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Introduction
Doxorubicin (DOX), one of the most effective and used 

anthracyclines [1], has been used for several decades due to its potent 
broads spectrum antineoplastic activity [2]. DOX is heavily used to treat 
hematological malignancies such as multiple myeloma and hodgkin's 
lymphoma [3,4]. In addition, DOX has been used for the treatment of 
solid tumors like ovarian and breast cancer [5,6]. Despite the clinical 
application of DOX, it is well known to induce a dose-dependent 
cardiotoxicity, which limits its clinical usage [7]. DOX induced 
cardiotoxicity, early-onset or late onset, is characterized by a decline 
in left ventricular ejection fraction or the development of congestive 
heart failure [1]. In a retrospective analysis of three trials it has been 
demonstrated that 26% of all patients who receive a cumulative DOX 
dose of ≥ 550 mg/m2 develop DOX related congestive heart failure [8]. 

The underlying molecular mechanism of DOX induced 
cardiotoxicity remains unclear. Zhang et al. reported that chronic 
DOX exposure induces functional and structural changes in the 
mitochondria; manifested by mitochondrial damage and vacuolization 
[9]. In addition, DOX was found to induce alterations in cardiac 
myosin and is responsible for nuclear membrane disruption [10]. 
Previous reports have associated DOX induced cardiotoxicity with its 
ability to produce reactive oxygen species (ROS) [11,12], which causes a 
release of iron and contributes to DNA damage and lipid peroxidation 
[13]. Recent reports have suggested that DOX-induced cardiotoxicity 
is mediated in part by topoisomerase II (TOPII) - β expression and 
activity [9,13,14]. TOPII is an enzyme that uncoils the supercoiled 
double stranded DNA and contributes to DNA replication. Two 
isoforms of TOPII exist, TOPII-a and TOPII-β, which are expressed in 
different tissue. TOPII-a is expressed in proliferating tissues including 
the bone marrow, spleen, and tumor cells and TOPII-β is expressed in 
adult mammalian cardiomyocytes [15]. Furthermore, an in vitro study 

showed that Dexrazoxane, which is the only approved iron-chelating 
agent to treat DOX induced cardiotoxicity, reduced the expression 
of TOPII-β enzyme [14]. Another study demonstrated that TOPII-β 
knockout mice had improved cardiac function compared to the control 
group [9]. In our study, we hypothesize that TOPII-β contributes to 
DOX induced cardiotoxicity.

In our study we aimed to develop an in-vitro model in which 
DOX induces cardiotoxicity. In addition, we investigated the effect 
of inhibiting TOPII in attenuating DOX induced cardiotoxicity. 
Etoposide (ETO), a non-specific TOPII targeted anticancer drug and 
used in solid tumors such as lung cancer, lymphomas and sarcomas, 
was used in our study to inhibit TOPII [16]. Zhang et al. reported 
that ETO possess a time dependent degradation of both TOPII-a and 
TOPII-β, but with a greater effect on TOPII-β [17]. In addition, we 
examined the cardiotoxic effect of co administering DOX and ETO.

Materials and Methods
This study was carried out at the College of Pharmacy, Qatar 

University, Doha, Qatar. 

Cell culture

H9c2 myoblasts, a clonal cell line derived from the embryonic 
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Abstract
Background: Doxorubicin (DOX), a widely used anticancer drug, has been associated with cardiotoxicity. 

Recently, DOX-induced cardiotoxicity has been attributed to topoisomerase II (TOPII)-β expression and activity. In 
our study, we investigated the effect of inhibiting TOPII in attenuating the DOX induced cardiotoxicity. 

Method: H9c2 cardiomyoblasts were treated with 1 or 2 µM DOX (+/-) 1 µM ETO. Cardiotoxicity was assessed 
by examining cell viability using the MTT assay, hypertrophy of crystal violet stained cardiomyoblasts and ROS 
production. 

Results: DOX induced a dose dependent increase in cardiotoxicity as indicated by the significant reduction in 
cell viability (71.77 ± 9.25% 2 µM DOX vs. 100% control, P<0.05), ROS production and hypertrophy. Stimulation of 
H9c2 cardiomyoblasts with both 2 µM DOX and 1µM ETO did not show a significant difference in cell viability, ROS 
production or hypertrophy.

