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Unsupervised Learning of Prosodic Boundaries in ASL

Abstract
In both spoken and sign languages, prosodic cues signal the ends of intonational phrases. Children must
somehow learn to associate these cues with phrase boundaries without explicitly being told where those
boundaries are. We present two unsupervised statistical models that learn to identify the ends of intonational
phrases (I-phrases) in American Sign Language (ASL) based on prosodic cues: a mixture model, and a hidden
Markov model. Although neither model is presented with labeled phrase boundaries, both models recover
reasonable parameters and achieve performance comparable to models that are trained with labeled
boundaries. However, the between-state dependence of the hidden Markov model does not improve the
performance. The success of these models sheds light on how infants might learn the prosodic system without
explicit instruction.
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Unsupervised Learning of Prosodic Boundaries in ASL

Joshua Falk and Diane Brentari

1 Introduction

In both spoken and sign languages, prosodic cues signal the ends of intonational phrases (Nespor
and Sandler 1999). Children must somehow learn to associate these cues with phrase boundaries
without explicitly being told where those boundaries are. In this paper, we present two unsupervised
statistical models that learn to identify the ends of intonational phrases (I-phrases) in American Sign
Language (ASL) based on prosodic cues: a mixture model and a hidden Markov model. Although
neither model is presented with labeled phrase boundaries, both achieve performance comparable
to models that are trained with labeled boundaries. The success of these models sheds light on how
infants might learn the prosodic system without explicit instruction.

2 Background

Most work on prosodic boundary detection has focused on supervised learning, where the learning
algorithm has access to information about where prosodic boundaries are located (Wightman and
Ostendorf 1994, Liu et al. 2008). A primary exception comes from Ananthakrishnan and Narayanan
(2006), who attempted to automatically identify accents and phrase boundaries without labeled data.
They used the Boston University Radio News Corpus (Ostendorf et al. 1995), an English language
corpus which includes seven speakers and approximately three hours of data. For learning, they used
three techniques: k-means clustering, fuzzy k-means clustering, and a Gaussian mixture model, all
with two categories (non-final and final). They used features based on intensity, F0, and timing, as
well as part-of-speech tags. They report 87.3% accuracy under a supervised model, and between
77.6% accuracy and 81.1% accuracy for their unsupervised models. In this paper, we report the
results of applying similar models to American Sign Language. To our knowledge, this represents
the first case of unsupervised learning of prosody in a sign language.

3 Data

The data for this study comes from narratives by four adult native signers of ASL (Brentari et al.
2015). Signers were asked to describe the Sylvester and Tweety cartoon ‘Canary Row,’ and their
narratives were recorded. Previous work has shown that phrase-final signs in ASL are generally
longer, and that they are more likely to co-occur with non-manual cues, such as eye blinks, changes
in brow position, and recalibrations of the head and body (Wilbur 1994, Nespor and Sandler 1999,
Brentari et al. 2011).

Each cue was annotated by a separate coder: duration, head position, body position, blinks,
and brow position. Their annotations were then checked by either a hearing native signer or a Deaf
early learner of ASL. Annotations concerning prosodic constituency were completed independently
by three proficient signers. Two had learned ASL at seven and eight years of age, respectively,
and one was a full-time certified interpreter. The annotators achieved 90% agreement on I-phrase
boundaries, and disagreements were resolved after discussion. For modeling purposes, durations
were converted to z-scores (centered around the mean and set to have unit variance).

4 Mixture Model

The first model we built is a mixture model with two latent components. This is comparable to
the Gaussian mixture model used by Ananthakrishnan and Narayanan (2006). This model assumes
that signs come from one of two categories, which we hope will ultimately reflect the presence
or absence of an I-phrase boundary. The model is defined by several parameters that generate the
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distribution over cues observed in the data. First, there is the mixing probability, which represents
how likely each category is. Each category then has its own distribution over the prosodic cues. Sign
duration is drawn from a normal distribution, with separate mean and variance for each category.
The presence of each non-manual cue is drawn from a Bernoulli distribution, where the probability
of each cue occuring depends on the cue.

The probability of the data given the parameters is called the likelihood, and a common tech-
nique for model fitting tries to find the parameters that maximize the likelihood. This method, the
method of maximum likelihood, is strongly associated with the statistician Ronald Fisher, and has
several theoretical justifications (Stigler 2007). In many situations, the maximum likelihood esti-
mate matches a “common-sense” estimator. For example, the maximum likelihood estimate for the
mean is just the sample mean.

