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Abstract 

 Prebiotic refers to nondigestible food ingredients that enhance the health of the host by 

selectively promoting one or more number of beneficial bacteria. Gibson and Roberfroid (1995) 

initially described prebiotics as compounds that neither hydrolyzed nor absorbed in upper part of 

the gastrointestinal tract, selectively stimulates growth of beneficial bacteria, enhance health of 

the host and able to amend microorganism population to healthier states. Prebiotics are 

particularly attractive supplements in animal production due to their variety of effects including 

production of short chain fatty acids, pH amendments and suppression of pathogen colonization. 

In addition, prebiotics were emphasized as antibiotic alternatives due to raise of antibiotic 

resistant pathogens. This thesis consists of one review and two research parts: a comprehensive 

literature review that covers various prebiotics used in poultry industry and microbiome 

quantification techniques including multiplex polymerase chain reaction (PCR), quantitative 

PCR, denaturing gradient gel electrophoresis (DGGE), and next generation sequencing (NGS) 

(chapter 1), a research manuscript involves assessment of cecal microbiota, integron, 

fermentation response, and Salmonella frequency in broilers fed a commercial prebiotic (chapter 

2), and a research manuscript involves growth performance and microbial population assessment 

by NGS approach (chapter 3).    
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I. Introduction 

 Antimicrobial growth promoters have been commonly used in agriculture production 

since 1950's to improve performance of livestocks and to reduce pathogen colonization. 

However, over usage of antibiotics in the agriculture industry contributed to the rise of the 

antibiotic resistant pathogens thus, alternative supplements such as prebiotics were required and 

demanded by consumers and producers. Variety of compounds such as mannanoligosaccharides 

(MOS), galactooligosaccharides (GOS) and fructooligosaccharides (FOS) were evaluated and 

developed as prebiotics that potentially could replace in-feed antibiotics. This thesis focuses on 

the application of above prebiotics in poultry industry and molecular techniques that used to 

evaluate its effects on poultry. In addition, advantages and disadvantages of molecular 

techniques were described. Research manuscripts of this thesis are focused on MOS prebiotic in 

particular and emphasized on investigation of microbial population by polymerase chain reaction 

based denaturing gradient gel electrophoresis (PCR-DGGE) and next generation sequencing 

(NGS). Growth performance, processing responses including birds weights, feed conversion 

ratio (FCR), parts weight and white meat yield of the poultry are the major aspects that producers 

are concerned and these specific characteristics are affected by prebiotic through different 

mechanisms. Numerous studies were conducted to evaluate many aspects of poultry by 

prebiotics however, inconsistent results were observed. Understanding the mechanisms of variety 

of prebiotics, limitation and advantage of molecular technique will contribute to help choosing 

more adequate approaches and more consistent result in future study of prebiotics. 
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1. Abstract 

 Antibiotics as a part of feed supplementation have been traditionally used in poultry 

production for a variety of reasons. Such feed supplements were considered an economical 

advantage because they appeared to directly benefit producers by decreasing mortality rates of 

farm animals, increasing animal growth rates and improving the feed conversion ratios. However, 

the concept of antibiotic alternatives such as prebiotics and probiotics emerged because it was 

believed that the use of antibiotics contributed to the increase of antibiotic resistant pathogens of 

public health concern. Prebiotics are known as nondigestible carbohydrates that selectively 

stimulate growth of beneficial bacteria, thus improving overall health of the host. Once 

prebiotics are introduced to the host, two major modes of action can potentially occur. First, the 

corresponding prebiotic reaches the intestine of the host without being digested in the upper part 

of the gastrointestinal tract by the host but are selectively utilized by certain bacteria considered 

beneficial to the host. Secondly, other gut activities occur in conjunction with prebiotic presence 

including generation of short-chain fatty acids and lactic acid as microbial fermentation products 

as well as increased height of intestinal villi leading to an increased absorption rate of nutrients, a 

decreased rate of pathogen colonization and inhibition of pathogen adherence.  

 A variety of molecular techniques have been utilized in food microbiology and safety 

because rapid detection and typing analysis are directly related to public health. Multiplex PCR 

is a modified version of conventional PCR that can amplify multiple DNA fragments 

simultaneously, thus have considerable utility for pathogen identification, SNP genotyping, and 

mutation analysis. One of the more recent methods to quantify genes and organisms is 

quantitative PCR. Quantitative PCR allows absolute or relative quantification of target sequence 

in a high-throughput format. Two types of signals are primarily utilized in qPCR. One of them is 
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SYBR green fluorescence which can bind to double stranded DNA. Another approach is to use 

the TaqMan probe which consists of a reporter and quencher group that are involved in emitting 

signals. Quantitative PCR can be used for diagnostic applications in clinical microbiology to 

detect infectious disease agents, to detect genetically modified organisms and to quantify 

genotype strains.  

Characterizing the microbial community of the gut is important because gut health can 

directly impact the health of host. One of the many types of approaches to investigate the 

gastrointestinal microbiome is band pattern based analysis using denaturing gradient gel 

electrophoresis (DGGE) or DNA based quantification by next generation sequencing (NGS). 

Analysis by DGGE was first introduced to analyze the microbial diversity in mixed, complex 

microbial populations. However, modifications of DGGE and TGGE have greatly expanded 

usage of this technique for applications in genetic fingerprinting, monitoring microbial 

community status and subsequent enrichment of selected bacteria, gene detection, clone library 

screening and even determining PCR and cloning biases. Next generation sequencing, also 

referred to as parallel sequencing is a more recent sequencing technology developed after Sanger 

sequencing had served as the standard. Millions of DNA fragments from a mixed culture sample 

can be sequenced by NGS, thus application of this technology can be unlimited. Examples of 

applicable fields include therapeutic and clinical use to determine genetic disease.  
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2. Introduction 

 Prebiotics were initially defined as nondigestible food ingredients that promote one or 

more number of beneficial bacteria such as Bifidobacteria and Lactobacillus  and thus improving 

gut health which could in turn enhance the host's health (Gibson and Roberfroid, 1995; Kleessen, 

et al., 2001). Properties and requirements for substances to be classified as prebiotics were also 

described by Gibson and Roberfroid (1995) as those compounds which must be 1) neither 

hydrolyzed nor absorbed in the upper part of the gastrointestinal tract (GIT); 2) a selective 

substrate that stimulates growth or metabolic activity of one or more of what would be 

considered beneficial bacteria; 3) able to amend microbiota towards a healthier state; 4) able to 

induce luminal or systemic effects that are beneficial to the host. Suggested candidates that meet 

these criteria include nondigestible carbohydrates which are substrates that are not absorbed in 

the upper part of the GIT and utilized by endogenous colonic bacteria. Nearly 10 years later, 

Gibson et al. (2004) revised the definition of prebiotics by stating that they were "selectively 

fermented ingredients that allow specific changes, both in the composition and/or activity in the 

gastrointestinal microbiota that confers benefits upon host well-being and health" (Gibson, et al., 

2004). By 2007, trans-galactooligosaccharide and inulin were considered the only substrates that 

fully met these requirements (Roberfroid, 2007). More recently, resistant starch, lactulose and 

mannanoligosaccharides (MOS) have also been considered prebiotics (Boler and Fahey Jr, 2012; 

Hutkins, et al., 2016; Ricke, 2015b). 

 

3. Prebiotics 

a. Improving animal production - Historical perspectives 
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Antibiotic growth promoters (AGP) have been used in animal production since the 

1950’s in order to improve their performance and control their GIT microbiota to make them less 

susceptible to pathogens (Groschke and Evans, 1950; Jones and Ricke, 2003; Moore, et al., 1946; 

Stokstad and Jukes, 1950; Thomke and Elwinger, 1998; Whitehill, et al., 1950). Limiting the 

occurrence of enteric disease associated pathogens is important not only because of public health 

concerns but productivity and mortality of livestock are believed to be directly related (Castanon, 

2007; Gaggìa, et al., 2010; Merrifield, et al., 2010; Patterson and Burkholder, 2003). However, it 

has been suggested that the frequency of antibiotic resistant bacteria may be increased by the 

continued use of antibiotic growth promoters in agricultural production (Barnes, 1958; Dibner 

and Richards, 2005; Gorbach, 2001; Lee and Lin, 2003; Marshall and Levy, 2011; Starr and 

Reynolds, 1951).  

 Therefore, interest in developing alternative approaches to retain progress in weight gain 

responses of farm animals continues to increase (Abbas, et al., 2014; Bachaya, et al., 2015; Biggs, 

et al., 2007; de los Santos, et al., 2005; Griggs and Jacob, 2005; Kasper, 1998; Nava, et al., 2005; 

Parnell and Reimer, 2010; Zaman, et al., 2012). In broiler production programs, it is essential to 

have broilers reach their market weight as soon as possible. Rapid growth of broilers not only 

saves labor and feed but also minimizes fixed cost of production (Austic and Nesheim, 1990). 

Bird growth rate is more likely to increase when broilers exhibit a high feed conversion 

efficiency thus feed additives such as prebiotics or probiotics if effective may reduce time prior 

to marketing (Timmerman, et al., 2006). By modifying the gut microbiota, producers tend to 

increase energy utilization of birds hence, increase performance of birds. According to De 

Maesschalck et al. (2015) xylo-oligosaccharides (XOS) which exhibit prebiotic like properties 

resulted in significant increases of villi length in the ileum, Lactobacilli numbers in the colon and 
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Clostridium in the ceca of broiler chicken. Since the GI tract is highly colonized (Apajalahti and 

Kettunen, 2006), microbial composition and corresponding microbial physiology is very 

important. Thus, the potential for enhancing short chain fatty acids (SCFAs) production by 

prebiotic selected microorganisms has been profiled in numerous studies (Blaut, 2002; Donalson, 

et al., 2008a; Gibson and Wang, 1994; Ricke, 2015b; Scholz-Ahrens and Schrezenmeir, 2002). 

 Prebiotics can also exhibit their beneficial effect on layer hen performance as well. 

According to Chen et al. (2005), a 1.0 % oligofructose-type commercial prebiotic 

supplementation and 1.0 % of inulin administered hens increased weekly egg production by 

13.35 and 10.73% respectively. Also, both additives increased cumulative weekly egg weight by 

12.50 and 10.96% as well as the feed conversion ratio of birds. Another study by Chen and Chen 

(2004) focusing on the ability to utilize oligofructose and inulin by layer hens also exhibited a 

beneficial effect from the prebiotics. Analyzing minerals in tibia and eggshell strength is 

important in layer production because it is directly related to mineral absorption rate of birds and 

retail sales. According to Chen and Chen (2004), oligofructose and inulin supplemented layer's 

serum calcium levels, eggshell weight, eggshell strength, total ash, calcium and phosphorus 

levels in the tiba were significantly increased.  

b. Impact of prebiotics on gut physiology and composition 

Prebiotics were first introduced in order to externally manipulate genetic composition of 

the microbiome via dietary feed additives (Gibson and Roberfroid, 1995). Manipulation of 

bacterial composition can also be initiated by introduction of bacteria which reside in the large 

intestine that goes through a series of fermentation reactions that in turn impacts gut physiology. 

Mechanisms of pathogen inhibition in the microbiome include production of SCFAs and 

lowering pH, competing for nutrients and binding sites on the epithelium of the intestine (Afrc, 
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1989; Gibson and Fuller, 2000; Ricke, 2003; Rolfe, 2000). The SCFAs are produced by 

microorganisms during fermentation of complex sugar molecules (Cummings and Macfarlane, 

1991; Cummings, 1981; Rerat, et al., 1987) can modulate physical properties of the villi in GIT, 

and thus increase absorption rate of minerals and molecules (Xu, et al., 2003). In addition, 

Bifidobacterium and Lactobacillus residing in the gut can restrict pathogen colonization by 

producing lactic acid (Orrhage and Nord, 1999; van der Wielen, et al., 2000).  

Young birds are typically more susceptible to enteric pathogens due to their lack of 

gastrointestinal microbiota complexity which becomes more complex through maturity of birds 

(Milner and Shaffer, 1952; Palmer, et al., 2007; Stark and Lee, 1982; Stavric, 1987). Therefore, 

administration of feed amendments and biologicals such as probiotics or prebiotics to accelerate 

development of complexity of gastrointestinal microbiota in the newly hatched bird has been 

considered a means to reduce susceptibility to enteric pathogens (Corrier, et al., 1995; Nisbet, 

2002; Nurmi and Rantala, 1973; Stavric, et al., 1985). Competitive exclusion treatment 

administered to newly hatched birds serves as the classic example of reduction in pathogen 

colonization by introducing microorganisms into the intestine (Nurmi and Rantala, 1973). 

Competitive exclusion (CE) are typically normal, intestinal adult fowl microorganisms that are 

directly introduced to the host (Corrier, et al., 1995; Fukata, et al., 1999; Nisbet, 2002; Nurmi 

and Rantala, 1973; Stavric, et al., 1985).  

Several studies have proven that prebiotics possess modes of action that benefit 

gastrointestinal microbiota of the host but in a different manner than competitive exclusion 

methods (Patterson and Burkholder, 2003). While competitive exclusion approaches involves 

introduction of a external microbial population or even single microorganism to the host (Mead, 

2000), a prebiotic indirectly influences the microbiota by increasing the concentration of 
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indigenous beneficial microorganisms (Gibson and Roberfroid, 1995). Prebiotics are known to 

increase mineral absorption rate (Scholz-Ahrens and Schrezenmeir, 2002), enhance immune 

function (Lomax and Calder, 2009) and possibly deter development of colon cancer (Geier, et al., 

2006; Munjal, et al., 2009). In particular, selection for increased populations of Bifidobacteria 

and Lactobacilli represent the best known major beneficial effects of prebiotics because presence 

of these bacteria are considered an indicator of healthy microbiota due to their ability to suppress 

growth of putrefactive proteolytic bacteria (Afrc, 1989; Rowland, 1992; Yusrizal and Chen, 

2003).  

According to Scholz-Ahrens et al. (2002), inulin type fructans led to increased SCFAs 

production, and villi height which ultimately increased the absorptive surface (Xu, et al., 2003). 

Production of SCFAs is significant because SCFAs introduce a variety of impacts on the gut 

microbiota of the host (Ricke, 2003; van der Wielen, et al., 2000). Some of the effects include 

reducing pH in the gut lumen to prevent pathogen colonization (Blaut, 2002; Gibson and Wang, 

1994), increasing mucin production in order to enhance colon morphology (Barcelo, et al., 2000) 

and improving the immune response by sparing glutamine which serves lymphatic tissue as a 

preferred substrate (Jenkins, et al., 1999; Ouwehand, et al., 2005; Taylor, et al., 1990). Also, 

oligo-fructoses in particular can enhance solubility of minerals that consequently increase 

transportation rate of calcium and phosphorus (Scholz-Ahrens and Schrezenmeir, 2007).  

Another beneficial role of prebiotics that has been proposed is that prebiotics may inhibit 

infectious bacteria colonization by competing for the receptor sites on intestinal epithelial cells. 

(Gibson, et al., 2005; Kunz, et al., 2000). Adherence mechanisms of pathogen are very important 

because they represent the initial step in the colonization process (Finlay and Falkow, 1989; 
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Karlsson, 1989). Several studies have demonstrated anti-adhesive properties associated with 

prebiotics in Escherichia coli (Aronson, et al., 1979; Buddington, et al., 2002; Firon, et al., 1987). 

The most extensively characterized prebiotic groups are discussed in the current review, 

namely, fructooligosaccharides, galactooligosacchardies and mannanoligosaccharides (yeast 

based products) along with the less traditional nondigestible oligosaccharides. 

Fructooligosaccharides are linear chains of fructose units which occur naturally in various plants 

for example, onion, chicory, galic, asparagus, banana, artichoke as well as other sources 

(Sabater-Molina, et al., 2009). Galactooligosaccharides are produced from lactose by β-

galactosidase (Torres, et al., 2010; Wallenfels and Malhotra, 1960). Lastly, 

mannanoligosaccharides are derived from the cell walls of the yeast Saccharomyces cerevisiae. 

