University of Arkansas, Fayetteville ScholarWorks@UARK

Theses and Dissertations

5-2016

Proteomic Characterization of Eggshell Membranes and Their Effect on Poultry Physiology and Immunity

Sarbjeet Kaur Makkar University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the <u>Animal Studies Commons</u>, <u>Immunity Commons</u>, <u>Molecular Biology Commons</u>, and the <u>Poultry or Avian Science Commons</u>

Recommended Citation

Makkar, Sarbjeet Kaur, "Proteomic Characterization of Eggshell Membranes and Their Effect on Poultry Physiology and Immunity" (2016). *Theses and Dissertations*. 1494. http://scholarworks.uark.edu/etd/1494

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

Proteomic Characterization of Eggshell Membranes and Their Effect on Poultry Physiology and Immunity

A Dissertation submitted for partial fulfillment of the requirements for the degree of Doctor of Philosophy in Poultry Science

By

Sarbjeet K Makkar Punjabi university Masters of Science in Zoology, 2008

> May 2016 University of Arkansas

This dissertation is approved for recommendation to the Graduate Council

Dr. Narayan C. Rath Dissertation Director

Dr. Jackson O. Lay Committee Member Dr. Gisela F Erf Committee Member

Dr. Sami Dridi Committee Member

Dr. Annie M Donoghue Committee Member

ABSTRACT

The use of antibiotics in poultry growth and disease control has led to antibiotics resistant problem in human beings, which is a big concern among consumers. With the necessity for judicious use of antibiotics in poultry production, alternative strategies to improve disease resistance in poultry production are necessary. The research is more inclined towards using the natural products available to grow healthier and antibiotic free meat animals. In the context of exploring natural and sustainable resource of alternative to antibiotics, the biochemical milieu of eggshell membranes (ESM) were analyzed by using mass spectrometry techniques including matrix assisted laser desorption ionization and liquid chromatography coupled with tandem mass spectrometry (MALDI-TOF-MS and LC-MS/MS). We found more than 300 proteins and the abundant among them are lysozyme, ovotransferrin, ovocleidin, clusterin, ovokeratin ovodefensin and many more. These proteins are not only antimicrobial in nature, but also many, play a vital role in metabolic and developmental processes. A series of experimental trails were done in which chickens by feeding ESM supplemented diet. Our initial experiments showed that feeding 0.5% levels of eggshell membrane not only improved the body weight of chickens, but also modulated immunoglobulin parameters and stress levels. Further experiments were done to see the effect of ESM under endotoxin challenged conditions in which 5 week old chickens fed with ESM supplemented or control diet were challenged with Salmonella lipopolysaccharide. Our results showed significant difference in body weight loss, pro and anti-inflammatory genes, and serum corticosterone levels in control versus ESM fed chickens. ESM supplemented diet not only helped to restore the body weight loss due to LPS injection but it also helped to provides better tolerance to endotoxin challenges as indicated by splenic cytokine profiles of the chickens.

In view of the need for alternatives to antibiotics in meat animal production, exploring the potential of egg byproducts as nutritional modulator of immunity during post hatch period appears logical.

ACKNOWLEDGMENTS

I am immensely thankful to my Guru Dr. Narayan C. Rath for his kind support and advice throughout my journey to accomplish my goal. He is not only a good mentor but also a good soul, and his advice made me journey smooth and as well exciting by raising new questions in science every day. My extended thanks to all my committee members Dr. Jackson O Lay, Dr. Giesla F. Erf, Dr. Annie M. Donoghue, Dr. Sami Dridi for their valuable advice. My special thanks go to Dr. Rohana Liyange, Senior research Scientist for all his support and collaboration throughout my PhD for the mass spectrometry work. He really had deep impact on improving my critical thinking and analyzing and understanding the work I did for my doctorate degree. I would also like to thank Dr. Gerry huff and Dr. William Huff and my Colleague Dr. Balamurugan Packialakshmi for their enormous help in my experiments.

A special thanks goes to my family in India my father Joginder Singh Makkar, my mother Jaspal Kaur, my brother Harpreet Singh Makkar for their great patience and emotional support in this many years and keeping my spirit high.

At last but not least, I am whole heartedly thankful to my best friend Harpreet kaur who is standing next to me from last thirteen years in all my good and bad times, without her this would not be possible.

I would like to acknowledge Lara Baker, Carol Fredrick for their administration help and travel arrangements for my conferences. Wally, Scott Zornes, Sonia Tsai for their technical support. I am really thankful to whole USDA/ ARS unit for giving me an opportunity to be part of their team and funding my research.

TABLE OF CONTENTS

Title	
List of peer reviewed papers	
Introduction	1
Immunity in the context of animal health and wellbeing: a literature review	3
References	14
Chicken egg shell membrane associated proteins and peptides	21
References	78
Nutritional effects of eggshell membrane supplements on chicken performance and immunity	82
References	100
Protein Profiles Of Hatchery Derived Egg ShellMembrane	102
References	127
CHAPTER 5 Nutritional supplement of hatchery eggshell membrane improves poultry performance a	nd
provides resistance against endotoxin stress	129
References	160
Conclusion	165

LIST OF PEER REVIWED PAPERS

CHAPTER 2: Published

Makkar, S. K., Liyanage, R., Kannan, L., Packialakshmi, B., Lay, J., & Rath, N. C. (2015). Chicken egg shell membrane associated proteins and peptides. J Agric Food Chem **DOI:** 10.1021/acs.jafc.5b04266

CHAPTER 3: Published

Makkar, S., Rath, N. C., Packialakshmi, B., Huff, W. E., & Huff, G. R. (2015). Nutritional effects of egg shell membrane supplements on chicken performance and immunity. Poult. Sci., 94, 1184-1189.

CHAPTER 4: Submitted

S. K. Makkar, N. C. Rath B. Packialakshmi; Z. Zhou; G. R. Huff, & A. M. Donoghue. Nutritional supplement of hatchery eggshell membrane improves poultry performance and provides resistance against endotoxin stress

Introduction

The emergence of antibiotics resistant bacteria and their link to prophylactic use of antibiotics as growth promoter in meat producing animals has prompted the search for alternatives to antibiotics. Products such as probiotics, prebiotics, bacteriophages fecal extracts, yolk antibodies, and organic acids have been used to satisfy this need. However, there is no uniformity of the nature and the mechanisms of action of these products. Ideally, a suitable product may be that which would not only protect animals from diseases but also not affect the growth potential and production values of the animals. Deploying the potential of immune system to protect the animals from disease may help. Vaccination against specific pathogens have been the examples of such choice. However, there is no general vaccine that might provide overall resistance against most common health problems of poultry. Besides, nonspecific immune activation is energy expensive which can affect production values. Should it be possible to program the immune system to protect the individual, in the concept of allostatic modulation, may be an option. The immunity of neonates specifically, the newly hatched poultry is not completely developed and plastic hence, it is not only vulnerable to infections but also may be trainable to protect birds against disease without interfering with their growth and wellbeing.. Nutrition modulation is considered one of the effective means to train the immune system and make the animals more immunocompetent. The experiments in this dissertation examines some of these concepts using egg shell membrane, a byproduct of poultry industry that contains a variety of bioactive proteins and peptides, to affect immunity and health outcomes of post hatch poultry measured through selective physiological parameters.

The studies are divided in two parts. The first part deals with the identification of the proteins and peptides of fresh harvested eggshell membranes (ESM) by using the mass spectrometer, Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS/MS), High Pressure Liquid Chromatography (HPLC) and Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS) techniques. Based on the qualitative data of protein profiles of the eggshell membranes, the biological effects of the ESM was evaluated on post hatch chickens under both normal and endotoxin challenge conditions.

Chapter 2 discusses about the proteomic aspect of eggshell membranes and all the techniques and procedures used to identify and characterize the protein and peptides present in eggshell membranes by using "top down/bottom up" MALDI and ESI mass spectrometry approaches. Chapter 3 discusses about the nutritional aspect of the eggshell membranes harvested form fresh unfertilized eggs and their immunomodulatory effect on growth and performance of chickens at 3 weeks of age.

Chapter 4 discusses about the proteomic characterization of eggshell membranes obtained from hatchery waste. Chapter 5 is about the ameliorating effect of eggshell membranes in conditions of endotoxin challenge. We explored whether these membranes when give as a supplement to the post hatch chickens can provide resistance and tolerance to the stressful conditions at a later stage.

Chapter 1:

Immunity and antibiotics alternative in the context of poultry health and wellbeing: a literature review

Introduction

Production of healthy livestock is integral to food safety, animal wellbeing, and sustainable agriculture. The emergence of antimicrobial resistant bacteria has been a worldwide concern and squarely blamed on the prophylactic use of antibiotics in meat animal industry where it is used as growth promoter [1-6]. The use of antibiotics is not only implicated in producing antibiotics resistant pathogenic bacteria but it also upsets the regular microflora [7-10]. However, the restriction in the prophylactic use of antibiotics also increases the chance of bacterial diseases and causes food safety problems that could potentially cripple the poultry and meat industry. Hence, there has been increasing research focus on finding alternatives to antibiotics that would provide resistance to microbial disease while maintaining the production values [11]. The quest to improve immunity and disease resistance of meat producing animals and poultry thus raises questions on options to modulate, and assess immunity This review addresses some of these issues particularly in the context of poultry production.

Alternatives to antibiotics

The consumer's concern and demand for antibiotic free food leads to the focus of modulation of the avian immune system particularly using nutritional approaches which not only can increase the production of poultry but also fulfill consumer's demand for antibiotic free food at the same time [12]. But the major concern in adding the alternative to antibiotics is that the product should be equally potent to promote the growth and also keep the animal free from disease. The cost to impact ratio on health status of an animal is another big issue that needs to be addressed when using an alternative to antibiotics [1, 13]. Of a number of methods that have been proposed or are on trial are vaccines, antimicrobial peptides [14-16] (exogenous or induced), bacteriophages, probiotics[17], prebiotics, different phytochemicals (essential oils, saponins) [18] and

recombinant cytokines (recombinant intact and/ or modified synthetically to enhance efficacy) [13]. All these are geared to improve endogenous resistance, modulate immunity directly or indirectly to reduce the burden of harmful agents that affect growth, wellbeing, and food security of meat animals.

Examples of Alternatives:

Vaccines

The first and foremost method, which revolutionized the history of immunomodulation, was vaccination discovered by Edward Jenner that has changed the face of medical research. Vaccine is a preparation from attenuated form of a pathogen, which stimulated the immune system and develops the memory to kill the microorganism encountered later in the life. By exposing the immune system to a harmless form of pathogen it can be made more alert and ready for a vigorous response in times of real pathogen attack. The biggest contribution of vaccine is complete eradication of smallpox [19], and a significant decrease of measles, mumps and rubella worldwide in human medicine. Vaccines can be an easy solution to many challenges faced by poultry industry today [20]. *Salmonella* vaccines along with other preventative strategies are one of the effective measures, which holds a promising future for control of food borne pathogens in poultry products [21]. A greater success is achieved in developing coccidiosis vaccines by injecting the chicken with *Eimeria* oocysts at posthatch stage [22]. Newcastle disease was completely eradicated with the application of a Newcastle virus vaccine, which was initially done by means of slaughtering and sanitary measures [23].

Antimicrobial proteins and peptides

Antimicrobial peptides (AMP) are endogenous or exogenous low molecular weight proteins, which can provide protection against a wide range of microbes including bacteria, fungi and viruses. They are cationic in nature and create pores on the bacterial cell wall and control microbial growth (6). AMP's also known as "natural antibiotics" have numerous applications for therapeutic, nutraceutical, and biotechnological industries [24]. Antimicrobial peptides specially derived from food products are safer for human consumption. Most of them are explored mainly in milk, egg and rice [25, 26]. Lysozymes, defensins and transferrins that are present in milk and egg are also important molecules of our innate immune cells such as neutrophils and macrophages [27, 28]. Lysozyme is well known for its efficacy against gram-positive bacteria and is extensively used in food industry as natural source of food preservative, which increases the shelf life of food [29]. Transferrins, such as lactotransferrin and ovotransferrin present in milk and egg respectively help to fight against infections by chelating iron and thus inhibiting the growth of bacteria by limiting the availability to this essential component needed for bacterial growth [30]. Nissin, an antimicrobial peptide produced by *lactococcus lactis*, is widely used to increase the shelf life of the food by preventing the spoilage done by pathogenic bacteria [31]. The advantage of AMP over the synthetic antibiotics is that the bacteria are less resistant to the them as compared to the latter [24]. Advances in our understanding of the mechanism of action of AMP's will open up new avenues for developing novel and therapeutic applications.

Bacteriophage

A bacteriophage is a virus that lyses the bacterium, invade and kill it by disrupting its metabolic system. Bacteriophage therapy has been reported to be an effective alternative to antibiotic in vancomycin resistant enterococcus infection in the mouse model [32]. In contrast to antibiotics the mode of antimicrobial action by bacteriophage does not lead to the development of resistance mechanisms in bacteria. Because of the specific mode of action, the use of phage against the targeted bacteria is safe for the beneficial microbiota [33]. The use of bacteriophages in the food

industry to eliminate food born pathogens has also gained considerable recognition [34]. The 'phage biocontrol' approach is safe and effective at both the pre-harvest and post-harvest stage of controlling food borne pathogens and has the potential to be considered as the most effective methods for food safety in the future [35].

Probiotic and prebiotic

Changing of the gut microbiota through dietary means has been a subject of much discussion. The gut biology is an important area especially in agriculture animals. The use of probiotic and prebiotic in the treatment of various metabolic disorders is gaining momentum in past few years. The term probiotics is defined "as a live microbial feed supplement which beneficially affects the host animal by improving its intestinal balance" [36]. By the mechanism of competitive exclusion, for colonization sites and the production of compounds, which are toxic for pathogenic bacteria, probiotics inhibit bacterial growth and help to maintain the intestinal flora [37]. Prebiotics, similarly are defined as " a nondigestible food ingredient that beneficially affect the host by selectively stimulating the growth and / or activity of one or limited number of bacteria in the colon" [38]. The use of prebiotics and probiotics not only for increasing the productivity but also for disease prevention in poultry production is deemed an effective alternative to antibiotics to satisfy the consumer's unmet demand of healthy and diseases free meat. [39]

Herbal Products

The extract from various plants such as thyme, eugene, oregano have been shown to inhibit the growth of pathogenic bacteria such as *Salmonella*, *Escherichia coli* and *Clostridium* in *vitro* as well as in birds [40]. Essential oils (EO) extracted from different parts of the plant stimulate the digestive tract by promoting the formation of digestive enzymes in the gut. They also exert their

7

antimicrobial effect by creating the pores in the lipid bilayer of the cell membrane, which makes the cell leaky and disturbs the metabolism of the bacteria and leads to its death [41]. The applications of antimicrobial activity of EOs are not limited to meat and meat products but also apply to vegetables, rice, and dairy products. However the usage of EOs can sometimes add a flavor and distinct kind of aroma to the meat, which is a limiting factor from the consumer's sensory point. Due to its increasing applications in the food industry, Eos are gaining great attention for future research, that would provide more insights into their mechanism of action and also address safety concerns [42].

However, there is a lack of consistency regarding the findings of the effects these additives have on the various health parameters that are measured to prove their efficacy. The systematic investigation of the effect of additives on the various aspects of the immune system is needed to convince the commercial producers to completely rely on these products. By keeping in mind that the immune system is an integrated system, which cannot be determined by solely measuring one, or few parameters will help us to avoid unintended consequences in the near future [43, 44]. Rather than interpreting for results with individual markers if we try to congregate the related markers together and see their mass effect, and focus on their consistency it will help make a better conclusion [45].

Immunomodulation

Immunomodulation is the manipulation or adjustment of the immune system to improve resistance to disease. It includes all possible means of altering the immune system such as immunosuppression or enhancement based on the necessities of the prevailing health conditions. Immunomodulation helps to alleviate the existing pathological condition and control the damage done by it. In case of autoimmune problems, where the immune system attacks self-components,

8

the main target is to suppress it or reduce its activity which otherwise can result in immunopathology. In the same token, immunocompromised individuals can be susceptible to infections and become victims of pathogenic attacks more easily, the enhancement of immunity and protection against deadly infections [46]. Hence a well-balanced immunity against pathogen can protect the individual against disease and improve well-being.

Nutrition immunomodulation

Well-balanced nutrition is one of the main factors which can help in optimizing the function of the immune system [47]. Immunonutrition, even though it is an emerging science, roots back to 1880s where the effect of malnutrition was seen on the growth of lymphoid organs [48]. The immune system and nutrition are catalogued in such a way that excess or lack of a nutrient debilitates its function [49-51]. Excess or deficiency of essentials in the diet can make the immune system vulnerable to several infections, which not only worsens the quality of life but also decrease its expectancy. Even though there is a fundamental understanding of how innate and adaptive immune systems interact for the clearance of pathogens, there is a need to investigate further when trying to modulate the immune system to improve the quality of life. The immune system operates under normal conditions for maintenance, but at the time of pathogenic attack its dietary requirements change. It undergoes cell proliferation to increase the number of leukocytes to make its army ready for the defense against the attack. There is also an intensive demand of nutrition for the synthesis of acute phase proteins by the liver [52]. The nutrient requirements of the immune system can also change with the type of infection an individual encounters. By inferring the nutritional cost of the immune system it will be easy to manipulate the essential components in the diet to manage the loss of production during infection [52, 53]. Significant effort is made to improve immunity and disease resistance through

nutritional means. Nutrition based epigenetic programming during the neonatal and perinatal period may increase the efficiency of the immune system to fight against the infection [54, 55].

Nutritional immunomodulation is seen as a panacea to deal with the immune system problems. With the dietary interventions it is possible to fine-tune the immune system and make it better to fight with infectious agents. Since the ancient time the use of many plant products such as green tea, turmeric, fish oil, vitamin D have proven to have a therapeutic and ameliorating effects against sickness [56]. The idea of immunomodulation is not to overwhelm the system by adding or deleting an ingredient in the diet but to provide a means for optimal functioning and analyzing its consequences on the immune system. The main target of the change in dietary elements is to see its beneficial and long lasting effects on the system, which can make it more competent and resistant to infections.

There are several factors, which needs to be carefully considered while designing the experiment for nutritional modulation to avoid study-to-study variation. Age, sex, genetics, eating, stress and many more factors, which vary in different subjects, can bring inconsistency in the results [44].

Interactive factors of Immunity

Immune response is subject to endogenous control such as physiology, age, genetics and even psychosomatic dispositions [57, 58]. Exogenous factors such as environment and nutrition can also affect or permanently modulate the immune system, [59-61]. In the context of food animal production the most relevant ones are genetics and nutrition although a variety of other factors such as housing and hygiene may play roles in immune system function and in the animal's disposition to disease. The genetic variation influences the inflammatory response of an individual to a given challenge. With mutations and single nucleotide polymorphism there is greater probability of having variations in the synthesis of inflammatory mediators.

The relationship between neural, endocrine, and immune system are still unraveled. The neuroendocrine-immune interactions have been studied in the context of stress and inflammation [62]. Stress activates the hypothalamic pituitary (HPA) axis affecting the release of corticotrophin and glucocorticoids [63]. Glucocorticoids produced by adrenal gland have profound effects on the immunological functions and the deregulation in the HPA axis greatly affects the effector mechanism of the immune system. Stress hormones, glucocorticoids and catecholamine influence immunity. The immunosuppressive effects of high levels of corticoids influence the levels of cytokines produced by lymphocytes [64, 65]. The nervous system and immune system also cross talk via the HPA axis. The cytokines released by the sentinel cells in the event of inflammation such as interleukins and TNF-a can affect neuroendocrine system and be can be affected by it. Recent studies have also shown that the sympathetic nervous system such as the vagus nerve that innervates the spleen is known to influence immunity [66, 67]. Under inflammatory conditions the vagus nerve stimulates the immune cells in the spleen resulting in the production of acetylcholine that dampens the production of cytokines [68, 69]. Other evidence suggest the mutual influence of nervous and immune system and certain neurotransmitters directly modulate the response of the cells of immune system [70]. T cells and macrophages express β adrenergic receptors, and T cells produce acetylcholine and the stimulation by vagus nerve also causes acetylcholine production that alters the resident immune cell functions of spleen and liver, and their ability to produce specific cytokines [71]. The gut harbors the second largest neural network and several neuropeptides that have been shown to possess antimicrobial, and immunomodulatory activities, and play important roles in the development of self-tolerance [72]. Many of these peptides produced during persistent and chronic stress suppress the immune system and affect the outcome of a disease [73, 74].

The immune system is relatively plastic at the time of birth and is vulnerable to infections that can permanently alter its potential to respond to stressful situations later in life [75]. Early life programming also known as imprinting of the immune system through the neuro-endocrine axis have been speculated to influence immunity over the span of life [76, 77]. The enteric endocrine and nervous system also help chemosensing of nutrients which in turn can influence immunity [78].

The above discussions posit that allostatic modulation of immunity by way of conditioning may be a reasonable option for programming the immune system for a balanced response to protect against infection without the loss of productivity and wellbeing. Epigenetic programming as a concept in physiology is not new. Susceptibility to infection are modulated by epigenetic control of immune cells such as DNA and histone modifications [79]. Wild animals generally show better immune responses to antigens as compared to captive animals because of their exposure to variety of challenges from the environment [80]. In order to enhance the chances of survival, their immune system is differently programmed since birth, thus they are more tolerant to endotoxin challenges [81]. Perinatal malnutrition is known to have profound neuroimmunomodulating effects in mammals to the extent that many metabolic and inflammatory diseases develop as a result [82]. Hence a better understanding of diet and neuro-immuno interactions may help achieve the objective for restricted use of antibiotics.

Conclusion

It is apparent that the postnatal (posthatch) immune system is amenable to modulation. Immune system not only can communicate with the brain and endocrine system, the chemicals such as proteins and peptides produced by those systems also regulate it. The embryonic and fetal factors exert control in training and pruning the system that is retained as immune memory to be

12

expressed at the time of need. Both resistance and tolerance to microbes may be manifestations of this memory. The programming of the immune system during posthatch period may be critical which brings us to next set of issues such as what are the tools to accomplish such a feat? Could it be the maternal factors such as milk in mammals or wild diets and environmental contaminants including bacteria, viruses, and parasites that can confer broad variety of resistance and immunity, which will benefit survival and wellbeing? Such accomplishments can be engineered to apply to a large-scale scenario for example, poultry production where the birds need to be competent to resist infection without sacrificing their growth potential and performance. There is also more need for research on how do we evaluate the effect of dietary nutrients, to determine its impact on the immune system in terms of not only evading the pathogen but also protecting the tissue from self-destruction

Thus while making a conclusion for the modulating effect of nutrients their sustainability and effects on the host's susceptibility to pathogens should be considered.

References

1. Kamphues J. [Antibiotic growth promoters for the view of animal nutrition]. Berl Munch Tierarztl Wochenschr. 1999;112(10-11):370-9. PubMed PMID: 10598354.

2. Aarestrup FM. Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark. APMIS Suppl. 2000;101:1-48. PubMed PMID: 11125553.

3. Aarestrup FM. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin Pharmacol Toxicol. 2005;96(4):271-81. doi: 10.1111/j.1742-7843.2005.pto960401.x. PubMed PMID: 15755309.

