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ABSTRACT  

Tortuosity is an important parameter that has a significant impact on many 

environmental processes and applications. Flow in porous media, diffusion of gases in 

complex pore structures, and transmembrane flux in water desalination are examples of the 

application of the micro-scale parameter. The main objectives of this thesis are to develop 

functional relationships that relate tortuosity to geometrical and topological parameters of 

porous media using three-dimensional (3D) computed tomography images, and select the 

best model that has the best capability to predict geometrical tortuosity. The objectives 

were achieved by implementing Random Paths MATLAB code that was developed in this 

work and compared with available Tort3D MATLAB code using high resolution 3D 

synchrotron computed tomography images of representative porous media. Tortuosity 

factors were computed from random tortuous paths of connected voxels (Random Paths 

Code) and tortuous paths derived from 3D medial surface of void space (Tort3D Code). 

Tortuosity factors were related to geometrical and topological parameters including 

porosity (∅), median grain diameter (d50), uniformity coefficient (Cu), coefficient of 

gradation (Cc), sphericity index (Si), roundness index (Ri), and specific surface area (SSA). 

Tort3D code was validated by comparing measured with predicted tortuosity factors from 

models reported in the literature. The two codes measured geometrical tortuosity of 

different sand systems effectively. However, they provided different tortuosity values, 

since they were developed using different concepts. Models were developed and predicted 

tortuosity values were compared with measured tortuosity values. Good agreement was 
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found between predicted and measured tortuosity values with low error (less than 20%). 

Model 3 that considers ∅, d50, Cu, and Cc has best capability to predict tortuosity compared 

with other developed models.  
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CHAPTER 1. INTRODUCTION 

1.1. Overview of Tortuosity  

Soil structure elements are quantified by geometrical parameters, such as porosity, 

roundness, and sphericity (Naveed et al., 2013). One of the geometrical parameters is 

tortuosity,𝜏, which is the ratio of the real path distance to the straightest path distance that 

molecules move from one point to its destination through the internal structure of porous 

media ( Adler, 1992). It provides better understanding of the mechanisms of fluid flow and 

indications about the structural complexity in porous media. In the literature, tortuosity has 

been categorized as geometric tortuosity (Yongjin and Boming, 2007; Yu and Li, 2004), 

hydraulic tortuosity (Ahmadi et al., 2011; Mauret and Renaud, 1997), or electrical 

tortuosity (Coleman and Vassilicos, 2008; Comiti and Renaud, 1989).  

The geometric tortuosity,τg, is the ratio of the average length of true paths through 

the porous media, < Lg >, to the straight-line length, Ls, across the porous media in the 

direction of flow: 

                                      τg = 
< Lg >

Ls
                                              (eq. 1.1) 

The value of tortuosity is always greater than one. Tortuosity can also be defined 

as the ratio of the shortest pathway, Lmin, to the straight-line length, Ls (Adler, 1992). The 

coefficient of geometric tortuosity, Tg, is the inverse of geometric tortuosity, Tg = 
1

τg
, which 

is less than one (Ghanbarian et al., 2013).  
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The hydraulic tortuosity, τh, can be estimated as the square of the ratio of the flux-

weighted average path length for hydraulic flow, < Lh >, to the straight-line length, Ls 

(Clennell, 1997; Ghanbarian et al., 2013): 

                           τh = (
< Lh >

Ls
)
2

                                           (eq. 1.2)   

Flux-weighted average is one of the methods to calculate the average length of the 

flow paths. It is the average of the lengths of flow lines for all fluid particles that pass 

through a cross-section during a specified period. The coefficient of hydraulic tortuosity, 

Th, is the inverse of hydraulic tortuosity, Th = 
1

τh
 .The reported value of Th varies between 

0.56 and 0.8 in the literature (Bear, 1972). 

The electrical tortuosity, 𝜏𝑒, is the square of the ratio of the average path length for 

electrical flow,< Le >, to the straight-line length, Ls, through the pore space (Childs, 1969): 

                        τe = (
< Le >

Ls
)
2

                                         (eq. 1.3)   

Electrical resistivity of a medium can be measured to infer the electrical tortuosity 

as the product of its porosity, ∅, and the formation factor, F (Coleman and Vassilicos, 2008) 

as follows: 

                                    τe =  ∅ F                                       (eq. 1.4) 

F is the quotient of the electrical resistivity of the saturated porous medium, 𝜌𝑝, and 

the resistivity of the saturating liquid, 𝜌𝑙. The formation factor is a dimensionless quantity 

the value of which is always higher than 1 in the absence of solid and/or surface conduction 

(Ghanbarian et al., 2013).  
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1.2. Importance of Tortuosity 

Transport in unconsolidated porous media is a very important issue that has been 

investigated by researchers (Civan, 2010; Guo et al., 2015; Manickam  et al., 2014; 

Masciopinto and Palmiotta, 2013; Yuan et al., 2016). It should take into consideration two 

effects: the decrease of the volume available to fluid transport because of the presence of 

the solid medium and an increase of the tortuous path that the fluid must flow across it. 

These effects can be described using the porosity, ∅, and the tortuosity, 𝜏, parameters 

(Pisani, 2011). Tortuosity has a significant influence on many applications including 

simulation models of fluid flow in tight rocks, such as shale gas reservoirs, simulation of 

regional groundwater flow in a fractured and karstified aquifer, and pollutant transport in 

fractured aquifers (Masciopinto and Palmiotta, 2013; Yuan et al., 2016). 

Some macroscopic transport coefficients (i.e. diffusion coefficient, permeability) are 

related to important geometrical and topological parameters. For instance, diffusion 

coefficient is related to tortuosity obtained from diffusion measurements and 

simulation, 𝜏𝑑 , by the following equation (Grathwohl, 1998):   

                                                𝐷𝑝 = 
∅  𝐷𝑏

𝜏𝑑
2                                   (eq. 1.5) 

where Dp is the diffusion coefficient in the porous media [ L2 T-1], and Db is the 

diffusion coefficient in air or water. Hydraulic tortuosity, 𝜏ℎ, can be related to permeability, 

k, using Kozeny-Carman equation (Vervoort and Cattle, 2003) as follows:  

                                                 𝑘 =  
 ∅3

𝛽  𝜏ℎ
2 𝑆2

                                  (eq. 1.6) 
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where ∅ is the porosity, 𝛽 is a shape related factor, and S is the average pore 

perimeter. The hydraulic radius is defined by the porosity (∅) and the average pore 

perimeter, S. Hydraulic tortuosity (𝜏ℎ ) and a shape related factor ( 𝛽) are representative 

parameters for the actual pore space geometry (Vervoort and Cattle, 2003).  

The impact of tortuosity on fluid entrapment has been investigated in the literature 

(Salmas and Androutsopoulos, 2001). The amount of isolated trapped  fluid is important 

for many applications, including oil reservoir analysis where trapped oil or gas means less 

production of hydrocarbon, and carbon sequestration problems where trapping of CO2 

leads to safe underground storage (Joekar-Niasar et al., 2013). Fluid entrapment is strongly 

dependent on the topological properties (pore connectivity and tortuosity) of porous media. 

In the literature, several models are proposed to express the tortuosity in terms of the pore 

entrapment fraction, 𝛼𝑒𝑛, or in terms of (partial) porosity (Androutsopoulos and Salmas, 

2000; Salmas and Androutsopoulos, 2001). Salmas and Androutsopoulos (2001) proposed 

the following relationship between tortuosity and pore entrapped volume fraction through 

a corrugated pore structure model (CPSM): 

                          𝜏 = 4.6242 ln (
4.996

1 − 𝛼𝑒𝑛
− 1) − 5.8032            (eq. 1.7) 

 

1.3. Importance of Geometrical Parameters   

Geometrical and topological parameters (𝜏, ∅, median grain diameter (d50) 

uniformity coefficient (Cu) coefficient of gradation (Cc) sphericity index (Si) roundness 

index (Ri) and specific surface area, SSA) have been used to characterize and quantify the 
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soil pore space geometry. Tortuosity is a geometric parameter that influences the transport 

of water, solutes, and gases in soil (Moldrup et al., 2001). In the literature, tortuosity has 

been related to ∅(Rezaee et al., 2007; Shanti et al., 2014; Sun et al., 2013), d50 (Naveed et 

al., 2013), diffusivity, permeability (Moldrup et al., 2001), diffusion (Takahashi et al., 

2009), and gas transport parameters (Naveed et al., 2013). Naveed et al. (2013) measured 

tortuosity, porosity, median grain diameter, coefficient of uniformity, roundness, 

and sphericity as structure characterization parameters of porous media. Wong (2016) 

measured Cu to quantify the particle size distribution of weathered soil in Hong Kong. Su 

et al., (2014) studied the influence of gradation characteristics on the permeability of multi-

particle-size sand soil. Vepraskas and Cassel (1987) evaluated Ri and Si for 50 soil samples 

to determine relationships of Ri and Si to the soils' cone index (mechanical impedance), 

bulk density, and the dense soil angle of repose. Specific surface area (SSA) influences 

many physical and chemical soil properties, such as cation exchange capacity, clay content, 

organic matter content, porosity and hydrodynamic and geotechnical characteristics (Feller 

etal., 1992; Petersen et al., 1996; Theng et al., 1999; Yukselen-Aksoy and Kaya, 2010). 

 

1.4. Thesis Organization  

This report has several sections as follow: measurements of tortuosity, types of 

tortuosity models in the literature, models of different tortuosity types, description of and 

comparison between Tort3D and Random Paths codes, the steps followed to model 

tortuosity with geometric parameters, a detailed discussion about the developed tortuosity 

models, selection of the best model to measure tortuosity for different porous systems, and 
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model validation. The final section provides a comparison between tortuosity values 

obtained from developed Model 1 with tortuosity values predicted by models in the 

literature.  

 

1.5. Objectives 

The main objectives of this thesis are to develop functional relationships that relates 

tortuosity to geometrical and topological parameters of porous media, and select the best 

model that has the best capability to predict geometrical tortuosity. These objectives were 

achieved as follows:  

1. measure geometrical tortuosity (𝜏) using Tort3D code (existing code) using three-

dimensional (3D) computed tomography images 

2. develop MATLAB code using different algorithm to measure geometrical 

tortuosity from three-dimensional (3D) segmented binary images of porous systems 

and compare it with Tort3D code measurements.  
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

2.1. Tortuosity Measurements 

Several analytical, experimental, and numerical approaches have been attempted to 

measure tortuosity. Various numerical approaches estimated tortuosity successfully. One 

of these approaches was modeling geometric tortuosity as a function of porosity for fixed 

bed of randomly packed identical particles that have same size and pores of a range of 

discrete sizes (Lanfrey et al., 2010; Li and Yu, 2011). Ahmadi  et al. (2011)  proposed 

analytical expressions for tortuosity and permeability based on the concept of 

representative volume elementary (REV) of  cubic array of spheres. However, calculating 

tortuosity analytically requires solving complicated mathematical equations (e.g. Yu and 

Li, 2004; Feng et al., 2007; Lanfrey et al., 2010; Du Plessis and Masliyah, 1991; Ahmadi 

et al., 2011; Duda et al. , 2014).  

Tortuosity can be determined indirectly by performing experiments on fluid 

diffusion (Corrochano et al., 2014; Gao et al., 2014; Soukup et al., 2015). One of the 

purposes of measuring tortuosity experimentally is to evaluate the impact of key transport 

parameters (porosity, pore diameter, tortuosity) on the migration rates of representative 

underground coal gasification (UCG) related products and contaminants through porous 

media (Soukup et al., 2015). Soukup et al. (2015) found that porosity, pore diameter, and 

tortuosity play a significant role in permeation transport of gaseous contaminants compared 

with physical properties, such as temperature and pressure. The propagation rates of 

gaseous contaminants in porous soil are lower as tortuosity increases. Another method of 
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obtaining tortuosity experimentally is by measuring electrical conductivity (Coleman and 

Vassilicos, 2008; Morin et al., 2010).  

Although many studies used experimental approaches to measure tortuosity, this 

method requires special equipment and it takes long time to measure some complicated 

parameters, such as conductivity and pore size (Sun et al., 2013).  

