allele MAT-1 and 

MAT-2 being single mating type locus controlling sexual comapatibility  (Faretra et al., 1988).  

B. cinerea is an intriguing pathogen because of its unique characteristics: it can live as a pathogen 

(as necrotroph) but also as saprophyte or endophyte; it can be very devastating in some crops but 

it can also be of some benefit under certain conditions; it can cause early latent infection which 

damages the fruits mostly not before ripening (Rosslenbroich and Stuebler, 2000; Elad et al., 

2004; Shaw et al., 2016). Upon conidial contact with plant tissues, germination and appresoria 

formation could possibly follow but without further invasion of the inner tissues (Williamson et 

al., 1987; Coertze and Holz, 2002). Such infections are described as quiescent or latent, where the 

fungus is arrested until favorable conditions are met, mostly when the tissue gets senescent (Shaw 

et al., 2016). There are also reports of B. cinerea colonizing host plants endophytically (Barnes 

and Shaw 2003; Sowley et al. 2010; Shaw et al., 2016). Endophytic B. cinerea can become 

infectious at a later stage of plant growth (maturity) or in storage or, can remain asymptomatic 

until the next cropping season, with a possibility to be transferred through clone or seed of the 

host (Barnes and Shaw 2003). 

Undoutedly, B. cinerea is an important pre- and post-harvest pathogen, damaging plant products 

in field, storage, transport/transit, and on markets (Elad et al., 2004). The pathogen can attack 

more than 200 plant species (Jarvis, 1977). As many plant pathogenic fungi, short generation 

cycles and high amounts of progeny allow B. cinerea to colonize host plants rapidly and 

abundantly. The fungus causes blossom and leaf blights, bunch rot disease, and post-harvest fruit 

rots (Jarvis, 1977; Elad et al., 2004).  

1.4. Grapevine and Botrytis cinerea  

With regard to grapevine-Botrytis interaction, B. cinerea is part of most vineyards’ natural 

microflora. The proposed life and disease cycles of the pathogen in vineyards is shown in Figure 

1.3 (Elmer and Michailides, 2004). The fungus overwinters as sclerotia and/or mycelia in organic 
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debris in the vineyard. When the environmental conditions become suitable, the overwintered 

scerotia/mycelia produce conidia, which are usually a source of primary inoculum for pre-bloom 

and bloom infection (Elmer and Michailides, 2004). Grapevine cultivars greatly differ in their 

susceptibility to the Botrytis bunch rot disease (Creasy and Creasy, 2009). Cluster architecture, 

microclimate around the berry, and the content of preformed and inducible antifungal compounds 

(Langcake and McCarthy, 1979; Hill et al., 1981; Creasy and Coffee, 1988) are responsible for 

the varietal differences in Botrytis susceptibility.  

    

   

 

When infection happens at bloom, it generally remains quiescent until fruit ripening, and at 

ripening the pathogen resumes active growth to cause bunch rot. (McClellan and Hewitt, 1973; 

Nair et al., 1995; Keller et al., 2003; Pezet et al., 2003). Rainfall or long period of high humidity, 

cuticle cracking from pressure within the berry/cluster, and physical damages from insects, hail, 

and wind are environmental factors that dispose the outgrowth of the fungus causing ripe berries 

Figure 1.3. Life cycle of Botrytis cinerea and disease cycle of gray mold, as proposed by Elmer and 

Michailides (2004).  
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bunch rot. Although B. cinerea is generally detrimental to grape quality by causing rotten berries 

in table grapes and off-flavors in wine (Loinger et al., 1977), for certain white-skinned cultivars, 

such as Sémillon, Riesling, Sauvignon Blanc, Muscadel, and Chenin Blanc under specific 

climatic conditions, it can be beneficial, as it happens in Tokaj (Hungary), Rheingau (Germany), 

and Sauternais (France) regions where enologists produce ‘Botrytised’ wine out of the rotten 

bunches, for this renamed ‘noble rot’ (Creasy and Creasy, 2009).  

B. cinerea infection can possibly occur at any stage of fruit development, though primary 

infection often occurs at bloom time where symptoms are not apparent until berry ripening 

(McClellan and Hewitt, 1973; Nair et al., 1995; Keller et al., 2003). This delayed asymptomatic 

infection, whereby the infected tissue is not infectious, is known as quiescent or latent infection. 

Host factors that drive plant pathogens into quiescent stage are not fully known but limiting 

nutritional conditions, presence of preformed and inducible antifungal compounds, firm/thick cell 

wall, high production of reactive oxygen species, and inactivation of fungal pathogenicity factors 

are among the possible reasons (Prusky, 1996; Prusky et al., 2013). Besides these host factors, 

failure to produce adequate virulence factors by the pathogens drives them into quiescence. On 

the other hand, the physicochemical changes and gradual decline in antifungal compounds during 

ripening can lead to egression of quiescent pathogens (Prusky, 1996; Lattanzio et al., 2001).  

In grapevine flowers inoculated with B. cinerea conidia, germ tubes were observed growing inside 

the narrow gap between calyx and ovary, that forms the receptacle area, and passing its 

quiescence there (Keller et al., 2003; Viret et al., 2004). According to Keller et al. (2003), higher 

disease severity at harvest was observed on bunches that received B. cinerea inoculation at 

flowering than controls, implying the importance of quiescent B. cinerea in determining the 

incidence of berry rot at ripe. In the epidemiology of B. cinerea in grape, flowering is an 

important stage as infection at this time is normally followed by quiescence. The asymptomatic 

presence of B. cinerea and its egression during ripening and/or post-harvest storage, when 

synthetic fungicides are not allowed, poses challenge in controlling the pathogen.  

Knowledge of the molecular mechanisms involved during flower/berry-Botrytis interaction paves 

the way for devising appropriate control measure. Taking advantage of the availability of the 

genome sequences of Vitis vinifera (Jaillon et al., 2007; Velasco et al., 2007) and B. cinerea 

(Amselem et al., 2011; van Kan et al, 2016), a transcriptomic approach has been possible in this 
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study, allowing to unravel crosstalk between the pathogen and the plant at some key interaction 

stages of the infection process, i.e. at infection initiation, entry to quiescence, quiescence, and 

egression. All the infections have been conducted in controlled conditions in the greenhouse, 

using flowers raised from fruiting cuttings (as shown in Figure 1.4). In this way, it has been 

possible to overcome the seasonal requirements thus performing several experiments during the 

year, instead of one. Then, the use of the Botrytis strain expressing the fluorescent probe GFP 

would not have been allowed in the open field, due to law restrictions on the use of genetically 

modified organisms. Finally, Botrytis is naturally present in the field, so only using sterilized 

material grown in a protected environment would allow avoiding contamination during the 

experiment, which actually lasted from blooming to ripeness, i.e. more than 10 weeks. 

 

 

  

 

 

 

 

 

 

Figure 1.4. Grapevine flowers raised from fruiting cuttings. A, Fruiting cuttings in rooting pot with 

moistened rock wool in cold room (4 °C) on heat mat, to stimulate rooting while keeping the above buds 

dormient; adventitious roots after 6 weeks. B, Fruiting cuttings, with adventitious roots, transferred into pots 

with growing mix to greenhouse. C, Budburst, 1-2 week after being transferred to greenhouse. D, Emerging 

inflorescence after apical meristem was removed, 2-3 weeks after being transferred to greenhouse. E, 

Inflorescence with single flowers separated, 3-4 weeks after being transferred to greenhouse. 

A B C D E 
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1.4. OBJECTIVE  

The aim of this research was to understand the interaction between B. cinerea and grapevine 

inflorescences at molecular level using integrated approaches (confocal microscopy, 

transcriptome and metabolome approaches). The first objective was to understand the crosstalk 

between grapevine inflorescence and B. cinerea at the initiation of infection and entry to 

quiescence state. The second one was to understand the interaction between quiescent B. cinerea 

and hard-green berry and between egressed B. cinerea and ripe berry.  

The results obtained will be described in two main chapters, responding to the two above 

mentioned objectives: i) Grapevine flower and Botrytis cinerea interaction and ii) Interaction 

between grape berry and B. cinerea during quiescent and egression infection stages. These two 

chapters correspond to two paper works, the first is already submitted to Plant Cell & 

Environment Journal and the second is under preparation 
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2. GRAPEVINE FLOWER AND Botrytis cinerea INTERACTION 

 

2.1. Abstract 

Grapes quality and yield can be severely impaired by bunch rot, caused by the necrotrophic 

fungus Botrytis cinerea. Infection often occurs at flowering and the pathogen stays quiescent until 

fruit maturity, when symptoms become evident. Here, we report a molecular analysis of the early 

interaction between B. cinerea and the flower of the cultivated grapevine (Vitis vinifera L.), using 

a controlled infection system, confocal microscopy and integrated transcriptomic and metabolic 

analysis of the host and the pathogen. Flowers from fruiting cuttings of the cv. Pinot Noir were 

infected with GFP labeled B. cinerea and studied at 24 and 96 hours post inoculation (hpi). We 

observed that penetration of the epidermis by B. cinerea coincided with increased expression of 

genes encoding cell wall degrading enzymes, phytotoxic secondary metabolites, and proteases. 

Grapevine responds with a rapid defense reaction involving 1193 genes associated with the 

accumulation of antimicrobial proteins, phenylpropanoids including stilbenoids, reactive oxygen 

species and cell wall reinforcement. At 96 hpi the reaction appears largely diminished both in the 

host and in the pathogen. Afterwards, berries continue their developmental program up to 

véraison without any visible symptom, whereas the presence of B. cinerea can be ascertained by 

plating out on selective media. Our data indicate that the defense responses occurring in the 

grapevine flower within 24 hours after B. cinerea inoculation collectively are able to restrict 

invasive fungal growth into the underlying tissues, thereby forcing the fungus to enter quiescence 

until the conditions become more favorable to resume pathogenic development.  
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2.2. Introduction  

Grapevine yield and quality faces challenges worldwide from biotic stresses, mainly caused by 

fungi and oomycetes like Botrytis cinerea, Plasmopara viticola, and Erysiphe necator. B. 

cinerea, a necrotroph responsible for pre- and post-harvest disease in a wide range of crops, 

causes bunch rot in grapevine. In vineyards, B. cinerea is part of the natural microflora where 

primary infections of berries are usually initiated by airborne conidia from overwintering sources 

(Nair et al., 1995; Elmer and Michailides, 2004). Bunch rot frequently occurs on ripe berries 

close to harvest. Wet conditions together with damage to ripe berries, due to cuticle cracking 

from pressure within the berry/cluster and physical damage from biotic and abiotic sources 

occurring during ripening, the expression of bunch rot even though the primary infection could 

have occurred at earlier stages of berry development (McClellan and Hewitt, 1973; Nair et al., 

1995). Bunches inoculated at flowering with B. cinerea were reported to have higher disease 

severity at maturity (Keller et al., 2003; Pezet et al., 2003b), implying that bunch rot disease 

observed during ripening may not only be due to de novo infection, but also due to latent 

infections that occurred at earlier stages of berry development. A similar infection strategy of the 

pathogen was also observed in strawberries and raspberries (Jarvis, 1962; Williamson et al., 

1987; Jersch et al., 1989). This delayed asymptomatic infection is known as quiescent infection.  

Usually the cosmopolitan B. cinerea, upon contact with the host, incites cell death by producing 

phytotoxins and cell wall degrading enzymes and manipulates hosts metabolisms to facilitate 

colonization (van Kan, 2006; Choquer et al., 2007; Williamson et al., 2007). A deviation from 

this common necrotrophic lifestyle, where B. cinerea behaves as a facultative endophyte has also 

been observed (Williamson et al., 1987; McNicol and Williamson, 1989; Coertze and Holz, 2002; 

Shaw et al., 2016). This symptomless colonization, caused by a long-lived physiological switch 

(van Kan et al., 2014), which can shift to active and symptomatic behavior under favorable 

conditions, differentiates the endophytic lifestyle from the relentless necrotrophic infection 

behavior.  

In grapevine, B. cinerea infection often occurs at blooming and then remains quiescent until 

ripening (McClellan and Hewitt, 1973; Nair et al., 1995; Keller et al., 2003; Pezet et al., 2003b). 

Berry developmental stages between bloom and véraison are mostly resistant to B. cinerea 

infection. Such development related resistance could be linked to preformed and inducible 
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antifungal compounds, as well as skin features of immature berries. Phenylpropanoid and 

flavonoid extracts of young berries, as well as resveratrol, can inhibit B. cinerea growth in vitro 

(Goetz et al., 1999; Schouten et al., 2002b; Pezet et al., 2003b). Furthermore, polyphenols in the 

berry skin cell wall and the thickness of epidermal cell layer complex were reported among the 

resistance factors (Mlikota-Gabler et al. 2003; Deytieux-Belleau et al., 2009). More recently, 

Agudelo-Romero et al. (2015) reported a large transcriptional activation of genes related to 

secondary metabolism and hormonal signaling (jasmonic acid [JA], ethylene [ET], and auxins) 

upon B. cinerea infection of immature berries of cv. Trincadeira. Another study on grapes 

infected at véraison reported the accumulation of reactive oxygen species (ROS), the activation of 

the salicylic acid (SA) dependent pathway and the induction of stilbene and lignin biosynthesis as 

defense mechanisms to arrest B. cinerea progression (Kelloniemi et al., 2015). 

In disease management, quiescent infection has important implications for proper timing of 

prophylactic measures, to reduce stresses factors that may trigger egression of the quiescent 

pathogen, and to prolong quiescence to the point where the produce is not affected even after 

harvest (Jarvis, 1994). Concerning grapevine, flowering is an important stage in the epidemiology 

of B. cinerea as infection at this stage is followed by quiescence. Therefore, understanding the 

interaction between B. cinerea and grapevine inflorescence is vital to implement proper 

management in order to limit consequent yield losses. Despite this, knowledge about the molecular 

mechanisms of the interplay between B. cinerea and grapevine inflorescences at bloom is lacking. 

Taking advantage of the availability of the genome sequences of Vitis vinifera (Jaillon et al., 

2007; Velasco et al., 2007) and B. cinerea (Amselem et al., 2011; van Kan et al, 2016), we 

analyzed the transcriptional alterations of both organisms during flower infection to understand 

the molecular mechanisms associated with the early stage of this interaction. Microscopic 

observation and metabolic profiles were combined with the transcriptomic analyses to further our 

understanding of the infection process at infection initiation and initial fungal quiescent stages.  

2.3. Materials and methods 

2.3.1. Plant material and Botrytis cinerea inoculation 

Winter woody cuttings were collected from an experimental vineyard (Vitis vinifera cv. Pinot 

Noir) of the Fondazione Edmund Mach, Trentino-Alto Adige, Italy and stored at 4 °C until use. 

Flowers were raised from the cuttings following the technique of Mullins and Rajaskekaren 
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(1981). At the stage when single flowers of an inflorescence separate (EL17, according to 

Eichorn and Lorenz [1977]), they were thinned in order to have a manageable number of flowers 

per inflorescence to ensure that each flower could receive B. cinerea conidia. Cuttings were 

grown in a growth chamber at 24°C, with a 16 h light cycle.  

Transgenic grapevine plants (Vitis vinifera, Microvine mutant) harboring the H2O2-specific 

HyPer probe, targeted to the cytosol, were generated using the DNA construct described in Costa 

el al. (2010). 

Botrytis cinerea (isolate B05.10) was cultured on potato dextrose agar (PDA) in Petri dishes and 

incubated at 25 °C. After 10 days, conidia were harvested in distilled water and conidia 

concentration was determined under light microscope using a hemacytometer. At full cap-fall 

stage (EL25/26), each flower was inoculated by positioning 1.5 µl of a 2 * 10
5
 ml

–1 
conidia 

solution close to receptacle area. After inoculation, the whole cutting was immediately bagged in 

water sprayed, clear plastic bag for 24 h in order to ensure high humidity, an essential factor for 

conidial germination. For microscopic observation and post-inoculation evaluation (plating out 

test), a genetically transformed strain of B05.10 expressing a green fluorescent protein (GFP) was 

used due to its fluorescent signal and ability to grow on selective medium (PDA with70 µg/ml 

Hygromycin B).  

2.3.2. Microscopic observations and detection of quiescent Botrytis cinerea 

Confocal laser scanning microscopy analyses were performed using a Leica SP5 imaging system 

(Leica Microsystems, D-68165 Mannheim, Germany) and a Zeiss LSM700 (Carl Zeiss 

Microscopy, Germany). GFP and chlorophyll were excited at 488 nm and the emission was 

collected at 515-560 nm and 650-750 nm, respectively. For HyPer detection confocal microscopy 

analyses were performed according to Costa et al. (2010). Thin slices of fertilized gynoecia, 

which were manually cut from inoculated flowers, were subjected to microscopic observation.  

For quiescent B. cinerea detection, the plating out method on selective medium was used. Eight 

fruitlets from each of 6 biological replicates were sampled daily from 1 to 7 and at 14 days post 

inoculation. Fruitlets were incubated on PDA with hygromycin at room temperature for a week 

before or after washing, or after surface sterilization. Washing was with sterile water, three rinses 

of 1 minute each with gentle shaking; whereas surface sterilization was carried out with 70% 

ethanol (1 min) followed by 1% (vol/vol) NaClO (3 min) and three rinses in sterile water (Keller 
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et al., 2003). Appearance of mycelial growth from healthy-looking fruitlets was scored as 

confirmation of quiescent B. cinerea on the fruitlets. Fruitlets > 4 mm in diameter 

(approximately) were cut into half before plating. Statistical significance among the treatments 

was calculated by Tukey's Honestly Significant Difference test on square root transformed data.  

2.3.3. Secondary metabolites and RNA extraction 

Inflorescences from fruiting cuttings that were either mock (control) or B05.10-conidia 

inoculated at cap-off stage, were collected at 12, 24, 48, 72 and 96 hpi, in three biological 

replicates, immediately frozen in liquid nitrogen, and kept at -80 °C until use. A biological 

replicate, throughout this study, is an inflorescence from a fruiting cutting. The samples used for 

polyphenol and RNA extraction were independent. Prior to polyphenol and RNA extraction, the 

samples were ground in liquid nitrogen. RNA was extracted using Plant Total RNA Kit (Sigma-

Aldrich) following the manufacturer’s protocol. For targeted secondary metabolite analysis, 

sample preparation and Ultra High Performance Liquid Chromatography - Diode Array Detection 

- Mass Spectrometry (UHPLC-DAD-MS) analysis were conducted as described in Vrhovsek et 

al. (2012).  

For B. cinerea RNA extraction, B05.10 conidia were incubated in flask with potato dextrose 

broth (PDB) for 12 hours (Supplemental Figure S2.1) with 30 rpm shake in three biological 

replicates. Conidia obtained from a Petri dish were considered as a biological replicate. 

2.3.4. RNA sequencing, data processing and data analysis 

Three biological replicates harvested at 24 and 96 hpi were used for RNA-Seq analysis. 

Approximately 20 million strand-specific, 100 bp long sequences were obtained for each sample 

using a Next Generation Sequencing Platform HiSeq 1500 (Illumina, San Diego, CA). The 

quality of the the Illumina single-end reads was checked using FastQC (version 0.11.2) software 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and pre-processed for adapter with 

cutadapt (version 1.8.1) (Martin, 2011). The resulting reads were aligned separately to the 

B.cinerea (strain B05.10) (http://fungi.ensembl.org) and grapevine (12Xv1, 

http://genomes.cribi.unipd.it/) genomes using the Subread aligner (Liao et al., 2013). Raw read 

counts were extracted from the Subread alignments using the featureCount read summarization 

program (Liao et al., 2014).  

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://genomes.cribi.unipd.it/
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For grapevine, differential expression analysis of genes was performed taking advantage of the 

voom method (Law et al., 2014) which estimates the mean-variance relationship of the log-

counts, generating a precision weight for each observation that is fed into the limma empirical 

Bayes analysis pipeline (Smyth, 2004). Genes were considered differentially expressed if they 

fulfill a p-value <0.05 and an absolute fold change of ≥1.5. Gene ontology enrichment was 

computed using customized annotation and annotated reference of GO terms into the AgriGO 

analysis tool (http://bioinfo.cau.edu.cn/agriGO/analysis.php; Du Z et al., 2010). Enriched GO 

terms (FDR <0.05) were visualized using the ‘Reduce + Visualize Gene Ontology’ (REViGO) 

webserver (http://revigo.irb.hr; Supek et al., 2011). Furthermore, the grapevine molecular 

network gene annotation, VitisNet, (Grimplet et al., 2012) was also used to identify enriched 

molecular networks (P < 0.05) using VESPUCCI (http://vespucci.colombos.fmach.it) (Moretto et 

al., 2016). MapMan tool (Thimm et al., 2004) was used to visualize differentially expressed genes 

in the context of biotic stress pathway using the GrapeGen 12Xv1 annotations version 

(Lijavetzky et al., 2012) as MapMan Bins. For B. cinerea, gene set enrichment analysis was 

performed using Fisher’s exact test.  

2.3.5. Quantitative polymerase chain reaction (qPCR) 

For qPCR assays, cDNA was synthesized from 3 µg of the same RNA used for RNA-Seq 

analysis, treated with DNase I (Ambion), using the SuperScript™VILO™cDNA Synthesis Kit 

(Invitrogen). qPCR was performed in a Viia7 thermocycler (Applied Biosytems) using 0.31 µl of 

cDNA and 2.5 µM of primers in a total volume of 12.5 µl where half of  the total volume was 

Fast SYBR Green Master Mix (Kapa Biosystems) using the standard fast protocol. Each 

amplification reaction was run in triplicate. For normalization, VvACT and VvTUB, and BcRPL5 

and BcTUBA genes were selected using GeNORM (Vandesompele et al., 2002) as reference for 

grapevine and B. cinerea, respectively. Amplification efficiencies of each primer pair were 

calculated with LinReg software (Ruijter et al., 2009). The obtained amplification efficiency was 

used to calculate the relative quantity (RQ) and normalized relative quantity (NRQ) according to 

Hellemans et al. (2007). Statistical analyses of the qPCR results were made after log2(NRQ) 

transformation (Rieu and Powers, 2009). All primers and corresponding gene identifiers can be 

found in Supplemental Table S2.1. Statistical significance was calculated by Tukey's Honestly 

Significant Difference test or an unpaired heteroscedastic Student’s t test, considering each 

technical replicate as an individual sample. 

http://bioinfo.cau.edu.cn/agriGO/analysis.php
http://vespucci.colombos.fmach.it/


 

22 
 

2.3.6. DNA extraction, standard curve and DNA quantification 

DNA was isolated from grapevine flowers and B. cinerea (strain B05.10) mycelium using the 

Dneasy Plant Minikit (Qiagen) following the manufacturer’s protocol. DNA from mycelium, 

obtained from conidia incubated for 48 h as mentioned above, and uninoculated grapevine flower 

were used to generate calibration curves to estimate the amount of fungal DNA in inoculated 

samples, 12, 24, 48, and 96 hpi, and 1 wpi. The inoculated samples were replicated three times. 

From 1 wpi samples, RNA was also extracted following the technique mentioned above. The 

samples used were independent from those used for RNA-Seq and secondary metabolite studies.  

Genomic DNA was used as a template for qPCR with similar amplification procedure described 

above using primers Bc3, ribosomal IGS spacer, and VvRS I, resveratrol synthase gene I. For the 

standard curve, qPCR reaction were carried out in triplicate from known fungal or plant DNA 

extracts which were serially diluted 5 times. The standard curves were generated by plotting the 

log of DNA (pg) against the Ct value (Supplemental Figure S2.2). The Ct values obtained from 

inoculated samples were used to extrapolate the amount of genomic DNA from the standard 

curves. Genomic DNA of B. cinerea in a sample was normalized to the amount of grapevine 

genomic DNA in that sample.  

2.4. Results 

2.4.1. Botrytis cinerea infection of grapevine flower 

Artificial infection of grapevine flowers with GFP-labeled B05.10 strain was conducted at full 

cap-off stage (EL25/26) (Figure 2.1A). The infection was monitored for two weeks post 

inoculation (wpi) and during this period there were no visible symptoms of infection or fungal 

growth (Figure 2.1B-E). Although fungal conidia germination, formation of appressoria and 

penetration into the flower cuticle on the gynoecium above the floral disc were observed 24 hours 

post inoculation (hpi)  by confocal microscopy following the GFP signal of B. cinerea (Figure 2.1 

F and Supplemental Figure S2.3), no substantial progress in fungal growth was appreciated at 96 

hpi (Figure 2.1G). The presence of viable fungus during 2 wpi was confirmed by plating out 

experiments. Inoculated but healthy-looking fruitlets were incubated on selective media to allow 

the growth of the GFP-labeled Botrytis strain only. Before plating, fruitlets were either washed 

with distilled water or surface sterilized, to discriminate respectively either non germinated 

conidia or germinated conidia laying on the external layer of the flower tissue, from those bearing 
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penetration structures and grown in the inner layers. Germinated B. cinerea conidia were present 

on the skin of 90 % of the inoculated fruitlets, whereas about 30 % of the samples showed the 

presence of B. cinerea below the external cell layers of the fruitlet (Figure 2.1H). A preliminary 

test confirmed that washing within 6 hpi was able to remove ungerminated conidia from flowers 

and that surface sterilization abolished B. cinerea viability (Supplemental Figure S2.4). 

To check if a similar load of B. cinerea was present at different post inoculation times, the 

amount of fungal DNA was estimated by quantifying the ribosomal IGS DNA (Supplemental 

Figure S2.2A), while the amount of grapevine DNA was also estimated by amplification of the 

resveratrol synthase gene I (Supplemental Figure S2.2B). As shown in Figure 2.2A, the relative 

amount of fungal DNA compared to plant DNA ranged from 4 to 6%, with a slight increase 

within two dpi, indicating initial pathogen growth, followed by a slight decrease possibly 

associated to a quiescent state. Furthermore, the expression profile of B. cinerea actin, BcACTA, 

an indicator of active growth, confirmed that the growth of the fungus in planta was relatively 

high up to two dpi, and then decreased slightly but significantly, supporting pathogen quiescence 

(Figure 2.2B). 

Inoculated inflorescences were inspected until fruit ripening. At full coloring (approximately 10 

wpi), bunches were either bagged with plastic bags, to create favorable humidity for B. cinerea, 

or left as such. About two weeks after bagging, egression of B. cinerea was observed on about 40 

% (39 ± 9 %) of the inoculated berries (Supplemental Figure S2.5A). Cross checking of the strain 

using fluorescence microscope on mass of mycelia taken from the rotting bunch confirmed that 

the strain was the GFP-labeled B05.10 inoculated at cap-off stage (Supplemental Figure S2.5B). 

On the other hand, no egression was observed from unbagged bunches. In addition, to see if 

bagging can also trigger egression before maturity, bunches at pepper-corn satge, which were 

infected at cap-off stage, were bagged for two weeks, but no B. cinerea egression was observed 

(Supplemental Figure S2.6). 
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Figure 2.1. Grapevine flowers infected with Botrytis 

cinerea. Flowers inoculated with  GFP-labeled B05.10 

strain at full cap-fall stage (EL25/26), 0 hpi (A), and 

asymptomatic inflorescence up to two weeks post 

inoculation – B to E. F and G, confocal microscope 

images of GFP-labeled B05.10 infecting the cuticle of a 

grapevine flower 24 and 96 hours after inoculation. Ap, 

appressoria; Co, conidium; Gt, germ tube; Hy, hypha. 

Autofluorescence around penetration site (shown by 

arrow) indicates cell wall fortification. H, Plating out of 

infected fruitlets on selective media (PDA with 

Hygromycin B, 70 µg/ml) to check the presence of 

quiescent B. cinerea on infected fruitlets before (NW) or 

after washing (W), or after surface sterilization (SS). dpi,  

 

dpi, days post inoculation. Values at each day represent mean proportion of fruitlets (eight fruitlets 

from each of 6 biological replicate considered) showing GFP-labeled B05.10 growth on the selective 

media. Error bars indicate standard error. Mean proportions followed by a common letter within a dpi 

are significantly not different among NW, W and SS, according to Tukey's Honestly Significant 

Difference test (P≤0.05), using one way ANOVA. The mean proportions throughout the two weeks 

within NW, W or SS are not significantly different (ns).  

A (0 hpi) B (24 hpi) 

C (96 hpi) D (1 wpi) E (2 wpi) 

wpihpi) 

F (24 hpi) 

G (96 hpi) 

H 
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2.4.2. Transcriptome analysis of infected grapevine flowers  

Three biological replicates of mock or B05.10 inoculated flowers were harvested at 24 and 96 hpi 

for dual (plant and fungus) transcriptome analysis using RNA-seq. These time points were chosen 

to understand the process of infection initiation (24 hpi) and progress (96 hpi), if any. As a 

control sample for Botrytis, an in vitro grown culture was used. The high quality trimmed reads 

obtained from the RNA-seq experiment were aligned against the 12Xv1 gene prediction of V. 

vinifera genome (http://genomes.cribi.unipd.it/grape/) and the B. cinerea strain B05.10 genome 

(http://fungi.ensembl.org). The fraction of reads from Botrytis- and mock-inoculated flowers 

mapped to the V. vinifera reference genome was between 65 and 82 %, whereas only up to 4.6 % 

could be mapped to the B. cinerea genome (Supplemental Table S2.2). In the case of B. cinerea, 

cultured in PDB, a much larger proportion of reads was mapped to the fungal genome (about 

90%), suggesting that the scarce number of fungus reads derived from the infected flowers is 

likely caused by low number of conidia used for the infection (around 300) and of the limited 

fungal growth after inoculation.  