4. van den Bogaard AE, Stobberingh EE. Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents. 2000;14(4):327-35. PubMed PMID: 10794955.

5. Kazemnia A, Ahmadi M, Dilmaghani M. Antibiotic resistance pattern of different Escherichia coli phylogenetic groups isolated from human urinary tract infection and avian colibacillosis. Iran Biomed J. 2014;18(4):219-24. PubMed PMID: 25326020; PubMed Central PMCID: PMCPMC4225061.

6. Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, et al. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother. 2004;53(1):28-52. doi: 10.1093/jac/dkg483. PubMed PMID: 14657094.

7. Andremont A. [Consequences of antibiotic therapy to the intestinal ecosystem]. Ann Fr Anesth Reanim. 2000;19(5):395-402. PubMed PMID: 10874440.

8. Sørum H, Sunde M. Resistance to antibiotics in the normal flora of animals. Vet Res. 2001;32(3-4):227-41. doi: 10.1051/vetres:2001121. PubMed PMID: 11432415.

9. Sundsfjord A, Sunde M. [Antimicrobial resistance after antibiotic use in animals--impact on human health]. Tidsskr Nor Laegeforen. 2008;128(21):2457-61. PubMed PMID: 19096469.

10. Singer RS, Hofacre CL. Potential impacts of antibiotic use in poultry production. Avian Dis. 2006;50(2):161-72. PubMed PMID: 16863062.

11. Thacker PA. Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechnol. 2013;4(1):35. doi: 10.1186/2049-1891-4-35. PubMed PMID: 24034214; PubMed Central PMCID: PMCPMC3850713.

12. Korver DR. Implications of changing immune function through nutrition in poultry. Animal feed science and technology [Internet]. 2012 Apr. 20; 173(1-2):[54-64 pp.]. Available from: http://dx.doi.org/10.1016/j.anifeedsci.2011.12.019.

13. Huyghebaert G, Ducatelle R, Van Immerseel F. An update on alternatives to antimicrobial growth promoters for broilers. Vet J. 2011;187(2):182-8. doi: 10.1016/j.tvjl.2010.03.003. PubMed PMID: 20382054.

14. Barbour EK, Nabbut NH, Hinners SW, Al-Nakhli HM. Reduction of bacterial infections in newly hatched chicks by the use of antimicrobial dips: preliminary approaches. Vet Q. 1985;7(1):39-43. doi: 10.1080/01652176.1985.9693952. PubMed PMID: 3919494.

15. Izadpanah A, Gallo RL. Antimicrobial peptides. J Am Acad Dermatol. 2005;52(3 Pt 1):381-90; quiz 91-2. doi: 10.1016/j.jaad.2004.08.026. PubMed PMID: 15761415.

16. Makkar S, Rath NC, Packialakshmi B, Huff WE, Huff GR. Nutritional effects of egg shell membrane supplements on chicken performance and immunity. Poult Sci. 2015;94(6):1184-9. doi: 10.3382/ps/pev098. PubMed PMID: 25840966.

17. Berge AC, Wierup M. Nutritional strategies to combat Salmonella in mono-gastric food animal production. Animal. 2012;6(4):557-64. doi: 10.1017/S1751731111002217. PubMed PMID: 22436270.

18. Hume ME. Historic perspective: prebiotics, probiotics, and other alternatives to antibiotics. Poult Sci. 2011;90(11):2663-9. doi: 10.3382/ps.2010-01030. PubMed PMID: 22010256.

19. Barquet N, Domingo P. Smallpox: the triumph over the most terrible of the ministers of death. Annals of internal medicine. 1997;127(8_Part_1):635-42.

20. Haygreen L, Davison F, Kaiser P. DNA vaccines for poultry: the jump from theory to practice. Expert Rev Vaccines. 2005;4(1):51-62. doi: 10.1586/14760584.4.1.51. PubMed PMID: 15757473.

21. Desin TS, Köster W, Potter AA. Salmonella vaccines in poultry: past, present and future. Expert Rev Vaccines. 2013;12(1):87-96. doi: 10.1586/erv.12.138. PubMed PMID: 23256741.

22. Jenkins MC, Parker C, O'Brien C, Persyn J, Barlow D, Miska K, et al. Protecting Chickens Against Coccidiosis in Floor Pens by Administering Eimeria Oocysts Using Gel Beads or Spray Vaccination. Avian diseases. 2013;57(3):622-6.

23. Alexander DJ. Newcastle disease. British Poultry Science. 2001;42(1):5-22.

24. Gallo RL, Murakami M, Ohtake T, Zaiou M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol. 2002;110(6):823-31. PubMed PMID: 12464945.

25. Pellegrini A. Antimicrobial peptides from food proteins. Curr Pharm Des. 2003;9(16):1225-38. PubMed PMID: 12769733.

26. Makkar S, Liyanage R, Kannan L, Packialakshmi B, Lay JO, Rath NC. Chicken Egg Shell Membrane Associated Proteins and Peptides. J Agric Food Chem. 2015. doi: 10.1021/acs.jafc.5b04266. PubMed PMID: 26485361.

27. Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 2006;18(1):24-30. doi: 10.1016/j.coi.2005.11.004. PubMed PMID: 16337365.

28. Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des. 2009;15(21):2377-92. PubMed PMID: 19601838; PubMed Central PMCID: PMCPMC2750833.

29. Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol. 2007;18(2):163-9. doi: 10.1016/j.copbio.2007.01.013. PubMed PMID: 17292602.

30. Meisel H. Multifunctional peptides encrypted in milk proteins. Biofactors. 2004;21(1-4):55-61. PubMed PMID: 15630170.

31. Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci. 2008;65(3):455-76. doi: 10.1007/s00018-007-7171-2. PubMed PMID: 17965835.

32. Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun. 2002;70(1):204-10. PubMed PMID: 11748184; PubMed Central PMCID: PMCPMC127648.

33. Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013;8(6):769-83. doi: 10.2217/fmb.13.47. PubMed PMID: 23701332.

34. Hagens S, Loessner MJ. Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol. 2010;11(1):58-68. PubMed PMID: 20214608.

35. Sulakvelidze A. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J Sci Food Agric. 2013;93(13):3137-46. doi: 10.1002/jsfa.6222. PubMed PMID: 23670852.

36. Fuller R. Areview: Probiotics in man and animals. J Appl Bacterial. 1989;66:367-3.

37. Ambalam P, Raman M, Purama RK, Doble M. Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol. 2016;30(1):119-31. doi: 10.1016/j.bpg.2016.02.009. PubMed PMID: 27048903.

38. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition research reviews. 2004;17(02):259-75.

39. Patterson JA, Burkholder KM. Application of prebiotics and probiotics in poultry production. Poult Sci. 2003;82(4):627-31. PubMed PMID: 12710484.

40. Griggs J, Jacob J. Alternatives to antibiotics for organic poultry production. The Journal of Applied Poultry Research. 2005;14(4):750-6.

41. Brenes A, Roura E. Essential oils in poultry nutrition: Main effects and modes of action. Animal Feed Science and Technology. 2010;158(1):1-14.

42. Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. International journal of food microbiology. 2004;94(3):223-53.

43. Albers R, Antoine JM, Bourdet-Sicard R, Calder PC, Gleeson M, Lesourd B, et al. Markers to measure immunomodulation in human nutrition intervention studies. Br J Nutr. 2005;94(3):452-81. PubMed PMID: 16176618.

44. Albers R, Bourdet-Sicard R, Braun D, Calder PC, Herz U, Lambert C, et al. Monitoring immune modulation by nutrition in the general population: identifying and substantiating effects on human health. Br J Nutr. 2013;110 Suppl 2:S1-30. doi: 10.1017/S0007114513001505. PubMed PMID: 23902657.

45. Calder PC, Ahluwalia N, Albers R, Bosco N, Bourdet-Sicard R, Haller D, et al. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr. 2013;109 Suppl 1:S1-34. doi: 10.1017/S0007114512005119. PubMed PMID: 23343744.

46. Gea-Banacloche JC. Immunomodulation. Principles of Molecular Medicine: Springer; 2006. p. 893-904.

47. Calder PC. Feeding the immune system. Proc Nutr Soc. 2013;72(3):299-309. doi: 10.1017/S0029665113001286. PubMed PMID: 23688939.

48. Beisel WR. History of nutritional immunology: introduction and overview. J Nutr. 1992;122(3 Suppl):591-6. PubMed PMID: 1542016.

49. Calder PC, Kew S. The immune system: a target for functional foods? Br J Nutr. 2002;88 Suppl 2:S165-77. doi: 10.1079/BJN2002682. PubMed PMID: 12495459.

50. Calder PC, Jackson AA. Undernutrition, infection and immune function. Nutr Res Rev. 2000;13(1):3-29. doi: 10.1079/095442200108728981. PubMed PMID: 19087431.

51. Giovambattista A, Chisari AN, Corró L, Gaillard RC, Spinedi E. Metabolic, neuroendocrine and immune functions in basal conditions and during the acute-phase response to endotoxic shock in undernourished rats. Neuroimmunomodulation. 2000;7(2):92-8. doi: 26426. PubMed PMID: 10686519.

52. Klasing KC. Nutrition and the immune system. Br Poult Sci. 2007;48(5):525-37. doi: 10.1080/00071660701671336. PubMed PMID: 17952723.

53. Klasing KC. Potential impact of nutritional strategy on noninvasive measurements of hormones in birds. Ann N Y Acad Sci. 2005;1046:5-16. doi: 10.1196/annals.1343.003. PubMed PMID: 16055840.

54. Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, et al. Child health, developmental plasticity, and epigenetic programming. Endocr Rev. 2011;32(2):159-224. doi: 10.1210/er.2009-0039. PubMed PMID: 20971919; PubMed Central PMCID: PMCPMC3365792.

55. Hochberg Z. Developmental plasticity in child growth and maturation. Front Endocrinol (Lausanne). 2011;2:41. doi: 10.3389/fendo.2011.00041. PubMed PMID: 22666215; PubMed Central PMCID: PMCPMC3364458.

56. Clarke JO, Mullin GE. A review of complementary and alternative approaches to immunomodulation. Nutr Clin Pract. 2008;23(1):49-62. PubMed PMID: 18203964.

57. Schnabel CL, Steinig P, Schuberth HJ, Koy M, Wagner B, Wittig B, et al. Influences of age and sex on leukocytes of healthy horses and their ex vivo cytokine release. Vet Immunol Immunopathol. 2015;165(1-2):64-74. doi: 10.1016/j.vetimm.2015.02.011. PubMed PMID: 25782350.

58. Castiblanco J, Anaya JM. Genetics and vaccines in the era of personalized medicine. Curr Genomics. 2015;16(1):47-59. doi: 10.2174/1389202916666141223220551. PubMed PMID: 25937813; PubMed Central PMCID: PMCPMC4412964.

59. Chi A, Kang C, Zhang Y, Tang L, Guo H, Li H, et al. Immunomodulating and antioxidant effects of polysaccharide conjugates from the fruits of Ziziphus Jujube on Chronic Fatigue Syndrome rats. Carbohydr Polym. 2015;122:189-96. doi: 10.1016/j.carbpol.2014.12.082. PubMed PMID: 25817658.

60. Audain KA, Zotor FB, Amuna P, Ellahi B. Food supplementation among HIV-infected adults in Sub-Saharan Africa: impact on treatment adherence and weight gain. Proc Nutr Soc. 2015:1-9. doi: 10.1017/S0029665115000063. PubMed PMID: 25761769.

61. Tofighee A, Khazaei HA, Jalili A. Comparison of Effect of One Course of Intense Exercise (Wingate test) on Serum Levels of Interleukin-17 in Different Groups of Athletes. Asian J Sports Med. 2014;5(4):e22769. doi: 10.5812/asjsm.22769. PubMed PMID: 25741409; PubMed Central PMCID: PMCPMC4335470.

62. Holzer P, Hassan AM, Jain P, Reichmann F, Farzi A. Neuroimmune pharmacological approaches. Curr Opin Pharmacol. 2015;25:13-22. doi: 10.1016/j.coph.2015.09.003. PubMed PMID: 26426677.

63. Godbout JP, Glaser R. Stress-induced immune dysregulation: implications for wound healing, infectious disease and cancer. J Neuroimmune Pharmacol. 2006;1(4):421-7. doi: 10.1007/s11481-006-9036-0. PubMed PMID: 18040814.

64. Blalock JE. The syntax of immune-neuroendocrine communication. Immunology today. 1994;15(11):504-11.

65. Moynihan JA. Mechanisms of stress-induced modulation of immunity. Brain Behav Immun. 2003;17 Suppl 1:S11-6. PubMed PMID: 12615181.

66. Matteoli G, Boeckxstaens GE. The vagal innervation of the gut and immune homeostasis. Gut. 2013;62(8):1214-22. doi: 10.1136/gutjnl-2012-302550. PubMed PMID: 23023166; PubMed Central PMCID: PMCPMC3711371.

67. Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol. 2004;5(6):575-81. doi: 10.1038/ni1078. PubMed PMID: 15164017.

 Yuan H, Silberstein SD. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part I. Headache. 2015. doi: 10.1111/head.12647. PubMed PMID: 26364692.
Yuan H, Silberstein SD. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache. 2015. doi: 10.1111/head.12650. PubMed PMID: 26381725.

70. Trakhtenberg EF, Goldberg JL. Immunology. Neuroimmune communication. Science. 2011;334(6052):47-8. doi: 10.1126/science.1213099. PubMed PMID: 21980100.

71. Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev. 2012;248(1):188-204. doi: 10.1111/j.1600-065X.2012.01138.x. PubMed PMID: 22725962; PubMed Central PMCID: PMCPMC4536565.

72. Souza-Moreira L, Campos-Salinas J, Caro M, Gonzalez-Rey E. Neuropeptides as pleiotropic modulators of the immune response. Neuroendocrinology. 2011;94(2):89-100. doi: 10.1159/000328636. PubMed PMID: 21734355.

73. Reiche EM, Nunes SO, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004;5(10):617-25. doi: 10.1016/S1470-2045(04)01597-9. PubMed PMID: 15465465.

74. Reiche EM, Morimoto HK, Nunes SM. Stress and depression-induced immune dysfunction: implications for the development and progression of cancer. Int Rev Psychiatry. 2005;17(6):515-27. doi: 10.1080/02646830500382102. PubMed PMID: 16401550.

75. Bellinger DL, Lubahn C, Lorton D. Maternal and early life stress effects on immune function: relevance to immunotoxicology. J Immunotoxicol. 2008;5(4):419-44. doi: 10.1080/15476910802483415. PubMed PMID: 19404876.

76. Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol. 2012;33(3):267-86. doi: 10.1016/j.yfrne.2012.08.006. PubMed PMID: 22982535; PubMed Central PMCID: PMCPMC3484177.

77. Bilbo SD, Schwarz JM. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci. 2009;3:14. doi: 10.3389/neuro.08.014.2009. PubMed PMID: 19738918; PubMed Central PMCID: PMCPMC2737431.

78. Psichas A, Reimann F, Gribble FM. Gut chemosensing mechanisms. J Clin Invest. 2015;125(3):908-17. doi: 10.1172/JCI76309. PubMed PMID: 25664852; PubMed Central PMCID: PMCPMC4362249.

79. Obata Y, Furusawa Y, Hase K. Epigenetic modifications of the immune system in health and disease. Immunol Cell Biol. 2015;93(3):226-32. doi: 10.1038/icb.2014.114. PubMed PMID: 25666097.

80. Pi C, Allott EH, Ren D, Poulton S, Lee SR, Perkins S, et al. Increased Biodiversity in the Environment Improves the Humoral Response of Rats. 2015.

81. Abolins SR, Pocock MJ, Hafalla JC, Riley EM, Viney ME. Measures of immune function of wild mice, Mus musculus. Mol Ecol. 2011;20(5):881-92. doi: 10.1111/j.1365-294X.2010.04910.x. PubMed PMID: 21073587.

82. De Moura E, Lisboa P, Passos M. Neonatal programming of neuroimmunomodulation-role of adipocytokines and neuropeptides. Neuroimmunomodulation. 2008;15(3):176-88.

II Chicken egg shell membrane associated proteins and peptides

S. Makkar^{1, 2}, R. Liyanage³, L. Kannan^{1,4}, B. Packialakshmi^{1,4}, J. O. Lay, Jr.³, and N. C. Rath¹

Poultry Production & Product Safety Research Unit; Agricultural Research Service, USDA¹ Department of Poultry Science², State Wide Mass Spectrometry Facility³, Cell & Molecular Biology Program⁴, University of Arkansas, Fayetteville, AR 72701

> J. Agric. Food Chem. DOI: 10.1021/acs.jafc.5b04266 Publication Date (Web): October 20, 2015

ABSTRACT

Eggshells are poultry industry byproducts with potential for use in various biological and agricultural applications. We have been interested in the membranes underlying the calcareous shell, as a feed supplement, which showed potential to improve immunity and performance of post hatch poultry. Therefore, to determine their protein and peptide profiles, we extracted the eggshell membranes (ESM) from fresh unfertilized eggs with methanol and guanidine hydrochloride (GdHCl) to obtain soluble proteins for analysis by mass spectrometry. The methanol extract was subjected to matrix assisted laser desorption ionization (MALDI), electrospray ionization (ESI), high performance reverse phase liquid chromatographic separation (HPLC) and tandem mass spectrometry (MS/MS) to determine its peptide and protein profiles. The GdHCL extract was subjected to ESI-HPLC-MS/MS following trypsin digestion of reduced/alkylated proteins. Nine proteins from the methanol extract and >275 proteins from the GdHCl extract were tentatively identified. The results suggested the presence of several abundant proteins from egg whites, such as, ovoalbumin, ovotransferrin, and lysozyme as well as many others associated with antimicrobial, biomechanical, cytoskeletal organizational, cell signaling, and enzyme activities. Collagens, keratin, agrin, and laminin were some of the structural proteins present in the ESM. The methanol soluble fraction contained several clusterin peptides and defensins particularly, 2 isoforms of gallin. The ratios of the 2 isoforms of gallin differed between the membranes obtained from brown and white eggs. The high abundance of several anti-microbial, immunomodulatory, and other bioactive proteins in the ESM along with its potential to entrap various microbes and antigens may make it a suitable vehicle for oral immunization of post hatch poultry, and improve their disease resistance.

INTRODUCTION

With over 90 billion eggs produced annually in the USA(USDA, 2014), the egg shells constitute a significant byproduct of the poultry industry with potential for use in various agricultural and biomedical applications(Anton, et al., 2006; Cordeiro and Hincke, 2011; Kovacs-Nolan, et al., 2005; Mine and Kovacs-Nolan, 2006). The egg shell consists of a calcareous outer crust underlined by two layers of proteinaceous membranes which enclose a composite chemical milieu of egg whites and yolk, and provide both physical and biological protection to embryo (Ahlborn, et al., 2006; Hincke, et al., 2012). Understanding the protein and peptide constituents of the egg shell membrane (ESM) may provide better insight into their roles in embryo development and protection, improve egg quality, and facilitate the utilization of this agricultural waste product. In recent years there has been many studies of the protein components of various avian egg compartments including the ESM as well as their biological significance (Mann, et al., 2006) (Kaweewong, et al., 2013). However, there are very few studies of egg membrane associated peptides. Whereas the proteins have both structural and functional bases within tissues, the peptides also play important roles in many biological processes such as signal transduction, transportation, and host defense(Brown and Hancock, 2006; Hu, et al., 2009; Soloviev and Finch, 2006). Therefore, the objective of this study was to profile the extractable peptide and protein composition of the inner eggshell membranes by using "top down/bottom up" MALDI and ESI mass spectrometry approaches.

MATERIALS AND METHODS

Chemicals and reagents. The following reagents and devices including Centricon YM-10 filtration units (EMDMillipore.com), C18 Nu tips (Glysci.com), 1 kDa Dispodialyzer (Harvardapparatus.com), Spectra/Por membranes (Spectrumlabs.com), Biowide Pore C₁₈ reverse phase HPLC column (15 cm x 4.6 mm, 5 μ m particle size, 300 Å pore size, Sigma-Aldrich, St. Louis, MO), C₁₈ column (150 x 0.1mm, 3.5 μ m particle size, 300 Å pore size, Zorbax SB (Agilent), BCA protein assay kit, Pierce C18 spin columns, MS grade trypsin (Fisher Scientific.com), peptide calibration standard II (*m*/*z* 500-16000, Bruker Daltonics, Bremen, Germany), and 2-iodoacetamide (IAA) (MP Biomedicals, OH) were purchased from their respective vendors. All other reagents and supplies including 1, 4-dithiothreitol (DTT), 2, 5-dihydroxybenzoic acid (DHB), and 1,5-diaminonaphthalene (DAN), were purchased from Sigma Aldrich (St. Louis, MO).

Egg membrane harvest and extraction. Egg shells from fresh unfertilized brown and white eggs were washed with deionized water inside with mild scrubbing to remove loosely adsorbing egg white proteins, and the membranes were peeled free of calcareous shells. Pooled or individual egg shell membranes (ESM) were again washed with excess deionized water by stirring for 2-3 h, blot dried with Whatman filter papers then chopped into small pieces for further processing. Figure 1 shows a flow chart of the general procedure of membrane extraction and processing. The pooled ESM were extracted by 2 methods (a) with 70% methanol containing 0.1% acetic acid in and (b) with a buffer consisting of 4 M guanidine hydrochloride (GdHCl), 20 mM EDTA, and 50 mM Na-acetate, pH 5.8. The ESM fragments were extracted by stirring with 10 volumes of respective solutions for 24 hours at 4°C. The extracts were centrifuged at 21,000 g for 15 min, and the clear supernatant dialyzed against excess 50 mM ammonium carbonate

solution using 1,000 Da Spectra/Por membranes with 3-4 changes. The membrane retentate of both extracts following dialysis were concentrated by lyophilization and resuspended in a smaller volumes of 50 mM ammonium bicarbonate to measure their protein concentrations by the BCA protein assay using bovine serum albumin (BSA) as the standard. The ESM harvested from individual brown and white ESM were similarly extracted with acidified methanol and screened by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) (Kannan, et al., 2007; Kannan, et al., 2009). The experiments were carried out in two separate trials to confirm the overall repeatability of the results.

Direct MALDI-TOF MS of methanol extract. The methanol extracts of individual or pooled membrane preparations were screened for their peptide profiles in the mass range of 1-20 kDa by direct MALDI-TOF-MS using 2 dihydroxybenzoic acid (DHB) as the matrix. The standard dry droplet method with 1:1 matrix: analyte ratio was employed to prepare spots on a Bruker ground steel MTP 384 MALDI target plate. To find the effect of reduction and alkylation, aliquots of samples in methanol were diluted with 3 volumes of 70% methanol containing 200 mM ammonium bicarbonate then treated with 10 mM DTT for 10 minutes in a boiling water bath, cooled to room temperature for 1 h followed by alkylation with 40 mM iodoacetamide for an additional 1 h in the dark. The control samples were identically treated except that DTT was omitted from the reaction mixture. Both control and reduced/alkylated samples were spotted on target plates along with calibrating Bruker peptide standard II in adjacent spots. The spectra were acquired using a Bruker Ultraflex II MALDI-TOF mass spectrometer (Bruker Daltonics GMBH, Bremen, Germany), operated in the positive-ion reflectron mode. The ammonium bicarbonate dialysate of the methanol extract was similarly, subjected to reduction/alkylation then dried with

a Centrivap evaporator (Labonco) to reduce the volume, desalted, and spotted for MALDI-TOF-MS. The TOF analyzer was calibrated with peptide standard II. Accurate mono isotopic peptide masses were determined by MALDI-TOF-MS using combinations of external and internal calibration procedures, and spotting with equal volumes of α -cyano-4-hydroxycinnamic acid (HCCA) matrix, prepared in 0.1% FA, 50:50 water/ACN (Kannan, et al., 2013). The LIFT-MS/MS was performed on selected peaks to determine their identity.