Tortuosity has been determined numerically to characterize the internal structure of 

porous media (Naveed et al., 2013) and compute Macro-pore network characteristics (e.g. 

macro-porosity, connectivity, and tortuosity) (Larsbo et al., 2014). Several studies have 

been conducted to study the relationships between tortuosity and other parameters, such as 

porosity (Rezaee et al., 2007; Shanti et al., 2014; Sun et al., 2013), diffusivity, permeability 

(Moldrup et al., 2001), diffusion (Takahashi et al., 2009), and gas transport parameters 

(Naveed et al., 2013).   

Matyka et al. (2008) determined numerically the relationship between the hydraulic 

tortuosity and porosity in a two-dimensional porous medium arranged as a collection of 

uniform, randomly distributed and overlapping squares. The relationships found in this 

study are limited to porous systems of randomly distributed obstacles of equal shape and 

size. They determined tortuosity of the flow by generating a porous matrix of a known 

porosity; solving the flow equations in the low Reynolds number regime; and finding the 

flow streamlines through computer simulations.   

Sun et al. (2013) used numerical tools to determine tortuosity factor of a 2D  

representative elementary volume (REV) of circular particles. The method used to 

calculate tortuosity has several assumptions: 2D homogenous porous media, which do not 
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represent real porous media system; using spherical particles of low-permeability porous 

media; arrangement of particles is periodical; and fully saturated pores by an 

incompressible fluid containing some kinds of solute. Sun et al. (2013) proposed a general 

model that relates tortuosity and porosity as follows:  

                                      τ =  1 −  p ln∅                                  (eq. 2.1)  

The values of p ranged between 0.357 and 0.503.  

X-ray computed tomography imaging is considered as a powerful technique to 

image a real porous media system. Recently, extensive research has been conducted to 

measure tortuosity using both 2D and 3D CT imaging (Naveed et al., 2013; Promentilla et 

al., 2009; Shanti et al., 2014; Takahashi et al., 2009). Wide range of computing algorithms 

and software have been developed to measure tortuosity and other geometrical parameters 

of porous media from X-ray images, including Medial axis (Peng et al., 2014; Takahashi 

et al., 2009), Dijkstra algorithm (Shanti et al., 2014), Random Walk simulation (Hu et al., 

2013; Promentilla et al., 2009), P-T average method, Fast marching method, Thin-line 

skeleton (Pardo-Alonso et al., 2014), and A-star algorithm (Dechter and Pearl, 1985).  

Medial axis is a common algorithm implemented to analyze the geometric structure 

of void space in porous media. The medial axis traces the fundamental geometry of the 

void pathways (Lindquist et al., 1996). It has been implemented to measure tortuosity by 

calculating the midline path of the pores from 3D CT images of porous media (Reed et al., 

2010; Takahashi et al., 2009). For example, Naveed et al. (2013) used Media Axis 

algorithm to compute tortuosity for images of several sand systems, and they compared 

their work with experimental gas transport parameters. Reed et al. (2010) used Medial Axis 
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algorithm to measure sand sediment tortuosity from 43 mm3 X-ray micro-focus computed 

tomography (XMCT) images and they found tortuosity values for 15 samples ranged from 

1.332 to 1.3337.  

Medial axis algorithm has some disadvantages. The algorithm is sensitive to small 

changes in the boundary of the object. Small changes in the object’s boundary can lead to 

a large change in the skeleton (Cornea et al., 2007). The most common software that 

performs image processing and skeletonization is 3DMA. Ngom et al. (2011) used 3DMA 

software  using obtained X-ray micro-tomography data to develop  geometrical model of 

the pore space of soil aggregates (10% sand, 70% silt, and 20% clay). 3DMA software 

determines length, pore radius distribution, and tortuosity as geometrical characteristics. 

Ngom et al. (2011) compared their obtained results with previous statistics of pore space 

using the same software. They obtained similar trends towards a difference between the 

two soil structures.  Shanti et al. (2014) studied non-destructive 3D imaging of Al2O3 

porous media using synchrotron X-ray micro-computed tomography and measured 

connectivity and tortuosity. They performed tortuosity calculations using two methods: the 

path length ratio (PLR) and gas phase flux (GPF) methods. Skeletonized method was used 

to calculate the length of the shortest path between nodes through the pore networks (L) 

and the end -to- end length of the pore channel (R) using an algorithm described previously 

(Shanti, 2010).  R distance was calculated for pair of nodes selected randomly. L distance 

was calculated using a Dijkstra algorithm (Dijkstra, 1959). The other method GPF depends 

on finite difference method to simulate gas phase transport through diffusion. For samples 

of porosity of 0.308 to 0.496, the connectivity values ranged from 0.945 to 0.996. The 
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tortuosity value was 1.5 for alumina with porosity of 0.496. The processing time for 

tortuosity measurements using PLR and GPF was found to be influenced by the change in 

porosity.  

Some of the available software measure tortuosity are most computationally 

expensive. For example, the Dijkstra shortest path algorithm in 3DMA-Rock runs for 30 

hours or more to compute throats on a Berea image of size of 450x450x450 voxels 

(Prodanovic and Lindquist). Also, Dijkastra has other disadvantage  that it most often 

cannot obtain the correct shortest ("Dijkstra's algorithm, Bellman Ford algorithm, Single-

source shortest paths; Dijkstra algoritması nedir - Bellman Ford algoritması nedir," 2014). 

Avizo software has been used for 3D macro-pore network quantifications and to measure 

tortuosity. Keller et al. (2015) considered clay rocks as a mixture of components consisting 

of impermeable non-clayey sand grains. They analyzed geometric parameters, which 

control diffusion at larger scales. They constructed X-ray computed tomography images of 

clay rock samples and applied diffusion simulations to quantify the mesostructured impacts 

on diffusion.  

Promintella et al. (2009) used Random Walk simulation in 3D images to quantify 

diffusion tortuosity for cement paste of several ages (2, 7, 28 days). Bo Hu et al. (2013) 

implemented Random Walk Simulation to calculate macroscopic transport properties, such 

as permeability, specific surface, and tortuosity for two sandstones, a limestone 

(homogeneous natural stones), three concretes, and brick (heterogeneous materials). All 

the measurements were limited to 2D X-ray images.  
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Chung et al. (2015) investigated the spatial distribution of voids in a concreate and 

two cement paste specimens using X-ray images. They implemented A-star algorithm to 

calculate the length of the shortest path between inlet and outlet surfaces  (Dechter and 

Pearl, 1985). The heuristic function H for A-star algorithm must be selected carefully in 

order to make sure of the shortest and lowest cost path (Al-Arif et al., 2012).   

The analytical, experimental, numerical approaches in the literature have been 

found to be successful approaches to measure tortuosity of porous media systems. 

However, number of limitations is associated with these studies as follows: (1) numerical 

approaches determines tortuosity for an ideal system, which does not represent real porous 

media system; (2) there are many complications associated with the numerical approaches; 

(3) obtaining experimental measurements takes long time to perform and requires 

specialized equipment; (4) some software (i.e. Avizo) are not readily available to 

researchers, because they cost thousands of dollars; and (5) Some algorithms (Dijkstra 

shortest path algorithms in 3DMA) require to run for long time to compute tortuosity 

("Dijkstra's algorithm, Bellman Ford algorithm, Single-source shortest paths; Dijkstra 

algoritması nedir - Bellman Ford algoritması nedir," 2014).  

Although, there are several algorithms and software implemented to measure 

tortuosity from X-ray computed tomography images; there is still a need to develop an 

efficient and less time consuming algorithm to identify all possible tortuous paths. This 

thesis presents a new Tort3D MATLAB code to measure geometric tortuosity from 3D X-

ray computed tomography images for irregular shaped materials. The code reads 

segmented images and implements some image processing steps to identify all possible 
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tortuous paths in porous systems. The thesis demonstrates the applicability of the code for 

real applications by comparing code tortuosity measurements for natural sand systems with 

tortuosity values predicted by models reported in the literature.   

 

2.2. Models for Determining the Tortuosity in the Literature  

2.2.1. Theoretical Models 

Tortuosity can be determined theoretically, experimentally, or analytically. 

Determining tortuosity through theoretical approches is based on specific model of porous 

media structure. The theoretical models are develpoed based on assumption of ideal 

system, which considers major limitation. A gathering of randomly capillaries cutting 

through a solid body is the simplist case of the theoretical models (Ballal and Zygourakis, 

1985; Bhatia, 1985; Dykhuizen and Casey, 1989; Shen and Chen, 2007).  Table 2.1 

presents some theoretical correlations between tortuosity and porosity with the conditions 

of the physical system on which each correlation is based. These correlations satisfy the 

following three requirements (Shen and Chen, 2007):  

 𝜏2 ≥ 1 

 lim
∅→1

𝜏 = 1 

 𝜏 =  
Δ𝑙

Δ𝑥
 

where Δ𝑙  is the actual distance travelled by the species and Δ𝑥 is the unit length of the 

medium.  
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Table 2.1 Theoretical Relations of Tortuosity and Porosity 

  ∅ is the porosity  

 

 

2.2.2. Empirical Models 

As discussed earlier, theoretical models do not describe real porous systems. 

Empirical models offer better description the porous systems. Table 2.2 lists some 

empirical correlations for different soils, sand, and sediment that contain adjustable 

parameters. Experimentally, the tortuosity of a sediment can be obtained by measuring the 

porosity (∅) and the formation resistivity factor (F), as noted earlier.  

 

 

 

 

Model Condition Description References 

𝜏2 =
(3 − ∅)

2
                   (eq. 2.2) Ordered packings Theoretical 

(Akanni et al., 1987; 

Maxwell, 1881) 

𝜏2 =
(3 − ∅)

2
                   (eq. 2.3) 

Random homogenous 

isotropic sphere 

packings 

Theoretical 
(Neale and Nader, 

1973) 

𝜏2 = 2 − ∅                       (eq. 2.4) 
A hyperbola of 

revolution 
Theoretical 

(Ballal and 

Zygourakis, 1985; 

Rayleigh, 1892) 

𝜏2 = ∅−
1
3                         (eq. 2.5) 

Partly saturated 

homogenous isotropic 

monodisperse sphere 

packings 

Theoretical 

(Millington, 1959; 

van Brakel and 

Heertjes, 1974) 

𝜏2 =  1 − ln
∅

2
                 (eq. 2.6) Overlapping spheres Theoretical 

(Akanni et al., 1987; 

Ho and Striender, 

1981; van Brakel 

and Heertjes, 1974; 

Weissberg, 1963) 
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Table 2.2  Emprical Relations between Tortuosity and Porosity 

A, m, n, B, and C are adjustable parameters 

 

 

2.2.3. Numerical Models  

Another important common approach to determine tortuosity is by adopting 

computed algorithim on X-ray computed tomography images. For instance, Naveed et al. 

(2013) used Media Axis algorithm to compute tortuosity for images of several sand 

systems, and they developed tortuosity correlation as a function of median grain diameter, 

d50, as given in Table 2.3.  

 

 

Table 2.3 Numerical Relation between Tortuosity and Median Grain Diameter  

 

Model Condition Description References 

𝜏2 = (A ∅1−𝑚)𝑛            (eq. 2.7) Sands, muds Empirical 
(Nriagu, 1979; Ullman 

and Aller, 1982) 

𝜏2 =  ∅ + B (1 − ∅)    (eq. 2.8) Soils, catalysts Empirical 

(Iversen and 

Jørgensen, 1993; Low, 

1981) 

𝜏2 = 1 − C ln∅            (eq. 2.9) 
Fine-grained unlithified 

sediments 
Empirical 

(Boudreau, 1996; 

Weissberg, 1963) 

Model Condition Description References 

𝜏 =  0.19 d50 + 1.45             (eq. 2.10) Sands 

Numerical, 

Medial Axis 

Algorithm 

(Naveed et al., 2013) 
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2.3. Models for Different Types of Tortuosity  

2.3.1. Geometric Tortuosity  

Models of geometric tortuosity have been widely developed based on specific 

properties, such as geometric and topological properties of a porous medium. These models 

describe the geometric characteristics of the flow path. The developed models are limited 

to specific artificial porous media as shown in Table 2.4. For instance, Yu and Li (2004) 

proposed a tortuosity model as a function of porosity for a porous medium consisting of 

two-dimensional square solid particles, given by eq. 2.11. The model has been developed 

based on the assumption that some particles in the system are unrestrictedly overlapped. 