As for grapevine, the biological variability within replicates and among experimental conditions 

was analyzed by principal component analysis (PCA). As shown in Figure 2.3A, the first 

principal component, which explains 38.4% of the variance, separates the two time-points (24 

A

S 

B

S 

Figure 2.3. Relative quantification of genomic DNA (A) and 

expression profile of actin gene (B) from B. cinerea at different 

days post inoculation (dpi). A, Amount of B. cinerea gDNA 

relative to grapevine gDNA, measured by amplification of the 

B. cinerea gene Bc3 (ribosomal IGS spacer) and the grapevine 

gene VvRS I (resveratrol synthase gene I) on gDNA from 

Botrytis-inoculated flowers. The Kruskal-Wallis one way 

ANOVA test revealed that the amount of B. cinerea gDNA at 

different days post inoculation (dpi) is not significantly 

different, P = 0.123. Error bar represents standard error of mean 

of three biological replicates. B, Relative expression of a B. 

cinerea actin gene, BcACTA, to monitor the growth of the 

pathogen in planta. Bars represent fold change of inoculated 

samples relative to PDB cultured B. cinerea (control). 

Normalization based on the expression levels of ribosomal 

protein L5, BcRPL5, and α tubulin, BcTUBA, was carried out 

before calculating fold changes. Expression values followed by 

the same letter are significantly not different between samples, 

according to Tukey's Honestly Significant Difference test 

(P≤0.05), using one way ANOVA on log2(NRQ).  

 

http://genomes.cribi.unipd.it/grape/
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and 96 hpi) and also the 24-hours’ Botrytis treated vs. untreated samples. In contrast, all samples 

collected at 96 hpi seem very similar at a whole transcriptome level, as indicated by the large 

overlap in the PCA. 

Differential expression of grapevine genes was calculated between Botrytis- vs. mock-inoculated 

flowers within each time point after t-test, imposing an absolute minimum fold-change of 1.5 and 

a p-value < 0.05. At 24 hpi, 1193 genes were differentially expressed (upregulated or 

downregulated), whereas at 96 hpi only 265 genes were differentially expressed (Figure 2.3B, 

Supplemental Figure S2.7 and Supplemental Table S2.3). The overlap between the two sets was 

limited to 49 upregulated and 4 downregulated genes (Figure 2.3C). Interestingly, at 24 hpi the 

plant seems to respond to the presence of the pathogen with a prevalent induction of genes, which 

appeared to be no longer modulated at 96 hpi.   

 

 

 

A 

B 

C 

D 

Figure 2.3. Analysis of the RNA-Seq data and 

of the differentially expressed (DE) genes. A, 

PCA displaying the biological variations 

among samples. Ctrl, mock inoculated; Trt, B. 

cinerea inoculated; Bc, Botrytis cinerea; 24 

and 96 indicate hours post inoculation (hpi). 

Raw count data were used after precision 

weight was calculated by the voom method 

(Law et al., 2014). B, Number of DE genes 

 
 (P < 0.05, absolute fold change > 1.5) upon B. cinerea infection at 24 and 96 hpi; upregulated genes 

(red) and downregulated genes (black).  C, Venn diagram showing the number of DE genes unique or 

common to 24 and 96 hpi. D, Validation of RNA-Seq data by qPCR assay: correlation of fold change 

values for 20 Vitis genes obtained by RNA-Seq and qPCR. 
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Gene expression values from RNA-Seq analysis were validated using qPCR assay. The 

expression measurement of 20 grapevine genes (Supplemental Table S2.2) by qPCR was in very 

good agreement (R
2
 >0.90) with the results obtained by RNA-Seq (Figure 2.3D).  

2.4.3. Defense related responses are largely induced in the flower upon Botrytis cinerea 

infection 

Differentially expressed (DE) genes were annotated according to two different publicly available 

databases for grapevine, namely Gene Ontology (GO) (http://genomes.cribi.unipd.it/grape/) and 

VitisNet (https://www.sdstate.edu/ps/research/vitis/pathways.cfm), in order to characterize them 

in a comprehensive manner. Functional class enrichment analyses performed on the GO and 

VitisNet databases provided consistent and complementary results (Table 2.1 and Supplemental 

Table S2.5). A clear regulation of those classes typically modulated during biotic stress responses 

was found, they are represented in the MapMan pathway depicted in Figure 2.4 and significantly 

enriched in Botrytis-infected flowers (Supplemental Table S2.6). In the following text, these 

classes will be presented in detail.  

                  

 

Figure 2.4. MapMan overview of biotic stress in inoculated flower at 24 and 96 hpi (red circled). 

Upregulated and downregulated genes are shown in red and blue, respectively. The scale bar displays 

fold change values. ABA, abscisic acid; BR, brassinosteroid; JA, jasmonic acid; MAPK, mitogen-

activated protein kinase; SA, salicylic acid. The list of MapMan enriched pathways within DE genes is 

provided in Supplemental Table S2.6. 

 

http://genomes.cribi.unipd.it/grape/
https://www.sdstate.edu/ps/research/vitis/pathways.cfm
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Table 2.1.  Enriched Grapevine Molecular Networks according to VitisNet annotation 

VVID      Network Name        Description Number in 

input list 

Number in 

reference list 

p-value 

Upregulated genes (24 hpi) 
10530  Aminosugars metabolism   carbohydrate metabolism 9 76 1.15E-03 

10910  Nitrogen metabolism   energy metabolism 8 83 2.04E-03 

10350  Tyrosine metabolism   amino acid metabolism 10 130 3.23E-03 

10460  Cyanoamino acid metabolism   other amino acids metabolism 4 31 9.99E-03 

10480  Glutathione metabolism   other amino acids metabolism 16 127 4.14E-07 

10770  Pantothenate and CoA biosynthesis   cofactors and vitamin metabolism 5 39 4.16E-03 

10940  Phenylpropanoid biosynthesis   biosynthesis of secondary metabolites 40 187 2.00E-12 

11000  Single reactions   other 11 154 3.65E-03 

34020  Calcium signaling pathway   signal transduction 9 128 9.05E-03 

30008  Ethylene signaling   hormone signaling 15 232 2.00E-03 

34626  Plant-pathogen interaction   plant specific signaling 25 311 1.75E-06 

60003  AP2/EREBP   transcription factor 10 131 3.41E-03 

60066  WRKY   transcription factor 19 62 1.93E-11 

60069  ZIM   transcription factor 4 13 3.36E-04 

Downregulated genes (24 hpi) 

10500  Starch and sucrose metabolism   carbohydrate metabolism 12 324 2.71E-04 

44110  Cell cycle   cell growth and death 21 316 3.85E-11 

44810  Regulation of actin cytoskeleton   cell motility 27 340 5.85E-16 

60076  Other GTF    2 6 1.79E-03 

Upregulated genes (96 hpi) 

10640  Propanoate metabolism   carbohydrate metabolism 4 63 6.66E-04 

50121  Porters cat 1 to 6   transporter catalogue 6 160 5.20E-04 

Downregulated genes (96 hpi) 

40006  cell wall  cell growth and death 12 445 1.31E-07 
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One of the earliest cellular responses following plant-pathogen interaction is the production of 

reactive oxygen species (ROS). Upon B. cinerea infection, genes putatively encoding enzymes 

involved in oxidative stress such as GST, ascorbate oxidase, 2OG-Fe(II) oxygenase, and 

cytochrome P450 monooxygenases were strongly upregulated (Table 2.2 and Supplemental Table 

S2.7). ROS accumulation at 24 hpi was proven by a localized green fluorescence emitted at the 

site of penetration in flowers obtained from a cytoplasmic HyPer (cHyPer) grapevine transgenic 

line expressing a cytosolic hydrogen peroxide molecular sensor (Figure 2.5).  

 

         

 

 

 

Several genes encoding membrane-localized receptor-like kinases (RLK), such as, Clavata1 

receptor kinase, Wall-associated kinase 1, and Brassinosteroid insensitive 1– associated kinase 1 

(BAK1), which have been characterized in connection with immune responses to necrotrophic 

pathogens (Kemmerling et al., 2007; Brutus et al., 2010), were also upregulated at 24 hpi 

(Supplemental Table S2.7). Genes associated with phytohormones, known to be involved in 

pathogen response signaling, were also differentially expressed (Figure 2.4 and Table 2.1).  

Figure 2.5. Confocal image of cytoplasmic HyPer grapevine transgenic flowers infected with B. cinerea. 

A higher intensity of HyPer fluorescence is evident 24 hpi at the penetration site of B. cinerea, compared 

with the rest of the plant tissue, indicating a localized and specific H2O2 accumulation (shown by 

arrows). The inset at higher magnification clearly shows that the bright signal comes from the cytosol of 

proximal cells to the site of infection. 



 

30 
 

Table 2.2. Selected differentially expressed grapevine genes due to B. cinerea inoculation (at 24 and 96 hpi) 

  

Fold change (log2) 

 

Id 
Fold change (log2) 

24 hpi  96 hpi  Functional annotation 24 hpi  96 hpi   Functional annotation 

Recognition and signaling Response to stress and secondary metabolism 

VIT_15s0046g02220 2.67 

 

ACC synthase VIT_18s0001g04280 5.07 

 

(-)-germacrene D synthase 

VIT_07s0031g01070 2.21 

 

Ascorbate oxidase VIT_11s0052g01110 1.96 

 

4-coumarate-CoA ligase 1 

VIT_14s0030g02150 2.04 2.33 Calmodulin VIT_04s0008g07250 2.04 

 

Aspartyl protease 

VIT_11s0016g03080 1.42 

 

Clavata1 receptor kinase (CLV1) VIT_05s0077g01540 5.43 

 

Bet v I allergen 

VIT_12s0035g00610 6.01 

 

CYP82M1v3 VIT_16s0098g00850 0.68 

 

Caffeic acid O-methyltransferase 

VIT_18s0001g00030 1.01 2.79 CYP87A2 VIT_16s0100g00860 4.99 

 

Chalcone synthase 

VIT_17s0000g07400 1.01 

 

Disease resistance protein (EDS1) VIT_11s0149g00280 2.13 

 

Chitinase A 

VIT_17s0000g07420 1.38 

 

Enhanced disease susceptibility 1 (EDS1) VIT_03s0180g00250 4.41 

 

Cinnamyl alcohol dehydrogenase 

VIT_02s0234g00130 1.60 

 

Ethylene responsive element binding factor 1 VIT_16s0039g02350 1.07 

 

Dihydroflavonol 4-reductase 

VIT_15s0048g01350 2.22 

 

Gibberellin receptor GID1L3 VIT_18s0122g01150 6.57 2.61 Diphenol oxidase 

VIT_08s0040g00920 2.94 1.71 Glutathione S-transferase 25 GSTU7 VIT_06s0004g01020 5.62 2.10 Dirigent protein 

VIT_11s0016g00710 0.83 

 

Jasmonate ZIM-domain protein 1 VIT_07s0031g01380 2.04 0.96 ferulate 5-hydroxylase 

VIT_01s0011g03650 2.21 

 

Map kinase substrate 1 MKS1 
VIT_05s0020g05000 1.70 

 
Inhibitor of trypsin and hageman  

factor (CMTI-V) VIT_00s0250g00090 4.42 2.72 Oxidoreductase, 2OG-Fe(II) oxygenase 

VIT_03s0063g02440  -1.71 Proline extensin-like receptor kinase 1  VIT_18s0001g00850 6.48 2.84 Laccase 

VIT_13s0064g01790 -1.62  R protein MLA10 VIT_16s0098g00460 3.29 

 

Lipase class 3 

VIT_00s0748g00020 4.14  Receptor kinase RK20-1 VIT_14s0083g00850 

 

-1.67 Lipase GDSL 7 

VIT_17s0000g04400 1.38  Wall-associated kinase 1 (WAK1) VIT_13s0067g00050 3.32 

 

Myrcene synthase 

Trascription factors    VIT_15s0048g02430 1.65 

 

Naringenin,2-oxoglutarate 3-dioxygenase 

VIT_07s0005g03220 3.53 

 

VIT_05s0077g01530 4.94 1.56 Pathogenesis protein 10  

VIT_11s0016g02070 3.09 1.43 Basic helix-loop-helix (bHLH) family VIT_05s0077g01550 4.62 

 

Pathogenesis protein 10.3 

VIT_07s0005g03340 1.87  Myb domain protein 14 VIT_03s0088g00750  1.45 

 

Pathogenesis related protein 1 precursor  

VIT_19s0027g00860 3.64  NAC domain-containing protein 42 VIT_01s0010g02020 7.12 2.09 Peroxidase  

VIT_08s0058g00690 1.65  WRKY DNA-binding protein 33 VIT_16s0039g01280 5.40 

 

Phenylalanin ammonia-lyase  

VIT_14s0068g01770 3.29  WRKY DNA-binding protein 75 VIT_00s2849g00010 5.83 

 

Phenylalanine ammonia-lyase 

Cell wall    VIT_02s0025g02920 1.67 

 

Quercetin 3-O-methyltransferase 1 

VIT_14s0128g00970 2.75 1.40 Germin-like protein 3  VIT_08s0058g00790 1.51 

 

Secoisolariciresinol dehydrogenase 

VIT_05s0077g01280 -1.72 -2.40 Glycosyl hydrolase family 3 beta xylosidase  VIT_16s0100g01010 4.64 

 

Stilbene synthase (VvSTS29) 

VIT_06s0009g02560 3.21  Pectinesterase family VIT_16s0100g01130 4.34 

 

Stilbene synthase (VvSTS41) 

VIT_08s0007g08330 -4.80  Polygalacturonase PG1 VIT_16s0100g01160 4.39 

 

Stilbene synthase (VvSTS45) 

VIT_09s0054g01080 3.10  Polygalacturonase QRT3 VIT_16s0100g00990 4.60 

 

Stilbene synthase 2 (VvSTS27) 

VIT_06s0004g01990 4.87 3.15 Proline-rich extensin-like family protein  VIT_16s0100g00950 4.63 

 

Stilbene synthase 3 (VvSTS25) 

VIT_03s0017g01990 1.79  UDP-glucose glucosyltransferase VIT_02s0025g04230 2.21 

 

Thaumatin 

    VIT_11s0065g00350 3.54 

 

Trans-cinnamate 4-monooxygenase 
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According to the number of DE genes related to ET biosynthesis or signaling, this hormone 

seems to be important in the interaction between grapevine flower and B. cinerea. Two ACC 

synthase and one ACC oxidase genes in addition to seven ET responsive TFs were differentially 

expressed (Supplemental Table S2.7). Also genes encoding an SA marker PR1 and the plant 

defense regulator involving SA signaling Enhanced disease susceptibility 1 (Wiermer et al., 

2005) were upregulated in the infected sample at 24 hpi (Table 2.2). Jasmonate ZIM-domain 

protein, a marker for JA, was slightly but significantly upregulated. Other genes involved in the 

synthesis of and signalling by phytohormones (apart from ET, JA and SA pathways) showed 

changes in transcript levels following inoculation with B. cinerea, suggesting a complex 

hormonal interplay. For example, five genes encoding nitrilase and nitrile hydratases, putatively 

involve in indole 3-acetic acid synthesis, were differentially regulated, as well as receptor genes 

for gibberellic acid (GA) and abscisic acid (ABA) (Supplemetal Data S2). The global hormonal 

alterations related to infection were evaluated by Hormonometer software (Volodarsky et al., 

2009) and presented in Supplemental Figure S2.8. The results of this analysis also suggested the 

involvement of several hormones. 

Following the Botrytis-induced signaling cascades, about 100 TFs were differentially expressed 

in infected flowers. Most prominent were genes encoding WRKY TFs, Myb domain proteins, 

ethylene-responsive element-binding proteins, and NAC TFs (Supplemental Table S2.7). Among 

the transcriptional regulators previously associated to the defense reaction were WRKY33, a key 

transcriptional regulator involved in defense against B. cinerea and Plasmopara viticola in 

Arabidopsis and grapevine, respectively (Birkenbihl et al., 2012; Merz et al., 2015), and Myb14, 

which in grapevine regulates stilbene biosynthesis (Höll et al., 2013). This fast and strong 

induction of specific TFs leads to the activation of specific pathways, clearly related to plant 

defense. A number of genes encoding different classes of PR-proteins, such as chitinase, and Bet 

v I allergen, and Beta 1-3 glucanase were upregulated, up to 40 fold, following Botrytis 

inoculation. In this work, the transcription levels of VvPR10.1 and VvPR10.3, and their putative 

regulator WRKY33, as indicated by previous studies for VvPR10.1 (Dadakova et al., 2015; Merz 

et al., 2015), were analyzed in more detail. The transcription profiles measured by qPCR at five 

time points within the first 96hpi revealed that the transcript level of VvWRKY33 was higher at 12 

and 24 hpi (as compared to mock-treated samples) and dropped to the control level at later time 

points, 48 hpi and beyond, while the PR-proteins were always higher than control, except 
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VvPR10.1 at 48 hpi (Figure 2.6).  VvPR10.1 reached its peak level at 24 hpi, dropped at 48 hpi 

and then slowly increased at 72 and 96 hpi; whereas VvPR10.3 showed a double peak of 

expression, the first at 24 hpi and a second one at 96 hpi. Proteases including those involved in 

defense such as subtilisin-like protease, aspartic protease, and serine protease inhibitor were also 

more expressed in Botryits-inoculated than in mock-treated flowers (Supplemental Table S2.7).  

 

 

 

 

 

 

2.4.4. Secondary metabolism, mainly related to polyphenols, is upregulated in infected 

flowers 

The RNA-Seq results underlined a reprogramming in the host transcriptome towards secondary 

metabolism, especially at 24 hpi (Figure 2.4 and Supplemental Table S2.7). Several genes related 

to terpenoid, benzoic acids, monolignol precursors, stilbenoid and flavonoid biosynthesis were 

strongly upregulated at the initial stage of B. cinerea infection. From the enrichment analysis, 

secondary metabolic process, protein modification process and phenylpropanoid biosynthesis 

were among the enriched functional categories at 24 hpi (Table 2.1 and Supplemental Table 

S2.5). To confirm these RNA-Seq observations, targeted secondary metabolites, mainly 

polyphenols, were quantified by UHPLC-DAD-MS at five time points between 12 and 96 hpi. 

The analysis revealed that a number of benzoic acid, monolignol precursors, stilbenoid 

Figure 2.6. Expression profiles of VvWRKY33, VvPR10.1, and VvPR10.3 following B. cinerea 

inoculation. Gene expression levels were determined by qPCR. Bars represent fold change of inoculated 

sample relative to mock-inoculated sample at each post-inoculation time. Normalization based on the 

expression levels of actin, VvACT and tubulin, VvTUB was carried out before calculating fold changes. 

Error bar represents standard error of the mean of three biological replicates. Asterisks (*) indicate 

statistically significant difference (P < 0.05) between mock- and B. cinerea- inoculated samples within a 

post-inoculation time using unpaired heteroscedastic Student’s t test. hpi, hours post inoculation. 
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compounds and flavonoids, and their derivatives, many of which are associated with plant 

defense, were detected at higher concentrations in Botrytis-infected flowers as compared to 

mock-treated flowers (Supplemental Table S2.8), suggesting a huge defense-oriented 

metabolome reprogramming following B. cinerea inoculation. Figure 2.7 shows a heat map of the 

concentrations of metabolites in correlation with gene expression profiles, taken from the RNA-

Seq result. In the phenylpropanoid pathway, ten genes encoding PAL were upregulated, between 

13 and 55 fold at 24 hpi (Supplemental Table S2.7). Furthermore, genes encoding key enzymes in 

the pathway cinnamate 4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL) had a fold 

change of about 12 and 4 times, respectively, also at 24 hpi (Table 2.2). The concentrations of 

benzoic acids (p-hydroxybenzoic acid, vanillic acid, and gallic acid) and monolignol precursors 

(ferulic acid, caftaric acid, fertaric acid, and trans-coutaric acid) were higher in infected flowers, 

at least in one of the post inoculation time points considered (Figure 2.7A).    

Regarding stilbenoids biosynthesis, an overwhelming number of STS genes were highly 

upregulated at 24 hpi (Supplemental Table S2.7). Of the 46 V. vinifera genes functionally 

annotated as STS, more than 80% of them were expressed in the infected flowers with a relative 

induction between 15 and 90 fold. Two genes which encode VvMYB14, an R2R3-MYB–type TF 

regulating stilbene biosynthesis (Höll et al., 2013), were also upregulated at 24 hpi (Table 2.2), 

suggesting that this regulatory circuit is activated at 24 hpi. The expression profiles of VvMYB14 

and two STS genes, VvSTS29 and VvSTS41 (Vannozzi et al., 2012) were further monitored using 

qPCR (Figure 2.7B). Because of high sequence similarity among STS genes (Vannozzi et al., 

2012), the primers used for VvSTS29 also detect the isoforms VvSTS25 and VvSTS27, while the 

primers used for VvSTS41 detect the isoform VvSTS45 too (Table 2.2) (Höll et al., 2013). These 

results showed a strong coinduction between the STS genes and VvMYB14 in grapevine 

flowers/fruitlets in response to B. cinerea infection, confirming the results of the RNA-Seq 

analysis (Figure 2.7B). The expression patterns observed in the qPCR assay also fitted with the 

quantification of stilbenoids. The phytoalexin resveratrol and its monomeric-derivatives 

piceatannol and trans-piceid were detected at higher concentrations in the infected 

flowers/fruitlets than control, in most of the post inoculation time points examined (Figure 2.7A). 

The other monomers astringin and isorhapontin, both tetrahydroxystilbenes with antifungal 

activity (Hammerbacher et al., 2011), were also induced. All of the quantified oligomeric 

resveratrols (dimers: trans-ε-viniferin, cis+trans-o-viniferin, pallidol, ampelopsin D and 
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quadrangularin A, and E-cis-miyabenol; trimers: Z-miyabenol C and α-viniferin; and the tetramer 

isohopeaphenol) were found highly concentrated in the infected flowers/fruitlets as compared to 

the control throughout the post inoculation time points examined (Figure 2.7A).  The quantities of 

the stress related trans-ε- and α-viniferins, which are also involved in grapevine – B. cinerea 

interaction (Langcake, 1981), ranged from 0.9 to 13.4 µg/g fresh weight (fw) and 2.8 to 151.8 

µg/g fw, respectively, in the inoculated fruitlets as compared to basal levels in mock inoculated 

controls. A similar increase in concentration was also observed in Z-miyabenol C and 

isohopeaphenol: 1.2 to 46.4 µg/g fw and 0.2 to 20.9µg/g fw, respectively (Supplemental Table 

S2.8). Such an increase in the concentration of these monomeric and oligomeric stilbenoids 

suggests that they contribute to inhibiting the pathogen’s advancement in colonizing the fruitlet. 

In addition to STS genes, chalcone synthase (CHS), and dihydroflavonol-4-reductase (DFR), key 

flavonoid biosynthetic genes, were differentially expressed at 24 hpi (Table 2.2). The 

quantification of flavonoids revealed that flavanones, flavones, flavonols, and flavan-3-ols were 

detected at higher concentrations following Botrytis inoculation, most pronouncedly at 24, 72 and 

96 hpi (Figure 2.7A).  A number of flavonoids known to restrict fungal growth and in some cases 

also inhibit stilbene oxidases (Goetz et al., 1999; Guestsky et al., 2005; Puhl and Treutter, 2008; 

Nagpala et al., 2016), such as naringenin, kaempferol, quercetin, taxifolin, quercetin-3-

glucuronide, catechin, epicatechin, epicatechin gallate, and procyanidin B1, B2, B3 and B4, were 

elevated within 24 hpi and often after 72hpi compared to control samples (Figure 2.7A). 
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2.4.5. Infection triggers cell wall reinforcement 

Reinforcing the cell wall to combat pathogen intrusion is a well-established mechanism in plants. 

A sign of cell wall apposition (CWA) at the site of penetration was observed by the 

autofluorescence of CWA regions (Figure 2.8A). The GO enrichment analyses also proposed that 

the L-phenylalanine catabolic process, cell wall, and extracellular region were among the 

enriched functional classes (Supplemental Table S2.5). This preliminary evidence was 

strengthened by modulation of genes encoding cell wall modifying enzymes such as 

pectinesterases (PEs), catalyzing the hydrolysis of methylester groups from polygalacturonans, 

polygalacturonases (PGs) and pectate lyases, degrading the pectic homogalacturonans 

(Supplemental Table S2.7). PE is involved both in cell wall loosening, by making 

polygalacturonans accessible to degradation by PG, and cell wall strengthening, by increasing the 

availability of polygalacturonan to Ca
2+

 binding (Micheli, 2001). The induction and suppression 

B 

Figure 2.7. Transcript and metabolite analyses of the grapevine phenylpropanoid pathway upon B. 

cinerea inoculation. A, Heatmaps of gene expression (from RNA-Seq result) and secondary metabolite 

concentration (µg/g fw, from HPLC-DAAD-MS) expressed as fold change. Fold changes were computed 

based on the ratio of average values in B. cinerea- and mock-inoculated flowers, for each time point. 

CHS, chalcone synthase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase; DFR, 

dihydroflavonol-4-reductase; F3H, flavanone 3-hydroxylase; PAL, phenylalanine ammonia lyase; STS, 

stilbene synthase (out of 39, only 6 are dipcted). B, Expression profile of VvSTS29 (-27-25), VvSTS41 (-

45), and VvMYB14. Gene expression levels were determined by qPCR. Bars represent fold change of 

inoculated sample relative to mock-inoculated sample at each post-inoculation time. Normalization 

based on the expression levels of actin, VvACT and tubulin, VvTUB was carried out before calculating 

fold changes. Error bar represents standard error of the mean of three biological replicates. Asterisks (*) 

indicate statistically significant difference (P < 0.05) between mock- and B. cinerea-inoculated samples 

within a post-inoculation time using unpaired heteroscedastic Student’s t test. hpi, hours post inoculation. 
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of PEs and PGs observed in the RNA-Seq result may suggest that the flower is fine tuning 

between cell wall stiffening, as a barrier against the pathogen, and cell expansion and separation, 

as the flower itself is also in its active growth phase. Complementary to this, we observed that 

genes encoding germin-like protein 3 (GLP3) and proline-rich extensin-like protein (EXT), 

proteins involved in H2O2-mediated oxidative cross-linking to toughen cell walls during pathogen 

attack (Bradley et al., 1992; Godfrey et al., 2007; Kelloniemi et al., 2015), were highly upregulated 

both at 24 and 96 hpi (Table 2.2). Grapevine genes which encode enzymes involved in 

monolignol biosynthesis, cinnamyl alcohol dehydrogenase and trans-cinnamate 4-

monooxygenase, were also highly upregulated (Table 2.2). These all suggest that cell wall 

fortification process might have been activated due to the infection. 

Cell wall reinforcement is one of the possible mechanisms by which the grapevine flower arrests 

the advancement of Botrytis. Therefore, ten genes encoding enzymes in the monolignol 

biosynthesis pathway (based on the VitisNet annotations of phenylpropanoid biosynthesis), from 

the differentially expressed genes of RNA-Seq analysis, were selected for further investigation 

with a qPCR assay. The quantities of L-phenylalanine and other seven intermediate metabolites 

in this pathway were also measured by HPLC-DAD-MS (Supplemental Table S2.8). Transcripts 

of cinnamate 4-hydroxylase (VvC4H) and 4-coumarate-CoA ligase (Vv4CL), enzymes in the 

upstream of the pathway, were upregulated at the onset of B. cinerea infection, between 12 and 

24 hpi, with VvC4H showing a peak at 12 hpi (Figure 2.8B). A similar trend was observed for 

cinnamoyl CoA reductase (VvCCR), the first enzyme specific to monolignol synthesis 

(Naoumkina et al., 2010). Caffeic acid o-methyltransferase (VvCOMT) and caffeoyl-CoA O-

methyltransferase (VvCCoAMT) were slightly, but significantly, upregulated at 24 hpi only; 

however, ferulate 5-hydroxylate (VvF5H) was upregulated throughout the post inoculation time 

points examined. Cinnamyl alcohol dehydrogenase (VvCAD) was significantly upregulated up to 

48 hpi. VvCAD is the final enzyme in the sequential actions of Vv4CL, VvCCR, and VvCAD to 

reduce aldehyde derivatives into the corresponding alcohols before monolignols synthesis. In the 

cell wall, monolignols undergo oxidative polymerization, catalyzed by peroxidases/laccases 

(Naoumkina et al., 2010). A strong upregulation of a lignin-forming anionic peroxidase-like 

(VvPER) was observed throughout the post inoculation time points examined, with the highest 

induction being within 24 hpi. With regard to laccase, about 10 putative grapevine laccase genes, 

having the same KEGG enzyme code of Arabidopsis thaliana lignin laccase (Zhao et al., 2013), 
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were also found extremely upregulated, up to 90 fold (Supplemental Table S2.7). 