In the following subsections, individual groups of prebiotics will be discussed in more detail.  

b-1. Fructooligosaccharides 

 Fructooligosaccharides (FOS) qualify as prebiotics because they are not hydrolyzed in 

the upper part of GIT and can act as substrates for specific intestinal microorganisms (Hartemink, 

et al., 1997). Fructooligosacchrides can be fermented by Bifidobacteria and Lactobacillus thus, 

improving the gut health of the host as described previously (Bouhnik, et al., 1994; Gibson and 

Roberfroid, 1995; Hidaka, et al., 1986). Studies have shown that FOS may increase SCFAs and 

lactic acid concentration and also inhibit growth of pathogens such as Clostridium perfringens 

which can contribute to the high bird mortality rate in poultry production (Ricke, 2015b). 

Oyarzabal and Conner (1996) observed that Salmonella colonization was reduced by 19% when 

FOS was introduced into the drinking water of broilers. In addition, Bailey et al. (1991) 

demonstrated that enterobacteria such as Salmonella and E. coli will not utilize this particular 

prebiotic as a carbon source and they observed reduction of Salmonella colonization by 42% 
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when these compounds were combined with a competitive exclusion culture. In addition, 

reduction of two logarithms of S. Typhimurium populations were observed in vitro by addition 

of FOS to the feed substrate (Donalson, et al., 2007) which corresponds to the observations by 

Bailey et al (1991). The study by Ammerman et al. (1988) demonstrated a positive effect or 

improvement by FOS such as increased feed efficiency and weight gain of broilers. However, 

negative effects were observed in study of Waldroup et al. (1993) when cecal contents of broilers 

and Salmonella on broiler carcasses were observed. 

 Layers were also affected beneficially by prebiotic treatment resulting in increased 

production of cecal SCFAs and lactic acid (Donalson, et al., 2008a) when a mixture of 0.25g of 

either alfalfa meal or layer ration and 7.5% of FOS were added into cecal material. However, no 

significant effects were consistently observed in the study of Donalson et al. (2008b). Donalson 

et al. (2008b) concluded that there may be several possible reasons for limited laying hen 

responses to FOS including minimal utilization capability of the microbiome, more rapid 

fermentation of similar substrates or simply a low intake of the prebiotic. In terms of Salmonella 

colonization against FOS, Donalson et al. (2008b) reported that FOS containing diets to hens 

significantly reduced Salmonella concentration in ovaries and livers of hens subjected to feed 

withdrawal.  

To counter this inconsistency, different dosages of prebiotics have been examined. 

Improvements in feed conversion ratio (FCR) have been positively related to increased 

enzymatic activity of leucine aminopeptidase (LAP), protease and amylase (Williams, et al., 

2008; Xu, et al., 2003). However, negative effects of FOS were demonstrated by Ten 

Bruggencate et al. (2003), claiming that FOS may stimulate growth of not only some beneficial 

bacteria but also noxious bacteria. In addition, rapid fermentation of FOS can cause excessive 
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production of SCFAs that potentially induces colonic mucosal damage or inflammation due to 

their low pH, hence decreasing resistance to intestinal pathogens (Argenzio and Meuten, 1991; 

Remesy, et al., 1993). Ten Bruggencate et al. (2004) suggested that if an excessive number of 

beneficial bacteria already exist  in the host, improvements may not occur after introduction of 

the prebiotic. Optimal levels of FOS were observed by Wu et al. (1999) when 2.5 to 5.0 g/kg was 

supplemented with beneficial effects such as increases in body weight gains and improved feed 

efficiencies occurring while over supplementation of FOS (10 g/kg) caused diarrhea, resulting in 

reduced production performance . 

b-2. Galactooligosaccharides 

 Prebiotic galactooligosaccharides (GOS) are produced from lactose by glycosyl transfer 

of the D-galactosyl unit to D-galactose moiety of lactose followed by catalysis of the hydrolysis 

of β-galactosides by β-galactosidase (Mahoney, 1998). Tzortzis et al. (2005) demonstrated that 

GOS not only elevated the growth rate of Bifidobacteria species by 0.9 log but also increased 

lactic (4 mM) and acetic acid (3 mM) production in the proximal colon of pigs 4 and 3 fold, 

respectively compared to the diet of negative control group which was completely free of 

antibiotic. This study was of particular interest because the effect of prebiotic was identified at 

the bacterial species level, versus to other conventional prebiotic studies where only quantity of 

specific bacterial genera were studied.  Targeting and comparing bacteria at the species level is 

significant because even when genera and species of bacteria are the same, preferred substrates 

for fermentation may vary under different circumstances. For example, Ruiz-Moyano et al (2013) 

demonstrated a variance in the preferred substrates among subspecies of Bifidobacterium. 

Bifidobacterium logum subsp. infantis and where Bifidobacterium bifidum preferred human milk 

oligosaccharides while B. longum subsp. longum and Bifidobacterium breve did not.    



 

13 

 

Anti-adhesive properties of GOS have been described by Shoaf et al (2006) where they 

observed that the adherence of enteropathogenic E. coli (EPEC) to HEP-2 cells and Caco-2 cells 

were inhibited by 65% and 40 to 70% respectively. Among the many prebiotics compared by 

Shoaf et al. (2006), GOS exhibited the highest inhibition rate of adhesion activity of E. coli to 

tissue cells. Shoaf et al. (2006) suggested that differences in adherence inhibition were more 

likely due to the structural differences among the oligosaccharides. Enzymatic modification or 

chemical modification of GOS has been suggested as a means to obtain prebiotics which are 

similar to human breast milk oligosaccharides that possess high anti adherence activity against 

not only E. coli but also Campylobacter jejuni and Helicobacter pylori (de Araújo and Giugliano, 

2000; Newburg, 1997; Palmeira, et al., 2001). Beneficial effects due to the introduction of GOS 

to broilers were described by Jung et al (2008) demonstrating that increased overall numbers of 

anaerobic bacteria including Lactobacilli and Bifidobacteria. According to Jung et al. (2008), 

GOS significantly promoted populations of Lactobacilli by 0.53 log units and Bifidobacteria by 

1.32 log units. 

b-3. Yeast as a prebiotic source 

 Another alternative approach to feed additives resulting from the ban of in-feed 

antibiotics was the introduction of yeast cultures (YC) as feed amendments. The concept of YC 

as a feed additive was first introduced by Eckles and Williams (1925) utilizing Saccharomyces 

cervisiae as a growth promoter for ruminants. Studies reported that introduction of YC can 

enhance ruminal fermentation (Alshaikh, et al., 2002; Lila, et al., 2004; Roto, et al., 2015; Sune, 

1998). The YC can be differentiated from probiotics by including only cellular constituents, 

residual of viable cells, cell wall components, metabolites as well as the cultural media which the 

yeast were grown (Miles and Bootwalla, 1991). Introduction of YC to the digestive system can 
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greatly benefit the host by enhancing digestive function of the GIT as well as modifying 

microbiota (Beev, et al., 2007) therefore, commercial usage of YC became common practice in 

ruminant production. Subsequently, yeast products were used in poultry production and swine 

production (Bradley, et al., 1994; Hayat, et al., 1993; Shin, et al., 2005; Stanley, et al., 2004; Van 

Heugten, et al., 2003; Zhang, et al., 2005). 

 However the mechanisms of the yeast product when present in the GIT of animals remain 

unclear (Beev, et al., 2007). Stanley et al. (2004) reported that YC supplementation promotes 

beneficial effects by increasing commensal microorganisms or reducing pathogens however, 

inconsistent results were reported in other studies (Stanley, et al., 2004; White, et al., 2002). Gao 

et al (2008) hypothesized that the beneficial mechanism of YC is that mannan-oligosaccharide 

which is a component of the yeast cell wall enhances immunity of host, thus promoting growth 

of beneficial bacteria. In other studies it was reported that the amendment of YC improved 

phytate phosphorus utilization by poultry (Thayer, et al., 1978; Thayer and Jackson, 1975) and 

nutrient digestibility (Shin, et al., 2005). Also, intestinal mucosal development was improved by 

YC supplementation in broilers (Santin, et al., 2001; Zhang, et al., 2005). A more recent study by 

Gao et al. (2008) was focused on investigating effects of different concentrations of YC in 

broilers on performance and immunomodulatory functions. Dietary supplementation of YC 

resulted in increases of average daily gain and feed conversion ratio of broilers. In addition, 

digestibility of calcium and phosphorus were increased and villi height to crypt depth ratios in 

the duodenum and jejunum and ileum were also increased when broilers were fed 2.5g / kg of 

YC. Immunomodulatory functions were observed by vaccinating Newcastle disease vaccine to 

broilers along with YC and resulted in a beneficial effect. However, Gao et al. (2008)'s result 

demonstrated that the appropriate levels of YC is essential for broilers to exhibit a beneficial 
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effect. They noted that an either too high or low concentration of YC did not appear to have 

significant benefits.  

b-4. Mannanoligosaccharides  

 Mannanoligosaccharides (MOS) are prebiotic compounds derived from yeast cell walls 

and they have been associated with enhanced growth performance of broilers (Hooge, 2004; 

Rosen, 2007). However, significant improvement of performance was only detected in young 

birds inhabited by less populated gut microbiota while older birds did not exhibit significant 

improvements because of their complex indigenous microbiota population. Studies have shown 

that the intestinal tracts of newly hatched birds stabilizes when birds are at least 2 weeks old 

(Amit-Romach, et al., 2004; Lee, et al., 2010; Ohimain and Ofongo, 2012). Lactobacilli for 

example, are not predominant in chickens less than 2 weeks old (Barnes, et al., 1972).  

 Once MOS is introduced to the host gut, its high affinity ligands compete with the 

receptors of pathogens (Ofek, et al., 1977). Also, MOS binds to mannonse-specific type-1 

fimbriae of pathogens and can prevent colonization of pathogens (Newman, 1994). Spring et al 

(2000) reported that MOS decreased intestinal Salmonella concentration by 25 fold (4.01 versus 

5.40 log cfu/g) when compared to the control group of broiler chickens. Oyofo et al. (1989 a, b) 

specifically demonstrated reduction of S. Typhimurium colonization by adding mannose to the 

diets of young broilers.  

Conversely, the effects of MOS were not as obvious in a study of laying hens provided 

with 0.11% of MOS. According to Zaghini et al. (2005), MOS treated birds produced lighter 

eggs in the second and third weeks of the trial compared to the negative control and 2.5 ppm of 

aflatoxin B1 (AFB1) treated birds which corresponded to the result reported previously by Rizzi 

et al. (2003). However, the reduced aflatoxin level found in the liver of birds demonstrated the 
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ability of MOS to degrade aflatoxins (Zaghini, et al., 2005). In addition, Zaghini et al. (2005) 

reported the shell thickness was negatively influenced when AFB1 and MOS were both 

administrated, thus concluding that MOS influenced egg quality traits positively.   

In addition, studies involving MOS supplementation have shown that they can aid 

livestock in retaining health by increasing immunoglobulin A production (Kudoh, et al., 1999; 

Swanson, et al., 2002). Similar to FOS, MOS administration has also exhibited some 

inconsistencies in animal performance responses. Stanczuk et al. (2005) and Pelicano et al. (2004) 

reported there were no significant effects of MOS found in terms of weight gain of turkeys and 

broiler chickens while Sim et al. (2004) reported improvements in live weights of turkeys. In a 

study on broilers, Hooge (2004) reported that compared to non-supplemented flocks, MOS 

treated birds exhibited significant increases in body weight and feed conversion ratio while 

mortality was reduced. However, when MOS fed birds were compared with antibiotic-

supplemented birds, no significant increases in body weight and feed conversion ratio were 

observed (Hooge, 2004). According to Yang et al. (2007) and Hughes and Benedetto (2003), 

MOS as a feed amendment did not affect apparent metabolisable value. In addition Yang et al 

(2007) reported that MOS supplement increases body weight gain of broiler but did not affect the 

gut morphology and function compared to negative and positive control groups. Yang et al (2007) 

hypothesized that the inconsistent results may be due to differences in species, diets, and rearing 

conditions.  

b-5. Non-digestible carbohydrates and fiber dietary sources 

 Besides the particular prebiotics discussed in the previous sections and the subsequently 

more chemically defined prebiotics such as fructans, oligofructose, inulin, lactulose and glutan, a 

few other substances have also proposed as possessing prebiotic-like properties. These include 
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resistant starch (RS), pectin and milk oligosaccharides (Hutkins, et al., 2016). The effects of RS 

were recognized and emphasized by Bird et al. (2010) along with its relationship with SCFAs, 

especially butyrate. According to Bird et al. (2010) dietary intake level of RS in a population at 

low risk of diet-related large bowel diseases was high compared to populations at high risk of 

disease. Also, reports indicated that consumption of RS increased concentration of SCFA, 

especially butyrate acid in large bowl and lowered colonocyte proliferation (Dronamraju, et al., 

2009; van Munster, et al., 1994). Ricke et al. (1982) demonstrated the beneficial effect of various 

fibers including alfalfa cell wall, lignin, xylose, pectin and gum arabic to young chicken age of 1 

and 8 days old. As result, alfalfa cell wall, and mixture of lignin, xylose and gum arabic 

significantly increased feed efficiencies of 1, 8 day old chicks.     

 Another fiber source being readily examined especially for layer hens is alfalfa. Because 

of the nature of commercial egg industry, layer hens go through a molting procedure prior to 

their next laying cycle to rejuvenate flocks and increase marketing profits (Donalson, et al., 

2005). Historically, the most commonly used molting methods involved withdrawing feed to 

simulate molting behavior of wild birds for the generation of a second egg laying cycle. However, 

this feed withdrawal (FW) method  compromised the health of layer hens making them 

susceptible to S. Enteritidis infection. Studies have shown that when alfalfa is mixed with feed of 

layer hens, it induced molt while inhibiting growth of S. Enteritidis due to its properties of high 

protein, high fiber, well balanced amino acids, vitamins and antioxidants. 

 Kim et al (2005), discovered that a molting treatment of 100% alfalfa significantly 

increased the egg production compared to 90% alfalfa treated birds. Also, shell weight of feed 

withdrawal group and 90% alfalfa diet groups exhibited heavier shell weight than 100% alfalfa 

fed birds at the end of the second laying cycle indicating heavier eggs are produced by molted 
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hens than younger nonmolted hens. In summary, alfalfa based diets could serve as an alternative 

method to induce molt in birds because inducing molt by feed withdrawal can alter the 

microbiome and the immune system of birds hence, making them more susceptible to S. 

Enteritidis colonization (Ricke, et al., 2013). 

  Since there are various types of prebiotic and their mechanisms are different, evaluation 

of the effects of prebiotics are essential. However, since many different microbiota species 

exhibit unique metabolism strategies, it is difficult to distinguish whether a prebiotic 

characteristic is having a beneficial impact on the microbiota of the host (Hutkins, et al., 2016). 

Several aspects can be evaluated such as pathogen identification and quantification of specific 

microorganisms and compositional analysis of microbiota. In the following sections, the more 

commonly used molecular methods to evaluate such aspects are discussed. 

 

4.  Molecular methods for quantifying and identifying GIT pathogens 

a. Introduction  

 The importance of microbial ecology of variety of food animals has been highlighted and 

began with studies in order to understand ability of ruminants to subsist an celluose (Ricke, 

2015a). As awareness of food safety and interest of functional food increased by consumers, 

characterization of the GIT and an understanding of bacterial metabolism and the relationships 

with the host became essential and required consistent, rapid and accurate methodology to 

evaluate these aspects that were required for the food production industry. Therefore, a wide 

range of  supplements such as prebiotics and probiotics have been examined and developed. 

However, characterization of highly populated regions of the GIT can be difficult.  