Feng et al. (2007) proposed an analytical tortuosity expression as a function of 

porosity assuming a hierarchical structure in a saturated porous medium (eq. 2.12). Lanfrey 

et al. (2010) developed a theoretical tortuosity model of a fixed bed of randomly packed 

identical particles as function of porosity (∅) and shape factor (𝜀). They assumed that 

tortuous paths are represented by sinuous tubes with constant perimeter and cross-sectional 

area. A shortcoming of the developed model is that as  ∅ → 1, 𝜏 → 0; which unrealistic 

since tortuosity must be limited to 1, and the tortuosity cannot be <1 by definition. Lanfrey 

et al. (2010) found that tortuosity increases when shape factor or porosity decreases and 

does not depend on the packing particle size (eq. 2.15).  

Naveed et al. (2013) proposed a numerical model of tortuosity as a function of 

median particle diameter (d50) for Accusand (rounded) and Granusil (angular) sands. 

Tortuosity values were determined using Medial Axis algorithm in 3DMA-Rock package 

and they found that tortuosity ranged from 1.5 to 1.75 (Accusand) and 1.48 to 1.65 
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(Granusil). The model was derived at air-dried and tightly packed conditions using X-ray 

CT.    

 

2.3.2. Hydraulic Conductivity Models 

Empirical and analytical equations have been developed to describe tortuosity in 

porous media. Matyka et al. (2008) studied the tortuosity- porosity relation for a porous 

medium consists of freely overlapping squares (eq.2.18). The relation can be re-written in 

terms of hydraulic radius and specific surface area (eq.2.19).  The applicability of these 

relations is restricted to system of randomly distributed obstacles of equal shape and size. 

Mota et al. (2001) developed an empirical tortuosity–porosity (𝜏 − ∅) power law for binary 

mixtures of spherical particles (eq.2.20). They measured the conductivity of porous media 

and found b = 0.4. The exponent must be determined experimentally or numerically which 

makes a problem with empirical models. Du Plessis and Masliyah (1991) developed an 

analytical model for isotropic granular porous media using volume-averaging approach. 

Note that the saturated hydraulic tortuosity in eq. 2.21 ranges between 1 and 1.5 and does 

not include critical porosity for macroscopic connectivity, in the system.Ahmadi et al. 

(2011) also presented an analytical function of tortuosity of regular cubic array of mono-

sized spheres using a volume-averaging concepts (eq. 2.22).  

 Pisani (2011) simulated a diffusion process by using a numerical method and 

expressed the tortuosity with the porosity and the shape factor, the procedure was simple. 

When solid objects have a low density, the tortuosity of cubic particles was given in eq. 
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2.23. However, when the solid objects have a high density, the tortuosity of cubic particles 

was given in eq. 2.24. 

 Iversen and Jørgensen (1993) proposed tortuosity-porosity relation for Sandy 

marine sediment based on difussion measurments for high voidage sandy marine 

sediments, applicable for porosity 0.4-0.9. Mauret and Renaud (1997) proposed tortuosity 

correlation (eq.2.26) based on conductivity measurements applicable for high voidage bed 

of spheres. Mauret and Renaud (1997) indicated that torutosity model coefficent of 0.49 is 

more applicable than the coeffienct of 0.41 proposed by Comiti and Renaud (1989) for 

tortuosity model. The equation is appicable for porosity 0.36-1.  

 

2.3.3. Electrical Conductivity Models 

 Maxwell (1873) developed an equation for the electrical conductivity of a 

conducting medium having a dilute suspension of nonconducting spheres based on the 

solution of Laplace’s equation for steady-state conduction (eq. 2.27).  

The equation implies that as ∅ → 0,𝜏𝑒 → 1.5. 

 Coleman and Vassilicos (2008) studied inviscid and irrotational flow through 

frractal porous media in  two and three dimensions. They proposed an analytical model for 

tortuosity as a function of porosity (∅), fractal dimension (Df), random walk dimension 

(Dw), and Euclidean dimenstion (dE).  
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Table 2.4 Tortuosity Models in the Literature  

*ɸ is the porosity  

** where τ (𝑟) is the tortuosity for a pore pathway , Ls  is straight line length , 𝑓(𝑟) is the pore size probability density function , D is he fractal dimension of the pore size 

, rmin and rmax are the smallest and largest pore radii , DT is the tortuosity fractal dimension, which is between 1 and Euclidean 

*** ξ is the sphericity equal to 1 for sphere and < 1 for non-spherical particles 

**** d50: median grain diameter (mm), ***** P is an experimental constant 1.6 for wood chips, 0.86 to 3.2 for plates with different height /side ratios and 0.49 for a 

capillary model of high-porosity beds of spheres and fibers 

Type of Model Model Condition Description Reference 

Geometric 

Models 

𝜏𝑔 =
1

2
 

[
 
 
 

1 +
1

2
 √1 − ɸ∗ +

√(1 − √1 − ɸ)
2
+
(1 − ɸ)

4

1 − √1 − ɸ
 

]
 
 
 

  (eq. 2.11) 
Porous media contains 2-D 

square solid particles 
Analytical 

(Yu and Li, 

2004) 

τg  =  ∫ τ (𝑟)𝑓(𝑟)d𝑟
𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛

 ≈  
D

D + DT − 1
 (

Ls
rmin

)
DT−1

          (eq. 2.12) 

                                    τ (𝑟)∗∗ = (
Ls
r
)
DT−1

                                     (eq. 2.13) 

                              𝑓(𝑟) = D rmin
D  r−1−D                                          (eq. 2.14) 

Hierarchical structure in a 

saturated porous media 
Analytical 

( Feng et al., 

2007) 

                                τg = 1.23 
(1 − ɸ)

4
3

ξ2
∗∗∗
 ɸ

                                         (eq. 2.15) 
Fixed bed of randomly 

packed identical particles 
Theoretical  

(Lanfrey et 

al., 2010) 

                                      𝜏 =  0.19 d50
∗∗∗∗ + 1.45                               (eq. 2.16) 

Equation derived for 

Granusil and Accusand sand, 

which scanned at air-dried 

and tightly packed 

conditions using X-ray CT 

Numerical  
(Naveed et 

al., 2013) 

Hydraulic 

Conductivity 

Models 
                                 τh = 1 − P∗∗∗∗∗ ln(ɸ)                                     (eq. 2.17) 

3-D porous media, wood 

chips, platy particles , and 

high-porosity beds 

Empirical (Pech, 1984) 
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 Table 2.5 Tortuosity Models in the Literature (cont.) 

     * R is hydraulic radius of granules; S is specific surface area. 

** β is a constant equal to 0.4 resulted from measuring the conductivity of porous media 

*** B is a constant equal to 1.209 for cubic pickings and 1.108 for tetrahedral packing  

       

 

Type of Model Model Condition Description Reference 

Hydraulic 

Conductivity 

Models 

 

                             τh − 1 ∝  ln∅            (eq. 2.18) 

                           τh − 1 ∝  
RS ∗

∅
            (eq. 2.19) 

2-D porous media, freely overlapping square Numerical 
(Matyka et 

al., 2008) 

                               τh = ɸ
−β∗∗                   (eq. 2.20)   3-D porous media, binary mixtures of spherical particles Empirical  

(Mota et al., 

2001) 

                    τh = 
ɸ

1 − (1 − ɸ)
2
3

             (eq. 2.21) 3-D porous media, isotropic granular media Analytical 

(Du Plessis 

and 

Masliyah, 

1991) 

τh = √
2 ɸ

3 [1 − B∗∗∗ (1 − ɸ)
2
3]
+
1

3
   (eq. 2.22) 3-D porous media, cubic packing and tetrahedral packing Analytical 

(Ahmadi et 

al., 2011; 

Duda et al. , 

2014)  

             𝜏 = [1 − 0.64(1 − ∅)]−1        (eq. 2.23) Solid objects have a low density 
Numerical 

method 
(Pisani, 2011) 

                   𝜏 = 1 + 0.64(1 − ∅)          (eq.  2.24) Solid objects have a high density 
Numerical 

method 
(Pisani, 2011) 

                    𝜏 = 1 − 0.49 ln∅               (eq. 2.25) 
bed of sphere, applicable for 

0.36 < ∅ <1 

Experimental 

measurement 

(Mauret and 

Renaud, 

1997) 
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Table 2.6 Tortuosity Models in the Literature (cont.) 

*Dw is the random walk fractal dimension, Df is the fractal dimension, dE is the Euclidean dimension  

  

 

Type of Model Model Condition Description Reference 

Hydraulic 

Conductivity 

Models 

            𝜏 = √1 + 2(1 − ∅)        (eq. 2.26) 
Sandy marine sediment, 

0.4< ∅ <0.9 

Experimental 

(diffusion experiment) 

(Iversen and 

Jørgensen, 

1993) 

Electrical 

Conductivity 

Models 

          τe = 1 +
1

2
 (1 − ɸ)     (eq.  2.27) 

3-D porous media contains a dilute 

suspension of non-conducting spheres 
Analytical 

(Maxwell, 

1873) 

    τe = ɸ
(Dw

∗−2)/(Df−dE)      (eq. 2.28) 2-D and 3-D fractal media Analytical 

(Coleman and 

Vassilicos, 

2008) 
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Numerous models of tortuosity have been developed as a function of porosity, 

shape factor, or median grain diameter. However, no study had been carried on to 

investigate the relationship between tortuosity and a combination of geometric parameters 

(porosity, median grain diameter, uniformity coefficient, coefficient of gradation, 

sphericity index, roundness index, and specific surface area). The main objectives of this 

thesis are to develop new functional relationships between geometrical tortuosity and 

geometrical parameters and select the best model that has the best capability to predict 

geometrical tortuosity.   
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CHAPTER 3. METHODOLOGY  

A number of steps were followed to achieve the objectives of this thesis. Tortuosity 

was computed using two codes: Tort3D (existing) and Random Paths (developed) codes. 

The two codes were developed using different concepts. Then, the physical properties of 

the porous media systems were obtained from Al-Raoush (2014). Then, six tortuosity 

models were generated to relate tortuosity with other geometrical parameters. The 

coefficient parameters in the six models were calculated in Matlab using Inlinfit function. 

A very large number of models were developed for each type of tortuosity models and only 

the best models were selected and shown in this thesis.  The predictions of the six 

developed models were compared based on the validation criteria described in Chapter 4. 

Also, they were validated by comparing predicted tortuosity using developed Model 1 and 

models reported in the literature.   

 

3.1. Description of Tort3D Code 

The key functionality of Tort3D code is its capability to compute the geometric 

tortuosity from 3D images of porous media using MATLAB. The code is a user-friendly 

and straightforward to use where input parameters and user interaction are minimized. It 

can be used to compute tortuosity from 2D or 3D images. The code has the option of setting 

the connectivity and tortuosity computations along a given direction (i.e., x, y, or z). 

Moreover, it is computationally efficient and it is optimized where loops, nested loops, and 

"if" conditions are limited.   
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The general flow chart of the algorithm is shown in Figure 3.1. The algorithm 

commences by reading binary (i.e. segmented) images. Note that the segmentation process 

is beyond the scope of this thesis as there are many published papers that present and 

discuss different segmentation algorithms (Feng et al., 2016; Guéguen, 2001; Haindl and 

Mikeš, 2016; Ilunga-Mbuyamba et al., 2016; Oliveira et al., 2016; Thorp et al., 2016; Touil 

and Kalti, 2016). The main idea of the algorithm presented herein is that it conducts a 

guided search for connected paths in the image utilizing the medial surface of the void 

space. The advantage of this approach is that it limits the search along the medial surface 

and thus minimizes time and memory requirements to find possible paths in the image.  

