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Relaxed decidability and the robust semantics of Metric Temporal Logic

Abstract
Relaxed notions of decidability widen the scope of automatic verification of hybrid systems. In quasi-
decidability and $\delta$-decidability, the fundamental compromise is that if we are willing to accept a slight
error in the algorithm's answer, or a slight restriction on the class of problems we verify, then it is possible to
obtain practically useful answers. This paper explores the connections between relaxed decidability and the
robust semantics of Metric Temporal Logic formulas. It establishes a formal equivalence between the
robustness degree of MTL specifications, and the imprecision parameter $\delta$ used in $\delta$-
decidability when it is used to verify MTL properties. We present an application of this result in the form of an
algorithm that generates new constraints to the $\delta$-decision procedure from falsification runs, which
speeds up the verification run. We then establish new conditions under which robust testing, based on the
robust semantics of MTL, is in fact a quasi-semidecision procedure. These results allow us to delimit what is
possible with fast, robustness-based methods, accelerate (near-)exhaustive verification, and further bridge the
gap between verification and simulation.
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ABSTRACT
Relaxed notions of decidability widen the scope of automatic
verification of hybrid systems. In quasi-decidability and δ-
decidability, the fundamental compromise is that if we are
willing to accept a slight error in the algorithm’s answer, or a
slight restriction on the class of problems we verify, then it is
possible to obtain practically useful answers. This paper ex-
plores the connections between relaxed decidability and the
robust semantics of Metric Temporal Logic formulas. It es-
tablishes a formal equivalence between the robustness degree
of MTL specifications, and the imprecision parameter δ used
in δ-decidability when it is used to verify MTL properties.
We present an application of this result in the form of an
algorithm that generates new constraints to the δ-decision
procedure from falsification runs, which can speed up the
verification run. We then establish new conditions under
which robust testing, based on the robust semantics of MTL,
is in fact a quasi-semidecision procedure. These results al-
low us to delimit what is possible with fast, robustness-based
methods, accelerate (near-)exhaustive verification, and fur-
ther bridge the gap between verification and simulation.

Keywords
Hybrid systems; robust semantics; falsification; metric tem-
poral logic; δ-decidability; quasi-decidability

1. INTRODUCTION
The formal analysis of hybrid dynamical systems initially

focused on decidability considerations. Studies such as [23,
4, 22] analyzed classes of hybrid systems for which ques-
tions like reachability could be decided. The commonly ac-
cepted lesson of these initial investigations was that most
hybrid systems are undecidable, with the decidable class be-
ing rather special and placing strong limitations on what we
can model and verify automatically.

Relaxed decidability. Partially as a result of this con-
clusion, two independent trends emerged, which we view
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as trying to bridge the gap between exhaustive verifica-
tion (expensive, complete and sound) and testing (inexpen-
sive, incomplete and sound).1 See Fig. 1 (A)-(B). The first
trend defined and applied relaxed notions of decidability to
the analysis of hybrid systems [17, 10, 15, 31, 16, 20, 19,
21]. Broadly speaking, these works re-formulated the safety
problem for hybrid systems as a first-order formula over real
constraints: does there exist an initial point x0 such that
a system trajectory starting from x0 reaches the unsafe set
while respecting the system dynamics? In quasi-decidability
[15, 31, 16], the (quasi-)decision procedure always returns a
correct YES/NO answer to this question, except for ‘patho-
logical’ cases on which it might run forever. The argument
then is that such pathological cases are of little interest in
practical system design. In δ-decidability [20, 19, 21], the (δ-
complete) decision procedure always halts and returns either
a correct NO answer (the formula is not true, i.e. the system
is safe) or an approximate δ-YES answer (the formula may
be false but a small δ-sized perturbation of it is true, i.e.
the system is δ-close to being unsafe). The argument, then,
is that a system which is δ-close to being unsafe should be,
for all practical purposes, considered unsafe. Thus, this re-
search thrust relaxes exhaustive verification to make it more
widely applicable, at the cost of small errors in the answer
or the arguably small likelihood of never getting an answer.
These approaches were implemented in software tools (iSAT,
dReach and HSolver).

Robustness-guided methods. Separately from the above
efforts, the second line of research [12, 8, 24, 2] sought to
put falsification (a.k.a. testing) on a more rigorous footing,
thus bringing it closer to exhaustive verification. See Fig. 1
(C)-(D). This was done to leverage falsification’s ability to
handle any system, including black boxes, and any specifica-
tion, not just safety. An additional benefit is that it only uses
relatively inexpensive simulations. This enhancement to fal-
sification was accomplished by defining a real-valued robust
satisfaction degree of the formal specification expressed in
Metric Temporal Logic (MTL). This robustness was used
as an objective function to perform robustness-guided fal-
sification: [1, 29, 2]. By minimizing the robustness over
the set of initial conditions, we reach a system trajectory
that violates the specification. It can also be used in ro-
bust testing [24], in which a finite number of simulations
could cover the entire set of system behaviors. Thus, this
approach provides stronger guarantees on the outcome of

1Other approaches exist, of course, but they are not in the
scope of this paper.
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Figure 1: The rapprochement between formal verification and testing. Robustness-guided falsification is integrated with
δ-complete decision procedures and Robust testing is a quasi-semidecision procedure.

testing and seeks better-performing falsification algorithms
applicable to a broad class of problems.

While the connection between the relaxed decidability no-
tions was previously observed [16], the connection between
the robust semantics and relaxed decidability has not been
explored. Notions of robustness are fundamental to both
approaches, so it is tempting to study robustness-guided
methods in the light of relaxed decidability. Our motiva-
tion is both theoretical and practical: we take testing as
our starting point, and want to provide rigorous ways in
which robustness-guided testing can accelerate relaxed deci-
sion procedures, and to delimit what is theoretically possible
with robustness-guided methods.

Contributions. We establish a formal equivalence be-
tween the robustness degree of MTL specifications, and the
imprecision parameter δ used in δ-decidability (Section 3).
Informally, we find that δ-decidability is computing the ro-
bust semantics of the MTL formula and deciding whether
it is negative (formula is False) or larger than −δ (formula
is δ-True). We present an application of this connection
by using the results of falsification to further constrain the
operation of a δ-decidability tool (Section 3.3). Empirical
evidence obtained using our approach demonsrates runtime
savings for the δ-decider, which we expect will improve its
scalability to larger systems. The paper then turns to the
relation between robust testing and quasi-decidability. We
establish a relation between the robust semantics of MTL
and the notion of quasi-robustness. We then give new re-
laxed conditions under which Robust Testing terminates for

(almost everywhere) robustly correct systems (Section 4).
In the process, we delimit the class of MTL formulas for
which there can be an arbitrary difference between the ex-
act robustness degree of an MTL formula and the robust
semantics used to approximate it (Section 4.1.2). The plan
of the paper is given in Fig. 1.

This study opens the way to a principled integration of
falsification and exhaustive verification, where inexpensive
but robust simulations are an integral part of (relaxed) ex-
haustive verification algorithms, rather than an independent
accessory in the verification process.

All proofs appear in the online technical report [3].

2. ROBUSTNESS OF MTL FORMULAS
A falsification algorithm searches a system’s set of initial

conditions X0 ⊂ Rn for a point x0 from which the system
exhibits a trajectory that falsifies (i.e., violates) the system’s
specification. When the specification is expressed in Metric
Temporal Logic (MTL) [28], then the robustness degree of
the specification can be used to guide the search. We now
define the robustness degree of an MTL formula and describe
how it’s approximated by the robust semantics of MTL for-
mulas. The formal connections between these concepts and
relaxed decidability are established in the next sections.

Notation. The word signal will refer to a function from
some bounded time domain T ⊂ R to the bounded state
space X ⊂ Rn. The set of all signals x : T → X is XT.
Signals are denoted by the letters x,y, etc. The value of
signal x at time t is xt. All time intervals I ⊂ R that



appear in what follows should be interpreted as meaning
I ∩ T. Given t ∈ R and I ⊂ R, t +T I = T ∩ {t + t′|t′ ∈ I}.
The symbols t and u denote the sup and inf opereators,
respectively. A trajectory is a signal generated by a hybrid
system. A trajectory starting from x0 is denoted yx0 . P(X)
is the set of all subset of X, and cl(X) is its closure. The
positive reals are R+ := (0,∞), and the negative reals are
R− = (−∞, 0).