 

19 

 

 In the past decade, the concept and the definition of prebiotics are being refined as 

methods for identifying and quantifying gut microbiota of the host that had been traditionally 

limited to culture-based methods in the past are now involving molecular based approaches 

(Hutkins, et al., 2016; Ricke and Pillai, 1999). However, while numerous approaches have been 

developed such as qPCR and next generation sequencing (NGS) methods, other microorganisms 

of interest, besides Lactobacillus and Bifidobacterium have been identified and subjected to 

evaluate the effect of prebiotic candidates. 

b. Multiplex PCR 

Due to irreproducibility of various serotyping methods such as amplified fragment length 

polymorphism (AFLP) (Torpdahl and Ahrens, 2004), random-amplified polymorphic DNA 

(RAPD)-PCR (Hoorfar, et al., 2000) and PCR-single-strand conformation polymorphism (SSCP) 

(Nair, et al., 2002), multiplex polymerase chain reaction (PCR) approaches were developed. 

Identifying different strains by multiplex PCR is easier compared to conventional PCR because 

the procedure is essentially identical as conventional PCR but more rapid by hours due to its 

simultaneous amplification of multiple fragments. Multiplex PCR requires several primers that 

align with varying sizes of target genes and thus needs to be optimized so that all primer pairs 

can attach to the template strand at the same annealing temperature. This method was first 

introduced by Chamberlain et al. (1988) for detecting the majority of the deletions occurring in 

the Duchenne muscular dystrophy (DMD) gene. In addition, multiplex PCR has been utilized by 

Ballabio et al (1990), to screen for the steroid sulfatase (STS) gene in patients with STS 

deficiency. Multiplex PCR had also been modified for genotyping microsatellite (SSR) and 

single nucleotide polymorphism (SNP) by Hayden et al. (2008).  
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One of the advantages of multiplex PCR is that it provides internal controls (Edwards and 

Gibbs, 1994) which means by amplifying multiple fragments, amplicons can act as internal 

controls for each other and thus can reveal false negatives. For example, the failure of fragment 

amplification can be determined if the noncontiguous deletions show no detectable bands 

because major gene deletions are usually contiguous (Chamberlain, et al., 1992). Multiplex PCR 

can also be used as an indicator of template quality by determining several loci at the same time 

with higher sensitivity than Southern blot analysis. According to Chamberlain et al. (1992), 

multiplex PCR analysis revealed single exon deletion mutations which were not detected by 

Southern blot analysis and 82% of those deletions detected by Southern blot analysis were also 

detected by multiplex PCR. By targeting multiple sequences, evaluation of amplification 

efficiency can be more accurate.  

b-1. Microbial pathogen identification 

One of the major applications of multiplex PCR is the identification of bacterial 

pathogens. Because multiplex PCR amplifies various genes simultaneously, specific bacterial 

species or strains can be differentiated. Numerous research and review articles have been 

published on the application of multiplex PCR approaches to detect and identify bacterial 

pathogens in water, shellfish, animal feeds, respiratory tract, clinical and agricultural samples 

and other sources (Baker, et al., 2016a; Bej, et al., 1990; Brasher, et al., 1998; Jarquin, et al., 

2009; Kim, et al., 2007; Kong, et al., 2002; Maciorowski, et al., 2005; Pacheco, et al., 2007; 

Panicker, et al., 2004; Park, et al., 2014). Commonly targeted pathogens include E. coli O157:H7, 

Salmonella, Staphyloccoccus aureus, Listeria monocytogenes, Vibrio parahaemolyticus and 

fungi. Also, viral DNA can be amplified by multiplex PCR in order to screen tissue samples with 

infectious disease. Viruses including human papillomavirus (HPV), human immunodeficiency 
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virus type 1 (HIV-1), human T-cell leukemic viruses, human T lymphotrophic virus types I and 

II, hepatitis B virus, parvovirus and hog viruses have been screened or detected by multiplex 

PCR assay in several studies (Repp, et al., 1993; Sevall, 1990; Sunzeri, et al., 1991; Vandenvelde, 

et al., 1990; Wattel, et al., 1992; Wirz, et al., 1993).  

Salmonella and E. coli O157:H7 are typically classified as the foodborne pathogens of 

greatest concern and multiplex PCR technique enabled considerable reduction in detection time 

by days (Mahon, et al., 1994; Park, et al., 2014). Baker et al. (2016a) also suggested that 

multiplex PCR can be used to distinguish closely related microbial species by developing genus, 

species specific primers via BLAST search targeting. According to Oliveira and Lancastre 

(2002), multiplex PCR technique was proven to be rapid, robust and useful technique to 

differentiate mec elements among 18 different strains of Staphylococcus aureus.  

b-2. Mutation detection by DNA typing 

 The single nucleotide polymorphism (SNP) refers to single nucleotide variation in the 

genome between members of biological species or paired chromosomes (Brookes, 1999). 

Therefore, SNP genotyping is the measurement of genetic variation. Conventional methods to 

detect SNP consist of two steps, amplification of target sequence and detection of the SNP (Ye, 

et al., 1992, 2001). Since multiplex PCR can utilize several markers simultaneously, efficiency 

and speed of SNP detection is improved. Sanchez et al. (2003) reported a new SNP typing assay 

based on multiplex PCR and multiplex minisequencing. Similar to SNP detection, multiplex 

PCR can be utilized to analyze a mutation on the DNA strand as well. Cheng et al. (2004) 

employed multiplex PCR to rapidly detect mutations in Mycobacterium tuberculosis. Cheng et al. 

(2004) detected mutations in DNA fragments more rapidly within hours, compared to the 

parental single stranded conformation polymorphism approach which requires more than 10 h 
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(Cheng, et al., 2004). Duchenne/Becker muscular dystrophy (DMD/BMD) is an example of 

human disease caused by a gene deletion in a specific region (Chamberlain, et al., 1988). By 

targeting the steroid sulfatase gene with multiplex PCR, the respective deleted or altered gene 

could be identified (Ballabio, et al., 1990; Chamberlain, et al., 1988).  

Another application of multiplex PCR is DNA typing to determine genetic linkage and 

mapping (Neff, et al., 1999; Towbin, et al., 1993). The DNA typing of an individual can be 

achieved more accurately by mutiplex PCR targeting repetitive DNA polymorphisms because 

examining multiple loci decreases probability of identical alleles in two individuals. Amplifying 

short tandem repeats (STRs) in close proximity by multiplex PCR can be used to screen for 

disease linkages because STRs are highly polymorphic, numerous and may be co-amplifed 

without overlapping size ranges (Beckmann and Weber, 1992; Edwards, et al., 1992).   

c. Quantitative PCR 

Quantitative PCR (qPCR) is also known as real-time PCR and refers to a method to 

determine absolute or relative amount of target sequence in a high-throughput format. Real-time 

PCR has often been confused with RT-PCR which is the abbreviation for reverse transcriptase 

PCR (Mackay, 2007). Reverse transcriptase PCR is a commonly used technique to detect RNA 

expression through creation of complementary DNA (cDNA) (Freeman, et al., 1999). The qPCR 

approach is considered to be more sensitive, rapid and safer compared to conventional PCR 

because a gel for amplicon confirmation is not needed and a radioactive reagent or chemical such 

as ethidium bromide is not involved (Arya, et al., 2014). The qPCR commonly consists of three 

oligos, a pair of primers and a probe (Smith and Osborn, 2009). Probes are designed to hybridize 

100% to the amplified sequence and typically exhibit higher melting temperatures than the 

corresponding primers to allow annealing during the extension phase (Smith and Osborn, 2009). 
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When hybridized probes are cleaved by nuclease activity, fluorescence signals are released 

which are proportional to the target copy numbers (Smith and Osborn, 2009). Two common 

methods of qPCR assay are utilization of SYBR green and TaqMan Probes (Holland, et al., 1991; 

Houghton and Cockerill, 2006; Livak, et al., 1995a; Wittwer, et al., 1997). The SYBR green 

molecules release high fluorescent signals when they bind to double strand DNA and weak 

signals will be detected if the molecules are not bound to the DNA strand (Wilhelm and Pingoud, 

2003).  

One of the pitfalls of the SYBR green assay is that the dye can also bind to non-specific 

double stranded DNA and thus generate false quantification values (Deprez, et al., 2002). To 

overcome this problem, melting curve analysis is essential. According to Wilhelm et al (2003) 

and Bustin et al (2002), primer dimers which are primer molecules that have hybridized to each 

other and non-specific double stranded DNA can be distinguished by melting curve analysis 

(Bustin, 2002; Smith and Osborn, 2009; Wilhelm and Pingoud, 2003). Taqman probes are 

considered as sequence specific DNA probes because they are designed to hybridize to an 

amplified sequence (VanGuilder, et al., 2008). The qPCR by Taqman probe is based on the use 

of the 5’ nuclease assay described by Holland et al (1991) and dual-labeled fluorogenic 

hybridization probes (Bassler, et al., 1995; Holland, et al., 1991; Lee, et al., 1993; Livak, et al., 

1995a, b). The Taqman probe consists of the reporter group at the 5’ end and the quencher group 

at 3’ end that hybridizes during the extension phase. Reporter groups do not emit signals when 

the quencher group is present (Heid, et al., 1996). However, once the quencher group is 

separated by nuclease activity the reporter group emits a fluorescence signal (Heid, et al., 1996).  

The qPCR can be applied for diagnostic and microbiological uses, gene quantification and 

genotyping (Espy, et al., 2006; Smith and Osborn, 2009). The disadvantages of qPCR includes 
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the requirement for sequence data to the target gene of interest, binding of the dye to non-

specific amplicons, incompatibility of the system with some fluorogenic chemistries and inability 

to monitor amplicon size (Arya, et al., 2014; Smith and Osborn, 2009). 

c-1. Clinical microbiology 

 The introduction of qPCR methods in clinical microbiology has improved the detection 

of infectious disease agents and improved patient management and care (Sails, 2013). For 

example, a wide range of viral diseases have been diagnosed by quantitative PCR (Niesters, 

2002). Also, qPCR has improved detection and quantification of numerous respiratory, 

gastrointestinal pathogens, enteric parasites, malaria parasites, leishmania organisms and even 

viruses (Polley, et al., 2011).  Improved ability of qPCR is particularly useful when more slowly 

growing or poorly culturable bacteria need to be detected, for example, Anaplasma 

phagocytophila, Bartonella henselae, Mycoplasma pneumoniae or Chlamydophila (Espy, et al., 

2006). The conventional PCR approach to these bacteria is difficult because some organisms 

elicit substances that inhibit PCR chemistry, thus sensitivity is greatly compromised (Espy, et al., 

2006). Increasing infection rate of methicillin resistant Staphylococcus aureus (MRSA)  and 

vancomycin-resistant Enterococcus spp. (VRE) in U.S. hospitals (Diekema, et al., 2004) are 

considered tremendous threats to public health, thus the ability of qPCR to reduce detection time 

by several days compared to culture-based methods and simplified overall processes offers 

opportunities for more rapid appraisal (Niesters, 2002). 

 In addition, qPCR can be utilized in fields as diverse as food safety, food spoilage and 

fermentation and for the microbial risk assessment of water quality and in public health 

protection  because molecular based qPCR approaches are faster, more sensitive and specific 

than previous standard approaches which are culture based methods (Postollec, et al., 2011). Due 
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to its advantages, the International Organization for Standardization (ISO) established the 

standard to detect foodborne pathogens utilizing PCR because of its ability to detect sub -

dominant populations, dead or viable but non cultivable cells (Postollec, et al., 2011). In addition, 

dynamics and activities of genes can be studied by contrasting gene expression via combining 

qPCR with reverse transcript PCR (Postollec, et al., 2011). Lee et al (2007) were able to 

successfully demonstrate the power of reverse transcript PCR by analyzing gene associated with 

enterotoxin produced by Staphylococcus aureus suggesting reverse transcript PCR is very 

effective in evaluating gene expression.   

c-2. Genotyping 

 The utilization of qPCR in clinical facilities has allowed for the quantification and 

characterization of virus strains such as the Hepatitis B virus (Yeh, et al., 2004). Yeh et al (2004) 

reported an approach for one-step quantification of HBV genotypes A-G and genotyping of HBV 

genotypes B and C with one set of primers and probes that could overcome the difficulty of 

genotyping due to genetic diversity. Liu et al. (2003) successfully differentiated the number of 

gene copies in a mouse model using qPCR assay. Liu et al. (2003) also emphasized that the 

qPCR assay is less labor intensive than chromosome analysis (Davisson and Akeson, 1987; Liu, 

et al., 2003) while being more sensitive and reliable than other DNA based methods such as 

Southern blot analysis. In addition,  quantitative PCR has allowed for the genotyping of mice at 

any age whereas the chromosomal method was limited to mice over 6 weeks of age.  

c-3. Foodborne pathogen quantification and other applications 

 Numerous studies have been conducted in order to quantify Salmonella from many food 

commodities including chicken carcass rinses, ground beef, ground pork and raw milk (Chen, et 

al., 1997). According to Hein et al. (2006), the limit of detection to quantify Salmonella from 
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food samples by qPCR was less than 5 CFU. In addition, Wang et al. (2007) demonstrated a 

rapid and simultaneous quantification method by combining qPCR and multiplex PCR and was 

able to successfully detect E. coli O157:H7, Salmonella and Shigella from ground beef samples. 

According to Wang et al. (2007), the detection range of multiplex qPCR was 10
2
 to 10

9
 CFU/mL, 

10
3
 to 10

9
 CFU/mL and 10

1
 to 10

8
 for E. coli, Salmonella and Shigella, respectively. In addition, 

Elizaquível et al (2013) reported a modified qPCR approach in order to detect only viable 

Listeria monocytogenes, Salmonella and E. coli O157:H7 cells using propidium monoazide 

(PMA) (Elizaquível, et al., 2013).  

 The qPCR was also used to detect genetically modified organisms (GMO). As GMOs are 

introduced to the market, scientists and consumers were concerned about its safety and demand 

for analysis increased (Meyer, 1999). According to Van den Bulcke (2010), the requirement for 

GMO screening methods are 1) appropriate approaches with adequate performance, scope, and 

legal basis 2) suitable reference materials, and 3) decision support system which interprets the 

analytical results. The current approaches commonly used to identify specific single GMO is the 

PCR based technology (Hernández, et al., 2005; Holst-Jensen, et al., 2003). The GMOs are 

typically detected by species-specific PCR by reference targets for example, the lectin gene is 

targeted for detection of roundup ready soybean (Berdal and Holst-Jensen, 2001; Mafra, et al., 

2008). According to Brodmann et al. (2002), qPCR detection methods were developed for the 4 

approved genetically modified maize variants.  

 

5. Molecular methodology for characterizing the microbiome 

a. Denaturing gradient gel electrophoresis (DGGE) 



 

27 

 

 Characterizing the microbiome is critical because such populations can be directly 

associated with gut health of the host and their performance (Gill, et al., 2006; Noverr and 

Huffnagle, 2004; Turnbaugh, et al., 2006). A 16S rRNA amplification-based  approach is a 

widely used technique for identification and classification of microorganisms because it is 

present in most microorganisms (Kuczynski, et al., 2012). One of the initial techniques to 

fingerprint microbial ecology in environmental samples was electrophoretic separation via high 

resolution polyacrylamide gels of low molecular weight rRNA molecules. Denaturing gradient 

gel electrophoresis was first introduced by Muyzer et al. (1993) to differentiate mixed 

microorganisms in a consortia mixture consisting of Escherichia coli, Desulfovibrio 

desulfuricans, Microcoleus chthomoplastes, Desulfovibrio sapovorans and Thiobacillus 

thioparus from Leiden University, Wadden Sea sediment and Slufter sediment on the island of 

Texel respectively. The PCR-based DGGE could be used to separate PCR amplicons of 

uncharacterized microbial mixtures by their different melting points due to sequence variance of 

amplicons (Fischer and Lerman, 1979; Myers, et al., 1987), therefore allowing for a comparison 

of microbial communities (Hanning and Ricke, 2011; Hume, et al., 2003; Oviedo-Rondón, et al., 

2006; Pedroso, et al., 2006). A key mechanism of this method was the attachment of a guanine 

and cytosine rich region, the so called the GC clamp in the amplified fragments. Subsequent 

studies demonstrated that the presence of GC clamp increased the detection rate of sequence 

variance substantially (Myers, et al., 1985; Sheffield, et al., 1989). Because of this GC clamp, 

melted amplicons were able to halt migration once they reached the melting point threshold of 

the respective amplicons in the acrylamide gel. Substitution of the GC clamp, the chemiclamp, 

attaches a photoactivatable compound to the 5’ end of primer (Baker and Harayama, 2004). 