Once all connected paths are identified for a specific direction, tortuosity is computed as 

the average of all connected paths in that direction. A connected path is defined as the one 

that starts from the first slice of the image and ends at the final slice of the image in the 

direction computation (i.e. flow). The code computes tortuosity as: 

  Tortuosity =  
Average of all path lengths

Size of the image in the direction of flow
             (eq. 3.1) 
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Figure 3.1 Flow Chart of the Main Sections in the Algorithm Developed to Compute Tortuosity from 3D  

Images  

* Running the Paths Section Explained in Details in Figure 3.2 

 

 

The input and output variables are listed in Table 3.1. The initial step is introducing 

the input variables to the code as follows: reading binary segmented image, and specifying 

flow direction (1 for 1D, 2 for 2D, 3 for 3D) and connectivity. The code determines the 

location of starting points, number of possible paths, image of 3D paths, and measured 

tortuosity. 

 

 

 

 

Read Binary 
Segmented  Image 

Set Direction of Flow

Set Connectivity 
(6,18,26)

i< = 
Number 
of Slices

Find Medial Axis of Each
Slice using "bwmorph" 
Command of MATLAB

i = 1

Obtain Starting Points of 
"Connected Paths" in the 

First Slice 
(Centres of Maximum 

Inscribed Circles)

Running the Paths *

Tortuosity 

False

End

True

i = i + 1
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Table 3.1 List of Tort3D Code Input and output Variables   

Input Variables 

"Raw_image" Binary segmented image 

"Direction_flow" 
Direction of flow (1 for flow in the x direction ,2 for the flow in y 

direction ,3 for the flow in z direction) 

"Connect" Connectivity type (4,8 in 2D or 6,18,26 in 3D) 

Output Variables 

"Path_ID" Number of possible path 

"Starting_Paths" Location of starting points  

"3D_ paths" Image of all tortuous paths  

"Tortuosity" Average geometric tortuosity 

 

 

3.1.1. Connectivity of Voxels 

Identifying connected paths along the medial surface of 3D images depends on the 

connectivity of voxels. The algorithm defines connectivity of a given voxel (or pixel 

(image element for 2D) by identifying its neighboring voxels (image volume for 3D) that 

connects through a face, edge or corner. In 2D images, there are 4 or 8 neighboring pixels 

for a given pixel, whereas there are 6-connected, 18-connected, and 26-connected for 3D 

connectivity. The developed code runs at connectivity of 26. However, the connectivity 

can be changed before searching for tortuous paths.  

 

3.1.2. Skeletonization  

Three-dimensional medial surface of the void space is created by 2D skeltonization 

of the void space of each slice in the image. The MATLAB command "bwmorph" was 

used to perform the 2D skeltonization for each slice. In 3D images, the search begins from 
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locations on the medial surface that form junctions on the first slice. Centers of these circles 

serves as starting points for all possible locations of paths that run in the direction of flow. 

As shown in the flow chart the algorithm searches for paths starting from centers of circles. 

For each voxel, the neighbors voxels (18, 26) are found, only voxels that belong to the 

medial surface are considered a potential voxel in the connected path.  

Skeletonization provides an effective image representation by reducing its object 

dimensionality to a "skeleton" without changing the topology and geometry of the object. 

An object can be converted to a surface skeleton in 3D (Saha et al., 2015). Skeletonization 

algorithms perform operations based on a controlled erosion, where the erosion stops when 

the object thickness becomes 1 or close to 1 ("Morphological operations on binary 

images"). Skeletonization was used to track the possible paths to measure tortuosity using 

the MATLAB function bwmorph (BW,'skel',Inf). The operation is set to ‘skel’ and 

operations are repeated infinitely until the image does not change any more (Bao et al., 

2009). The pixels on the boundaries of objects are deleted until no more pixels can be 

removed where the skeleton of the image is made of the remaining pixels. 

 

3.1.3. Starting Points of Connected Paths 

The main goal of this step is to find all possible starting points in the first slice to 

search for connected paths. The code operates three iterations with connectivity of 8, 4, 

and 8, respectively. The coordinates for voxel index in the middle of void space and the 

connected voxels are calculated.  In the second iteration, the difference between nodes is 

calculated to make sure that the movement in voxels is forward. In the third iteration, while 



28 
 

loop is implemented to start from id=1 and repeat the calculations until all connected voxel 

indexes in slide 1 are covered. Temporary position is defined and it is saved as current 

index if the length of position is greater than 1.  

 

3.1.4. Running the Paths  

The code runs the computational steps for each starting points defined in the 

previous section. In other words, the code finds the next move index for all Path_ID 

covering the length of Starting_Point_Index. While loop runs as long as the two conditions 

are satisfied: Next_Move_Index ≠ Size of Image in Directional Flow & Path Corrector =1. 

The code will find the neighbouring voxels that belong to medial axis surface only. At each 

step, the code finds the voxel that represents the center of voxels with maximum 

coordinates in the direction of flow and will save each new voxels as current position. 

However, if the current voxel (Next_Move_Index) belongs to a solid phase, it will be 

removed from calculations and the previous position becomes the current position. The 

code checks the position (solid or void space) at each computational step. These steps will 

be running for non-connected path until the condition of Path_Corrector does not satisfy 

and the code checks the next Path_ID. Figure 3.2   shows the flow chart of Running the 

Path Algorithm. 
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Figure 3.2 Flow Chart of Running the Path Algorithm – Tort3D Code 

Path_ID = 1

Start

Path_ID 
< =  # of 
Starting
Points

False

End

Tortuosity 

True

Next_Move_Index = 
Starting_Path_Index (Path_ID)

Path_Corrector = 1

Connect_Voxels_Index = Get Neighbouring Voxels 
that Belong to Medial Axis Surface1

False

"This is a Non-Connected 
Path" 

Path_Corrector = 0

False

True

Next_Move_Index 
(Center of Voxels )

False

Path_Index =
[ Path_Index; Next_Move_Index]

Remove 
Next_Move_Index 
from Consideration

Path_ID = Path_ID + 1

Length
(Path _ 

Index)>1

True

Next_Move_
Index ≠ Size of 

Image in 
Directional Flow & 

(Path Corrector 
=1)  

Connect 
Voxels 

Index > 0

True
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3.2. Random Paths Code 

The key functionality of Random Paths Matlab code is its ability to find tortuosity 

paths at different specified starting points from 3D images of porous media. The code is 

simple to use and it needs only to specify limited number of input parameters, such as 

starting point, number of iterations needed to search for tortuous paths, connectivity, and 

direction of flow (x , y, or z). In addition, it has been optimized to find out one possible 

tortuous path in few seconds. Tortuosity for one path can be calculated by dividing the 

number of voxels needed to reach the first z index equal to the size of the image in the 

direction of the flow by the size of the image in the direction of the flow. In this work, the 

size in z direction of the image is 520. The main limitation of the code is its ability to find 

out only one tortuous path. Identifying large number of paths can take long time to be 

performed. It can be modified to measure tortuosity for a number of paths instead of one.  

The input and output parameters are listed in Table 3.2 and the flow chart of the algorithm 

is given in Figure 3.2. The algorithm starts by reading segmented binary image. Then, all 

indices in the void space in the first slice are identified for all possible starting points of 

tortuous paths. The starting point is selected by specifying the number of element in the 

list of void indices in the first slice and calculating the x, y, z coordinates of the starting 

point. Using while loop, the number of iterations needed to identify one possible tortuous 

path should be specified by the user until the tortuous path is obtained. The 25 connected 

indices are determined using the existing Matlab code “get_connect_index”. The important 

part of the code is to check all the connected indices if they are in void phase or solid phase. 

Then, all the connected indices in the void space that have the highest z index are identified 
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in order to force the movement in z direction. Then, the code is optimized to select one of 

these indices randomly to be the next move index. The next move index will be the new 

starting initial point to move in z direction and steps needed to move forward in the path 

are repeated until the loop is terminated. To identify the number of starting points for 

possible tortuous paths (i.e. 100 paths), the total number of all indices in the void space in 

the first slice should be divided by 100 (rounded to nearest integer) and this number should 

be added to the previous starting point to identify the new starting points for each new 

tortuous path. The tortuosity (τ) of one path is calculated as: 

                                τ =  
N

 D
                                       (eq. 3.2) 

where, N is the number of voxels needed to reach the first index that equals to the 

size of the image in the direction of flow, and D is the size of the image in the direction of 

flow, which is 520 in this work. The tortuosity of the 100 paths is the average tortuosity of 

these paths.  

 

Table 3.2 List of Random Paths Code Inputs and Outputs  

 Parameter Mean 

Inputs 

raw_image Segmented image 

initial_position_index Starting point of tortuous path 

connect Connectivity type (4,8 in 2D or 6,18,26 in 3D) 

Number of iterations 
Number of iterations needed to run to identify one possible 

tortuous path 

Outputs next_move x, y, and z coordinates of tortuous path 
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Figure 3.3 Flow Chart of Random Paths Code 
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3.3. Computed Tomography 

X-ray micro-tomography is a powerful technique to visualize the inner structure of 

porous media. Three-dimensional image is obtained by converting X-ray attenuation data 

to cross-sections by using image reconstruction algorithms (Al-Raoush, 2014). The sample 

rotates by specific angle while acquiring the attenuation X-ray. During rotation the X-ray 

source produces X-rays beam that passes through a section of sample. Detectors are used 

to register the X-rays that pass through the sample’s body as a snapshot in the process of 

creating an image. During 180° rotation, several snapshots are collected. Then, a computer 

receives the image data to convert all snapshots to one or multiple cross-sectional images 

(slices) of the internal structure of the sample (tomographic reconstruction). 3D images are 

generated from a series of 2D projections taken around a single axis rotation.  

 

3.4. 3D Images Used in the Study  

Silica sands, quartz sands, and mixed sands (silica and quartz) were used as porous 

media (Table 3.3). Sand samples were packed in the aluminum tube under dry conditions 

to achieve homogeneity (Al-Raoush, 2014). The desired three-dimensional (3D) images of 

sand samples were acquired by X-ray computed tomography. The details of samples 

preparation for tomography imaging are explained in Al-Raoush (2014).  

The first type of the systems is silica sand, which represent rounded shape. The second type 

of the systems is quartz sand, which represent angular shape. The third type of the systems 

is mixed sand, which was created by mixing equal masses of silica and quartz sands. The 
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mixed sand has geometry between rounded and angular geometries. The porosity (∅) of 

the porous media ranged from 0.32 to 0.49.  

Three-dimensional (3D) images of sand systems were acquired by using beamline 

at the GeoSoilEnviroCARS beamline (13-BM-D) at the Advanced Photon Source, 

Argonne National Laboratory (Al-Raoush, 2014). Image reconstruction algorithms 

developed by GSRCARS were used to convert X-ray attenuation data to cross-sections and 

then to 3D images (Al-Raoush, 2014). Image resolution is 9.6 𝜇𝑚/pixel in all directions. 

Figure 3.4 shows 2D cross-sections of silica, quartz, and mixed sands from 3D tomography 

images. Two phases can be easily identified in both images: grains (dark red) and void 

(dark blue). The size of the images is 380 × 380 × 520 voxels and all the systems achieved 

the representative elementary volume (REV) for porosity as shown in Figure 3.5 through 

Figure 3.7.  

 

 

Table 3.3  Porosity Values of Porous Media 

Sand Silica Quartz Mixed 

Porous 

Media 
S1 S2 S3 S4 S5 S6 Q2 Q3 Q6 M1 M2 M3 M4 

∅ 0.33 0.37 0.33 0.35 0.32 0.38 0.46 0.49 0.49 0.40 0.40 0.39 0.43 

∅: Porosity 
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                        (a)            (b)                   (c) 

Figure 3. 4 Cross Sections of Porous Media: (a) Silica Sand, (b) Quartz Sand, (c) Mixed of Silica and 

Quartz Sands (Al-Raoush, 2014) 

 

 

 

 

Figure 3.5 REV for Porosity for Silica Sands 
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Figure 3.6 REV for Porosity for Quartz Sands 

 

 

 

Figure 3.7 REV for Porosity for Mixed Sands 
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3.5. Image Processing 

Image segmentation and calculations of geometrical parameters were performed by 

Al-Raoush (2014). The explanation of the image processing is given in Appendix A. 