Let (A, d) be a metric space; that is, the distance function
d : A × A → R+ is non-negative, symmetric, respects the
triangle inequality and is 0 iff its arguments are equal. Let
Y ⊂ A be a subset of A, and let cl(Y ) denote its closure in
the metric topology. Then we define:

distd(x, Y ) := inf
y∈cl(Y )

d(x, y) (1)

depthd(x, Y ) := distd(x,A \ Y ) (2)

Distd(x, Y ) :=

{
−distd(x, Y ), x /∈ Y
depthd(x, Y ), x ∈ Y (3)

Bd(x, r) := {y ∈ A | d(x, y) < r} (4)

For example, if A = X is the state space and d(a, b) =
|a−b| is the Euclidian distance between points inX, then the
above define, respectively, the distance of a point to a subset
Y ⊂ X, the depth of a point in a set Y , the signed distance
of point x to set Y (with positive value indicating the point
a is in Y , and a negative value indicating otherwise), and the
open ball of radius r centered on x. As another important
example, A = XT can be the signal space and d(x,y) =
ρ(x,y) := supt∈T |xt − yt| is the sup norm of the difference
between the signals x and y.

Let AP be a set of atomic propositions, and let ϕ be
a formula in MTL+, the set of MTL formulas in Negative
Normal Form (so only atomic propositions can have a ¬
preceding them):

ϕ := >|p|¬p|ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2|ϕ1UIϕ2|ϕ1RIϕ2

Let O : AP → P(X) be an observation map for the atomic
propositions. That is, for every p ∈ AP , O(p) = {x ∈
X | x |= p}.

Assumption 2.1. Unless otherwise indicated, signals are
continuous-time. The set X is a bounded box in Rn: X =
[a1, b1]× . . .× [an, bn], and is not included in any O(p). All
formulas have a bounded horizon (all of their temporal in-
tervals are bounded). Therefore, we may also assume that
all trajectories have fininte length, that is no longer than the
formula’s horizon. When we need to compute the robustness
(defined below) of a system trajectory, we assume a rigorous
simulator is used, and a lower bound on the rigorous simu-
lation’s robustness is computed, as explained in [3, Section
6].

Let t ∈ T be a time instant and ϕ be an MTL+ formula.
Lt(ϕ) is the set of signals in XT that satisfy ϕ at time t,
that is, Lt(ϕ) = {x ∈ XT | (x, t) |=O ϕ}.

Definition 2.1. [12] Define the distance ρ : XT × XT →
R+ by ρ(x,y) = supt∈T d(xt, yt). The robustness degree of
signal x at time t relative to formula ϕ under observation O
is Distρ(x,Lt(ϕ)).

By definition, if for two signals x,y it holds that ρ(x,y) <
|Distρ(x,Lt(ϕ))| then either both signals are in Lt(ϕ) or
both are outside it, and so they both have the same truth
value relative to ϕ. The robustness degree therefore defines

a level of perturbation to x which will not change its truth
value relative to ϕ. The perturbation is measured using the
distance function ρ.

The robustness degree, in general, cannot be computed di-
rectly because the set Lt(ϕ) cannot be characterized. How-
ever, it can be conservatively approximated by the robust-
ness estimate, defined using the following semantics of MTL
formulas.

Definition 2.2 (Robust semantics [12]). The robust se-
mantics of ϕ are denoted by Jϕ,OK(x, t) and are defined as

J>,OK(x, t) = +∞
∀p ∈ AP, Jp,OK(x, t) = Distd(xt,O(p))

J¬ϕ,OK(x, t) = −Jϕ,OK(x, t)
Jϕ1 ∨ ϕ2,OK(x, t) = Jϕ1,OK(x, t) t Jϕ2,OK(x, t)
Jϕ1 ∧ ϕ2,OK(x, t) = Jϕ1,OK(x, t) u Jϕ2,OK(x, t)

Jϕ1UIϕ2,OK(x, t) = tt′∈t+TI

(
Jϕ2,OK(x, t′)

l

ut′′∈[t,t′)Jϕ1,OK(x, t′′)
)

Jϕ1RIϕ2,OK(x, t) = ut′∈t+TI

(
Jϕ2,OK(x, t′)

⊔
tt′′∈[t,t′)Jϕ1,OK(x, t′′)

)
The robustness estimate of signal x relative to ϕ at time t
under observation O is Jϕ,OK(x, t).

A determistic hybrid system produces a unique trajec-
tory yx0 from any initial point x0. Therefore we will speak
interchangeably of the robustness estimate of yx0 and the
robustness of the initial point x0. The following establishes
that the robustness estimate is a conservative bound on the
robustness degree [12]

Theorem 2.1. For any x ∈ XT and MTL+ formula ϕ, the
following hold

1. −distρ(x,Lt(ϕ)) ≤ Jϕ,OK(x, t) ≤ depthρ(x,Lt(ϕ))

2. If r = Jϕ,OK(x, t) < 0 then x falsifies the spec ϕ,
and if r > 0 then x satisfies ϕ. The case r = 0 is
inconclusive.

3. Any signal in Bρ(x, |r|) has the same truth value rela-
tive to ϕ as x.

2.1 Robustness-guided falsification
We now present two applications of the robust semantics,

starting with robustness-guided falsification. Using Thm. 2.1,
a robustness-guided falsification algorithm searches for fal-
sifying trajectories by minimizing the robustness estimate
over X0, the set of initial conditons of the system.

min
x0∈X0

Jϕ,OK(yx0 , t)

where yx0 is the system trajectory starting from x0. If the
found minimum is negative then this means the correspond-
ing minimizer y∗x0 falsifies ϕ. Falsification uses relatively
fast simulations and only requires the ability to simulate
the system.

2.2 Robust testing
A second application of the robust semantics is robust test-

ing [13, 24]. It proceeds as shown in Algorithm 1: it iter-
atively samples the search space X0 to yield a sequence of



Algorithm 1: Robust Testing

Data: An MTL formula ϕ, a system H with initial set
X0 ⊂ Rn and bisimulation V : X ×X → [0,∞)

1 Set i = 0, Xr = X0;
/* Sample while the balls have not yet covered

X0 */

2 while Xr 6= ∅ do
3 Sample xi in the interior of Xr;
4 Compute ri = Jϕ,OK(yxi , t);
5 if ri < 0 then
6 Return False ; /* Found a falsifier */

7 else if ri > 0 then
/* Compute a ‘robustness ball’ Bi around

the initial point xi */

8 Compute ci > 0 s.t. ∀ z ∈ X0,
d(xi, z) < ci =⇒ d(yxi(t),yz(t)) < r ∀ t ∈ T;

9 Set Xr = X0 \Bd(xi; ci)
10 else

/* No robustness ball - keep sampling */

11 end
12 i = i+ 1

13 end
14 Return True. /* Covered X0 with the balls Bi */

samples x0, x1, . . .. If a new sample xi yields a trajectory
yxi with negative robustness ri < 0, the algorithm returns
False (Line 6). Otherwise, if ri > 0, we know that any
signal x within Bρ(yxi , ri) also satisfies ϕ. So we wish to
exclude any points in X0 that produce trajectories that stay
in Bρ(yxi ; ri) to avoid searching in them. We compute such
a set of points Bd(xi; ci) in Line 8, e.g., using bisimulations2

[13]. The ball Bd(xi; ci) is then excluded from X0, and the
sampling continues in the rest of the search space (Line 9). If
X0 is fully covered by the union of balls ∪iBd(xi; ci) at some
point, the algorithm halts and returns True. See Fig. 2.

Note that Robust Testing, as presented here, might not
terminate. For example, if the sampler gets stuck sampling
points of 0 robustness (Line 10), then it will run forever. Or,
if the balls Bi become infinitesimally smaller, as shown in
Fig. 2 (right), their union will never cover X0.

Previous work has shown that Robust Testing terminates
if the minimum robustness estimate of any system trajec-
tory is positive [13, Thm. 21]. In essence, this guarantees
that the ‘if ri > 0’ branch (Line 7) always executes, so ev-
ery new sample reduces the residual search space Xr by a
minimum amount r, 0 < r ≤ ri. In Section 4 we establish a
stronger result that extends the limits of what is achievable
with Robust Testing.

3. ROBUSTNESS AND δ-DECIDABILITY
So-called δ-Complete Decision Procedures (δ-CDP) have

been used to verify the safety of a large variety of hybrid sys-
tems. For examples, see the website of the tool dReach [26].
The approach to the problem is to write the reachability
question

Do there exist initial conditions x0 ∈ X0 ⊂ Rn from which
the system enters the unsafe set U ⊂ Rn?