Reverse phase HPLC purification of peptides in methanol extract. The dialyzed methanol extract was passed through a 10 kDa Centricon filter to exclude high molecular weight proteins in order to purify some of the peaks observed in MALDI-TOF-MS. The filtrate with \leq 10 kDa peptides was evaporated with Centrivap, re-dissolved in 0.1% formic acid, centrifuged at 21,000 g, and the supernatant subjected to reverse phase HPLC purification. The chromatographic separation was done on a BiowideC₁₈ reverse phase column attached to an Agilent 1100 HPLC interfaced with an ESI mass spectrometer. Several major peptide fractions based on the ESI-MS multiply charged mass spectra corresponding to *m/z* 4484 and 4597, 2157, 3231, 2878, 2804, 2641, and 1902 peaks, were collected, pooled from replicate runs, and concentrated by evaporative drying for further characterization as described below.

Peptide identification by MALDI-TOF-MS and MS/MS (LIFT-TOF/TOF). The peptide fractions were reconstituted in smaller volumes of 50 mM ammonium bicarbonate and checked for homogeneity by MALDI-TOF-MS then reduced and alkylated with DTT and iodoacetamide as described above followed by trypsin digestion for 24 h at 37°C. The tryptic peptides were desalted with C18 Nu tips, spotted on MALDI target plates with saturated HCCA as described

above, and the spectra collected in both MALDI-TOF (MS) and LIFT-TOF/TOF (MS/MS) modes.

MALDI-ISD (in source decay) analysis. The *m/z* 4597 and 4484 peptide fractions were reconstituted in 0.1% formic acid and spotted mixed with a saturated solution of 1, 5 diaminonaphthalene (DAN) prepared in 50% ACN containing 0.1% formic acid at 1:1 ratio of analyte: matrix then subjected to MALDI-ISD fragmentation (Fukuyama, et al., 2006; Kannan, Liyanage, Lay Jr, Packialakshmi, Anthony and Rath, 2013; Quinton, et al., 2007). ISD spectra were acquired with a Bruker Reflex III MALDI-TOF mass spectrometer. The MALDI-ISD mass spectra were similarly analyzed with Bruker BioTools 3.1 to obtain sequence tags to search the NCBI Gallus data base using protein blast. Both these peptides, m/z 4484 and 4597, were also subjected to LIFT-TOF/TOF fragmentation for further confirmation of their identities.

Comparative differences in selective peptides of brown and white ESM. The MALDI-TOFmass spectra of methanol extracts of individual brown and white egg membranes were screened to determine the relative spectral intensities of m/z 4597 and 4484 peptides in each preparation and the means of the cumulative results were compared using Student's t test.

LC-MS/MS analysis of methanol and guanidine extracted proteins. Following the measurement of protein concentrations of 1 kDa membrane retentate of both methanol and GdHCl extracts as described earlier, approximately 10 μ g of methanol extracted and 50 μ g of GdHCl extracted proteins were dried by vacuum evaporation and reconstituted in 10 μ l of ammonium bicarbonate, subjected to reduction and alkylation, and digestion with trypsin at a protein: trypsin ratio of 50:1 for 24 h at 37°C. The tryptic digest was desalted using Pierce C18

spin columns and chromatographed on a capillary C_{18} column (150 x 0.1mm, 3.5 µm particle size, 300 Å pore size, Zorbax SB) attached to an Agilent 1200 series HPLC interfaced with a Bruker Amazon-SL quadrupole ion trap mass spectrometer and captive spray ion source. Tryptic peptides were separated at a solvent flow rate of 1.6 µL/min with 0 to 40 % gradient of 0.1% FA (solvent A) and ACN in 0.1% FA (solvent B) over a 320 minutes period.

MALDI-TOF-MS data analysis. All MALDI-TOF-MS data were processed using Bruker Flex Analysis 3.3 and Bruker BioTools 3.1 software. Peptides were identified using LIFT-TOF/TOF data by searching the NCBI Gallus database using the MASCOT MS/MS ion search tool with a peptide mass tolerance of 200 ppm and MS/MS tolerance of 0.6 Da. For MS and MS/MS data obtained from tryptic digests of the fractions corresponding to m/z 4597, 4484, 2157, 3231, 2878, 2893, and 1902 were searched in the NCBI Gallus database as above but with trypsin, listed as the digestion enzyme. Accurate monoisotopic peptide masses (\pm 0.1 Da) were used for peptide identifications.

LC-MS/MS analyzed proteins. Peaks were picked in the LC-MS/MS chromatogram using Bruker default settings. Bruker Proteinscape bioinformatics suite coupled with MASCOT 2.1 was used to search NCBI Gallus protein database for identification of proteins. The parent ion mass tolerance and fragment ion mass tolerance, were both set at 0.6 Da. A MASCOT decoy database search was performed with all the datasets. A score threshold of 45 or above was used as a high probability match for protein identifications. The proteins with only <1% false discovery rate (FDR) and at least 1 unique peptide were reported. Functional annotation for these proteins was performed using the Software Tool for Researching Annotation of Proteins (STRAP) (Bhatia, et al., 2009).

RESULTS

MALDI-TOF-MS identification of methanol extracted proteins and peptides. Figure 2 shows a MALDI-TOF-MS of the methanol extract of ESM shown in the range between m/z1000-6000 range with peaks corresponding to *m/z* 1616, 1902, 2001, 2157, 2641, 2797, 2878, 2894, 3231, 4484, 4597, and 4778. Some of the other peaks that occurred beyond 10,000 m/z was 14302 matching to the corresponding MW of chicken lysozyme. The methods used for identification of some of the peaks and their identities are summarized in Table 1. The peaks corresponding to m/z 4484, 4597, and 4778 showed a 348 Da mass difference upon reduction and alkylation suggestive of the presence of 3 disulfide bonds while several other peaks did not show any mass shifts (Figure 3). Reduction and alkylation, particularly under complete aqueous conditions, rendered the m/z 4484, 4597, and some other peptides insoluble with 0.1% FA indicated by the disappearance or observance of low intensities in MALDI signals. Figures 4 and 5 show the MALDI-ISD and MALDI-LIFT-TOF/TOF results for peptides m/z 4597 and 4484. MALDI-ISD yielded a high confident sequence tag "YCSNTCSKTQI" based on observed c ions (N-terminus protected) from m/z 4597. MASCOT sequence query and MS/MS search using MALDI-LIFT-TOF/TOF data and blast search against NCBI Gallus data base all, resulted in significant hit against the protein precursor named "gallin' with a sequence "LVLKYCPKIGYCSNTCSKTQIWATSHGCKMYCCLPASWKW", matching to m/z 4597. Almost same sequence, but without the N-terminal leucine (L) is a perfect match to m/z 4484. The peak at m/z 4778 although showed to have 3 disulfide bonds from MALDI-TOF-MS results
(Figure 3), its identification was not possible through these means most likely due to insufficient amounts of material. The LC-MS/MS data from the methanol extracted proteins however, suggested a high possible identity for this peptide to be gallinacin 10 as will be described later with LC-MS-MS results. The peaks at m/z 1902, 2001, 2157, and 3231, observed in direct MALDI-TOF-MS, were all identified as fragments of clusterin having the common sequence tag "TPPFGGFREAFVPPVQRVR" by MASCOT MS/MS ion search of the LIFT-TOF/TOF data using NCBI Gallus database (Figures 6-8 and S1 and S2). The results were also supported by bottom up identification that showed the presence of two common tryptic fragments corresponding to their respective protonated monoisotopic masses at m/z 878.4 (TPPFGGFR) and m/z 1042.5 (EAFVPPVQR), for each of those peptides, both derived from the same domain of clusterin (Figures 7 and S3-S4). Thus, the m/z 1902, 2001, 2157 and 3231 peaks were identified "TPPFGGFREAFVPPVQR", "TPPFGGFREAFVPPVQRV", as "TPPFGGFREAFVPPVQRVR" "TPPFGGFREAFVPPVQRVRLVPPRRRLS," and respectively (Table 1). The peptides corresponding to peaks at m/z 2878 and 2894 were both identified by MALDI LIFT-TOF/TOF fragmentation as one phosphatase and actin regulator protein (PHACTR) with a sequence of "PPKRGLLPTNPPEAALPSKPPGDRTVTA" and a sporozoite surface protein 2-like with the sequence of "PNPIGLIGPIGPNVSNPIGLLGPNGPNAFS" (Figures 9 and 10, Table 1).

LC-MS/MS identification of methanol and GdHCl extracted peptides/proteins. Major proteins identified in methanol and GdHCl extracts are listed in Table 2 and Table S1. There were 9 proteins identified in the methanol extract and over 275 in GdHCl extract. Six of the methanol extracted proteins were identified in the GdHCl extract which included the proteins,

30

lysozyme, clusterin, gallin, and ovocleidin. Since gallinacin 10 propeptide that contains 3 disulfide bonds (Lynn, et al., 2004), was identified in the methanol extract, we presumed that this LC-MS/MS identified tryptic fragment "AGACPPTFTISGQCHGGLLNCCAK" could relate to the m/z 4778 peak, observed in MALDI-TOF mass spectrum. The accurate protonated mono isotopic mass for the m/z 4778 peak was determined to be 4772.9 ± 0.3 Da using replicate Combining MALDI-TOF-MS measurements. the mass information with the "AGACPPTFTISGQCHGGLLNCCAK" sequence tag and MASCOT query lead to a significant match with the sequence corresponding to "DPLFPDTVACRTQGNFCRAGACPPTFTISGQCHGGLLNCCAKIPAQ" belonging to gallinacin 10(Lynn, Higgs, Gaines, Tierney, James, Lloyd, Fares, Mulcahy and O'Farrelly, 2004) with a score of 308, and an expect value 8.2^{e-027} . The sequence corresponding to the accurate mass for m/z 4778 peptide appeared to be 5 amino acids longer N terminally than the predicted sequence of the mature gallinacin 10 peptide(Lynn, Higgs, Gaines, Tierney, James, Lloyd, Fares, Mulcahy and O'Farrelly, 2004; Xiao, et al., 2004). The 2 other proteins namely, an angiotensinogen isoform X7, and an uncharacterized protein LOC771972 isoformX1 though were also identified from LC/MS-MS analyses of the methanol extract (Table 2) could not be identified elsewhere.

The guanidine extract containing 276 proteins with Mascot scores 45 or above were identified with one_or more unique peptides. When the identification was done on the basis of a single unique peptide, the fragmentation score was sufficient to identify with 95% confidence (supplementary Table S1). GO classification done using STRAP used 103 IDs (Figure 11) to access the likely function of the proteins based on the annotations in the database. Several high

abundant egg white associated proteins such as ovalbumin, ovotransferrin, lysozyme, ovomucoid, and ovoglobulin were present in ESM. A large repertoire of proteins associated with muscle associated and motor functions such as, titin, dynein, obscurin, myosin, and nebulin, and others with cytoskeletal organizational and anchoring functions (xin, golgin, spectrin, ninein), enzymes (kinases, helicase, protein ligase), enzyme inhibitors (ovomucoid), and signaling functions were identified in ESM. Proteins such as collagens, keratins, laminins, agrin, and chondroitin sulfate that are structural components of the membrane were present in GdHCl extract. Similarly several antimicrobial proteins such as lysozyme, gallinacin, mucin, ovocalyxin, proteases and protease inhibitors were also identified.

Differential expression of m/z 4597 and 4484 in brown and white ESM. Figure 12 shows comparative profiles of m/z 4484 and 4597 peaks in ESM from brown and white eggs. Calculated by their peak intensities, the brown ESM had lower levels of m/z 4597 peptide relative to m/z 4484 isoform of gallin than the white ESM which had higher levels of m/z 4597 and lower level of m/z 4484 peptide (brown, 0.42±0.04; white,0.72±0.08, p<0.05, n=7).

DISCUSSION

Egg is a large haploid cell and fertilized eggs can give rise to a young organism. Hence, analysis of proteins in avian egg membrane is expected to reveal their role in nourishment, development, immune protection and structural strength. Our results show that the eggshell membranes contain many extractable proteins and peptides notwithstanding the fact that much of the membrane material remains insoluble even, under chaotropic extraction condition. Many proteins identified in the ESM have previously been shown to be present in other compartments of the egg

(Gautron, et al., 2001; Kaweewong, Garnjanagoonchorn, Jirapakkul and Roytrakul, 2013; Some of these included egg white proteins such as ovalbumin, Miksík, et al., 2007). ovotransferrin, lysozyme, clusterin, ovocleidin, ovoglycoprotein, ovomucoid, and ovoinhibitors that are considered to be highly abundant (Boschetti and Righetti, 2008; Mann, 2007a; Rose and Hincke, 2009). The methanol extraction led to the recovery of several peptides some of which turned out to be the fragments of clusterin, a secretory multifunctional glycoprotein associated with cytoprotective, and chaperon-like function(Jones and Jomary, 2002). It has been reported that clusterin protects against a wide range of environmental, microbial, and oxidative stress which the egg may naturally be exposed to. However, the significance of different clusterin peptides, most of which appeared to be derived from one domain, is not understood. Two of the peptides identified in the methanol extract by MALDI-TOF-MS were derived from, a phosphatase and actin regulator (PHAR) protein and another, a sporozoite surface protein 2-like protein. PHAR is involved in actin binding cytoskeletal organizing function associated with neuronal development of embryo (Allen, et al., 2004)although the significance of its presence along with many other signaling proteins in ESM, is not understood. However, there were also many cytoskeletal organizational proteins identified in guanidine extracts of ESM. The sporozoite surface protein 2-like (SSP2-like) protein is an orthologue of a protein present on the surface of several unicellular parasites (Tewari, et al., 2002). It is an adhesive protein that can bind to extracellular matrix based on its function in malarial parasites (Behet, et al., 2014). Whether SSP2-like protein acts as a decoy protein protective against parasite invasion of egg is not known. Other major peptides of note identified in the methanol soluble fraction, were lysozyme, a cationic, antibacterial protein which is one of the most abundant proteins present in all compartments of the egg and 3 other defensin-like peptides corresponding to m/z 4484, 4597,

and 4778 all of which showed to contain 3 disulfide bonds common to most avian beta defensins (AvBD)(Lynn, Higgs, Gaines, Tierney, James, Lloyd, Fares, Mulcahy and O'Farrelly, 2004; Zhang and Sunkara, 2014). Two of these peptides, m/z 4484 and 4597, were of interest because they occurred at different proportions in white and brown ESM both of which were identified as gallins with the former being shorter by a single N-terminal amino acid leucine (L). The gallin, also known as ovodefensin, was identified by Mann(Mann, 2007b) as a meleagrin-like peptide in chickens although similar homologous peptides were identified in many other species of birds(Naknukool, et al., 2011; Odani, et al., 1989). Gong et al. (Gong, et al., 2010a) identified 3 isoforms of gallin in chicken oviduct suggesting the polymorphism resulted from gene duplication. However, in ESM we detected only 2 isoforms of the same gallin in both white and brown eggs although they occurred in differential proportions. The peptide corresponding to m/z4778 was provisionally identified as gallinacin 10 containing 3 disulfide bonds(Lynn, et al., 2007; Xiao, Hughes, Ando, Matsuda, Cheng, Skinner-Noble and Zhang, 2004; Zhang and Sunkara, 2014) that we deduced to match to the stretch of sequence corresponding to "DPLFPDTVACRTQGNFCRAGACPPTFTISGQCHGGLLNCCAKIPAQ". This sequence nested the predicted, mature sequence of gallinacin 10 suggesting that the m/z 4778 peptide may be the mature peptide sequence of gallinacin 10 that is 5 amino acid longer than the predicted sequence(Lynn, Higgs, Gaines, Tierney, James, Lloyd, Fares, Mulcahy and O'Farrelly, 2004; Xiao, Hughes, Ando, Matsuda, Cheng, Skinner-Noble and Zhang, 2004; Zhang and Sunkara, 2014). The occurrence of gallinacin 10 in other egg compartments and uterine secretion have been reported (Mann, Macek and Olsen, 2006; Marie, et al., 2015).

The GdHCl extract included most of the proteins and peptides in the methanol extract. A functional annotation of them using the STRAP(Bhatia, Perlman, Costello and McComb, 2009), showed these proteins being largely associated with metabolic, regulatory, developmental, and binding activities. Collagens, keratin, laminin, agrin, ovoglycan, and chondroitin sulfate are most likely associated with structural ecomponents of the membrane whereas proteins such as titin, obscurin, and nebulin, that are associated with muscle biomechanical function(Meyer and Wright, 2013), presumably, provide biomechanical support and resilience to the membrane protecting the egg against drop damage. There were numerous cytoskeletal organizational, anchoring, scaffolding, and tethering proteins (dynein, filamin, nesprin, ninein, xin, golgin, and aczonin), and glycoproteins related to adhesion and differentiation functions (protocadherin), metal and vitamin binding proteins (ovotransferrin, riboflavin-binding), enzyme proteins (kinases, helicase, ligase), and regulatory proteins, the functional significance of which in ESM are not understood. Many of these molecules although may have been acquired during the passage of egg (Sun, et al., 2013) in the reproductive tract, they could very likely be responsible for providing molecular coordination for the development of embryo.

Many proteins identified in the ESM such as defensin, ovotransferrin, ovocalyxin, and lysozyme including some keratin peptides which have been shown to be antimicrobial conceivably provide protection against microbial invasion (Gautron, et al., 2011; Superti, et al., 2007; Tam, et al., 2012; Zhang and Sunkara, 2014). Protease inhibitors and anti-proteases such as ovalbumin Y, ovomacroglobulin (ovostatin), ovomucoid, ovoglycan, also possess antimicrobial activities that are associated with defensive functions (Gautron, et al., 2007; Huopalahti, 2007; Mann and Mann, 2011; Mann and Mann, 2013). Mucoid substance such as ovomucin and mucin similarly,

provide defense against virus(Lieleg, et al., 2012). 222Likewise, there are serine proteases which possess microbiocidal activities (Heutinck, et al., 2010) present in GdHCl extracts of ESM. The shell membrane is an antimicrobial protein rich matrix that not only provides protection to the egg but also harbors other proteins associated with cellular development that can provide external cues to embryo development.

Mann et al.(Mann, et al., 2007), using decalcified egg shell membrane, identified the presence of several phosphoproteins such as osteopontin and phosvitin which are implicated in eggshell calcification(Hincke, et al., 2010). The conspicuous absence of these 2 proteins in the inner eggshell membrane in our study suggests that either the shell membrane proximal to egg white, is naturally low or deficient in these proteins since it does not undergo calcification or our search parameters precluded the identification of these phosphoproteins. However, both ovocleidin-116 (OC-116) and ovocalyxin, both of which are phosphoproteins and implicated in mineralization process were identified (Hincke, Nys and Gautron, 2010; Horvat-Gordon, et al., 2008) that suggests that there was no problem related to our methodology to identify osteopontin and phosvitin.

In conclusion, our results show that the ESM is rich in a variety of proteins and peptides many of which are associated with different protective and supportive functions for embryo. Whereas the presence of many abundant proteins in the ESM are consistent with the literature, the differences in identification of some minor abundance proteins can also be attributed to other related issues such as extraction conditions, and post translational modifications as well as search parameters (Aebersold, 2009; Ahmed and Rice, 2005). Overall, the natural abundance of such a large

repertoire of bioactive proteins and peptides in ESM suggests that it can be a potent nutritional supplement to improve health and performance of post-hatch poultry(Makkar, et al., 2015b) in the same paradigm of mammalian milk.

ACKNOWLEDGMENT

This work was carried as a USDA/ARS project and supported partly by Arkansas Bioscience Institute grant to RL and by the State Wide mass spectrometry facility, supported by a NIH grant P30 GM103450 to the University of Arkansas. We thank Scott Zornes, Sonia Tsai, and Morgan Stephens for assistance.

ASSOCIATED CONTENT

Supporting Information

Table S1, List of Proteins identified in guandine HCl extract of eggshell membranes, Figures S1-S4, fragmentation spectra and peptide mass fingerprints of m/z 2001 and 3231.

AUTHOR INFORMATION

NCR and RL conceived and designed the experiment. SM, LK and RL performed the experiments and analyzed the data. NCR, SM, LK, and BP wrote the manuscript. NCR, RL, and JL made critical revision and final approval of the manuscript.

ABBREVIATIONS

AvBD, avian beta defensin; ESI, electrospray ionization; ESM, egg shell membrane; FA, formic acid; ISD, in source decay; GdHCl, guanidine hydrochloride; LC-MS, liquid chromatography mass spectrometry; MALDI-TOF, matrix assisted laser desorption ionization time-of-flight

m/z	Sequence	Protein	Method of identification
1902	TPPFGGFREAFVPPVQR	clusterin	MALDI LIFT-
2001	TPPFGGFREAFVPPVQRV	clusterin	MALDI LIFT-
2157	TPPFGGFREAFVPPVQRV	clusterin	TOF/TOF, PMF- MALDI LIFT-
	R		TOF/TOF, PMF-
3231	TPPFGGFREAFVPPVQRV RLVPPRRRLS	clusterin	MALDI LIFT- TOF/TOF, PMF-
2878	PPKRGLLPTNPPEAALPS KPPGDRTVTA	phosphatase and actin regulator	MALDI-TOF-MS, LIFT-MS-MS
2894	PNPIGLIGPIGPNVSNPIGL LGPNGPNAFS	sporozoite surface protein 2-like	MALDI-TOF-MS, LIFT-MS-MS
4484	VLKYCPKIGYCSNTCSKT QIWATSHGCKMYCCLPA	gallin protein precursor	MALDI-ISD, LIFT-TOF/TOF
4597	LVLKYCPKIGYCSNTCSK TQIWATSHGCKMYCCLP	gallin protein precursor	MALDI-ISD, LIFT-TOF/TOF
4778	DPLFPDTVACRTQGNFCR AGACPPTFTISGQCHGGL LNCCAKIPAQ KIPAQ	predicted gallinacin 10	MALDI-TOF-MS, LC-MS/MS

Table 1: Identification of peptides or proteins corresponding to mass and the analytical methods

	Accession	Protein	MW [kDa]	Scores	#Peptides
1	gi 345100466	Chain A, Hen Egg White Lysozyme with A Isoaspartate Residue	14.3	801.6 (M:801.6)	14
2	gi 342165190	Ovocleidin-116; Short=OC-116; Flags: Precursor	76.8	285.4 (M:285.4)	7
3	gi 4325105	clusterin [Gallus gallus]	51.3	109.6 (M:109.6)	3
4	gi 293321591	Gallin protein precursor [Gallus gallus]	4.9	90.8 (M:90.8)	2
5	gi 212485	ovoinhibitor [Gallus gallus]	51.9	90.6 (M:90.6)	2
6	gi 513218610	PREDICTED: uncharacterized protein LOC771972 isoformX1 [Gallus gallus]	27.1	71.5 (M:71.5)	2
7	gi 513175885	PREDICTED: angiotensinogen isoform X7 [Gallus gallus]	51.3	45.3 (M:45.3)	2
8	gi 46487955	gallinacin 10 prepropeptide [Gallus gallus]	7.1	35.0 (M:35.0)	1
9	gi 295982528	Chain P, Tcr 21.30 in complex With MHC Class II-ag (11-27)	2.0	33.4 (M:33.4)	1

Table 2. List of proteins/peptides identified from methanol extract of eggshell membrane

Figure 1. Flow chart of eggshell membrane (ESM) sample processing.