Physical properties of the systems are listed in Table 3.4. These physical properties are 

defined as follows:  

The coefficient of uniformity (Cu) and The coefficient of gradation (Cc) were computed as:  

                                                  𝐶𝑢 = 
𝑑60
𝑑10

                                     (e. q. 3.3) 

                                                𝐶𝑐 = 
𝑑30
2

𝑑60 𝑑10
                                 (e. q. 3.4) 

Where  𝑑10 means that 10 percent of the particles are finer and 90 percent of the particles 

are coarser than that particular particle size 𝑑10.  

The sphericity index (Si) describes how closely a grain resembles a sphere, and was 

computed as follows (Hayakawa and Oguchi, 2005):  

                                                 𝑆𝑖 = 
𝑆𝐴𝑛
𝑆𝐴𝑝

                                    (e. q. 3.5) 

Where SAp is the surface area of the grain and SAn is the nominal surface area, i.e., 

the surface area of a sphere having the same volume as the grain. The surface area was 

computed using a marching tube algorithm. For a perfect sphere, SAi =1.  

The roundness index (Ri) represents the curvature of a grain’s corner, was computed as 

follows: 

                                                 𝑅𝑖 = 
3 × 𝑉𝑝

𝑆𝐴𝑝 × 𝐷
                             (e. q. 3.6) 
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Where 𝑉𝑝 is the volume of the grain and D is the diameter of a grain. The specific surface 

area (SSA) is the ratio of SA to the volume.  

The mean grain diameter (d50) ranged from 0.18 to 0.43 mm. Cu ranged from 1.52 

to 2.49. Cc ranged from 1 to 1.15. Si ranged from 0.81 to 0.91. Ri ranged from 0.71 to 0.84. 

The SSA ranged from 15.6 to 40.93 mm-1. Porosity values of quartz and mixed sands are 

higher than these obtained in the silica sands due to difficulty of obtaining dense 

compactions in systems composed of non-spherical grains. Roundness values of silica 

sands indicate that the system is composed of highly rounded grains compared with quartz 

and mixed sands. 

 

Table 3.4 Physical Properties of Studied Porous Media (Al-Raoush, 2014) 

Sand 
Porous 

Media 
∅ 

d50 

(mm) 
Cu Cc Si Ri 

SA 

(mm2) 

SSA  

(mm-1) 

Silica  

S1 0.33 0.43 1.86 1.15 0.91 0.84 212.79 15.60 

S2 0.37 0.35 1.85 1.12 0.90 0.83 248.33 19.46 

S3 0.33 0.27 1.79 1.06 0.89 0.81 316.41 23.55 

S4 0.35 0.27 1.79 1.07 0.89 0.81 340.35 26.18 

S5 0.32 0.26 1.83 1.00 0.89 0.82 315.08 22.68 

S6 0.38 0.20 1.52 1.09 0.88 0.81 450.68 36.00 

Quartz 

Q2 0.46 0.28 2.49 1.06 0.82 0.73 276.85 25.49 

Q3 0.49 0.24 1.95 1.07 0.82 0.71 335.61 32.49 

Q6 0.49 0.18 1.72 1.06 0.81 0.73 406.57 40.93 
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Table 3.5  Physical Properties of Studied Porous Media (cont.) (Al-Raoush, 2014) 

Sand 
Porous 

Media 
∅ 

d50 

(mm) 
Cu Cc Si Ri 

SA 

(mm2) 

SSA  

(mm-1) 

Mixed  

M1 0.40 0.30 2.46 1.06 0.84 0.76 274.31 22.83 

M2 0.40 0.25 1.96 1.09 0.85 0.77 341.00 28.68 

M3 0.39 0.23 1.89 1.03 0.86 0.77 345.07 28.47 

M4 0.43 0.19 1.59 1.06 0.85 0.77 434.91 39.25 

 

3.6. Modeling Tortuosity and Geometrical Parameters  

Figure 3.8 shows a general flow chart of the steps followed to develop the statistical 

models of geometrical tortuosity:  

 Geometrical tortuosity (using Tort3D code) and porosity were measured using 3D 

computed tomography images with size 380× 380× 520 

 Then, two types of mathematical equations were generated to relate tortuosity with 

other geometrical parameters: 

o 𝜏 = b(1) ∅ b(2) + b(3) d50 
b(4) + b(5) Cu 

b(6) + …….. 

o 𝜏 = b(1) (∅ ^b(2) ) ( d50 
b(3)) (Cu 

b(4) )…….. 

where, b(1), b(2), b(3), …, are coefficient parameters calculated in Matlab using Inlinfit 

function. These types of mathematical equations were selected, since there are many 

tortuosity models reported in the literature were developed as power law equations (Mota 

et al., 2001;Coleman and Vassilico, 2008; Nriagu, 1979; Ullman and Aller, 1982; 

Millington, 1959; van Brakel and Heertjes, 1974) 
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 Six different tortuosity models as function of geometrical parameters were 

generated as follows:  

o 𝜏 = f(∅) 

o 𝜏= f(∅,d50) 

o 𝜏  = f(∅,d50,Cu,Cc) 

o 𝜏 =f(∅,d50,Cu,Cc,SSA) 

o 𝜏 =f(∅,d50,Cu,Si,Ri) 

o 𝜏 = f(∅,d50,Cu,Cc,Si,Ri,SSA) 

 A very large number of models were developed for each type of tortuosity models 

and only the best models were selected and shown in this thesis based on the 

calculated coefficients, confidence intervals, R2, and 𝑅𝑎𝑑𝑗
2  

 The predictions of the six developed models were compared based on the R2, 𝑅𝑎𝑑𝑗
2 , 

measured tortuosity versus predicted tortuosity, residuals analysis, and sum of 

squared errors of prediction (SSE) 

 The models were validated by comparing predicted tortuosity using developed 

model (Model 1) and models reported in the literature 

The adjusted coefficient of determination (R2
adj) (eq. 3.7) and the sum square error 

(SSE) (eq.3.8) were used to evaluate the goodness of fit and the accuracy of the estimation, 

respectively (Cano-Higuitaet al., 2015; Villa-Vélez et al., 2012).  

                     𝑅𝑎𝑑𝑗
2 = 1 − (

𝑛 − 1

𝑛 − 𝑛𝑝 − 1
) (1 − 𝑅2)               (eq.  3.7) 

                                         𝑆𝑆𝐸 =∑(𝑋𝑖 − 𝑋𝑖
∗)2

𝑛

𝑖=1

                        (eq. 3.8)  
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where R2 and 𝑅𝑎𝑑𝑗
2  are the coefficient of determination and adjusted coefficient of 

determination between experimental and estimated values by the corresponding model, Xi 

and Xi* represent the experimental values and the estimated values, n is the number of 

experimental values and np is the number of model parameters.  
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Figure 3.8 Flow Chart of the General Method for Generating Statistical Models of Tortuosity and Other Geometrical Parameters

Obtain tortuosity and geometrical 
parameters from matlab codes

 = b(1)*(∅ ^ b(2) ) ( d50^ b(3)) 
(Cu^ b(4) )……..

  = b(1) ∅^ b(2) + b(3) d50 ^ b(4) + 
b(5) Cu^ b(6) + ……..

Select the parameters included in 
each model 

 = f(∅) and  = f(∅,d50)   = f(∅,d50,Cu,Cc)
 =f(∅,d50,Cu,Cc,SSA) 
 =f(∅,d50,Cu,Si,Ri)

 = f(∅,d50,Cu,Cc,Si,Ri,SSA)

Short list of the models based on the determined 

coefficients , confidence intervals, R2 ,and     
 

Select the best models based on the R2 ,     
 , Plot of 

measured tortuosity and predicted tortuosity , and SSE

Compare between models

Validate the models

Generate models using Inlinfit 
function in matalab 
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CHAPTER 4.  RESULTS AND DISCUSSION  

4.1. Outputs of Tort3D Code 

Figure 4.1 shows the centers of these circles, which serve as starting points for all 

possible locations of paths that run in the direction of flow. The output tortuosity in x and 

y directions of 2D cross section is shown in Figures 4.2 and 4.3. All 3D paths identified by 

the code are shown in Figure 4.4. Tortuosity measured by Tor3D code for the 13 systems 

are presented in Table 4.1. The values ranged from 1.41 to 1.63. Tortuosity values of Quartz 

and Mixed sands are higher since they have more tortuous paths compared with silica 

sands. 

 

 

 

Figure 4.1 Starting Points of the Search for Connected Paths (Green Circles)  
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Figure 4. 2 Tortuosity in the X-Direction of 2D Cross Section 

 

 

 

Figure 4.3 Tortuosity in the Y-Direction of 2D Cross Section 

 

 

Figure 4.4 3D Tortuous Paths 
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Table 4.1 Tortuosity Values Measured by Tort3D Code 

Sand Silica Quartz Mixed 

Porous 

Media 
S1 S2 S3 S4 S5 S6 Q2 Q3 Q6 M1 M2 M3 M4 

𝜏 1.56 1.46 1.42 1.43 1.51 1.41 1.57 1.63 1.57 1.57 1.56 1.58 1.53 

 

 

4.2. Tort3D Code Verification 

Tort3D was used to measure tortuosity of sand systems to demonstrate the 

applicability of the code. Reconstructed X-ray CT slices of randomly packed systems made 

of natural silica and mixed sands were acquired (Figure 4.5). The four systems have 

different geometrical characteristics (Table 3.4).  

 

 
Figure 4.5 Cross Section Image of (a) Silica Sand S5, (b) Silica Sand S6, (c) Mixed Sand M1, and (d) 

Mixed Sand M4 (Red: Grain Particles, Dark Blue: Void Space (Al-Raoush, 2014)  
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Measuring tortuosity using Tort3D code does not depend on the geometry of the 

particles, since tortuosity is measured by summing the length of connected medial axis 

voxels and dividing them by the straight-line distance. The command "Starting_Paths" is 

executed to find all possible starting points for connected paths in the first slice. The 

connected paths determined by the code were 209 and 346 paths for silica and mixed sands, 

respectively.   

Tortuosity values measured by Tort3D code for silica and mixed sands were 

compared with tortuosity values predicted by models in the literature. These models, their 

conditions, derivation method, and references are listed in Tables 4.2. Values of predicted 

tortuosity and difference percentages between measured tortuosity using Tort3D code and 

predicted tortuosity using models in the literature are reported in Table 4.3. Model 2 was 

not used for silica sands, since the condition of Model 2 is not applicable for sand system 

with low porosity value. The same for mixed sands, where the condition of Model 3 does 

not satisfy. It is apparent that Model 1 and Model 4 give very close tortuosity values for 

silica sand. Model 4 and Model 5 give very close predictions of tortuosity for the four sand 

systems.  

 

Table 4.2  Some Tortuosity Models in the Literature 

Model# Model Condition Derivation Method Reference 

1 𝜏 = 1 − 0.49 ln∅   (eq. 4.1) 
Bed of sphere, applicable for 

0.36 < ∅ <1 

Experimental 

measurement 

(Mauret and 

Renaud, 1997) 

2 𝜏 = [1 − 0.64(1 − ∅)]−1   (eq. 4.2) 
Spherical particles have a 

low density 
Numerical method (Pisani, 2011) 
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Table 4.3   Some Tortuosity Models in the Literature (cont.) 

Model# Model Condition 
Derivation 

Method 
Reference 

3 𝜏 = 1 + 0.64(1 − ∅)   (eq. 4.3) 
Spherical particles have a 

high density 

Numerical 

method 
(Pisani, 2011) 

4 𝜏 = √1 + 2(1 − ∅)      (e. q. 4.4) 
Sandy marine sediment, 

0.4< ∅ <0.9 

Experimental 

(diffusion 

experiment) 

(Iversen and 

Jørgensen, 1993) 

5 𝜏 =  0.19 𝑑50 + 1.45    (e. q. 4.5) 

Equation derived for 

Granusil and Accusand 

sand, which scanned at 

air-dried and tightly 

packed conditions using 

computed tomography 

analyzer. 