2Bisimulations are outside the scope of this paper. The
reader is referred to [13] for details.

as a first-order formula over the reals. As an example, for
a (non-hybrid) dynamical system ẏ(t) = g(y(t, x0)) with
y(0, x0) = x0 ∈ X0 and bounded state-space X, the reacha-
bility question above is formulated as

∃X0x0∃[0,T ]t. f(y(t, x0)) ≥ 0

Here, the unsafe set is U = {u ∈ X | f(u) ≥ 0}.
This is an example of the more general bounded LRF -

sentence. Let F be a set of Type 2 computable functions3

which contains at least the constant 0, unary negation, addi-
tion and the absolute value. It is also closed under bounded
minimization and maximization [25]. Let ~v = (v1, . . . , vn)
be a vector of variables. An LRF -term f is either a variable
or a computable function of a term: f := v|g(f(~v)) for some
g ∈ F . Let Qi ∈ {∀, ∃}. A bounded LRF -sentence is

QV1
1 v1Q

V2
2 v2 . . . Q

Vn
n vnψ[fi(~v) ≥ 0, fj(~v) > 0] (5)

The constraint sets V` ⊂ R are bounded intervals and the
fi, fj ’s are LRF -terms, with i ∈ {1, . . . , k} and j ∈ {k +
1, . . . ,m}. ψ is a first-order, quantifier-free formula (a ‘ma-
trix’) on the predicates fi ≥ 0, fj > 0. See [20, 21].

Bounded LRF sentences have a notion of robustness that
comes from relaxing or tightening the constraints in the ma-
trix ψ.

Definition 3.1 (δ-variants and δ-robustness [20]). Let δ ∈
Q+∪{0} and S be a bounded LRF -sentence as in (5). The δ-
weakening of S is obtained by replacing each atom fi(~v) ≥ 0
by fi(~v) ≥ −δ and fi(~v) > 0 by fi(~v) > −δ:

S−δ = QV1
1 v1Q

V2
2 v2 . . . Q

Vn
n vnψ[fi(~v) ≥ −δ, fj(~v) > −δ]

The δ-strenghtening of S is analogously defined:

S+δ = QV1
1 v1Q

V2
2 v2 . . . Q

Vn
n vnψ[fi(~v) ≥ δ, fj(~v) > δ]

We say S is robust to δ-weakening if S−δ =⇒ S, and is
robust to δ-strenghtening if S =⇒ S+δ.

Because S−δ =⇒ S is equivalent to ¬S−δ ∨ S, if a
sentence is robust to δ-weakening, this means that either it
is true, or it is ‘robustly’ false, so that even a δ-relaxation
of it won’t make it true. Similarly for δ-strengthening. We
refer to these notions as ‘δ-robustness’.

3.1 Bounding δ for trajectories
We will now define a natural translation from an MTL

formula ϕ to a bounded LRF -formula sen(ϕ). The transla-
tion allows us to connect the robustness degree of ϕ to the
δ-robustness of sen(ϕ).

In the following definition, given a boolean operator � ∈
{∨,∧} and two bounded LRF formulas S1, S2, we construct
S1 � S2 in prenex normal form (i.e. all the quantifiers are
pushed to the left and only a quantifier-free matrix ψ is used.
New variable names are used to avoid conflicting quantifica-
tions on the same variable).

Definition 3.2. Define the map

sen : MTL+ × P(Y )AP → (XT × T→ LRF formulas)

sen(ϕ,O)(x, t) = LRF formula

3Intuitively, a function g is Type 2 computable if g(x) can
be computed with arbitrary precision given an arbitrarily
precise approximation of x. See [25] or [20].
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Figure 2: Robust testing terminates on robustly correct systems (left), but not necessarily on non-robust systems where the robustness

vanishes gradually (right).

sen(>,O)(x, t) = 0 ≥ 0

sen(p,O)(x, t) =
{

Distd(xt,O(p))≥0 ,O(p) closed
Distd(xt,O(p))>0 ,O(p) open

sen(¬p,O)(x, t),
{
−Distd(xt,O(p))≥0, O(p) open
−Distd(xt,O(p))>0, O(p) closed

sen(ϕ1 ∨ ϕ2,O)(x, t) = sen(ϕ1,O)(x, t) ∨ sen(ϕ2,O)(x, t)

sen(ϕ1 ∧ ϕ2,O)(x, t) = sen(ϕ1,O)(x, t) ∧ sen(ϕ2,O)(x, t)

sen(ϕ1UIϕ2,O)(x, t) = ∃t+TIt′∀(t,t′)t′′

(sen(ϕ1,O)(x, t′′) ∧ sen(ϕ2,O)(x, t′))

sen(ϕ1RIϕ2,O)(x, t) = ∀t+TIt′∃(t,t′)t′′(
sen(ϕ1,O)(x, t′′) ∨ sen(ϕ2,O)(x, t′)

)
where (recall) t +T I := T ∩ (t + I) and all time intervals I
are interpreted as I ∩ T.

E.g. if ϕ = �[0,3]3[1,2]x > 5 then sen(ϕ,O)(x, 0) =

∀[0,3]t′∃t
′+[1,2]t′′ xt′′ > 5.

Lemma 3.1. Consider a bounded-time MTL+ formula ϕ
and a signal x. If every set O(p), p ∈ AP , is given by

O(p) = {(y1, . . . , yn) ∈ Rn | yi ∈ [ui, vi], 1 ≤ i ≤ n}

where ui, vi are LRF -terms that do not involve yi, then it
holds that sen(ϕ,O)(x, t) is a bounded LRF formula.

A simple special case of Lemma. 3.1 is when each O(p)
is a box with constant endpoints, e.g. O(p) = {(y1, y2) ∈
R2 | 1 ≤ y1 ≤ 2,−3 ≤ y2 ≤ −0.5}.

The following lemma about the boolean truth value of ϕ
and its LRF translation is easily established by induction on
the structure of ϕ:

Lemma 3.2. Consider the MTL+ formula ϕ, the signal
x ∈ XT, the observation map O and t ∈ T. Then

(x, t) |=O ϕ⇔ sen(ϕ,O)(x, t) is True (6)

The next lemma connects the robustness degree of ϕ and
the robustness to δ-weakening/strengthening of sen(ϕ).

Lemma 3.3. Let r = Distρ(x,Lt(ϕ)). Under the hypoth-
esis that r 6= 0, it holds that for any rational 0 ≤ δ < |r|,
sen(ϕ,O)(x, t) is both robust to δ-strengthening and robust
to δ-weakening.

If r = 0 is allowed, then ϕ merely implies r ≥ 0, which
doesn’t leave enough ‘room’ for any δ-strengthening. Note
that since |Jϕ,OK(x, t)| ≤ |Distρ(x,Lt(ϕ))|, the result above
holds also for all δ < |Jϕ,OK(x, t)|.

3.2 Bounding δ for systems
We are now ready to lift the results of Section 3.1 to

systems. We connect the minimum robustness of a sys-

tem relative to an MTL spec to the δ-robustness of the
corresponding LRF -sentence. Let H be an ODE system.
A trajectory of the system is a solution to its dynamical
equations from some initial point. We will mostly be con-
cerned with L0, the set of H trajectories with initial point
chosen from the bounded set X0 and of duration T > 0:
L0 = {yx0 | x0 ∈ X0, sup domy = T}. All ODE solution
functions are assumed to be in F .

Let ϕ ∈ MTL+. With abuse of notation, define the ro-
bustness degree and estimate of a system w.r.t. an MTL
formula to be, respectively:

Distρ(L0,Lt(ϕ)) = inf{Distρ(x,Lt(ϕ)) | x ∈ L0}
Jϕ,OK(L0, t) = inf{Jϕ,OK(x, t) | x ∈ L0} (7)

When any of the quantities O, t,L0 are clear from the con-
text we may drop them from the notation. Define

ssen : MTL+×P(Y )AP → (P(Y )AP ×T→ bounded LRF )

by

ssen(ϕ,O)(X0, t) = ∀X0x0.sen(ϕ,O)(yx0 , t) (8)

E.g. if ϕ = �[0,3]3[1,2]x > 5 and X0 = [−2,−1], then

ssen(ϕ,O)(X0, 0) = ∀[−2,−1]x0 ∀[0,3]t′∃t
′+[1,2]t′′ y(t′′, x0) > 5

For ease of reference later, we will define two flavors of
δ-complete decision procedures [20]:

Definition 3.3. Let B be a set of LRF formulas and δ ∈ Q+.
We say an algorithm A− is an optimistic δ-CDP for B if for
any formula S in B, A− returns correctly one of these two
answers:

• S is false

• S−δ is true

If the two cases overlap, either one is returned. We say an
algorithm A+ is a pessimistic δ-CDP for B if for any S ∈ B,
A+ returns correctly one of these two answers:

• S is true

• S+δ is false

If the two cases overlap, either one is returned.
Informally, if A− returns δ-true, this means that the sen-

tence ssen(ϕ) may be false, but a small (δ-sized) relaxation
of it makes it true. The main result of this section follows.