  

 

 

 

 

 

enzymes of the grapevine monolignol biosynthetic pathway. VvCAD, cinnamyl alcohol dehydrogenase; 

VvCOMT, caffeic acid o-methyltransferase; VvCCoAMT, caffeoyl-CoA O-methyltransferase; VvC4H, 

cinnamate 4-hydroxylase; VvCCR, cinnamoyl CoA reductase; Vv4CL, 4-coumarate-CoA ligase; VvF5H, 

ferulate 5-hydroxylate; PAL, phenylalanine ammonia lyase; VvPER, peroxidase (lignin-forming anionic 

peroxidase-like); VvPLR, pinoresinol/lariciresinol reductase; VvSIRD, secoisolariciresinol dehydrogenase. Gene 

expression levels were determined by qPCR. Bars represent fold change of B. cinerea-inoculated sample 

relative to mock-inoculated sample at each post-inoculation time. Normalization based on the expression levels 

of actin, VvACT and tubulin, VvTUB was carried out before calculating fold changes. Error bar represents 

standard error of the mean of three biological replicates. C, Heatmap of monolignol precursors superimposed to 

the biosynthetic pathway. The amounts of monolignol precursors (µg/g fw) were quantified by HPLC-DAAD-

MS. Fold changes were computed based on the ratio of average values of B. cinerea- and mock-inoculated 

flowers, for each time point. Monolignol and lignan compounds are highlighted in gray background. Asterisks 

(*) indicate statistically significant difference (P < 0.05) between mock- and B. cinerea-inoculated samples 

within a post-inoculation time using unpaired heteroscedastic Student’s t test.  

 

Figure 2.8. Cell wall apposition and monolignol biosynthesis 

pathway in B. cinerea infected flowers. A, Confocal microscope 

image at 30 hpi of GFP-labeled B. cinerea. Autofluorescence 

around penetration site (shown by arrow) indicates cell wall 

apposition. Ap, appressoria; and Ma, multicellular appresoria 

(infection cushions). B, Expression profile of genes encoding key 

enzymes of 

A B 

C 
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Pinoresinol/lariciresinol reductase (VvPLR) and secoisolariciresinol dehydrogenase (VvSIRD), 

which catalyze subsequent metabolic steps to give rise to matairesinol, a lignan, as well as most 

of the DE genes which putatively encode dirigent-like proteins, a disease resistance-responsive 

family protein involved in lignan biosynthesis, were also upregulated in response to B. cinerea.  

The quantification of metabolites also revealed that the concentrations of L-phenylalanine and 

cinnamate, which represent the two key entry substrates in the monolignol biosynthesis pathway, 

were significantly higher in Botrytis-inoculated flowers (Figure 2.8C). In contrast, the 

concentration of p-coumarate, caffeate, ferulate, and 5-hydroxyferulate were not different 

between Botrytis-inoculated flowers and control samples, probably due to their rapid conversion 

into the next metabolite of the pathway. Exceptions were the two intermediates, sinapaldehyde 

and coniferyl alcohol, metabolites found towards the end of the pathway, which were generally 

higher in the Botryits-inoculated flowers than in the control samples. 

These results indicate that upon B. cinerea infection, cell wall fortification was among the 

defense mechanisms employed by the flowers/fruitlets to contain the pathogen in its quiescent 

state.  

2.4.6. Botrytis cinerea transcripts expressed in planta during grapevine flower infection 

The signal of B. cinerea transcripts detected in inoculated flowers was very low (Supplemental 

Table S2.2). As mentioned above, the reasons could be the limited amount of conidia used for 

inoculation, about 300 conidia per flower, and/or the arrest in fungal growth after penetration 

resulting in a very low abundance of fungal RNA in the samples. Therefore, it was not possible to 

perform a statistical comparison between the transcriptome of the infecting pathogen vs. the 

PDB-grown fungus in order to identify the pathogenicity genes of Botrytis and an alternative 

approach was applied. Genes from B. cinerea were considered expressed if they were represented 

by an average of at least 10 reads in the three biological replicates of inoculated flower samples. 

1325 genes met these conditions and will be herein referred to as “in planta expressed genes”. Of 

these, 751 and 59 were expressed only at 24 and 96 hpi, respectively; and 515 genes were 

expressed at both 24 and 96 hpi (Supplemental Table S2.9).  

The set of in planta expressed genes were functionally annotated using Blast2GO (Conesa et al., 

2005) and Amselem et al. (2011) (Supplemental Table S2.9). The joined biological meaning of 

the genes was visualized using the Combined Graph Function of Blast2GO based on their GO 
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slim terms, and primary metabolic process, nitrogen compound metabolic process, ion binding, 

oxidoreductase activity, and cytoplasmic component were among the most represented GO terms 

(Supplemental Table S2.10). This automatic annotation was manually curated to improve gene 

description and the most important functional categories are reported in Table 2.3. In planta 

expressed genes encompassed genes involved in pathogenesis, such as Carbohydrate-Active 

enZymes (CAZymes) devoted to plant cell wall degradation, in ROS production and 

detoxification, in toxins biosynthesis, as well as in transcriptional regulation; all these genes were 

more abundant at 24 hpi. Besides, many ribosomal and histone genes were equally abundant at 24 

and 96 hpi indicating the maintenance of a basal metabolism during quiescence.  

Table 2.3. Specific functions of in planta detected B. cinerea transcripts 

Functions of of Botrytis cinerea genes 
No.of genes involved 

24hpi  96hpi  

Proteins identified as early secretome, within 16 h of 

germination (Espino et al., 2010) 39 9 

Carbohydrate-Active Enzymes (CAZymes)  

(Amselem et al., 2011; Blanco-Ulate et al., 2014) 203 64 

     CAZymes acting on fungal cell wall  36 16 

     CAZymes acting on Plant Cell Wall  56 11 

          CAZymes acting on cellulose  5 2 

          CAZymes acting on hemicellulose  20 3 

          CAZymes acting on hemicellulose and pectin side chains  9 0 

          CAZymes acting on pectin  23 1 

Proteins generating Reactive Oxygen Species (ROS)  

(Schumacher et al., 2014) 10 2 

Proteins involved in the detoxification of ROS  

(Schumacher et al., 2014) 23 8 

Protease  (Amselem et al., 2011) 38 8 

secondary metabolism key enzymes (Amselem et al., 2011) 3 0 

60S & 40S ribosomal protein  (Amselem et al., 2011) 78 78 

Appressorium-associated genes (orthologs in Magnaporthe 

oryzae) (Amselem et al., 2011) 7 2 

Transporters 64 22 

Transcription factors 29 13 

Histone 8 7 

Actin 11 6 

 

2.4.7. Botrytis cinerea genes required for pathogenesis are upregulated during flower 

infection 

A group of 23 in planta expressed genes known to be related or possibly associated to Botrytis 

growth or pathogenesis were further characterized by qPCR to study their expression profiles 

during the early interaction with the grapevine flower, in comparison to their expression during 
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Botrytis growth in PDB medium. In addition, other two genes, glutathione S-transferase 

(BcGST1) and polygalacturonase2 (BcPG2), reported to be induced during pathogenesis were 

analyzed. qPCR expression profiles are shown in Figure 2.9, while gene names together with the 

expression level from the RNA-seq analysis are reported in Table 2.4. 

 

 

 

A 

B 

C 

of sample at 24 or 96 hpi relative to the PDB-cultured B. cinerea (Ctrl). Normalization based on the 

expression levels of ribosomal protein L5, BcRPL5, and α tubulin, BcTUBA, was carried out before 

calculating fold changes. Error bar represents standard error of the mean of three biological replicates. 

Expression values followed by a common letter are significantly not different between samples, 

according to Tukey's Honestly Significant Difference test (P≤0.05), using one way ANOVA of 

log2(NRQ). 

 

Figure 2.9. Expression profile of growth- and virulence-

related Botrytis cinerea genes during grapevine flower 

infection (at 24 and 96 hpi) relative to PDB-cultured B. 

cinerea. A, Reduction-oxidation related genes. B, Cell 

wall degrading enzymes and proteases encoding genes. 

C, Phytotoxin encoding genes. Gene expression levels 

were determined by qPCR. Bars represent fold change  
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Table 4. RNA-seq reads of B. cinerea transcripts checked by qPCR assay 

Abbreviation Transcript description Gene ID 

Average no. of raw reads from 

RNA-seq analysis 

In planta expressed PDB 

culture 24hpi 96hpi 

BcSOD1  Superoxide dismutase1 Bcin03g03390 76 26 9,411a 

BcGOX1  Galactose oxidase Bcin13g05710 21 
 

609 

BcAOX  Alcohol oxidase Bcin07g03040 24 
 

490 

BcGST1  Glutathione S-transferase Bcin10g00740 
  

2,655a 

BcPRD1 Dyp-type peroxidase Bcin13g05720 19 
 

312 

BcGPX3  Glutathione peroxidase Bcin03g01480 23 
 

2,871a 

BcLCC2  Laccase2 Bcin14g02510 15 
 

32b 

BcCUTA  Cutinase Bcin15g03080 15 
 

54b 

BcCUT-like1 Cutinase Bcin01g09430 68 11 9b 

BcOAH  Oxaloacetate acetylhydrolase Bcin12g01020 386 
 

38b 

BcPG1  Polygalacturonase1 Bcin14g00850 209 175 147,821a 

BcPG2  Polygalacturonase2 Bcin14g00610 
  

362 

BcPG4  Polygalacturonase4 Bcin03g01680 44 
 

47b 

BcPG6  Polygalacturonase6 Bcin02g05860 75 
 

62 

BcPEL-like1  Pectate lyase Bcin03g05820 87 24 40b 

BcGAR2  D-galacturonic acid reductase2 Bcin03g01500 37 
 

104 

BcLGD1  D-galactonate dehydrogenase Bcin01g09450 61 10 804 

BcLGA1  2-keto-3-deoxy-L-galactonate aldolase Bcin03g01490 70 13 66 

BcXYN11A  Endo-beta-1,4-xylanase Bcin03g00480 18 
 

129 

BcβGLUC  Beta-glucosidase 1 precursor Bcin10g05590 32 
 

75 

BcAP8  Aspartic proteinase8 Bcin12g02040 30 12 1,064a 

BcAP9  Aspartic proteinase9 Bcin12g00180 16 
 

569 

BcBOT1 Botrydial biosynthesis1 Bcin12g06380 58 
 

86 

BcBOT2  Botrydial biosynthesis2 Bcin12g06390 41 
 

55 

BcBOA6  Botcinic acid6 Bcin01g00060 13 
 

1,048a 

(a) transcripts whose average raw reads is in the top
 
25 %, most expressed, while (b) are those  

transcripts whose average reads is in the bottom 25 %, least expressed, in PDB culture. 

 

All genes showed a sharp peak of expression at 24 hpi, except superoxide dismutase1 (BcSOD1), 

BcGST1, and the constitutively expressed BcPG1. Interestingly, the expression level at 24 hpi of 

some genes was extremely high, due to their very low level of expression in PDB culture, which 

was taken as a reference. These genes, which included oxaloacetate acetyl hydrolase (BcOAH), 

cutinase (BcCUT-like1), and pectate lyase (BcPEL-like1), appeared to be expressed exclusively 

during Botrytis attack, while other genes were also expressed in the absence of the host, but 

relatively much more during the host-pathogen interaction.  

B. cinerea cutinases BcCUTA and BcCUT-like1are involved in the breaching of the cuticle layer 

by appressoria. This invasive step normally causes oxidative burst in the host (Schouten et al., 

2002a) which is counteracted by the activation of scavenging mechanisms in the pathogen. The 

transcription levels of several B. cinerea genes taking part in the ROS-mediated fungus-plant 
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interaction were quantified (Figure 2.9A). BcSOD1, which plays role in oxidative stress response 

during cuticle penetration (Rolke et al., 2004); H2O2 generators galactose oxidase (BcGOX1) and 

alcohol oxidase (BcAOX); ROS scavengers BcGST, peroxidase1 (BcPRD1), and glutathione 

peroxidase (BcGPX3) (Schumacher et al., 2014); and BcLCC2, a gene involved in the oxidation 

of resveratrol and tannins (Schouten et al., 2002b), were all involved in the Botrytis-grapevine 

interaction. Necrotrophic fungi seem to stimulate the oxidative burst response of the plant and 

even contribute to it to favor the colonization process (review Heller and Tudzinsky, 2011).   

A similar expression profile, albeit quantitavely different, was shown by cell wall degrading 

enzymes (CWDEs) (Figure 2.9B). PG, pectate lyase (BcPEL-like1), and oxaloacetate acetyl 

hydrolase (BcOAH), a gene with numerous functions including enhancing the activity of PG, are 

involved in pectin degradation. Galacturonate reductase (BcGAR2), galactonate dehydratase 

(BcLGD1), and 2-keto-3-deoxy-L- galactonate aldolase (BcLGA1), genes which play a role in the 

catabolic pathway of D-galacturonic acid (Zhang et al., 2011), a major component of pectin 

polysaccharides (Mohnen, 2008; Caffall and Mohnen, 2009), also had similar trends of 

expression. D-galacturonic acid may serve as an energy source when B. cinerea grows in and 

through plant cell walls (Zhang et al., 2011). The strong and similar expression pattern in pectin 

and D-galacturonic acid degrading enzymes suggested that the degradation of the pectin 

backbone was initiated at 24 hpi. The involvement of other CWDEs, such as the endo-beta-1,4-

xylanase precursor (BcXYN11A), which degrades hemicellulose and also induces necrosis (Noda 

et al., 2010), beta-glucosidase (BcβGLUC), which degrades both cellulose and hemicellulose 

(Gilbert, 2010; Blanco-Ulate et al., 2014), and secreted aspartic proteinases (AP) was also 

highlighted from the qPCR assay (Figure 2.9B). The RNA-Seq data further suggested the 

involvement of pectin lyases (Bcin03g00280 and Bcin03g07360), enzyme acting preferentially 

on highly methyl esterified pectin, in the infection process (Supplemental Table S2.9).  

The strong upregulation of botcinic acid (BcBOA) and botrydial phytotoxins (BcBOT) genes, 

involved in phytotoxins synthesis, pointed towards their participation in the fungal infection 

program (Figure 2.9C). BcBOA6 gene encodes a polyketide synthase (PKS), a key enzyme for 

botcinic acid synthesis (Dalmais et al., 2011), and the BcBOT1 and BcBOT2 genes encode P450 

monooxygenase and sesquiterpene cyclase, respectively (Siewers et al., 2005).   
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Taken together, these results indicate the readiness of the fungus to colonize the flowers within 

24 hpi. However, the transcript levels of all of the tested infection-related B. cinerea genes were 

much lower at 96 hpi, suggesting that the pathogenesis program initiated at 24 hpi is halted at a 

later time point. The transcriptional profile of BcACTA also suggested that the activity of the 

fungus decreased towards the later hours of infection. From the post-inoculation inspection of the 

infected flowers, no visible disease progress was detected until ripening (Figure 2.1). This 

strengthens the hypothesis that the fungus reduced its biological activity and entered into a 

quiescent phase. 

2.5. Discussion 

In grapevine, gray mold disease caused by B. cinerea occurs mainly on ripe berries close to 

harvest. The epidemiology of the fungus on grapevine, especially the infection process of the 

pathogen during flowering, is largely unknown. B. cinerea infection of grapevine inflorescence at 

blooming followed by a “latency period” as a possible source of early bunch rot at véraison was 

first reported by McClellan and Hewitt (1973). This observation was further confirmed by Keller 

and colleagues who demonstrated that inoculation at full bloom leads to high disease severity at 

harvest (Keller et al., 2003). Using the advantage of a GFP-labeled B05.10 strain, we could show 

for the first time that B. cinerea inoculated at flower cap-off stage remained in a quiescent state 

until berry full coloration (for about two and half months) and then it resumed active growth and 

invaded the berries when the microclimate was conducive (high humidity). This study provides a 

detailed description of the infection processes from infection initiation (24 hpi) to initial fungal 

quiescent (96 hpi) stages by means of transcriptomic and metabolic analyses and microscopic 

observations, laying the foundation for understanding the mechanism of the plant-fungus 

interaction during flowering which leads to pathogen quiescence. 

Confocal microscopy and transcriptomic studies showed that the fungus, upon contact with the 

grapevine flowers, attempted to establish infection before becoming quiescent as observed from 

the germinated appressoria in the flower gynoecium (Figure 2.1B & G) and a prevalent 

modulation of defense related genes within 24 hpi. The main functional categories of the in 

planta expressed genes of the fungus were those related to pathogenesis, such as CAZymes, 

oxidative stress, proteases, and transporters (Table 2.3). Interestingly, much of these in planta 

expressed genes were also differentially regulated during successful infection of ripe grapevine 
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berries (16, 24 and 48 hpi) (Kelloniemi et al., 2015), Lactuca sativa (12, 24, and 48 hpi) (De 

Cremer et al., 2013), and Solanum lycopersicoides (24 and 48 hpi) (Smith et al., 2014). This 

suggests that the in planta expressed genes were part of the pathogenesis mechanisms deployed 

in grapevine flowers that would help to establish infection. 

One of the key processes in establishing infection by B. cinerea is the depolymerization of cell 

wall components (van Kan, 2006; Williamson et al., 2007; Zhang et al., 2011). Generally, after 

breaching the cuticular layer of host tissues, B. cinerea often grows into the pectin-rich anticlinal 

wall of the underlying epidermal cell (van Kan, 2006; Williamson et al., 2007), by the activation 

of pectinases. In our study, almost all of the assayed CAZymes, including pectinases, were 

expressed at a higher level at 24 hpi (Figure 2.9). Besides increased levels of CWDEs, the 

upregulation of genes encoding the biosynthesis of phytotoxic secondary metabolites and secreted 

proteases, which assist the infection process (Dalmais et al., 2011; Rossi et al., 2011), further 

confirmed that the fungus put in place several strategies to invade the grapevine flowers. 

Nonetheless, there was no visible disease symptoms observed in the post-inoculation 

observations despite the presence of B. cinerea was confirmed by the plating out experiment 

(Figure 2.1H); implying that the pathogen could not grow actively and switched into quiescent 

phase. The much lower number of Botrytis genes expressed in planta at 96 hpi as compared to 24 

hpi (65% less), as well as the estimated ratio of B. cinerea to grapevine RNA (1:500, 

Supplemental Table S2.2) compared to the much smaller ratio for genomic DNA (about 1:20, 

Figure 2.1I) in the same tissue, is also a confirmation that the fungus entered the quiescent phase. 

Quiescence of a pathogen can happen before conidia germination, at initial hyphal development 

stage, before or after appressorium formation, after appressorium germination and/or at 

subcuticular hyphae stage (Prusky, 1996). In unripe tomato, Colletotrichum gloeosporioides 

becomes quiescent as a swollen hyphae after appressorium germination (Alkan et al., 2015), 

whereas Alternaria alternata enters into quiescence after its hypha penetrates the cuticular layer 

of young apricot, persimmon, and mango fruits (Prusky, 1996). For B. cinerea, cell wall 

penetrated hypha was proposed as a quiescent stage of infection in immature grape berries (Keller 

et al., 2003). Although the quiescence of ungerminated conidia cannot be completely ruled out in 

our case, the microscopic observation of conidia germination and appressoria formation (Figure 

2.1G and Supplemental Figure S2.3), together with the results of the plating out experiment, 
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which showed a non-significant effect of washing the inoculated berries (Figure 2.1H), indicate 

that the pathogen entered into a quiescent state after penetrating the cell wall.  The burst of 

defense related reactions from the plant is also an indirect support for this claim.  

In our study the attempted infection by B. cinerea instigated a multilayered defense response in 

the grapevine flower tissues. Following inoculation, more than 70 RLKs were differentially 

expressed within 24 hpi (Supplemental Table S2.7). Several of these RLKs have been described 

to be involved in immune response to pathogens. The perception of cell wall fragments, such as 

oligogalacturonides (OGs) due to CWDE, induces basal resistance to the pathogen (Boller and 

Felix, 2009). In A. thaliana, over-expressing the OG receptor Wall-associated kinase 1  enhanced 

resistance to B. cinerea (Brutus et al. 2010), but on the other hand increased susceptibility to 

Sclerotinia sclerotiorum and B. cinerea was observed in BAK1 mutant Arabidopsis (Kemmerling 

et al., 2007; Zhang et al., 2013). The RLK BAK1 constitutes a negative control element of 

microbial infection-induced cell death in plants (Kemmerling et al. 2007). These two RLKs 

exhibited increased expression levels in powdery mildew resistant V. pseudoreticulata in 

response to E. necator (Weng et al., 2014) and in B. cinerea challenged lettuce (De Cremer et al., 

2013). We also saw upregulation of genes coding for these membrane receptor proteins at 24 hpi, 

indicating that the plant recognizes the pathogen and triggers an immunity response: quick and 

strong induction of PR-proteins and accumulation of stress related secondary metabolites, as well 

as cell wall lignification are deployed as major defense responses to halt the infection. The 

oxidative stress caused during the interaction seemed mainly managed by GSTs and ascorbate 

oxidases (Marrs, 1996) as more than 20 genes coding for them were upregulated at 24 hpi. The 

pathogen responsive PR10, PR5 (thaumatine-like protein), and chitinases also had a marked 

upregulation (between 5 and 40-fold upregulation within 24 hpi) compared to the rest of 

differentially expressed PR-proteins. Chitinases and thaumatin-like proteins are known for their 

inhibition of fungal growth including B. cinerea (Giannakis et al., 1998; Monteiro et al., 2003). 

From our qPCR result, a very quick induction, as early as 12 hpi, of VvPR10.1 and VvPR10.3 was 

observed. VvPR10.1 was recently associated to P. viticola resistance, under the regulation of 

VvWRKY33 (Merz et al., 2015). We demonstrated a coordinated expression of VvWRKY33 and 

VvPR10.1 during B. cinerea infection, too. Even though the two pathogens are biologically 

different and may not necessarily activate similar response from their hosts, VvPR10.1 and 

VvPR10.3, a PR belonging to the same group of VvPR10.1 (Lebel et al., 2010), had the highest 
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upregulation among the expressed PRs, making them strong candidates for the resistance of 

grapevine flower to B. cinerea. In Arabidopsis WRKY33, the functional homologue of 

VvWRKY33 (Merz et al., 2015), plays a key role in the plant defense process, regulating redox 

homeostasis, SA signaling, ET-JA-mediated cross-communication, and phytoalexin biosynthesis 

conferring resistance to B. cinerea (Birkenbihl et al., 2012).  

Upon B. cinerea infection, grapevine berries activate stilbenoid biosynthesis (Langcake, 1981; 

Jeandet et al., 1995; Keller et al., 2003; Agudelo-Romero et al., 2015; Kelloniemi et al., 2015). 

Our results were in line with previous evidence: many genes involved in stilbenoid and flavonoid 

biosyntheses were upregulated, STS and laccase coding genes were the ones with the highest 

upregulation. From the RNA-Seq results, it seemed that the genes coding for STS and laccase 

proteins were switched on following the infection, since most of them were below the detection 

limit in the mock-inoculated flowers. The activation of the polyphenol biosynthetic pathway was 

further investigated by a more fine-grained expression profile of the transcription factor 

regulating stilbene biosynthesis (VvMYB14, Höll et al., 2013) together with VvSTS29 and 

VvSTS41, and by measuring the concentration of several classes of polyphenols 

(phenylpropanoids, stilbenoids, and flavonoids). The phytoalexin resveratrol, which inhibits B. 

cinerea growth (Schouten et al., 2002b; Favaron et al., 2009) and its monomeric and oligomeric 

derivatives, some with documented antifungal activity (Hammerbacher et al., 2011), were all 

upregulated starting from 12 hpi. The concentrations of ε-viniferin and α-viniferin, dimer and 

trimer resveratrol respectively, were higher in Botrytis-infected flowers than control throughout 

the measured period. These compounds represent the predominant stress metabolites in Vitaceae - 

B. cinerea interactions reported previously (Langcake, 1981). We also observed a marked 

oligomerization of resveratrol to ampelopsin D and quadrangularin, E-cis-miyabenol, Z-

miyabenol C, and isohopeaphenol upon infection, which agrees with the hypothesis that 

oligomerization of resveratrol leads to more toxic compounds (Pezet et al., 2003a). On the other 

hand, overexpressing the glycosylated form of resveratrol, trans-piceid, in Arabidopsis that 

overexpresses a resveratrol gene PcRS, increased its resistance to Colletotrichum higginsianum 

(Liu et al., 2011). In line with this, over-expression of an STS gene in transgenic grapevine plants 

led to resistance to B. cinerea colonization (Coutos-Thévenot et al., 2001; Dabauza et al., 2014) 

and a strong correlation was also observed between the concentration of stilbenic phytoalexins 
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and resistance to P. viticola both in a V. riparia and Merzling × Teroldego cross population 

(Langcake, 1981; Malacarne et al., 2011).  

The potent stilbene oxidase inhibitors caftaric and trans-coutaric acids (both phenylpropanoids), 

catechin, and quercetin-3-O-glucuronide (both flavonoids) (Goetz et al., 1999) were also detected 

at higher concentrations in the Botrytis-infected flowers than in the control, contributing to the 

defense reaction. These compounds possibly interfered with the fungal laccase activity by 

inactivating its oxidizing and insolubilizing effects on stilbenic phytoalexins and PR proteins 

(Goetz et al., 1999; Favaron et al., 2009). In addition, different classes of flavonoids including 

proanthocyanidins (procyanidins B1, B2, B3 and B4) were also detected at a higher concentration 

in the infected flowers; these compounds can act as inhibitors of enzymes such as 

polygalacturonases. Higher concentration of proanthocyanidins in the epidermal layer of 

immature strawberry, at the periphery of B. cinerea penetration, was reported to restrict further 

growth of B. cinerea and keep the pathogen under quiescence (Jersch et al., 1989). Taken 

together, our results indicated a dramatic and rapid accumulation of the polyphenolic metabolites, 

in particular stilbenoids, at the site of infection suggesting this is a mechanism of defense to 

induce B. cinerea quiescence in grapevine flower.   

Reinforcing cell walls is another strategy of plant resistance against pathogens. From our 

microscopic observations, cell wall apposition occurred at the appresorium penetration site 

(Figure 2.1F and Figure 2.8A). Gene expression and metabolite analysis also indicated that 

grapevine flowers, upon B. cinerea infection, activated the monolignol biosynthesis pathway 

within 24 hpi. A significant accumulation of the metabolites at the beginning of the pathway (L-

phenylalanine and cinnamate) as well as at the end of the pathway (sinapaldehyde and coniferyl 

alcohol) was indeed observed. Instead, whereas, most of the intermediates were very low (such as 

p-coumarate and caffeate) or not detectable, possibly due to their rapid conversion into products 

for the next steps in the pathway. A similar phenomenon occurs in wheat, where upregulation of 

monolignol genes within 24 hpi conferred resistance to Blumeria graminis f. sp. Tritici; and 

silencing a few key genes in the pathway (PAL, COMT, CCoAMT and CAD) compromised 

penetration resistance of the plant to the pathogen (Bhuiyan et al., 2009). The upregulation of 

GLP3 and EXT, both at 24 and 96 hpi, and accumulation of H2O2 around the penetration site, as 

shown using the HyPer signal (Figure 2.5), suggests CWA was triggered as an early response to 
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the infection. H2O2-mediated oxidative cross-linking and lignin synthesis to reinforce CWA and 

halt B. cinerea infection was recently shown in grapevine by Kelloniemi et al. (2015). In their 

study, the upregulation of lignin forming enzymes (GLP3 and EXT) together with the 

accumulation of H2O2, at the site of Botrytis penetration, were part of the defense mechanisms 

used by the véraison berry to arrest the pathogen. However, no such queues of responses were 

seen in the mature berry where the pathogen readily managed to colonize the berry tissue 

(Kelloniemi et al., 2015). In green tomatoes, usually resistant to B. cinerea, the accumulation of 

H2O2 and lignin occurrs at the site of inoculation (Cantu et al., 2009), and in a tomato sitiens 

mutant, primed H2O2 accumulation and cell wall reinforcement were among the resistant factors 

against B. cinerea (Asselbergh et al., 2007). These all show that the CWA-mediated resistance 

was also active in the B. cinerea infected flowers.  

2.6. Conclusions 

Flowering is a critical phenological stage in the epidemiology of B. cinerea in the vineyard 

leading to quiescent infection. Our work provides the first transcriptomic and targeted metabolites 

analyses of the interaction between the two organisms at this critical phenological stage. Our 

results showed that upon contact with the grapevine flower, within 24 hpi, B. cinerea induced 

genes encoding for CWDE, phytotoxic secondary metabolites, and proteases, indicating a 

readiness to establish a successful infection. There was no visible disease symptom in the post 

inoculation time however, despite the confirmed presence of the pathogen and an egression at the 

later ripening stage. Flowers reacted readily to the infection as their defense mechanisms were 

very in-line upon recognizing the intruder. There was a marked accumulation of antimicrobial 

proteins (mainly PR-proteins), monolignol precursors, stilbenoids, and reactive oxygen species 

accompanied by cell wall reinforcement. The conjugated actions of these induced defense 

responses seem to be responsible for forcing B. cinerea into quiescence until more favorable 

conditions occur in the berry. 
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2.8. Supplemental materials 

2.8.1. Supplemental tables 

Supplemental Table S2.1. List of qPCR primers. Gene and/or accession identification, gene name, primer 

name, primer sequence, and source are listed. 