Tortuosity values 

were determined 

using Medial 

Axis algorithm in 

3DMA-Rock 

package 

(Naveed et al., 

2013) 

∅: Porosity, d50: Median grain diameter (mm)  

 

 

Referring to Table 4.3 all the models show less than 9% difference except Model 2 

for mixed sand M1. For silica sand, the predicted tortuosity using Model 5 is very close to 

the measured tortuosity with 0.40% difference between the two measurements. This result 

is expected, since Model 5 was derived from computed tomography data. The low 

difference obtained using different tortuosity correlations demonstrates that Tort3D code 

is useful in measuring geometric tortuosity of porous media irrespective of the shape of the 

system.  
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Table 4.4  Comparison between Measured Tortuosity using Tort3D Code and Predicted Tortuosity using 

Models in the Literature 

Sand 
Tort3D 

Code 
Model1 Model2 Model3 Model4 Model5 

Porous 

Media 
𝜏 𝜏 Diff.% 𝜏 Diff.% 𝜏 Diff.% 𝜏 Diff.% 𝜏 Diff.% 

S5 1.51 1.56 3.53 - - 1.44 4.81 1.54 2.08 1.50 0.40 

S6 1.41 1.47 4.50 - - 1.40 0.81 1.50 5.91 1.49 5.28 

M1 1.57 1.45 8.07 1.39 13.2 - - 1.48 5.67 1.50 4.14 

M4 1.53 1.41 8.45 1.57 2.62 - - 1.46 4.79 1.49 3.22 

 

 

4.3. Computational Requirements for Tort3D Code 

The commands "bwmorph"; "Path_ID"; "Starting_Paths"; and "Tortuosity" were 

executed and the time needed for the execution was 3:05 minutes for silica sands and 5:55 

minutes for mixed sands. The time needed for execution depends on the size of the image 

and CPU specifications. The images have size of 380×380×520 voxels and the machine 

used to run the code has the following specification: laptop with processor of 2.5 GHz Intel 

Core i7, memory of 16 GB DDR3L SDRAM, memory speed of 1600 MHz, and operating 

system of Windows 8.1. Time for excitation increases as the image size increases, since 

the image is loaded into memory and it is searched many times to find all possible paths 

and compute tortuosity. However, the execution time is much shorter than the typical time 

needed for laboratory experiment (several weeks) (Watanabe and Nakashima, 2002) 
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4.4. Comparison between Tort3D Code and Random Paths Code 

Table 4.4 presents a comparison between Tort3D and Random Paths codes in terms 

of functionality of the codes, time for processing, efficiency and accuracy, impact of 

parameters on measuring tortuosity, and limitations.  

 

 

 Table 4.5  Comparison between Tort3D Code and Random Paths Code 

 Tort3D Code Random Paths Code 

Function of the Code 

Measuring geometrical 

tortuosity using 3D segmented 

computed tomography images 

Finding out a number of possible 

random connected paths in void space 

3D segmented computed tomography 

images 

Time 
Measuring tortuosity takes 

minutes 

Finding out one possible tortuous path 

in few seconds. Identifying large 

number of paths can take long time to 

be performed 

Efficiency and accuracy  
Measuring tortuosity efficiently 

and accurately  

Identifying tortuous paths efficiently 

and accurately 

Impact of parameters on 

measuring tortuosity 

Measuring tortuosity is slightly 

influenced by the selected 

starting points 

Measuring tortuosity is influenced by 

the selected starting points, number of 

iterations, and number of paths. 

Limitations - 

Finding out only one tortuous path. 

Identifying large number of paths can 

take long time to be performed 

 

 

Table 4.5 shows the results of geometrical tortuosity in a certain direction (Z – 

direction) for the two sand samples analyzed (S5 and M4). It can be observed that the 
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results are different for the two samples. The lowest values correspond to the Random 

Paths code. These values seem to be much lower than the values measured by Tort3D code. 

It can be appreciated scientifically that both codes are based on different concept 

considering 3D medial surface of the void space (in Tort3D code) and connected voxels in 

the void space (in Random Paths code).  

 

 

Table 4.6  Comparison between Tortuosity Values Measured by Tort3D and Random Paths Codes 

Sand Tort3D Code Random Paths Code Diff.% 

Porous Media 𝜏 𝜏 - 

Silica Sand S5 1.51 1.15 23.70 

Mixed Sand M4 1.53 1.18 22.81 

 

 

4.5. Modeling of Tortuosity as Function of Geometrical Parameters 

Six tortuosity models were generated to relate tortuosity with other geometrical 

parameters. These models were developed using multiple nonlinear regression analysis.  

The coefficient parameters in the six models were calculated in Matlab using Inlinfit 

function. The coefficients were estimated using iterative least squares estimation, with 

initial values specified by function’s element. The first model was developed as a function 

of ∅ only and each time one or more geometrical parameters were introduced to the model 

in order to investigate the significance of the parameters.  A very large number of models 

were developed for each type of tortuosity models. The models that have unrealistic power 
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values were eliminated and only the best models were selected and shown in this thesis.  

The predictions of the six developed models were compared based on the validation criteria 

described below.   

 

4.5.1. Relation between Tortuosity and Porosity 

The first developed model is Model 1, which relates tortuosity to porosity as 

follows:  

                                                     𝜏 = ∅2 + 1.3562                                                (e. q. 4.6) 

Figure 4.6 (a) shows a plot of linear correlation between measured tortuosity and 

predicted tortuosity. It is seen that 5 measurements fall no far away from the perfect line, 

which indicates that the predicted tortuosity from validation does not have very good 

correlation with the measured tortuosity. Figure 4.7 (a) shows a plot of residual on the y 

axis and fitted values of tortuosity appear on x axis. The residuals ranged between -0.08 

and 0.08. The residuals roughly do not form a "horizontal band" around 0 line, which 

indicates that the variances of the error are not equal. Some residuals do not follow the 

random pattern of residuals showing outliners. Figure 4.8 (a) shows a normal probability 

plot of residuals. The plot looks fairly straight, when the large and small results are ignored. 

These results are likely outliners.  

A shown in Table 4.6, the coefficient of determination (R2) is 0.405 and the adjusted 

coefficient of determination (𝑅𝑎𝑑𝑗
2 )  is 0.351, which indicate unacceptable correlation has 

been reached from this set of tortuosity values. By examining the sum square error (SSE) 

(0.037) and the maximum error (6.702%), the two values are low. However, the low values 
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of R2 and 𝑅𝑎𝑑𝑗
2 , measured tortuosity versus predicted tortuosity, residuals, and normal 

probability of residuals indicate that porosity is not the only factor that influence tortuosity. 

The following sections investigate the relationships between tortuosity and other 

geometrical parameters.  

 

4.5.2. Model of Tortuosity as a Function of Porosity and Median Particle Diameter  

In the second model, median particle diameter, d50, has been introduced in the 

model to study its influence on tortuous flow path as follows: 

    𝜏 = 1.3081 ∅1.9982 + 1.058 𝑑50
0.1514 + 0.4523                        (e. q. 4.7) 

 Referring to Figure 4.6 (b), approximately half of the values spread close to the 

perfect fitting line. In Figure 4.7 (b) the residuals are not distributed equally showing that 

the variances are not constant. As shown in Figure 4.8 (b), most of the residual points fall 

in the straight line except the large and small residual points.  

According to e.q. 4.8, the porosity, ∅, has more effect on tortuosity than the median 

particle diameter, d50, which indicates less contribution in the model. As shown in Table 

4.6, R2 𝑅𝑎𝑑𝑗
2  increased to 0.536 and 0.443, respectively. The SSE and maximum error 

percentage are low. However, the values of R2 and 𝑅𝑎𝑑𝑗
2  are not high enough to make the 

proposed model predicts tortuosity values accurately. The results of validating the model 

show that the model cannot predict tortuosity values accurately for different porous 

systems and investigation of other models is needed.   
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4.5.3. Model of Tortuosity as a Function of Porosity, Median Particle Diameter, 

Uniformity Coefficient, and Coefficient of Gradation 

In Model 3, uniformity coefficient, Cu, and coefficient of gradation, Cc, were taken 

into consideration by adding these two parameters to ∅, and d50 (the most prominent 

parameter in the model) as follows: 

        𝜏 = 1.77 ∅0.4377 + 𝑑50
1.8667 + 0.1861 𝐶𝑢

0.2703 + 0.1615 𝐶𝑐
−26.3848       (e. q. 4.8) 

In Figure 4.6 (c), majority of data points are clustered close to the perfect fitting 

line. The measured tortuosity versus predicted tortuosity for Model 3 shows better 

prediction than the plots of the other models. Figure 4.7 (c) shows scatter plot of residuals 

of Model 3. The residuals scatter more uniformity than the residuals of Models 1 and 2. 

Figure 4.8 (c) shows that residuals are approximately normally distributed. According to 

Table 4.6, the model has acceptable R2 (0.749) and 𝑅𝑎𝑑𝑗
2  (0.623). These values are the 

highest compared to those values for other models. Also, SSE and maximum error 

percentage are the lowest values obtained for the model. All the validation results show 

that Model 3 has the best prediction capability.  

 

4.5.4. Model of Tortuosity as a Function of Porosity, Median Particle Diameter, 

Uniformity Coefficient, Coefficient of Gradation, and Roundness Index  

Model 4 includes roundness index, Ri, in addition to the parameters of Model 3 (∅, 

d50, Cu, Cc) as follows:  

              𝜏 = 0.7716 ∅ + 2.8314 𝑑50 + 0.0348 𝐶𝑢 − 1.9771 𝐶𝑐 + 1.3043 𝑅𝑖
0.1998      (e. q. 4.9) 
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The addition of roundness index affects the capability of the model in predicting 

tortuosity. The most prominent parameter is d50. The data points in Figure 4.6 (d) are not 

well clustered around the perfect fitting line. In Figure 4.7 (d), the residuals are scattered 

roughly around zero line. However, the normal probability plot of residuals shows a normal 

distribution of residuals, when the last point is ignored. According to Table 4.6, adding Ri 

in the model leads to decrease R2 and 𝑅𝑎𝑑𝑗
2  to 0.710 and 0.504. However, SSE and 

maximum error percentage are still low.  

 

4.5.5. Tortuosity as a Function of Porosity, Median Particle Diameter, Uniformity 

Coefficient, Spherecity Index, and Roundness Index  

Model 5 shows another type of correlation of tortuosity with different geometrical 

parameters (∅, d50, Cu,, Si, Ri) as follows:  

                                   𝜏 =  
1.2902 𝑑50

0.244

∅0.2518 𝐶 𝑢
0.2996 𝑆𝑖

2.1859  𝑅𝑖
0.5062                              (e. q.  4.10) 

Figure 4.6 (e) does not show a good correlation for predicting tortuosity, since the 

data points are not clustered uniformly around the perfect fitting line. Figure 4.7 (e) 

approximately shows S shape that the data are not uniformly distributed. According to 

Table 4.6, R2 is still high (0.708) but 𝑅𝑎𝑑𝑗
2  is considered low (0.500). SSE and maximum 

error percentage of Model 5 are similar to the values obtained for Model 4.  
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4.5.6. Model Tortuosity as a Function of All Geometrical Parameters  

Model 6 considers the effects of all geometrical parameters in the study (∅, d50, Cu, 

Cc, Si, Ri, SSA) as follows: 

  𝜏 =  
13.1187 𝑑50

0.0319

∅0.0111 𝐶𝑢
0.0402 𝐶𝑐

0.0446 𝑆𝑖
0.2703 𝑅0.0231 𝑆𝑆𝐴0.004

− 11.2264               (e. q. 4.11) 

The contribution of each parameter is very low according to their power values. 

The combination of all parameters affects their real effect on tortuous path length. Figure 

4.6 (f) does show good correlation between measured tortuosity and predicted tortuosity. 

Also, the residuals are not scattered uniformly as shown in Figure 4.7 (f). The data points 

form relatively a straight line, when the residuals ranged between -0.055 and 0.04. The 

95% confidence interval has a very large range. Even SSE and maximum error percentages 

are low, the 𝑅𝑎𝑑𝑗
2  (0.357) is very low compare to R2 (0.732), which indicates that the model 

cannot predict real tortuosity values.  