Theorem 3.1. Consider the MTL+ formula ϕ, the ODE
system H with behavior L0, and the observation map O.
Let r = Distρ(L0,Lt(ϕ)). Then it holds that:



Table 1: Summary of Thm. 3.1

A+→
A−↓ True (ssen(ϕ))+δ False

False - - - - r ≤ 0

(ssen(ϕ))−δ True r ≥ 0 −δ ≤ r ≤ δ

1. If r 6= 0, then ssen(ϕ) is robust to δ-strengthening and
to δ-weakening for all δ < |r|.

2. If a pessimistic A+ returns (ssen(ϕ))+δ False, then
r ≤ δ.

3. If an optimistic A− returns (ssen(ϕ))−δ True, then
r ≥ −δ.

The last two results are summarized in Table 1. Each box
indicates what we can infer about the system robustness,
based on what is returned by A+ and A− when running on
ssen(ϕ).

This table asserts that a δ-complete decision procedure can
be used to bound the robustness degree.

Thus we may consider that any δ-CDP is actually a pro-
cedure for computing the robustness degree r of the system:
it halts once it establishes either that r ≤ δ (for a pessimistic
procedure) or that r ≥ −δ (for an optimistic procedure).

3.3 Robustness-Guided Verification
There is a number of ways in which Thm. 3.1 can be ex-

ploited. The basic idea is that simulation provides system
trajectories whose (MTL) robustness values are easily eval-
uated. These robustness values provide an upper bound on
the δ with which the sentence ssen(ϕ) is δ-robust. There-
fore we may use them to guide a δ-CDP, either by suggesting
choices of δ, areas of X0 to be explored or ignored, or simula-
tion times at which simulation gives way to verification. We
present one such application here: we use robustness-guided
falsification to accelerate a δ-CDP. The δ-decision problems
for LRF -sentences with ODEs are PSPACE-complete [20].
The practical runtimes of current tools can be exhorbitant
(e.g., see the benhmarks for [27] for an idea of the runtimes),
and they are sensitive to how the problem is encoded. Scal-
ing these tools is therefore an important challenge. Due to
current tool limiations, we restrict ourselves to safety specs
in this section: ϕ = �[0,T ](¬p). Let H be a system with
initial set of conditions X0. We ask a δ-CDP whether there
exists a trajectory satisfying ¬ϕ:

∃X0x0∃Xx∃[0,T ]t.x = y(t, x0) ∧Distd(xt,O(p)) ≥ 0 (9)

Now if a trajectory z has robustness estimate Jϕ,OK(z, t) =
r > 0, then sen(¬ϕ)(z) couldn’t be δ-SAT for any δ < r
by Lemma 3.3. But only δ-SAT initial conditions can be
returned by an optimistic δ-CDP to indicate (δ)-unsafe be-
havior. Therefore, we can use this robust trajectory to pro-
vide extra constraints to the δ-CDP, telling it to ignore such
trajectories.

Specifically, given a desired precision δ > 0 and a trajec-
tory z of robustness estimate r = Jϕ,OK(z, t) > δ, we pass
the following to the δ-CDP instead of (9):

∃X0x0 ∃Xx ∃[0,T ]t ∃Xx′ ∃[0,T ]t′. x = y(t, x0) ∧ x′ = y(t′, x0)

∧ (|zt′ − x′| ≥ r − δ)︸ ︷︷ ︸
ρ(z,yx0 )≥r−δ

∧Distd(xt,O(p)) ≥ 0 (10)

Table 2: Falsification-Guided Verification: dReach running
on an Intel(R) Core i7(R) 2.2GHz CPU and 16 GB memory

Benchmark No constraint With added constraint
Insulin 6secs 3secs
Afib1 5mins 27secs 2mins 3secs
Afib2 17mins 37secs 14mins 3secs

The extra constraint constrains the solver to look for those
trajectories that are not robust to δ-weakening, i.e. it elimi-
nates from consideration trajectories that are robustly false
relative to sen(¬ϕ), and so robustly true relative to sen(ϕ).
Section 6 of [3] gives the detailed theoretical justification for
why this works, and addresses the need for rigorous simula-
tion.

Computational savings. The computational savings
from adding this constraint can be substantial. dReach
[26] implements a δ-CDP by integrating Interval Constraint
Propagation with ODE solving. It uses a prune-and-split ap-
proach, where the prune step shrinks the constraint intervals
[21]. By adding constraints to the formula, we are increasing
the amount of pruning that is performed, and thus reducing
the sizes of the sets that have to be propagated backward
through the ODE dynamics at every iteration. Backward
propagation is the most expensive step of the procedure,
thus reducing its runtime can save substantial runtime.

Sample results. We did an initial exploration of these
ideas using S-TaLiRo [5] to compute robustness of trajec-
tories and dReach [26] to perform δ-complete reachability
analysis. The implementation is crude, and we haven’t at-
tempted to optimize the choice of trajectories z. Our goal
is to show achievable savings on some simple benchmarks.
Future work will optimize the approach in several ways.

We first ran this on a 3-dimensional ODE model of in-
sulin processing by the body presented in [14]. The result
is in Table 2. We also ran this on 4-dimensional hybrid
models of atrial fibrillation (see [18]). Table 2 shows two
examples of the obtained results (afib1 and afib2): in both
cases, the added constraint caused a meaningful reduction
in runtime. Note that these results were obtained with just
one additional constraint. In general, we can add several
constraints, coming from different trajectories returned by
falsification, further pruning the search space.

Discussion. While promising, the above results are not
conclusive. In general, the runtime savings will depend on
the interplay between the components of the δ-CDP, in par-
ticular, how the new constraint affects the heuristics used by
the SAT solver. The above results were obtained by adding
a self-transition to each mode of the hybrid system, to cap-
ture the event |zt′ − x′| > r − δ from Eq. (10). These extra
transitions could negatively affect the runtime and the over-
all savings will depend on how much is saved by adding the
constraint. Future work will explore these issues in greater
depth and seek more direct ways to encode the new con-
straint.

3.3.1 Difference with robust testing.
This approach has advantages over robust testing (Section

2.2). First, robust testing requires finding an approximate
bisimulation of the system, which may not be possible for
nonlinear systems. Secondly, computing a ball B(xi; ci) us-
ing the bisimulation requires a costly bilevel optimization,



whose solution may be very conservative depending on the
particular bisimulation. The proposed approach also differs
from simply removing Bi from X0 and running dReach on
X \Bi. That’s because the back-propagation step in dReach
is more costly than forward simulation. By removing sets
from X0 we save runtime in forward propagation. By impos-
ing an extra constraint we save runtime in backward propa-
gation, achieving greater computational savings.

4. QUASI-SEMIDECISION PROCEDURES
AND ROBUST TESTING

We now connect the robust semantics of MTL to quasi-
semidecidability. This closes the loop on the relation be-
tween verification and testing by the means of relaxing de-
cidability and robustifying testing. See Fig. 1 (B), (D).

Recall the Robust Testing algorithm Alg. 1. Robust Test-
ing halts when it finds a falsifier to the MTL formula and
returns False, or when X0 has been covered by the balls
Bd(xi; ci) ≡ Bi and returns True. In both cases, the answer
it returns is evidently correct. If neither of these things hap-
pens, then it will run forever.

Intuitively, robust testing might run forever on ‘non-robust’
instances of the problem: instances where the system has
trajectories of vanishingly small positive robustness, leading
to vanishingly small balls (Alg. 1). It might also run forever
if the system can generate falsifying trajectories, since we
have no deterministic guarantee, in general, that they will
be sampled. This suggests that robust testing is a quasi-
semidecision procedure.

Definition 4.1 (Quasi-(semi)decision procedure[16]). A quasi-
semidecision procedure P for some class B of formulas is an
algorithm that returns True for any formula S in B which is
True and robust, but might otherwise run forever.

A quasi-decision procedure P for B is an algorithm that
terminates and returns a correct answer for any robust for-
mula S in B (whether it’s true of false), but might otherwise
run forever.

The notion of robustness used in Def. 4.1 refers to a dis-
tance function dR between formulas, which we define for
the class B = LRF . For a vector x ∈ Rn, its norm is
|x| = max{|x1|, |x2|, . . . , |xn|}.

Definition 4.2 (Quasi-robustness[16]). Two LRF -sentences
S and S′ are said to have the same structure iff one can be
obtained from the other by only exchanging terms. (I.e., they
have the same Boolean and quantification structure, same
bounds on quantified variables, and the same predicate sym-
bols).