B
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Gene/Accession ID Gene name Primer name Primer sequence Reference 

AM233400.1 Bc3 
Bc3-F TGTAATTTCAATGTGCAGAATCC Suarez  

et al. 2005 Bc3-R TTGAAATGCGATTAATTGTTGC 

Bcin16g02020  BcACTA 
BcactA-F CGTCACTACCTTCAACTCCATC 

 Li et al. 2014 
BcactA-R CGGAGATACCTGGGTACATAGT 

Bcin07g03040 BcAOX 
Bcaox-F GTTCTCAAAGGGGTCTGCTG 

This study 
Bcaox-R GTTCCTACCGAGTGCCATGT 

Bcin12g02040  BcAP8  
Bcap8-F CATCGTCGATACTGGATCCTC ten Have  

et al. 2010 Bcap8-R TGAACCACTTCCGTAGGAGAC 

Bcin12g00180 BcAP9  
Bcap9-F AGCAAGGTTCAAGGTGCTGT 

This study 
Bcap9-R CACGGACGGTAGCCATGTAG 

Bcin01g00060  BcBOA6  
BcPks6q-F CAGCAATCGTTGTCCTGAAATC Schumacher 

et al. 2015 BcPks6q-R GTTTATCGCGTTCTTCACCTGTTA 

Bcin12g06380  BcBOT1 
Bcbot1-F  GGCTCCCGTGCTTGCA Pinedo et al. 

2008 Bcbot1-R GCGAGGTGAAGAAGTTAGAGAAGGT 

Bcin12g06390 BcBOT2  
Bcbot2 F  CAGGTTATCCCTTTGCATGAGTAGT Pinedo et al. 

2008 Bcbot2 R TTACACTGGTGAATGATGTTTTGTCTT 

Bcin15g03080 BcCUTA 
BccutA-F TGCTGGCAGTCAGACTATGG 

This study 
BccutA-R TTCGGCTGGTAAAAGTTTGG 

Bcin01g09430 BcCUT-like1 
Bccut-like1-F TCACCAACTACGCTTCCACC 

This study 
Bccut-like1-R GCAATCTTGGCCGTTACAGC 

Bcin03g01500 BcGAR2 
Bcgar2-F CCCAGCTATCCGTGAACATC Zhang et al. 

2011 Bcgar2-R CACCTGGGGAAAGCGCATC 

Bcin03g01490 BcGLA1 
Bcgla1-F CAAGGTTTGGGAATTGTACAGAG Zhang et al. 

2011 Bcgla1-R GTATCCTCCATATCCATAGTAGC 

Bcin13g05710 BcGOX1 
Bcgox1-F AAGGGTTTTGAATGCAGGTG 

This study 
Bcgox1-R AGCTTCCCTTCGTCTGTCAA 

Bcin03g01480 BcGPX3 
Bcgpx3-F GGTGACAATGCTGCTCCTCT 

This study 
Bcgpx3-R TCTGGCTTGGTTGTGGATGC 

Bcin10g00740 BcGST1  
Bcgst1-F GTTGAGAAGGGCCGTCATGT Kolloniemi  

et al. 2015 Bcgst1-R CCTCACGTTCAGGGTCTTTCTT 

Bcin14g02510 BcLCC2  
Bclcc2-F TGCCCTCACTGCATTATTTG 

This study 
Bclcc2-R CTGGAAGTAGCCGAGTTTGC 

Bcin01g09450 BcLGD1 
Bclgd1-F TGGTCATGGCATGACTTTCAC Zhang 

et al. 2011 Bclgd1-R GTTGCGAATCGGAAACGAGATA 

Bcin12g01020 BcOAH 
Bcoah-F CGACGAGTGCATCAAGAGGT 

This study 
Bcoah-R AACAGTCTTTGCGGCCATCT 

Bcin03g05820 BcPEL-like1 
Bcprl-like1-F ACCACCACTGTCTCCACCTA 

This study 
Bcpel-like1-R CCTTGACTTGGGAAGCAGCT 

Bcin14g00850 BcPG1 
Bcpg1-F CTGCCAACGGTGTCCGTATC Zhang and 

vanKan 2013 Bcpg1-R GAACGACAACACCGTAGGATG 

Bcin14g00610 BcPG2 
Bcpg2-F CGAGTTAAGACCGTCAGCGATA 

This study 
Bcpg2-R CGATGAGAGTGATGTCCTGGAA 

Bcin03g01680 BcPG4 
Bcpg4-F CTTATTGAGTACGCCACTGTC Zhang and 

vanKan 2013 Bcpg4-R AGTGTCGACGGTGTTGTTGC 
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Supplemental Table S2.1. Continued 
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Gene/Accession ID Gene name Primer name Primer sequence Reference 

Bcin02g05860 BcPG6 
Bcpg6-F ATTTGATGTCAGCTCGTCCAG Zhang and 

vanKan 2013 Bcpg6-R ACCTGAGCAATATAACCCGTC 

Bcin13g05720 BcPRD1 
Bcprd1-F ACCCAGCAATTGAGTTCACC 

This study 
Bcprd1-R CCTTGGGTGTCACCTCATCT 

Bcin01g09620 BcRPL5 
Bcrpl5-F GATGAGACCGTCAAATGGTTC Zhang and 

vanKan, 2013 Bcrpl5-R CAGAAGCCCACGTTACGACA 

Bcin03g03390 BcSOD1  
BcSod1-F CCATCAATTCGGTGACAACACT Kelloniemi  

et al. 2015 BcSod1-R TGGCCGTGTGGGTTGAA 

Bcin01g08040  BcTUBA 
BctubA-F TTTGGAGCCAGGTACCATGG Mehli  

et al. 2005 BctubA-R GTCGGGACGGAAGAGTTGAC 

Bcin03g00480 BcXYN11A  
Bcxyn-F CCTGGAAGAAGTTGGGATTG 

This study 
Bcxyn-R AACAGTGATGGAAGCGGAAC 

Bcin10g05590 BcβGLUC 
Bcβgluc-F TGCAGCTACCTTTGATCGTG 

This study 
Bcβgluc-R TCCTTCCCAGTTACGTCCAC 
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VIT_11s0052g01110 Vv4CL 
Vv4CL-F TTCCCGACATCAACATCCCG 

This study 
Vv4CL-R TTACGTGCGGTGAGATGGAC 

VIT_04s0044g00580 VvACT 
VvACT-F ATGTGCCTGCCATGTATGTTGCC Bèzier  

et al. 2002 VvACT-R AGCTGCTCTTTGCAGTTTCCAGC 

VIT_11s0065g00350 VvC4H 
VvC4H-F ATTGACGTGTCCGAAAAAGG 

This study 
VvC4H-R CTATGCGGTGATTGGAGTGA 

VIT_03s0180g00250 VvCAD 
VvCAD-F GTGGAGGTGGGATCAGATGT 

This study 
VvCAD-R TCCATCTCTGATTTGCATGG 

VIT_03s0063g00140 VvCCoAOMT 
VvCCoAOMT-F TCGATTTGGTGAAGGTGGGG 

This study 
VvCCoAOMT-R AGAGCCTTGTTCAGCTCCAA 

VIT_14s0066g01150 VvCCR 
VvCCR-F AGCAGAAACAGGGATGCCAT 

This study 
VvCCR-R AGAGAGCCTCCCATCTGACA 

VIT_05s0094g00360 VvCHIT4c  
VvCHIT4c-F TCGAATGCGATGGTGGAAA Ramírez-Suero 

et al. 2014 VvCHIT4c-R TCCCCTGTCGAAACACCAAG 

VIT_16s0098g00850 VvCOMT 
VvCOMT-F GCCTTCTTGCCACCTATGCT 

This study 
VvCOMT-R TCATGAGGAGAAGAGGGGCT 

VIT_07s0031g01380 VvF5H 
VvF5H-F CTTTGTGCCCGCCATTGTTG 

This study 
VvF5H-R TTGAACACTCATGGGGTGGC 

VIT_14s0060g00120 VvGLP2 
VvGLP2-F CGAGTTGGATGTGGGGTTCA Godfrey  

et al. 2007 VvGLP2-R GACTTCGCCGTTGTTCTTCT 

VIT_19s0093g00320 VvGST1 
VvGST1-F CCAAAGAGCAAAAGCCAAGT Conn  

et al. 2008 VvGST1-R TGTCCAGAAAACCCAAAGTC 

VIT_01s0146g00480 VvJAZ10 
VvJAZ10-F TCCGAAGAATAATCCGCCGT 

This study 
VvJAZ10-R CAGGACTGTAAACCGGCAAC 

VIT_07s0005g03340 VvMYB14 
VvMYB14-F TCTGAGGCCGGATATCAAAC 

Höll et al. 2013 
VvMYB14-R GGGACGCATCAAGAGAGTGT 

VIT_01s0010g02020 VvPER 
VvPER-F AGGGCAAGCAAGATGTGTGA 

This study 
VvPER-R TCCAGGGGTGCAAGATTGTC 

VIT_08s0007g08330 VvPG1 VvPG1-F CAAGCGAGCCCACCTTATGA This study 

  
VvPG1-R CTCACGGCTTTGAATGGTGC 

 

VIT_08s0040g00550 VvPLR 
VvPLR-F AAAGGCCGGATATGGGTGTG 

This study 
VvPLR-R TCTACCAACTTCACGGCGTC 

VIT_03s0088g00750 VvPR1 
Vv_PR1i-F CTCCCCTTCATTGACAGGCA 

This study 
Vv_PR1i-R ATAGTGCCTGCATTCCCCAC 

VIT_03s0088g00710 VvPR1 
Vv_PR1ii-F GCGTGGGTGGGGAATGCCGA 

Trdá et al. 2014 
Vv_PR1ii-R GATGTTGTCCCTGATAGTTGCC 
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Supplemental Table S2.1. Continued 
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Gene/Accession ID Gene name Primer name Primer sequence Reference 

VIT_05s0077g01530 VvPR10.1 
VvPR10.1-F GCACATCCCGATGCCTATTAAG 

Merz  

et al. 2015 VvPR10.1-R 
ACTTACTGAGACTGATAGATGCAATG

AATA 

VIT_05s0077g01560 VvPR10.3 
VvPR10.3-F GAAATCCTACAAGGACAGGGAGGT Lebel  

et al. 2010 VvPR10.3-R CGGCCTTGGTGTGGTACTTTT 

AF274281 VvRS I 
VvRES I- F CGAGGAATTTAGAAACGCTCAAC Valsesia  

et al. 2005 VvRES I- R GCTGTGCCAATGGCTAGGA 

VIT_08s0058g00790 VvSIRD 
VvSIRD-F TGAAGACACACTCGGAGCTG 

This study 
VvSIRD-R AGGATATCGAGGCGTCCGTA 

VIT_16s0100g00950; 

VIT_16s0100g00990; 

VIT_16s0100g01010 

VvST29 

(VvST25+VvST2

7+VvST29) 

VvST29-F GGTTTTGGACCAGGCTTGACT Höll  

et al. 2013 
VvST29-R GAGATAAATACCTTACTCCTATTCAAC 

VIT_16s0100g01130; 

VIT_16s0100g01160 

VvST41 (VvST41 

+ VvST45) 

VvST41-F GAGTACTATTTGGTTTTGGACCT Höll  

et al. 2013 VvST41-R AACTCCTATTTGATACAAAACAACGT 

VIT_06s0004g00480 VvTUB 
VvTUB-F TGTTGGTGAAGGCATGGAGG Giacomelli  

et al. 2012 VvTUB-R AGATGACACGCCTGCTGAACT 

VIT_08s0058g00690 VvWRKY33 
VvWRKY33-F 

ATTCAAGCACTAGTATGAACAGAGCA

G 
Merz  

et al. 2015 
VvWRKY33-R CCTTGTTGCCTTGGCATGA 

 

Supplemental Table S2.2. Summary of reads mapping of the 15 RNA-Seq libraries. Ctrl, mock inoculated; 

Trt, B. cinerea inoculated; Bc, Botrytis cinerea; 1-3 indicate the three biological replicates; 24 and 96 

indicate hours post inoculation. 

Library 

Total quality-

trimmed 

reads 

Reads mapped to  

V. vinifera reference 

Reads uniquely 

mapped to V. 

vinifera reference 

Reads mapped to  

B. cinerea reference 

Reads uniquely 

mapped to B. 

cinerea reference 

Ctrl 1-24  33,582,861 26,185,827 (77.97 %) 24,938,558 (74.26 %) 60,629 (0.18 %) 9,736 (0.03 %) 

Ctrl 2-24  30,634,590 24,156,916 (78.86 %) 23,009,237 (75.11 %) 63,570 (0.21 %) 10,476 (0.03 %) 

Ctrl 3-24  28,509,351 21,919,491 (76.89 %) 20,541,510 (72.05 %) 301,999 (1.06 %) 26,834 (0.09 %) 

Ctrl 1-96  22,410,851 16,848,719 (75.18 %) 15,496,486 (69.15 %) 472,766 (2.11 %) 7,195 (0.03 %) 

Ctrl 2-96  37,394,962 24,336,710 (65.08 %) 23,155,616 (61.92 %) 60,179 (0.16 %) 7,598 (0.02 %) 

Ctrl 3-96  27,843,357 21,949,631 (78.83 %) 20,838,437 (74.84 %) 92,550 (0.33 %) 11,458 (0.04 %) 

Trt 1-24  27,812,146 19,069,689 (68.57 %) 16,282,036 (58.54 %) 1,281,100 (4.6 %) 35,213 (0.12 %) 

Trt 2-24  31,644,086 25,622,237 (80.97 %) 24,469,696 (77.33 %) 134,816 (0.43 %) 72,414 (0.23 %) 

Trt 3-24  30,211,586 24,631,219 (81.53 %) 23,391,950 (77.43 %) 164,851 (0.55 %) 77,040 (0.26 %) 

Trt 1-96  25,919,449 21,240,182 (81.95 %) 20,270,161 (78.20 %) 77,351 (0.34 %) 16,453 (0.06 %) 

Trt 2-96  26,077,701 20,388,725 (78.18 %) 19,359,716 (74.24 %) 116,774 (0.45 %) 54,139 (0.21 %) 

Trt 3-96  23,503,720 18,957,227 (80.66 %) 18,077,115 (76.91 %) 79,818 (0.34 %) 28,891 (0.12 %) 

Bc 1 22,223,388 76,740 (0.35 %) 21,423 (0.01 %) 20,072,229 (90.32 %) 14,108,503 (63.48 %) 

Bc 2 21,289,297 47,738 (0.22 %) 28,559 (0.13 %) 19,256,732 (90.45 %) 16,603,159 (77.99 %) 

Bc 3 22,254,222 50,719 (0.23 %) 17,798 (0.08 %) 20,086,452 (90.25 %) 16,522,732 (74.24 %) 
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Supplemental Table S2.3. Differentially expressed genes of V. vinifera flowers upon B. cinerea infection 

(Provided as excel file)  

 

Supplemental Table S2.4. List of genes used to validate the  RNA-Seq expression values by q-PCR assay. 

Gene identification, gene description, and fold change from RNA-seq and qPCR are provided. 

Gene ID Description 

 RNA-seq (Log2 

fold change) 

 qPCR (Log2 

fold change) 

24 hpi 96 hpi 24 hpi 96 hpi 

VIT_04s0044g00580 Actin 7 (ACT7) / actin 2 -0.25 0.02 -0.05 -0.04 

VIT_06s0004g00480 Tubulin alpha 0.05 0.10 0.05 0.04 

VIT_08s0058g00690 WRKY DNA-binding protein 33 1.65 -0.04 1.14 -0.25 

VIT_14s0060g00120 Germin-like protein 2 0.27 -0.04 0.40 -0.13 

VIT_07s0005g03340 Myb domain protein 14 1.87 -0.05 1.46 -0.32 

VIT_03s0088g00750 Pathogenesis related protein 1 precursor 1.45 0.21 1.07 -0.15 

VIT_03s0088g00710 Pathogenesis-related protein 1 precursor 0.75 0.34 0.80 0.39 

VIT_05s0077g01530 Pathogenesis protein 10 [Vitis vinifera] 4.94 1.56 3.89 2.13 

VIT_19s0093g00320 Glutathione S-transferase 25 GSTU25 2.11 0.56 1.57 1.30 

VIT_05s0094g00360 Chitinase class IV 2.35 0.23 1.90 0.49 

VIT_01s0146g00480 

TIFY 9 (Jasmonate ZIM domain-

containing protein 10) 1.06 -0.82 1.07 -0.43 

VIT_08s0007g08330 Polygalacturonase PG1 -4.80 -2.40 -3.18 -1.07 

VIT_01s0010g02020 Peroxidase 7.12 2.09 5.46 2.77 

VIT_07s0031g01380 Ferulate 5-hydroxylase 2.04 0.96 2.48 1.47 

VIT_11s0052g01110 4-coumarate-CoA ligase 1 1.96 0.06 2.20 -0.27 

VIT_03s0063g00140 Caffeoyl-CoA O-methyltransferase 1.33 0.25 1.43 0.19 

VIT_16s0098g00850 Caffeic acid O-methyltransferase 0.68 -0.06 0.91 0.34 

VIT_08s0040g00550 Pinoresinol-lariciresinol reductase 1.37 -0.63 1.28 0.08 

VIT_14s0066g01150 Cinnamoyl-CoA reductase 1.15 0.05 1.35 0.74 

VIT_08s0058g00790 Secoisolariciresinol dehydrogenase 1.51 0.31 1.77 1.08 
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Supplemental Table S2.5. Gene ontology terms enriched in the differentially expressed grapevine genes upon B. cinerea infection. Enriched GO 

terms at 24  and 96 hours post inoculation are presented. BP, biological process; MF, molecular function; CC, cellular component. 
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24 GO:0019748 BP 

secondary metabolic 

process 23,531 
1,092 

87 374 8.00E-35 2.60E-32 5.0 

24 GO:0009607 BP 

response to biotic 

stimulus 23,531 
1,092 

35 233 1.50E-09 6.90E-08 3.2 

24 GO:0009875 BP pollen-pistil interaction 23,531 1,092 24 185 6.70E-06 1.70E-04 2.8 

24 GO:0006464 BP 

protein modification 

process 23,531 
1,092 

147 2,097 2.60E-06 8.70E-05 1.5 

24 GO:0007049 BP cell cycle 23,531 1,092 25 193 4.50E-06 1.30E-04 2.8 

24 GO:0009056 BP catabolic process 23,531 1,092 81 1,084 4.10E-05 8.80E-04 1.6 

24 GO:0003774 MF motor activity 23,531 1,092 25 118 2.10E-10 4.40E-09 4.6 

24 GO:0030246 MF carbohydrate binding 23,531 1,092 40 403 8.60E-06 1.50E-04 2.1 

24 GO:0016301 MF kinase activity 23,531 1,092 132 2,132 1.10E-03 9.50E-03 1.3 

24 GO:0004871 MF signal transducer activity 23,531 1,092 98 1,475 4.90E-04 5.80E-03 1.4 

24 GO:0016740 MF transferase activity 23,531 1,092 263 4,541 6.40E-04 6.80E-03 1.2 

24 GO:0005576 CC extracellular region 23,531 1,092 73 887 4.10E-06 5.60E-04 1.8 

96 GO:0005576 CC extracellular region 23,531 244 31 887 2.60E-08 1.80E-06 3.4 

96 GO:0005618 CC cell wall 23,531 244 15 319 2.40E-06 8.10E-05 4.5 
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Supplemental Table S2.6. MapMan BINs enriched in the differentially expressed grapevine genes upon B. 

cinerea infection. Over- and under-represented functions are presented. NA, not available. 

 

 

Supplemental Table S2.7. List of differentially expressed V. vinifera genes belonging to the biotic stress 

functional categories.   (Provided as excel file)  

Hours post 

inoculation 

MapMan 

Bin code 
MapMan Bin Name 

Representation FDR 

24 16 secondary metabolism overrepresented <1E-20 

24 16.1 secondary metabolism.isoprenoids overrepresented 6.11E-07 

24 16.1.5 secondary metabolism.isoprenoids.terpenoids overrepresented 1.26 E-2 

24 16.2 secondary metabolism.phenylpropanoids overrepresented 1.02E-04 

24 16.2.1 

secondary metabolism.phenylpropanoids.lignin 

biosynthesis overrepresented 4.89E-05 

24 16.2.1.1 

secondary metabolism.phenylpropanoids.lignin 

biosynthesis.PAL overrepresented 2.17E-05 

24 16.8 secondary metabolism.flavonoids overrepresented 1.55E-14 

24 16.8.2 secondary metabolism.flavonoids.chalcones overrepresented <1E-20 

24 16.8.2.3 

Secondary 

metabolism.flavonoids.chalcones.stilbene 

synthase overrepresented <1E-20 

24 20 stress overrepresented 1.75 E-2 

24 20.1 stress.biotic overrepresented 9.40 E-2 

24 20.1.7 stress.biotic.PR-proteins overrepresented 2.07E-04 

24 26 misc overrepresented 9.75E-05 

24 26.8 

nitrile lyases, berberine bridge enzymes, 

reticuline oxidases, troponine reductases overrepresented 2.11 E-3 

24 26.9 misc.glutathione S transferases overrepresented 6.25 E-2 

24 27.3.32 

RNA.regulation of transcription.WRKY domain 

transcription factor family overrepresented 9.07 E-2 

24 31 cell underrepresented 3.08E-07 

24 31.1 cell.organisation underrepresented 2.28E-06 

24 30 signalling overrepresented 3.67 E-2 

24 30.2 signalling.receptor kinases overrepresented 7.54 E-2 

24 30.2.99 signalling.receptor kinases.misc overrepresented 3.24 E-3 

96 NA NA NA NA 
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Supplemental Table S2.8. Concentration of polyphenolic secondary metabolites in mock (Ctrl) and B. cinerea (Trt) inoculated grapevine flowers. 

The amount is given in µg/g fresh weight. LOD, limit of detection; hpi, hour post inoculation; SE, standard error. 

Secondary metabolites 

L
O

D
(µ

g
/g

) 12 hpi 24 hpi 48 hpi 72 hpi 96 hpi 

Ctrl Trt  Ctrl Trt  Ctrl Trt  Ctrl Trt  Ctrl Trt  

mean SE Trt SE mean SE Trt SE mean SE Trt SE mean SE Trt SE mean SE Trt SE 

p-hydroxybenzoic acid 0.005 0.6 0.06 1.0 0.15 0.5 0.09 1.2 0.26 1.4 0.06 1.6 0.24 0.8 0.18 1.7 0.37 0.7 0.02 1.8 0.42 

vanillic acid 0.0025 0.1 0.01 0.1 0.05 0.0 0.01 0.0 0.00 0.1 0.01 0.1 0.01 0.1 0.00 0.1 0.01 0.1 0.01 0.1 0.01 

gallic acid 0.025 5.0 0.87 9.1 4.25 4.8 1.28 12.1 3.25 8.7 0.46 13.4 1.49 3.6 4.82 18.0 1.36 5.9 0.78 19.5 5.57 

2,6-diOH-benzoic acid 0.0025 0.1 0.03 0.1 0.02 0.1 0.06 0.1 0.06 0.1 0.03 0.1 0.04 0.1 0.01 0.1 0.02 0.0 0.00 0.2 0.09 

fraxin 0.0025 0.1 0.01 0.2 0.03 0.1 0.01 0.2 0.08 0.2 0.02 0.2 0.02 0.1 0.09 0.2 0.05 0.1 0.03 0.1 0.01 

caftaric acid 0.0125 444.7 98.32 630.4 204.68 268.9 35.17 646.4 182.70 584.5 35.48 929.0 56.76 450.3 207.44 949.7 203.86 579.7 47.01 1227.7 408.41 

fertaric acid 0.0025 59.0 4.51 85.6 19.15 54.0 6.65 116.4 33.16 150.5 2.57 176.4 17.75 107.7 3.28 135.1 11.17 42.0 2.27 116.3 16.46 

trans-coutaric acid 0.025 118.6 10.38 177.3 36.59 73.3 14.57 184.8 51.64 175.2 13.95 267.4 25.73 135.4 53.47 257.5 49.83 115.6 0.19 297.5 59.57 

phlorizin 0.0025 2.3 0.26 3.5 1.08 1.6 0.26 4.3 1.21 3.8 0.13 6.1 1.07 2.3 2.59 7.6 2.19 2.4 0.06 6.4 1.88 

luteolin 0.0025 0.1 0.01 0.2 0.05 0.0 0.01 0.1 0.02 0.1 0.01 0.1 0.03 0.1 0.01 0.1 0.02 0.0 0.02 0.1 0.04 

luteolin-7-O-Glc 0.0025 1.3 0.14 1.7 0.55 0.6 0.17 2.0 0.58 1.6 0.13 2.5 0.21 1.0 0.60 2.7 0.67 1.2 0.15 3.2 1.01 

naringenin 0.0025 0.3 0.04 0.6 0.11 0.1 0.02 0.4 0.04 0.4 0.15 0.4 0.10 0.4 0.05 0.4 0.02 0.5 0.12 0.8 0.42 

catechin 0.025 39.9 5.36 61.3 15.69 61.1 7.02 136.4 27.12 141.3 13.07 136.2 25.71 97.7 2.03 207.1 44.66 86.0 5.65 158.9 26.18 

epicatechin 0.025 3.9 0.57 5.6 1.34 5.1 0.86 10.3 2.14 13.5 0.46 13.1 2.00 9.8 0.40 17.4 3.13 8.0 1.74 18.7 0.43 

epigallocatechin 1.25 2.6 0.10 4.1 0.97 2.4 0.22 4.7 1.14 4.9 0.15 5.5 0.53 3.5 0.93 7.2 1.54 3.3 0.08 6.0 1.11 

gallocatechin 0.25 2.2 0.07 2.4 0.62 2.2 0.57 3.9 0.19 2.8 0.17 4.0 0.67 2.9 0.53 8.4 2.25 8.1 0.41 10.4 3.34 

epigallocatechin gallate 0.25 2.1 0.06 2.4 0.45 2.9 0.66 3.8 0.44 3.9 0.07 2.4 0.31 2.7 1.87 7.4 1.92 3.6 1.93 4.3 1.00 

epicatechin gallate 0.025 8.0 1.48 8.4 3.60 9.3 2.67 23.0 4.91 23.1 5.15 25.9 8.71 19.5 3.56 24.0 1.83 28.7 7.89 50.3 14.11 

procyanidin B1 0.0125 147.1 15.25 180.1 54.86 109.4 15.24 263.9 73.12 236.7 7.98 335.1 36.84 167.8 72.37 407.4 97.80 168.0 23.45 421.4 123.10 

procyanidin B2 + B4 0.125 6.8 0.12 7.2 1.80 7.8 1.05 16.3 3.29 16.0 0.90 20.4 3.00 15.2 0.65 29.7 5.91 17.5 0.57 36.0 8.00 

procyanidin B3 (as B1) 0.0125 76.8 1.38 99.2 32.19 64.5 13.30 180.5 31.26 156.6 16.92 207.7 36.15 119.5 2.33 295.5 71.83 139.5 35.74 373.3 138.36 

kaempferol 0.0025 0.1 0.00 0.2 0.11 0.0 0.01 0.1 0.03 0.2 0.03 0.1 0.00 0.0 0.01 0.1 0.01 0.0 0.00 0.0 0.00 

quercetin 0.05 1.3 0.06 1.9 0.10 1.1 0.19 2.8 0.47 2.3 0.06 3.3 0.85 2.9 0.69 3.5 0.23 1.1 0.15 2.2 0.24 

taxifolin 0.0025 71.3 4.43 102.7 23.60 60.4 6.37 137.8 37.11 131.5 9.17 145.4 13.55 85.4 31.46 148.1 25.60 38.4 11.83 89.0 6.62 
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Supplemental Table S2.8. Continued 

 