Conclusion: DOX induced cardiotoxicity in H9c2 cardiomyoblasts was not exacerbated in the presence of 1 µM 
ETO. This provides further support to using the combination of DOX and ETO, which is currently being done to treat 
advanced AIDS related sarcomas in the clinical setting.
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BD1X rat heart tissue, were obtained from the European Collections 
of Cell Cultures (ECACC) and cultured in DMEM/F12 1:1 culture 
media supplemented with 10% FBS and 1% penicillin/streptomycin at 
37°C in a humidified atmosphere (95% O2-5% CO2). Upon becoming 
confluent, cells were seeded at a density of 2.0×106 cells per 35 mm 
culture dishes containing the 10% FBS culture medium and cultured 
for 24 hours. The cells were then treated with 1 or 2 µM DOX in the 
presence and absence of 1 µM ETO for 48 hours in preparation for 
assessment of cell viability, hypertrophy or ROS production. 

Cell viability assay

Cell viability assay was measured using the MTT 
(3-(4,5)-dimethylthiazo(-z-yl)-3,5-dipheyltetrazoliumromide) assay. 
The cells were plated at a density of 50,000 cells/well in 24-well plates 
and allowed to adhere. Following treatment, 10 µl of MTT stock solution 
(5 mg/ml) were added to each well. After 4 hours of incubation at 37°C, 
the media was aspirated, and the produced formazan was solubilized in 
100 µl dimethyl sulphoxide (DMSO). The absorbance was measured at 
570nm using Spectra Max M2 microplate reader.

Measurement of cell surface area

Cell surface area of H9c2 cardiomyoblasts stained with crystal violet 
was measured following treatment. Briefly, H9c2 cardiomyoblasts 
were washed twice with 1 × PBS following treatment and incubated 
in a solution of 4% formaldehyde at room temperature for 10 minutes. 
Excess formaldehyde was aspirated and cardiomyoblasts were washed 
and fixed in cold methanol for 20 minutes at room temperature. 
Excess methanol was aspirated and fixed cardiomyoblasts were stained 
using a solution of crystal violet (Sigma) for a further 20 minutes. The 
average cell area of 50-70 randomly selected cells was taken. Cells were 
visualized with an inverted microscope equipped with a monochrome 
digitalized camera using 10X magnification. Cell area was determined 
using the AxioVision Imaging Software (Carl Zeiss Micro-imaging, 
New York, NY).

Reactive oxygen species activity

ROS activity of H9c2 cardiomyoblasts treated with the respective 
drug treatment groups were imaged using an inverted fluorescence 
microscope following incubation with DCFH-DA (20 μM) for 10 
minutes.

Statistical analysis

All values expressed are compared to control ± SEM. Student t 
test was used to compute differences between groups where a P<0.05 
was considered a significant difference. Data were analyzed using the 
Statistical Package for Social Sciences (SPSS Software) version 22.

Results
DOX induces cardiotoxicity in H9c2 cardiomyoblasts

To verify that concentration of DOX needed to induce 
cardiotoxicity in H9c2 cardiomyoblasts, H9c2 cardiomyoblasts were 
stimulated with 1 or 2 µM of DOX for 48 hours and assessed for cell 
viability, hypertrophy and ROS production. Treatment with 1 or 2 µM 
DOX for 48 hours resulted in cell death, with a significant increase 
following stimulation with 2µM DOX (71.77 ± 9.25 vs. 100% control, 
P<0.05) (Figure 1A). 

DOX induced cardiotoxicity has been associated with ROS 

production [1,2]. To verify the role of DOX in H9c2 cardiomyoblasts 
on ROS production, H9c2 cardiomyoblasts were incubated with 
DCFH-DA and visualized under a fluorescent microscope. ROS 
production was evident in H9c2 cardiomyoblasts simulated with 1 or 2 
µM DOX compared to control. Cells treated with 2 µM DOX had more 
fluorescence, which indicated more ROS production (Figure 1B). 