However, limits of the chemiclamp were clear. Initially the covalent bond PCR product could not 
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be amplified correctly and in addition, the possibility of UV light damaging PCR amplicons 

could not be resolved (Cariello, et al., 1988). Also, the chemiclamp may modify melting 

properties of PCR amplicons, making it hard to predict (Guldberg, et al., 1998). 

Limitations of DGGE include restricted fragment size, time required to complete a run, 

requirement of a well-trained technician, co-migration and overestimation (Gafan and Spratt, 

2005).  Fragment separation by DGGE and TGGE limits the size of the fragments up to 500 bp 

(Myers, et al., 1985) which are also directly related to the amount of sequence information. In 

addition, Buchholz-Cleven et al (1997) and Vallaeyes et al. (1997) reported that if an organism 

exhibits certain levels of sequence variation, separation of DNA fragments was not possible 

(Buchholz-Cleven, et al., 1997; Vallaeys, et al., 1997). 

Co-migration is also one of the pitfalls of DGGE and TGGE. For example, Nubel et al. 

(1996) reported that DGGE and TGGE resulted in the overestimation of the number of bacteria 

when some bacteria possessed multiple rrN operon sequences. Usage of degenerate primers in 

the PCR prior to DGGE can also result in an overestimation (Kowalchuk, et al., 1997). Despite 

the development of NGS technologies which allow for a more directly quantitative statistical 

analysis of microbiome composition of the species-level, DGGE can still be a viable technique 

due to complicated procedures, costs and requirements of a well-trained technician to execute 

NGS. The advantage of  DGGE is that it provides a simple, rapid visual profile of the microbial 

population of samples which can be very useful for pre-screening samples prior to NGS 

(Hanning and Ricke, 2011). The study by Yu et al. (2015) was conducted to study 

microeukaryotic community from sea sample by utilizing NGS and DGGE. The study revealed 

that the NGS method using Illumina MiSeq revealed higher densities of the microeukaryotic 
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community from samples compared to DGGE however, no significant differences were detected 

in diversity of species.      

a-1. Genetic fingerprinting for environmental studies 

One of the major utilities of DGGE is characterizing microbial ecology. Microbial 

fingerprinting by DGGE was used by Muyzer et al. (1993) when they amplified the gene 

fragments from widely distributed in bacteria and archaea using conventional PCR (Saiki, et al., 

1988). Even though the molecular size of the amplicons were the same, amplicons were 

successfully separated by acrylamide gel because of the variant melting point properties resulting 

from the number of hydrogen bonds associated in guanine and cytosine.  Besides analyzing only 

the patterns produced by DGGE, more detailed information could be obtained by using 

radioactively-labelled oligonucleotide probes to sequence acrylamide gel fragments excised from 

DGGE (Amann, et al., 1992; Muyzer and de Waal, 1994). In addition, high-resolution melt 

(HRM) analysis profiling has been suggested as an additional approach post DGGE analysis for 

the identification of DGGE bands (Porcellato, et al., 2012). Teske et al. (1996) used DGGE to 

analyze distribution of sulfate reducing bacterial population at three different time points during 

growth. Also, Ferris et al (1997) utilized PCR-DGGE in order to characterize the seasonal 

distribution of bacteria in hot springs and re-establishment of a microbial mat after removal of 

the entire cynobacterial layer. For example,    ez et al. (2001) successfully identified 

picoeukaryote diversity in natural marine assemblages. Also,    ez et al. (2001) compared the 

relative levels of specific microorganism rDNA using three different approaches including 

DGGE, T-RFLP and gene cloning. Considering the technical differences, relative level values 

were reasonably comparable among the three techniques. In addition,    ez et al. (2001) 
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mentioned that one of the pitfalls of DGGE is the variable quality of sequenced DGGE bands 

produced by Sanger sequencing. 

a-2. Genetic fingerprinting in food production systems  

Understanding and monitoring of bacterial communities in food matrices has been 

suggested as a means to detect possible contamination by food safety relevant organisms. The 

PCR based DGGE technique has been utilized to study bacterial communities of various foods 

for example, applications based on DGGE was first utilized to examine bacterial communities in 

pozol, a Mexican fermented maize dough (Ampe, et al., 1999). Handschur et al. (2005) identified 

Enterobacteriaceae, Pseudomonas libaniensis from processed salad samples. Porcellato et al. 

(2012) and Donner et al (1996) reported the occurrence of species-level of lactic acid bacteria in 

dairy products and observed changes in the enzymatic activity of cellulases by DGGE analysis. 

As DGGE exhibit its effectiveness in identifying bacterial community, the technique was widely 

utilized to fingerprint a variety of microorganism populations in various samples. 

Since many food processing plants regulate the safety of their product by temperature, it 

is essential to monitor and determine the safety of the product. In a study by Handley et al. 

(2010), the microbial populations of poultry carcasses were examined by assessing banding 

patterns generated from DGGE and they observed substantial transition over the time period of 

44 to 50 h of post chill process. Band pattern analysis by Handley et al. (2010) reported high 

similarities within sampled groups. Also, the bands present from the beginning to the end of 

sampling time indicated which microbial groups were able to survive slaughter and evisceration 

process. Variation in detectable bands suggested that the environmental variation was occuring 

during processing, however, differences in bacterial levels and diversity may also be explained 

by other factors such as cross contamination from transport crates, equipments or environmental 
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conditions. In order to remove potential bias, Handley et al. (2010) noted that the processing 

procedures and equipment in the plants were identical. 

Since food slicers are widely used in ready-to-eat products including cheese, vegetables,  

and bread, it is important to keep the equipment safe from cross contamination of foodborne 

pathogens. Koo et al. (2013) utilized DGGE to analyze cross-contamination possibilities by 

slicer equipment used in deli meat retail processes. The DGGE technique revealed the 

similarities of overall populations of bacteria from the samples collected from slicer. Koo et al. 

(2013) successfully identified Lactococcus lactis and Streptococcus thermophilus from swabbed 

samples taken from the surfaces of the slicer. Overall microbial diversity of slicers analyzed by 

DGGE were similar between slicers and the most densely populated part of the slicers was the 

blade guards. 

When the DGGE banding patterns were compared in a study of microbiota of chickens 

by Wielen et al. (2002) they concluded that unique and complex banding patterns can be 

produced for different compartments of the intestine and different ages of chickens therefore, 

unknown host specific factors may play an important role in the development of the intestinal 

bacterial community. The PCR-based DGGE method has been utilized for a variety of animals 

for overall evaluation of prebiotic and probiotic impact of the gut bacterial community of hosts. 

Oviedo-Rondon et al. (2006) identified microbial communities of broilers vaccinated with mixed 

Eimeria species using DGGE. In their study by Oviedo-Rondón et al. (2006) constructed 

dendrograms to compare percentage similarity between differently treated groups . Oviedo-

Rondón et al. (2006) concluded that the cocci vacination in broilers caused changes in intestinal 

microbial community by 36.7, 55.4, and 36.2% similarity coefficients in duodenal, ileal, and 

cecal, respectively.    
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Park et al. (2013) and He et al. (2009), demonstrated an alteration of the gut bacterial 

community of mice and hybrid tilapia (Oreochromis niloticus) respectively. Digestive 

microbiota of molted and nonmolted hens were also examined as well as hens being fed different 

diets. (Hume, et al., 2003). By observing different compartments of digestive tract, jejuna, ilea, 

and colon of birds, Hume et al. (2003) demonstrated a shift of predominant microbial population 

occurring in birds of different ages. According to Hume et al. (2003) similar microbial 

compositions were observed from adjacent digestive compartment and the compartments that 

were further apart being composed of different microbial communities as expected. Dunkley et al. 

(2007) utilized a PCR-DGGE technique to monitor microbial profiles during the entire molting 

period of laying hens and observed considerable similarity of band patterns among full-fed and 

alfalfa crumbles fed birds.   

a-3. Monitoring of enrichment and isolation of bacteria 

 Originally, DGGE was developed to identify microbial communities and compare 

complexities among treatments however, it also proved to be suitable to assess mixed 

populations of microorganisms (Muyzer and Smalla, 1998). Santegoeds et al. (1996) and Ward et 

al. (1997) used DGGE to monitor enrichment cultures of bacteria in hot springs by 16S rRNA 

methods and successfully unveiled a diversity of bacterial populations in the enrichment cultures. 

By comparing bands produced by the respective 16S rRNA fragment, morphology and the 

presence of biochemical markers, Garcia-Pichel et al. (1996) demonstrated that Microcoleus 

chthonoplastes represented a single, well-defined taxon with a ubiquitous distribution. In 

addition, Teske et al. (1996) applied DGGE to analyze the constituents of a coculture by 

sequencing DGGE bands to design more selective conditions for isolation of Desulfovibrio and 

an Arcobacter isolate.  



 

33 

 

a-4. Gene detection 

 Since DGGE approaches can be used to incorporate practical uses of melting points to 

differentiate variations in sequences, DGGE is also suitable for detecting microheterogeneity of 

genes. According to Nubel et al. (1996), temperature gradient gel electrophoresis (TGGE) band 

patterns produced by 16S rRNA fragments from pure cultures of Panibacillus polymyxa 

exhibited distinct patterns. Different band patterns produced by pure cultures can serve as an 

indicator of sequence based biodiversity and could be used to construct the phylogenetic tree. 

According to van der Luijt et al. (1997), pathogenic mutations in the adenomatous polyposis cold 

(APC) gene which is responsible for familal adenomatous polyposis (FAP) could be identified 

by screening exons utilizing a DGGE technique combined with a protein truncation test and 

Southern blot analysis. van der Luijt et al. (1997) utilized DGGE for the small exon and used 

protein truncation test for the large exon and successfully identified 65 pathogenic mutations 

from 105 Dutch FAP kindreds. Consequently, frameshifts and single base substitution mutations 

could be identified. 

a-5. Clone library screening 

 Colony hybridization and restriction fragment length polymorphism of cloned rRNA 

inserts (Moyer, et al., 1996) has been one of the more highly utilized strategies to screen clone 

libraries. The DGGE (Kowalchuk, et al., 1997) and TGGE (Felske, et al., 1998) analyses were 

also used to measure and estimate redundancy of cloned 16S rDNA inserts in the environment. 

Both DGGE and TGGE were employed to analyze PCR products which are amplified after 16S 

rRNA genes have been cloned in suitable vectors. By analyzing cloned inserts obtained from the 

environment, an indication of the representative members in the natural microbial community 

can be accquired. According to Muyzer and Smalla (1998), re-amplifying inserts with nested 
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PCR will cluster clones together in groups and each representative clone can be sequenced. 

Furthermore, DGGE analysis of PCR products from cloned inserts may give an indication of 

representative members in mixed culture samples. Kowalschuk et al. (1997) utilized DGGE to 

analyze PCR-amplified 16S rDNA fragments and successfully detected potential beta-

subdivision ammonia oxidizers present in the dune samples 

a-6. Determining PCR and cloning biases 

 Keohavong and Thilly (1989) applied DGGE to determine the error rate of different 

DNA polymerases during DNA synthesis. They reported that DGGE permitted direct 

enumeration and identification of a point mutation caused by T4, modified T7, a Klenow 

fragment of polymerase I, and Thermus aquaticus (Taq) during PCR. Fidelity comparison of 

DNA amplification in the study was suitable because the base pairs were small and mutations 

could be detected by different concentrations of denaturant required for each amplicon. 

According to Keohavong and Thilly (1989), the most predominant mutations were transitions of 

G and C to A and T or vice versa with error rates varying from 3 x 10
-6

 to 2.1 x 10
-4

. Keohavong 

and Thilly (1989) emphasized that reaction conditions such as temperature, dNTP and 

concentration of salt may have an impact on mutations and error rate however, error rates and 

mutation that predominantly existed were highly similar in four different templates indicating 

that the fidelity of the enzyme essentially remains constant during DNA synthesis. In the study 

by Eckert and Kunkel (1991) fidelity of various polymerases were compared using three 

techniques, DGGE, cloning and M13mp2 an in vitro assay. The measured fidelities of PCR with 

Taq polymerases by DGGE were similar with fidelity measured by cloning PCR product and 

M13mp2 in an in vitro assay (Eckert and Kunkel, 1991). 

b. Next generation sequencing 
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 Nucleic acid sequencing refers to a method for determining order of nucleotides in DNA 

or RNA molecules (Sanger, et al., 1973). However, first generation sequencing or Sanger 

sequencing had obvious limits of time required and poor quality of beginning sequences. This 

resulted in demands for more economical and rapid methods in research and clinical labs which 

led to development of NGS approaches. The NGS provided a more high-throughput approach for 

the sequencing of millions of DNA fragments from a sample. Next generation sequencing also 

became known as parallel sequencing because NGS can perform millions of sequencing 

reactions in parallel by micro-reactors and/or solid surfaces or beads (Kwon and Ricke, 2011; 

Metzker, 2010; Reis-Filho, 2009).  One of the notable differences between Sanger sequencing 

and NGS was the length of reads. While Sanger sequencing generated long reads (nearly a 

thousand bp), NGS generates millions of shorter reads (hundreds of bp) which can be quantified 

(Fullwood, et al., 2009; John and Grody, 2008; Morozova and Marra, 2008; Stratton, et al., 2009; 

Tucker, et al., 2009; Voelkerding, et al., 2009).  

In the past decade, various NGS platforms have been developed including the Ion Torrent 

system of Life Technologies (Carlsbad, CA), MiSeq of Illumina (San Diego, CA), 454 

pyrosequencing of Roche Diagnostics (Risch-Rotkreuz, Switzerland) and SOLiD of applied 

Biosystems (Foster City, CA). Ion torrent by Life Technology utilizes a hydrogen ion sensitive 

transistor and its throughput is approximately 320 Mb per one run which runs for approximately 

8 hrs. The Illumina Miseq needs to be run for 24 h and produces read lengths of 150 bp and 

throughput is from 1.0 to 1.4 Gb. Conversely, Roche 454 pyrosequencing technology runs for 10 

hours and is able to produce read lengths of 400 bp and a throughput of 400 Mb per run. SoLiD 

requires over a week of run time and produces 15G per day with a read length of 60 bp.  
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Next generation sequencing can be applied to clinical diagnostics and therapeutics to 

determine the genetic cause of a disease by sequencing the protein-coding region of a respective 

gene (Saunders, et al., 2012). Although whole genome sequencing is possible, sequencing 

hotspots for disease causing mutations can be also effective because it is more rapid and more 

cost effective.  Targeting specific genomic regions can be accomplished by coupling NGS with 

DNA capturing methods (Ng, et al., 2009). 