Secondary metabolites 

L
O

D
(µ

g
/g

) 12 hpi 24 hpi 48 hpi 72 hpi 96 hpi 

Ctrl Trt  Ctrl Trt  Ctrl Trt  Ctrl Trt  Ctrl Trt  

mean SE 
Trt SE 

mean SE 
Trt SE 

mean SE 
Trt SE 

mean SE 
Trt SE 

mean SE 
Trt SE 

myricetin 1.25 4.3 0.34 6.3 1.53 3.6 0.32 7.5 2.08 7.5 0.19 9.1 0.84 5.3 2.43 11.3 2.46 4.3 0.19 8.9 1.48 

quercetin-3-Rha 0.005 12.6 1.26 16.2 2.78 7.6 0.29 16.3 5.38 17.6 1.11 19.4 1.01 13.6 5.98 20.4 2.78 3.4 0.02 7.7 0.05 

kaempferol-3-Glc 0.0025 6.0 0.12 6.4 0.71 5.1 0.97 11.6 2.88 9.8 0.48 11.7 1.69 9.5 2.54 16.0 2.64 2.6 0.72 7.2 0.74 

quercetin-3-

Glc+quercetin-3-Gal 

(as que-3-glc) 0.0025 106.0 1.16 120.9 14.81 82.3 4.01 146.3 44.92 157.3 19.36 194.0 16.94 120.9 63.80 218.9 40.00 48.7 3.43 111.9 10.15 

isorhamnetin-3-Glc 0.0025 2.2 0.13 2.8 0.29 1.8 0.14 3.7 0.97 3.7 0.07 5.3 0.55 2.8 0.28 4.6 0.71 1.3 0.29 3.4 0.76 

kaempferol-3-

rutinoside 0.005 2.7 0.36 4.6 1.08 1.2 0.07 2.6 0.61 5.0 0.67 3.3 0.22 1.8 1.17 3.1 0.55 0.5 0.15 1.2 0.11 

quercetin-3-Glc-Ara 0.005 0.7 0.06 1.0 0.06 0.4 0.04 0.8 0.27 1.0 0.03 1.3 0.16 0.5 0.40 1.4 0.35 0.2 0.02 0.5 0.04 

rutin 0.0025 24.0 1.06 31.6 1.98 12.9 0.86 29.2 9.80 35.1 2.88 40.1 2.07 20.1 13.54 40.4 8.30 6.9 0.07 16.3 1.31 

isorhamnetin-3-

rutinoside 0.005 0.4 0.08 1.0 0.33 0.2 0.01 0.7 0.13 1.1 0.10 0.6 0.00 0.3 0.03 0.6 0.11 0.1 0.02 0.2 0.01 

quercetin-3-

glucuronide 0.0125 294.9 14.05 476.6 66.20 247.4 22.56 542.5 72.97 508.6 28.91 551.0 52.89 324.9 180.12 694.9 151.05 197.6 20.52 475.7 72.83 

kaempferol-3-

glucuronide 0.005 13.8 0.98 23.1 4.78 13.9 2.50 30.1 8.14 29.1 1.94 23.0 3.27 17.7 10.60 17.2 0.19 5.9 1.94 18.0 0.63 

arbutin 0.005 7.2 1.29 7.2 2.11 8.2 1.26 14.8 4.45 12.8 1.13 17.9 0.88 7.1 1.96 11.5 1.79 4.2 0.33 11.5 0.60 

trans-resveratrol 0.005 0.3 0.02 2.2 0.88 0.4 0.13 1.6 0.42 0.3 0.04 1.4 0.50 0.2 0.58 0.7 0.21 0.0 0.01 1.7 0.81 

cis-resveratrol 0.0025 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.01 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 

piceatannol 0.0025 0.3 0.11 2.0 0.83 0.4 0.10 2.1 0.59 0.3 0.02 1.3 0.32 0.4 0.38 0.7 0.12 0.0 0.01 0.8 0.14 

trans-piceide 0.0125 11.5 2.87 17.8 6.85 8.9 0.93 23.8 5.45 15.0 2.43 34.6 5.95 11.7 6.92 25.0 5.45 16.1 4.38 45.7 17.60 

cis-piceide 0.0025 4.6 2.90 1.5 0.47 1.9 0.53 5.2 2.60 0.9 0.12 1.9 0.52 0.8 0.93 2.4 0.67 1.5 0.81 7.9 3.56 

astringin 0.005 5.8 0.65 14.9 1.84 17.6 1.76 31.0 6.79 23.0 1.13 28.0 5.48 17.7 0.79 21.6 1.58 4.7 0.06 19.5 7.24 

isorhapontin 0.005 0.3 0.03 0.5 0.02 0.8 0.06 0.7 0.29 0.9 0.07 0.8 0.11 0.6 0.06 0.6 0.00 0.3 0.06 0.9 0.05 

trans-ε-viniferin 0.005 0.1 0.02 0.9 0.34 0.0 0.01 8.7 1.62 0.3 0.14 8.0 0.95 0.1 0.02 3.8 1.52 0.0 0.00 13.4 4.05 

cis+trans-o-viniferin 0.0125 0.0 0.00 0.5 0.14 0.0 0.01 3.5 0.66 0.1 0.02 2.9 0.49 0.1 0.01 1.1 0.42 0.0 0.00 5.7 1.01 
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Supplemental Table S2.8. Continued 

Secondary 

metabolites 

L
O

D
(µ

g
/g

) 12 hpi 24 hpi 48 hpi 72 hpi 96 hpi 

Ctrl Trt  Ctrl Trt  Ctrl Trt  Ctrl Trt  Ctrl Trt  

mean SE 
Trt SE 

mean SE 
Trt SE 

mean SE 
Trt SE 

mean SE 
Trt SE 

mean SE 
Trt SE 

caffeic acid+catechin 

condensation 0.05 6.3 0.10 9.6 1.91 8.8 0.44 19.3 5.67 18.2 0.46 17.2 2.84 22.1 3.60 10.2 4.85 5.6 0.53 15.0 3.39 

pallidol 0.005 1.0 0.20 6.3 0.42 1.5 0.23 29.3 8.60 2.4 0.39 18.4 2.16 2.2 0.58 12.5 4.19 0.4 0.05 20.3 3.73 

ampelopsin 

D+quadrangularin A 0.025 0.2 0.03 5.3 0.78 0.3 0.13 32.0 6.28 0.5 0.23 19.6 1.83 0.0 0.00 15.7 6.41 0.1 0.02 18.1 1.86 

α-viniferin 0.0125 0.4 0.12 2.8 1.58 0.1 0.03 137.5 50.16 1.1 0.63 90.9 3.62 0.2 0.03 96.9 39.49 0.1 0.06 151.8 38.50 

E-cis-miyabenol 0.0125 0.2 0.02 1.5 0.20 0.0 0.02 35.5 9.02 0.3 0.11 15.8 2.07 0.2 0.06 15.8 6.35 0.0 0.01 53.0 4.95 

Z-miyabenol C 0.05 0.1 0.03 1.2 0.25 0.1 0.01 33.1 9.56 0.3 0.22 14.7 1.60 0.1 0.03 16.0 6.51 0.1 0.00 46.4 6.95 

isohopeaphenol 0.0125 0.1 0.03 0.2 0.11 0.0 0.01 13.9 7.24 0.2 0.10 17.6 0.45 0.1 0.01 11.1 4.49 0.0 0.00 20.9 1.99 

sinapaldehyde 0.00125 0.1 0.01 0.1 0.06 0.0 0.01 0.0 0.01 0.1 0.02 0.1 0.01 0.1 0.03 0.1 0.01 0.0 0.00 0.2 0.06 

5-hydroxyferulic acid 0.00125 2.3 0.34 2.3 0.29 1.3 0.20 1.6 0.34 2.6 0.37 2.5 0.10 2.3 0.66 1.9 0.28 1.2 0.02 1.5 0.10 

L-phenylalanine 0.00125 42.7 0.12 62.6 3.90 76.8 7.01 131.2 16.34 129.8 0.87 99.8 13.42 81.5 3.95 110.5 2.46 82.8 3.46 73.7 5.35 

cinnamic acid 0.0025 0.0 0.02 0.0 0.00 0.0 0.01 0.1 0.01 0.0 0.01 0.0 0.00 0.1 0.00 0.1 0.00 0.1 0.01 0.1 0.01 

p-coumaric acid 0.0025 1.2 0.32 1.3 0.47 0.6 0.22 0.5 0.14 0.6 0.11 0.8 0.05 0.8 0.52 0.5 0.23 0.2 0.01 0.2 0.04 

caffeic acid 0.00125 0.7 0.05 0.6 0.12 0.4 0.03 0.3 0.08 0.4 0.04 0.5 0.02 0.4 0.09 0.4 0.08 0.5 0.02 0.4 0.03 

ferulic acid 0.00125 1.3 0.57 2.7 0.50 0.7 0.19 0.6 0.13 1.5 0.19 1.0 0.25 0.5 0.07 0.8 0.47 0.1 0.02 0.1 0.08 

coniferyl alcohol 0.00125 0.1 0.02 0.1 0.01 0.1 0.05 0.2 0.01 0.1 0.04 0.2 0.05 0.2 0.08 0.3 0.07 0.2 0.03 0.4 0.07 

 

Supplemental Table S2.9. B. cinerea genes  expressed in planta. (Provided as excel file)  

Supplemental Table S2.10. Gene ontology (GO) annotation of B. cinerea genes expressed in planta. (Provided as excel file)  
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2.8.2. Supplemtnetal figures 

 

               

Supplemental Figure S2.1. Optical microscopy images of B. cinerea conidia cultured for 12 hours in PDB.  

Right panel shows a higher magnification view. This growth stage was used as control for the fungal 

transcriptomic study. C, conidia; Gt, germ tube; the bar represents 10 µm. 

 

 

                                     

Supplemental Figure S2.2. Standard curves used for grapevine and B. cinerea genomic DNA 

quantification. Curves were generated by amplifying the Bc3 (ribosomal IGS spacer) (A)  and the VvRS I 

(resveratrol synthase gene I) (B) genes, in a 5-fold serially diluted genomic DNA of B. cinerea and 

grapevine, respectively. The standard curves show good linear relationship (R2 = 0.99) between the log5 

value of the starting DNA concentration and the threshold cycle (Ct), both in the fungus and the plant.  



 

68 
 

 

Supplemental Figure S2.3. Z stack images of GFP-labeled B05.10 Botrytis infecting a grapevine flower. 

The confocal microscope image shows six layers of a Z stack with a pass of 1 µm each. The figure 

indicates that the Botrytis appressorium penetrates only the first epidermal layers within 24 hpi. The white 

bar represents 15 µm. 
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Supplemental Figure S2.4. Effects of washing  within 6 hpi (A) and surface sterilization (SS) (B) on the 

viability of B. cinerea. 

Description of Supporting Information Fig. S4  

A preliminary study was conducted to know the effect of grapevine flowers washing and surface 

sterilization (SS) on the viability of B. cinerea. Grapevine flowers were collected from fruiting 

cuttings at cap-off stage, 16 flowers from each of 3 fruiting cuttings (replicates). Flowers were 

then inoculated with 300 conidia of GFP-labelled B05.10 strain and incubated in Petri dishes with 

moistened paper towel for 6 hours, a time span within which the conidium will not germinate. 

The inoculated flowers were further incubated for one week on selective media (PDA with70 

µg/ml Hygromycin B), before or after washing. Washing was carried out as described in 

Materials and Methods section. As shown in 2A, mycelial growth was observed on 100 % of the 

flowers that were plated out without washing, but on none of the washed flowers, indicating that 

washing was effective in removing ungerminated conidia.  

To check the effect of surface sterilization on the viability of B. cinerea, conidia and mycelia 

(harvested from Petri dishes of the same strain mentioned above) were treated as described in 

Materials and Methods and then allowed to grow on selective media. As shown in of Supporting 

Information Fig. S4B, conidia and mycelia did not grow after sterilization.   
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Supplemental Figure S2.5. Egression of B. cinerea at ripening (A), inoculated at full cap-fall stage, and 

fluorescence of mass of B. cinerea mycelia isolated from the rotting bunch (B). The white bar represents 

25 µm. 

 

 

                                 

Supplemental Figure S2.6. B. cinerea egression test on immature berries. Immature berries at pepper-corn 

stage, which were inoculated with B. cinerea at flower cup-off stage, were bagged for 2 weeks. No 

egression was observed during the period. 
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Supplemental Figure S2.7. Volcano plots of grapevine gene expression values at 24 hpi (A) and 96 hpi 

(B). Genes in the left top rectangle [log 10(P. value) > 1.12 and log2(fold change) < -0.585] were selected 

as downregulated; whereas, genes in the right top rectangle were selected as upregulated [log 10(P. value) 

> 1.12 and log2(fold change) > 0.585] . 

 

                                 

Supplemental Figure S2.8. Hormonal Signatures based on transcriptomic data. HORMONOMETER 

software was used to compare gene expression data of our experiment, as query experiment, with data sets 

of hormone responses. Transcriptomes of Arabidopsis mutant, nahG, with known alteration in salicylic 

acid level was used as control.  The scale bar shows the correlation between the query transcriptome and 

the hormone-treated indexed data set. 
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Description of Supporting Information Fig. S8 

 HORMONOMETER software (Volodarsky et al. 2009) was used to evaluate hormonal 

responses in grapevine inflorescence upon B. cinerea inoculation. Since the software accepts only 

Arabidopsis thaliana gene IDs as input, Arabidopsis orthologs of grapevine genes provided by 

Grimplet et al. (2012) were taken. Out of the expressed grapevine genes in our experiment, 10507 

had Arabidopsis orthologs, and hence were used to investigate the hormonal profiles of grape 

flower due to B. cinerea inoculation. Gene expression data of Arabidopsis mutant with reduced 

salicylic acid levels, nahG, (GEO, GSE5727) was also included to validate the set of genes used 

in the analysis.  

As depicted in Suppportign Information Fig. S8, the HORMONOMETER profile of Botrytis-

inoculated flowers showed positive correlations with salicylic acid, brassinosteroid, gibberellin, 

auxin, abscisic acid (ABA), and ethylene treatments at 24 hpi and with jasmonate treatment at 96 

hpi. Whereas, a negative correlation was observed with ABA and cytokinin treatments at 96 hpi; 

the latter one also showed similar trend at 24 hpi. Although the role of cytokinin in plant defense 

is largely unknown, the profile shown by the HORMONOMETER could be related to the cell 

cycle network enriched in the downregulated genes shown in Table 2.  With regard to ABA, its 

role in plant defense appears to vary among different types of plant-pathogen interactions (Bari 

and Jones, 2009). In tomato, the induction of ABA biosynthetic genes was reported to facilitate B. 

cinerea colonization by inducing senescence, and on the other hand, ABA-deficient sitiens 

mutant was shown to be more resistant to the pathogen (Audenaert et al. 2002; Blanco-Ulate et 

al. 2013).   
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3. INTERACTION BETWEEN GRAPE BERRY AND B. cinerea 

DURING QUIESCENT AND EGRESSED INFECTIONS 

 

 

3.1. Abstract  

Botrytis cinerea is an important pathogen in vineyards where primary infections are mostly 

initiated by airborne conidia from overwintered sources around bloom. The fungus often remains 

quiescent from bloom until maturity and egresses at ripe where it causes bunch rot.  Studying the 

interaction between the fungus and the host during quiescent and egressed infection stages help 

understand the cross talk between the two organisms. Therefore, flowers from fruiting cuttings of 

the cv. Pinot noir were inoculated with GFP labelled B. cinerea at at full cap-off stage, and 

molecular analyses were carried out at 4 weeks post inoculation (wpi), fungus quiescent state, on 

hard-green berries and at 12 wpi, fungus pre-egression and egression states, on ripe berries. 

During the quiescent state, the expressed fungal transcriptome highlighted that the fungus was 

undergoing basal metabolic activities besides remodeling its cell wall to evade plant chitinases. 

Hard-green berries responded by differentially regulating genes encoding for different PR 

proteins and genes involved in monolignol, flavonoid and stilbenoid biosynthesis pathways which 

kept the pathogen quiescent. At 12 wpi, the transcripts of B. cinerea in the pre-egressed samples 

showed that virulence-related genes were expressed, suggesting infection process was initiated. 

The egressed B. cinerea expressed almost all virulence and growth related genes that enabled the 

pathogen to colonize the berries. In response to egression, ripe berries reprogramed different 

defense responses, though futile. Our results indicated that hard-green berries defense program 

was capable to contain B. cinerea; however, ripening associated fruit’s cell wall self-disassembly 

together with high humidity created the opportunity for the fungus to egress and cause bunch rots.  
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3.2. Introduction 

Botrytis cinerea is responsible for a significant economic damage in vineyards by causing bunch 

rot. The disease is mostly observed on ripe berries, following rainfalls or long periods of high 

humidity close to harvest, and develops into gray mold. Primary infections are usually initiated 

by airborne conidia from overwintered sources (Nair et al., 1995; Elmer and Michailides, 2004), 

which mostly happens at bloom leading to quiescent infection (McClellan and Hewitt, 1973; 

Keller et al., 2003; Pezet et al., 2003b). Quiescent infection is an interesting phenomenon in B. 

cinerea-plant interaction where the pathogen spends prolonged time in the host tissue 

asymptomatically, without being aggressive (Williamson et al., 1987; McNicol and Williamson, 

1989; Coertze and Holz, 2002; Shaw et al., 2016). Besides Botrytis, several species of fungal 

pathogens belonging to the genera Alternaria, Botryospheria, Colletotrichum, Lasiodiplodia, 

Monilinia, Phomopsis, and Sclerotinia, have been reported to pass through a quiescent state in the 

cuticular wax or intercellular space of their hosts until conditions favor egression (Reviewed by 

Prusky et al., 2013). 

In grapevine, B. cinerea egression, causing bunch rot, was observed at ripening from the artificial 

inoculation made at bloom, where the pathogen stayed quiescent in the developmental stages 

between fruitlets to maturity (see in Chapter 2). What drives and keeps B. cinerea into quiescence 

until berry ripening is not fully known, but preformed and induced defense mechanisms, 

including immature berries skin features such as polyphenols in the berry skin cell wall and the 

thickness of epidermal cell layer complex, have been proposed as part of the ontogenic resistance 

to B. cinerea (Deytieux-Belleau et al., 2009; Goetz et al., 1999; Keller et al., 2003). Recently, it 

has been shown that upon contact with the grapevine flower, B. cinerea induces genes encoding 

known virulence factors (like BcBOA6, BcBOT, BcPG2, and BcSOD1) and proteins contributing 

to the infection program (like BcOAH, BcXYN11A, and BcGST1) to cause disease. However, no 

visible disease progress was observed despite the confirmed presence of the pathogen on the 

immature berries (Chapter 2). As a response to the infection attempt, grapevine flowers react by 

reprogramming the expression of genes encoding antimicrobial proteins (mainly PR-proteins), 

monolignol biosynthesis (VvPAL, VvCOMT, VvCCoAMT and VvCAD ), stilbenoids (VvSTS), and 

prompting oxidative burst (VvGLP3). The conjugated actions of these induced defense responses 

contribute for putting B. cinerea into quiescence (Chapter 2). In addition, the involvement of the 

salicylic acid (SA) dependent defense pathway together with the accumulation of ROS and the 
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activation of stilbene and lignin biosynthesis was reported as the possible reasons of B. cinerea 

progress arrest in berries at véraison while ripe berries were fully susceptible to the pathogen 

(Kelloniemi et al., 2015).  

The transition from a quiescent to an active infection mostly occurs during senescence/fruit 

ripening. Physiological and biochemical changes that occur in the host during ripening, together 

with favorable climatic conditions at ripening are suggested to take a part in triggering the 

transition (Prusky, 1996; Barnes and Shaw, 2002; Prusky et al., 2013). Cell wall loosening and 

appearance of disassembled cell wall substrates (Cantu et al., 2008), decrease in preformed and 

inducible host defense responses and change in hormonal balance and pH (Prusky, 1996; Prusky 

et al., 2013) are the major changes happening in the processes of berry ripening that could 

enhance the outgrowth of a quiescent necrotrophic pathogen. Egression impairs product quantity, 

quality, and appearance. 

Global expression profiling of both the pathogen and the host at quiescent and egression stages of 

the infection enables to gain insight into the signaling, the metabolic pathways, the transcriptional 

control, and the defense responses involve in the cross talk. Hence, the objective of this study was 

to understand the molecular mechanisms associated with B. cinerea and grapevine berry 

interaction during quiescent and egression stages. Here we report the simultaneous transcriptome 

and secondary metabolite analyses of the two organisms at berry hard-green and ripe stages, after 

host inoculation with B. cinerea conidial at full cap-off stage (EL25/26).  

3.3. Materials and methods 

3.3.1. Fungal isolate, plant material and inoculation 

A genetically transformed Botrytis cinerea strain, B05.10, expressing a green fluorescent protein 

(GFP), was used due to its ability to grow on selective medium (potato dextrose agar [PDA] + 70 

µg/ml Hygromycin B) besides giving a green fluorescent signal when observed under 

fluorescence microscopy. Grapevine fruiting cuttings were used from cv. Pinot Noir. Winter 

woody cuttings were collected and grown to raise flowers as described in (Chapter 2).   

Flowers at full cap-fall stage (EL25/26, according to Eichorn and Lorenz [1977]) were inoculated 

by placing a 1.5 µl droplet of either conidia solution of GFP-labeled B05.10 (2 * 10
5
 ml

–1
) or 

distilled water (mock inoculation) close to the receptacle area. Conidia were obtained from 
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Botrytis grown on PDA at 25 °C for 10 days, and the concentration was determined using a 

hemacytometer under light microscope. Inoculation was made on three biological replicates, 

considering the inflorescence from a fruiting cutting as one biological replicate. After inoculation, 

the whole pot was immediately bagged in a clear plastic bag sprayed with water, for 24 h, in 

order to ensure high humidity around the inoculated inflorescence, which is an essential factor for 

conidial germination. Inoculated inflorescences were regularly inspected for gray mold growth 

until fruit ripening. At full coloring (approximately 10 weeks post inoculation, wpi), bunches 

were bagged for two weeks with plastic bags, to create favorable humidity for B. cinerea to 

egress.  

Samples were collected at two time points, at 4 wpi, hard green berry, and at 12 wpi, from ripe 

clusters where Botrytis egression was evident on a subset of berries. For the latter time point, two 

kinds of samples were collected: berries with visible egressed Botrytis and berries without visible 

Botrytis sign. Samples without visible Botrytis sign are hereafter called berries with “pre-

egressed” Botrytis. Samples were snap frozen in liquid nitrogen and stored at -80 °C until use. 

3.3.2. RNA extraction, qPCR and RNA-seq 

Extraction of RNA, synthesis of cDNA, and quantitative polymerase chain reaction (qPCR) assay 

were carried out as described in (Chapter 2).  For qPCR assay, each amplification reaction was 

run in triplicate, and VvACT and VvGAPDH, and BcRPL5 and BcTUBA genes were selected 

using GeNORM  (Vandesompele et al., 2002) as reference for grapevine and B. cinerea, 

respectively, for normalization. Amplification efficiencies of each primer pair were calculated 

with LinReg software (Ruijter et al., 2009).  The obtained amplification efficiency was used to 

calculate the relative quantity (RQ) and normalized relative quantity (NRQ) according to 

Hellemans et al. (2007). All primers and corresponding gene identifiers are listed in Supplemental 

Table S3.1.  

Single-end reads of 100 bp long sequences were obtained for each sample using a Next 

Generation Sequencing Platform HiSeq 1500 (Illumina, San Diego, CA). Approximately 20 

million strand-specific sequences, except for pre-egressed samples (above 45 million), was 

obtained. For pre-egressed samples, the sequence depth was doubled in order to obtain more 

reads of Botrytis origin. The quality of the reads was checked using FastQC (version 0.11.2) 

software and pre-processed by cutadapt (version 1.8.1; Martin, [2011])   for adapter. Genome 
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assemblies of grapevine (12Xv1, http://genomes.cribi.unipd.it/) and B.cinerea (strain B05.10) 

(http://fungi.ensembl.org) were used as reference sequences. The alignment was made by 

Subread aligner (Liao, et al., 2013)  and raw read counts were extracted using the featureCount 

read summarization program (Liao, et al., 2014).  

The RNA sequences of B. cinerea (B05.10), from the PDB cultured conidia (used in Chapter 2) 

were also used in this study as a control for differential expression analysis for the in planta 

Botrytis transcripts.  

3.3.3. Secondary metabolites extraction and analysis 

Extraction of polyphenol and Ultra High Performance Liquid Chromatography - Diode Array 

Detection - Mass Spectrometry (UHPLC-DAD-MS) analysis were carried out as described in 

(Chapter 2).  For 4 wpi, the samples used for polyphenol and RNA extraction were independent. 

3.3.4. Statistical analysis 

Statistical analyses of the qPCR results were made after log2(NRQ) transformation (Rieu and 

Powers, 2009). Statistical significance was calculated by Tukey's Honestly Significant Difference 

test or an unpaired heteroscedastic Student’s t test, considering each technical replicate as an 

individual sample. 

Differential expression analysis was performed after precision weight was given, by the voom 

method (Law, et al., 2014), for each observation that was fed into the limma empirical Bayes 

analysis pipeline (Smyth, 2004). Two-sample t-test was used for transcripts of grapevine at 4 wpi 

(mock inoculated vs Botrytis inoculated) and B. cinerea at egression (PDB-cultured Botrytis vs 

egressed Botrytis), whereas one-way ANOVA for grapevine transcripts at 12 wpi (mock 

inoculated vs pre-egressed Botrytis vs egressed Botrytis). Genes were considered differentially 

expressed (DE) if they fulfill a p-value < 0.01 and an absolute fold change of ≥ 2.0.  

Principal component analysis (PCA) was performed using prcomp package in R on precision 

weight given counts. K-means clustering of differentially expressed genes based on fold change 

values (using cosine distance) and precision weight given counts (using Euclidean distance) was 

performed using akmeans package in R.  

http://genomes.cribi.unipd.it/
http://fungi.ensembl.org/
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3.3.5. Functional classification based on Gene Ontology, VitisNet, and MapMan 

DE genes were subjected to enrichment analyses using: i) VitisNet annotation  within the 

VESPUCCI grapevine gene expression compendium (http://vespucci.colombos.fmach.it) 

(Grimplet et al., 2012; Moretto et al., 2016), p-value < 0.01; ii) customized GO annotation and 

annotated reference, taken from CRIBI annotation (http://www.cribi.unipd.it/), using AgriGO 

analysis tool (http://bioinfo.cau.edu.cn/agriGO/analysis.php; Du et al., 2010). Enriched GO terms 

(FDR < 0.01) were visualized using the ‘Reduce + Visualize Gene Ontology’ (REViGO) 

webserver (http://revigo.irb.hr; Supek et al., 2011). Additionally, the differentially expressed 

genes were visualized in the context of biotic stress pathway using the GrapeGen 12Xv1 

annotations version (Lijavetzky et al., 2012) with the help of MapMan tool (Thimm et al., 2004) 
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Figure 3.1. Botrytis cinerea infected grapevine flowers and their growth until maturity.  A, Flowers 24 

h after inoculation with GFP-labelled B05.10 at full cap-fall stage (EL25/26). B, Healthy looking, 

asymptomatic, hard-green berry at 4 weeks post inoculation (wpi) C, Egression of B. cinerea at 

ripening (12 wpi). D, Fluorescence of mass of mycelia isolated from the outgrown B. cinerea; white bar 

represents 50 µm. 

 

 

http://vespucci.colombos.fmach.it/
http://www.cribi.unipd.it/
http://bioinfo.cau.edu.cn/agriGO/analysis.php
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3.4. Results 

3.4.1. Botrytis cinerea inoculation of grapevine  

Grapevine flowers were inoculated with a GFP-labeled B05.10 strain at full cap-off stage by 

placing 300 conidia around the receptacle area, and the infection was monitored until ripening, 

for 12 weeks (Figure 3.1). No visible symptom or sign of the fungus was observed until full 

coloring, though appressorium assisted penetration of floral epidermis at 24 hours post 

inoculation has been observed and described in detain in Chapter 2.  The proportion berries still 

carrying B. cinerea at hard-green berry stage (4 wpi; Figure 3.1C) derived from flower 

inoculation was checked by plating out on selective media (Figure 3.2). B. cinerea was present on 

80 % of the asymptomatic berries quiescently when samples were washed or not with water; the 

proportion dropped to 40 % when berries were surface sterilized, suggesting that the fungus 

mostly resides in the first few outer epidermal cell layers. At 10 wpi, full color change, bunches 

were bagged with plastic bags, to increase humidity and favor B. cinerea growth. Two weeks 

later, egression of B. cinerea was observed (Figure 3.1C), and cross checking the strain using 

fluorescence microscope, on mass of mycelia taken from the rotting bunch, confirmed that the 

strain was the GFP-labeled B05.10 inoculated at cap-off stage (Figure 3.1D).  Egression was 

observed on about 40 % (39 ± 9 %) of the inoculated berries. 

 

 

3.4.2. Transcriptional profiling of grapevine berry responses to B. cinerea 

Hard green (4 wpi) and ripe berries (12 wpi), which were  mock- or Botrytis-inoculated at cap-off 

stage, were harvested in 3 biological replicates for dual (plant and fungus) transcriptome analysis 

using the RNA-seq method. The fraction of reads from Botrytis- and mock-inoculated samples 
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Figure 3.2. Proportion of berries with B. cinerea at 4 

wpi, following flower inoculation with the fungus, as 

determined by plating out. Plating out was made on 

selective media (PDA with Hygromycin B, 70 µg/ml) 

to check the presence of quiescent B. cinerea before 

(NW) or after washing (W), or after surface 

sterilization (SS). Mean proportion of berries (8-10 

berries from each of 6 biological replicates) showing 

GFP-labeled B05.10 growth on the selective media. 

Error bars indicate standard error. Mean proportions 

followed by a common letter are significantly not 

different, according to Tukey's Honestly Significant 

Difference test (P≤0.05), using one way ANOVA.  
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mapped to the V. vinifera reference genome ranged from 13 to 88 %, the smaller proportion being 

from samples with egressed B. cinerea. However, in the case of Botrytis-inoculated samples 

mapped to B. cinerea reference genome, the fraction of mapped reads was below 1 % for the 4 

wpi and pre-egressed samples, and up to 68 % for egressed B. cinerea samples (Supplemental 

Table S3.2).  