In order to find maximum likelihood parameters for the model, we used the Expectation-
Maximization (EM) algorithm (Bishop 2006). The EM algorithm is an iterative algorithm that
provably converges to a local maximum of the likelihood, but not necessarily the global maximum.
Running the EM algorithm starting from several random initializations of the parameters gave the
same parameter estimates, suggesting that the recovered parameters represent the global maximum
in the likelihood. The parameters for the supervised model are also maximum likelihood estimates,
but with the categories known.

Probability Duration Variance Head Body Blink Brow
unsuper. non-final 0.63 -0.37 0.54 0.19 0.13 0.27 0.09

final 0.37 1.07 1.23 0.60 0.40 0.61 0.36
supervised non-final 0.81 -0.14 0.75 0.27 0.18 0.32 0.14

final 0.19 0.58 1.62 0.43 0.27 0.49 0.24

Table 1: Parameters for mixture models.

Comparing the parameter estimates, we see broad agreement between the unsupervised and
supervised values. The unsupervised model correctly identified one higher frequency category with
shorter signs and fewer non-manual markers (non-final), and a lower frequency category with longer
signs and more non-manual markers (final). However, the unsupervised model finds more extreme
differences between the two categories.

We also compare how well the two models predict phrase boundaries. We use a Bayes clas-
sifier for prediction, choosing the category that is more likely to have generated the observed data.
In building a system to predict boundaries, we want to simultaneously maximize precision (the
percentage of predicted boundaries that are actual boundaries) and recall (the percentage of actual
boundaries that the model predicts). Interestingly, while the supervised model achieves higher preci-
sion, the unsupervised model achieves significantly higher recall. F1 is defined as 2× precision×recall

precision+recall ,
and provides a way of combining precision and recall into an overall measure of predictive perfor-
mance. Note that the predictive performance of the supervised model is likely subject to overfitting,
as the model was trained and tested using the same data.

Precision Recall F1
unsupervised 0.33 0.57 0.42
supervised 0.45 0.21 0.29

Table 2: Performance of mixture models.

Both models exhibit much lower performance than that reported by Ananthakrishnan and Narayanan
(2006), with 80.5% accuracy for the Gaussian mixture model and 87.3% accuracy for the supervised
model. In the discussion section below, we discuss possible reasons for this difference.
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5 Markov Model

One limitation of the Gaussian mixture model is that it has no awareness of the temporal ordering
of signs. It cannot capture the fact that, if a phrase-final sign has been observed, the following
sign is very unlikely to be phrase-final. The second model overcomes this limitation by adding a
dependence between adjacent states or categories: the probability of a category occurring depends
on the category of the previous sign. This is known as a Markov model. Aside from this added
structure, the model is identical to the mixture model discussed above. When the states or categories
are unknown, the model is known as a hidden Markov model. For the hidden Markov model,
parameters were estimated by the Baum-Welch algorithm (Bishop 2006), which is a type of EM
algorithm like the one used to fit the Gaussian mixture model. The Baum-Welch algorithm also
only guarantees that the likelihood of the parameters is a local maximum. Again, several random
initializations resulted in the same parameter estimates, suggesting that the recovered parameters
represent the global maximum in the likelihood.

Duration Variance Head Body Blink Brow
non-final -0.38 0.54 0.19 0.13 0.26 0.09
final 1.05 1.23 0.60 0.40 0.61 0.36

Table 3: Parameters for unsupervised hidden Markov model.

Interestingly, the parameters recovered by the hidden Markov model are essentially identical
to the parameters recovered by the unsupervised mixture model above. Looking at the transition
probabilities explains this result. For the unsupervised model, a non-final sign is equally likely to
occur after a non-final sign or a final sign (64% vs. 59%). The model has learned to essentially
ignore the dependence we introduced. This differs from the supervised model, which knows that a
final sign is very unlikely to occur after another final sign (1%). This occurs only when an entire
intonational phrase consists of only one sign.

nf→ nf nf→ f f→ nf f→f
unsupervised 0.64 0.34 0.59 0.41
supervised 0.77 0.23 0.99 0.01

Table 4: Transition probabilities for Markov models.

We also compare the predictive performance of the unsupervised and supervised Markov mod-
els. For both models, the predictions are given by the most probable sequence of states for the
observations. This was computed by the Viterbi algorithm (Bishop 2006). Both models have very
similar predictive performance. The supervised model still has higher precision and lower recall,
but the difference is much smaller.

Precision Recall F1
unsupervised 0.33 0.57 0.42
supervised 0.37 0.49 0.42

Table 5: Performance of hidden Markov models.