Define the distance function dR(S, S′) as follows: if S and
S′ have different structure then dR(S, S′) =∞. Else let {fi}
be the terms of S and {f ′i} be the corresponding terms of S′.
Their common domain Ωi is given by the quantification of all
variables. Then dR(S, S′) = maxi ‖fi−f ′i‖∞, ‖fi−f ′i‖∞ :=
sup~v∈Ωi

|fi(~v)−f ′i(~v)|. A sentence S is ε-quasi-robust if for

any sentence S′ that satisfies dR(S, S′) < ε, both S and S′

have the same truth value.

4.1 Robust testing as a quasi-semidecision pro-
cedure

The notion of quasi-robustness presented in Def. 4.2 is

related to the robust semantics of MTL, as established in
the following Lemma.

Lemma 4.1 (Quasi-robustness implies MTL+ robustness).
Let ϕ be an MTL+ formula and ε ∈ R+.

ssen(ϕ,O)(X0, t) is ε-quasi-robust and True

=⇒ Jϕ,OK(L0, t) ≥ ε

Lemma 4.1 is a one-sided result: it requires that ssen(ϕ)
be True. Even if ssen(ϕ) is robustly false, this only im-
plies that there exist trajectories that falsify the formula
robustly, but says nothing about whether there exist trajec-
tories that falsify it non-robustly. Thus we cannot bound
Jϕ,OK(L0,Lt(ϕ)) from above away from zero.

When the robustness estimate of the system Jϕ,OK(L0, t)
is positive, then X0 can be covered with a finite number of
balls by Robust Testing - see Fig. 2. Thus, from Lemma 4.1,
it immediately follows that Robust Testing is a quasi-semidecision
procedure: that is, it terminates and returns True if the sys-
tem satisfies the spec and is ε-quasi-robust, but otherwise it
might run forever. A similar theoretical result was proved
for safety in [30].

We now generalize this result in two directions. First,
we allow for ‘small’ sets of initial points that have zero ro-
bustness. Secondly, instead of requiring that the robustness
estimate be positive, we only require that the robustness
degree Distρ(L0, t) be positive.

4.1.1 Almost-everywhere robust systems
For the first strengthening, we will need the sampler used

in Line 3 of Alg. 1 to satisfy the following coverage condition.
(CC) Let Z ⊂ X0 have measure 0 in Rn. Let wk ≥ 0 be

the number of samples that belong to Z in the first k samples
x0, x1, . . . , xk. Then

lim
k→∞

wk
k

= 0

We call this a coverage criterion because it implies that
the sampler will never get stuck in ‘small’ sets (of measure
0). For every wk samples in a small set Z, the sampler will
produce, in the long run, significantly more samples outside
it. Any stochastic sampler, like Hit-and-Run, obeys (CC),
since sets of measure 0 have probability 0. A determinis-
tic sampler would have to be extremely unlucky to violate
(CC). Note however that in higher dimensions, getting good
coverage becomes harder. See [9] for a promising approach.

We now give the main result of this sub-section. It states
that Robust Testing will terminate for a system even if it
exhibits trajectories of 0 robustness, as long as there are
only ‘few’ of them. We call this an almost-everywhere robust
system.

Theorem 4.1. Consider a hybrid system H with initial set
X0. Let R0 := {x0 ∈ X0 | Jϕ,OK(yx0 , t) = 0} be the set
of initial points of robustness 0, and set R1 = X0 \ R0. If
R0 has measure 0 in Rn, infx0∈R1Jϕ,OK(yx0 , t) := r∗ > 0,
and the sampling strategy obeys the coverage criterion (CC),
then Robust Testing will terminate and return True.

It is possible to bound the measure of R0 rather than com-
pute it exactly. For instance, if a region of X0 is enclosed by
sequences of B(xi; ci) of vanishing radius, this can conser-
vatively upper-bound the size of the set of zero robustness.

4.1.2 Robustness Degree Testing



The robustness estimate, which was used in Thm. 4.1, is a
lower bound on the true robustness degree Distρ(L0,Lt(ϕ)).
Thus there may be systems that are indeed robust, in the
sense that Distρ(L0,Lt(ϕ)) > 0, but Robust Testing will
not terminate for them because it looks at the system’s
robustness estimate, which could be 0. As an example of
this phenomenon, consider the identically zero signal x ≡ 0
and ϕ = (x ≥ 0 ∨ x < 0), for which Distρ(x, 0) = ∞ but
Jϕ,OK(x, 0) = 0.

In this section, we give a technical condition under which
this does not happen. Specifically, under this condition, a
positive lower (negative upper) bound on the robustness de-
gree implies a positive lower (negative upper) bound on the
robustness estimate. As will be seen, the condition we give
is not easy to check - we cannot presently think of an algo-
rithm that might test it for a given system. Nonetheless, the
theoretical interest of the link between robust testing and
quasi-decidability is in its potential to suggest new ways to
bridge the gap between verification and testing, and to draw
the limits of what can be done with robust testing and simi-
lar robustness-guided algorithms. This is not affected by the
hardness of this condition.

Lemma 4.2. Consider a discrete-time system H with tra-
jectory space L0, and let t ∈ T be a time instant. Consider
the bounded-time MTL formula ϕ, and let Sϕ be the set of
all its sub-formulas. Given L ⊂ XT, L := XT \ L. Define
the set Dϕ ⊂ XT as follows.

• For every ψ1∨ψ2 ∈ Sϕ and ψ1∧ψ2 ∈ Sϕ, Dϕ contains

Lt(ψi) and Lt(ψi), i = 1, 2.

• for every ψ1UIψ2 ∈ Sϕ and every t′ ∈ t+I, t′′ ∈ (t, t′),
Dϕ contains Lt′(ψ2), Lt′′(ψ1), ∩t′′∈(t,t′)Lt′′(ψ1), and
Lt′(ψ2)

⋂
∩t′′∈(t,t′)Lt′′(ψ1).

If

for all x ∈ L0, x /∈
⋂

A∈Dϕ

cl(A) (11)

then Distρ(L0, t) > 0 =⇒ Jϕ,OK(L0, t) > 0.
The example we gave at the outset violates the Lemma’s

conditions since x is in the intersection of the closures cl(L0(x ≥
0)) and cl(L0(x < 0)). In fact, the Lemma establishes that
this is the prototypical example of this phenomenon: namely,
the only cases where we get Jϕ,OK(x) = 0 < Distρ(x, 0) is
when x lives on the boundaries of all the sets A ∈ Dϕ.

Combining Lemma 4.2 and Thm. 4.1, we immediately get:

Theorem 4.2. Let H, R0 and R1 be as in Thm. 4.1. As-
sume the hypotheses of Lemma 4.2. If R0 has measure 0 in
Rn, infx0∈R1 Distρ(yx0 ,Lt(ϕ)) > 0, and the sampling strat-
egy obeys the coverage criterion (CC), then Robust Testing
will terminate and return True.

5. CONCLUSION
By exploring the connections between relaxed decidability

and the robust semantics of MTL formulas, we improve near-
exhausitve verification methods by the results of robust sim-
ulations, and delimit what is possible with robustness-guided
testing. Future work will integrate robust simulations into a
δ-complete decidability tool, to examine the achievable run-
time savings on benchamrks of various sizes. In particular,

we will explore the efficiency of different encodings of the
additional constraints obtained from robust simulation. We
will also pursue generalizations of Robust Testing in which
a bisimulation is not needed, to tackle a broader range of
systems which contain a mixture of robustly correct and ro-
bustly incorrect behavior.

6. PROOFS

6.1 Proofs and details of Section 3.1

6.1.1 Proof of Lemma. 3.1
For sen(ϕ,O)(x, t) to be a valid bounded LRF formula,

the distance functions distd(·,O(p)) and distd(·, X \ O(p))
must be in F for a given O(p), and all quantifications must
be bounded. Write y = (y1, . . . , yn). We need the fact that

d(xt, y) =
√∑n

i=1(xi − yi)2 is computable, being the com-
position of computable functions. (All the facts we invoke
in this proof can be looked up in [32]). Write

distd(xt,O(p)) = min{d(xt, y) | yi ∈ [ui, vi], 1 ≤ i ≤ n}

Bounded minimization preserves computability, so distd(xt,O(p))
is computable. Now recall that X = [a1, b1] × . . . × [an, bn]
where ai, bi are constants. Then distd(xt, X \ O(p)) evalu-
ates to

min{d(xt, y) | y ∈ cl(X \ O(p))}
= min{d(xt, y) | yi ∈ [ai, ui] ∨ yi ∈ [vi, bi], 1 ≤ i ≤ n}
= min{d(xt, y) | yi ∈ [ai, ui], 1 ≤ i ≤ n}

umin{d(xt, y) | yi ∈ [vi, bi], 1 ≤ i ≤ n}

n-ary minimization also preserves computability, and this
concludes the proof.