Figure 2. Direct MALDI-TOF mass spectrum of 70% methanol extract of ESM spotted with dihydroxybenzoic acid (DHB) as the MALDI matrix; m/z values of all the annotated peaks shown between m/z 1,000-6,000 represent values closer to average masses rather than monoisotopic masses.

Figure 3. MALDI-TOF mass spectra of methanol extract of ESM without (a) and with reduction and alkylation with DTT/ iodoacetamide (b). Arrows show peaks that were modified by carbamidomethylation and the m/z values of all annotated peaks represent values closer to average masses rather than monoisotopic masses.

Figure 4. MALDI-ISD-TOF-MS of LC purified m/z 4597 (a) and 4484 (b) peaks in Figure 2 showing the N-terminus sequence tag obtained from the corresponding c fragment ions. MASCOT sequence query identified them as gallin precursors.

Figure 5. MALDI LIFT-TOF/TOF fragmentation spectra for LC purified, reduced/alkylated (a) m/z 4597 (m/z 4943) and (b) 4484 (m/z 4833) peaks showing corresponding b and y ion fragments and their identifications gallin precursors.

Figure 6. MALDI LIFT-TOF/TOF fragmentation for peak observed at m/z 1902 in direct MALDI-TOF-MS shown in Figure 2. MASCOT MS/MS ion search identified it as a part of clusterin

 <u>gi | 4325105</u> Mass: 51943 Score: 78 Queries matched: 1 clusterin [Gallus gallus]

Query	Observed	Mr(expt)	Mr(calc)	ppm	Miss	Score	Expect	Rank	Peptide
1	1902.0020	1900.9947	1900.9948	-0.05	0	83	5.4e-005	1	R. TPPFGGFREAFVPPVQR. V

Figure 7. MALDI peptide mass finger print of purified m/z 1902 in direct MALDI-TOF-MS showing tryptic fragments m/z 878 and 1042.

Figure 8. MALDI LIFT-TOF/TOF fragmentation of peak at *m/z* 2157 observed in direct MALDI-TOF-MS in Figure 1 and MASCOT MS/MS ion search showing the corresponding sequence 'TPPFGGFREAFVPPVQRVR,' identified as the clusterin fragment.

Figure 8

Query Observed Mr(expt) Mr(calc) ppm Miss Score Expect Rank Peptide <u>1</u> 2157.1721 2156.1648 2156.1644 0.22 0 92 1e-005 1 R.TPPFGGFREAFVPFVQRVR.L **Figure 9**. MALDI LIFT-TOF/TOF fragmentation of m/z 2878 peak (Figure 2) and MASCOT MS/MS ion search identification of as phosphatase and actin regulator protein with corresponding fragment sequence PPKRGLLPTNPPEAALPSKPPGDRTVTA.

Figure 9

1. <u>gi|384955725</u> Mass: 80093 Score: 52 Queries matched: 1 RecName: Full=Phosphatase and actin regulator 4

 Query
 Observed
 Mr(expt)
 Mr(calc)
 ppm
 Miss
 Score
 Expect
 Rank
 Peptide

 1
 2877.8440
 2876.8367
 2876.5872
 86.7
 0
 59
 0.0036
 1
 L.PPKRGLLPTNPPEAALPSKPPGDRTVTA.S

Figure 10. MALDI LIFT-TOF/TOF fragmentation of peak at *m/z* 2894 in direct MALDI-TOF-MS (Figure 2) and MASCOT MS/MS ion search showing its identification as a part of sporozoite surface protein 2-like corresponding to the sequence "PNPIGLIGPIGPNVSNPIGLLGPNGPNAFS".

Figure 10

m/z 1. <u>gi[513239416</u> Mass: 14276 Score: 58 Queries matched: 1 PREDICTED: sporozoite surface protein 2-like, partial [Gallus gallus]

Query Observed Mr(expt) Mr(calc) ppm Miss Score Expect Rank Peptide <u>1</u> 2893.8479 2892.8406 2892.5498 101 0 62 0.015 1 V.PNPIGLIGPIGPNVSNPIGLLGPNGPNAFS.P Figure 11. STRAP annotation of GdHCl extracted, LC/MS/MS identified proteins

Figure 11

Figure 12. Profiles of m/z 4484 and 4597 peptides expressed in white and brown ESM; the minor peaks (arrow) are corresponding gallin isoforms with loss of H_2O

m/z

Supplementary Figure and Table legends

Figure S1. MALDI LIFT-TOF/TOF fragmentation for peak observed at m/z 2001 in direct MALDI-TOF-MS.

Figure S1

Figure S2. MALDI LIFT-TOF/TOF fragmentation for peak observed at m/z 3231 in direct MALDI-TOF-MS shown in Figure 2. MASCOT MS/MS ion search showed identification as a part of clusterin with a sequence tag, TPPFGGFREAFVPPVQRVRLVPPRRRLS

1. gi|4325105 Mass: 51316 Score: 51 Queries matched: 1 clusterin [Gallus gallus] ppm Miss Score Expect Rank Peptide Observed Mr(expt) Mr(calc) Ouerv 1 3232.0840 3231.0767 3230.8418 72.7 0 61 0.0027 1 R. TPPFGGFREAFVPPVQRVRLVPPRRRLS.R

Figure S3. MALDI peptide mass finger print (PMF) of purified m/z 2001 in direct MALDI-TOF-MS

Figure S4. MALDI peptide mass finger print (PMF) of purified m/z 3231 shown by direct MALDI-TOF-MS

			MW		#Peptide
Row	Accession	Protein	[kDa]	Scores	S
		Gallin protein precursor		2609.0	
1	gi 71274079	[Gallus gallus]	77.8	(M:2609.0)	54
		Chain A, Crystal			
		Structure Of Aluminum-			
		Bound Ovotransferrin At			
		2.15 Angstrom		2593.4	
2	gi 83754919	Resolution	75.8	(M:2593.4)	54
		Chain A, Crystal			
		Structure Of S-			
		ovalbumin At 1.9		1698.2	
3	gi 34811330	Angstrom Resolution	42.9	(M:1698.2)	34
		Chain C, Crystal			
		Structure Of Uncleaved			
		Ovalbumin At 1.95		1637.2	
4	gi 440923753	Angstroms Resolution	42.8	(M:1637.2)	32
		ovalbumin-related			
_		protein X [Gallus gallus		732.1	1.5
5	g1 510032768	gallus	45.4	(M:/32.1)	17
			1.1.0	700.1	10
6	g1 229157	lysozyme	14.3	(M:700.1)	12
		Chain A, Hen Egg White			
_	10 45100 466	Lysozyme With A	14.0	697.4	1.4
1	g1 345100466	Isoaspartate Residue	14.3	(M:697.4)	14
0	1205145541	ovalbumin-related Y	42.0	595.3 (M.505.2)	1.0
8	g1 385145541	[Gallus gallus]	43.8	(M:595.3)	16
		PREDICTED: titin		522.0	
0	-: 1512102012	isoform X2 [Gallus	2(52	523.8	24
9	gi 515195915	<u>gallus</u>	3032	(NI.525.8)	54
10	~il512100027	PREDICTED: mucin-6	201.1	45/.4	15
10	gi 515188927		291.1	(M1.437.4)	15
11	ail4225105	alustarin [Callus callus]	51.2	(M:442.8)	11
11	gi 4525105	ReeName:	51.5	(11.445.8)	11
		Full-Ovalbumin related			
		run-Ovalouinin-related		405.1	
12	gil120205	Full=Gene V protoin	26.2	$(M \cdot A 05.1)$	0
	51/127275	ovomucoid precursor	20.3	3/06	9
13	gil162952006	[Gallus gallus]	22 /	(M·349.6)	Q
15	51/102/32000		22.4	330 5	0
14	gil223464	ovomucoid	20.2	(M·330 5)	Q
14	51/223704	PREDICTED: hete	20.2	286.3	0
15	oi 513191195	microseminoprotein-like	12.1	(M·286 3)	6
12 13 14 15	gi 129295 gi 162952006 gi 223464 gi 513191195	Full=Ovalbumin-related protein X; AltName: Full=Gene X protein ovomucoid precursor [Gallus gallus] ovomucoid PREDICTED: beta- microseminoprotein-like	26.3 22.4 20.2 12.1	405.1 (M:405.1) 349.6 (M:349.6) 339.5 (M:339.5) 286.3 (M:286.3)	9 8 8 6

Supplement Table 1 List of proteins/peptides identified from GdHCl extract of eggshell membrane (ESM).

_						
			[Gallus gallus]			
					286.0	
	16	gi 352173	protein, riboflavin binding	25	(M:286.0)	6
			unnamed protein product		272.1	
	17	gi 63052	[Gallus gallus]	17.5	(M:272.1)	5
			ovomacroglobulin,		264.0	
	18	gi 671865	ovostatin [Gallus gallus]	164	(M:264.0)	8
					240.7	
	19	gi 7441632	ovocleidin - chicken	15.3	(M:240.7)	5
			ovoglobulinG2 type AB		239.1	
	20	gi 385145531	[Gallus gallus]	47.4	(M:239.1)	9
			ovoglycoprotein		238.9	
	21	gi 22218070	precursor [Gallus gallus]	22.3	(M:238.9)	5
		RecName:				
			Full=Ovocleidin-116;			
			Short=OC-116: Flags:		221.1	
	22	gi 342165190	Precursor	76.8	(M:221.1)	8
			PREDICTED: obscurin		209.6	
	23	gi 513167276	[Gallus gallus]	1158.7	(M:209.6)	13
	_	8	ovoinhibitor [Gallus		148.3	
	24	gi 212485	gallus	51.9	(M:148.3)	4
		8	PREDICTED: dystonin			
			isoform X4 [Gallus		144.0	
	25	gi 513178501	gallus]	920.1	(M:144.0)	10
			PREDICTED:			
			ovoinhibitor [Gallus		137.7	
	26	gi 513206786	gallus]	57	(M:137.7)	4
			PREDICTED: dvnein			
			heavy chain 7. axonemal			
			isoform X1 [Gallus		133.7	
	27	gi 513193378	gallus]	458.9	(M:133.7)	9
			ovalbumin N term		130.7	
	28	gi 223059	fragment	4.2	(M:130.7)	2
			egg white lysozyme		124.8	
	29	gi 4204093	[Gallus gallus]	4.9	(M:124.8)	4
			PREDICTED: mucin-5B			
			isoform X1 [Gallus		122.0	
	30	gi 363734560	gallus]	233.4	(M:122.0)	6
					116.5	
	31	gi 61102692	Xin [Gallus gallus]	216.1	(M:116.5)	8
			Chain A, Crystal			
			Structure Of Monoz-		113.3	
	32	gi 365813307	Biotin-Avidin Complex	13.6	(M:113.3)	3
		0	Chain A. Crystal		(
			Structure Of Vitelline		112.0	
	33	gi 576329	Membrane Outer Laver	18	(M:112.0)	4
1		Long		-0	· · · · · · · · · · · · · · · · · · ·	

		Protein I (Vmo-I): A			
		Folding Motif With			
		Homologous Greek Key			
		Structures Related By An			
		Internal Three-Fold			
		Symmetry			
		PREDICTED: I OW			
		OUALITY PROTEIN.			
		transcription initiation			
		factor TEIID subunit 1		109.6	
34	gil513180391	[Gallus gallus]	216.6	$(M \cdot 109.6)$	7
	51515100571	PREDICTED: nebulin	210.0	107.4	/
35	gil513195515	[Gallus gallus]	752.6	$(M \cdot 107.4)$	8
	gi 515175515	PREDICTED: histone	752.0	(191.107.4)	0
		I KEDIC I ED. IIIstone-			
		mothyltransforaso H2			
		lysing 36 and H4 lysing			
		20 specific isoform X6		107.0	
36	ail513206710	[Gallus gallus]	200.2	$(M \cdot 107.0)$	6
50	gij515200710	PREDICTED: golgin	270.2	(101.107.0)	0
		subfamily A member 1			
		isoform X7 [Gallus		106.7	
37	ail513213183	allus]	90.2	(M:106.7)	6
51	51/515215105	spectrin alpha chain	70.2	105.3	0
38	oi 1334744	[Gallus gallus]	281.8	$(M \cdot 105.3)$	7
50	511551711	PREDICTED: sperm	201.0	(101.105.5)	/
		flagellar protein 2		103.2	
39	gil513229885	[Gallus gallus]	270.1	$(M \cdot 103.2)$	7
	51010220000	anolinoprotein B [Gallus	270.1	102.6	1
40	gi 102221132	gallus]	523	(M·102.6)	6
	81102221102	PREDICTED: protein	020	(111102.0)	
		kinase C-binding protein			
		1 isoform X22 [Gallus		101.3	
41	gil513217982	gallus]	132	$(M \cdot 101.3)$	6
	51010217902	PREDICTED: golgin	152	(101.101.5)	0
		subfamily B member 1			
		isoform X3 [Gallus		100.6	
42	oil513157185	gallus]	362.7	(M.100.6)	6
12	01010101100	PREDICTED: ninein	202.7	(0
		isoform X15 [Gallus			
43	gi 513190030	gallus]	2334	99.6 (M·99.6)	7
44	gi 6433844	aczonin [Gallus gallus]	560.4	99.2 (M:99.2)	6
		PREDICTED: uro-			
		adherence factor A			
		isoform X1 [Gallus			
45	gi 513162168	gallus]	245.5	97.2 (M:97.2)	6

			PREDICTED: protein			
l			piccolo, partial [Gallus			
l	46	gi 363727445	gallus]	401.4	96.1 (M:96.1)	6
			PREDICTED: LOW			
l			QUALITY PROTEIN:			
			chromodomain-helicase-			
			DNA-binding protein 9			
	47	gi 363738135	[Gallus gallus]	322.2	96.0 (M:96.0)	6
			unnamed protein product			
	48	gi 63370	[Gallus gallus]	422.6	95.2 (M:95.2)	7
			PREDICTED:			
			centrosome-associated			
			protein CEP250 isoform			
	49	gi 513217433	X14 [Gallus gallus]	287.7	92.4 (M:92.4)	7
			PREDICTED: spectrin			
			beta chain, non-			
			erythrocytic 5 [Gallus			
	50	gi 513187528	gallus]	453	92.3 (M:92.3)	6
			centromere protein F			
	51	gi 157168357	[Gallus gallus]	339.7	90.4 (M:90.4)	6
	52	gi 371928996	keratin 75 [Gallus gallus]	54.3	90.0 (M:90.0)	3
			RecName: Full=Acetyl-			
			CoA carboxylase;			
			Short=ACC; Includes:			
			RecName: Full=Biotin			
	53	gi 116669	carboxylase	262.6	89.9 (M:89.9)	6
			PREDICTED: death-			
			inducer obliterator 1			
			isoform X4 [Gallus			
	54	gi 513218156	gallus]	223.5	89.8 (M:89.8)	5
			Gallin protein precursor			
	55	gi 293321591	[Gallus gallus]	4.9	88.4 (M:88.4)	2
			PREDICTED: vacuolar			
			protein sorting-associated			
			protein 13C isoform X2			_
	56	gi 513201109	[Gallus gallus]	416.6	88.2 (M:88.2)	5
			PREDICTED: LOW			
			QUALITY PROTEIN:			
			histone-lysine N-			
			methyltransferase MLL2,			
	57	gi 513240592	partial [Gallus gallus]	575.9	87.7 (M:87.7)	6
			E3 ubiquitin-protein			
	50	1256001167	ligase HERC2 [Gallus	530 5		_
ŀ	58	g1 356991167	gallusj	528.7	86.8 (M:86.8)	1
	5 0	1610014001	PKEDICTED: E3	(00.0		_
1	39	g1 31 <i>32</i> 14081	ubiquitin-protein ligase	602.8	86.U (M:86.U)	/

		RNF213 isoform X6			
		[Gallus gallus]			
		PREDICTED: rho			
		GTPase-activating			
		protein 24 isoform X5			
60	gi 513182967	[Gallus gallus]	83.8	85.9 (M:85.9)	5
		SMC1 protein cohesin			
61	gi 29837126	subunit [Gallus gallus]	142.9	85.4 (M:85.4)	5
		PREDICTED: LOW		, , , , , , , , , , , , , , , , , , ,	
		QUALITY PROTEIN:			
		acetyl-CoA carboxylase			
62	gi 513210403	2 [Gallus gallus]	266.2	85.0 (M:85.0)	6
		PREDICTED: nesprin-2			
		isoform X1 [Gallus			
63	gi 513189629	gallus	803.8	84.9 (M:84.9)	6
64	gi 392018	filamin [Gallus gallus]	275.7	84.8 (M:84.8)	5
		PREDICTED: DENN			
		domain-containing			
		protein 4C isoform X5			
65	gi 363744378	[Gallus gallus]	211.5	84.3 (M:84.3)	4
		PREDICTED: rho			
		GTPase-activating			
		protein 24 isoform X10			
66	gi 513182982	[Gallus gallus]	73.2	83.9 (M:83.9)	5
		cgABP260 [Gallus			
67	gi 15341204	gallus]	280.3	82.9 (M:82.9)	5
		PREDICTED: A-kinase			
		anchor protein 9 isoform			
68	gi 513193268	X20 [Gallus gallus]	506.8	82.8 (M:82.8)	6
		PREDICTED: RNA			
		exonuclease 1 homolog			
		isoform X3 [Gallus			
69	gi 513227073	gallus]	130.6	82.6 (M:82.6)	6
		PREDICTED:			
		uncharacterized protein			
		KIAA1210 isoform X5			
70	gi 513181431	[Gallus gallus]	103.6	82.3 (M:82.3)	4
		PREDICTED:			
		tetratricopeptide repeat			
71	gi 513210496	protein 28 [Gallus gallus]	265.1	82.0 (M:82.0)	5
		PREDICTED:			
		extracellular matrix			
		protein FRAS1 isoform	100.5	01 6 0 6 0 1 0	
72	g1 513182471	X2 [Gallus gallus]	439.3	81.6 (M:81.6)	4
		PREDICTED: nesprin-1	1010 5		_
73	gi 513176503	1soform X6 [Gallus	1010.5	80.6 (M:80.6)	7

		gallus			
		PREDICTED: Alstrom			
		syndrome protein 1			
		isoform X1 [Gallus			
74	oil513185495	oallus]	292.6	$79.5 (M \cdot 79.5)$	5
/ +	gij515105475	PREDICTED	272.0	77.5 (141.77.5)	5
		nucleoprotein TPP			
		isoform V6 [Callus			
75	gil513196869	and and a contract of the second seco	276.8	787 (11.787)	6
15	gij515190809	DDEDICTED: utrophin	270.8	/0./ (IVI./0./)	0
		isoform V2 [Collug			
76	ail512176201	Isololili A2 [Gallus	251.1	70 2 (11.70 2)	5
/0	gi 5151/6284		331.1	/8.3 (M. /8.3)	3
		PREDICTED:			
		microtubule-actin cross-			
		linking factor 1-like,	2.62		
- 77	gi 513221651	partial [Gallus gallus]	363	78.0 (M:78.0)	6
-0		melanotransferrin/EOS47			
78	g1 1020104	[Gallus gallus]	80.9	77.9 (M:77.9)	4
		myosin heavy chain			_
79	gi 7248371	[Gallus gallus]	223.3	76.0 (M:76.0)	5
		PREDICTED:			
		protocadherin Fat 1			
		isoform X6 [Gallus			
80	gi 118090437	gallus]	507.9	76.0 (M:76.0)	5
		PREDICTED: LOW			
		QUALITY PROTEIN:			
		abnormal spindle-like			
		microcephaly-associated			
		protein homolog [Gallus			
81	gi 513195972	gallus]	398.3	75.8 (M:75.8)	6
		nuclear mitotic apparatus			
82	gi 299469458	protein [Gallus gallus]	241.4	75.8 (M:75.8)	5
		PREDICTED: dystonin			
		isoform X7 [Gallus			
83	gi 513178510	gallus]	308.2	75.7 (M:75.7)	5
		PREDICTED:			
		microtubule-associated			
		protein 1A [Gallus			
84	gi 513202440	gallus	307.1	75.5 (M:75.5)	5
		RecName:			
		Full=Cytospin-A;			
		AltName: Full=SPECC1-			
		like protein; AltName:			
		Full=Sperm antigen with			
		calponin homology and			
85	gi 91208266	coiled-coil domains 1-	124.8	75.2 (M:75.2)	5

		like			
		A-kinase anchor protein			
86	gi 158186693	9 [Gallus gallus]	455.2	75.1 (M:75.1)	5
		PREDICTED: dynein			
		heavy chain 8, axonemal			
87	gi 363731544	[Gallus gallus]	534.2	74.6 (M:74.6)	5
	81	PREDICTED dedicator			
		of cytokinesis protein 10			
88	gil363737124	[Gallus gallus]	249 7	74 4 (M·74 4)	3
	8-1	PREDICTED.	, .,		
		kinetochore-associated			
		protein 1 isoform X3			
89	gil513210175	[Gallus gallus]	251	73.9(M.73.9)	4
	51010210170	PREDICTED.	201	(101.75.5)	
		intersectin-2 isoform X6			
90	oi 513179159	[Gallus gallus]	172.2	73.7 (M.73.7)	4
70	51010179109	PREDICTED.	1/2.2	/5./ (11./5./)	
		centrosomal protein of			
		290 kDa isoform X6			
91 92	gil513158331	[Gallus gallus]	288.8	73.4 (M·73.4)	5
	81010100001	Ovocalyxin-36 precursor	200.0	/5.1 (11.75.1)	
	gil62954540	[Gallus gallus]	48.8	$73.2 (M \cdot 73.2)$	1
	8102901010	PREDICTED LOW		(111/012)	-
		OUALITY PROTEIN			
		dvnein heavy chain 1.			
93	gi 513204692	axonemal [Gallus gallus]	489.6	73.2 (M:73.2)	5
		PREDICTED: ankvrin-2			
94	gi 513183661	[Gallus gallus]	447.9	72.8 (M:72.8)	5
		melanoma inhibitory			
		activity protein 3			
95	gi 478430999	precursor [Gallus gallus]	221.6	72.6 (M:72.6)	5
		PREDICTED: laminin			
		subunit alpha-5 isoform			
96	gi 513218117	X9 [Gallus gallus]	408.8	72.3 (M:72.3)	5
		PREDICTED:			
		ELKS/Rab6-			
		interacting/CAST family			
		member 1 isoform X7			
97	gi 513160180	[Gallus gallus]	117.2	72.2 (M:72.2)	5
		collagen alpha-2(I) chain			
98	gi 206597434	precursor [Gallus gallus]	128.8	71.9 (M:71.9)	5
		PREDICTED: rho			
		GTPase-activating			
		protein 10 isoform 2			
99	gi 50746309	[Gallus gallus]	88.9	71.8 (M:71.8)	5
100	gi 50745053	PREDICTED: structural	127.7	70.9 (M:70.9)	5

			maintenance of			
			chromosomes protein 6			
			isoform X2 [Gallus			
			gallus]			
			PREDICTED: telomere-			
			associated protein RIF1			
	101	gi 363736045	[Gallus gallus]	254.2	70.8 (M:70.8)	4
			PREDICTED: LOW			
			QUALITY PROTEIN:			
			unconventional myosin-			
	102	gi 363737706	Vc [Gallus gallus]	202.8	70.2 (M:70.2)	4
			beta-defensin 11 [Gallus			
	103	gi 116248042	gallus]	11.6	70.1 (M:70.1)	1
			PREDICTED: myosin-3			
	104	gi 513213292	[Gallus gallus]	219	70.1 (M:70.1)	4
			MPDZ protein [Gallus			
	105	gi 343469213	gallus]	214.1	70.0 (M:70.0)	5
			PREDICTED: probable			
			phospholipid-			
			transporting ATPase VB			
			isoform X8 [Gallus			
	106	g1 363739068	gallus	165.6	69.5 (M:69.5)	4
			PREDICTED: testis-			
			expressed sequence 11			
	107		protein isoform X8	101.4		
	107	gi 513180457	[Gallus gallus]	101.4	69.4 (M:69.4)	4
			PREDICTED: sickle tail			
	100	1512160024	protein homolog isoform	1567	(0,2) (M $(0,2)$)	4
	108	g1 513168024	X16 [Gallus gallus]	156./	69.2 (M:69.2)	4
			PREDICTED: bile sait			
	100	~:1512104212	export pump isoform X2	1405	(0, 2) (M, $(0, 2)$)	1
	109	gi 515194215		148.3	08.2 (WI:08.2)	4
			PREDICTED: LOW			
			QUALITY PROTEIN.			
	110	ail513175708	[Gallus gallus]	564.6	677 (M·677)	5
	110	gij515175708	PREDICTED: protein	504.0	07.7 (11.07.7)	
	111	ail513100108	AHNAK2 [Gallus gallus]	380 1	$67.3 (M \cdot 67.3)$	5
	111	gij515170170	PREDICTED	567.1	07.5 (141.07.5)	
			cytoplasmic dynein 1			
			heavy chain 1 [Gallus			
ļ	112	gi 363734923	gallus]	525 5	67.2 (M·67.2)	4
	113	gi 2145309	TBP0 [Gallus gallus]	33.1	$67.0 (M \cdot 67.0)$	4
	115	012110309	gonad expressed	55.1	07.0 (11.07.0)	т
	114	gi 60544838	transcript [Gallus gallus]	177 1	66.9 (M·66 9)	5
ļ	115	gi 298542005	unnamed protein product	121 7	66.8 (M:66 8)	5