The biological variability of all the samples was assessed using principal component analysis 

(PCA) on the gene expression data. Concerning grapevine data, samples were largely separated 

by growth stage along the first principal component, but within each growth stage most of the 

variation in gene expression was explained by the infection process (Figure 3.3A). With regard to 

B. cinerea, PDB grown and egressed samples were compared by PCA, highlighting the amazing 

difference in gene expression between the egression stage on berries at ripening and the growth  

in liquid PDB medium (Figure 3.3B).. 
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Figure 3.3. Global evaluation of the RNA-seq data and of the differentially expressed (DE) genes. PCA 

displaying the biological variations among samples,for grapevine genes (A) and B. cinerea genes (B). Ctrl, 

mock inoculated; Trt, B. cinerea inoculated; Bc, Botrytis cinerea; HG, hard-green berry; Eg, B. cinerea 

egression state; Peg, B. cinerea pre-egression state. Raw count data were used after precision weight was 

calculated by the voom method (Law et al., 2014). C, Number of DE genes (P < 0.01, absolute fold change > 

2.0) upon B. cinerea infection at 4 weeks post inoculation (wpi) and 12 wpi; upregulated genes (red) and 

downregulated genes (black).  Bc, Botrytis cinerea. D, Correlation of gene expression values obtained by 

RNA-seq and qPCR.  Relative expression levels were calculated for 18 Vitis genes and  an R2  value of 0.96 

was obtained comparing the results obtained with the two techniques. 
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Differential expression of genes was computed between Botrytis- and mock-inoculated berries at 

hard green stage (4 wpi) and at ripening (12 wpi) imposing a p-value < 0.01 and an absolute fold 

change > 2 (Supplemental Figure S3.1). At 4 wpi, 599 genes of grapevine were differentially 

expressed (DE) due to B. cinerea infection (Supplemental Table S3.3), whereas the number 

increased to 2,311 at ripening (Figure 3.3C and Supplemental Table S3.4). Only 158 genes were 

common between the two stages, suggesting an apparent different reaction of the host. For B. 

cinerea during egression, as compared to PDB cultured Borytis, there were 3,548 DE genes 

(Figure 3.3C and Supplemental Table S3.5). However, for 4 wpi and pre-egressed samples, due to 

limited amount of fungal RNA in the samples (Supplemental Table S3.6 and S3.7), it was not 

possible to gain insight into the differential expression of transcriptome of the fungus in the host 

using the RNA-seq results. To overcome the technical problem, qPCR assay was used to study 

the expression profile of selected genes.  

The gene expression values obtained from RNA-seq were validated using qPCR assay. To this 

end, the expression of 18 grapevine genes (Supplemental Table S3.8) having different expression 

profile (differentially expressed or not) from RNA-seq were analyzed and a strong correlation (R
2
 

= 0.96) was observed between the results obtained from the two teqniques (Figure 3.3D). 

The total DE genes of the grapevine berries (2,752), considering both hard-green and ripe stages, 

were clustered into 12 distinct groups based on their expression pattern (Figure 3.4). Based on the 

expression trend of the DE genes, the clusters fell into 6 major expression profiles: profile A 

consisted only cluster 1, the upregulation extent of the majority of the 220 genes were higher at 

hard green stage as compared to ripe stage; profile B consisted cluster 2 and 5, the majority of the 

464 genes was slightly upregulated or not affected at quiescence and pre-egression stage but 

highly upregulated during egression of B. cinerea; profile C consisted cluster 3 and 4, where 

majority of the 323 genes were upregulated at hard green stage and downregulated or not affected 

at ripe; profile D consisted cluster 7, having only 14 genes downregulated more at hard green 

than at ripe stage; profile E consisted cluster 6, 9 and 10, and majority of the 1176 genes were 

upregulated during ripening only; and profile F consisted cluster 8, 11 and 12, where the 

expression of majority of the 555 genes was not affected at hard green stage but downregulated 

during ripening. The molecular networks enrichment analysis of the gene set of each profile, 

based on VitisNet annotation, showed an abundance of transcripts in functional classes which are 
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usually affected by biotic stress. A considerable number of genes annotated for phenlpropanoid 

biosynthesis and transcriptional factors (TF) were represented in all expression profiles except for 

profile D and F.  Signal transduction, such as ethylene and jasmonate signaling and plant-

pathogen interaction, was represented in profile B and C. Several transcripts involved in amino 

acid metabolism, including glutathione metabolism, were represented in expression profile E.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Profiles of grapevine berry trancripts at hard-green and ripe stages in reponse to B. cinerea 

inoculation. K-means clustering of grapevine genes based on the cosine distance of their log2 (fold change) 

values. Genes that showed at least twofold expression difference with p-value < 0.01 were considered, and 

clustered into 12 clusters. The clusters were grouped into 6 major profiles (A, B, C, D, E and F).  Molecular 

enrichment analysis based on VitisNet is provided for each group. 
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3.4.3. Transcriptional alterations of B. cinerea during quiescent infection, at 4 wpi 

The signal of B. cinerea transcriptome detected in the inoculated samples at 4 wpi was very low; 

the reason could largely be linked to a reduced fungal biological activity as well as to the little 

fungal mass present at the quiescent stage. Only about 20 % of B. cinerea genes (1,926) had at 

least 1 raw reads in all of the three biological replicates. Within this set, those represented by an 

average of at least 10 reads (289), considered as expressed fungal transcript at 4 wpi and 

functionally annotated using Blast2GO  (Conesa et al., 2005) and Amselem et al. (2011) 

(Supplemental Table S3.6). Using the Combined Graph Function of Blast2GO, metabolic 

processes, structural constituent of ribosome, and intracellular GO slim terms were represented 

most in the 289 genes (Supplemental Table S.3.9). Twenty-two genes from this group, selected 

based on their function, are presented in Table 3.1; the expression profile of 9 of them, involved 

in functions such as cell wall metabolism, redox-reaction, and transcriptional regulation, was 

further examined using qPCR assay (Figure 3.5). As depicted in Figure 3.5, all but Bcin07g01540 

and Bcin13g05810 had a higher relative expression during quiescent infection at hard green stage 

than during initial infection at flowering and pre-egression and egression stages at ripe.  

Table 3.1. RNA-seq reads of selected B. cinerea transcripts with different biological functions at 

quiescence in the hard-green berry (4 wpi)  
 

 

* The sequence depth of the samples was double; only two biological replicates were considered. 
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The qPCR results suggested that the biological activities of the fungus were not totally switched 

off during quiescent infection. The expression of Bcin01g09570 and Bcin07g01540 gene, which 

encode putative yt521-b-like splicing and elongation factor 2 proteins, respectively, and the 

numerous genes encoding for ribosomal proteins (Table 3.1 and Supplemental Table S3.6) 

indicated that protein synthesis activities were carried out during quiescent infection stage. The 

expression of stress and defense related genes, such as Bcin12g06170, encoding a protein similar 

to allergen, and Bcin11g04800, which encodes a putative chitin deacetylase protein, highlighted 

that the interaction between the pathogen and the plant was not passive. Chitin deacetylase 

Figure 3.5. Expression profile of selected Botrytis cinerea genes having higher raw reads at hard-green berry 

stage relative to PDB-cultured B. cinerea. Bars represent fold change of samples at 24 and 96 hours post 

inoculation (hpi; flower infection), 4 weeks post inoculation (wpi; quiescent infection at hard-green berry 

stage), and 12 wpi (pre-egression, Peg, and egression, Eg, stages of B. cinerea at ripening) relative to the 

PDB-cultured B. cinerea (Ctrl). Normalization based on the expression levels of ribosomal protein L5, 

BcRPL5, and α tubulin, BcTUBA, was carried out before calculating fold changes. Error bar represents 

standard error of the mean of three biological replicates. Expression values followed by a common letter are 

significantly not different between samples, according to Tukey's Honestly Significant Difference test 

(P≤0.05), using one way ANOVA of log2(NRQ).  
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activity has been speculated to be involved in protecting the fungal cell wall from degradation by 

plant chitinases in other fungi (Deising and Siegrist, 1995; El Gueddari et al., 2002). In addition, 

genes encoding putative proteins involved in cell wall remodeling and integrity (for example, 

Bcin04g01310 and Bcin14g03970) seemed also active during fungal quiescence (Table 3.1 and 

Supplemental Table S3.6). Stress usually causes ROS production that can lead to accumulation of 

aldehydes and alcohols in fungal cells (Asiimwe, et al., 2012). Bcin13g05810 and Bcin13g05580, 

encoding putative aldehyde dehydrogenase and alcohol dehydrogenase, respectively, involved in 

the detoxification of alcohols and aldehydes, as well as Bcin03g01920, encoding a putative 

catalase, were speculated to help overcome stress from the berries’ defense. Moreover, 

Bcin08g05540, encoding putative CND1 protein, Bcin14g04260, annotated for a putative cell 

surface protein and Gas2, and Bcin02g06140, encoding a putative CP2 transcription factor 

protein, all these genes probably involved in maintaining cell wall, (Garrett-Engele et al., 1995; 

Paré et al., 2012), appeared to be relatively expressed more during quiescent infection at 4 wpi as 

compared to initial and egression stages of infection (Figure 3.5).  

The extremely low number of B. cinerea genes expressed in planta seconded by absence of any 

macroscopically noticeable disease progress at 4 wpi suggests that the pathogen was at its basal 

metabolic activity despite specific stress related genes were expressed. 

 

 
Figure 3.6. VitisNet functional classes enriched in the differentially expressed genes at hard-green berry stage 

due to quiescent Botrytis cinerea. The number presented in the parentheses is the total number of V. vinifera 

genes within each category. The portion of upregulated and downregulated genes within a category is 

represented by red and black bars, respectively 
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3.4.4. Response of hard-green berries to quiescent B. cinerea, at 4 wpi 

In contrast to the fungus for which not many transcripts were observed, 599 grapevine genes were 

differentially regulated due to the quiescent presence of B. cinerea, of which only 21 genes were 

downregulated (Figure 3.3C and Supplemental Table S3.3). In this set of Botrytis-induced genes 

functional classes related to responses to stress, amino acid metabolism for redox activity and 

phenylpropanoid pathways, signaling, and TFs were overrepresented (Figure 3.6 and 

Supplemental Table S3.10). The visualization of individual gene responses in biotic stress 

pathway using MapMan tool also indicated a remarkable induction of genes related to signaling, 

TFs, proteolysis, PR-proteins and secondary metabolism (Figure 3.7). Genes involved in some 

defense pathways, which were activated at initial infection stage (24 hpi) but returned to basal 

level toward the entry of quiescence (96 hpi) during flower infection (Chapter 2), seemed to be 

reactivated at 4 wpi, such as genes in the phenylpropanoid biosynthesis pathway for stilbenoids, 

flavonoids and lignin precursors synthesis.  

                         

 
Figure 3.7. Biotic stress overview of hard-green berries due to quiescent B. cinerea infection, 4 wpi, 

as visualized by MapMan. Upregulated and downregulated genes are shown in red and blue, 

respectively. The scale bar displays fold change values. ABA, abscisic acid; MAPK, mitogen-

activated protein kinase; SA, salicylic acid.  
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Table 3.2. Selected differentially expressed grapevine genes due to quiescent B. cinerea infection (at 4 wpi) 

ID Fold change 

(log2) 
Functional annotation 

  

ID Fold change 

(log2) 
Functional annotation 

Recognition and signaling VIT_01s0127g00070 1.17 Nitrate transporter 2.5 

VIT_05s0020g04680 1.07 Auxin-induced protein 22D VIT_17s0000g09470 1.40 Nitrate transporter 3.1 

VIT_12s0055g01280 1.98 
Brassinosteroid insensitive 1-associated 

receptor kinase 1 

VIT_03s0091g01050 1.53 Nucleobase-ascorbate transporter 4 

Cell wall 
VIT_14s0030g02150 4.22 Calmodulin VIT_05s0049g00010 1.23 Cellulose synthase CSLG2 

VIT_03s0038g01380 1.02 Calcium-binding EF hand VIT_00s0340g00050 2.60 Endo-1,4-beta-glucanase korrigan (KOR) 

VIT_08s0056g00290 1.07 Calcium-binding protein CML VIT_14s0128g00690 4.20 Germin protein 3 

VIT_04s0008g00440 1.78 Clavata1 receptor kinase (CLV1) VIT_06s0004g01990 3.06 Proline-rich extensin-like family protein  

VIT_11s0016g03080 2.51 Clavata1 receptor kinase (CLV1) VIT_12s0055g00200 2.20 UDP-glucose glucosyltransferase 

VIT_06s0004g06210 5.07 CYP86A1 Response to stress and secondary metabolism 
VIT_11s0118g00160 3.65 Disease resistance protein VIT_11s0052g01110 2.69 4-coumarate-CoA ligase 1 

VIT_17s0000g07560 1.10 EDS1 (Enhanced disease susceptibility 1) VIT_16s0050g02220 3.18 Acidic endochitinase (CHIB1) 

VIT_08s0040g00920 3.67 Glutathione S-transferase 25 GSTU7 VIT_03s0017g02110 3.16 Anthocyanidin 3-O-glucosyltransferase 

VIT_04s0044g01990 1.42 Lectin protein kinase VIT_08s0007g06060 2.55 Beta 1-3 glucanase 

VIT_18s0072g00990 1.30 Leucine-rich repeat protein kinase VIT_16s0098g00850 1.40 Caffeic acid O-methyltransferase 

VIT_18s0122g01260 1.68 Protein kinase 1B VIT_03s0063g00140 1.19 Caffeoyl-CoA O-methyltransferase 

VIT_10s0071g00150 1.60 R protein disease resistance protein VIT_16s0100g00860 4.82 Chalcone synthase 

VIT_00s0262g00010 2.25 Receptor kinase RK20-1 VIT_05s0094g00340 2.17 Chitinase class IV 

VIT_17s0000g02360 2.42 Receptor protein kinase VIT_09s0070g00240 1.19 Cinnamoyl-CoA reductase 

VIT_16s0039g01310 2.18 Receptor serine/threonine kinase PR5K VIT_06s0004g01010 3.95 Dirigent protein pDIR9 

VIT_16s0148g00140 1.47 Ser/Thr receptor-like kinase1 VIT_07s0031g01380 3.72 ferulate 5-hydroxylase 

VIT_17s0000g04400 3.10 Wall-associated kinase 1 (WAK1) VIT_16s0098g00860 2.31 Flavanone 3-hydroxylase 

VIT_17s0000g03340 1.08 Wall-associated kinase 4 VIT_02s0109g00310 1.84 flavonoid 3-monooxygenase 

Trascription factors VIT_10s0003g00470 2.15 Isoflavone methyltransferase 

VIT_05s0049g00510 2.01 Ethylene response factor ERF1 VIT_13s0067g01970 2.78 Laccase 

VIT_05s0049g01020 1.55 Myb domain protein 14 VIT_17s0000g06290 4.78 Lipase GDSL 

VIT_15s0046g00170 1.21 MYBPA1 protein VIT_02s0025g04250 4.12 Osmotin 

VIT_04s0008g02710 4.25 NAC domain containing protein 39 VIT_05s0077g01570 4.37 Pathogenesis protein 10 [Vitis vinifera] 

VIT_12s0028g00860 3.00 NAC domain containing protein 42 VIT_03s0088g00710 3.50 Pathogenesis-related protein 1 precursor (PRP 1) 

VIT_04s0008g05760 1.81 WRKY DNA-binding protein 18 VIT_04s0023g02570 2.15 Peroxidase 72 

VIT_08s0058g00690 1.61 WRKY DNA-binding protein 33 VIT_16s0039g01100 4.90 Phenylalanin ammonia-lyase [Vitis vinifera] 

VIT_08s0058g01390 1.74 WRKY DNA-binding protein 70 VIT_02s0025g00750 3.49 Pinoresinol forming dirigent protein 

Transport VIT_00s0480g00030 2.75 Polyphenol oxidase 

VIT_08s0040g02840 4.46 ABC transporter G member 29 VIT_16s0100g01200 5.33 Stilbene synthase 

VIT_08s0058g00150 2.54 Ammonium transporter 2 VIT_02s0025g02850 1.16 Subtilisin protease 

VIT_04s0069g00540 1.90 Glutamate receptor protein 

 
VIT_02s0025g04270 4.33 Thaumatin 
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Receptor-like protein kinases (RLKs) regulate recognition and responses to both internal and 

external signals, and also take part in defense and symbiosis. From the differentially expressed 

genes, about one-sixth of them were those involved in signaling, dominated by RLKs (Table 3.2 

and Supplemental Table S3.3). Membrane-localized RLKs which were switched on during 

infection initiation at flowering, like Clavata1 receptor kinase (CLV1), Brassinosteroid 

insensitive 1– associated kinase 1 (BAK1), and Wall-associated kinase 1 (WAK1), were also 

upregulated during the interaction at quiescent infection. The involvement of WAK1, a damage 

associated pattern receptor which recognize plant cell wall–derived oligogalacturonides due to 

cell wall degradation (Brutus et al., 2010), at this stage of interaction was not obvious, however. 

From the transcriptional alteration on RLKs, lectin protein kinase and protein kinase 1, seem to 

be quiescent-stage-specific. The putative orthologue in other species are associated to plant 

immunity, in particular the latter is known to mediate signaling in response to B. cinerea 

(Abuqamar et al., 2008). In addition, transcripts related to Ca
2+

 mediated signaling (such as 

calcium- and calmodulin-binding proteins) and oxidative stress (mainly GST and cytochrome 

P450 monooxygenases) were also found to involve in the ongoing berry immunity.   

Key TFs that play an important role in plant-microbe interaction, which were also upregulated at 

initial infection during flowering, were still tuned on in the presence of asymptomatic B. cinerea, 

at 4 wpi (Table 3.2 and Supplemental Table S3.3). Most prominent was the MYB TF family: 21 

genes encoding 14 different MYB proteins, including MYB14 and MYBPA1 which respectively 

regulate stilbene and proanthocyanidin biosynthesis. From the WRKY and NAC TFs WRKY33, 

which regulates plant defense reaction against pathogens (Birkenbihl et al., 2012; Merz et al., 

2015), NAC042, known to regulate phytoalexin biosynthesis (Saga et al., 2012), WRKY51, 

mediating the repression of JA signaling in a SA- and low-oleic-acid-dependent manner (Gao et 

al., 2011), and NAC036, WRKY18 and WRKY70, regulate SA biosynthesis and SA signal 

transduction (Wang et al., 2006)  were involved. The upregulation of SA signaling marker genes, 

such as PR1 and EDS1, is a further indication of SA involvement in enhancing the defense ability 

of the hard-green berry. In addition, the upregulation of 3 ACC oxidase and 12 AP2/ERF genes 

underlines that also ET signaling is in place during the interaction at quiescent state. AP2/ERF 

are vital in plant-pathogen interactions (Gutterson and Reuber, 2004; Licausi et al., 2013). Genes 

related to auxin metabolism were also modulated, suggesting that also this phytohormone is 

likely involved.       
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Intriguingly, differential regulation was observed for genes coding for various PR proteins and 

enzymes of the phenylpropanoid pathway and of flavonoid and stilbenoid biosynthesis during 

quiescent infection (Table 3.2 and Supplemental Table S3.3). For some of the genes, the 

upregulation was nearly 50 fold. PR proteins encoding genes included: PR 10s and the regulator 

WRKY33, involve in defense against B. cinerea and Plasmopara viticola in grapevine (Merz et 

al., 2015; ?firstpaper?); β -1,3-glucanase and different classes of chitinases, to attack fungal cell 

wall; and osmotin and thaumatin, known to interfere with the growth of Phomopsis viticola and 

Botrytis cinerea mycelia (Monteiro et al., 2003). Besides, a gene encoding cystatin, proteinaceous 

inhibitors of cystein proteases which is suggested to inhibit the growth of B. cinerea (Pernas et 

al., 1999),  was also upregulated.  

 

Table 3.3. Concentration (µg/g fresh weight) of selected polyphenolic secondary metabolites in 

mock (Ctrl) and B. cinerea (Trt) inoculated grapevine at hard-green berry stage, 4 wpi.  

    

 

 

LOD, limit of detection; wpi, week post inoculation; values after ± are standard error. 

Asterisks (*) indicate statistically significant difference (P < 0.05) 

n.d., not determined. For metabolites that were not determined in control sample, no statistical comparison 

was made.  
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In the case of secondary metabolites biosynthesis, though there was generally a smaller number 

of DE genes involved as compared to the initial infection during flowering, still the monolignol, 

flavonoid and stilbenoid biosynthesis pathways were somehow active. Genes encoding enzymes 

in the biosynthetic pathway, for example, phenylalanine ammonia-lyase, stilbene synthase, 

anthocyanidin 3-O-glucosyltransferase, chalcone synthase, and cinnamoyl-CoA reductase were 

differentially regulated (Supplemental Table S3.3). Many compounds of the phenylpropanoid 

pathway were also quantified by UHPLC-DAD-MS (Supplemental Table S3.11). The strongest 

effect was recorded on flavonoids and stilbenoids (Table 3.3), in particular on compounds known 

to mediate defense against pathogens: resveratrol, viniferin, ampelopsin, miyabenol, 

isohopeaphenol, catechin, and proanthocyanidins (Jersch et al., 1989; Goetz et al., 1999; Pezet et 

al., 2003a; Favaron et al., 2007; Hammerbacher et al., 2011). For the stilbenoid class, most of the 

compounds were below the detection limit in control samples. Here it should be noted that there 

is ontogenic reduction of the polyphenols’ concentration between flower and hard-green 

developmental stages (Supplemental Table S2.8 and S3.11). 

In sum, even though we did not observe any known virulence related genes of the pathogen 

which can provoke response from the berries at 4 wpi, it seemed, however, that the berries are at 

primed state with enhanced immunity as it recognizes nonself organism, which in turn help the 

berry to contain the pathogen. This gives an interesting insight that there is a molecular 

communication going on between the quiescent B. cinerea and the berry.  

3.4.5. B. cinerea transcriptome during pre-egression and egression stages, at ripening 

At ripening, two kinds of berries were collected from Botryits-treated samples: berries without 

visible B. cinerea outgrowth (samples with pre-egressed B. cinerea) and berries with visible signs 

of B. cinerea outgrowth (named egressed B. cinerea). Both samples were subjected to RNA-seq 

to analyze the dual transcriptome (fungus and plant) at these stages. In the samples with pre-

egressed B. cinerea, as in flower and hard-green berry samples, the number of fungal transcripts 

was unfortunately very low, even though the sequencing depth was doubled. Moreover, in one of 

the biological replicates (replicate 2) the growth of the fungus was advanced than the rest two, as 

inferred from the number of fungal transcripts obtained from the RNA-seq experiment 

(Supplemental Table S3.2 and S3.7). Taking similar threshold previously used in the flower and 

hard-green berry samples (an average of at least 10 reads) in the two biological replicates, 



 

91 
 

excluding the sample with advanced B. cinerea growth, 431 genes were selected for further 

analysis. The functional annotation and the most represented functional classes in these set of 

genes are provided in Supplemental Table S3.7 and S3.12, respectively.  

Within the 431 genes, there were several genes encoding proteins functionally associated to the 

infection process: dyp-type peroxidase and galactose oxidase, involved in generation and 

detoxification of ROS (Schumacher et al., 2015); polygalacturonase, deployed in pectin 

degradation; glyoxal oxidase and oxalate decarboxylase, both catalyze oxalate; different types of 

oxidoreductases; and cerato-platanin BcSPL1, a small protein required for full virulence (Frías et 

al., 2011, 2014) . Interestingly, these genes showed a low number of raw reads  or were not 

expressed at all at 4 wpi (Table 3.4), indicating that the physiological state of the fungus in the 

ripe berry before egression was different from that in the  hard-green one. 

 

Table 3.4. RNA-seq reads of selected B. cinerea transcripts having more reads at pre-egression 

(12 wpi, on ripe berry) than at quiescence (4 wpi, on hard-green berry).  
 

 
* The sequence depth of the samples was double; only two biological replicates were considered. 
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In the egressed sample, 86 % of total B. cinerea transcriptome was expressed, which is a sign of 

utmost metabolic activity. Interestingly, the number of genes expressed were similar between 

egressed and PDB cultured B. cinerea, about 10,000 of the total 11701 predicted genes (van Kan 

et al., 2016). Such en masse transcriptional activity was never seen in the other evaluated 

infection stages, possibly due to the low measurable signal linked to the little amount of the 

fungus, but likely also to a reduced transcriptional activity at these stages. In other words, at 

ripening, the time, the status of the host tissue, and the environmental conditions, components of 

the disease pyramid, were conducive for B. cinerea to egress and grow vigorously, as observed 

from Figure 3.1C.    

Table 3.5. RNA-seq reads of selected virulence B. cinerea genes which were not differentially 

expressed in comparison to PDB culture d B. cinerea 

 

 

Compared to the transcriptional changes of B. cinerea cultured in PDB, 3,548 genes were 

differentially regulated during egression at ripening (Figure 3.3C and Supplemental Table S3.5). 

These DE genes are overrepresented in metabolic processes, ion binding, catalytic and 

oxidoreductase activities, cytoplasm, intracellular part functional classes (Supplemental Table 

S3.13). Genes encoding carbohydrate-active enzymes and others involved in plant cell wall 

degradation (Espino et al., 2010; Blanco-Ulate et al., 2014), such as  Bcin10g06130 and 

Bcin14g01630, encoding pectinases, Bcin03g01680, encoding a polygalacturonase, and 

Bcin07g06480 and Bcin15g03080, encoding cutinases, were expressed more during egression 

than in PDB medium. Other virulence and/or growth related genes having similar expression 

trend as those mentioned above were: ROS producers and scavengers like Bcin03g03390, 

Bcin13g05710, and Bcin13g05720 (Rolke et al., 2004; Schumacher et al., 2015); characterized 

aspartic proteases (Bcin12g02040 and Bcin12g00180, ten Have et al., 2010); membrane 

* The sequence depth of the samples was double; only two biological replicates were considered. 
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transporters, mostly the ATP-binding cassette; and botcinic acid and botrydial phytotoxins 

(Bcin12g06390 and Bcin12g06380, Siewers et al., 2005; Dalmais et al., 2011). On the other hand, 

known virulence genes like BcPG1 (Bcin14g00850), BcGST1 (Bcin10g00740), BcBOA6 

(Bcin01g00060), and BcSPL1 (Bcin03g00500) had similar or lower expression level during 

egression as compared to PDB cultured Botrytis. This, however, does not mean that they do not 

play a role in the necrotrophic stage of infection during egression at ripening, as the number of 

reads of these genes was reasonably high at this stage (Table 3.5).  

3.4.6. Response of ripe berry for B. cinerea’s pre-egression and egression state 

Grapevine berries responded to the necrotrophic colonization of the fungus, during egression, by 

reprogramming the transcription of 2,213 genes (Figure 3.3C and Supplemental Table S3.4). Of 

these genes, 1,564 were already differentially regulated in pre-egressed samples, together with 

additional 83 genes. The GO enrichment analysis computed on these DE genes of pre-egressed 

and egressed samples showed a high overlap in the enriched biological process: secondary 

metabolic process, response to stimulus, catabolic process and transport functional classes were 

among the enriched functional classes (Supplemental Table S3.14). In the case of the genes 

modulated between egression and pre-egression states (Eg. Vs. Peg), only 15 genes were not part 

of the DE genes obtained in the Peg Vs. Ctrl and Eg. Vs Ctrl comparisions (Figure 3.3C). 

The differentially expressed genes, 2,311 in total at 12 wpi, were clustered into 8 groups based on 

their expression pattern considering control, pre-egressed, and egressed samples as shown in 

Supplemental Figure S3.2. Several functional classes as amino acid metabolism, protein 

processing, carbohydrate and lipid metabolism, phytohormone (auxin, ET, and JA) signaling 

were overrepresented, combinding the 8 clusters into into four main expression profiles (A-D in 

Supplemental Figure S3.2).  

Almost all of the DE genes in the pre-egressed samples were also in the egressed samples, and 

there existed a general similar expression direction (up- or down-regulation) in these genes 

Supplemental Table S3.4 and Supplemental Figure S3.2). As a result, we used the the DE genes 

of the egressed stage only to visualize the biotic stress pathway (Figure 3.8), via MapMan, as it 

can give enough insight of the pre-egressed stage as well. Figure 3.8 depicted the transcriptional 

changes involved in biotic stress were huge. Although it might seem surprising, it is not 

uncommon to see such modulation of defense related genes in infected plant tissues even when 
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the pathogen wins the battle (Alkan et al., 2014; Agudelo-Romero et al., 2015; Kelloniemi et al., 

2015). This could be due to the futile attempts of the infected tissue reacting against the pathogen 

and/or to the transcriptome attributes of other cell layers, not yet colonized, as it is impossible to 

spatially resolute. From the biotic stress pathway visualization, however, the presence of many 

downregulated genes in the PR protein and secondary metabolite categories, and the involvement 

of a lot of genes in JA and ET signaling and cell wall modification (Figure 3.8) were unique of 

the ripe berry transcriptome as compared to flower and hard-green berry due to B. cinerea (Figure 

2.4 and Figure 3.7). 

       

 

 

 

 

Figure 3.8. Biotic stress overview of ripe berries due to egressed B. cinerea, 12 wpi, as visualized 

by MapMan. Upregulated and downregulated genes are shown in red and blue, respectively. The 

scale bar displays fold change value. ABA, abscisic acid; JA, jasmonic acid; MAPK, mitogen-

activated protein kinase; SA, salicylic acid. 
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The PR proteins, which were differentially expressed by the infection during flowering and hard-

green berry stages, were also regulated in ripe berry when during Botrytis egression, but to a 

different extent or direction and/or with reduced number of gene copies (Table 3.6). For example, 

two PR10 genes, namely VIT_05s0077g01580 (upregulated) and VIT_05s0077g01690 

(downregulated) were among the PRs in ripe berry; however, during initial infection at flowering, 

5 colocalized PR10 genes, including VIT_05s0077g01690, were highly upregulated (up to 25 

fold). Similar trend was observed for other PR genes as osmotin, thaumatin, and chitinases 

(Supplemental Table S2.3, S3.3 and S3.4). In addition, endochitinase and chitinase class I, which 

were upregulated during initial (flower) and quiescent (hard-green berry) infections, were found 

down regulated during B. cinerea egression.  