6.1.2 Proof of lemma. 3.2
( =⇒ ) Assume that (x, t) |=O ϕ. Proof is by structural

induction on ϕ.
ϕ = p ∈ AP . (x, t) |=O p⇔ xt ∈ O(p)⇔ Distρ(xt,O(p)) ≥

0 (assume the set is closed) ⇔ sen(p,O)(x, t) is True. Sim-
ilarly if O(p) is open.
ϕ = ¬p (x, t) 6|=O p ⇔ xt /∈ O(p) ⇔ Distρ(xt,O(p)) <

0 (assume the set is closed) ⇔ −Distρ(xt,O(p)) > 0 ⇔
sen(¬p,O)(x, t) is True. Similarly if O(p) is open.
ϕ = ϕ1 ∨ ϕ2. (x, t) |=O ϕ ⇔ sen(ϕ1,O)(x, t) True or

sen(ϕ2,O)(x, t) True by the induction hypothesis. This is
equivalent to sen(ϕ1,O)(x, t)∨sen(ϕ2,O)(x, t) True by def-
inition of the latter.

The cases for ∧,UI and RI are similar. The converse is
obtained in a similar manner.

6.1.3 Proof of lemma. 3.3
To establish this lemma, we need to avoid the −Distd

terms in sen(ϕ). Thus we need to transform our MTL+

formulas to equivalent formulas that don’t have negation in
them. This is done by using the construction in [11, Sec-
tion 3.1]: introduce an extended set of atomic propositions
AP e = AP ∪ AP ′ where AP ′ = {p′ | p ∈ AP}. Then given
an MTL+ formula ϕ, map it to pos(ϕ) which replaces every
occurence of ¬p by the corresponding p′. This gets rid of the
negations. To keep the semantics, we extend the observation
map as well: define Oe : AP e → P(X) by Oe(p) = O(p) for
every p ∈ AP and Oe(p′) = X \ O(p) if p′ ∈ AP ′. By [11,
Lemma 3.1.2], pos(ϕ) and ϕ have the same truth value.



In the rest of this proof we work implicitly with pos(ϕ) and
Oe. Given the map O, define the observation map Oδ, which
maps an atomic proposition p to a δ-contraction of O(p). I.e.
Oδ(p) = {a ∈ O(p) | distd(a,X \ O(p)) ≥ δ}. Write

ϕ̄ = sen(ϕ,O)(x, t) = QV1
1 v1 . . . Q

Vk
k vkψ[fi(~v) ≥ 0, fj(~v) > 0]

Then ϕ̄+δ equals

QI11 t1 . . . Q
In
n tnψ[fi(~t) ≥ δ, fj(~t) > δ]

= QI11 t1 . . . Q
In
n tnψ[Distd(xti ,O(p)) ≥ δ,Distd(xtj ,O(p)) > δ]

= QI11 t1 . . . Q
In
n tnψ[Distρ(xti ,Oδ(p)) ≥ 0,Distρ(xtj ,Oδ(p)) > 0]

It can be seen that

ϕ̄+δ = sen(ϕ,Oδ)(x, t) (12)

Now ϕ̄ =⇒ ϕ (by lemma. 3.2) =⇒ r > 0 (by as-
sumption, r 6= 0) =⇒ (x, t) |=Oδ ϕ ∀δ < r (by Lemma
6.1 below) =⇒ sen(ϕ,Oδ) True for all δ < r by Lemma
3.2 =⇒ ϕ̄+δ True for all δ < r by (12). Thus ϕ̄ is robust
to δ-strengthening for all δ < r. The second case (robust to
δ-weakening) is similarly proved.

Lemma 6.1. Distρ(x,Lt(ϕ)) = r > 0 implies that (x, t) |=Oδ
ϕ for all δ < r.

Proof. We argue by contradiction. Suppose that for some
δ < r, (x, t) 6|=Oδ ϕ. This implies that there exists a set of
time instants, T′ ⊂ T, at which the points of trajectory x
switch from being inside some atomic set to not being in it,
or vice versa. That is, at every t ∈ T′, there exists pt ∈ AP
s.t. xt ∈ O(pt) iff xt /∈ Oδ(pt). Otherwise, if no such time
set T′ exists, the truth value of the formula would not have
changed.

Now note that for t ∈ T′, and by definition of the con-
tracted map Oδ, |Distd(xt,O(pt))| ≤ δ.

For every xt, let pr(xt, A) be the projection of xt onto the
set A ⊂ X. Thus it is the point of A that is nearest xt. Now
define the signal y as follows:

yt =

 xt, t ∈ T \ T′
pr(xt, X \ O(pt)), t ∈ T′ ∧ xt ∈ O(pt)

pr(xt,O(pt)), t ∈ T′ ∧ xt /∈ O(pt)

By construction, d(xt, yt) ≤ δ for all t ∈ T, thus ρ(x,y) =
supt d(xt, yt) ≤ δ < r.

On the other hand, by definition of T′, y does not satisfy
ϕ at t: (y, t) 6|=O ϕ. Thus ρ(x,y) ≥ r - a contradiction.

6.1.4 Proof of Thm. 3.1
Let r = Distρ(L0,Lt(ϕ)).
1. Suppose that r > 0. Write ϕ̄ = sen(ϕ) and Sϕ̄ =

ssen(ϕ). Then, by lemma 3.3, for all x ∈ L0, ϕ̄ is robust
to δ-strengthening for any δ < r, i.e. ∀X0x0.(ϕ̄)+δ is True.
Since (Sϕ̄)δ = ∀X0x0(ϕ̄)δ, this is equivalent to (Sϕ̄)δ is True
⇔ Sϕ̄ is robust to δ-strengthening for all δ < r.

Similarly, if r < 0, then (Sϕ̄)−δ is False for all δ < |r|.
2. Suppose A− (which returns False or δ-True) found that

(Sϕ̄)−δ is True.
Case 1: Some trajectory x ∈ L0 violates the spec ϕ⇔ Sϕ̄

is False. Then (Sϕ̄)−δ
′

is False for all δ′ < |r| by part 1, so
δ ≥ |r| ⇔ −δ ≤ −|r| = r < 0.

Case 2: All trajectories satisfy the spec. No conclusion
about robustness (other than being non-negative) can be
made.

Now suppose A+ (which returns True or δ-False) has re-
turned δ-False.

Case 1: All trajectories x satisfy the spec ⇔ Sϕ̄ is True.

Then (Sϕ̄)+δ′ is True for all δ′ < r by part 1, thus δ ≥ r.
Case 2: Sϕ̄ is False. No conclusion about robustness

(other than being non-positive) can be made.

6.1.5 Technical details for Falsification-guided veri-
fication

For the application presented in Section 3.3 to work, we
will need the following result. It states that for each trajec-
tory of positive robustness, there is always a trajectory at
the edge of its tube of robustness which has robustness 0.

The fragment MTL+(AP,∧,�) only allows conjunction
and Always. Safety is expressible in this fragment as �Ip.

Theorem 6.1 (Tube of robustness). Consider a bounded-
time MTL+(AP,∧,�) formula ϕ. Let x ∈ XT be a system
trajectory with positive robustness estimate r = Jϕ,OK(x, t) >
0, and let T = {y ∈ XT | ρ(x,y) < r} be its robustness
tube. Then cl(T ) contains at least one signal x∗ with ro-
bustness degree 0 and r-distant from x: Distρ(x∗,Lt(ϕ)) =
0, ρ(x,x∗) = r.

Proof. Because ϕ ∈ MTL+(AP,∧,�) and Jϕ,OK(x, t) > 0,
it holds that the robustness estimate is actually an exact
computation of the robustness degree [12, Prop. 19]:

Distρ(x,Lt(ϕ)) = r

Now Distρ(x,Lt(ϕ)) = distρ(x, X
T \Lt(ϕ)). The existence

of a nearest point x∗ ∈ cl(XT \ Lt(ϕ)) to x follows from
general results on the existence of nearest points in reflex-
ive Banach spaces [6]. Because x∗ is on the boundary of
Lt(ϕ), it can be concluded that x∗ has robustness 0 and has
distance r to x.

6.1.6 Robustness intervals for a rigorous simulation
We end this section with a point of practical importance:

In all situations where a simulation is called for, if we use a
numerical integrator like ode45, we will obtain a trajectory
with some nunmerical errors, so the robustness we compute
using that trajectory may be incorrect. Instead, we should
use a guaranteed integrator. A guaranteed integrator re-
turns a time-stamped sequence of boxes Z = (Ri, ti). Each
Ri is a subset of the state space X, zti ∈ Ri, and for all
t ∈ [ti−1, ti), zt ∈ hull(Ri−1, Ri). Instead of a single robust-
ness value for a trajectory z, we now need to compute an
interval enclosure of the robustness of all trajectories in Z.
That is, we need to compute [ρ, ρ] such that for any trajec-
tory y enclosed by Z, it holds that ρ ≤ Jϕ,OK(y, t) ≤ ρ.
We can calculate this interval by adopting the work in [7],
and modifying it to allow for time-varying enclosures. We
omit the details. Given the interval [ρ, ρ], we use ρ in the
additional constraint (10).