6 Discussion

Overall, the models trained without labels learn reasonable parameters for the distributions over
cues. This shows that there is a strong enough correlation to support learning even in the absence
of labeling. However, the hidden Markov model does not recover good parameters for transitions
between states, harming the performance of the model. This suggests that, at least for these cues,
there is not much evidence supporting the lack of adjacent final signs.
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The accuracy and recall of even the supervised systems are surprisingly low relative to the
performance reported in Ananthakrishnan and Narayanan 2006. There are several factors that could
contribute to this poor performance. There are significant differences in the data used in each study.
Ananthakrishnan and Narayanan (2006) use radio data, which is more carefully and deliberately
produced. This may enhance phonetic cues for prosodic phrasing. In contrast, the data in our study is
a spontaneous narrative, which may have more disfluencies, as well as less careful production. This
may mask some of the phonetic cues for prosodic phrasing. The ‘Canary Row’ video also elicits
a large amount of constructed action, which may exhibit similar phonetic properties to phrase-final
signs, such as lengthening.

Additionally, Ananthakrishnan and Narayanan (2006) also include part-of-speech tags in their
classifier. Their classifier has to use the prosodic cues to effectively bootstrap the information con-
tained in the part-of-speech tags, but this still represents a significant additional source of infor-
mation lacking in our study. Unfortunately, Ananthakrishnan and Narayanan (2006) do not report
the performance of the model without part-of-speech information, making it difficult to assess the
contribution of this difference.

Finally, the cues used by Ananthakrishnan and Narayanan (2006) are not the same as the cues
used in this study, largely because of modality differences. It is possible that additional cues, in-
cluding cues that have previously gone unnoticed in the literature, play an important role in ASL
phrasing. Furthermore, even within the cues used here, there may be additional information being
lost. For example, the duration or intensity of eyeblinks could vary depending on whether a blink
occurs on a phrase-final sign.

7 Future Steps

From a modeling perspective, there are several steps that could be taken to improve the performance
of the models. Hierarchical models can better capture individual variation. Instead of drawing cues
directly from a distribution over cues, the model could draw parameters for cue distributions for each
signer from a distribution over parameters (Gelman et al. 2013). This type of hierarchical modeling
captures similarities between signers while also capturing consistent individual variation. The end
result is improved parameter estimates and a better sense of the scope of individual variation. With
better accounting for individual variation, the low probability of a final-final sequence might become
apparent.

In the supervised setting, one option is to train a more sophisticated classifier that can assign
different weights to different cues or account for interactions. Previous research on identifying
prosodic boundaries has shown success with these types of models (Wightman and Ostendorf 1994).
A downside to this approach is that it is hard to compare the supervised and unsupervised models
when their structures diverge.

Given the data from Ananthakrishnan and Narayanan 2006, it would not be difficult to run their
model without part-of-speech tags. This would make it possible to eliminate one of the confounds
discussed above in comparing unsupervised learning of prosody in English and ASL. It would also
be interesting to introduce the between-state dependence of the hidden Markov model and see how
it affects the performance on their data set.

If the low probability of final-final sequences is discovered and the supervised models still
outperform the ASL models, a potential future study would be to create comparable data sets in
English and ASL that control for content and style. If even on these data sets the differences persist,
this would suggest that richer ASL cues than the ones coded in this study are needed. If instead the
differences disappear, it would suggest that the register and style differences discussed previously
are responsible for the difference in performance.

Finally, using a similar paradigm to Brentari et al. 2011, it would be possible to test native
ASL signers to determine their performance at identifying phrase-final versus non-final signs from
the data set used in our study. Such an experiment would provide a better point of comparison for
evaluating the predictive performance of any statistical model.
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8 Conclusion

We have offered the first unsupervised systems to learn aspects of prosodic phrasing in a sign lan-
guage. Both unsupervised systems recover reasonable parameters and have predictive performance
on par with supervised systems, but adding a dependency between adjacent states does not improve
performance. Furthermore, the overall predictive performance of even the supervised system is
lower than what has previously been reported for similar models applied to English. One possible
explanation is differences between the data sets, such as the more formal production of radio speech
or the high rate of constructed action in the narratives, which may show similar cues to phrase-final
signs. Another confound comes from the additional part-of-speech information available in previ-
ous research on English but unavailable in our study. Perhaps the most exciting possibility is that
additional cues or more complex combinations of known cues can mark prosodic phrasing. While
further work on I-phrase final cues in ASL is necessary, the success of such simple systems at deter-
mining cue distributions sheds light on how infants might learn the prosodic system without explicit
instruction.

References
Ananthakrishnan, Sankaranarayanan, and Shrikanth Narayanan. 2006. Combining acoustic, lexical,

and syntactic evidence for automatic unsupervised prosody labeling. In INTERSPEECH, 829–
832.

Bishop, Christopher. 2006. Pattern Recognition and Machine Learning. New York: Springer.
Brentari, Diane, Joshua Falk, and George Wolford. 2015. The acquisition of prosody in American

Sign Language. Language 91:e144–e168.
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