The results also suggested that during B. cinerea egression the SA pathway was repressed, but the 

JA pathway was actively functioning. The expression of genes encoding PR1, an SA marker, and  

EDS1 , a defense regulator involving SA signaling (Wiermer et al., 2005), were downregulated or 

not affected. On the other hand, genes encoding jasmonate ZIM-domain1, a JA marker, and 

MYC2, involved in the activation of JA signaling (Lorenzo et al., 2004), were upregulated 

(Supplemental Table S3.4).  
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Table 3.6. Selected differentially expressed grapevine genes during pre-egression and egression of B. cinerea on ripe berries (12 wpi). 

 

  

ID 

Fold change (log 2) 

Functional annotation 

  

ID 

Fold change (log 2)  

Peg Eg 

 

Peg Eg Functional annotation 

Transcription factors 

 

Response to stress and secondary metabolism 

VIT_07s0141g00690 3.3 6.5 ERF/AP2 transcription factor sub B-1 

 

VIT_08s0007g06040 4.6 6.7 Beta-1,3-glucanase 

VIT_10s0003g00580 2.9 2.8 ERF/AP2 transcription factor sub B-3   

 

VIT_18s0001g14790 -4.0 -4.4 Lipase 3 (EXL3) family II extracellular 

VIT_02s0234g00130 
 

-1.1 Ethylene responsive element binding factor 1 

 

VIT_17s0000g10060 -1.5 -2.3 Lipase GDSL 

VIT_07s0005g03340 2.8 2.9 Myb domain protein 14 

 

VIT_01s0137g00700 
 

1.5 Lipase GDSL 

VIT_19s0027g00870 -1.3 -0.9 NAC domain-containing protein 42 

 

VIT_14s0128g00080 4.5 5.6 Lipase GDSL 

VIT_06s0004g07500 2.4 2.1 WRKY DNA-binding protein 33 

 

VIT_16s0039g01320 4.98 5.07 Phenylalanin ammonia-lyase  

Cell wall 
 

VIT_08s0040g01710 2.34 1.53 Phenylalanine ammonia-lyase 

VIT_09s0002g01320 -1.0 -1.2 Germin-like protein 

 

VIT_00s2849g00010 5.84 4.39 Phenylalanine ammonia-lyase 

VIT_14s0060g02750 -2.0 -3.3 Germin-like protein 3  

 

VIT_02s0025g03660 -1.5 -0.9 4-coumarate-CoA ligase 

VIT_14s0128g01020 -0.8 -1.5 Germin-like protein 3  

 

VIT_16s0050g00390 3.1 4.2 4-coumarate-CoA ligase 

VIT_06s0009g02570 0.9 2.9 Pectinesterase family 

 

VIT_03s0063g01690 -1.2 -1.8 flavonoid 3-monooxygenase 

VIT_02s0154g00600 1.1 3.1 Pectinesterase family 

 

VIT_18s0001g14310 0.8 1.0 Flavonone- 3-hydroxylase 

VIT_04s0044g01020 4.5 11.6 Pectinesterase family 

 

VIT_04s0023g01290 -0.9 -1.5 Anthocyanidin 3-O-glucosyltransferase 

VIT_07s0005g00720 4.7 8.5 Pectinesterase family 

 

VIT_03s0017g02000 3.7 6.7 Anthocyanidin 3-O-glucosyltransferase 

VIT_08s0007g07770 4.8 7.2 Polygalacturonase PG1 

 

VIT_03s0038g01460 0.7 1.2 Chalcone synthase 

VIT_08s0007g07760 5.0 8.3 Polygalacturonase PG1 

 

VIT_02s0012g01570 -1.5 -0.7 Cinnamoyl-CoA reductase 

VIT_11s0052g01180 0.7 3.2 Xyloglucan endotransglucosylase 

 

VIT_14s0066g01150 0.5 4.6 Cinnamoyl-CoA reductase 

VIT_05s0062g00240 1.1 2.1 Xyloglucan endotransglucosylase 

 

VIT_00s0218g00010 -0.4 -1.2 Cinnamyl alcohol dehydrogenase 

Response to stress and secondary metabolism 
 

VIT_13s0067g00680 0.3 2.1 Cinnamyl alcohol dehydrogenase 

VIT_04s0023g03550 1.9 4.2 Thaumatin 

 

VIT_06s0080g01000 -2.0 -1.6 Secoisolariciresinol dehydrogenase 

VIT_07s0005g02560 
 

-1.1 Chitinase Class I 

 

VIT_08s0058g00790 1.0 1.8 Secoisolariciresinol dehydrogenase 

VIT_05s0094g00360 -0.8 -1.5 Chitinase class IV 

 

VIT_01s0010g01960 8.01 3.82 Anionic peroxidase 

VIT_05s0094g00200 
 

3.4 Chitinase class IV 

 

VIT_12s0055g00810 -1.83 -1.50 Cationic peroxidase 

VIT_03s0038g03400 
 

-1.2 Endochitinase 1, basic 

 

VIT_08s0058g00970 1.98 0.96 Cationic peroxidase 

VIT_05s0077g01690 
 

-1.1 Pathogenesis protein 10 

 

VIT_16s0100g00830 
 

1.1 Stilbene synthase 

VIT_05s0077g01580 
 

1.6 Pathogenesis protein 10  

 

VIT_16s0100g01200 7.1 10.5 Stilbene synthase 

VIT_03s0088g00700 
 

-1.2 Pathogenesis related protein 1 precursor  

 

VIT_16s0100g01190 -1.0 -2.0 Stilbene synthase  

VIT_03s0088g00690 -3.4 -3.5 Pathogenesis-related protein 1 precursor  

 

VIT_16s0100g01160 -0.8 -1.2 Stilbene synthase  

VIT_05s0077g01150 
 

1.5 Beta-1,3-glucanase 

 

VIT_16s0100g01140 -0.8 -1.4 Stilbene synthase 2 

          VIT_16s0100g00990 1.0 2.1 Stilbene synthase 2 
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The secondary metabolites biosynthesis pathway, polyphenols in specific, was also generally 

affected by the egression of B. cinerea at ripening (Table 3.6 and Supplemental Table S3.4), 

although the transcription of genes encoding dihydroflavonol-4-reductase and flavanone 3-

hydroxylase, both involved in flavonoid biosynthesis, was not affected. In line with this evidence, 

almost all of the quantified flavonoids were significantly lower or not different in the berries with 

egressed B. cinerea as compared to the control (Table 3.7). Whereas, for other key enzymes in 

the biosynthesis pathway mixed regulation (both up- and down regulation of genes encoding a 

given transcript) was observed, as in cinnamate 4-hydroxylase, 4-coumarate-CoA ligase 1, and 

stilbene synthase genes. For stilbene synthase, for example, from the 23 differentially-regulated 

stilbene synthase genes, 16 of them were downregulated. Overall, the trend of stilbenoids content 

of the samples was: for monomeric stilbenes (like trans-resveratrol, trans-piceide, and astringin), 

no appreciated difference between berries with egressed Botrytis and control; and for oligomeric 

stilbenes (like viniferin, E-cis-miyabenol, and isohopeaphenol), the concentration was highest in 

berries with pre-egressed Botrytis, followed by berries with egressed Botrytis and the lowest in 

healthy berries, control (Table 3.7).   

Most of the genes involved in monolignol biosynthesis (such as CCR and CAD) were 

differentially regulated (Table 3.6 and Supplemental Table S3.4), though not all in the same 

direction—the mixed regulation mentioned above. However, a few but important genes like 

CCoAMT and F5H encoding genes were not differentially regulated. CCoAMT is involved in 

ferulic esterification and lignification process in response to pathogen attack in grapevine (Busam 

et al., 1997). From the secondary metabolite analysis, caffeate and ferulate, substrate for 

CCoAMT were not detected in any samples at ripening (Table 3.7). Perhaps, lignification is not 

an option in plant defense during ripening. The downregulation of all the differentially expressed 

genes encoding GLP3, an important protein in the oxidative cross-linking to strengthen cell wall 

during pathogen threat (Bradley et al., 1992;  Godfrey et al., 2007), adds to the suggestion that 

cell wall apposition was downplayed at ripening. Rather, a number genes encoding proteins 

which involve in ripening-associated cell wall extensibility and disassembly like xyloglucan 

endotransglucosylase and polygalacturonase and pectinesterases (Nunan et al., 2001; Deytieux-

Belleau et al., 2008) were highly upregulated in ripe berries with pre-egressed and egressed 

Botrytis. Pectinesterases is actually suggested to be involved both in cell wall loosening and 

strengthening (Micheli, 2001); however it seemed here it was involved in cell wall loosening as 
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there were a lot of upregulated polygalacturonases which degrade polygalacturonans, made 

accessible by the pectinesterases.  

  

Table 3.7. Concentration (µg/g fresh weight) of polyphenolic secondary metabolites in mock (Ctrl) 

and berries with pre-egressed (peg) and egressed (eg) B. cinerea at ripe, 12 wpi.  

Class Compounds LOD(µg/g) 

Ripe berry (12 wpi) 

Ctrl Peg Eg 

benzoic acids 

p-hydroxybenzoic acid 0.005 0.61 ± 0.27 0.33 ± 0.04 1.2 ± 0.36 

vanillic acid 0.0025 0.00 ± 0.00 b 0.16 ± 0.02 b 0.72 ± 0.14 a 

gallic acid 0.025 0.43 ± 0.01 0.18 ± 0.03 0.44 ± 0.16 

2,6-diOH-benzoic acid 0.0025 0.22 ± 0.15 0.05 ± 0.02 0.04 ± 0.02 

methyl gallate 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 

Phenylpropanoids 

caftaric acid 0.0125 848.1 ± 84.86 a 473.41 ± 16.29 b 208.69 ± 60.81 c 

fertaric acid 0.0025 16.63 ± 2.35 a 15.47 ± 0.62 a 6.14 ± 2.87 b 

trans-coutaric acid 0.025 256.85 ± 8.89 a 162.12 ± 10.76 b 67.21 ± 20.07 c 

Dihydrochalcones phlorizin 0.0025 1.82 ± 0.11 a 1.6 ± 0.08 a 0.7 ± 0.16 b 

flavonoids 
 

luteolin-7-O-Glc 0.0025 0.24 ± 0.02 0.15 ± 0.03 0.07 ± 0.05 

naringenin 0.0025 0.24 ± 0.05 a 0.04 ± 0.01 b 0.03 ± 0.01 b 

catechin 0.025 18.89 ± 6.61 6.29 ± 2.00 34.43 ± 19.75 

epicatechin 0.025 11.19 ± 1.33 7.86 ± 0.89 8.57 ± 2.9 

epigallocatechin 1.25 14.35 ± 0.96 a 6.14 ± 0.61 b 2.64 ± 0.63 c 

gallocatechin 0.25 51.21 ± 5.8 a 6.6 ± 0.83 b 3.89 ± 2.14 b 

epigallocatechin gallate 0.25 1.68 ± 0.04 1.3 ± 0.25 2.28 ± 1.35 

epicatechin gallate 0.025 1.33 ± 0.14 1.54 ± 0.28 12.12 ± 9.35 

procyanidin B1 0.0125 81.82 ± 7.33 36.1 ± 8.23 44.26 ± 35.02 

procyanidin B2 + B4 0.125 4.81 ± 0.45 1.47 ± 0.17 8.21 ± 3.3 

procyanidin B3 (as B1) 0.0125 28.78 ± 11 7.56 ± 0.84 24.58 ± 19.56 

quercetin 0.05 0.52 ± 0.04 a 0.32 ± 0.07 ab 0.17 ± 0.04 b 

taxifolin 0.0025 98.19 ± 12.81 a 40.59 ± 0.79 b 19.54 ± 12.49 b 

myricetin 1.25 8.66 ± 1.89 a 4.3 ± 0.94 ab 2.34 ± 0.39 b 

quercetin-3-Rha 0.005 0.13 ± 0.03 0.23 ± 0.03 0.13 ± 0.07 

quercetin-3-Glc+ 

quercetin-3-Gal  
0.0025 14.14 ± 1.77 14.97 ± 4.87 4.31 ± 1.59 

isorhamnetin-3-Glc 0.0025 2.22 ± 0.26 b 10.65 ± 2.46 a 2.79 ± 0.95 b 

rutin 0.0025 2.06 ± 0.31 a 1.28 ± 0.14 ab 0.55 ± 0.26 b 

isorhamnetin-3-rutinoside 0.005 0.27 ± 0.01 0.48 ± 0.13 0.14 ± 0.03 

quercetin-3-glucuronide 0.0125 31.2 ± 0.53 a 7.51 ± 0.59 b 2.17 ± 0.78 c 

isorhamnetin 0.4 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0 

syringetin 0.025 0.06 ± 0.02 0.03 ± 0.01 0.01 ± 0 

myricitrin 0.5 1.13 ± 0.18 a 1.03 ± 0.25 a 0.31 ± 0.13 b 

syringetin-3-Glc+ 

syringetin-3-Gal  
0.05 6.01 ± 0.66 b 17.51 ± 2.15 a 5.12 ± 1.43 b 

stilbenoids 

arbutin 0.005 4.96 ± 1.48 5.93 ± 1.52 3.74 ± 2.05 

trans-resveratrol 0.005 40.5 ± 9.34 36.94 ± 10.34 47.56 ± 23.86 

cis-resveratrol 0.0025 0.42 ± 0.07 a 0.13 ± 0.06 b 0.05 ± 0.02 b 

piceatannol 0.0025 17.82 ± 6.04 22.24 ± 7.41 5.67 ± 2.95 

trans-piceide 0.0125 24.01 ± 2.01 b 50.77 ± 3.69 a 21.58 ± 9.08 b 

cis-piceide 0.0025 13.04 ± 5.59 a 11.59 ± 3.24 a 2.97 ± 1.05 b 
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Table 3.7. Continued. 

Class Compounds LOD(µg/g) 

Ripe berry (12 wpi) 

Ctrl Peg Eg 

stilbenoids 

astringin 0.005 4.21 ± 0.57 b 13.67 ± 1.52 a 4.85 ± 2.81 b 

isorhapontin 0.005 0.54 ± 0.04 b 3.33 ± 0.38 a 1.19 ± 0.31 b 

trans-ε-viniferin 0.005 4.65 ± 0.57 c 41.86 ± 3.82 a 12.12 ± 4 b 

cis+trans-o-viniferin 0.0125 1.12 ± 0.33 c 22.43 ± 0.01 a 3.28 ± 0.27 b 

pallidol 0.005 61.04 ± 13.54 b 215.63 ± 5.87 a 68.96 ± 6.62 b 

ampelopsin D+ 

quadrangularin A 
0.025 0.25 ± 0.04 c 5.49 ± 0.15 a 0.79 ± 0.17 b 

E-cis-miyabenol 0.0125 0.04 ± 0.03 c 18.58 ± 0.57 a 2.55 ± 0.46 b 

Z-miyabenol C 0.05 0.04 ± 0.00 b 18.77 ± 5.45 a 1.68 ± 0.35 b 

isohopeaphenol 0.0125 0.15 ± 0.14 c 132.30 ± 25.67 a 35.84 ± 12.15 b 

α-viniferin 0.0125 0.01 ± 0.00 c 59.68 ± 6.44 a 10.83 ± 4.03 b 

ampelopsin H +  

vaticanol C-like isomer 
0.01 0.45 ± 0.35 c 49.83 ± 4.78 a 10.73 ± 2.86 b 

caffeic acid+catechin  

condensation 
0.05 10.75 ± 1.32 a 1.31 ± 0.24 b 1.31 ± 0.97 b 

 

 

 

 

3.5. Discussion 

Grapevine flowers were challenged by placing suspension of B. cinerea conidia, to induce 

infection. Following that, fungal genes encoding known virulence factors and proteins contribute 

to the infection program were highly upregulated, as described in Chapter 2. Consequently, the 

flowers reprogrammed their transcriptome which resulted in increased expression levels of genes 

involved in reduction-oxidation process, encoding different families of antimicrobial proteins, 

and those involved in activating polyphenolic metabolites biosynthesis pathway that brought 

about the production of phytoalexin and precursors for cell wall toughening. These defense 

reactions of the flowers were unbreakable, forcing B. cinerea into quiescence.  To know more on 

the fate of the fungus, we further inspected the inoculated flower until ripening, with an in-depth 

look of their molecular communication at hard-green (4 wpi) and at ripe (12 wpi) stages. 

In the very early stage of quiescence in the flowers, at 96 hpi, ribosomal genes were prevalent in 

the in planta expressed B. cinerea genes (78 of the 574 genes, Supplemental Table S2.9). A 

similar high proportion of ribosomal genes were also observed in the hard-green berry at 4 wpi, 

48 out the 289 in planta expressed genes (Supplemental Table S3.6). Nevertheless, there was not 

LOD, limit of detection; Ctrl, control; Peg, pre-egression; Eg, egression; values after ± are standard error. 

Concentration amounts followed by a common letter are significantly not different between samples, 

according to Tukey's Honestly Significant Difference test (P≤0.05), using one way ANOVA 
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any known virulence-related gene in these 289 genes, which could suggest that pathogenesis was 

“suspended”. Yet, other biological activities help the fungus stay “alive” were being carried out 

since elongation factors, ATP synthesis, and ATP-dependent molecular functions related genes 

were transcriptionally active. Glyceraldehyde-3-phosphate dehydrogenase (Bcin15g02120) and 

malate dehydrogenase (Bcin16g04800), both are highly abundant inside mycelium (Fernández-

Acero et al., 2006; 2007) and also involved in glycolysis and tricarboxylic acid cycle for energy 

metabolism, were expressed. Also among expressed were an ATP-dependent cell division cycle 

protein 48 (p97/valosin-containing protein, Bcin08g03700) gene, involved in cell cycle and 

transcriptional regulation (Wang et al., 2004), and a number of ATP-dependent membrane 

transporter genes. To the question where and how the quiescent B. cinerea manages to get energy 

sources, out of the 34 CAZyme genes expressed at the quiescent stage, 4 of them were 

glycosidases, which can act on cellulose and hemicellulose of plant cell wall. In addition, the 

upregulation of plant receptors that mediate signaling in response to B. cinerea, PROTEIN 

KINASE 1 (Abuqamar et al., 2008), and WAK 1, which recognizes cell wall–derived 

oligogalacturonides, (Brutus et al., 2010), indirectly suggest that the quiescent B. cinerea was 

able to obtain energy sources from the plant to carry out its basal metabolic activity.  

Notwithstanding the absence of detectable pathogenic progression of the quiescent B. cinerea, 

fruit transcripts that involved in plant defense at initial infection stage (at bloom) continued to be 

upregulated at 4 wpi. Such continued activation of defense pathways between appresoria 

formation and quiescent stages of infection was also reported in unripe green tomato infection by 

Colletotrichum gloeosporioides (Alkan et al., 2014). The expressions of WRKY33 gene, whose 

expression correlates with the expression of PR10 genes in response to defense in grapevine 

(Merz et al., 2015; Chapter 2), and genes of different families of PR proteins, including PR10, 

were highly induced in the hard-green berry due to the quiescently present B. cinerea 

(Supplemental Table S3.3). The grapevine WRKY33 functional homologue AtWRKY33 has been 

shown to involve in response to biotic and abiotic stresses (Zheng et al., 2006; Jiang and 

Deyholos, 2009; Li et al., 2011; Birkenbihl et al., 2012). Five genes, encoding a GDSL lipase, 

whose expression was not affected during flower infection, were strongly upregulated (up to 25-

fold) during quiescent infection. There is no previous report associating the lipases encoded by 

these genes with defense against pathogen. However, they are annotated for catalyzing 

acyltransfer or hydrolase reactions with lipid and non-lipid substrates, i.e. they have broad 
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substrate and may interfere with the fungal activity. Other lipases having similar motif, for 

example, GDSL Lipase 1, targets fungal cell walls and possesses antimicrobial activity (Oh et al., 

2005), was shown to be involved in defense against Alternaria brassicicola and B. cinerea in 

Arabidopsis in an ET dependent manner regulated by WRKY33 (Oh et al., 2005; Kwon et al., 

2009; Birkenbihl et al., 2012). 

The upregulation of osmotin, thaumatin, β-1,3-glucanase,  and chitinases of the hard-green berry 

compelled the quiescent B. cinerea to underwent a survival cell wall remodeling. The qPCR 

assay confirmed that Bcin11g04800, a gene encoding chitin deacetylase was highly upregulated 

during quiescent phase (Figure 3.5). Deacetylation of chitin is a mechanism used by plant 

pathogens as well as endophytic fungi to protect their cell wall from being attacked by plant 

chitinases (Deising and Siegrist, 1995; El Gueddari et al., 2002). Depolymerisation of chitin into 

deacetylated chitosan oligomer avoid binding by plant receptors and the consequential plant 

immune responses (Petutschnig et al., 2010; Liu et al., 2012). Very recently, Cord-Landwehr and 

colleagues demonstrated that chitosan oligomer,  deacetylated chitin extracted from an 

endophytic fungus Pestalotiopsis sp., elicited no plant immunity in rice cell suspension culture 

(Cord-Landwehr et al., 2016). Thus, the enzyme might play an important role, particularly during 

quiescent phase, to reduce the recognition of the quiescent B. cinerea from the plant immunity. In 

addition to chitin deacetylase, other genes encoding glycolipid-anchored surface protein and GPI-

anchored cell wall organization Ecm33, which in yeast are linked to cell wall integrity to ensure 

viability (Pardo et al., 2004), were also expressed during the quiescent phase, suggesting that the 

fungus is also actively defending itself besides the basal metabolic activity. 

The activation of stilbenoid and flavonoid biosynthetic pathways by grapevine in response to 

active pathogenic infection is well documented (Langcake, 1981; Jeandet et al., 1995;  Keller et 

al., 2003; Agudelo-Romero et al., 2015; Kelloniemi et al., 2015; Chapter 2). Here we observed 

that the genes encoding essential enzymes of the pathways, such as stilbene synthase, chalcone 

synthase, flavanone 3-hydroxylase, and anthocyanidin 3-O-glucosyltransferase, were actively 

engaged during quiescent infection. The transcription factor regulating stilbene biosynthesis, 

MYB14 (Höll et al., 2013) was also modulated. Polyphenols, as measured by HPLC-DAD-MS, 

too, were found at higher concentration in the inoculated samples. Nonetheless, compared to the 

infection initiation state at bloom (12-96 hpi), the concentration of the polyphenols was less at 4 
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wpi in the hard-green berry. The content of resveratrol and its monomeric (for example astringin, 

isorhapontin, and piceide) and oligmeric (for example miyabenol, isohopeaphenol, and viniferin) 

derivatives, which are known defense compounds (Langcake, 1981; Pezet, et al., 2003a; Favaron 

et al., 2007; Hammerbacher et al., 2011), was higher in hard-green berry  with quiescent Botrytis 

than control.  

Relevant transcripts for the synthesis of monolignols precursors (PAL, COMT, CCoAMT), which 

increase penetration resistance of the plant tissues (Bhuiyan et al., 2009),  and other lignin 

forming enzymes like GLP3 and EXT, were also induced in the hard-green berry. The result from 

initial infection in the flower suggested that lignification at the site of penetration as one of the 

major defense mechanism grapevine flowers use to stop B. cinerea progress. The activation of 

monolignol biosynthetic pathway and the upregulation of GLP3 and EXT together with H2O2,  

accumulation that we observed at the site of penetration in the flower were similar mechanisms 

that véraison berry and green tomatoes  employed to stop B. cinerea growth (Cantu et al., 2009; 

Kelloniemi et al., 2015). It is interesting to observe the pathway being active at 4 wpi in the hard-

green berry. 

The ability of the grape berries to keep the pathogen under quiescence is however broken at 

ripening (Figure 3.1C). Egression of B. cinerea was observed after bagging bunches for two 

weeks starting at full coloring (approximately 10 wpi), to create high humidity around the bunch. 

Creating similar high humidity around the bunch, before full coloring, was shown causing no B. 

cinerea egression (Supplemental Figure S2.6). At the very start of the egression process, an 

outgrowth of B. cinerea (or egression) was observed on about 40 % of the berries. Basically, at 

ripe stage, a single berry with active B. cinerea growth could be enough to cause rot on the whole 

bunch; it will be just a matter of time as the tissue is senescing and therefore its susceptibility to 

pathogen increases (Kretschmer et al., 2007; Prusky et al., 2013). Since it gets confusing with 

time to identify berries with “truly” egressed B. cinerea or progression thereof around the 

egression spot, samples were immediately collected to avoid disease progression into 

asymptomatic spots. As per the state of the fungus in berries that showed no visible 

symptom/sign (pre-egressed B. cinerea), the “initiation” of virulence-related genes, like cerato-

platanin BcSPL1, required for full virulence  (Frías et al., 2011, 2014), that were not expressed in 

the hard-green berry signaled that the state of the pre-egressed B. cinerea in ripe berries was 

different from that of the quiescent one in the hard-green berry. 
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During egression about 86 % of the B. cinerea transcriptome was expressed, and compared to 

PDB cultured B. cinerea 3,548 of the genes were differentially expressed during egression at 

ripening. These genes encompasses functional annotations of ROS producers and scavengers, 

CWDE, proteases, and phytotoxic secondary metabolites, which are all what B. cinerea requires 

for full pathogenicity (as reviewed in Nakajima and Akutsu, 2014). Botrytis transcripts belonging 

to these functional classes were shown to involve during successful infection of ripe grapevine 

berries and other hosts (De Cremer et al., 2013; Smith et al., 2014; Kelloniemi et al., 2015). 

However, the expression level of BcPG6 and BcPEL-like1, pectinases which were extremely 

upregulated during initial infection at bloom (Figure 2.9), was much less both at ripe and in PDB 

culture. BcPG6 was shown acting as endo-hydrolases, releasing monomers and dimers of D-

galacturonate instead of oligomers unlike other PGs (Kars et al., 2005). In general, as expected, 

the transcriptional activity of the pathogen was high during egression. Indeed, what made the 

quiescent B. cinerea egress is the trickiest research question of this study. But ripening associated 

signals are speculated triggering the transition from the prolonged quiescent to egression phase.   

The changes in physical and chemical properties occurring at ripening, such as activation of 

phytohormone biosynthesis, cuticular changes, cell wall loosening, conversion of acids into 

sugars, and a steadily diminishing of antifungal compounds (both preformed and inducible 

secondary metabolites) are hypothesized to favor pathogen egression (Prusky, 1996; Prusky et al., 

2013). It has been sown that the protective role of berry cuticle on B. cinerea infection decreased 

with ripening (Commenil et al., 1997; Mlikota-Gabler et al., 2003). The structural changes in the 

cell wall polysaccharides that lead to fruit softening were also reported to cause susceptibility to 

necrotrophic pathogens at fruit ripening (Cantu et al., 2008). In their study, suppression of the 

ripening-associated cell wall loosening genes reduced the susceptibility of ripe tomato to B. 

cinerea (Cantu et al., 2008). A shift in plant-hormone synthesis and signaling balance happening 

during ripening can also trigger fungal pathogenicity factors (Prusky, 1996; Prusky et al., 2013). 

In grapevine, alongside the decline in resistance during ripening, the sugars and organic acids 

exudates appearing on the berry surface can stimulate and promote B. cinerea outgrowth (Padgett 

and Morrison, 1990; Pezet et al., 2003b; Kretschmer et al., 2007).  

Considering the transcriptional alterations underwent in the ripe berry, as a response to Botrytis 

egression, a wide array of defense responses were noticed, suggesting that the tissue under 
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colonization “never gives up” rearranging its defense mechanisms. The expression level of genes 

of PR proteins, secondary metabolites, cell wall modification, and phytohormones (biosynthesis 

and signaling) were affected. Even though hormonal cross-talks in response to pathogen attack 

are complex (Ferrari et al., 2003, 2007; Rowe et al., 2010), we observed egression of Botrytis 

activated ET and JA pathways while SA pathway was repressed. Similar interplay between JA 

and SA in grapevine-Botrytis interaction was reported by Kelloniemi et al. (2015): JA pathway 

being activated during compatible berry-Botrytis interaction at ripe and SA pathway during 

incompatible interaction at véraison. With regard to stilbenic secondary metabolites, surprisingly 

oligomerization was majorly driven by the presence of the fungus. Oligomerization, according to 

Pezet et al. (2003a), increases toxicity. The amount of oligomeric resveratrol was very little in 

control than treated berries (with pre-egressed and egressed Botrytis); from the treated berries, 

lesser being in berries with egressed Botrytis than pre-egressed one. The B. cinerea LACCASE 2 

(encoded by Bcin14g02510) that oxidizes resveratrol (Schouten et al., 2002) was extremely 

upregulated (128 fold) in the egressed Botrytis. This could probably be one of the reasons that the 

concentration of oligomeric resveratrols was significantly lower in berries having immense 

Botrytis growth than pre-egressed one. 