		[Gallus gallus]			
		PREDICTED: coiled-coil			
		domain-containing			
		protein KIAA1407			
		homolog isoform X2			
116	oi 363728442	[Gallus gallus]	106	$66.4 (M \cdot 66.4)$	4
110	51303720112	PREDICTED: ADP_	100	00.1 (11.00.1)	
		ribosylhydrolase like 1			
		isoform X4 [Gallus			
117	ail512164427	sollus]	208 5	66 A (NI.66 A)	2
11/	gi 313104437	SDACD [Colling colling]	102.6	66.1 (M.66.1)	3
118	gi 21023077	SPACK [Gallus gallus]	102.0	00.1 (N1.00.1)	4
		PREDICTED: E3			
110		ubiquitin-protein ligase	1 - 6		
119	g1 118093388	HECW2 [Gallus gallus]	176	65.9 (M:65.9)	3
		PREDICTED: WD			
		repeat-containing protein			
120	gi 513192568	96 [Gallus gallus]	204	65.8 (M:65.8)	4
		PREDICTED: protein			
		unc-79 homolog isoform			
121	gi 513188813	X29 [Gallus gallus]	262.5	65.7 (M:65.7)	4
		PREDICTED:			
		bromodomain testis-			
		specific protein isoform			
122	gi 513197226	X6 [Gallus gallus]	102.7	65.6 (M:65.6)	5
		protocadherin Fat 3			
123	gi 162417991	precursor [Gallus gallus]	501.6	65.3 (M:65.3)	4
	0	PREDICTED: formin-			
124	gil513225858	like 1 [Gallus gallus]	131.3	65.2 (M:65.2)	5
	8-1	PREDICTED.			
		polycystin-1 isoform X3			
125	oi 513208391	[Gallus gallus]	479.2	$64.9 (M \cdot 64.9)$	3
120	51010200000	PREDICTED ATP-	179.2		
		dependent RNA belicase			
		DHY20 partial [Gallus			
126	ail512220001	pillus]	1/0	617 (NI.617)	1
120	gi 515229901	BREDICTED: LOW	140	04.7 (101.04.7)	4
		PREDICTED. LOW			
		QUALITY PROTEIN:			
107	1512175724	lysosomal-trafficking	10 (0		-
127	g1 5131/5/24	regulator [Gallus gallus]	426.9	64.6 (M:64.6)	5
		PREDICTED:			
		biorientation of			
		chromosomes in cell			
		division 1-like isoform			
128	gi 513184797	X3 [Gallus gallus]	325.3	64.6 (M:64.6)	4
		PREDICTED: stabilin-1			
129	gi 513204547	[Gallus gallus]	268.7	64.5 (M:64.5)	4
		PREDICTED: LOW			
-------	---------------	--	-------	---------------------------	---
		OUALITY PROTEIN			
		teneurin-4 isoform X6			
130	gil513166523	[Gallus gallus]	311.5	$64.4 (M \cdot 64.4)$	4
100	8.0.000000	glutathione peroxidase 3	01110		-
131	oi 253735708	precursor [Gallus gallus]	24.6	$63.9 (M \cdot 63.9)$	1
1.5.1	<u> </u>	PREDICTED.	21.0	05.9 (11.05.9)	1
		transcriptional repressor			
		NE X1 isoform X16			
132	mil513170156	[Gallus gallus]	110 /	$63.8 (M \cdot 63.8)$	3
152	gij515170150		117.4	05.8 (141.05.8)	5
		serine/threenine protein			
		kinase WNK1 isoform			
122	ail512160161	Xinase winki isololili X5 [Gollus gollus]	202.8	62.1(M.62.1)	1
155	gij515100101	DEDICTED: LOW	293.0	05.4 (11.05.4)	4
		OLIALITY DOCTEIN:			
		QUALITY FROTEIN.			
		lineage lineage lineage 1			
124	ail262711272	[Gollus gollus]	170.2	62 2 (M·62 2)	1
134	gi 303/443/2		170.5	05.2 (11.05.2)	4
		r REDICTED. DINA			
		porymerase epsilon			
		catalytic subuilit A			
125	-: 1512211020	Isoform XI [Gallus	2(0.7	$(2,0)(\mathbf{M},(2,0))$	4
135	g1 513211039		260.7	63.0 (M:63.0)	4
		PREDICTED: mitogen-			
		binding protein 1 igoform			
126	~il512107516	V1 [Collug collug]	100 /	(2.0) (M((2.0))	1
130	gij515187510	AT [Gallus gallus]	189.4	02.9 (M.02.9)	4
127	~i 429007	aipna-2-macroglobulin	506 9	(2.0) (M((2.0))	1
137	gi 438007	PREDICTED, DEN	300.8	02.9 (MI.02.9)	4
		PREDICTED: BEN			
		domain-containing			
120		protein 3 isoformX2	07((27)	2
138	g1 363/32080	[Gallus gallus]	87.6	62./(M:62./)	3
		PREDICTED: glutamate			
		receptor ionotropic,			
120	15121(2559	kainate 1 isoform X2	100 1		4
139	g1 513162558	[Gallus gallus]	102.1	62.4 (M:62.4)	4
		hypothetical protein			
1.40	10000000	KCJMB04_13m2 [Gallus	150.2		~
140	g1 60098865		158.3	62.0 (M:62.0)	3
		PREDICTED: myosin			
		heavy chain, skeletal			
		muscle, adult isoform X1			_
141	g1/363740639	[Gallus gallus]	223.1	62.0 (M:62.0)	3
142	gi 513181168	PREDICTED:	163.2	62.0 (M:62.0)	4

		uncharacterized protein			
		KIAA2022 isoform X7			
		[Gallus gallus]			
143	gi 211121	agrin [Gallus gallus]	211.3	61.9 (M:61.9)	5
		T-Box protein 3 [Gallus			
144	gil3184528	gallus]	46.4	61.6 (M:61.6)	4
	810101020	PREDICTED E3			-
		ubiquitin-protein ligase			
145	oil513162834	TTC3 [Gallus gallus]	226.8	$61.2 (M \cdot 61.2)$	4
110	<u><u> </u></u>	PREDICTED: 1-	220.0	01.2 (11.01.2)	•
		phosphatidylinositol 4 5-			
		hisphosphate			
		phosphodiesterase eta-1			
		isoform X4 [Gallus			
146	ail363737435	allus]	188.8	61.1 (M·61.1)	5
140	gij00777455	DPEDICTED: C2	100.0	01.1 (11.01.1)	5
		domain containing			
		notain 2 isoform V6			
147	mil513166063	[Gallus gallus]	256.0	61.0 (M·61.0)	1
147	gij515100905		230.9	01.0 (141.01.0)	4
		r KEDIC I ED.			
		bayyy abain 1 isoform			
140	~i 110005124	N2 [Collug collug]	401.7	(1.0)(M(1.0))	2
148	gi 118083134	A2 [Gallus gallus]	491./	01.0 (MI.01.0)	3
		PREDICTED: protein			
140	~:1512165609	Y2 [Callus callus]	2120	(0,0) (M,(0,0))	F
149	gi 515105098	DEDICTED: LODMA	343.8	00.9 (M.00.9)	3
		PREDICTED. HORMA			
		domain-containing			
150	~il512211222	[Collug collug]	206	(0,0) (M($(0,0)$)	2
130	gi 313211222	[Gallus gallus]	38.0	00.9 (M.00.9)	3
151	~il226922201	hydrocephalus inducing	561 1	60.6 (M: 60.6)	4
131	gi 220825291	DEDICTED: LOW	504.4	00.0 (11.00.0)	4
		OLIALITY DEOTEINI			
		QUALITY PROTEIN.			
150	~i 512170225	mamm-A-interacting	127.0	60.1 (M: 60.1)	1
132	gi 3131/8323	protein i [Ganus ganus]	137.9	00.1 (MI.00.1)	4
		PREDICTED: Nipped-B			
1.52	.1512220001	nomolog-like isoform X/	201.1	(0,1,(1),(0,1))	4
153	gi 513228901		291.1	60.1 (M:60.1)	4
		PREDICIED: mitogen-			
		activated protein kinase			
1.5.4	1610176011	Kinase Kinase 4 isoform	170 5	50.0 (14.50.0)	
154	g1 5131/6211	X3 [Gallus gallus]	178.5	59.9 (M:59.9)	4
		FYVE and coiled-coil			
		domain-containing	1		
155	g1 344925838	protein I [Gallus gallus]	176.8	59.9 (M:59.9)	3

		PREDICTED: pleckstrin			
		homology-like domain,			
		family B, member 2			
		isoform X3 [Gallus			
156	gi 513162041	gallus]	147.7	59.8 (M:59.8)	4
157	gi 10241574	teneurin-2 [Gallus gallus]	310.6	59.8 (M:59.8)	4
	01	TBC1 domain family			
158	gil389616152	member 1 [Gallus gallus]	134 2	59.8 (M·59.8)	3
	8-10-02-02-02-02-02-02-02-02-02-02-02-02-02	PREDICTED:			
		uncharacterized protein			
		LOC423333 isoform X7			
159	gi 513188188	[Gallus gallus]	193.9	59.7 (M:59.7)	4
		PREDICTED: pleckstrin			
		homology domain-			
		containing family G			
		member 4B isoform X1			
160	gi 513202856	[Gallus gallus]	125.1	59.6 (M:59.6)	4
		PREDICTED: ATP-			
		binding cassette sub-			
		family A member 12			
161	gi 513192909	[Gallus gallus]	428.2	59.6 (M:59.6)	5
		DNA			
		topoisomeraseII beta			
162	gi 2463529	[Gallus gallus]	183.1	59.5 (M:59.5)	4
		PREDICTED:			
		protocadherin Fat 4			
163	gi 513183646	[Gallus gallus]	543.7	59.4 (M:59.4)	4
		PREDICTED: lysine-			
		specific histone			
		demethylase 1B isoform			
164	gi 513170392	X1 [Gallus gallus]	65.9	59.1 (M:59.1)	4
		PREDICTED: LOW		, , , , , , , , , , , , , , , , , , ,	
		QUALITY PROTEIN:			
		probable E3 ubiquitin-			
		protein ligase HECTD4			
165	gi 513210289	[Gallus gallus]	486.2	59.1 (M:59.1)	3
		PREDICTED:			
		microtubule-associated			
		protein 1B isoform X2			
166	gi 513229854	[Gallus gallus]	288.8	58.7 (M:58.7)	4
		PREDICTED: oxygen-			
		regulated protein 1			
167	gi 513172748	[Gallus gallus]	390.1	58.6 (M:58.6)	4
		PREDICTED: suppressor			
		of tumorigenicity 14			
168	gi 513222086	protein homolog isoform	94.1	58.4 (M:58.4)	4

		X16 [Gallus gallus]			
		DREDICTED: duracin			
		PREDICTED. dynemi			
		heavy chain 5, axonemai			
1(0	1512200(21	Isoform X11 [Gallus	422.0	50 1 (M 50 1)	4
169	g1 513209631		432.9	58.1 (M:58.1)	4
		PREDICTED: LOW			
		QUALITY PROTEIN:			
		golgin subfamily A			
170	gi 513169783	member 4 [Gallus gallus]	264.1	57.5 (M:57.5)	3
		Chain A, Crystal			
		Structure Of Avian Atic,			
		A Bifunctional			
		Transformylase And			
		Cyclohydrolase Enzyme			
		In Purine Biosynthesis At			
171	gi 14278285	1.75 Ang. Resolution	64.2	57.3 (M:57.3)	4
		PREDICTED: CD83			
172	gi 50733622	antigen [Gallus gallus]	23.6	57.2 (M:57.2)	3
		PREDICTED: myelin			
		transcription factor 1-like			
		isoform X30 [Gallus			
173	gi 513178813	gallus]	111	57.0 (M:57.0)	4
	8-10-10-10-00-00	PREDICTED leucine-			
		rich repeat-containing			
		protein 31 isoform X2			
174	oi 513199927	[Gallus gallus]	64 1	56 8 (M·56 8)	3
171	51010100021	axin protein 1 transcript	01.1	20.0 (11.20.0)	
175	oi 50593343	variant 1 [Gallus gallus]	94.8	56 5 (M·56 5)	2
175	510000000		71.0	50.5 (11.50.5)	
		haculoviral IAP repeat-			
		containing protein 6			
176	ail512175420		506.2	56 A (M·56 A)	2
170	gi 515175450	[Gallus gallus]	300.2	30.4 (MI.30.4)	5
177	~:1212661252	himage 1 [Callug callug]	150 (56 A (NA.56 A)	4
1//	gi 313001333	kinase I [Gallus gallus]	138.0	30.4 (M.30.4)	4
		PREDICTED: LOW			
		QUALITY PROTEIN: 1-			
		phosphatidylinositol 4,5-			
		bisphosphate			
		phosphodiesterase beta-2			
178	g1 363734028	[Gallus gallus]	138.5	56.4 (M:56.4)	4
		RecName:			
		Full=Neuronal cell			
		adhesion molecule;			
		Short=Nr-CAM;			
		AltName: Full=Neuronal			
179	gi 462740	surface protein Bravo;	141.8	56.2 (M:56.2)	3

		Short=gBravo; AltName:			
		Full=NgCAM-related			
		cell adhesion molecule;			
		Short=Ng-CAM-related:			
		Flags: Precursor			
		PREDICTED' SWI/SNF-			
		related matrix-associated			
		actin-dependent regulator			
		of chromatin subfamily			
		A member 5 isoform X1			
180	gil513182151	[Gallus gallus]	116.6	56.0 (M·56.0)	4
100	510101010101	PREDICTED: cytosolic	110.0		
		nhospholinase A2 ensilon			
		isoform X2 [Gallus			
181	gil513187539	gallus]	91 7	$55.9 (M \cdot 55.9)$	3
101	5101010100	PREDICTED: I OW	71.7		
		OUALITY PROTFIN.			
		gamma-tubulin complex			
		component 6 [Gallus			
182	gil513158072	component o [Ganus	203.3	$55.8 (M \cdot 55.8)$	1
102	gi 227016	analinanratain AI	203.3	55.8 (M.55.8)	4
105	gi 227010		20.0	<i>33.7</i> (WI. <i>33.7</i>)	5
		PREDICTED.			
		chondroitin sunate			
		proteoglycan 4-like			
104	1512220146	isoform X2 [Gallus	275.0		2
184	g1 513229146		275.9	55.6 (M:55.6)	3
		PREDICTED: peripheral			
		plasma membrane			
105		protein CASK isoform			
185	g1513163146	XII [Gallus gallus]	94.5	55.3 (M:55.3)	3
		chromodomain-helicase-			
10.6		DNA-binding protein 2			
186	g1 510936992	[Gallus gallus]	212.7	54.9 (M:54.9)	4
		PREDICTED: kinesin			
		family member 1A			
		isoform X5 [Gallus			
187	gi 513199109	gallus]	192.4	54.4 (M:54.4)	4
		cortactin-binding protein			
188	gi 117380068	2 [Gallus gallus]	177.9	54.4 (M:54.4)	3
		PREDICTED:			
		bromodomain adjacent to			
		zinc finger domain			
		protein 1A isoform X7			
189	gi 513188106	[Gallus gallus]	168.3	54.3 (M:54.3)	3
		PREDICTED: ninein-			
190	gi 513174643	like protein isoform X10	62.8	54.1 (M:54.1)	4

		[Gallus gallus]			
		PREDICTED:			
		neurobeachin-like 1			
		isoform X12 [Gallus			
191	gi 513193788	gallus	306.2	54.0 (M:54.0)	3
		hypothetical protein			
		RCJMB04 8i12 [Gallus			
192	gi 53130528	gallus	109.8	53.9 (M:53.9)	3
	81	PREDICTED: LOW			_
		OUALITY PROTEIN:			
		regulating synaptic			
		membrane exocytosis			
193	gil513172897	protein 2 [Gallus gallus]	181.8	53 8 (M·53 8)	3
175	81010112001	PREDICTED DNA	101.0		5
		helicase B isoform X3			
194	oil513158188	[Gallus gallus]	116.1	$53.7 (M \cdot 53.7)$	2
174	<u>gi</u> 515150100	aldehyde oxidase 2	110.1	<i>33.7</i> (WI. <i>33.7</i>)	2
105	ail76468580	[Gallus gallus]	1/17 7	53.6 (M·53.6)	1
175	gi /0400300	PREDICTED: probable	14/./	55.0 (WI.55.0)	
		F2 ubiquitin protoin			
		ligase HEPC1 isoform			
106	ail110005621	Ve [Gellus gellus]	5226	52.0(M.52.0)	1
190	gi 118093031	Ao [Ganus ganus] DDEDICTED: S mbase	332.0	<u>33.0 (M.33.0)</u>	4
		PREDICTED: S phase			
		cyclin A-associated			
		protein in the			
		endoplasmic reticulum			
107		isoform X6 [Gallus	1545		2
197	g1 513200951	gallus]	154.5	52.8 (M:52.8)	3
100		PREDICTED: atherin-	22.5		
198	gi 513166677	like [Gallus gallus]	33.5	52.7 (M:52.7)	2
		PREDICTED: low-			
		density lipoprotein			
		receptor-related protein 2			
		isoform X9 [Gallus			
199	gi 513194247	gallus]	521.8	52.5 (M:52.5)	4
		chick atrial myosin heavy			
200	gi 14017756	chain [Gallus gallus]	221.7	52.3 (M:52.3)	3
		PREDICTED: probable			
		ATP-dependent RNA			
		helicase DDX60 isoform			
201	gi 513181916	X1 [Gallus gallus]	210.8	51.9 (M:51.9)	4
		PREDICTED:			
		tetratricopeptide repeat			
		protein 18 isoform X1			
202	gi 513209317	[Gallus gallus]	138.2	51.8 (M:51.8)	3
203	gi 513158974	PREDICTED:	207	51.6 (M:51.6)	3

		transcription factor 20			
		isoform X7 [Gallus			
		gallus			
		PREDICTED: attractin			
204	oil513185632	nartial [Gallus gallus]	144 3	51.5(M.51.5)	3
204	51/515105052		144.5	51.5 (141.51.5)	5
		r REDICTED.			
		proteasonie-associated			
		jacform V2 [Colling			
205	-: 1512222425	Isolorm A3 [Gallus	202.0	51 A (N. 51 A)	4
205	g1 513232435		203.9	51.4 (M:51.4)	4
		PREDICTED: polycystic			
200		kidney disease protein 1-			
206	g1 513203915	like 2 [Gallus gallus]	273.3	51.4 (M:51.4)	4
		hypothetical protein			
		RCJMB04_17e23			
207	gi 53133498	[Gallus gallus]	49.4	51.4 (M:51.4)	3
		PREDICTED: von			
		Willebrand factor A			
		domain-containing			
		protein 8-like [Gallus			
208	gi 513165204	gallus]	213.4	51.3 (M:51.3)	3
		PREDICTED: maestro			
		heat-like repeat-			
		containing protein family			
		member 2B-like isoform			
209	gi 513163290	X9 [Gallus gallus]	141.2	51.2 (M:51.2)	3
		PREDICTED: protein			
		PRRC2B isoform X15			
210	gil513212577	[Gallus gallus]	245 8	51.1 (M·51.1)	4
	81010212011	mRNA turnover protein			
		4 homolog [Gallus			
211	oil483968268	gallus]	28	$50.8 (M \cdot 50.8)$	3
211	51 +05700200	PREDICTED: scavenger	20	50.0 (141.50.0)	5
		recentor class E member			
		2 isoform V2 [Collus			
212	~i 512211075		102.2	50.7 (M:50.7)	2
212	gi 313211073		102.5	<u> </u>	3
212	-: 12(272175(PREDICTED: usnerin	572 0	50.7(1)(.50.7)	2
213	gi 303/31/30		5/5.9	50.7 (M.50.7)	3
		PREDICTED: dynein			
014	1610161060	neavy chain 5, axonemal-	533 5		
214	g1 5131/1368	like [Gallus gallus]	533.7	50.7 (M:50.7)	4
		PREDICTED: midasin			
		isoform X4 [Gallus			
215	gi 513178065	gallus	632.3	50.4 (M:50.4)	3
		PREDICTED: probable			
216	gi 513209920	ATP-dependent RNA	116.8	50.4 (M:50.4)	3