Table 4.7 shows a comparison between all models and scoring them for each 

validation criteria. The higher number assigned to the model, the better model capability 

for predicting tortuosity. According to the table, Model 3 has the highest score compared 

to other models and it is the best model that can predict tortuosity values accurately.  
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(a) Model 1              (b) Model 2                (c) Model 3 

 

 

(d) Model 4            (e) Model 5                   (f) Model 6 

 

Figure 4.6 Measured Tortuosity versus Predicted Tortuosity  
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(a) Model 1              (b) Model 2                  (c) Model 3 

 

 

(d) Model 4            (e) Model 5                             (f) Model 6 

 

Figure 4.7 Residual versus Predicted Tortuosity  
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(a) Model 1              (b) Model 2                (c) Model 3 

 

 

(d) Model 4            (e) Model 5                   (f) Model 6 

 

Figure 4.8 Normal Probability of Residual 
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Table 4.7  Parameter Results from Modelling of Tortuosity 

Model# Model C.I (95%) R2 R2
adj SSE Error minimum% Error maximum% 

1 𝜏 = ∅2 + 1.3562     (e. q. 4.7) 

-0.0000    0.0000 

-156.5413  128.8287 

1.2912    1.4213 
 

0.4054 0.351345 0.037132 0.401172 6.70169 

        

2 𝜏 = 1.3081 ∅1.9982 + 1.058 𝑑50
0.1514 + 0.4523    (e. q. 4.8) 

-3.9970    6.6133 

-8.3453   12.3416 

-41.5820  43.6981 

-7.9078    8.2107 

-43.0240   43.9286 
 

0.5355 0.4426 0.028992 0.912599 5.03962 

        

3 
𝜏 = 1.77 ∅0.4377 + 𝑑50

1.8667 + 0.1861 𝐶𝑢
0.2703

+ 0.1615 𝐶𝑐
−26.3848   (e. q. 4.9) 

-18.4366   21.9767 

-7.4414    8.3168 

-2.0769    5.8102 

-21.6869   22.0590 

-25.4248   25.9655 

-0.1629    0.4858 

-139.3504   86.5808 
 

0.7485 

 

0.62275 

 

0.015697 

 

0.784053 

 

3.867297 

 

        

4 
𝜏 = 0.7716 ∅ + 2.8314 𝑑50 + 0.0348 𝐶𝑢 − 1.9771 𝐶𝑐 +
1.3043 𝑅𝑖

0.1998      (e. q. 4.10)  

-0.9770    2.5202 

-1.2390    6.9018 

-0.2124    0.2820 

-4.4797    0.5256 

-0.3781    2.9868 

-0.1722    0.5718 
 

0.7104 0.503543 0.018068 0.006373 5.254411 
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Table 4.8  Parameter Results from Modelling of Tortuosity (cont.) 

Model# Model C.I (95%) R2 R2
adj SSE Error minimum% Error maximum% 

5 𝜏 =  
1.2902 𝑑50

0.244

∅0.2518 𝐶 𝑢
0.2996 𝑆𝑖

2.1859  𝑅𝑖
0.5062        (e. q. 4.11) 

    0.2631    2.3174 

   -0.8950    0.3914 

   -0.1172    0.6052 

   -0.8834    0.2841 

   -9.9455    5.5736 

   -4.8116    3.7991 
 

0.7083 0.499943 0.018188 0.159245 5.242362 

        

6 
𝜏 =  

13.1187 𝑑50
0.0319

∅0.0111 𝐶𝑢
0.0402 𝐶𝑐

0.0446 𝑆𝑖
0.2703 𝑅0.0231 𝑆𝑆𝐴0.004

− 11.2264      (e. q. 4.12) 

  1.0e+003 * 

   -7.9733    7.9995 

   -0.0071    0.0071 

   -0.0204    0.0205 

   -0.0256    0.0256 

   -0.0287    0.0286 

   -0.1742    0.1736 

   -0.0133    0.0132 

   -0.0024    0.0024 

   -8.0010    7.9785 
 

0.7322 0.35728 0.01671 0.134746 4.790799 
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Table 4.9  Comparison Between All Developed Tortuosity Models 

  

Measured Tortuosity 

versus Predicted 

Tortuosity 

Residuals Plot Normal Probability Plot  R2 R2
adj SSE 

Error 

minimum% 

Error 

maximum% 
Total Rank  

Model 1 3 1 4 2 2 4 5 4 25 5 

Model 2 3 1 4 3 3 4 4 4 26 6 

Model 3 5 3 5 5 4 5 4 6 37 1 

Model 4 4 3 5 4 3 4 6 5 34 2 

Model 5 4 2 4 4 3 4 5 5 31 3 

Model 6 4 2 4 4 2 4 5 5 30 4 

5: Very good, 4: Good, 3: Fair,2: Poor, 1: Very poor
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4.5.7. Model Validation  

According to the results of the previous section, relating geometrical tortuosity to 

∅, d50, Cu, and Cc gives better predictions of tortuosity. Most of the tortuosity models in 

the literature are functions of ∅ or d50 only. Predictions of developed Model 1 (τ = ∅2 +

1.3562) have been compared to the predictions of models in the literature that were used 

for Tort3d code verification (listed in the Table 4.2). The difference percentages obtained 

for Model 1 (developed) are lower than those obtained for Models 1, 3, and 5 for ten 

samples (except S1, S2, S6; S3, S4, S6; S1, S5, S6) and 11 samples (except S1, S6) for 

Model 4. Model 1 (developed) predicts tortuosity better than Model 2 (literature) for all 

samples. The results show that Model 1 (developed) has better capability to predict 

tortuosity. A shown in Table 4.8 and explained in the previous sections that developed 

models (Model 2, Model 3, Model 4, Model 5, Model 6) in this study give better predictions 

of tortuosity. These models can measure tortuosity better than those models reported in the 

literature. That proves that Model 3 is the best model.  

 

 

Table 4.8 Difference percentage between Measured Tortuosity and Predicted Tortuosity by Developed 

Model 1 and Models in the Literature  

Sand Difference % 

Porous 

Media 

Model 1 

(Developed) 
(e.q. 4.1) (e.q. 4.2) (e.q. 4.3) (e.q. 4.4) (e.q. 4.5) 

S1 5.06 1.43 11.81 8.68 2.23 2.02 

S2 2.41 1.59 14.44 4.11 2.74 3.71 

S3 4.78 8.94 23.59 0.83 7.95 5.93 

S4 4.41 5.85 19.61 0.86 6.19 5.24 

S5 1.02 3.66 17.79 4.59 2.12 0.40 

S6 6.70 4.72 17.78 0.81 6.29 5.58 



63 
 

Table 4.8 Difference percentage between Measured Tortuosity and Predicted Tortuosity by Developed 

Model 1 and Models in the Literature (cont.) 

 

 

Sand Difference % 

Porous 

Media 

Model 1 

(Developed) 
(e.q. 4.1) (e.q. 4.2) (e.q. 4.3) (e.q. 4.4) (e.q. 4.5) 

Q2 0.40 11.80 2.28 14.14 7.97 4.33 

Q3 2.22 17.35 9.08 18.76 12.95 8.43 

Q6 2.11 14.07 5.53 15.47 9.43 5.28 

M1 3.40 7.47 3.72 11.70 5.37 3.98 

M2 2.85 7.60 3.46 11.65 5.31 4.25 

M3 4.29 7.30 4.07 11.83 5.52 5.31 

M4 0.57 7.79 2.69 10.97 4.57 3.12 
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CHAPTER 5. CONCLUSIONS  

The thesis presented Tort3D code (existing code) to measure geometric tortuosity 

from segmented binary X-ray images of porous media. X-ray computed tomography 

imaging was used to construct 3D high resolution images of 13 natural sand systems. The 

code was developed in MATLAB to read segmented binary image and find out all possible 

tortuous paths in a porous media system. Geometric tortuosity was measured for silica, 

quartz, and mixed sands with time less than 6 minutes. The measured tortuosity values 

were compared with predicted values by models in the literature and low difference 

percentages were obtained. The results demonstrated that the code can successfully 

measure geometric tortuosity for any porous system irrespective of the shape of the 

materials. Another code that was developed in this study is named Random Paths code. It 

was developed on a concept of measuring tortuosity in any connected path in the void space 

in very few seconds. The main limitation of this code is measuring tortuosity for one path 

only. Measuring tortuosity for a number of paths needs to be done manually. Tortuosity 

values measured by Tort3D and Random Paths codes were different, since the two codes 

are based on different concepts.  

Also, the thesis included modeling tortuosity (measured by Tort3D code) as a function 

of geometrical parameters for 13 soil samples with an aim to examine the effect of adding 

parameter(s) to each model on the capability of the model to predict accurate tortuosity 

values. Based on the findings of the modeling, the following conclusions are drawn:  

 The combination of ∅, d50, Cu, and Cc has a significant impact on tortuosity. 

 Model 3 has the best capability to predict tortuosity for different porous systems 

based on the statistical analysis 

 The study shows considering all the geometrical parameters in one model can 

reduce their ability to predict tortuosity.  

 Further study regarding modeling tortuosity with other geometrical parameters for 

materials with different properties is necessary.  
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Appendix A: Image Processing and Geometrical Parameters 

Calculations  

Segmentation was performed on raw micro-tomography images that were scaled to 

intensity value of 0-255 to separate the void and solid phases. Segmentation process was 

implemented through the following steps (Al-Raoush, 2014):  

 First step: images scanned at 33.069 keV energy were used to identify solid phase.  

 Second Step: Indicator Kriging Algorithm (IKA) was implemented to identify the 

two phases, the pore and solid phases [94]. 

 Third step: The IKA separated the phases based on intensity values I1 and I2 

obtained from histogram of intensity. Voxels that had intensity greater than I1 were 

assigned to one phase and intensity less than voxels that had I2 were assigned to 

second phase. Voxels between I1 and I2 were assigned to wither phase based on the 

maximum likehood estimate of each phase obtained from the two-point correlation 

function [94]. 

 Fourth step: Watershed –transform was applied to identify sand grains [94].  

Determination of Geometrical Parameters  

Porosity was computed as the ratio of the voxels of the void space of the total voxels of the 

image.  