Besides sequencing DNA, RNA-seq also known as whole transcriptome shotgun 

sequencing (Morin, et al., 2008) has been developed and can be applied to the study of gene 

expression, RNA sequencing, paired-end RNA sequencing, and small and noncoding RNA 

sequencing (Reis-Filho, 2009; Wang, et al., 2009). In addition, RNA-seq has allowed for the 

determination of exon and intron boundaries and the capability of observing cellular pathway 

alteration during infection (Qian, et al., 2013). Eventually, RNA-seq has led to more in-depth 

understanding of RNA editing events when combined with massive DNA sequencing. In 

addition, several modifications of NGS allowed assessment of DNA methylation and acetylation 

(Lister and Ecker, 2009; Meissner, et al., 2008) along with immunochromatin microarray assays 

(Visel, et al., 2009).  

b-1. Whole-exome sequencing 

 The term exome refers to the sequences which are transcribed to RNA after introns are 

removed. Therefore, exome sequencing provides information on the protein-coding region of 

genome. Exon refers to the part of a gene that remains within the mature RNA after introns are 

removed. Human exons constitute approximately 1% of the total genome (Ng, et al., 2009) and 

sequencing exons are known to be an efficient strategy to determine the genetic basis for gene 

disorders (Bamshad, et al., 2011). Exome sequencing can also provide information of disease 
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causing mutations in pathogen. Lai-Cheong and McGrath (2011) successfully identified genes 

relevant to inherited skin disorders by exome sequencing. Disease-causing mutations in multiple 

genes have been identified by Cullinane et al (2011) in a patient with oculocutaneous albinism 

and cogenital neutropena. The study by Cullinane et al (2011) utilized whole exome sequencing 

to align DNA sequence fragment of patient to the corresponding reference genome to identify 

variation and detected 62,235 variations.  

b-2. Targeted sequencing 

 Sequencing of a specific region is preferred when the suspected disease is identified and 

the region of interest is already known. Compared to whole-exome sequencing, targeted 

sequencing is much more affordable, yields much higher coverage of genomic regions of interest, 

and reduces sequencing cost and time (Xuan, et al., 2013). Also, cancer-type specific treatments 

can be evaluated and aided by NGS targeting specific genomic region (Rehm, 2013). Rehm 

(2013) reported that utilization of NGS is gradually extending its ability into clinical laboratories 

especially in diagnostics for hereditary disorders and prognostics of somatic cancers.  

b-3. Microbial community analysis 

 High-throughput sequencing technology such as NGS, parallel sequencing has 

revolutionized the study of microbial community analysis because NGS approaches can produce 

extensive and detailed data on bacterial composition which could be considered significant to 

both the health of host and in fermented food. Prokaryotic 16S rRNA and fungal ITS genes are  

typically targeted in the molecular surveillance of microbial communities. Sequencing millions 

of reads in a single run by NGS provides an incomparable amount of data with high-resolution 

optics in molecular level. Hence, high computational power and storage are mandatory. Also, the 

gigabyte sized data produced by the NGS platform requires programs to process NGS raw data 
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to downstream analysis such as characterization of short-amplicons, filtration/demultiplexing, 

operational taxonomic units (OTUs) selection, taxonomic assignment and sequence alignment 

(Bokulich and Mills, 2012).  

 Three open source programs are available for processing data, QIIME (Caporaso, et al., 

2010), Mothur (Schloss, et al., 2009) and MG-RAST (Meyer, et al., 2008). Qiime, Mothur and 

MG-RAST software are capable of analyzing data by trimming, screening and aligning 

sequences produced from community samples and furthermore able to calculate distance and 

OTUs  between community sequence sample. According to Plummer et al (2015), there were no 

significant differences detected at the phylum level while genus levels exhibited differences 

when fecal sample of infants were analyzed targeting 16S rRNA gene. Across the three pipelines, 

a total of 90 distinct genera were identified and MG-RAST and Mothur shared the least genera at 

39 while QIIME and Mothur exhibited higher similarity of 53 genera. Plummer et al (2015) 

highlighted that the QIIME and Mothur pipelines have more powerful statistical capabilities than 

MG-RAST however, Mothur excels greatest in terms of flexibility. However, Plummer et al 

(2015) concluded that QIIME was more user friendly, required less time than Mothur, and was 

preferred for analyzing large datasets. Approximate analysis time for specific dataset used by 

Plummer et al (2015) were 1 h, 10 h and 2 days for QIIME, mothur and MG-RAST respectively. 

The advantage of using MG-RAST pipeline is its accessability to the public database and 

shotgun metagenomic datasets. Also, MG-RAST generates multi-fasta file for each sample, 

allowing the researcher to select particular reads for further analysis.  

 

6. Conclusions 
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 In-feed antibiotics have become a worldwide concern due to the rise of antimicrobial 

resistant pathogens (Dibner and Richards, 2005; Jones and Ricke, 2003) thus alternatives such as 

prebiotics have been extensively studied in order to promote performance and to protect against 

numerous pathogens. Ever since the concept of prebiotic was first introduced by Roberfroid and 

Gibson (1995), a variety of prebiotics have been evaluated. However, the effect of prebiotics on 

growth performance have been, for the most part, inconsistent. Inconsistency may be due to 

differences including the housing systems of birds, concentration of prebiotic used and species of 

birds (Yang, et al., 2007). Also, studies have shown that each type of prebiotic excels in a 

distinctly different beneficial role. For example, FOS supplement appears to succeed in 

promoting beneficial gut bacteria therefore, establishing an acidic environment in the gut to 

inhibit pathogen colonization. A GOS supplement has also demonstrated its role for selectively 

promoting beneficial bacteria in gut of host. An MOS feed supplement was able to inhibit 

adherence activity of pathogens to epithelial cells by competing for a common receptor which 

the pathogen utilizes. Inconsistent results need to be overcome in future applications by 

evaluating effects of prebiotic more thoroughly via investigations at the molecular level of 

microorganism such as transcriptomics or NGS.  

 Because multiplex PCR requires several primer pairs with various properties such as 

specificity and optimal annealing temperature, optimization of the multiplex PCR can be difficult. 

However, once the assay has been optimized, the procedure of multiplexing becomes quite 

simple and provides more detailed information of template DNA because multiplex PCR can 

target species or strain specific fragments of DNA. Consequently, more rapid and accurate 

detection and characterization of pathogen in food safety or industry has become possible 

compared to previous enrichment culture based methods which historically were the gold 
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standard of detection. In addition, it can be applied to diagnose genetic and infectious disease 

accurately by screening for multiple loci simultaneously. The multiplex PCR assay can be also 

used to examine relationship of genetic linkage between two or more sequences, environmental 

association and host-parasite and disease-infection (Edwards and Gibbs, 1994).   

 Conventional PCR-agarose gel visualization is a useful technique however, specificity 

and sensitivity of conventional PCR can be compromised by the possibility of a false positive 

product (Sails, 2013). The development of enzyme and probe hybridization molecules for 

detecting amplified product has led to accurate quantitation of target genes and the generation of 

real-time instrumentation and chemistry for PCR.  The quantitative PCR alone provides data 

equivalent to the combination of conventional PCR and Southern blot analysis which are highly 

sensitive and specific. 

 Next generation sequencing approaches developed following the wide scale application 

of Sanger sequencing. These are also referred to as parallel sequencing methods because of their 

mechanisms involving sequencing millions of fragments simultaneously. The NGS can be 

applied to unlimited fields of studies involving DNA or RNA based technology. In addition, 

NGS approaches can, not only be applied to sequence genome for genetic disorders, but can also 

applied to microbiome studies by targeting 16S rRNA while the flexibility of NGS is useful, it 

can be inefficient and the cost to implement NGS has historically been very expensive. Andersen 

et al (2014) developed a methodology of enhancing NGS by adopting barcodes to PCR products 

prior to NGS library construction. The barcoded library approach of NGS increased efficiency 

and decreased cost of library preparation by two thirds per sample. In addition to development of 

NGS, also called second generation sequencing, development of third generation sequencing and 

fourth generation sequencing platforms are emerging (Schadt, et al., 2010). The significance of 
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third generation sequencing is that amplification of template strands are no longer required 

which means availability of single molecule real time sequencing. Absence of amplification 

steps reduces the error that might occur during amplification (Ku and Roukos, 2013). Third 

generation sequencing technology includes the PcBio RS of Pacific BioSciences and the 

Heliscope sequencer of Helicos BioSciences. Fourth generation sequencing technology is known 

as nanopore-based technology and is highlighted by the cost effectiveness. Feng et al (2015) 

introduced this technology to improve the potential of sequencing entire human genome for less 

than $1000 or even less than $100.  

 Finally, molecular techniques such as DGGE, multiplex PCR, qPCR and NGS can be 

utilized for the investigation of microbial shift responses to supplementation such as prebiotics 

which require more detailed investigations due to some of the inconsistent results occurring 

among studies. Since the NGS method is becoming more accessible, microbiome analysis of 

poultry will reveal other key microorganisms other than Bifidobacteria and Lactobacillus and 

should be able to explain inconsistent result of prebiotic studies.   
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ABSTRACT 

 Prebiotics are defined as nondigestible food ingredients that can stimulate the growth of 

one or more beneficial bacteria in the gastrointestinal tract. The Biolex
®
 MB40 is a commercial 

prebiotic that contains mannanoligosaccharides. The aims of this study were to evaluate the 

effects of prebiotic Biolex
®
 MB40 on cecal microbiota of conventionally raised chickens using 

PCR-based denaturing gradient gel electrophoresis (DGGE) and assessing Salmonella 

prevalence. Chickens were randomly selected and distributed into three groups; a negative 

control (NC) and two treatment groups (T1 and T2). The NC group was fed a non-medicated 

feed, while the treatment groups were fed either T1 or T2, 0.05% antibiotic (BMD50) or 0.2% 

Biolex
®
 MB40 respectively. During the study, cecal contents and bird feed were plated on 

selective media for Salmonella, yeast and mold prevalence analysis. Ten chickens from each 

group were randomly selected at 1, 2, 4 and 6 wk and ceca were extracted for DNA isolation for 

PCR-based DGGE. Also, short-chain fatty acids (SCFAs) were analyzed from collected cecal 

material by gas chromatography. Only 4.2 % of the samples were Salmonella positive. Presence 

of class 1 integron from cecal material were analyzed by PCR and 97.5% of the cecal samples 

were positive for integron presence, but no class I integrons were detected in the Salmonella 

isolates. According to the PCR-based DGGE analysis, the T2 group exhibited a cecal microbial 

population pattern that was similar to the T1 group prior to wk 4 and the T2 group appeared to be 

almost identical with the NC group after wk 4 but T2 exhibited less Bacteroides rodentium prior 

to wk 4. Overall results showed that the commercial prebiotic, MB40 did not lead to a detectable 

reduction of Salmonella but the general frequency of Salmonella was minimal in all treatments. 

However, feeding an MB40 supplement did result in similar DGGE band patterns as the T1 

indicating that cecal microbiotia were potentially similar in these 2 groups. Overall, it appears 
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that MB40 (T2) exhibited similar DGGE-cecal population patterns as BMD50 (T1) which 

suggests that these treatments may have influenced the populations in a comparable fashion.  

 

Key words: Salmonella, integron, short-chain fatty acids, prebiotic, broiler.  
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INTRODUCTION 

 Prebiotics are defined dietary supplements that impact the host gastrointestinal (GI) tracts 

by selecting for beneficial gastrointestinal bacteria such as Bifidobacterium and Lactobacillus 

which can inhibit establishment of pathogenic microorganisms through the production of lactic 

acid (Gibson and Roberfroid, 1995). In this study, brewers’ yeast cell wall derived supplement, 

Biolex
®
 MB40, was used as a prebiotic feed additive which contains a concentration of 1,3-1,6-

β-D-glucan and mannanoligosaccharides (MOS, Leiber Gmbh, Bramsche, Germany). Previous 

studies have demonstrated that MOS can enhance the host's immune system by increasing 

immunoglobulin (Ig) A and increasing Lactobacillus in the gut (Swanson et al, 2002). 

 According to the report from FoodNet trend data of Center for Disease Control and 

Prevention (CDC) in 2013 (http://www.cdc.gov), Salmonella serovars have been considered one 

of the major pathogens causing infection in humans, followed by Campylobacter. Therefore, 

control of these pathogens is critical for the food industry. In addition, one of the concerns in 

food animal production is to prevent the rise of antimicrobial resistance in microorganisms. The 

presence of integrons allows bacteria to acquire a variety of antibiotic resistance genes, leading 

to a general increase in antimicrobial resistance of pathogens (Gillings et al, 2008). Class 1 

integrons are not only widely spread in the bacteria isolated from clinical facilities and livestock 

(Martinez-Freijo et al, 1998; Goldstein et al, 2001) but also occur in many Gram-negative 

bacteria (Lee et al, 2002; Smith et al, 2007; Ahmed and Shimamoto, 2014). Integrons consist of 

recombinases which are a family of integrases that serve as promoters for direct transcription 

(Ochman et al., 2000). The presence of integrons has been suggested as a potential indicator of 

antibiotic resistance because of their ability to capture and excise genetic elements by their site-
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specific recombination systems, thus playing a significant role in propagation of antimicrobial 

resistance genes among bacteria (Ochman et al, 2000; Roe and Pillai, 2003).  

Amplification of the 16S ribosomal ribonucleic acid (rRNA) gene has been widely used 

for identification or classification of bacteria. A polymerase chain reaction based denaturing 

gradient gel electrophoresis (PCR-based DGGE) approach has been used to separate PCR 

amplicons of uncharacterized mixtures of bacteria based on DNA strands with different melting 

points due to their sequence variation, therefore allowing direct visual comparisons of microbial 

communities of the gut microbiota among different treatment groups (Hume et al, 2003, Hanning 

and Ricke, 2011).  

 The purpose of this study was to investigate potential microbiota compositional changes 

in the ceca of prebiotic or antibiotic treated broiler chickens by PCR-based DGGE. Along with 

the potential microbiota compositional changes, prevalence of Salmonella and class 1 integron 

genes were assessed by direct plating methods followed by PCR analysis.  

 

MATERIALS AND METHODS 

Chicken Housing 

 Three houses (treatment per house) were utilized in this study. A total of 15,300 Hubbard 

X Cobb 500 straight –run broiler chicks were placed in each house. The breeder flocks used to 

supply the chicks were equally distributed among the three houses. The birds were identified 

with study number, house number, and assigned treatment. Each week, 10 birds from each house 

were randomly selected for sampling of cecal contents. Flock performance for each house 

(treatment) was monitored and recorded (data not shown) during the course of the trial. A 

negative control group was provided with feed without treatment additives while the other two 
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groups were administered feed supplemented with 0.05 % of BMD50 (T1) (BMD50, Zoetis, 

Floham Park, NJ, USA) or feed supplemented with 0.2 % of Biolex
®
 MB40 (T2) (Leiber GmbH, 

Bramsche, Germany). Diets were typical commercial starter, grower, finisher 1 and finisher 2. 

Starter diets were fed 1.5 lb (0.68 kg) per bird, 3 lb (1.36 kg) per bird for grower, 4 lb (1.81 kg) 

per bird for finisher 1 and finisher 2 were fed as needed to market. The only differences in the 

diets were feed amendments T1 and T2. Randomly selected groups (10 birds in each group) were 

chosen for cecal removal at 1, 2, 4 and 6 wk of age. A review by the institutional animal care and 

use committee (IACUC) was exempted because the birds were raised in an off-campus 

commercial farm operation and the current study was restricted to microbiological evaluation of 

birds selected on site. The commercial cooperators used internal animal welfare protocols based 

on National Chicken Council (NCC) guidelines (www.nationalchickencouncil.org). 

 

Salmonella Isolation and Identification by Multiplex PCR 

 During 1, 2, 4 and 6 wk of age, 10 chickens from each group were randomly selected and 

cecal contents were aseptically harvested for DNA extraction and pathogen isolation. Ceca 

containing several grams of cecal contents were stored at -20°C in sterile Whirl Pak bag for 

further analyses. One gram of cecal contents were added into 15 mL culture tubes and 9 mL of 

0.1% peptone water was added to establish a 1:9 ratio of cecal contents and diluent. Cecal 

suspensions were subsequently inoculated into 9 mL of tetrathionate (TT, HIMEDIA, Mumbai, 

India) broth and incubated at 37°C for 24 h. After incubation, 10 µL of inoculated TT broth was 

streaked on xylose-lysine-tergitol 4 (XLT-4, BD Bioscience, Franklin Lakes, NJ, USA) and 

brilliant green (BG, BD Bioscience) selective media using a loop and incubated at 37°C for 24 h. 

To confirm positive colonies, one of the positive presumptive colonies on either XLT-4 or BG 
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media was suspended in 100 µL of distilled water and colony PCR was performed for 

Salmonella confirmation.  