H9c2 cardiomyoblasts treated with increasing concentrations 
of DOX were also assessed for hypertrophy. Stimulation of H9c2 
cardiomyoblasts with 1 or 2 µM DOX resulted in a significant increase in 
the relative area of H9c2 cardiomyoblasts (176.83 ± 46.9% 2 µM DOX vs. 
100 ± 15.43% control) and (157.53 ± 32% 1 µM DOX vs. 100 ± 15.43% 
control) (Figure 1C).

ETO decreases cell viability in H9c2 cardiomyoblasts in a dose 
dependent manner. 

To determine an ideal concentration of ETO, a non-specific TOPII 
inhibitor to co-adminsiter with DOX, H9c2 cardiomyoblasts were 
stimulated with 1 or 5 µM ETO. Cell viability of H9c2 cardiomyoblasts 
stimulated with ETO (1 µM or 5 µM) for 48 hours was measured using 
the MTT assay. Both concentrations of ETO induced a significant level 
of cell death (72.33 ± 5.7% 1 µM ETO vs. 100 ± 15.43% control, P<0.005) 
and (62.38 ± 2% 5 µM ETO vs. 100 ± 15.43% control, P<0.05), with a 
greater amount of cell death induced with 5 µM of ETO (Figure 2). 

Figure 1A: Doxorubicin induces cardiotoxicity in H9c2 cardiomyoblasts. 
H9c2 cardiomyoblasts were assessed for cell viability, hypertrophy and 
reactive oxygen species production (ROS) in the presence and absence of 1 
μM or 2 μM. Doxorubicin (DOX) for 48 hours. Cell viability was assessed by 
MTT colorimetric assay in triplicates. Cell viability of H9c2 cardiomyoblasts is 
expressed as a percentage of control (P<0.05), n=6.

Figure 1B: Representative images of H9c2 cardiomyoblasts stained with 
DCF and imaged under fluorescence microscopy for ROS production.
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TOPII Inhibition with ETO Does not Attenuate DOX 
Induced Cardiotoxicity in H9c2 Cardiomyoblasts. 

To determine whether TOPII inhibition attenuates DOX induced 
cardiotoxicity in H9c2 cardiomyoblasts, H9c2 cardiomyoblasts 
were stimulated with 1 µM ETO and 2 µM DOX and assessed for 
cell viability, hypertrophy and ROS production Stimulation of H9c2 
cardiomyoblasts for 48 hours with 1 µM ETO and 2 µM DOX did not 
show a further reduction in cell viability (68.35 ± 11.9% combination 
vs. 71.77 ± 9.25% 2 µM DOX) (Figure 3A). Similary, ROS generation 
of H9c2 cardiomyoblasts stimulated with both 1 µM ETO and 2 µM 
DOX did not differ from the stimulation of H9c2 cardiomyoblasts 
with 2 µM DOX alone (Figure 3B). Furthermore, the cell area of H9c2 
cardiomyoblasts stimulated with both 1 µM ETO and 2 µM DOX did 
not induce a significant cell hypertrophic effect compared to 2 µM 
DOX alone (220.51 ± 63.51% combination vs. 176.83 ± 46.9% 2 µM 
DOX) (Figure 3C). 

Figure 2: Etoposide decreases cell viability in a dose dependent manner.
H9c2 cardiomyoblasts were assessed for cell viability in the presence and 
absence of 1 μM or 5 μM of Etoposide (ETO) for 48 hours. Cell viability was 
assessed by MTT colorimetric assay in triplicates. Results are expressed as 
a percentage of control, n=3-5. #P<0.05, *P<0.005.

Figure 3A: Topoisomerase inhibition with Etoposide does not attenuate. 
Doxorubicin induced cardiotoxicity in H9c2 cardiomyoblasts. H9c2 
cardiomyoblasts were assessed for cell viability, hypertrophy and reactive 
oxygen species production (ROS) in the presence and absence of 1 μM 
Etoposide (ETO) and 2 μM Doxorubicin (DOX) for 48 hours. A. Cell viability 
was assessed by MTT colorimetric assay in triplicates. Cell viability of H9c2 
cardiomyoblasts is expressed as a percentage of control (P<0.05), n=5.

Figure 3B: Representative images of H9c2 cardiomyoblasts stained with 
DCF and imaged under fluorescence microscopy for ROS production.