ſ			helicase DHX37 isoform			
			X3 [Gallus gallus]			
Ī			PREDICTED: lysine-			
			specific histone			
			demethylase 1A, partial			
	217	gi 513221021	[Gallus gallus]	86.3	50.3 (M:50.3)	3
ľ			PREDICTED:			
			tetratricopeptide repeat			
			protein 21B isoform X3			
	218	gi 513194426	[Gallus gallus]	157.3	50.2 (M:50.2)	3
ľ			hypothetical protein			
			RCJMB04 20k2 [Gallus			
	219	gi 53133818	gallus]	86.2	50.2 (M:50.2)	3
ľ	-	0	alpha-3 collagen type VI			
	220	gil211622	[Gallus gallus]	339.4	50.0 (M·50.0)	3
ŀ		8-1-1-0	PREDICTED: mediator			
			complex subunit 12-like			
			isoform X3 [Gallus			
	221	gil513200349	gallus]	237.8	49.6 (M·49.6)	3
ŀ		51010200019	cytoplasmic linker	237.0	19.0 (101.19.0)	
			associated protein 2			
	222	gil293651608	[Gallus gallus]	164.8	$49.5 (M \cdot 49.5)$	3
ŀ	222	gi 5733818	genhyrin [Gallus gallus]	79.7	$49.5 (M \cdot 49.5)$	3
ŀ	225	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	glutamine rich protein	17.1	19.5 (101.19.5)	5
	224	oi 2330003	partial [Gallus gallus]	112.2	$49.5 (M \cdot 49.5)$	4
ŀ	221	512550005	PREDICTED: FK 506-	112.2	19.5 (101.19.5)	1
			binding protein 15			
			isoform X8 [Gallus			
	225	gil513211995	gallus]	1383	$494(M\cdot 494)$	4
ŀ	220	51010211000	PREDICTED: golgi-	150.5	19.1 (19.1)	
			specific brefeldin A-			
			resistance guanine			
			nucleotide exchange			
			factor 1 isoform X5			
	226	oil513191098	[Gallus gallus]	200.2	$49.4 (M \cdot 49.4)$	3
ŀ	220	<u>51515171070</u>	PREDICTED: protein	200.2	+).+ (IVI.+).+)	5
	227	oil363728726	doney-2 [Gallus gallus]	2577	$49.3 (M \cdot 49.3)$	2
ŀ	221	51303720720	PREDICTED: inositol	201.1	19.5 (19.5)	
			1 4 5-trisphosphate			
			recentor type 3 isoform			
	228	gi 118102546	X2 [Gallus gallus]	304.6	$49.3 (M \cdot 49.3)$	4
ŀ	0	0-1	vitellogenin [Gallus	201.0		
ļ	229	gi 50582493	gallus	162.5	49.3 (M·49 3)	3
ŀ	/	6-10 00 0 = 170	PREDICTED AT-rich	102.0		
ļ			interactive domain-			
ļ	230	gi 513175768	containing protein 4B	146.3	49.2 (M:49.2)	3
1			01			-

		isoform X2 [Gallus			
		gallus]			
		PREDICTED: pleckstrin			
		homology domain-			
		containing family A			
		member 6 isoform X27			
231	ail513224576	[Gallus gallus]	11/1 2	$10.2 (M \cdot 10.2)$	3
231	gij515224570	RecName:	114.2	4).2 (WI.4).2)	
		Full=Transferrin recentor			
		protein 1: Short-TR:			
		Short-TfP: Short-TfP1:			
232	mil20140635	Short-Trfr	85.6	$40.0.(M \cdot 40.0)$	1
232	gi 20140033	DPEDICTED: SH2 and	05.0	49.0 (141.49.0)	4
		PX domain containing			
		r A domain-containing			
222	ail262728020	[Gallus gallus]	06.4	18 8 (M.18 8)	2
233	gij505758959	DEDICTED: growth	90.4	40.0 (11.40.0)	5
		regulation by estrogen in			
		breast cancer-like			
		isoform X13 [Gallus			
234	gil513171922	gallus]	194.6	$48.7 (M \cdot 48.7)$	3
234	51515171722	breast cancer 2 early	174.0	40.7 (141.40.7)	5
235	oil146219852	onset [Gallus gallus]	377 5	$48.7 (M \cdot 48.7)$	3
255	51140217052	hypothetical protein	577.5	40.7 (141.40.7)	5
		RCIMB04 35e7 [Gallus			
236	gi 53136870	gallus]	94 1	$48.5 (M \cdot 48.5)$	3
	510010000	PREDICTED	71.1		
		nucleoporin 210kDa-like			
		isoform X7 [Gallus			
237	gi 513223426	gallus]	188.4	$48.5 (M \cdot 48.5)$	2
	81010220120	PREDICTED: tudor	100.1	10.0 (111.10.0)	
		domain-containing			
238	oi 513179755	protein 6 [Gallus gallus]	172.7	$484(M\cdot 484)$	4
	81010119700	PREDICTED: activating	1/21/		
		signal cointegrator 1			
		complex subunit 1			
		isoform X7 [Gallus			
239	gi 513190759	gallus]	40.8	48.1 (M:48.1)	3
		PREDICTED: NF-X1-			
		type zinc finger protein			
		NFXL1 isoform X3			
240	gi 513184258	[Gallus gallus]	84.4	47.9 (M:47.9)	4
		PREDICTED:			
		alkyldihydroxyacetoneph			
		osphate synthase,			
241	gi 363735853	peroxisomal [Gallus	70.7	47.8 (M:47.8)	3

ļ			gallus]			
			PREDICTED: Dmx-like			
			1 isoform X4 [Gallus			
	242	gi 513232874	gallus	272.6	47.8 (M:47.8)	3
Ì	243	gi 186703014	PNPLA7 [Gallus gallus]	147.6	47.7 (M:47.7)	3
ľ			PREDICTED: maestro			
			heat-like repeat-			
			containing protein family			
			member 2B-like isoform			
	244	gil513239041	X5 [Gallus gallus]	128.8	47.6 (M:47.6)	3
		0	hypothetical protein			
			RCJMB04 32g20			
	245	gil60099181	[Gallus gallus]	138	47 5 (M·47 5)	3
ľ	2.0	81000000000	PREDICTED regulating	100		
			synaptic membrane			
			exocytosis protein 1			
			isoform X12 [Gallus			
	246	gi 513178375	gallus]	174	$474(M\cdot 474)$	3
ŀ	210	51010170070	PREDICTED LOW	1/1		
			OUALITY PROTEIN			
			regulator of G-protein			
			signaling 12 [Gallus			
	247	oil363733842	oallus]	166.4	$47.4 (M \cdot 47.4)$	4
	217	<u><u> </u></u>	A-kinase anchor protein	100.1	17.1 (191.17.1)	<u> </u>
	248	gi 313747559	8-like [Gallus gallus]	80.4	47.1 (M:47.1)	4
	-	0	PREDICTED: A			
			disintegrin and			
			metalloproteinase with			
			thrombospondin motifs 6			
			isoform X10 [Gallus			
	249	gil513229372	gallus]	109.6	47 1 (M·47 1)	3
ľ	,	8-10-00-000	PREDICTED.			
			chondroitin sulfate			
			proteoglycan 4 isoform			
	250	gi 513200909	X5 [Gallus gallus]	266.8	$47.0(M\cdot47.0)$	3
ľ		81010200000	PREDICTED: integrin		.,	
	251	gi 513229093	alpha-2 [Gallus gallus]	1296	$47.0(M\cdot47.0)$	3
ľ	201	81010220000	PREDICTED LOW	127.0	17.0 (191.17.0)	
			OUALITY PROTEIN			
			E3 SUMO-protein ligase			
	252	gi 513164384	RanBP2 [Gallus gallus]	336 3	46.9 (M·46 9)	3
ŀ	_02	0.0.000	protein ELYS [Gallus	220.5		
	253	gi 241982727	gallus]	252.5	46 8 (M·46 8)	3
ł			PREDICTED: splicing			
			factor, proline- and			
	254	gi 513221255	glutamine-rich isoform	68 7	46.7 (M·46 7)	3
1				00.7		5

			X6 [Gallus gallus]			
			PREDICTED:			
			androglobin [Gallus			
	255	gi 513176328	gallus]	182.1	46.6 (M:46.6)	3
			cytoskeleton-associated			
	256	gi 313851036	protein 5 [Gallus gallus]	225.2	46.6 (M:46.6)	3
		0	PREDICTED LOW			
			OUALITY PROTEIN			
			WD repeat- and FYVE			
			domain-containing			
	257	gi 513191260	protein 4 [Gallus gallus]	3577	46 5 (M·46 5)	3
	207	81010171200	hypothetical protein			
			RCIMB04 16d21			
	258	oi 60098943	[Gallus gallus]	88.6	$46.4 (M \cdot 46.4)$	3
	250	<u>gi 00070745</u>	PREDICTED: TGE-beta-	00.0	+0.+ (141.+0.+)	5
			activated kinase 1 and			
			MAP3K7-binding			
			protein 2 isoform X2			
	259	oil50742516	[Gallus gallus]	76 7	$46.4 (M \cdot 46.4)$	3
	237	51/50/42510	rho GTPase activating	70.7	+0.+ (141.+0.+)	
	260	ai 3/10732120	protein 20 [Gallus gallus]	1517	$A6.2 (M \cdot A6.2)$	3
	200	gi 547752127	PPEDICTED: Jouoino	131.7	40.2 (141.40.2)	5
			rkeDicteD. leucine-,			
			rich protoin 1 isoform			
	2(1	-: 1512200221	V21 [Calles calles]		A(2)(M,A(2))	2
	261	gi 513200221	X21 [Gallus gallus]	//./	46.2 (M:46.2)	3
			Chain A, Crystal			
	262	ail524295072	Calactin 2	14.0	A(2) (M:A(2))	2
	202	gi 334283973	by athetical matein	14.9	40.2 (M.40.2)	3
			DCDAD04 5115 [Callus			
	2(2	-: 152120447	KCJMB04_3113 [Ganus	0(5	$A \subset O (\mathbf{M} \land A \subset O)$	2
	263	gi 53129447		80.3	46.0 (M:46.0)	3
			TANC2 is a farmer X10			
	264	-: 1512225760	IANC2 ISOIOFM X19	205 4	$A \subset O (\mathbf{M} \land A \subset \mathbf{O})$	2
	264	g1 513225769	[Gallus gallus]	205.4	46.0 (M:46.0)	3
	0.65		PREDICTED: nucleolar	24.0		2
	265	gi 118082738	protein 12 [Gallus gallus]	24.9	45.9 (M:45.9)	2
			PREDICTED: tRNA-			
			dihydrouridine(47)			
	244	:151000 (0.00	synthase [NAD(P)(+)]-	00.5		_
	266	g1 513226968	IIKe [Gallus gallus]	89.5	45.9 (M:45.9)	2
			PREDICTED: probable			
ļ			ubiquitin carboxyl-			
ļ			terminal hydrolase FAF-			
ļ	0.45	1610160170	X isoform X3 [Gallus	2 00 5	45005550	-
ļ	267	g1 513163173	gallus	289.5	45.8 (M:45.8)	2
	268	gi 363727703	PREDICTED: apoptotic	142.2	45.8 (M:45.8)	2

		protease-activating factor			
		1 isoformX4 [Gallus			
		gallus			
		PREDICTED: von			
		Willebrand factor A			
		domain-containing			
		protein 2 isoform X4			
269	gi 513192043	[Gallus gallus]	76.8	45.7 (M:45.7)	3
		PREDICTED: LOW			
		QUALITY PROTEIN:			
		DNA-directed RNA			
		polymerase I subunit			
270	gi 363733636	RPA1 [Gallus gallus]	192.5	45.5 (M:45.5)	3
		PREDICTED: LOW			
		QUALITY PROTEIN:			
		unconventional myosin-			
271	gi 513200631	IXa [Gallus gallus]	301.4	45.5 (M:45.5)	3
		PREDICTED: LOW			
		QUALITY PROTEIN:			
		erythrocyte membrane			
		protein band 4.1-like 3			
272	gi 513171872	[Gallus gallus]	158.4	45.5 (M:45.5)	2
		PREDICTED: DIS3			
		mitotic control homolog			
		(S. cerevisiae)-like 2			
		isoform X2 [Gallus			
273	gi 513199614	gallus]	126.4	45.3 (M:45.3)	3
		PREDICTED: FERM			
		and PDZ domain-			
		containing protein 4			
		isoform X3 [Gallus			
274	gi 513163748	gallus]	194.3	45.3 (M:45.3)	3
275	gi 1096715	DNA methyltransferase	172.8	45.2 (M:45.2)	3
		PREDICTED: LOW			
		QUALITY PROTEIN:			
		kinesin-like protein			
276	gi 513192529	KIF20B [Gallus gallus]	207	45.1 (M:45.1)	2

REFERENCES

1. USDA Chickens and Eggs, 2013 summary. http://www.usda.gov/nass/PUBS/TODAYRPT/lyegan14.pdf

2. Kovacs-Nolan, J.; Phillips, M.; Mine, Y., Advances in the value of eggs and egg components for human health. *J Agric Food Chem* **2005**, *53*, 8421-31.

3. Cordeiro, C. M.; Hincke, M. T., Recent patents on eggshell: shell and membrane applications. *Recent Pat Food Nutr Agric* **2011**, *3*, 1-8.

4. Anton, M.; Nau, F.; Nys, Y., Bioactive egg components and their potential uses. *World's poultry science journal* **2006**, *62*, 429-438.

5. Mine, Y.; Kovacs-Nolan, J., New insights in biologically active proteins and peptides derived from hen egg. *World's poultry science journal* **2006**, *62*, 87-96.

6. Hincke, M. T.; Nys, Y.; Gautron, J.; Mann, K.; Rodriguez-Navarro, A. B.; McKee, M. D., The eggshell: structure, composition and mineralization. *Front Biosci* **2012**, *17*, 1266-80.

7. Ahlborn, G. J.; Clare, D. A.; Sheldon, B. W.; Kelly, R. W., Identification of eggshell membrane proteins and purification of ovotransferrin and beta-NAGase from hen egg white. *Protein J* **2006**, *25*, 71-81.

8. Mann, K.; Macek, B.; Olsen, J. V., Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. *Proteomics* **2006**, *6*, 3801-10.

9. Kaweewong, K.; Garnjanagoonchorn, W.; Jirapakkul, W.; Roytrakul, S., Solubilization and identification of hen eggshell membrane proteins during different times of chicken embryo development using the proteomic approach. *Protein J* **2013**, *32*, 297-308.

10. Hu, L.; Ye, M.; Zou, H., Recent advances in mass spectrometry-based peptidome analysis. *Expert Rev Proteomics* **2009**, *6*, 433-47.

11. Soloviev, M.; Finch, P., Peptidomics: bridging the gap between proteome and metabolome. *Proteomics* **2006**, *6*, 744-7.

12. Brown, K. L.; Hancock, R. E., Cationic host defense (antimicrobial) peptides. *Curr Opin Immunol* **2006**, *18*, 24-30.

13. Kannan, L.; Rath, N. C.; Liyanage, R.; Lay, J. O., Jr., Identification and characterization of thymosin beta-4 in chicken macrophages using whole cell MALDI-TOF. *Ann N Y Acad Sci* **2007**, *1112*, 425-34.

14. Kannan, L.; Rath, N. C.; Liyanage, R.; Lay, J. O., Jr., Direct screening identifies mature {beta}-defensin 2 in avian heterophils. *Poult Sci* **2009**, *88*, 372-9.

15. Kannan, L.; Liyanage, R.; Lay Jr, J.; Packialakshmi, B.; Anthony, N.; Rath, N., Identification and Structural Characterization of Avian Beta-Defensin 2 Peptides from Pheasant and Quail. *Journal of Proteomics & Bioinformatics* **2013**.

16. Fukuyama, Y.; Iwamoto, S.; Tanaka, K., Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1,5-diaminonaphthalene as a reductive matrix. *J Mass Spectrom* **2006**, *41*, 191-201.

17. Quinton, L.; Demeure, K.; Dobson, R.; Gilles, N.; Gabelica, V.; De Pauw, E., New method for characterizing highly disulfide-bridged peptides in complex mixtures: application to toxin identification from crude venoms. *J Proteome Res* **2007**, *6*, 3216-23.

18. Bhatia, V. N.; Perlman, D. H.; Costello, C. E.; McComb, M. E., Software tool for researching annotations of proteins: open-source protein annotation software with data visualization. *Anal Chem* **2009**, *81*, 9819-23.

19. Lynn, D. J.; Higgs, R.; Gaines, S.; Tierney, J.; James, T.; Lloyd, A. T.; Fares, M. A.; Mulcahy, G.; O'Farrelly, C., Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. *Immunogenetics* **2004**, *56*, 170-7.

20. Xiao, Y.; Hughes, A. L.; Ando, J.; Matsuda, Y.; Cheng, J. F.; Skinner-Noble, D.; Zhang, G., A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. *BMC Genomics* **2004**, *5*, 56.

21. Miksík, I.; Eckhardt, A.; Sedláková, P.; Mikulikova, K., Proteins of insoluble matrix of avian (gallus gallus) eggshell. *Connect Tissue Res* **2007**, *48*, 1-8.

22. Gautron, J.; Hincke, M. T.; Panheleux, M.; Garcia-Ruiz, J. M.; Boldicke, T.; Nys, Y., Ovotransferrin is a matrix protein of the hen eggshell membranes and basal calcified layer. *Connect Tissue Res* **2001**, *42*, 255-67.

23. Mann, K., The chicken egg white proteome. *Proteomics* **2007**, *7*, 3558-68.

24. Rose, M. L.; Hincke, M. T., Protein constituents of the eggshell: eggshell-specific matrix proteins. *Cell Mol Life Sci* **2009**, *66*, 2707-19.

25. Boschetti, E.; Righetti, P. G., The ProteoMiner in the proteomic arena: a non-depleting tool for discovering low-abundance species. *J Proteomics* **2008**, *71*, 255-64.

26. Jones, S. E.; Jomary, C., Clusterin. Int J Biochem Cell Biol 2002, 34, 427-31.

27. Allen, P. B.; Greenfield, A. T.; Svenningsson, P.; Haspeslagh, D. C.; Greengard, P., Phactrs 1-4: A family of protein phosphatase 1 and actin regulatory proteins. *Proc Natl Acad Sci US A* **2004**, *101*, 7187-92.

28. Tewari, R.; Spaccapelo, R.; Bistoni, F.; Holder, A. A.; Crisanti, A., Function of region I and II adhesive motifs of Plasmodium falciparum circumsporozoite protein in sporozoite motility and infectivity. *J Biol Chem* **2002**, *277*, 47613-8.

29. Behet, M. C.; Foquet, L.; van Gemert, G. J.; Bijker, E. M.; Meuleman, P.; Leroux-Roels, G.; Hermsen, C. C.; Scholzen, A.; Sauerwein, R. W., Sporozoite immunization of human volunteers under chemoprophylaxis induces functional antibodies against pre-erythrocytic stages of Plasmodium falciparum. *Malar J* **2014**, *13*, 136.

30. Zhang, G.; Sunkara, L. T., Avian antimicrobial host defense peptides: from biology to therapeutic applications. *Pharmaceuticals (Basel)* **2014**, *7*, 220-47.

31. Mann, K., The chicken egg white proteome. *Proteomics* **2007**, *7*, 3558-68.

32. Odani, S.; Koide, T.; Ono, T.; Takahashi, Y.; Suzuki, J., Covalent structure of a low-molecular-mass protein, meleagrin, present in a turkey (Meleagris gallopavo) ovomucoid preparation. *J Biochem* **1989**, *105*, 660-3.

33. Naknukool, S.; Hayakawa, S.; Ogawa, M., Multiple biological functions of novel basic proteins isolated from duck egg white: duck basic protein small 1 (dBPS1) and 2 (dBPS2). *J Agric Food Chem* **2011**, *59*, 5081-6.

34. Gong, D.; Wilson, P. W.; Bain, M. M.; McDade, K.; Kalina, J.; Herve-Grepinet, V.; Nys, Y.; Dunn, I. C., Gallin; an antimicrobial peptide member of a new avian defensin family, the ovodefensins, has been subject to recent gene duplication. *BMC Immunol* **2010**, *11*, 12.

35. Lynn, D. J.; Higgs, R.; Lloyd, A. T.; O'Farrelly, C.; Hervé-Grépinet, V.; Nys, Y.; Brinkman, F. S.; Yu, P. L.; Soulier, A.; Kaiser, P.; Zhang, G.; Lehrer, R. I., Avian beta-defensin nomenclature: a community proposed update. *Immunol Lett* **2007**, *110*, 86-9.

36. Marie, P.; Labas, V.; Brionne, A.; Harichaux, G.; Hennequet-Antier, C.; Nys, Y.; Gautron, J., Quantitative proteomics and bioinformatic analysis provide new insight into protein function during avian eggshell biomineralization. *J Proteomics* **2015**, *113*, 178-93.

37. Meyer, L. C.; Wright, N. T., Structure of giant muscle proteins. *Front Physiol* 2013, *4*, 368.

38. Sun, C.; Xu, G.; Yang, N., Differential label-free quantitative proteomic analysis of avian eggshell matrix and uterine fluid proteins associated with eggshell mechanical property. *Proteomics* **2013**, *13*, 3523-36.

39. Tam, C.; Mun, J. J.; Evans, D. J.; Fleiszig, S. M., Cytokeratins mediate epithelial innate defense through their antimicrobial properties. *J Clin Invest* **2012**, *122*, 3665-77.

40. Superti, F.; Ammendolia, M.; Berlutti, F.; Valenti, P., Ovotransferrin. In *Bioactive Egg Compounds*, Huopalahti, R.; López-Fandiño, R.; Anton, M.; Schade, R., Eds. Springer: 2007; pp 43-50.

41. Gautron, J.; Réhault-Godbert, S.; Pascal, G.; Nys, Y.; Hincke, M. T., Ovocalyxin-36 and other LBP/BPI/PLUNC-like proteins as molecular actors of the mechanisms of the avian egg natural defences. *Biochem Soc Trans* **2011**, *39*, 971-6.

42. Mann, K.; Mann, M., In-depth analysis of the chicken egg white proteome using an LTQ Orbitrap Velos. *Proteome Sci* **2011**, *9*, 7.

43. Mann, K.; Mann, M., The proteome of the calcified layer organic matrix of turkey (Meleagris gallopavo) eggshell. *Proteome Sci* **2013**, *11*, 40.

44. Gautron, J.; Murayama, E.; Vignal, A.; Morisson, M.; McKee, M. D.; Réhault, S.; Labas, V.; Belghazi, M.; Vidal, M. L.; Nys, Y.; Hincke, M. T., Cloning of ovocalyxin-36, a novel chicken eggshell protein related to lipopolysaccharide-binding proteins, bactericidal permeability-increasing proteins, and plunc family proteins. *J Biol Chem* **2007**, *282*, 5273-86.

45. Huopalahti, R., Rosina López-Fandiño, and Marc Anton, eds., *Bioactive egg compounds*. Springer: Berlin, 2007; p 298.

46. Lieleg, O.; Lieleg, C.; Bloom, J.; Buck, C. B.; Ribbeck, K., Mucin biopolymers as broad-spectrum antiviral agents. *Biomacromolecules* **2012**, *13*, 1724-32.

47. Heutinck, K. M.; ten Berge, I. J.; Hack, C. E.; Hamann, J.; Rowshani, A. T., Serine proteases of the human immune system in health and disease. *Mol Immunol* **2010**, *47*, 1943-55.