For colony PCR, the 20 µL reaction contained 2 µL of cell suspension, 500 nM of each 

primers (F: TTT GGC GGC GCA GGC GAT TC; R: GCC TCC GCC TCA TCA ATC CG) 

(Kim et al, 2006) which amplifies the 423 bp fragment of the transcriptional regulator gene 

(STM3098) of Salmonella, 10 µL Jump Start Ready Mix (Sigma-Aldrich, St. Louis, MO, USA) 

and 6 µL of distilled water. After an initial denaturation of 94°C for 5 min, 35 cycles of 94°C for 

30 s, 60°C for 30 s, 72°C for 30 s followed, accordingly. Finally, 5 min of an elongation step at 

72°C and a 5 min final hold step at 4°C was conducted. Aliquots (10 µL) of each amplification 

product was electrophoretically separated on a 1% agarose gel in 1X Tris-acetate-EDTA (TAE) 

buffer. The respective DNA aliquots were extracted from each of the 5 Salmonella positive 

samples and a multiplex PCR was applied for confirmation via colony PCR to identify specific 

serovars as described previously by Park and Ricke (2015).  

 

Yeast and Mold Prevalence 

 Yeast and mold prevalence in chicken feeds used in this study was evaluated to confirm 

cross contamination of chicken feeds using a 3M
TM

 Petrifilm (St. Paul, MN, USA). A 10 g 

sample of chicken feed from each wk's negative and two treatment groups were suspended with 

90 mL of distilled water to establish a 1:9 dilution. Feed suspensions were mixed thoroughly and 

1 mL of mixture was dispensed to the 3M
TM

 Petrifilm plate. Petrifilm plates were duplicated and 

incubated at 25°C for 48 h. The total number of colonies appearing on plates was multiplied by 

the dilution factor and subsequently divided by total volume plated on petrifilm to obtain cfu/g. 
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PCR prior to Denaturing Gradient Gel Electrophoresis (DGGE) 

 Total DNA was extracted from 200 mg of ceca using a QIAamp DNA Stool Mini Kit 

(Qiagen, Valencia, CA, USA), and concentration and purity of DNA were measured with a 

Nanodrop ND-1000 (Thermo Scientific, Marietta, OH, USA). For conducting PCR prior to 

DGGE, the 50 µL PCR reaction volume contained 50 ng of template DNA, 400 nM of each of 

the primers (F: CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG GCC 

TAC GGG AGG CAG CAG; R: ATT ACC GCG GCT GCT GG) (Muyzer et al, 1993) which 

amplifies the 233 bp of V3 region of the 16S rRNA gene, 25 µL of Jump Start Ready Mix 

(Sigma-Aldrich) and 19 µL of distilled water. The PCR assay was first denatured at 94°C for 5 

min and kept at 94°C for 1 min. The temperature was subsequently dropped to 67°C for 45 s. 

This temperature was decreased by 0.5°C for every additional cycle until the temperature 

reached 58.5 °C followed by an elongation step of 72°C for 1 min. After the first products were 

generated, 12 cycles of 94°C for 1 min and 58°C for 45 s followed. The final elongation step was 

at 72°C for 7 min and held at 4°C for 5 min. Aliquots of 10 ul for each amplification product 

were electrophoretically separated on a 1.5% agarose gel in a 1X TAE buffer.  

 

DGGE 

 The DGGE analyses were performed using a DCode Universal Mutation Detection 

System (Bio-Rad, Hercules, CA, USA). The PCR products were applied on an 8% 

polyacrylamide gels in 1X TAE with gradients which were formed with 8% acrylamide stock 

solutions (acrylamide/bis, 37.5:1) and contained 35 to 60% denaturant. Electrophoresis was 

performed at 55 V and a temperature of 59°C. After 18 h of electrophoresis, the gel was stained 

with 25 µL of SYBR green in 700 mL of 1X TAE on a shaker for 40 min and destained in 
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distilled water for 10 min. The gel was viewed with a transilluminator while minimizing the 

exposure time of UV light to prevent DNA damage. After running DGGE for each sample, 

different samples with identical banding patterns were pooled within each group to generate the 

number of samples so that all three groups could be run on one gel for comparison. The DGGE 

banding patterns were also used for phylogenetic tree analysis based on the unweighted pair 

group method with arithmetic mean (UPGMA) algorithm by Quantity One software (Bio-Rad). 

 

DGGE Gel Purification for Sequencing 

 The DGGE gel bands were cut under UV light with a razor blade. Weak and closely 

adjacent bands were avoided to maximize DNA recovery rate for successful sequencing. Excised 

target bands were placed into 0.5 mL microcentrifuge tubes with pierced bottoms, placed in 2 

mL microcentrifuge tubes and subsequently centrifuged at 16,000 x g for 5 min to disrupt the gel. 

A 300 µL aliquot of TE buffer was added to the disrupted gel and incubated at 65°C for 15 min. 

Contents were transferred to a Spin-X tube (VWR, Radnor, PA, USA) and centrifuged at 16,000 

x g for 5 min. The contents were subsequently suspended with 133 µL of 7.5 M of NH4OAc, 60 

ng of glycogen and 800 µL of 100% ethanol. Suspensions were placed at -70°C for 10 min 

followed by centrifugation at 16,000 x g for 15 min at room temperature. Pellets were washed 

twice with cold 70% ethanol and resuspended with a solution containing 5 µL of distilled water 

and 1.6 µM of reverse primer. Purified gel band DNA was submitted to the DNA Resource 

Center at the University of Arkansas, Fayetteville, AR (Park et al., 2014). 

 

Integron Detection in Cecal Contents 
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 Extracted DNA from cecal contents were used to identify integrons by PCR. A 25 µL of 

PCR reaction volume containing 25 ng of DNA, 400 nM of each of the integron primers (F: 

GGC ATC CAA GCA GCA AG; R: AAG CAG ACT TGA CCT GA) targeting conserved 

sequence regions (Waturangi et al, 2003), 12.5 µL of 2X premix ExTaq (Takara, Mountain View, 

CA, USA) was used. A 25 µL portion of each aliquot was pre-denatured at 94°C for 5 min, 

followed by 30 cycles of 95°C for 1 min, 60°C for 30 s and 72°C for 2 min. After 30 cycles, the 

final elongation step was followed by 5 min at 72°C with a final hold step for 5 min at 4°C. 

Aliquots of 10 µL of the respective PCR amplicons were separated on 1% agarose gel and 

appeared as visible bands while no amplicons were detected for the negative control. PCR 

products were purified by Diffinity Rapid Tip
®
2 (Sigma-Aldrich) and sequenced at the DNA 

Resource Center at the University of Arkansas, Fayetteville, AR. The class 1 integron sequence 

was confirmed by basic local alignment search tool (BLAST) analysis. Salmonella isolates were 

subjected to DNA extraction followed by class 1 integron PCR assessment under the same 

conditions as the cecal DNA analysis. 

 

Short Chain Fatty Acids (SCFAs) Analysis by Gas Chromatography (GC) 

 A mixture of acetic acid, propionic acid and butyric acid was injected for analysis of the 

peak area generated by the GC in order to establish a standard curve. Due to limited cecal 

material available in samples from wk 1 and 2, only samples of wk 4 and 6 were analyzed for 

SCFA. The method of SCFA preparation and analysis by Kaur et al (2011) was used. A 1 g 

aliquot of ceca material were suspended in 9 mL distilled water and vortexed thoroughly. Two 

aliquots of 1.2 mL were centrifuged at 3,000 x g for 10 min. Supernatants of 900 µL were 

transferred to new tubes and 100 µL of reagents containing 50 mM of 4-methyl-valeric acid, 5% 
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of meta-phosphoric acid and 1.56 mg/mL of copper sulfate were added. Solutions were vortexed 

thoroughly for 1 min, incubated in room temperature for 10 min followed by centrifugation for 

10 min at 11,000 x g. Finally, 100 µL of supernatant was used for analysis. A 1 µL of 

supernatant was used for GC (Shimadzu, Columbia, MD, US) analyses and the column was set 

to 100°C initially and increased by 4°C every 3 min until 120°C with a rate of 3°C per min up to 

150°C afterwards. A splitter was set to 220°C with a split ratio of 30 and flame ionization 

detector was set to 230°C throughout the experiment.   

 

Statistical Analysis for Microbial Prevalence 

Microbial prevalence (yeast and mold) were analyzed by JMP
®
 Genomics (SAS Institute, 

Cary, NC, USA) software. Means of each data were compared using ANOVA (one-way analysis 

of variance) test with an α value (level of significance) of 0.05.  

 

RESULTS 

Salmonella Prevalence 

 Salmonella prevalence among groups is shown in Table 1. All 5 samples amplified with 

the 423 bp PCR product from the colony PCR. Two out of five Salmonella positive samples 

were successfully amplified by the 216 bp product which would indicate that those isolates were 

Salmonella Heidelberg. The remaining 3 Salmonella isolates could not be amplified by any of 

the three Salmonella Typhimurium, Heidelberg and Enteritidis specific regions but were 

identified as Salmonella subspecies I.  

 

Yeast and Mold Prevalence 
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 Average cfu/g of feed for each of the groups were 34, 24 and 79, NC, T1 and T2 

respectively. Based on the student's t test, there were no significant differences in yeast and mold 

prevalence among the NC and treatment groups.  

 

Analysis of Cecal Microbiota Using a PCR-based DGGE 

 All cecal samples in this study amplified the 233 bp product via PCR prior to DGGE. 

Samples of wk 1, 2, 4 and 6 birds were separated by DGGE are shown in Figure 1. At wk 1, 

bright bands were concentrated around the center region of gel while some bands were spread 

more randomly among the treatment groups. Both treatment groups at wk 4 yielded a weak 

double banding pattern in the same region of the gel as double banding patterns in the wk 2 

negative group. Samples of wk 6 were uniform among all groups except for a few specific bands 

appearing in the T1 groups. When phylogenetic trees were generated by Quantity One software 

based on banding patterns and intensity of the bands, most samples were clustered within the 

same group (Figure 2). 

 

DGGE Band Sequencing 

 Sequence results of wk 1, 2, 4 and 6 are shown in Table 2. Based on BLAST analysis of 

the sequence, Bacteroides dorei and Bacteroides rodentium appeared in the negative control 

group for wk 2 and 4 samples but were less frequent in the wk 6 samples. Both treatment groups 

exhibited similar patterns for the wk 4 and 6 samples. In the T1 group, a partial 16s RNA 

sequence of B. dorei was detected in the wk 2 sample, but its band intensity decreased in wk 4 

and 6. Barnesiella viscericola was predominantly detected in all groups at wk 4, while the 
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Clostridiales group of Firmicutes were detected in all treatment groups. Proteobacterium species 

was only observed in the T1 group at wk 6. 

 

Integron Prevalence 

 Integrons were detected in 117 samples out of a total of 120 samples (97.5%). Most of 

them were the 1 kb amplicon in size while some samples also had an additional amplicon size of 

over 1.5 kb on a 1 % agarose gel. There were no class 1 integrons detected in DNA for any of the 

Salmonella isolates. 

 

SCFA Analysis 

 The average and total concentrations of each SCFA are shown in Figure 3A to E. Overall, 

the average concentration of acetic acid found in cecal material was the highest among the 

ferementation acids, followed by butyric acid while the propionic acid concentration was the 

least (Figure 3E). However, there were no significant differences among treatment groups and 

NC in terms of acetic acid, propionic acid and butyric acid found in ceca material or between wk 

4 and 6 when data was pooled among treatments. Among the three individual SCFAs, acetic acid 

constituted the highest average percentage at 64%, butyric acids at 22% followed by propionic 

acid at 14% (Table 3). Average concentration of each SCFA in wk 4 did not exhibit any 

significant differences when compared to wk 6 (data not shown). 

 

DISCUSSION 

 The purpose of this study was to investigate the microbiota compositional changes in the 

ceca of commercial prebiotic treated broiler chickens as well as prevalence of Salmonella and 
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occurrence of integron genes. The MB
®
40 prebiotic consists of MOS which is a complex sugar 

molecule containing mannose. Mannose based polymers have been examined and proven to 

block bacterial lectin, therefore inhibiting the colonization of pathogens such as E. coli and 

Salmonella (Ofek and Beachey, 1978; Spring et al, 2000). In addition, Onderdonk et al (1992) 

reported that Poly-[1-6]-D-glucopyranosyl-[1-3]-D-glucopyranose glucan (PGG), type β-Glucan 

reduced early mortality and increased leukocyte cell population in mice challenged with E. coli 

and Staphylococcu. Oligosaccharides are a fermentable carbohydrate source that leads to 

production of SCFAs which may play several beneficial roles in the host such as energy 

substrates for colonic epithelial cell (Roediger, 1982) and promoting colonic anastomosis 

(Scheppach, 1994). Consistency of SCFA concentration among all groups in this study indicates 

that there was no detectable impact on the fermentation upon introduction of feed amendments at 

least in the later stages of bird growth which corresponds to reports by Jozefiak et al (2008) 

where pH of ceca was measured when β-glucan supplemented 6 wk old broiler chickens were 

examined. However, Jozefiak et al (2008) reported that inulin and lactose supplemented birds 

exhibited lower pH than the control group which may, in turn, result from higher SCFA 

production. In the current study, the acetic acid concentration was significantly higher than other 

SCFAs which corresponds to previous studies by Ricke et al (1982) and Woodward et al (2005) 

when 8 day old chicks and 50 wk old hens were examined respectively. Also, Woodward et al 

(2005) reported that for 50 wk old hens, nonmolted bird groups for most trials exhibited the 

highest SCFA concentration in the ceca while no detectable differences in SCFA concentration 

were observed between feed withdrawal molt birds and the alfalfa molted birds. Results from 

previous studies propose that different feed amendments may favor production of certain SCFAs 
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at varied time points depending on the age and gut physiology of the birds (Ricke et al, 1982; 

Woodward et al, 2005; Jozefiak et al, 2008).  

 While Salmonella can be a common foodborne pathogen found in poultry operations 

(Corrier at al, 1999; Dunkley et al, 2009; Finstad et al, 2012; Foley et al, 2011, 2013), in the 

current study Salmonella species were relatively infrequent. Only 4.2% of the samples were 

Salmonella positive and no significant differences were detected among the treatment groups. 

However, because only 10 samples from each treatment and wk were selected for study, this may 

not be a sufficient number of samples to assess prevalence. To obtain sufficient numbers of 

Salmonella positive birds may require an infection study with known quantities of a recoverable 

Salmonella marker strain. There were no significant differences among the treatment groups in 

terms of yeast or mold prevalence which eliminates any bias or skewed results that may have 

been brought by distribution of unequal feed quality conditions. Feed quality control is important 

because if a batch of feed was contaminated, microbiota comparison among groups could be 

biased.    

 One of the major intentions of this study was to examine the potential impact of prebiotic 

supplementation on cecal microbial populations. The NC did not include feed amendments, 

while the two treatment bird groups were fed with either antibiotic or prebiotic consisting of 

MOS and β-D-Glucan. Antimicrobial feed additives have been used in poultry production to 

increase feed conversion ratio (FCR), animal growth and reduce morbidity and mortality due to 

clinical and subclinical diseases (Thomke et al, 1998). Control of pathogens in the food industry 

is important because they may be directly related to public health issues (Scallan et al, 2011). 

Also, antibiotic usage of in-feed supplements is one of the main concerns due to rise of antibiotic 

resistance (Dibner and Richards, 2005). Consequently, other feed supplements that provide 



 

89 

 

similar animal production responses have been examined (Kasper et al, 2001; Biggs et al, 2007). 

Following gut microbial population changes over time within conventional flocks treated with 

prebiotics is important because there are believed to be several host-microbiota interactions 

occurring as well as other factors such as greater bird stocking densities that can lead to 

extensive microbiota changes (Guardia et al., 2011; Stanley et al., 2014).  According to the PCR-

DGGE analysis in the current study, Firmicutes, a phylum of bacteria consisting of numerous 

Gram positive cells, such as Clostridia, Bacteroides, and Alistipes were found in all groups 

during the entire study. Also, more uniform banding patterns were observed as the birds matured.  