The diameter of a grain computed was a follows: 

𝐷 = 2.(∏ 𝑑𝐶,𝐵𝑉
𝑁𝐵𝑉

𝐵𝑉=1

)

1/𝑁𝐵𝑉
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Where dC,BV is the Euclidean distance between the center of the grain, C, and a boundary 

voxel of the grain, BV, and NBV is the total number of boundary voxels of the grain. A 

boundary voxel connects the grain to other phases through a face, an edge or a corner and 

was determined by an algorithm that searched its twentysix neighbouring voxels. The 

center of the grain computed was as follows:  

𝐶𝑖 = 
∑ 𝑖𝑖
𝑉𝑝

, 𝑓𝑜𝑟 𝑖 = 𝑥, 𝑦, 𝑧 

Where x, y and z are now, column and depth indices, and Cp is the volume of the grain 

computed as its total number of voxels. The distance, dC,BV , was computed using the 

Euclidean metric as follows: 

𝑑𝐶,𝐵𝑉 = ((𝐶𝑥 − 𝐵𝑉𝑥)
2 + (𝐶𝑦 − 𝐵𝑉𝑦)

2
+ (𝐶𝑧 − 𝐵𝑉𝑧)

2)
1/2
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Appendix B: Image Processing Steps 

REV Plot 

> load col43R_seg_3D 

>> image_rev=seg_volume(331:350,371:387,195:220); 

>> 

v=length(find(image_rev(:,:,:)==0))+length(find(image_rev(:,:,:)==3))+length(find(image_rev(:,:,:)

==1)) 

>> all=length(image_rev(:)) 

all = 

>> v/all 

load col43R_seg_3D 

imagesc( seg_volume (:,:,1)) 

whos 

image_rev=seg_volume(141:540,179:523,:); 

% image_rev=seg_volume(151:530,191:518,14:507); 

% image_rev=seg_volume(161:520,201:511,25:492); 

% image_rev=seg_volume(171:510,211:503,35:476); 

% image_rev=seg_volume(181:500,221:496,45:460); 

% image_rev=seg_volume(191:490,231:489,55:444); 

% image_rev=seg_volume(201:480,241:482,65:428); 

% image_rev=seg_volume(211:470,251:474,75:412); 

% image_rev=seg_volume(221:460,261:467,85:396); 

% image_rev=seg_volume(231:450,271:460,95:380); 

%image_rev=seg_volume(241:440,281:453,105:364); 
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% image_rev=seg_volume(251:430,291:445,115:348); 

% image_rev=seg_volume(261:420,301:438,125:332); 

%image_rev=seg_volume(271:410,311:431,135:316); 

% image_rev=seg_volume(281:400,321:424,145:300); 

% image_rev=seg_volume(291:390,331:416,155:284); 

% image_rev=seg_volume(301:380,341:409,165:268); 

% image_rev=seg_volume(311:370,351:402,175:252); 

% image_rev=seg_volume(321:360,361:395,185:236); 

% image_rev=seg_volume(331:350,371:387,195:220); 

%imagesc( image_rev(:,:,1)) 

whos 

Models Generated - Void 

x=[0.3311  0.4334    1.8584    1.1462   0.9142   0.8353   212.788224   1.56E+01; 0.371  0.3518     

1.8472   1.1178  0.9027  0.8272   248.32512   1.95E+01; 0.3295  0.2705    1.7926   1.0586   

0.8896   0.8148   316.412928   2.35E+01; 0.3536   0.2672      1.7938   1.0682   0.8877   0.812  

340.34688   2.62E+01; 0.3189   0.2581     1.8312    1.0042   0.8902   0.8152   315.076608   

2.27E+01; 0.3793    0.1957    1.5242   1.0863    0.8825   0.8068   450.680832  3.60E+01; 0.4557   

0.2756    2.4936    1.0618  0.8154   0.725   276.84864  2.55E+01; 00.4901    0.2371    1.9531    

1.074   0.8181  0.7143  335.609856   3.25E+01; 0.4933      0.1785   1.7204  1.0591   0.8131  

0.7269  406.573056   4.09E+01; 0.3976  0.2982    2.4607   1.0641   0.8416   0.757  274.305024   

2.28E+01; 0.4029     0.2524    1.9586    1.0936   0.8517   0.7721   341.001216  2.87E+01; 0.3893     

0.2304   1.8912    1.0303   0.8559   0.7742   345.074688  2.85E+01; 0.43      0.185    1.5895    

1.0575    0.8505   0.7709   434.912256  3.93E+01]; 

y=[ 1.5639; 1.4626; 1.4173; 1.426; 1.505; 1.4086; 1.5704; 1.6327; 1.5666; 1.5691; 1.5644; 

1.5775; 1.533];  

>>  modelfun = @(b,x) (( 

b(1)*x1.^b(2)).*(x2.^b(3)).*(x3.^b(4)).*(x4.^b(5)).*(x5.^b(6)).*(x6.^b(7)).*(x8.^b(8))+b(9)); 

>>  modelfun = @(b,x) (b(1)*x1.^b(2)+x1.^2 +b(3)); 
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b=[1;1;1]; 

x1= x(:,1); 

x2= x(:,2); 

x3= x(:,3); 

x4= x(:,4); 

x5= x(:,5); 

x6= x(:,6); 

x8= x(:,8); 

beta0 =[1;1;1]; 

beta = nlinfit(x,y,modelfun,beta0) 

 [ahat,r,J,cov,mse] = nlinfit(x,y,modelfun,beta0); 

>> ahat 

>>  ci = nlparci(ahat,r,'Jacobian',J) 

yr=modelfun(beta,x); 

Rsq1 = 1 - sum((y-yr).^2)/sum((y-mean(y)).^2) 

 

plot(yr,y,'o') 

>> xs=[1   1.6  1.8]; 

>> ys=xs; 

>> hold on 

>> plot(xs,ys) 

>> residual=y-yr; 

>> plot(yr,residual,'o') 

>> xa=[1.4  1.8]; 
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>> ya=[0  0]; 

>> hold on 

>> plot(xa,ya) 

z=normplot(residual) 

Calculating Residual % 

seg_volume_system_for_analysis=seg_volume(151:530,191:570,:); 

void=length(find(seg_volume_system_for_analysis(:,:,:)==0))+length(find(seg_volume_system_f

or_analysis (:,:,:)==3))+length(find(seg_volume_system_for_analysis (:,:,:)==1)) 

void_without_fluid_or_water=length(find(seg_volume_system_for_analysis(:,:,:)==0)) 

void_without_fluid_or_water_to_void= void_without_fluid_or_water/void 

fluid= length(find(seg_volume_system_for_analysis (:,:,:)==3)) 

fluid_to_void=fluid/void 

water= length(find(seg_volume_system_for_analysis (:,:,:)==1)) 

water_to_void=water/void 

water_to_fluid_percentage=100*water/fluid 

Images for Studying the Impact of Trapped Oil on Tortuosity 

>> seg_volume_new_pixel=seg_volume; 

% Change the pixel value of water to the pixel value of void 

>> seg_volume_new_pixel( seg_volume_new_pixel(:,:,:)==1)=0; 

%Change the pixel value of fluid to pixel value of solid 

>> seg_volume_new_pixel( seg_volume_new_pixel(:,:,:)==3)=2; 

% Change pixel value of solid from 2 to 1 

>> seg_volume_new_pixel( seg_volume_new_pixel(:,:,:)==2)=1; 

save seg_volume_new_pixel seg_volume_new_pixel 
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imagesc( seg_volume_new_pixel(:,:,1)) 

>> impixelinfo 

% Change the size of the image to 380x380x520 

>> raw_image=seg_volume_new_pixel(151:530,191:570,:); 

>> save raw_image raw_image 

imagesc(raw_image(:,:,1)) 
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Appendix C: Random Paths Code 

    % Initial Setup  

  

  
    nrows=size(raw_image,1); 
    ncolumns=size(raw_image,2); 
    ndepth=size(raw_image,3); 

     

     
  %  N=(2)^3; 

     
    void_list_index=find(raw_image(:,:,1)==0); 

     
    %initial_pointer=ranomperm(length(void_list_index)); 

     
  % initial_pointer= void_list_index(randi(size(void_list_index,1)),:); 

     
  %  for particle_id=1:100; 

     
      %  

initial_position_index=void_list_index(initial_pointer(particle_id)); 

         
   % end 

     
     initial_position_index=void_list_index(47134); 

  
      next_move=[]; 

    
    depth=1;    

     
    z_initial_position_index=floor(((initial_position_index)-

1)/(nrows*ncolumns))+1; 
    y_initial_position_index=ceil(initial_position_index/nrows)-

(ncolumns*(z_initial_position_index-1)); 
    x_initial_position_index=(initial_position_index-

nrows*(y_initial_position_index-1)-

nrows*ncolumns*(z_initial_position_index-1)); 

  
   initial_position_location=[x_initial_position_index  

y_initial_position_index  z_initial_position_index]; 

  
  %  for Particle_ID=1:1  
          % length(initial_position_index); 

           
  connect=26;  
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 while depth <=750 
      %    while depth ~=15 % depth should be ndepth = 300 

             

           
    [neighbor_voxels]=get_connect_index_torto(nrows,ncolumns,ndepth, 

initial_position_location(end,:),connect); 

     
    initial_position_location_index= 

initial_position_location(:,1)+nrows*(initial_position_location(:,2)-

1)+nrows*ncolumns*(initial_position_location(:,3)-1); 

     
    

neighbor_voxels(find(neighbor_voxels==initial_position_location_index(e

nd)))=[]; 

     

     
    neighbor_voxels_check=raw_image(neighbor_voxels);  

     
    neighbor_voxels_void_pointer=find(neighbor_voxels_check ==0); 

     
    

neighbor_voxels_void_index=neighbor_voxels(neighbor_voxels_void_pointer

); 

     
   z_neighbor_voxels=floor(((neighbor_voxels_void_index)-

1)/(nrows*ncolumns))+1; 
   y_neighbor_voxels=ceil(neighbor_voxels_void_index/nrows)-

(ncolumns*(z_neighbor_voxels-1)); 
   x_neighbor_voxels=neighbor_voxels_void_index-

nrows*(y_neighbor_voxels-1)-nrows*ncolumns*(z_neighbor_voxels-1); 

  
   neighbor_voxels_location=[x_neighbor_voxels  y_neighbor_voxels  

z_neighbor_voxels];    

    
   if length(neighbor_voxels_void_pointer)>=1 

     
    voxels_location_max_z_neighbor_voxels= 

neighbor_voxels_location(z_neighbor_voxels==max(z_neighbor_voxels),:); 

   
     %voxels_location_max_z_neighbor_voxels= 

neighbor_voxels_location(randi(size(neighbor_voxels_location,1)),:); 

      
   temp_next_move_location = 

voxels_location_max_z_neighbor_voxels(randi(size(voxels_location_max_z_

neighbor_voxels,1)),:); 

      
   next_move= [next_move ;temp_next_move_location]; 

       
   z_next_move=next_move(:,3); 
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   y_next_move=next_move(:,2); 

  
   x_next_move=next_move(:,1); 

    

      
   next_move_location = [x_next_move  y_next_move   z_next_move]; 

       

        
   else 

          
        neighbor_voxels_soild_pointer= find( neighbor_voxels_check 

==1); 

        
       if length(neighbor_voxels_void_pointer(end,:))<1 
           %find( neighbor_voxels_check ==1)==0 
           % 
          temp_next_move_location=temp_next_move_location(end-1,:); 
          next_move=next_move(end-1,:); 
          m=7; 

         
       % temp_next_move_location = 

neighbor_voxels_location(randi(find(neighbor_voxels_location==0)));  

         
       % next_move= [next_move ;temp_next_move_location]; 
       end 

  
   end 
   %  initial_position_location=next_move_location; 
       depth=depth+1; 

              
 end 

      

  
    distance= (sum((x_next_move(2:end)-x_next_move(1:end-1) ).^2) + 

sum((y_next_move(2:end)-y_next_move(1:end-1) ).^2) 

+sum((z_next_move(2:end)-z_next_move(1:end-1) ).^2)); 

        
    %distance= (sum((x_next_move(2:end)-x_next_move(1:end-1) 

).^2)+(x_next_move(1)-x_initial_position_index)^2 + 

sum((y_next_move(2:end)-y_next_move(1:end-1) ).^2) +(y_next_move(1)-

y_initial_position_index)^2 +sum((z_next_move(2:end)-z_next_move(1:end-

1) ).^2))+(z_next_move(1)-z_initial_position_index)^2; 

  

     
    tortuosity_z= sqrt(distance)/(300-1); 

     

    
    initial_position_location_1 = [ 1  1  12]; 
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    [neighbor_voxels_1]=get_connect_index_torto(nrows,ncolumns,ndepth, 

initial_position_location_1,connect); 

     

    
    neighbor_voxels_check_1=raw_image(neighbor_voxels_1);  

     
    neighbor_voxels_void_pointer_1=find(neighbor_voxels_check_1 ==0); 

     
    

neighbor_voxels_void_index_1=neighbor_voxels_1(neighbor_voxels_void_poi

nter_1); 

     
     z_neighbor_voxels_1=floor(((neighbor_voxels_void_index_1)-

1)/(nrows*ncolumns))+1; 
   y_neighbor_voxels_1=ceil(neighbor_voxels_void_index_1/nrows)-

(ncolumns*(z_neighbor_voxels_1-1)); 
   x_neighbor_voxels_1=neighbor_voxels_void_index_1-

nrows*(y_neighbor_voxels_1-1)-nrows*ncolumns*(z_neighbor_voxels_1-1); 

  
   neighbor_voxels_location_1=[x_neighbor_voxels_1  y_neighbor_voxels_1  

z_neighbor_voxels_1]; 

     

     

     

     

 

 

 

 

 