48. Mann, K.; Olsen, J. V.; Macek, B.; Gnad, F.; Mann, M., Phosphoproteins of the chicken eggshell calcified layer. *Proteomics* **2007**, *7*, 106-15.

49. Hincke, M. T.; Nys, Y.; Gautron, J., The Role of Matrix Proteins in Eggshell Formation. In *Journal of poultry science*, 2010; Vol. 47, pp 208-219.

50. Horvat-Gordon, M.; Yu, F.; Burns, D.; Leach, R. M., Ovocleidin (OC 116) is present in avian skeletal tissues. *Poult Sci* **2008**, *87*, 1618-23.

51. Ahmed, N.; Rice, G. E., Strategies for revealing lower abundance proteins in twodimensional protein maps. *J Chromatogr B Analyt Technol Biomed Life Sci* **2005**, *815*, 39-50.

52. Aebersold, R., A stress test for mass spectrometry–based proteomics. *Nature methods* **2009**, *6*, 411-412.

53. Makkar, S.; Rath, N. C.; Packialakshmi, B.; Huff, W. E.; Huff, G. R., Nutritional effects of egg shell membrane supplements on chicken performance and immunity. *Poultry Science* **2015**.

III. Nutritional effects of egg shell membrane supplements on chicken performance and immunity

S. Makkar^a, N. C. Rath^{b*}, B. Packialakshmi^c, W. E. Huff^b, and G. R. Huff^b

Department of Poultry Science^{a,b}, USDA/Agricultural Research Service^b, Poultry Science Center, Cell & Molecular Biology Program^c, University of Arkansas, Fayetteville, AR 72701, USA

Poult Sci. 2015, 94:1184-9; Doi: 10.3382/ps/pev098. Epub 2015 Apr 3.

ABSTRACT

Eggshell membranes (ESM) contain a variety of proteins and peptides which help in the development of embryo and provide protection to it. Many of the peptides and proteins associated with ESM have antimicrobial, immune-modulatory, and adjuvant properties. We hypothesized that the membrane byproducts from egg, provided as post hatch nutritional supplements to chickens, may improve their performance and immunity. To explore its effect, we fed 3 groups of broiler chicks with feed containing 0, 0.2% and 0.4% ESM from day 1 post hatch through 14 days and regular feed thereafter. The birds were individually weighed at the onset of the experiment and at weekly intervals until the termination at third week when they were bled and euthanized. The relative weights of liver, spleen, bursa, and heart, hematology profiles, clinical chemistry variables including serum IgM, IgG and corticosterone concentrations measured. The chickens in the ESM treated groups showed a statistically significant increase in BW with no impact on relative organ weights. Compared with controls, the WBC and lymphocyte percentage increased in chickens fed 0.4% ESM whereas the monocyte percentage decreased at both levels of ESM. Except for the serum protein which increased in ESM fed birds no other metabolic clinical chemistry variables showed any significant change. Both IgM and IgG(Y) levels were elevated and corticosterone levels reduced in chickens fed ESM supplemented diets. Our results suggest that ESM supplements during the early phases of growth may improve immunity and stress variables, and enhance their growth performance without any detrimental effect on other physiological parameters.

Key words: egg shell membrane, chicken, growth, immunity, stress

INTRODUCTION

Eggshells are byproducts of the poultry industry, which consist largely of calcareous outer shells underlined by proteinaceous membranes and the proteins that adsorb to these membranes from egg white (Hincke, et al., 2012; Mann, 2007; Mine and Kovacs-Nolan, 2006). The shell membranes (ESM) are fibrous structural proteins made up of collagens and keratins that are generally resistant to conventional gastric proteases. However there are also numerous other proteins and peptides with antimicrobial, antioxidant, and immune-modulatory properties such as lysozyme, ovotransferrin, ovalbumin, globulins, ovomucins, and defensins present in these membranes (Miksík, et al., 2007). Many of these proteins are functionally similar to some milk proteins which confer post-natal protection to newborns, help maturation of gut, and shape their microbiome (Lawrence and Pane, 2007; Rose and Hincke, 2009). Antimicrobial peptides not only provide protection against a wide range of microbes including bacteria and fungi but also can function as adjuvants enhancing immunity against foreign antigens (Brown and Hancock, 2006). In view of the need for alternatives to antibiotics in meat animal production (Seal, et al., 2013; Thacker, 2013), exploring the potential of egg byproducts to improve immunity and disease resistance in poultry is logical. We hypothesized that the factors present in the ESM may help modulate immunity and performance of chickens if provided as post hatch nutrient supplements which is the objective of this study.

MATERIALS AND METHODS

Preparation of eggshell and ESM

Unfertilized fresh eggs removed of albumen and yolk were washed by mild scrubbing inside of the shell under running water and peeled to obtain membranes. The membranes were washed by stirring with excess water for 2-3 hours, lyophilized, and finally ground to powdery flakes using

84

a commercial blender. To determine the membrane yield, the individual eggs and their membranes were processed separately. For preliminary trials, ESM and whole shells with or without membranes were ground separately, and used as supplements to evaluate their effects on chicken performance using BW and relative organ weights as the variables. The above preparations were mixed with the grower diet formulated per NRC specification (NRC, 1994) using a feed mixer. The amount of eggshell and ESM were set to the concentrations of 5% whole shell, 4.8% shell without membrane, and 0.2% ESM based on the observation that a large egg yields approximately 5-6 g shell and 0.2-0.25 g of ESM. Based on those initial trials, subsequent studies were done using only the ESM preparations at 0.2 and 0.4% levels, respectively

ESM and feed analysis

The nitrogen (**N**), calorie, and selective mineral content of ESM supplemented feed were analyzed in the Central Analytical Laboratory of the University of Arkansas using randomly sampled ESM powder and feed. Dumas N analyzer, bomb calorimeter, and inductively coupled plasma spectroscopy (**ICP**) were used for respective analyses.

Chicken treatments

Studies were approved by the University of Arkansas, Institutional Animal Care and Use Committee. In all trials day-old male broiler chicks from local hatchery (Cobb) were used. In the preliminary trial, the birds were divided into 3 groups consisting of 16 birds each, placed in 2 replicate battery cages, and provided *ad libitum* access to feed and water. The chickens were provided specified diets from day 1 through 14 and regular diets thereafter till the termination of experiments. The follow up and final trial reported here was done using ESM at 2 concentrations, 0.2% and 0.4%, respectively. Birds were monitored daily for mortality and

welfare. The BW of the chickens were measured at the beginning and at weekly intervals thereafter. All birds were necropsied at three weeks of age. *Blood collection and organ weight* On day 21, the chickens were weighed and 6 from each of the replicate cages were bled by cardiac puncture; the blood was collected in Vaccutainer tubes containing EDTA for hematology and clot accelerator for serum clinical chemistry analyses. The chickens were killed by cervical dislocation and the weights of liver, heart, spleen, and bursa recorded, and calculated as percentage of BW. The blood with clot accelerator were kept at room temperature for 2 hours, centrifuged at 2,500g to separate serum, and stored in aliquots at -20 °C until the assays were done.

Hematology

Hematology measurements were done with EDTA anti-coagulated blood within 2 h of bleeding using a Cell-Dyn 3500 blood analysis system (Abbott Diagnostics, Abbott Park, IL), standardized for avian blood. The white blood cell (**WBC**), heterophil (**H**), lymphocyte (**L**), monocyte (**M**), eosinophil (**E**), basophil (**B**), red blood cell (**RBC**), and thrombocyte counts, hemoglobin, hematocrit, mean corpuscular volume (**MCV**), microhematocrit (**MCH**), red blood cell distribution width (**RDW**) values were measured, and the heterophil to lymphocyte ratios (**H/L**) calculated.

Serum chemistry, corticosterone, IgG, and IgM determination

The serum was used to determine clinical chemistry variables using a clinical chemistry analyzer (Ciba Corning Diagnostics Corp; Medfield MA). The parameters included protein, glucose, cholesterol, calcium, phosphorous, magnesium, triglycerides, blood urea nitrogen (**BUN**),

alanine aminotransferase (ALT), aspartyl aminotransferase (AST), gamma glutamyl transferase (GGT), creatinine, creatine kinase, and alkaline phosphatase. Serum corticosterone levels were measured using a Detect X enzyme immunoassay kitTM purchased from Arbor Assays (Ann Arbor, MI). Serum samples from 12 birds in each group were diluted 1:20 using the assay buffer provided in the kit, and the immunoassay done per instructions in the kit. The concentrations of corticosterone in serum samples were calculated from a standard curve obtained using the supplied standard. The results were expressed as nanograms of corticosterone per ml. Similarly, the IgM and IgG concentrations of the sera were determined in triplicates using reagents obtained from Bethyl Laboratory (Montgomery, TX), following the suggested instructions. Eight well strips (BD Falcon) were coated with either goat anti chicken IgM or IgG antibodies and the assays performed per respective instructions using sera diluted to 1:20,000 for IgM and 1:5000 for IgG as determined in preliminary assays. The goat anti chicken IgM- or IgG-horse radish peroxidase (HRP) were used as secondary antibodies respectively. The HRP enzyme activity was measured using tetramethylbenzidine (TMB) substrate as the end point. The concentrations of antibodies in the sera were calculated from their respective standard curves obtained using a reference calibrator serum supplied in the kit. The results were reported as mg/ml serum.

Statistical analyses

The relative organ weights were calculated as percentage of whole BW. All results were evaluated using Duncan's multiple range test using SAS software (SAS, 2009) and a *P*-value of ≤ 0.05 considered significant.

RESULTS

The preliminary trial with shell with or without membranes caused a substantial reduction in the BW while ESM alone supported growth (not shown). Similarly, the relative weights of both heart and liver increased significantly in groups receiving feed with shell containing preparations indicating their toxic effects. The chickens receiving feed supplemented with ESM only did not show any change in relative organ weights (not shown). The results of the final trial are shown later.

The analysis of ESM showed the N content ~ 86 % of total mass. When ESM added at 0.2% or 0.4% levels to feed, showed negligible differences compared with the total protein, caloric, or elemental content of regular diet (Table 1).

Mortality, health, and BW

Chickens fed control or ESM supplemented diets showed no mortality during the trial. The birds in overall appeared healthy and alert with no signs of sickness or lethargy. The BW showed increased differences in birds fed 0.4% ESM supplemented diet starting from first week of growth (Fig 1). At final week both treatments showed statistically higher BW relative to the controls. The BW and relative organ weight changes are shown in Table 2. There were no changes in relative heart, liver, spleen, and bursa weights of birds fed ESM supplemented diet compared with controls.

Blood Differential count

There was a significant increase in WBC, lymphocyte, RBC, and HCT values, and a decrease in monocyte counts of chickens fed 0.4% ESM compared with controls. In chickens receiving 0.2% ESM there was no significant change in blood cell counts except for monocytes which decreased as compared with control birds (Table 3).

Serum clinical chemistry, corticosterone, IgM, and IgG assays

Except for the total protein content of serum there were no changes in any of the clinical chemistry parameters including AST, ALT, GGT, BUN, uric acid, Ca, or P (Table 4). IgM and IgG content showed significant increases in the sera of chickens fed both 0.2% and 0.4% levels of ESM (Fig 2). The corticosterone levels on the contrary, showed significant reduction in the sera of birds fed 0.4% ESM supplemented diet and numerically lower at 0.2% level (Fig 3).

DISCUSSION

Salvaged egg byproducts from defective eggs have been shown to improve livestock performance based on their nutritive values (Al-Harthi, et al., 2011; Schmidt, et al., 2007). But the use of eggshell membranes as feed supplements has been little explored. Considering the large numbers of immunomodulatory proteins and peptides that are present in shell membrane (Cordeiro and Hincke, 2011; Miksík, et al., 2007; Mine, 2007), we hypothesized that ESM may have beneficial effects on the physiology of chickens. Inclusion of ESM in the diet not only caused a moderate to significant weight gain but also elevated both serum IgM and IgG levels indicative of modulation of humoral immunity. There was no change in relative weights suggestive of any negative or inflammatory effect of ESM. The changes in some blood cell parameters such as WBC and lymphocyte counts that were increased with 0.4% ESM fed birds along with their antibody (IgM and IgG) response, may suggest a stimulation of their adaptive

immune response. Although the monocyte counts decreased at both treatment levels, the heterophil counts and H/L ratio showed only numerical decrease at 0.4% levels of ESM. Stress is a major factor that decreases monocyte counts. Our results showed that the blood corticosterone levels were reduced in chickens fed ESM diets suggesting a lower levels of stress in these birds although the mechanism for its decrease is not understood. Stress and inflammation can also cause a loss of BW and present other signs of sickness such as lethargy that was not observed in ESM fed birds. Low levels of stress can also imply better feeding behavior (Bunnett, 2005) that would contribute to increase in BW. The sickness was also not evident from clinical chemistry variables such as the AST, ALT, and GGT values which are linked to hepatic dysfunction and poultry myopathy (MacRae, et al., 2006). Similarly, there was no elevation in the levels of blood urea nitrogen (BUN), uric acid, and creatinine that would indicate kidney dysfunction or creatine kinase which is a sign of muscle dysfunction. The increases in blood lymphocyte, IgG, and IgM levels indicate a modulation of immunity as compared with control birds. IgM is a natural antibody produced by B1 lymphocytes that fights infection, prevents inflammation, reacts with a variety of foreign antigens including pathogen associated molecules, activates complement, foreruns, and stimulates IgG response (Boes, 2000; Ehrenstein and Notley, 2010; Grönwall and Silverman, 2014). Similarly, an increase in the levels of IgG in ESM fed chickens also suggests a modulation of adaptive immune response. These antibodies play vital roles for protection against a variety of microbial pathogens (Jeurissen, et al., 2000; Sharma, 1997). Whether the antibody response to ESM is transient or it establishes a lasting resistance to certain infection needs to be verified.

The shell membrane is a highly crosslinked matrix that contains many proteins and peptides such as defensins which can potentially behave as adjuvants (Brown and Hancock, 2006; Zhang, et al., 2010). It can also bind and carry foreign antigens to provide vaccine-like effects. Lactotransferrin, same as ovotransferrin in ESM, was shown to help maturation of dendritic cells of intestine and improve gut immunity (Spadaro, et al., 2008; Spadaro, et al., 2014). Chickens fed genetically engineered rice, expressing lactoferrin and lysozyme, showed improvement of gastrointestinal function with antibiotic-like effects (Humphrey, et al., 2002). Lysozyme was also shown to have similar effects in pig (Oliver and Wells, 2013).

One of the major imperatives of meat-animal production is to improve immunity (disease resistance) without sacrificing growth while abstaining from the use of antibiotics. The ESM supplement appears to have beneficial effect in chickens while it reduces stress and modulates immunity without sacrificing the growth potential of the birds.

ACKNOWLEDGEMENTS

We thank Scott Zornes and Sonia Tsai for technical assistance and Wally McDonner for animal care and technical assistance.

Variables	Control Feed	Control Feed	Control Feed
		+ESM 0.2%	+ESM 0.4%
Protein (%)	22.1	22.2	22.2
Calories/kg	4252	4221	4212
Calcium (ppm)	11531	11524	11037
Magnesium (ppm)	1552	1602	1619
Sodium (ppm)	1511	1469	1339
Phosphate (ppm)	8074	7852	7668
Sulfur (ppm)	2284	2347	2357
Zinc (ppm)	134	115	116

Table 1. Protein, calorie and selective elemental content of regular and ESM supplemented

Parameters	Control	+ESM 0.2%	+ESM0.4%
Body weight (grams)	905.38±18.35 ^b	967.50±12.97 ^a	958.00±16.89 ^a
Relative heart weight (%)	0.50±0.01 ^a	$0.54{\pm}0.02^{a}$	$0.54{\pm}0.01^{a}$
Relative liver weight (%)	2.21±0.07 ^a	2.46±0.20 ^a	2.25±0.05 ^a
Relative spleen weight (%)	0.08±0.01 ^a	0.10±0.01 ^a	0.11±0.01 ^a
Relative bursa weight (%)	0.16±0.01 ^a	0.17±0.01 ^a	0.20±0.01 ^a

Table 2. BW and the relative organ weights of chicken fed diets with and without ESM (n=16)

Values with different superscripts in a row are significantly different ($P \le 0.05$).

Fig 1. Effect of ESM supplement on weekly BW (n=16). *denotes statistically significant differences (p < 0.05) compared with the control fed chickens. The BW of chickens fed both levels of ESM supplemented diets showed statistically significant increases at 3-wk of age indicated by **.

Variables	Control	+ESM 0.2%	+ESM 0.4%
White blood cell (WBC) (x10 ³ /µL)	28.61±2.87 ^b	35.45±2.25 ^{b,a}	37.5±2.30 ^a
Heterophil (%)	14.83±1.30 ^a	11.96±1.22 ^{a,b}	11.2±1.19 ^{a,b}
Lymphocyte (%)	74.81±2.02 ^b	80.0±1.77 ^{b,a}	81.6±1.55 ^a
Monocyte (%)	8.02±0.84 ^a	$5.53{\pm}0.70^{b}$	4.95±0.37 ^b
Eosinophil (%)	0.02±0.01 ^a	0.02±0.01 ^a	$0.02{\pm}0.00^{a}$
Basophil (%)	2.34±0.12 ^a	2.50±0.14 ^a	$2.17{\pm}0.18^{a}$
Red blood cell (RBC) (× $10^6/\mu$ L)	2.08±0.02 ^b	2.09±0.03 ^b	2.2±0.03 ^a
Thrombocyte (k/µL)	13.36±0.65 ^a	$11.81{\pm}0.70^{a,b}$	9.93±0.39 ^b
Heterophil/Lymphocyte (H/L)	e 0.21±0.03 ^a	0.16±0.02 ^a	$0.14{\pm}0.02^{a,b}$
Hemoglobin (g/dL)	7.00±0.10 ^a	6.92±0.09 ^a	7.06±0.08 ^a
Hematocrit (%)	52.78±0.67 ^b	52.65±0.77 ^b	55.67±0.68 ^a
Mean corpuscular volume (MCV) (fL)	254.06±1.66 ^a	252.33±0.82 ^a	257.40±1.68 ^a
Red cell distribution width (RDW) (%)	11.76±0.16 ^a	11.79±0.11 ^a	11.91±0.14 ^a

Table 3. Hematology profiles of chickens fed with and without ESM supplemented feed (n=12)

Values with different superscripts in a row are significantly different (P<0.05)

Table 4. Clinical chemistry variables of serum from 3 wk-old chickens fed with or without ESM (n=12)

Parameters	Control	+ESM 0.2%	+ESM 0.4%
Albumin (g/dL)	0.98±0.03 ^b	1.03±0.08 ^b	1.05±0.02 ^{b,a}
Alkaline phosphate	757.83±139.78ª	958.75±186.52ª	797.58±168.70 ^a
Alanine transferase (U/L)	2.61±0.51 ^a	2.08±0.57 ^a	2.65±0.37 ^a
Aspartate aminotransferase(U/L)	189.60±4.64 ^a	194.02±6.16 ^a	193.63±5.46 ^a
Blood urea nitrogen (mg/µL)	1.12±0.09 ^a	1.12±0.11 ^a	1.19±0.43 ^a
Calcium (mg/dL)	8.80±0.16 ^{a,b}	9.11±0.21 ^a	8.47±0.13 ^b
Cholesterol (mg/dL)	107.50±3.27 ^a	110.50±5.89 ^a	109.17±3.46 ^a
Creatinine kinase (U/L)	177.08±22.97 ^a	150.75±25.56 ^a	267.25±61.65 ^a
Creatinine (mg/dL)	$0.31{\pm}0.02^a$	$0.27{\pm}0.02^{a}$	0.28±0.02 ^a
Gamma-glutamyl transferase (U/L)	14.41±5.13 ^a	14.25±0.70 ^a	14.9±0.57 ^a
Glucose (mg/dL)	230.41±5.13 ^a	240.08±5.90 ^a	238.17±0.06 ^a
Phosphorous (mg/dL)	4.33±0.08 ^a	4.46±0.23 ^a	4.45±0.06 ^a
Low density lipoprotein (mg/dL)	115.50±13.03 ^a	119.75±10.34 ^a	133.33±10.13 ^a
Total protein (g/dL)	2.23±0.04 ^c	$2.85{\pm}0.09^{b}$	3.18±0.04 ^a

Triglycerides (mg/dL)	54.17±4.75 ^a	62.58 ± 6.58^{a}	62.75±6.91 ^a
Uric Acid (mg/dL)	5.87±0.23 ^a	6.23±0.29 ^a	5.97±0.32 ^a
Magnesium (mEq/L)	1.60±0.05 ^a	1.60±0.05 ^a	1.67±0.03 ^a
Iron ($\mu g/dL$)	84.40±3.97 ^a	86.55±7.12 ^a	82.50±3.70 ^a

Values with different superscripts in a row are significantly different ($P \le 0.05$)

Fig 2. Comparison of serum IgM and IgG levels of chickens fed control, 0.2%, and 0.4% ESM supplemented diets. The IgM and IgG levels were measured as mg/ml \pm SEM (n=12 each). Values with different superscripts are significantly different (P \leq 0.05).

Fig 3. Serum corticosterone levels of chickens fed diets supplemented with or without ESM. The concentration of corticosterone was measured as ng/ml and shown as mean \pm SEM. Values with different superscripts are significantly different (P \leq 0.05).

REFERENCES

- Al-Harthi, M. A., A. A. El-Deek, and Y. A. Attia. 2011. Impacts of dried whole eggs on productive performance, quality of fresh and stored eggs, reproductive organs and lipid metabolism of laying hens. Br. Poult. Sci. 52:333-344.
- Boes, M. 2000. Role of natural and immune IgM antibodies in immune responses. Mol. Immunol. 37:1141-1149.
- Brown, K. L., and R. E. Hancock. 2006. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18:24-30.
- Bunnett, N. W. 2005. The stressed gut: contributions of intestinal stress peptides to inflammation and motility. Proc. Natl. Acad. Sci. U S A 102:7409-7410.
- Cordeiro, C. M., and M. T. Hincke. 2011. Recent patents on eggshell: shell and membrane applications. Recent Pat. Food Nutr. Agric 3:1-8.
- Ehrenstein, M. R., and C. A. Notley. 2010. The importance of natural IgM: scavenger, protector and regulator. Nat. Rev. Immunol. 10:778-786.
- Grönwall, C., and G. J. Silverman. 2014. Natural IgM: beneficial autoantibodies for the control of inflammatory and autoimmune disease. J. Clin. Immunol. 34 Suppl 1:S12-21.
- Hincke, M. T., Y. Nys, J. Gautron, K. Mann, A. B. Rodriguez-Navarro, and M. D. McKee. 2012. The eggshell: structure, composition and mineralization. Front. Biosci. 17:1266-1280.
- Humphrey, B. D., N. Huang, and K. C. Klasing. 2002. Rice expressing lactoferrin and lysozyme has antibiotic-like properties when fed to chicks. J. Nutr. 132:1214-1218.
- Jeurissen, S. H., A. G. Boonstra-Blom, S. O. Al-Garib, L. Hartog, and G. Koch. 2000. Defence mechanisms against viral infection in poultry: a review. Vet. Q. 22:204-208.
- Lawrence, R. M., and C. A. Pane. 2007. Human breast milk: current concepts of immunology and infectious diseases. Curr. Probl. Pediatr. Adolesc. Health Care 37:7-36.
- MacRae, V. E., M. Mahon, S. Gilpin, D. A. Sandercock, and M. A. Mitchell. 2006. Skeletal muscle fibre growth and growth associated myopathy in the domestic chicken (Gallus domesticus). Br. Poult. Sci. 47:264-272.
- Mann, K. 2007. The chicken egg white proteome. Proteomics 7:3558-3568.
- Miksík, I., A. Eckhardt, P. Sedláková, and K. Mikulikova. 2007. Proteins of insoluble matrix of avian (gallus gallus) eggshell. Connect. Tissue Res. 48:1-8.
- Mine, Y. 2007. Egg proteins and peptides in human health--chemistry, bioactivity and production. Curr. Pharm. Des. 13:875-884.