The problem of drug resistant bacteria has been further highlighted with a report of two 

million illnesses and 23,000 deaths related to antibiotic resistant bacteria according to CDC. In 

response to this an executive order by the U.S. President was initiated in 2014 to encourage 

development of strategies to combat antimicrobial resistance occurring in the public health sector 

(www.whitehouse.gov). Several studies have shown that class 1 integrons are fairly prevalent in 

pathogens and even in clinical facilities and livestock production (Martinez-Freijo et al, 1998; 

Goldstein et al, 2001). According to BLAST, identified class 1 integrons in this study are 

common in Salmonella Heidelberg (KJ756517.1), Escherichia coli (KJ594082.1) and 

Staphylococcus aureus (KF687971.1). Previous studies have shown that class 1 integron genes 

can be detected in anywhere from 20 to 100% in E. coli, 21% in C. jejuni isolates from broiler 

chickens (Lee et al, 2002; Smith et al, 2007), 39 and 68% in Salmonella from dairy and meat 

products (Ahmed and Shimamoto, 2014) and pasture raised broiler chickens (Melendez et al 

2010), respectively. Prevalence of a class 1 integron from these previous studies was 

significantly lower than the 97.5% observed in this study but does correspond to a previous class 

1 integron prevalence study of pasture raised flock receiving no antibiotics and fed the same 
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prebiotics (Park et al, 2014). This is somewhat expected because whole genomic DNA extracted 

from the ceca was used in the current study while only specific pathogen isolates were tested for 

class 1 integron in other studies. Integron sizes vary because of their ability to integrate into a 

wide variety of genes by site-specific recombination. Identification of antimicrobial resistance 

traits that may have been introduced by integrons was not conducted in this study. However, the 

significant finding of this study was that class 1 integron genes which potentially mobilize 

antimicrobial resistance do appear to commonly exist in the cecal microbiota of broiler chickens 

raised under commercial conditions whether fed an antibiotic or not. It remains to be determined 

what factors contribute to this prevalence. 

 Further assessment and quantification of Bifidobacteria or Lactobacillus are suggested 

because Baurhoo et al (2009) demonstrated an increase in Bifidobacteria from MOS fed 

chickens. In terms of the microbial population, MB40 (T2) exhibited similar patterns as BMD50 

(T1) which suggests that both dietary treatments may have influenced the populations in a 

similar fashion. However, further investigation of the cecal microbial population by next-

generation sequencing and metabolomics approaches (Park et al, 2013) are needed to detect more 

subtle but functionally distinguishable differences between AGP and prebiotic fed chickens. 
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Figure 1. Denaturing gradient gel electrophoresis (DGGE) gel (A: wk 1; B: wk 2; C: wk 4; 

D: wk 6) BLAST result for each numbered bands shown in Table 2. 

 

Figure 2. Phylogenetic tree based on bands pattern of denaturing gradient gel 

electrophoresis (DGGE) gel (A: Wk 1; B: Wk 2; C: Wk 4; D: Wk 6). Each number 

represent the vertical lane from gel counting from left (Feed only: 1 to 7; BMD50: 8 to 14; 

MB40: 15 to 21) 

 

Figure 3. A: Total short-chain fatty acid (SCFA) concentration; B, C, D: Average 

concentration of acetic, propionic, butyric acid respectively; E: Average SCFAs 

concentration comparison by Wk. Different letters indicates significant differences 
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Table 1. Salmonella prevalence in cecal contents of birds (n = 10) 

 Salmonella  

 Wk 1 Wk 2 Wk 4 Wk 6 Total 

NC
1
 0/10 0/10 1/10 0/10 1/40 

T1
2
  0/10 0/10 2/10 1/10 3/40 

T2
3
  0/10 0/10 1/10 0/10 1/40 

Total 0/30 0/30 4/30 1/30 5/120 (4.2%) 

1
NC = Feed only 

2
T1 = Feed + 0.05% AGP (BMD50) 

3
T2 = Feed + 0.2% Biolex

® 
MB40 
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Table 2. DGGE sequence result for each wk 

  Band No. * 

Species 1 wk 2 wk 4 wk 6 wk 

Alistipes  15 2, 8, 16, 18, 19 13, 14, 15 

Bacteroides  2, 3, 15   

Bacteroides dorei 12 1, 7, 12 13 11 

Bacteroides ovatus 1 9   

Bacteroides rodentium 14, 15 4, 8 4, 9  

Bacteroides uniformis   14  

Barnesiella viscericola   3, 10 1, 2 

Campylobacter jejuni   5  

Clostridiales 2, 5, 6, 7, 9, 10 

11, 13 

11 1, 11, 12, 15 6, 8 

Crocinitomix    10 

Escherichia coli   7  

Firmicutes 2,8 6, 10, 14 6, 17  

Flammevirga arenaria    4 

Lachnospiraceae 3, 4, 11   8 

Lactobacillus aviarius    3 

Lactococcus bacillus  5   

Porphyromonadaceae  13  12 

Proteobacterium    5, 7, 9 

Rikenellaceae   2  

Rumen Bacteria 16    

Ruminococcus 3, 5, 6, 7, 8, 10   1, 11, 12, 15 6 

* Band No. : Numbers are correspond to band numbers in Figure 1. 
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Table 3. Molar percentage of each SCFA 

  

Acetic 

acid (%) 

Propionic 

acid (%) 

Butyric 

acid (%) 

Acetic acid/Propionic acid 

Ratio 

Wk 4 NC
1
 61.2 13.2 25.6 4.63 

 

T1
2
 66.2 13.6 20.2 4.11 

 

T2
3
 60.9 14.8 24.3 4.56 

Wk 6 NC 64.6 12.8 22.6 5.10 

 

T1 67.5 14.8 17.7 4.39 

 

T2 64.3 14.7 21.0 4.57 

  
   

 

SE 

 

± 0.48 ± 0.16 ± 0.52 ± 0.06  
1
NC = Feed only 

2
T1 = Feed + 0.05% AGP (BMD50) 

3
T2 = Feed + 0.2% Biolex

® 
MB40 

Percentages were calculated by dividing each acid by sum of all three SCFAs.
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1. Abstract 

 Prebiotics are defined as fermentable food ingredients that selectively stimulate beneficial 

bacteria in the lower gastrointestinal tract of the host. The purpose of this study was to assess 

growth performance of broiler and the cecal microbial populations of an antibiotic, BMD50 (T1) 

supplemented birds compared to broiler chickens fed the prebiotic, Biolex
®

 MB40 (T2). Data for 

weight responses of carcasses without giblets (WOG), wing, skin, white meats including breast 

and tenders, and feed conversion ratio (FCR) of the chickens were collected during processing. 

Extracted DNA from cecal contents of individual bird was utilized to construct a sequencing 

library and sequenced via an Illumina Miseq. Generated data were analyzed by a quantitative 

insights into microbial ecology (QIIME) pipeline to acquire operational taxonomic units (OTUs) 

tables. Each of the OTUs were assigned to specific microorganisms to determine taxonomic 

levels and subjected to alpha and beta diversity analysis. Subsequently, taxonomy data were 

imported to Microsoft Excel and JMP
®

 Genomics for conducting a student t-test. In conclusion, 

there were no significant differences among groups in terms of parts weight and FCR but the 

white meat yield of Biolex
®
 MB40 treated groups exhibited significant improvement compared 

to negative control and BMD50 group. In addition, supplementation of prebiotic MB40 

significantly increased level of Lactobacillus in 2 wk compared to negative control and antibiotic 

BMD50 treated groups which may affect the mortality of birds. Retention of broiler performance 

and improvement of white meat yield suggest that the MB40 prebiotic appears to be a potential 

alternative to replace the antibiotic growth promoter.   
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2. Introduction 

 In 1995, Gibson and Roberfroid first defined prebiotics as nondigestible food ingredients 

that selectively promote beneficial bacteria such as Bifidobacteria and Lactobacillus (Kleessen, 

et al., 2001) that ultimately enhance health of the host by altering the microbial populations in 

the gut. Prebiotics are becoming more attractive as alternative feed supplements in animal 

production because it has been suggested that common usage of antibiotics in agricultural 

production could result in increases of antibiotic resistant bacteria (Barnes, 1958; Dibner and 

Richards, 2005; Elliott and Barnes, 1959; Gorbach, 2001; Lee and Lin, 2003; Marshall and Levy, 

2011; Starr and Reynolds, 1951). A variety of prebiotics utilize various mechanisms to improve 

health of the host including short chain fatty acids (SCFAs) production, pH adjustment and 

competing for binding sites against pathogens (Afrc, 1989; Gibson and Fuller, 2000; Ricke, 2003; 

Rolfe, 2000). For example, fructooligosaccharides (FOS) and galactooligosaccharides (GOS) are 

substrates for fermentation by Bifidobacteria and Lactobacillus thus, leading to increased SCFA 

production which in turn inhibits colonization and growth of pathogens (Bouhnik, et al., 1994; 

Gibson and Roberfroid, 1995; Hidaka, et al., 1986; Tzortzis, et al., 2005). 

 The commercial prebiotic evaluated in this study, Biolex
®
 MB40, consists of 1,3-1,6- β-

D-glucan and mannanoligosaccharides (MOS) which are derived from the cell walls of 

Saccharomyces cerevisiae, and several studies have shown their positive effects on growth 

performance of broilers (Hooge, 2004; Rosen, 2007). Growth performance of livestock is 

economically important to producers and poor performance is not acceptable by producers even 

if supplementation can reduce the level of foodborne pathogens (Jarquin, et al., 2007). According 

to Hooge (2004), supplementation of MOS exhibited statistically equivalent body weight with 

antibiotic amendment groups while significant improvements in final body weight were observed 
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compared to the negative control group. In addition, feed conversion ratio (FCR) significantly 

improved and mortalities were decreased in birds fed MOS diets by an average of 1.99% and 

21.4% respectively compared to negative control groups but did not compared to the antibiotic 

supplemented group. Hooge (2004) noted that the greatest attribute of the MOS diet was the 

ability to decrease mortalities because it was the only attribute that was significantly different 

compared to the antibiotic diet fed group. 

 One of the distinct features to the MOS is the ability of bind to mannose-specific type-1 

fimbriae of pathogen therefore, prevent colonization of pathogens (Newman, 1994). Receptor 

competition against pathogens is mediated by high affinity ligands derived from the yeast cell 

wall (Ofek, et al., 1977). One of the major foodborne pathogens, Salmonella utilizes this type-1 

fimbriae thus, reduction of Salmonella concentration is expected upon introduction of MOS. 

Spring et al (2000) and Oyofo et al (1989a,b)observed Salmonella reduction in broilers by 

adding mannose to their diets. In a previous report Lee et al (2016) detected low levels of 

Salmonella from the same cecal samples used for the current study. In addition to improvement 

of growth performance and suppression of Salmonella colonization, supplementation of MOS 

also exhibited elevation of immunoglobulin A (IgA) and immunoglobulin G (IgG) level (Cetin, 

et al., 2005; Kudoh, et al., 1999; Swanson, et al., 2002). 

 The current study evaluates microbial population using NGS approaches on samples from 

the study by Lee et al (2016) where  polymerase chain reaction based denaturing gradient gel 

electrophoresis (PCR-DGGE) had been utilized for comparing cecal microbial populations. 

According to the previous report using a PCR-DGGE approach, prebiotic supplemented group 

exhibited very similar patterns with antibiotic supplemented groups prior to wk 2 but were 

similar to negative control group as the birds became more mature. The objectives of the current 
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study includes performance evaluation and molecular analysis of the cecal microbiome of 

conventionally raised broilers fed with commercial prebiotic MB40 compared to negative control 

group and antibiotic BMD50 fed birds.   

 

3. Materials and methods 

Broiler housing 

 Three houses were assigned for each treatment and each house contained 15,300 birds 

(Figure 1). The birds were identified with the name tag of the corresponding treatment and house 

number in order to avoid confusion. In addition, three pens in two locations were set up within in 

each house and twenty birds from each treatment group were randomly placed in one pen at each 

location to avoid a house effect (Figure 1). Diets for birds consisted of commercial starter, 

grower, finisher 1 and finisher 2. The only difference between diets was that T1 group received 

0.05 % of BMD50 and T2 group consisted 0.2% of Biolex
®
 MB40. Since the birds were raised 

in an off-campus commercial farm, the current study was exempted from review by the 

insititutional animal care and use committee (IACUC). In addition, the National chicken council 

(NCC) guidelines were (www.nationalchickencouncil.org) followed by the commercial 

cooperators to ensure internal animal welfare. Ten birds from each treatment were chosen for 

sampling of cecal contents as described previously (Lee, et al., 2016). 

Chicken performance 

 Twenty birds that resided in the respective pens were weighed at 14, 28, 40 and 53 days 

of age and recorded. In addition, carcasses without giblets (WOG), wing, skin breast and tender 

weights were measured from randomly selected 100 birds (50 males and 50 females) that were 

located in the house but outside the pens at 53 days of age. Birds that lost tags or were 
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condemned by the USDA inspector were exempted from statistical analysis. Finally feed 

conversion ratio (FCR) was determined by feed intake and body weight at 28, 40 and 53 days of 

age. White meat yields were calculated by dividing sum of breast and tenders by live weight of 

randomly selected 100 birds within each house. Recorded data were imported by Microsoft 

Excel and JMP
®
 Genomics for analysis of variance (ANOVA). P-values less than 0.05 were 

interpreted as significant differences among treatments. 

Cecal microbial population assessment 

 Cecal contents (200 mg) from each birds were collected for DNA isolation utilizing 

QIAamp DNA Stool Mini Kit (Qiagen, Valencia, CA, USA). The concentration of extracted 

DNA was diluted to 10 ng/µL for the preparation of a sequencing library targeting the V4 region 

of 16S rRNA (Kozich, et al., 2013). Based on the recommendation of the manufacturer's 

protocol, isolated DNA samples were amplified and normalized using dual-index primers and 

SequalPrep
TM

 Normalization kit (Life Technology). The library was constructed following the 

method used by Park et al (2016) by combining 5 µL of each normalized aliquot samples for 

further assessment. Library concentration and product size were confirmed using a KAPA 

Library Quantification Kit (Kapa Biosystems, Woburn, MA, USA) and quantitative PCR (qPCR, 

Eppendorf, Westbury, NY, USA) and an Agilent 2100 Bioanalyzer system (Agilent, Santa Clara, 

CA, USA). The 20 nM of pooled library aliquot and the 20 NM of PhiX control v3 were 

combined with 0.2 N fresh NaOH and HT1 buffer and mixed a second time with 5% of the PhiX 

control v3. The 600 µL of  the mixture containing pooled library aliquote, PhiX control v3, 

NaOH and HT1 buffer was subsequently loaded onto a MiSeq v2 Reagent cartridge to initiate 

sequencing.  

NGS analysis by QIIME pipeline 
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 Sequencing read files were processed using quantitative insights with the microbial 

ecology  (QIIME) pipeline (version 1.9.0) (Caporaso, et al., 2010; Park, et al., 2016). Operational 

Taxonomic Units (OTUs) tables were constructed by clustering sequences with 97% or higher 

identity based on Greengenes 16s rRNA gene database. In addition, OTUs that were not 

observed at least five times were excluded to eliminate possible erroneous reads from sequencing. 

Subsequently, OTUs tables were converted to taxonomic tables for further analysis. Weighted 

and unweighted version of UniFRac graphs and rarefaction plots were generated for beta and 

alpha diversity test respectively. Taxonomic level data acquired by QIIME was imported by 

Microsoft Excel and JMP
®
 Genomics for analysis of variance (ANOVA) and a P-value of 0.05 

to determine significant differences.  

 

4. Results and discussion 

 The current study is the continued analysis of previously published research of Biolex® 

MB40 by Lee et al (2016) where fingerprinting of cecal microbiota were analyzed by PCR-

DGGE. The current study focused on identification of the microbial population at the  molecular 

taxonomic level along with the growth and processing performance of the birds.  