Last, the evolution of the berry skin tissue is an important component of the berry-Botrytis 

interaction. It has been noticed that the extent of the expression of cell wall modifying genes 

increased toward maturity. It is actually a phenological cue that once the seeds are mature, 

ripening-associated softening kicks off. The differential accumulation of xyloglucan 

endotransglucosylases, involve in cell wall extensibility (Miedes et al., 2011) and 

polygalacturonases and pectinases, involved in berry softening (Deytieux-Belleau et al., 2008), 

are phenomenal during berry ripening (Nunan et al., 2001; Lijavetzky et al., 2012). These cell 

wall modifying genes were remarkably upregulated in ripe berries with both pre-egressed and 

egressed B. cinerea, suggesting that the fungus used advantage of the onset of the fruit’s cell wall 

self-disassembly, exploiting endogenous developmental programs to activate its own virulence 

CWDE. In tomato, the ripening associated genes polygalacturonase and expansin have been 

shown to facilitate susceptibility to B. cinerea (Cantu et al., 2008, 2009). It has also been 

suggested that the fungus can induce unripe fruit’s cell wall-modifying proteins to initiate the 

induction of susceptibility (Cantu et al., 2009). We, however, haven’t observed any hastening of 
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ripening process in Botrytis-inoculated samples. Both mock- and Botrytis-inoculated bunches 

ripen on similar time after inoculation.  

On the other side of cell wall modification, the downregulation of genes encoding GLP3, 

involved in cell wall strengthening by oxidative cross-linking of cell wall components (Bradley et 

al., 1992;  Godfrey et al., 2007), together with the non-differential regulation of monolignol genes 

as CCoAMT and F5H, involved in cell wall apposition in response to pathogen attack (Busam et 

al., 1997; Bhuiyan et al., 2009), strongly suggest that cell wall fortification was not involved. 

Taken together cell wall strengthening process is the most missed component from the defense 

responses at ripening. 

3.6. Conclusions 

The B. cinerea inoculated at bloom was quiescent for 12 weeks and egressed at ripening, 

suggesting that the defense responses of the berries were efficient to halt the growth of the fungus 

only until maturity. Our study revealed that the defense responses of immature berries (at 4 wpi) 

that put B. cinerea quiescent involved different classes of PR proteins and increased activities of 

the flavonoid, stilbenoid, and monolignol biosynthesis pathways, for phytoalexins and cell wall 

strengthening. These responses are similar to the responses of the plant to the pathogen at bloom. 

In this period, the fungus had cryptic interaction with the berry keeping its basal metabolic 

activities and deacetylating its cell wall. However, at ripe (at 12 wpi) the pathogen managed to 

egress and cause bunch rot, using the advantage of the fruit’s cell wall self-disassembly and 

fulfilment of other conditions (including humidity). Consequently, there were different defense 

responses except cell wall strengthening by the ripe berries, but futile and did not keep the 

pathogen from its advancement to colonize the berries.  The study seems to indicate that, in 

grapevine-Botrytis interaction, cell wall associated defense is principal in keeping B. cinerea 

quiescent. 
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3.8. Supplemental materials 

3.8.1. Supplemental tables 

Supplemental Table S3.1. List of qPCR primers. Gene identification, primer name, primer 

sequence, and source are listed. 
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Gene ID Primer name Primer sequence Reference 

Bcin01g09620 

(BcRPL5) 

Bcrpl5-F GATGAGACCGTCAAATGGTTC Zhang and vanKan, 

2013 Bcrpl5-R CAGAAGCCCACGTTACGACA 

Bcin01g08040 

(BcTUBA) 

BctubA-F TTTGGAGCCAGGTACCATGG 
Mehli et al. 2005 

BctubA-R GTCGGGACGGAAGAGTTGAC 

Bcin01g09570 
Bcyt521-F GTTGGAACTGTCGGAGGTGT 

This study 
Bcyt521-R GCCTTTTCATCAGCTGCTTT 

Bcin02g06140 
BcCP2-F CGGATTCCCATCATTCAATC 

This study 
BcCP2-R AGGAGGTCCCATTCCCATAC 

Bcin03g01920 
BcCAT-F CAATGGTCCACTCCTTCTTCA 

This study 
BcCAT-R AACACGCTCTGGGATACGTT 

Bcin07g01540 
BcEF2-F CTTTGGGTGACGTCCAAGTT 

This study 
BcEF2-R CACCGAATTTCTTGGCGTAT 

Bcin08g05540 
BcCND1-F GCTACCGATGGTCTTGGAAA 

This study 
BcCND1-R ATCAGTGGTGACGATGTGGA 

Bcin11g04800 
BcCDA-F CTTCCCTGTTGTTCCTCCAA 

This study 
BcCDA-R TGTCTCATCCGGACTCACAA 

Bcin12g06170 
Bcalle-F CGAAGTCCTTCCAGAGCAAC 

This study 
Bcalle-R TGGGTCTCTCCGACAGTTCT 

Bcin13g05810 
BcALD-F ACGGAAAGGCAATCTCAATG 

This study 
BcALD-R CTTATCTGCCCATCCACCAT 

Bcin14g04260 
BcMAS1-F CGATGGAACTCCTCGTGATT 

This study 
BcMAS1-R GATCATCTTGGCAGCACTGA 

V
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if
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a
 

VIT_04s0044g00580 

(VvACT) 

VvACT-F ATGTGCCTGCCATGTATGTTGCC 
Bèzier et al. 2002 

VvACT-R AGCTGCTCTTTGCAGTTTCCAGC 

VIT_06s0004g00480 

(VvTUB) 

VvTUB-F TGTTGGTGAAGGCATGGAGG 
Giacomelli et al. 2012 

VvTUB-R AGATGACACGCCTGCTGAACT 

VIT_01s0010g02020 
VvPER-F AGGGCAAGCAAGATGTGTGA 

This study 
VvPER-R TCCAGGGGTGCAAGATTGTC 

VIT_01s0146g00480 
VvJAZ10-F TCCGAAGAATAATCCGCCGT 

This study 
VvJAZ10-R CAGGACTGTAAACCGGCAAC 

VIT_02s0025g01670 
Vv02-F ACAAGGAAGCAAAAGGAGCA 

This study 
Vv02-R CCTCAGCAAGTTCAACCACA 

VIT_03s0038g03130 
VvFMO3-F CTCCAAACACCCAAACCATT 

This study 
VvFMO3-R TGAACTTGATGTGCCTGAGC 

VIT_04s0023g03230 
VvSAUR9-F TGGGAAGAAACCTGGCTATG 

This study 
VvSAUR9-R GGTGAGCCAACCATGAGATT 

VIT_05s0094g00360 
VvCHIT4c-F TCGAATGCGATGGTGGAAA Ramírez-Suero et al. 

2014 VvCHIT4c-R TCCCCTGTCGAAACACCAAG 

VIT_07s0005g03340 
VvMYB14-F TCTGAGGCCGGATATCAAAC 

Höll et al. 2013 
VvMYB14-R GGGACGCATCAAGAGAGTGT 

VIT_08s0058g00690 
VvWRKY33-F ATTCAAGCACTAGTATGAACAGAGCAG 

Merz et al. 2015 
VvWRKY33-R CCTTGTTGCCTTGGCATGA 
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Supplemental Table S3.1.Continued. 
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Gene ID 

Primer 

name Primer sequence Reference 

VIT_08s0058g00790 
VvSIRD-F TGAAGACACACTCGGAGCTG 

This study 
VvSIRD-R AGGATATCGAGGCGTCCGTA 

VIT_11s0052g01110 
Vv4CL-F TTCCCGACATCAACATCCCG 

This study 
Vv4CL-R TTACGTGCGGTGAGATGGAC 

VIT_12s0059g01250 
VvbGlu-F GCGTTTCTCCTGACCGTCTA 

This study 
VvbGlu-R GCTCTTCATGGCCAACTGAC 

VIT_13s0074g00390 
VvCYP-F ATCGAAAAGGGCCAGTCTTT 

This study 
VvCYP-R GCATGTTTTGCACCATGTTC 

VIT_14s0066g01150 
VvCCR-F AGCAGAAACAGGGATGCCAT 

This study 
VvCCR-R AGAGAGCCTCCCATCTGACA 

VIT_14s0171g00180 
VvLRR-F GCACTGGAAATTTGGGAGAA 

This study 
VvLRR-R GCAAATCCGCTGAAATCACT 

VIT_17s0000g09770 
VvCP-F GGTTTTGGTTGTTGGGATTG 

This study 
VvCP-R TAAAGCGCTTGTGCTTCTCA 

VIT_18s0001g14790 
VvEXL3-F GGCGCGAAGAATAGTTGTTG 

This study 
VvEXL3-R GATCCTCGGCACACTCTCTT 

VIT_19s0014g01780 
VvBZIP-F TTCTTGGGTGGACGAGTTTC 

This study 
VvBZIP-R ATGCCTAGCTTCCTCAACCA 

VIT_19s0093g00320 
VvGST1-F CCAAAGAGCAAAAGCCAAGT 

Conn et al. 2008 
VvGST1-R TGTCCAGAAAACCCAAAGTC 

 

Supplemental Table S3.2. Summary of reads mapping of the 18 RNA-seq libraries Ctrl, mock 

inoculated; Trt, B. cinerea inoculated; Bc, Botrytis cinerea; HG, hard-green berry; Peg, pre-

egression; Eg, egression; 1-3 indicate the three biological replicates. 

Library 

Total quality-

trimmed reads 

Reads mapped to 

V. vinifera 

reference 

Reads uniquely 

mapped to V. 

vinifera reference 

Reads mapped to B. 

cinerea reference 

Reads uniquely 

mapped to B. 

cinerea reference 

HG_Ctrl1 18,764,162 17,226,186 (91.80 %) 16,552,848 (88.22 %) 46,268 (0.25 %) 520 (0.01 %) 

HG_Ctrl2 18,245,810 13,462,443 (73.78 %) 10,041,596 (55.04 %) 1,675,246 (9.18 %) 1,786 (0.00 %) 

HG_Ctrl3 20,330,170 17,125,573 (84.24 %) 16,376,294 (80.55 %) 68,337 (0.34 %) 545 (0.00 %) 

HG_Trt1 23,828,415 21,594,466 (90.62 %) 20,837,836 (87.45 %) 45,065 (0.19 %) 6,958 (0.03 %) 

HG_Trt2 21,976,001 19,853,734 (90.34 %) 19,120,028 (87.00 %) 56,664 (0.26 %) 16,928 (0.08 %) 

HG_Trt3 21,146,332 18,828,955 (89.04 %) 18,070,467 (85.45 %) 75,234 (0.35 %) 24,680 (0.12 %) 

Ripe_Ctrl1 24,635,902 22,048,745 (89.50 %) 21,007,364 (85.27 %) 37,989 (0.15 %) 818 (0.00 %) 

Ripe_Ctrl2 26,843,805 24,151,620 (89.97 %) 23,069,555 (85.94 %) 27,883 (0.10 %) 836 (0.00 %) 

Ripe_Ctrl3 29,860,937 26,527,044 (88.84 %) 25,136,297 (84.18 %) 169,478 (0.57 %) 885 (0.00 %) 

Ripe_Eg1 21,296,699 3,254,793 (15.28 %) 2,756,774 (12.94 %) 16,664,468 (78.25 %) 14,235,574 (66.84 %) 

Ripe_Eg2 22,578,478 5,287,093 (23.42 %) 4,550,569 (20.15 %) 14,815,131 (65.62 %) 12,490,580 (55.32 %) 

Ripe_Eg3 28,787,397 12,703,484 (44.13 %) 11,577,654 (40.22 %) 12,750,536 (44.29 %) 10,718,882 (37.23 %) 

Ripe_Peg1 45,369,750 32,808,151 (72.31 %) 27,381,446 (60.35 %) 2,547,394 (5.61 %) 22,842 (0.05 %) 

Ripe_Peg2 55,880,939 45,269,916 (81.01 %) 42,976,225 (76.91 %) 2,315,554 (4.14 %) 1,698,079 (3.04 %) 

Ripe_Peg3 47,239,407 40,062,424 (84.81 %) 38,243,440 (80.96 %) 118,269 (0.25 %) 23,815 (0.05 %) 

Bc1 22,223,388 76,740 (0.35 %) 21,423 (0.01 %) 20,072,229 (90.32 %) 14,108,503 (63.48 %) 

Bc2 21,289,297 47,738 (0.22 %) 28,559 (0.13 %) 19,256,732 (90.45 %) 16,603,159 (77.99 %) 

Bc3 22,254,222 50,719 (0.23 %) 17,798 (0.08 %) 20,086,452 (90.25 %) 16,522,732 (74.24 %) 



 

115 
 

Supplemental Table S3.8. List of genes used to validate the RNA-Seq expression values by q-

PCR assay. Gene identification, gene description, and fold change from RNA-seq and qPCR are 

provided. HG, har- green berry; Trt, B. Cinerea inoculated; Ctrl, mocj inoculated; Peg, pre-egression; Eg, 

egression. 

 

 

Supplemental Table S3.10. Gene ontology terms enriched in the differentially expressed 

grapevine genes upon quiescent B. cinerea infection on hard-green berry, 4 wpi. Enriched GO 

terms are presented. BP, biological process; MF, molecular function; CC, cellular component; 

wpi, week post inoculation. 

Gene ID 

RNAseq (log2 fold change) qPCR (log2 fold chnage) 

HG 

(Trt vs Ctrl) 

Ripe 

(Peg vs ctrl) 

Ripe 

(Eg vs Ctrl) 

Ripe 

(Eg vs peg) 

HG 

(Trt vs Ctrl) 

Ripe 

(Peg vs ctrl) 

Ripe 

(Eg vs Ctrl) 

Ripe 

(Eg vs peg) 

VIT_01s0010g02020 0.03 7.60 10.83 3.23 0.06 8.36 10.49 2.14 

VIT_01s0146g00480 0.80 4.84 7.36 2.52 1.38 4.05 5.91 1.86 

VIT_02s0025g01670 0.56 -2.26 -3.51 -1.25 0.12 -2.16 -2.77 -0.61 

VIT_03s0038g03130 -3.29 0.04 0.02 -0.02 -2.35 -0.71 -0.40 0.31 

VIT_04s0023g03230 -0.03 -3.05 -4.92 -1.87 0.16 -2.68 -3.70 -1.02 

VIT_05s0094g00360 1.84 3.38 5.12 1.75 1.41 2.98 4.27 1.29 

VIT_07s0005g03340 2.22 2.37 4.52 2.16 1.12 1.94 3.48 1.53 

VIT_08s0058g00690 1.61 2.17 3.69 1.52 1.23 1.42 2.69 1.27 

VIT_08s0058g00790 3.23 2.78 2.55 -0.23 1.52 2.18 2.23 0.04 

VIT_11s0052g01110 2.69 5.02 6.12 1.10 1.42 4.15 4.73 0.58 

VIT_12s0059g01250 -0.10 -3.70 -2.68 1.02 -0.09 -2.62 -1.47 1.15 

VIT_13s0074g00390 -0.44 -5.48 -4.76 0.72 -0.29 -6.58 -5.86 0.72 

VIT_14s0066g01150 1.05 2.85 5.02 2.17 0.60 2.28 3.76 1.48 

VIT_14s0171g00180 -0.45 -2.75 -3.05 -0.30 -0.44 -2.40 -3.13 -0.74 

VIT_17s0000g09770 -2.00 3.83 3.04 -0.79 -1.56 1.78 1.55 -0.23 

VIT_18s0001g14790 0.30 -6.42 -6.29 0.14 0.27 -4.32 -5.53 -1.21 

VIT_19s0014g01780 -1.25 -2.44 -3.18 -0.74 -0.70 -2.20 -2.46 -0.26 

VIT_19s0093g00320 0.03 3.82 9.04 5.21 0.07 4.02 7.79 3.78 

GO term Ontology Description 

Number in 

input list 

Number in 

reference list p-value FDR 

GO:0006950 BP response to stress 68 1715 2.50E-05 4.10E-04 

GO:0009856 BP pollination 28 203 6.00E-14 3.20E-12 

GO:0006464 BP protein modification process 97 2097 1.00E-09 2.70E-08 

GO:0000003 BP reproduction 32 439 2.00E-08 4.80E-07 

GO:0019748 BP secondary metabolic process 28 374 8.10E-08 1.70E-06 

GO:0006350 BP transcription 74 1857 1.10E-05 1.90E-04 

GO:0009056 BP catabolic process 44 1084 0.00031 4.20E-03 

GO:0030246 MF carbohydrate binding 39 403 1.50E-13 1.00E-11 

GO:0004871 MF signal transducer activity 77 1475 2.40E-10 4.00E-09 

GO:0016301 MF kinase activity 100 2132 3.00E-10 4.00E-09 

GO:0016740 MF transferase activity 170 4541 2.00E-08 1.90E-07 

GO:0003700 MF transcription factor activity 35 551 1.40E-07 1.10E-06 

GO:0030528 MF transcription regulator activity 39 858 7.10E-05 5.30E-04 

GO:0005576 CC extracellular region 45 887 1.50E-06 1.40E-04 
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Supplemental Table S3.11. Concentration of polyphenolic secondary metabolites in hard-green 

berry, mock inoculated (Ctrl) or with quiescent B. cinerea (Trt) at 4 wpi. The amount is given in 

µg/g fresh weight. p-value < 0.05, using unpaired heteroscedastic Student’s t test, is highlited. 

LOD, limit of detection; wpi, week post inoculation; SE, standard error. 

Classe Secondary metabolites LOD(µg/g) 
Ctrl Trt 

p-value Mean SE Mean SE 

benzoic acids 

p-hydroxybenzoic acid 0.005 1.00 0.06 1.15 0.18 3.96E-01 

vanillic acid 0.0025 0.01 0.00 0.01 0.00 2.64E-01 

gallic acid 0.025 0.11 0.02 0.16 0.06 4.03E-01 

phenylpropanoids 

fraxin 0.0025 0.01 0.00 0.00 0.00 3.42E-01 

caftaric acid 0.0125 595.38 38.89 660.14 93.16 5.08E-01 

caffeic acid 0.02 0.15 0.02 0.12 0.02 4.52E-01 

fertaric acid 0.0025 7.85 0.73 18.44 4.15 2.50E-02 

trans-coutaric acid 0.025 260.24 16.25 272.70 31.48 7.19E-01 

dihydrochalcones phlorizin 0.0025 1.40 0.25 1.40 0.12 9.95E-01 

flavonoids 

luteolin 0.0025 0.01 0.00 0.04 0.02 1.30E-01 

luteolin-7-O-Glc 0.0025 0.22 0.01 0.40 0.08 3.30E-02 

naringenin 0.0025 0.01 0.00 0.08 0.01 1.00E-03 

catechin 0.025 17.75 1.23 26.06 3.88 5.90E-02 

epicatechin 0.025 4.40 0.44 9.33 1.19 3.00E-02 

epigallocatechin 1.25 2.18 0.52 1.64 0.39 4.44E-01 

gallocatechin 0.25 55.54 10.82 47.12 4.59 5.06E-01 

epigallocatechin gallate 0.25 0.23 0.05 0.47 0.17 2.79E-01 

epicatechin gallate 0.025 0.10 0.02 1.67 0.29 1.30E-02 

procyanidin B1 0.0125 67.98 4.47 136.63 28.81 1.00E-01 

procyanidin B2 + B4 0.125 2.52 0.49 3.74 0.64 1.79E-01 

procyanidin B3 (as B1) 0.0125 25.27 1.28 47.21 9.14 9.80E-02 

taxifolin 0.0025 6.54 0.95 13.40 3.46 1.52E-01 

myricetin 1.25 1.22 0.03 1.30 0.16 6.79E-01 

Quercetin-3-Rha 0.005 0.04 0.01 0.06 0.02 3.06E-01 

kaempferol-3-Glc 0.0025 0.02 0.01 0.08 0.03 1.62E-01 

quercetin-3-Glc+quercetin-3-Gal  0.0025 4.17 0.28 6.82 1.26 1.32E-01 

isorhamnetin-3-Glc 0.0025 0.09 0.01 0.14 0.02 7.10E-02 

kaempferol-3-rutinoside 0.005 0.03 0.00 0.07 0.02 1.89E-01 

Quercetin-3-Glc-Ara 0.005 0.02 0.00 0.05 0.01 9.90E-02 

rutin 0.0025 1.50 0.22 2.40 0.47 1.56E-01 

isorhamnetin-3-rutinoside 0.005 n.d. 

 

0.02 0.01 

 Quercetin-3-glucuronide 0.0125 27.21 2.83 36.84 7.30 3.06E-01 

Kaempferol-3-glucuronide 0.005 0.13 0.03 0.24 0.04 7.50E-02 

stilbenoids 

arbutin 0.005 0.13 0.01 0.90 0.19 2.70E-02 

trans-resveratrol 0.005 n.d. 

 

1.52 0.47  

cis-resveratrol 0.0025 n.d. 

 

0.01 0.00  

piceatannol 0.0025 0.01 0.00 0.19 0.08 1.18E-01 

trans-piceide 0.0125 0.97 0.09 10.08 1.83 1.60E-02 

cis-piceide 0.0025 0.34 0.05 1.70 0.40 4.20E-02 

astringin 0.005 0.14 0.03 1.55 0.26 1.20E-02 

isorhapontin 0.005 n.d. 

 

0.21 0.06  

trans-ε-viniferin 0.005 n.d. 

 

9.86 2.16  

cis+trans-o-viniferin 0.0125 n.d. 

 

0.30 0.07  

caffeic acid+catechin condensation 0.05 2.01 0.28 4.76 1.22 1.17E-01 

pallidol 0.005 n.d. 

 

0.60 0.19  

ampelopsin D+quadrangularin A 0.025 n.d. 

 

2.78 0.81  

α-viniferin 0.0125 n.d. 

 

1.86 0.66  

E-cis-miyabenol 0.0125 n.d. 

 

0.91 0.34  

Z-miyabenol C 0.05 n.d. 

 

0.40 0.12  

isohopeaphenol 0.0125 n.d. 

 

0.16 0.05  
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Supplemental Table S3.14. Gene ontology terms enriched in the differentially expressed 

grapevine genes in ripe berry with pre-egressed and egressed B. cinerea at 12 wpi. Enriched GO 

terms are presented. BP, biological process; MF, molecular function; CC, cellular component; 

wpi, week post inoculation. 

 

Supplemental Table S3.3. Differentially expressed V. vinifera genes due to quiescent B. cinerea presence 
on hard-green berry.  (Provided as excel file)  

Supplemental Table S3.4. Differentially expressed V. vinifera genes due to pre-egressed and egressed B. 
cinerea during ripening. (Provided as excel file)  

Supplemental Table S3.5. Differentially expressed Botrytis cinerea genes during egression on ripe berry as 
compared to PDB grown B. cinerea. (Provided as excel file)  

Supplemental Table S3.6. Botrytis cinerea genes expressed in planta, in hard-green berry during quescent 
infection. (Provided as excel file)  

Supplemental Table S3.7. Botrytis cinerea genes expressed in planta, in ripe berry (pre-egressed). 
(Provided as excel file)  

Supplemental Table S3.9. Gene ontology (GO) annotation of quescent B. cinerea genes expressed in 
planta in hard-green berry stage. (Provided as excel file)  

Supplemental Table S3.12. Gene ontology (GO) annotation of in-planta-expressed genes of pre-egressed 
B. cinerea in ripe berry. (Provided as excel file) 

Supplemental Table S3.13. Gene ontology (GO) annotation of genes of egressed B. cinerea in ripe berry. 
(Provided as excel file) 

Stage GO term Ontology Description 

Number in 

input list 

Number in 

reference list p-value FDR 

P
re

-e
g

re
ss

io
n

 

GO:0019748 BP secondary metabolic process 102 374 3.80E-14 1.40E-11 

GO:0050896 BP response to stimulus 341 2206 9.00E-05 5.50E-03 

GO:0006810 BP transport 350 2301 0.00023 8.30E-03 

GO:0043412 BP macromolecule modification 363 2098 1.70E-09 2.10E-07 

GO:0006464 BP protein modification process 363 2097 1.60E-09 2.10E-07 

GO:0004871 MF signal transducer activity 295 1475 6.20E-15 2.40E-13 

GO:0016740 MF transferase activity 721 4541 2.10E-09 4.00E-08 

GO:0030246 MF carbohydrate binding 81 403 1.70E-05 2.70E-04 

GO:0005215 MF transporter activity 215 1292 2.30E-05 3.30E-04 

GO:0003824 MF catalytic activity 1652 11955 0.00058 7.30E-03 

GO:0005886 CC plasma membrane 323 1654 1.00E-14 1.80E-12 

GO:0016020 CC membrane 823 5038 1.80E-12 1.60E-10 

E
g

re
ss

io
n

 

GO:0019748 BP secondary metabolic process 135 374 4.30E-16 1.60E-13 

GO:0050896 BP response to stimulus 486 2206 8.60E-06 1.40E-03 

GO:0006950 BP response to stress 385 1715 1.20E-05 1.40E-03 

GO:0006810 BP transport 492 2301 0.00013 6.20E-03 

GO:0009056 BP catabolic process 253 1084 2.10E-05 1.90E-03 

GO:0005975 BP carbohydrate metabolic process 241 1063 0.0002 8.20E-03 

GO:0003700 MF transcription factor activity 128 548 0.00092 2.80E-02 

GO:0005886 CC plasma membrane 421 1654 1.20E-12 2.40E-10 

GO:0016020 CC membrane 1096 5038 5.00E-09 4.80E-07 

GO:0005737 CC cytoplasm 961 4644 4.70E-05 3.00E-03 

GO:0005623 CC cell 2320 11670 9.20E-05 4.40E-03 

GO:0044464 CC cell part 2300 11600 0.00015 5.80E-03 
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3.8.2. Supplemental figures 

 

 

Supplemental Figure S3.1. Volcano plots of grapevine and B. cinerea gene expression values. A, har-

green berry, Trt vs Ctrl; B, Ripe berry, pre-egressed vs Ctrl; C, Ripe berry, egressed vs Ctrl; D, Ripe berry, 

egressed vs pre-egressed; and E, B. cinerea, egressed vs PDB cultures. Genes in the left top rectangle [log 

10(P. value) > 2 and log2(fold change) < -1] were selected as downregulated; whereas, genes in the right 

top rectangle were selected as upregulated [log 10(P. value) > 2 and log2(fold change) > 1] . 

 

A B 

C 
D 

E 
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Profile A 

Profile B 

Profile C 

Profile D 

Supplemental Figure S3.2. Profiles of grapevine berry trancripts at ripe stage in reponse to pre-egressed and 

egressed B. cinerea inoculation. K-means clustering of grapevine genes based on the Euclidean distance of 

the weighted RNA-seq reads. Genes that showed at least twofold expression difference with p-value < 0.01 

were considered, and clustered into 8 clusters. The clusters fall into 4 major profiles (A, B, C, and D).  

Molecular enrichment analysis based on VitisNet was provided for each group. 
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4. CONCLUDING REMARKS 

The research reported in this thesis investigated the interaction between B. cinerea and grapevine 

inflorescences/berry at infection initiation, entry to quiescence, quiescence, and egression. 

Confocal microscopy, classical plating out method, and molecular analyses were used on samples 

inoculated with B05.10 conidia or mock at bloom (EL25/26 grapevine phenological stage).  

The increased level of expression of B. cinerea virulence related genes involved in plant cell wall 

degradation, ROS accumulation, and phytotoxins biosynthesis, upon conidial contact with the 

flower surface, instigated defense responses in the grapevine tissues. The flowers, upon 

perceiving the threat, reprogrammed the transcriptions of genes: encoding different antimicrobial 

proteins, involved in ROS accumulation and secondary metabolites biosynthesis pathways, in 

phytoalexin production and cell wall reinforcement. These physical and chemical defense 

responses of the grapevine flowers were all together very efficient in blocking B. cinerea growth 

and inducing quiescence. Similar defense mechanisms were also deployed by the hard-green 

berries, 4 wpi, to keep the pathogen in quiescent state. From the disease management point of 

view, the quiescent infection is a very important one as the infecting pathogen remains undetected 

and causes the disease that impairs crop quantity, quality, and appearance when the conditions are 

right for re-initiating the infection. Depending on the pathogen and host condition, quiescent 

stage can last from few days to months. In this study, B. cinerea underwent 12 weeks of 

quiescence before it resumed its active growth at ripening.  

During egression at ripe, almost all Botrytis virulence and growth related genes were expressed. 

Hence, the fungus was able to cause bunch rot despite the futile defense responses of the berries. 

From the results, it seems that the fungus perceived and exploited ripening associated physico-

chemical changes and favorable external conditions to switch to an active state of growth from its 

long-lived quiescence state. In berries with egressed Botrytis, the expression level of a number of 

genes involved in cell wall self-disassembly were higher than in the control berries, suggesting 

that the egressed Botrytis exploited the ontogenically activated cell wall self-disassembly genes. 

Besides, it was also observed that the cell wall strengthening process, used as a physical barrier to 

block the pathogen from entering into the inner layers of the infected tissue, was not activated. 

Perhaps, since cell wall self-disassembly is a general physiological cue during fruit ripening, cell 

wall stiffening might not be used as defense response by ripening fruits.    
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In conclusion, according to the results obtained, the defense responses of the grapevine flowers 

and the hard-green berries were able to keep B. cinerea under quiescence. However, exploiting 

the ripening associated physico-chemical changes in the ripe berries, the fungus recovered an 

active metabolism and pathogenic activity and caused bunch rot at ripe.  
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