6.2 Proofs of Section 4

6.2.1 Proof of Lemma 4.1
The basic idea is that the disturbances allowed by quasi-

robustness are a superset of those required for MTL robust-
ness. Thus quasi-robustness implies MTL robustness.

As before, Qk ∈ {∃, ∀} is a quantifier, vk denotes a vari-
able and Vk a real bounded interval. For any bounded LRF -



sentence S

S = QV1
1 v1 . . . Q

Vn
n vnψ[fi(~v) ≥ 0, fj(~v) > 0] (13)

1 ≤ i ≤ m,m+ 1 ≤ j ≤ n, we define its ε-level perturbation
to be the sentence

Sε = QV1
1 v1 . . . Q

Vn
n vnψ[fi(~v)− ε ≥ 0, fj(~v)− ε > 0] (14)

Clearly, dR(S, Sε) = ε.
Now fix the MTL+ formula ϕ, the scalar ε > 0, and let

~v = (x0, t1, . . . , tn) be the vector of variables. The sentence
S = ssen(ϕ,O)(X0, t) obtained from ϕ by Def. 8 takes the
form

S = Q
~V ~v ψ[Distd(xti ,O(pi)) ≥ 0,Distd(xtj ,O(pj)) > 0]

By hypothesis, S is true. The proof now proceeds by
structural induction on the MTL formula ϕ.
ϕ = p. Assume that O(p) is closed. Then the perturbation

Sε′ = ∀X0x0Distd(xt,O(p))−ε′ ≥ 0⇔ ∀X0x0Jp,OK(yx0 , t) ≥
ε′. Since ε′ < ε is arbitrary, it comes that Jp,OK(X0, t) ≥ ε,
which is what we set out to prove. An identical reasoning
applies when O(p) is open.
ϕ = ¬p. An argument identical to the previous case ap-

plies here.
ϕ = ϕ1 ∧ ϕ2. Set Si = ssen(ϕi), i = 1, 2. Let S′, S′i, i =

1, 2, be such that dR(S, S′) < ε, dR(Si, S
′
i) < ε. It is easy to

see that dR(S, S′1∧S′2) < ε, and is therefore true by ε-quasi-
robustness of S. Thus S′1 and S′2 are both also true, and
S1 and S2 are ε-quasi-robust. By the induction hypothesis,
JϕiK ≥ ε. Therefore JϕK = Jϕ1K u Jϕ2K ≥ ε.
ϕ = ϕ1 ∨ ϕ2. Given an arbitrary sentence S of the form

(13), consider the ε-level perturbation Sε given in Eq. (14).
We show that if Sε is true, this implies that S is in fact
ε-quasi-robust. Indeed, take any ε′ ≤ ε, and any S′ s.t.
dR(Sε, S) = ε′. Let f ′k be the terms of S′. By definition,
‖fk(~v)− f ′k(~v)‖ ≤ ε′ for all 1 ≤ k ≤ n and all ~v ∈ Ωk, which
implies f ′k(~v) ≥ fk(~v) − ε′ ≥ fk(~v) − ε. But fk(~v) − ε is a
term of Sε. Recalling that Sε is True and comparing the
matrices of Sε and S′, it follows immediately that S′ is true.
Since ε′ was chosen arbitrary less than ε, it follows that S
is ε-quasi-robust.

Set Si = ssen(ϕi), i = 1, 2. Now let ε̄ be the least upper
bound of all ε′ such that S1,ε′ is true. By the above result
applied to S1, this implies that S1 is ν-quasi-robust for all
0 ≤ ν < ε̄, and by Induction Hypothesis (I.H.), Jϕ1K ≥ ν for
all ν < ε̄, thereforeJϕ1K ≥ ε̄. If ε̄ = ε, then we may conclude
that JϕK = Jϕ1K t Jϕ2K ≥ ε and we’re done. Otherwise for
all ν s.t. ε̄ ≤ ν < ε, S2,ν is true because Sν = S1,ν ∨ S2,ν is
true. This implies that S2 is ν-quasi-robust for all ε̄ ≤ ν < ε
and by the I.H., Jϕ2K ≥ ν, therefore Jϕ2K ≥ ε. Then JϕK ≥ ε
and we’re done.
ϕ = ϕ1Uϕ2 and ϕ = ϕ1Rϕ2. The above cases can be com-

bined to yield a proof for both the Until and Release oper-
ators.

6.2.2 Proof of Thm. 4.1
In this proof, the word ‘robustness’ means robustness es-

timate. Recall that d is the distance function on the state
space, and that ρ(x,y) = supt d(xt, yt).

Every trajectory x that starts in R1 := X0 \ R0 has ro-
bustness at least r∗ > 0. The bisimulation function V
has the property that, for any two points x0, y0 ∈ X0, if
V (x0, y0) < r∗, then d(xt, yt) ≤ V (xt, yt) ≤ r∗ for all t
in T. Therefore we can choose ci = r∗ > 0 for all xi in

R1. Since the new samples are always chosen outside the
already-covered area, it is possible to cover X0 with a finite
number of balls Bd(xi; ci) ≡ Bi. Let K be the maximum
number of balls needed to cover X0, where the maximization
is over all possible choices of ball sequences B0, B1, B2, . . ..
Then K <∞.

Because the sampler obeys the coverage criterion (CC),
there exists an integer k∗ such that the number of samples
in R1 exceeds K: |{xi, i = 0, . . . , k∗} ∩R1| ≥ K. Thus after
at most k∗ samples, X0 has been fully covered by balls, and
returns true.

6.2.3 Proof of Lemma 4.2
We first sketch the proof, then give the details. Let (M,d)

be a metric space, Y ⊂ M be bounded, and let Y be a
finite family of bounded subsets of M . Then the following
holds: for every x ∈ Y there exists a constant mx ≥ 1 s.t.
for any two sets A,B ∈ Y it holds that distd(x,A ∩ B) ≤
mx(distd(x,A) t distd(x,B)).

By applying this to the metric space (XT, ρ) and the sub-
set of signals Y = L0, we show that for any x ∈ L0 and
MTL formula ϕ it holds that

1

m
nϕ
x

|Distρ(x,Lt(ϕ))| ≤ |Jϕ,OK(x, t)| ≤ |Distρ(x,Lt(ϕ))|

where nϕ ∈ N is a positive integer that depends on the
structure of ϕ and the endpoints of its temporal intervals.

The conclusion follows: if infx∈L0 |Distρ(x,Lt(ϕ))| > 0
then infx∈L0 |Jϕ,OK(x, t)| > 0. The technical condition of
this lemma is required to eliminate the possibility that mx

might be infinite.
We now give the detailed proof. Let (M,d) be a metric

space, Y ⊂ M be bounded, and let Y be a finite family of
bounded subsets of M .

Lemma 6.2. For all x ∈ Y , there exists a real number
mx ≥ 1 such that for all A,B ∈ Y,

distd(x,A ∩B) ≤ mx(distd(x,A) t distd(x,B))

Proof. Given two sets A,B ∈ Y and a point x ∈ M , let
α(x,A,B) = distd(x,A) t distd(x,B). Define

mx = max{distd(x,A ∩B)

α(x,A,B)
:A,B ∈ Y s.t.

α(x,A,B) 6= 0}

Case 1: x ∈ A ∩B. Then distd(x,A ∩B) ≤ α(x,A,B) =
0 so any mx will do.

Case 2: x ∈ A \B. Then distd(x,A ∩ B)/α(x,A,B) ≤
mx by definition of mx.

The remaining cases (x ∈ B\A and x /∈ A∪B) also follow
immediately from the definition of mx.

By induction, this implies the following lemma:

Lemma 6.3. For any x ∈ Y , there exists a constant mx s.t.
for any n ≥ 2 subsets A1, A2, . . . , An in Y, distd(x,∩1≤i≤nAi) ≤
mn
x t1≤i≤n distd(x,Ai)
We apply the preceding two lemmas to the metric space

(XT, ρ), the family Y = Dϕ of bounded subsets of XT and
the bounded set Y = L0.



Lemma 6.4. For all x ∈ L0, the following implications
hold:

(x, t) |= ϕ =⇒ depthρ(x,Lt(ϕ)) ≤ mnϕ
x Jϕ,OK(x, t)

(x, t) 6|= ϕ =⇒ m
nϕ
x Jϕ,OK(x, t) ≤ −distρ(x,Lt(ϕ))

where nϕ = #boolean operators in ϕ + #Until operators +∑
|Ir|. Here, Ir is the right end-point of interval I, and the

sum is over all Until operators in the formula.