Broiler performance 

 Growth performance including weight of the birds, FCR, weight of the parts and white 

meat yields of broiler is important since they are directly related to the market value of bird 

(Lubritz, 1997; Stevens, 1991). Average body weight and FCR are shown in Table 1. There were 

no significant differences among groups in terms of parts yield and FCR. These results agree 

with earlier studies by Waldroup et al (2003) and Midilli et al (2008) where no improvement of 

body weight and body weight gain were observed upon introduction of a MOS and yeast derived 



 

111 

 

prebiotic. No significant improvement of FCR by prebiotic was also observed by Ignacio (1995) 

however, FCR of broilers were significantly increased in the study by Midilli et al (2008) which 

agrees with observations by Sahane et al (2001) and Pelicia et al (2004) when broilers were 

supplemented with MOS or a mixture of probiotic and prebiotic. In addition, the study by Biggs 

et al (2007) reported that MOS did not exhibit any effect on metabolizable energy (ME) but 

reduced amino acid digestibility of broilers until day 7 of age when MOS, inulin, oligofructose, 

short-chain fructooligosaccharide (SCFOS), and transgalactooligosaccharide were compared. In 

addition, Pelicano et al (2004) observed better weight gain and increased FCR when MOS was 

supplemented however, positive effects in growth performance were only observed when 

amendments were introduced at 21 days of age. Pelicano et al (2004) speculated that absence of 

better weight gains at 35 and 42 days of age may be due to the level of stress and dilution effect 

by other compounds in the grains such as non-starch polysacchardies and non-digestible 

oligosaccharides. Midilli et al (2008) and Roshanfekr and Mamooee (2009) have hypothesized 

that the reason of inconsistent results among studies could be the differences in management, 

environmental conditions, stress and presence of unfavorable organisms.  

 Another study by Park et al (2014), on the same prebiotic used in this study, Biolex
®
 

MB40, observed similar results of pasture flock performance with no significant differences 

occurring in FCR and average bird body weights among treatment groups however, the prebiotic 

MB40 results did match the responses seen with antibiotic fed birds therefore, prebiotic MB40 

potentially could replace the benefit seen with the antibiotic supplement. Significant weight 

gains of the birds were observed in the study by Roshanfekr and Mamooee (2009), when 

supplementation of MOS, Primalac (commercial probiotic) and a mixture of both increased FCR 

and average weight of the birds by 81.3, 73.5 and 148.8 g compared to the control group.  
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 When comparing chicken processing responses including part weights and white meat 

yield, only white meat yield was significantly increased by supplementation of prebiotic MB40 

compared to negative control group and antibiotic treated group (Table 2). According to Stevens 

(1991), white meats are the most economically valuable part of the broilers in Europe. The white 

meat or the breast meat is particularly important to producers because studies have shown high 

genetic correlation between white meat and the body weight of the birds (Le Bihan-Duval, et al., 

1998). Roshanfekr and Mamooee (2009) observed significantly higher breast meat yield when 

the probiotic was supplemented however, the prebiotic supplemented group did not exhibit any 

improvement of breast meat yield. 

Taxonomy summary 

 Table 3 represent the total number of reads acquired by Illumina MiSeq and observation 

OTU count summary by the QIIME pipeline. The QIIME pipeline was able to identify and 

differentiate 16S rRNA fragment of bacteria from phylum level to species level and taxonomy 

bar graphs could be generated for each bacterial grouping from each sample. According to 

QIIME analysis, the most abundant bacteria at the phylum level was Firmicutes with average of 

62.2 % and followed by Bacteroidetes with an average of 32.7 % (Figure 2A). Proteobacteria 

and Tenericutes were also detected with an average of 2.4 and 2.1% from the samples 

respectively (Figure 2A). Clostridiales were the most abundant microorganism and Firmicutes, 

and Bacteroidales were commonly identified along with Bacteroidia. (Figure 2B). In addition, 

3.2% of the Firmicutes were identified as Lactobacillales (Figure 2B). Proteobacteria and 

Tenericutes were divided into more specific organisms at the order level consisting of 

Enterobacteriales and Mollicutes (Figure 2B). While the sum of Bacteroidales and Clostridiales 

comprised more than 90% of the total microbial population, Bacteroidales were found 
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predominantly in birds were more or equal to 2 wks of age despite the treatment. The level of 

Bifidobacteriaceae was low and was identified in very few samples, thus a statistical comparison 

was not possible.  

 When prebiotics were first introduced, only microorganisms were noted as beneficial 

bacteria were Lactobacilli and Bifidobacteria (Hutkins, et al., 2016). However, more detailed 

investigations using various molecular techniques such as qPCR or NGS have revealed more 

complex outcomes when specific prebiotics are introduced to the host. Numerous studies have 

reported that specific prebiotic supplementation not only promotes Lactobacilli and 

Bifidobacteria but also improves glucose homeostasis, leptin sensitivity and intestinal 

homeostasis (Everard, et al., 2011, 2014). In addition studies have suggested that prebiotic 

increases other beneficial microorganisms besides Lactobacilli and Bifidobacteria such as 

Faecalibacterium prausnitzii and Akkermansia muciniphila which in turn benefits the host 

(Dewulf, et al., 2012; Heinken, et al., 2014; Miquel, et al., 2014; Ramirez-Farias, et al., 2009).   

Microbial Population Shifts 

 According to Lee et al (2016), antibiotic, BMD 50 and prebiotic, MB40 treated groups 

exhibited greater similarities in early stages of bird growth based on the phylogenetic trees 

generated from analysis of band patterns produced by DGGE. Base on QIIME analysis, most of 

the bacteria did not exhibit significant differences in yield among different treatment groups 

except Barnesiellaceae which is microorganism commonly existed throughout the samples 

according to PCR-DGGE approach (Lee et al, 2016). However, bacterial composition varied 

significantly by age of the birds. Firmicutes at the phylum level and Clostridiales at the order 

level decreased as birds became older with no significant differences between treatments (Table 

4). Out of a total population of microorganisms, Firmicutes and Bacteroidetes constituted more 



 

114 

 

than 90 percent of the population and this is consistent with the fact that Firmicutes and 

Bacteroidetes are the most abundantly found microorganisms and associated with energy 

resorption rate in the gut (Ley, et al., 2006a, b). Bacteroidales however, increased significantly 

each week until 4 wk and kept a consistent level until 6 wk with no significant improvements 

among treatments. Mollicutes yield was low in 2 and 4 wk but significantly higher levels were 

detected in 1 and 6 wk. However, the level of Bacteroidaceae increased significantly in 2 wk and 

decreased afterwards. 

 According to QIIME,  67 of 120 samples identified Campylobacter within them however, 

90% of Campylobacter were found in birds with 4 and 6 wk of age which indicates 

Campylobacter colonizes within birds in their later phases of growth. Yield of Campylobacter 

among all microorganisms were minimal as 0.3% and there were no significant differences in 

Campylobacter yield within distinct treatment groups (Data not shown). Studies have shown that 

colonization of Campylobacter can be suppressed by introduction of Lactobacillus and 

Bifidobacteria and a previous study by Kaakoush et al (2014) demonstrated the negative 

correlationship between Campylobacter and Lactobacillus however, no statistical relationship 

was found in the current study (Baffoni, et al., 2012; Ganan, et al., 2013; Tareb, et al., 2013; 

Cean, et al., 2015).   

 One of the major bacteria considered to be beneficial, Lactobacillus was identified 

among all samples with an average of 3%. Levels of Lactobacillus observed in negative control 

and prebiotic treated groups were significantly greater compared to antibiotic treated groups in 2 

wk (Figure 3). In addition, prebiotic MB40 was the only group that exhibited significantly higher 

levels of Lactobacilli  in 2 wk however, statistical improvements disappeared after 2 wk. 

According to previous probiotic studies involving Lactobacillus culture, introduction of 
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Lactobacillus appears to exhibit significant effect on mortality reduction in broilers (Jin, et al., 

1998; Vicente, et al., 2007)     

Alpha and beta diversity analysis 

 Alpha diversity analysis were carried out by the QIIME pipeline to measure microbial 

diversity within each sample. Figure 4A and B represent rare classes detected for each of the 

sequences obtained from the samples based on 'chao1' and 'observed OTUs' metric system 

respectively, which are commonly used for assessment of organism diversity. Both graphs 

exhibited prebiotic and antibiotic treated groups closer together compared to NC group and  

higher rarefaction were observed which indicates prebiotic or AGP amendments supported a 

more complex microbial diversity compared to the feed amendment group and the prebiotic 

MB40 and antibiotic BMD50 resulted in similar richness of species in cecal material of broiler. 

High similarity of microbial diversity between antibiotic, T1 and prebiotic, T2 groups agreed 

with the previous research result by Lee et al (2016) where the diversity of microbial populations 

were assessed by PCR-DGGE.   

 Figure 5A and B represent weighted and unweighted PCoA plots. Weighted PCoA plots 

(Figure 5A) were created using relative abundance of OTUs and each of the treatment groups 

were widely dispersed. Dispersion or no cluster of samples by treatment in weighted PCoA plots 

indicates similarity of OTU diversity within samples are more heavily affected by other factor 

besides treatments. Unweighted  PCoA plot (Figure 5B) exhibits considerable clusters by age of 

the birds which implies maturity of the bird have greater impact to create a more uniform 

diversity of microorganisms compared to treatments used in the current study. In addition, 

cluster by samples from bird of younger age was more widely scattered than older birds, 

indicating a potential stabilization of the cecal microbiome as the bird gets ages. Observation of 
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complex but highly similar diversity in older birds agrees from previous studies where DGGE 

exhibited similar patterns as birds reach their marketing age. 

 

5.  Conclusions 

 No statistical differences were detected in FCR and parts yield which leads to the 

conclusion that there were no variation in terms of chicken performance when BMD50 (T1) and 

MB40 (T2) were compared. Consistency of body weight, FCR and parts yields among prebiotic, 

antiobiotic and control groups were also observed in previous studies (Baurhoo, et al., 2009; 

Morales-López, et al., 2009). The growth performance between treatment and negative control 

groups were not statistically different except for the white meat yield.  

  Overall, commercial prebiotic, MB40 significantly improved white meat yield in 

conventionally raised broilers but did not exhibit significant enhancement in other aspects 

including body weight, FCR and parts weight. According to the NGS approach to microbiome 

analysis significant increases in Lactobacillus level occurred in birds receiving prebiotic MB40 

supplementation at 2 wk which may positively affect the mortality of birds. No significant 

reduction of chicken performance was observed thus, MB40 could be a viable alternative of in-

feed antibiotic supplementation in concern of antibiotic resistant bacteria. 
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Table 1. Broiler body weight and FCR responses in broilers 

 

    Treatment 

  Age (Day) NC (Feed only) T1 (BMD50) T2 (MB40) 

Bird 

weight 

(lb) 

14 1.50 ± 0.02 1.49 ± 0.00 1.49 ± 0.01 

28 3.53 ± 0.02 3.44 ± 0.04 3.47 ± 0.03 

40 5.85 ± 0.02 5.76 ± 0.04 5.81 ± 0.04 

53 8.17 ± 0.07 8.15 ± 0.16 8.48 ± 0.15 

FCR 

  

    28 1.51 ± 0.01 1.53 ± 0.02 1.56 ± 0.03 

40 1.80 ± 0.01 1.81 ± 0.01 1.90 ± 0.07 

53 1.74 ± 0.03 1.66 ± 0.02 1.74 ± 0.04 

53(Mort Adj
1
) 1.69 ± 0.01 1.66 ± 0.02 1.68 ± 0.02 
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Table 2. Chicken processing responses 

Different superscript letters indicates significant difference 
1
Mort Adj includes total mortality weight in FCR calculation  

 
  

Treatments 

 

 

Parts 

(lb) 

 

 

NC (Feed only) 

n = 91 

T1 (BMD50) 

n = 96 

T2 (MB40) 

n = 97 

WOG 7.14 ± 0.86 7.36 ± 0.75 7.37 ± 0.90 

Wing 0.70 ± 0.10 0.70 ± 0.10 0.70 ± 0.10 

Skin 0.32 ± 0.06 0.33 ± 0.05 0.33 ± 0.06 

Breast 1.62 ± 0.23 1.65 ± 0.19 1.71 ± 0.23 

Tender 0.33 ± 0.04 0.34 ± 0.03 0.35 ± 0.04 

 

     NC (Feed only) T1 (BMD50) T2 (MB40) 

White meat 

yield (%) 
24.36 ± 0.18

b
 24.35 ± 0.17

b
 25.15 ± 0.17

a
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Table 3. Sequence reads and BIOM table summary 

Illumina MiSeq BIOM table (observation counts) 

Total reads 
Total 

observation 
Min

*
 Max

*
 Median

*
 Mean

*
 

26,665,292 10,030,751 42,204 134,689 82,611 83,589 

*Counts per Samples  
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Table 4. Phylum populations of microorganisms (%) 

 Average percentage 

Organisms 1 wk 2 wk 4 wk 6 wk 

Firmicutes 83.15 ± 1.69
a
 64.82 ± 1.66

b
 50.29 ± 1.66

c
 51.68 ± 1.66

c
 

Clostridiales 77.06 ± 1.94
a
 58.29 ± 1.94

b
 48.88 ± 1.94

c
 49.37 ± 1.94

c
 

Bacteroidales 11.47 ± 1.72
c
 31.91 ± 1.72

b
 43.98 ± 1.72

a
 43.47 ± 1.72

a
 

Molicutes 3.16 ± 0.23
a
 1.35 ± 0.23

b
 01.41± 0.23

b
 2.51 ± 0.23

a
 

Bacteroidacceae 11.44 ± 1.46
c
 26.77 ± 1.46

a
 17.84 ± 1.46

b
 9.60 ± 1.46

c
 

*Different superscript letters indicates significant difference 
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Figure 1. Housing diagram 

 

NC: Feed only 

T1: 0.05% BMD 50 

T2: 0.2% Biolex
®
 MB40  
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Figure 2. Taxonomy bar graphs 
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Figure 3. Lactobacillus yield 

 

NC: Feed only 

T1: 0.05% BMD 50 

T2: 0.2% Biolex
®
 MB40 
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Figure 4. Rarefaction plots  
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Figure 5. PCoA plots 
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8. Authorship statement for chapter 3 

Sang In Lee is the first author of the paper and completed at least 51% of the studies among 

coauthors, which the title is "Effect of commercial prebiotic on gastrointestinal microbial 

population and growth performance of broilers" in chapter 3. 

Major Advisor: Dr. Steven C. Ricke 
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V. Conclusion 

 As new prebiotics are developed and discovered, definition of prebiotics has been 

widened. In addition, different dosages of prebiotics and housing environments make the precise 

evaluation of prebiotics difficult. However, new technologies are also being developed that allow 

scientists to approach the investigation in variety of ways. For instance, NGS approach produce 

incomparably large amount of detailed data compare to DGGE which only produces a brief 

snapshot of microbiome and a very limited sequence result. As new approaches are conducted, 

there are possibilities to discover new aspects or factors affecting gut microbiome of the host 

either directly or indirectly thus, inconsistency between studies may overcome.  

 Since the core attribute of prebiotic is to alter the microbiome of the host towards 

healthier state thus, fingerprinting of the microbiome is essential. The objectives of the research 

in this thesis was to compare effects of prebiotics to commonly used in-feed antibiotics. The 

results did not exhibit any significant difference in integrons, SCFAs and Salmonella frequency 

among treatment groups however, white meat yields were significantly increased by the prebiotic 

and microbial populations were highly similar between prebiotic and antibiotic treatment groups 

according to PCR-DGGE and NGS methods. Similar microbial diversity as birds fed antibiotics 

and no significant reduction growth performance in broilers suggest that the particular prebiotic 

used in the studies, MB40, appears to be a potential alternative to an antibiotic growth promoter. 
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VI. Appendix 

a. IACUC exemption Letter  
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