Figure 1C: Upper panel: representative images of H9c2 cardiomyoblasts 
stained with crystal violet following stimulation with DOX, Lower panel: 
quantitative analysis of H9c2 cardiomyoblast cell surface area. Results are 
expressed as a percentage of control, n=3; #P<0.05.
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Discussion
DOX is among the most effective and widely used antineoplastic 

agents. However, the use of DOX is restricted due to its ability to 
induce cardiotoxicity. Several studies have supported the role of ROS 
in DOX induced cardiotoxicity [11,12]. Recently, TOPII-β expression 
has been associated with DOX induced cardiotoxicity [9,13,14]. In our 
study, we examined whether the inhibition of TOPII prevented the 
DOX induced cardiotoxicity. ETO, a cytotoxic anticancer drug which 
inhibits DNA synthesis by forming a complex with TOPII and DNA, 
was used in our study. In addition, our study examined the cardiotoxic 
effects of co-administering DOX and ETO. 

In agreement with previous reports, the stimulation of H9c2 
cardiomyoblasts with DOX resulted in a significant reduction in cell 
viability, induced ROS production and resulted in a hypertrophic 
phenotype [10,17]. ETO, a cytotoxic anticancer drug which inhibits 
DNA synthesis by forming a complex with TOPII, was used in this 
study as a means to inhibit TOPII. ETO is used mainly in the treatment 
of refractory testicular tumors and for the treatment of small-cell lung 
carcinoma and has been associated with hypotension [18]. In vitro, 
Hsiao et al. demonstrated that 10 μM of ETO inhibited the cell growth 
of H9c2 cardiomyoblasts by 55% [19-21]. In our study, ETO decreased 
the cell viability of H9c2 cardiomyoblasts in a dose dependent manner 
with a greater decrease in cell viability with increasing concentrations 
of ETO. 

TOPII-β mRNA is predominantly expressed in the myocardium of 
adult mice [22]. These findings suggest that DOX mediated targeting of 
TOPII-β could contribute to its cardiotoxic side effects. We are the first 
to demonstrate that combining ETO (1 μM), a TOPII inhibitor, with 

DOX (2 μM) does not attenuate DOX induced cardiotoxicity. ETO 
failed to show any significant effect on reducing the cardiotoxic effects 
of DOX in H9c2 cardiomyoblasts. The inability of ETO to regress 
the DOX induced cytotoxic effect could be attributed to the fact that 
ETO is a nonselective TOPII-β inhibitor [5]. ETO inhibits both TOPII 
isoforms (TOPII-a and TOPII-β), which are regulated very differently 
[15, 22-24]. Further studies investigating the use of specific TOPII-β 
inhibitors on DOX-induced cardiotoxicity is needed to verify the role 
of TOPII on DOX-induced cardiotoxicity. 

Although both DOX and ETO are cytotoxic anticancer agents, the 
combination of both agents did not cause a significant reduction in cell 
viability or change in cell size when compared to H9c2 cardiomyoblasts 
treated with DOX alone. This was surprising to observe since the 
presence of two anticancer agents is predicted to result in more 
cell destruction. In addition, ETO similar to DOX has also been 
demonstrated to induce cardiotoxic effects. It has been demonstrated 
that patients who have previously undergone chemotherapy or 
mediastinal radiation may be at increased risk for MI following ETO 
treatment [19]. The concomitant chemotherapy of ETO with other 
agents has also been shown to be a predisposing factor for MI [20]. 
This observation emphasized that combing ETO with DOX does not 
further deteriorate H9c2 cardiomyoblasts. This also provides further 
support to using the combination of DOX and ETO, which is being 
done to treat advanced AIDS related sarcoma [25,26]. 

In our study, we have demonstrated that DOX induced a dose 
dependent increase in cardiotoxicity in H9c2 cardiomyoblasts, with 
a greater cardiotoxic response upon treatment with 2 µM DOX. 1 
µM ETO, a TOPII inhibitor, did not further attenuate this DOX 
induced cardiotoxicity. Interestingly, the combination of ETO and 
DOX did not further deteriorate the hypertrophic phenotype of 
H9c2 cardiomyoblasts. The idea that TOPII targeting is involved in 
doxorubicin induced cardiotoxicity has significant clinical implications. 
Further studies are needed to investigate the role of TOPII-β as a 
possible cardioprotective target.
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