Proof. By structural induction on ϕ. Firs, note that the
metric space (XT, ρ) and the set Dϕ satisfy the hypotheses
of Lemma 6.2.
ϕ = p. Here nϕ = 0. In the SAT case (i.e., x |= ϕ),

depthρ(x,Lt(ϕ)) = Jϕ,OK, while in the UNSAT case (i.e.
x 6|= ϕ), −distρ(x,Lt(ϕ)) = Jϕ,OK.
ϕ = ¬ψ. In the SAT case, nϕ = nψ + 1 and

J¬ψK = −JψK ≥ (1/m
nψ
x )distρ(x,Lt(ψ)) (by the I.H.)

≥ (1/m
nψ
x )depthρ(x,Lt(ψ))

= (1/m
nψ
x )depthρ(x,Lt(¬ψ))

≥ (1/m
nϕ
x )depthρ(x,Lt(ϕ))

In the UNSAT case,

J¬ψK = −JψK ≤ −(1/m
nψ
x )depthρ(x,Lt(ψ)) (by the I.H.)

= −(1/m
nψ
x )distρ(x,Lt(ψ))

= −(1/m
nψ
x )distρ(x,Lt(¬ψ))

≤ −(1/m
nϕ
x )distρ(x,Lt(ϕ))

Case 3: ϕ = ϕ1 ∨ ϕ2: nϕ = nϕ1 + nϕ2 + 1. In the SAT
case, if x satisfies both ϕ1 and ϕ2, then

depthρ(x,Lt(ϕ)) = distρ(x,Lt(ϕ)) = distρ(x,Lt(ϕ1) ∩ Lt(ϕ2))

≤ mx(distρ(x,Lt(ϕ1)) t distρ(x,Lt(ϕ2)))

by Claim 1 and the fact that Lt(ϕ1),Lt(ϕ2) ∈ Dϕ
= mx(depthρ(x,Lt(ϕ1)) t depthρ(x,Lt(ϕ2)))

= mx(m
nϕ1
x Jϕ1K tm

nϕ2
x Jϕ2K) by I.H.

= m
1+nϕ1
x Jϕ1K tm

1+nϕ2
x Jϕ2K

≤ m1+nϕ1
+nϕ2

x (Jϕ1K t Jϕ2K) = m
nϕ
x JϕK

If x satisfies ϕ1 but not ϕ2, then x ∈ Lt(ϕ2)\Lt(ϕ1), so that

it holds that distρ(x,Lt(ϕ1) ∩ Lt(ϕ2)) = distρ(x,Lt(ϕ1)),
therefore

depthρ(x,Lt(ϕ)) = distρ(x,Lt(ϕ1) ∩ Lt(ϕ2))

= depthρ(x,Lt(ϕ1))

≤ mnϕ1
x Jϕ1K ≤ mnϕ

x JϕK

In the UNSAT case,

distρ(Lt(ϕ)) = distρ(x,Lt(ϕ1)) u distρ(x,Lt(ϕ2))

Then

−distρ(x,Lt(ϕ)) = −distρ(x,Lt(ϕ1)) t −distρ(x,Lt(ϕ2))

≥ mnϕ1
x Jϕ1K tm

nϕ2
x Jϕ2K by I.H.

≥ mnϕ
x (Jϕ1K t JϕK) = m

nϕ
x JϕK

Case 4: ϕ = ϕ1 ∧ ϕ2. Similar arguments to the previous
case apply here, and we skip the details.

Case 5: ϕ = ϕ1UIϕ2. In the SAT case,

depthρ(x,Lt(ϕ)) = depthρ(x,
⋃

t′∈t+I

Lt′ϕ2

⋂
∩t′′∈(t,t′)Lt′′ϕ2)

= distρ(x,
⋂

t′∈t+I

Lt′ϕ2

⋂
∩t′′∈(t,t′)Lt′′ϕ2)

Recall that we are working in discrete-time so that the in-
terval I is finite and has |I| points in it. By noting that

Lt′ϕ2

⋂
∩t′′∈(t,t′)Lt′′ϕ2 is in Dϕ, we can invoke Lemma 6.3

to continue

depthρ(x,Lt(ϕ))

≤ m|I|x

⊔
t′∈t+I

distρ(x,Lt′ϕ2

⋂
∩t′′∈(t,t′)Lt′′ϕ1)

= m|I|x

⊔
t′∈t+I

distρ(x,Lt′ϕ2

⋃
∩t′′∈(t,t′)Lt′′ϕ1)

= m|I|x

⊔
t′∈t+I

distρ(x,Lt′ϕ2) u distρ(x,∩t′′∈(t,t′)Lt′′ϕ1)

= m|I|x

⊔
t′∈t+I

depthρ(x,Lt′ϕ2) u depthρ(x,∩t′′∈(t,t′)Lt′′ϕ1)︸ ︷︷ ︸
B

Let P = {t′ ∈ t+ I | (x, t′) |= ϕ2 ∧∃t′′ ∈ (t, t′) s.t. (x, t′′) |=
ϕ1}. This is the set of times that witness satisfaction of ϕ
by x.

Then
⊔
t′∈t+I(B) =

⊔
t′∈P B since on t+ I \ P , B is neg-

ative. So

depthρ(x,Lt(ϕ))

≤ m|I|x

⊔
t′∈P

depthρ(x,Lt′ϕ2)
l

depthρ(x,∩t′′∈(t,t′)Lt′′ϕ1)

≤ m|I|x

⊔
t′∈P

m
nϕ2
x Jϕ2K(t′)

l
ut′′m

nϕ1
x Jϕ1K(t′′))

≤ m|I|x m
1+nϕ1+nϕ2
x

⊔
t′∈P

Jϕ2K(t′)
l
ut′′Jϕ1K(t′′))

= m
nϕ
x JϕK, nϕ = |I|+ 1 + nϕ1 + nϕ2

The UNSAT case is treated similarly and we skip the de-
tails. The only notable difference is that, in the UNSAT
case, each Until operator adds 1 + Ir to the exponent nϕ.

Since |I| ≤ Ir, each Until operator adds, at the most,
1+Ir to the exponent.

Lemma 6.5. Let Dϕ be as defined in Lemma 4.2. If the
system is robustly correct, inf{Distρ(x,Lt(ϕ)) | x ∈ L0} =
r > 0, then inf{Jϕ,OK(x, t) | x ∈ L0} > 0.

Proof. Lemma 6.4 implies that for all x in L0, there exists
an mx ≥ 1 s.t.

1

m
nϕ
x

|Distρ(x,Lt(ϕ))| ≤ Jϕ,OK(x, t) ≤ |Distρ(x,Lt(ϕ))|

So we must show that

inf

{
1

m
nϕ
x

|Distρ(x,Lt(ϕ))| | x ∈ L0

}
> 0

Since

inf
x

|Distρ(x,Lt(ϕ))|
m
nϕ
x

≥ infx |Distρ(x,Lt(ϕ))|
supxm

nϕ
x

=
r

supxm
nϕ
x



it suffices to show that supxm
nϕ
x <∞⇔ supxmx <∞

Recall that

mx = max

{
distρ(x, A ∩B)

α(x, A,B)
, A,B ∈ Dϕ s.t. α(x, A,B) 6= 0

}
where α(x, A,B) = distρ(x, A) t distρ(x, B). One way in
which mx could be infinite is if α(x, A,B) = 0 for all A,B
in Dϕ. However, this case is eliminated by condition (11) of
Lemma 4.2.

The other cases that can lead to an infinitemx is if distρ(x, A∩
B)→∞ faster than α, or α→ 0 faster than distρ(x, A∩B).

For any x ∈ L0, let ax be the projection of x on A, bx its
projection on B, and yx its projection on A ∩B. Since

ρ(x, yx) ≤ ρ(x, ax) + ρ(ax, yx)

ρ(x, yx) ≤ ρ(x, bx) + ρ(bx, yx)

It comes (diam(A) is the diameter of set A)

distρ(x, A ∩B) ≤ α(x, A,B) + diam(A) t diam(B)︸ ︷︷ ︸
constant c

=⇒ α(x, A,B) ≤ distρ(x, A ∩B) ≤ α(x, A,B) + c

Thus they both have the same growth rate, and their ratio
is upper-bounded by some β, 0 < β <∞.

Therefore, supxmx <∞ and finally

inf
x

|Distρ(x,Lt(ϕ))|
m
nϕ
x

≥ r

βnϕ
> 0 =⇒ Jϕ,OK(x, t) > 0
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