- Mine, Y., and J. Kovacs-Nolan. 2006. New insights in biologically active proteins and peptides derived from hen egg. World's Poult. Sci. J. 62:87-96.
- National Research Council (NRC). 1994. Nutrient requirements of poultry. Nat. Acad. Press, Washington DC.
- Oliver, W. T., and J. E. Wells. 2013. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs. J. Anim. Sci. 91:3129-3136.
- Rose, M. L., and M. T. Hincke. 2009. Protein constituents of the eggshell: eggshell-specific matrix proteins. Cell Mol. Life Sci.66:2707-2719.
- SAS Institute. 2009. SAS/Stat User's Guide, Version 8. SAS Institute Inc., Cary, NC.
- Schmidt, L. D., G. Blank, D. Boros, and B. A. Slominski. 2007. The nutritive value of egg byproducts and their potential bactericidal activity: in vitro and in vivo studies. J. Sci. Food Agric. 87: 378-387.
- Seal, B. S., H. S. Lillehoj, D. M. Donovan, and C. G. Gay. 2013. Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Anim. Health Res. Rev. 14:78-87.
- Sharma, J. M. 1997. The structure and function of the avian immune system. Acta Vet. Hung. 45:229-238.
- Spadaro, M., C. Caorsi, P. Ceruti, A. Varadhachary, G. Forni, F. Pericle, and M. Giovarelli. 2008. Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J. 22:2747-2757.
- Spadaro, M., M. Montone, M. Arigoni, D. Cantarella, G. Forni, F. Pericle, S. Pascolo, R. A. Calogero, and F. Cavallo. 2014. Recombinant human lactoferrin induces human and mouse dendritic cell maturation via Toll-like receptors 2 and 4. FASEB J. 28:416-429.
- Thacker, P. A. 2013. Alternatives to antibiotics as growth promoters for use in swine production: a review. J. Anim. Sci.Biotechnol. 4:35.
- Zhang, H. H., X. M. Yang, Q. M. Xie, J. Y. Ma, Y. N. Luo, Y. C. Cao, F. Chen, and Y. Z. Bi. 2010. The potent adjuvant effects of chicken beta-defensin-1 when genetically fused with infectious bursal disease virus VP2 gene. Vet. Immunol. Immunopathol. 136:92-97.
IV. Protein profiles of hatchery derived egg shell membrane

Abstract

Eggshell membranes protect growing embryo are interlaced around the albumen and form a meshwork, which can trap the invading bacteria and prevent it from further penetrating in the egg. The microstructures present on egg membranes are formed of these fibrous proteins, which are knotted together to form a net to obstruct the passage of microorganisms. We hypothesize that eggshell membranes from hatched eggs will be richer in fetal proteins and their characterization possibly might shed light into their biological relevance in providing physical and chemical defense to the growing embryo. We want to explore the eggshell membranes in the context of waste material left after the eggs are hatched. We extracted the proteins and peptides by two methods and analyzed them with mass spectrometry techniques. The proteins and peptides from hatched eggshell membranes (HESM) were extracted with methanol and also with a chaotropic agent. Both the extracts were subjected to in solution digestion, the protein and peptide profiles were determined by LC-MS/MS. The results from hatched egg membranes showed the presence of not only the presence of proteins (ovalbumin, ovocledin, lysozyme) which is found in unfertilized egg membranes but also many new proteins such as zona pleucida, filamin, lumican which can be major players in the growth, and development of the embryo.

Introduction

Egg shells from hatchery waste have been considered to be useful for biological and biomedical applications (Abeyrathne, et al., 2013; Kovacs-Nolan, et al., 2005). The empty egg shells largely consist of the outer calcareous matrix and underlying membranes that are not only proteinaceous but laced with many proteins of embryonic origins as well as a variety of microbial and hatchery contaminants (Das, et al., 2002; Mine, et al., 2003). The embryonic proteins and peptides may

be useful to bring about specific physiological modulation; however, their potential has not been tested. Previously, we found that shell membranes prepared from unfertilized eggs when fed to chickens post hatch for 2 weeks affected their growth performance, and immunity (Makkar, et al., 2015b) these membranes were abound with numerous antimicrobial and cell associated peptides (Makkar, et al., 2015a). Following those studies we observed that hatchery egg shell membrane (HESM) fed to post hatch chickens not only improved growth performance but also protected the chickens against lipopolysaccharide (LPS) induced anorexia/cachexia (unpublished). Considering that the differences between 2 membrane preparations can be considerable such as the unfertilized egg shell membrane may have only certain types of proteins and peptides inherently acquired from reproductive tract, whereas the HESM may have been differentially enriched with proteins of embryonic, blood, feather, and microbial origins, we were interested to determine their protein profile. The results of these studies are described in the current report.

Chemicals and reagents. All reagents and devices such as C18 Nu tips (Glysci.com), Spectra/Por membranes (Spectrumlabs.com), BCA protein assay kit, Pierce C18 spin columns, MS grade trypsin (Fisher Scientific.com), peptide calibration standard II (m/z 500-16000, Bruker Daltonics, Bremen, Germany), and 2-iodoacetamide (IAA) (MP Biomedicals, OH) were purchased from their respective vendors. All other reagents and supplies including 1, 4dithiothreitol (DTT), 2, 5-dihydroxybenzoic acid (DHB), were purchased from Sigma Aldrich (St. Louis, MO).

Material and methods

Empty eggshell with membranes were obtained from a local hatchery and allowed to dry at room temperature under the hood. The membranes were separated manually and ground to a powdered form using an IKA mill (find specification). The membrane powders were extracted with 4 M guanidine hydrochloride (GdHCl) containing 20 mM EDTA, and 50 mM Na-acetate, pH 5.8 and 70% methanol containing 0.1% acetic acid stirred in 20 volumes of respective solutions overnight at 4° C. The extracts were centrifuged at 21,000 g for 15 min, and the supernatant dialyzed against excess 50 mM ammonium carbonate solution with 3 changes using 1,000 Da Spectra/Por membranes. The protein concentrations of both the extracts were measured using BCA protein assay kit. The extracts were concentrated by vacuum evaporation by means of a speed vac or lypholization and approximately 50 µg of both were reduced, alkylated and trypsin digested and desalted with C18 columns and subjected to LC/MS/MS. Each of these extractions was done in 2 trials and the studies were repeated twice.

LC-MS/MS analysis of methanol and guanidine extracted proteins. The protein concentrations of GdHCL was adjusted to 5mg/ml. Approximately 50 μ g of GdHCl extracted proteins was subjected to reduction and alkylation, and digested with trypsin at the protein: trypsin ratios of 50:1 for 24 h at 37°C. The tryptic digest was desalted with Pierce C18 spin columns and chromatographed on a capillary C₁₈ column (150 x 0.1 mm, 3.5 μ m particle size, 300 Å pore size, Zorbax SB) attached to an Agilent 1200 series HPLC, interfaced with a Bruker Amazon-SL quadrupole ion trap mass spectrometer, and captive spray source. Tryptic peptides were separated at a solvent flow rate of 1.6 μ L/min with 0 to 40 % gradients of 0.1% FA (solvent A) and ACN in 0.1% FA solvent B (solvent B). Each time the samples were run three times as technical repeats and the results from 2 replicate studies were processed using Skyline software (<u>https://skyline.gs.washington.edu/labkey/project/home/begin.view</u>) for peptide dominance and scores automatically without introducing any manual bias. The same strategy was applied to the methanol extract of HESM.

LC-MS/MS analyzed proteins. Peaks were picked in the LC-MS/MS (MSⁿ) chromatogram using Bruker default settings. Bruker Proteinscape bioinformatics suite coupled with MASCOT 2.1 was used to search NCBI Gallus protein database for identification. The parent ion mass tolerance and fragment ion mass tolerance were both set at 0.6 Da. A MASCOT decoy database search was performed with all the datasets. A score threshold of 45 or more was used as a high probability match for protein identifications. The proteins with only <1% false discovery rate (FDR) and at least 1unique peptide were reported. Functional annotation for these proteins was performed using Gene Ontology tool powered by PANTHER (http://geneontology.org)

Results

The guanidine HCl extract of HESM showed the presence of more than 100 proteins (Table 1) and 47 proteins (Table 2) in the methanol. Along with ovoalbumin, ovolcledin which are present in ESM, the membranes from fertilized eggs also contains tubulin, annexin, collagen, titin, desmin in abundance. Several chaperon proteins such as heat shock 10, 60 and 70 are also found. Proteins associated with antimicrobial properties such as lysozyme, gallinacin, keratin, cystatin are also reported. Some of the proteins are unique in methanol extract, which are not found in gunadine HCl extract such as gallinacin 9, thymosin beta 4, septins. The functional annotation by PANTHER shows that most of the proteins are involved in metabolic and cellular processes in terms of their biological relevance. In terms they are mainly involved of their molecular function Structural, binding and catalytic activity. We also found 50 proteins of bacterial origin,

which gives us a clue that these membranes acts as a trap for bacteria and prevent their egression inside the egg and acts as both physical and chemical barrier for the growing embryo.

Discussion

Cordieri et.al also reported the presence of fibronectin, vitellogenin, apolipoproteins in fertilized ESM (Cordeiro and Hincke, 2015) . The fertilized membranes are more rich in cytoskeleton proteins such as stratifin, fibronectin, annexin. Fibronectin plays very important role in embryogenesis and it is involved in the cell migration, attachment and differentiation during the process of growth of an embryo. (Nicosia, et al., 1993) (Risau and Lemmon, 1988).

Defensins are an important category of antimicrobial peptides that contains highly conserved cysteine residues. They are important arsenals of our innate immune system cells and are multifunctional in nature. The chemotactic properties of defensins helps in the recruitment of the immune cells to the site of infection, eliminate the pathogens and modulate the immune system. (Guaní-Guerra, et al., 2010; Hazlett and Wu, 2011; Jäger, et al., 2012). Gallin, a member of defensin family found in egg white and now also reported in membranes have potent antimicrobial activity against E.coli (Gong, et al., 2010).

Actin, mimecan, apolipoprotein, annexin, lumican are involved in developmental process. Mimecan is unique to fertilized membranes and is extracellular matrix glycoprotein, involved in the formation of tissues (Funderburgh, et al., 1997). Lumican another extracellular protein is clinically significant in term of providing transparency to the cornea by aligning with collagen fibrils (Kao, et al., 2006; Wang, et al., 2014). Lum knock out mice are reported to have abnormality in skin, heart tissues and cornea (Chakravarti, 2002)

Thioredoxin, lactate dehydrogenase, serpin are major players in catalytic activity. Thioredoxins are antioxidants and help to prevent oxidative stress (Lu and Holmgren, 2014; Nordberg and

107

Arnér, 2001). Serpins are protease inhibitors and also important constituents of blood clotting and inflammation processes (Devlin and Bottomley, 2005; Rau, et al., 2007). Proteins are actual functional molecules and indicators of pathological condition or pharmacological process and can be good candidates to target for drug designing. Understanding the constituent proteins and peptides may shed light into their functions associated with the development and protection of the embryo and improve egg quality.

The biological interpretation of the proteomic dataset in itself is a big challenge. Therefore analysis of each single protein by referring to the literature is a limiting factor, in finding the insights of the functional aspect of these proteins. (Fredrickson, et al., 2013) (Thompson, et al., 2012). But still with the annotation software's we can broadly classify these proteins into categories based on their roles in growth, development and several other metabolic functions. Functional analysis of HESM proteins showed that majority of them is involved in cellular process, regulation and also development process.

ID Description scores mw **#Peptides** Ovalbumin [Source:UniProtKB/Swiss-629.9 42.9 ENSGALP0000000275 Prot;Acc:P01012] 11 Ovomucoid [Source:UniProtKB/Swiss-ENSGALP0000000325 Prot;Acc:P01005] 338.1 22.6 7 Ovocleidin-116 [Source:UniProtKB/Swiss-ENSGALP0000000726 Prot;Acc:F1NSM7] 225 76.8 2 orosomucoid 1 (ovoglycoprotein) precursor [Source:RefSea peptide;Acc:NP_989872] ENSGALP0000000876 167 22.3 3 peptidyl-prolyl cis-trans isomerase FKBP1A [Source:RefSeq peptide;Acc:NP 989661] ENSGALP0000001532 163.5 8.9 3 Lysozyme C [Source:UniProtKB/Swiss-Prot;Acc:P00698] ENSGALP0000002523 129.2 16.2 2 keratin 8, type II [Source:HGNC ENSGALP0000005544 Symbol;Acc:HGNC:6446] 119.1 42.1 2 Gallus gallus SH3 domain binding glutamic acid-rich protein like (SH3BGRL), mRNA. [Source:RefSeq mRNA;Acc:NM 001012574] 109.6 12.9 2 ENSGALP0000006093 Ubiquitin-fold modifier 1 [Source:UniProtKB/Swiss-9 ENSGALP0000006097 Prot;Acc:Q5ZMK7] 102.1 1 Gallinacin-9 [Source:UniProtKB/Swiss-7.3 2 ENSGALP0000008163 Prot;Acc:Q6QLR1] 85.7 Ovocalyxin-36 precursor [Source:RefSeq peptide;Acc:NP 001026032] ENSGALP0000009976 83.7 58.3 1 Gallus gallus diazepam binding inhibitor (GABA receptor modulator, acyl-CoA binding protein) (DBI), mRNA. [Source: RefSeq ENSGALP00000010763 mRNA;Acc:NM 204576] 69.8 9.6 2 Gallinacin-10 [Source: UniProtKB/Swiss-Prot;Acc:Q6QLQ9] 2 ENSGALP00000012729 62.6 7.1 keratin, type I cytoskeletal 19 [Source: ENSGALP00000013908 RefSeq peptide; Acc:NP 990340] 62.3 46 3 Usher syndrome 1C [Source: HGNC ENSGALP00000014919 Symbol;Acc:HGNC:12597] 100.1 1 51.9 ENSGALP00000016177 Uncharacterized protein [Source: 50.9 21 1

Table 1: Proteins identified in methanol extract by LC-MS/MS

	UniProtKB/TrEMBL;Acc:E1C8H4]				
	thymosin, beta 4 [Source:RefSeq				
ENSGALP00000016632	peptide;Acc:NP 001001315]	47.8	5	2	
	collagen, type XVI, alpha 1 [Source:				
ENSGALP00000017755	HGNC Symbol; Acc: HGNC:2193]	42	156.6	1	
	signal peptidase complex subunit 1				
	homolog [Source: RefSeq				
ENSGALP00000018601	peptide: Acc:NP_001165115]	37 9	27.2	1	
	zinc finger BED domain-containing	0,19		-	
	protein 4 [Source: RefSeq				
ENSGALP00000019412	pentide: Acc:NP_0011864701	37.8	132.4	2	
	alpha-D-globin (HBAD) mRNA	57.0	152.1		
	[Source: RefSeq				
ENSGAL P00000019758	mRNA: A_{CC} :NM 0010043751	373	157	1	
	utrophin [Source: HGNC	51.5	10.7	1	
ENSGAL P00000019988	Symbol: A cc: HGNC: 12635]	36.5	398.6	2	
	fatty acid_binding protein heart	50.5	570.0	4	
	Source: RefSea				
ENSGAL P0000020194	pentide: A cc:NP 0010260601	34.6	1/1 8	1	
ENSGALI 00000020174	populat, Acc. NI _001020000]	54.0	14.0	1	
ENSGAL P0000024777	noticeptin precursor [Source: Reiseq	311	21.4	1	
ENSGALI 00000024777	polycystic kidney and henotic disease 1	54.4	21.4	1	
	(autosomal recessive) [Source: HCNC				
ENSGAL P0000025120	Symbol: A co: HGNC (2016]	327	440	1	
ENSGAL100000023120	sorino pontidoso inhibitor. Kozal tupo 2	52.1	440	1	
	(acrosin trypsin inhibitor) [Source:				
ENSGAL P0000025439	HGNC Symbol: A cc: HGNC:11245]	267	6	1	
ENSGALI 00000023433	probable arginul tDNA synthetase	20.7	0	1	
	mitochondrial [Source: RefSeq				
ENSCAL 00000026777	nontido: A co: NP 0012640481	25.2	65.2	1	
ENSUALF00000020777	transforming paidia pailed pail	23.2	05.5	1	
	containing protoin 1 [Source: HCNC				
ENSCAL 00000026846	Symbol: A as: HCNC:11522]	24.5	96.4	C	
ENSGALF00000020840	syllibol, Acc. HONC. 11522	24.3	00.4	2	
ENSCAL D0000026862	Symbol: A ap:HCNC:14108]	24.2	04.2	1	
ENSUALF00000020803	Symbol, Acc. mon. 14196	24.2	94.2	1	
ENSCAL D0000027482	Fibiobiast glowin factor 2 [Source.	^^ 0	16.2	1	
ENSGALP0000027483	UIIIPIOIND/SWISS-PIOI,ACC.P48800]	22.8	10.2	1	
ENSCAL D0000027541	HCNC Symbol: A co: HCNC: 7660]	21.5	447	1	
ENSGALF00000027341	WD report containing motoin 26	21.3	44./	1	
	w D repeat-containing protein 30				
ENSCAL DOODOO20650	pontide: A oc:NP 0010220001	21.2	00 2	1	
ENSCALF00000030039	large tumor suppresser lange 1	21.2	90.2	1	
	In the suppression kindse i				
ENISCAL D0000021519	Sumbal: A as: HCNC: 4514]	21.2	1277	1	
		21.2	12/./	1	
ENSGALP0000031/25	septin 3 Source: HGNC	20.5	40	1	

	Symbol;Acc:HGNC:10750]			
	High mobility group protein B1			
	[Source:UniProtKB/Swiss-			
ENSGALP00000035930	Prot;Acc:Q9YH06]	20	24.9	1
	tRNA (adenine-N(1)-)-			
	methyltransferase non-catalytic subunit			
	TRM6 [Source:RefSeq			
ENSGALP00000036403	peptide;Acc:NP_001026212]	19.8	54.2	1
	fibrinogen silencer binding protein			
	[Source:HGNC			
ENSGALP0000038283	Symbol;Acc:HGNC:43653]	19	36.4	1
	SH3 domain binding glutamate-rich			
	protein like 3 [Source:HGNC			
ENSGALP00000038735	Symbol;Acc:HGNC:15568]	18.8	10.5	1
	UPF3 regulator of nonsense transcripts			
	homolog B (yeast) [Source:HGNC			
ENSGALP00000038904	Symbol;Acc:HGNC:20439]	18.4	56.9	1
	mutated in colorectal cancers			
	[Source:HGNC			
ENSGALP00000038912	Symbol;Acc:HGNC:6935]	18.3	112.6	1
	Polyubiquitin-B Ubiquitin			
	[Source:UniProtKB/Swiss-			
ENSGALP00000039913	Prot;Acc:P0CG62]	15.5	109.6	1
	neuregulin 2 [Source:HGNC			
ENSGALP00000040476	Symbol;Acc:HGNC:7998]	15	65.5	1

Protein id	Description	Score	Mw	# Peptides
	ovotransferrin precursor			
ENSGALP00000010	[Source:RefSeq			
405	peptide;Acc:NP_990635]	2328.2	77.8	45
ENSGALP0000036	Ovalbumin [Source:UniProtKB/Swiss-			
403	Prot;Acc:P01012]	1751.1	42.9	28
	Actin, cytoplasmic type 5			
ENSGALP0000039	[Source:UniProtKB/Swiss-			
176	Prot;Acc:P53478]	1470.9	41.8	29
ENSGALP0000005	fibronectin precursor [Source: RefSeq		273.	
654	peptide;Acc:NP_001185641]	1383	1	33
	protein-glutamine gamma-			
ENSGALP00000019	glutamyltransferase 4 [Source:RefSeq			
372	peptide;Acc:NP_001006368]	1307.4	78.9	28
ENSGALP00000016				
648		1267.7	23.9	17
ENSGALP00000015	Actin, alpha cardiac muscle 1 [Source:			
988	UniProtKB/Swiss-Prot;Acc:P68034]	1267.2	42	24
ENSGALP0000006	keratin, type I cytoskeletal 19 [Source:			
093	RefSeq peptide;Acc:NP_990340]	1110.2	46	28
	keratin, type I cytoskeletal 14-like			
ENSGALP0000005	[Source: RefSeq			
836	peptide;Acc:NP_001264913]	904.6	50	23
ENSGALP00000016	keratin 8, type II [Source: HGNC			
632	Symbol;Acc:HGNC:6446]	870.4	42.1	17
	keratin, type I cytoskeletal 14			
ENSGALP0000006	[Source:RefSeq			
090	peptide;Acc:NP_001001311]	845.1	51	20
	collagen alpha-2(I) chain precursor			
ENSGALP00000015	[Source:RefSeq		128.	
687	peptide;Acc:NP_001073182]	805.3	8	19
	Gallus gallus alpha-D-globin (HBAD),			
ENSGALP0000038	mRNA. [Source:RefSeq			
912	mRNA;Acc:NM_001004375]	776.9	15.7	13
	Annexin A2			
ENSGALP0000005	[Source:UniProtKB/Swiss-			
971	Prot;Acc:P17785]	740.3	38.6	17
	Lysozyme C			
ENSGALP00000016	[Source:UniProtKB/Swiss-			
177	Prot;Acc:P00698]	712.1	16.2	11
ENSGALP0000035	Hemoglobin subunit beta			
593	[Source:UniProtKB/Swiss-	712.1	16.5	12

Table 2: Proteins identified in guanidine HCL extract of eggshell membranes by LC-MS/MS

	Prot;Acc:P02112]			
	Uncharacterized protein			
ENSGALP00000016	[Source:UniProtKB/TrEMBL:Acc:H9			
651	KZP6]	701.3	28	16
	serum albumin precursor	,		
ENSGALP00000019	[Source:RefSeq			
031	pentide: Acc:NP 9905921	673 2	64	17
	Gallus gallus hemoglobin alpha 1	075.2	0.	17
ENSGAL P00000038	(HBAA) mRNA [Source:RefSeq			
904	mRNA:Acc:NM 0010043761	668.8	154	13
ENSGAL P0000018	decorin precursor [Source:RefSeq	000.0	10.4	15
273	pentide: A cc:NP_001025918]	654 7	39.6	15
ENSCAL 00000014	vimentin [Source: PofSeq	034.7	37.0	15
107	pontido: A co: NP 0010415411	641 7	52.2	14
107	Collug collug ATD symthese II	041./	33.2	14
	transporting mitochondrial E1			
	a semplar, hata nalymentida (ATD5D)			
	complex, bela polypepilde (ATP5B),			
	nuclear gene encoding mitochondrial			
ENSGALP00000035	protein, mKNA. [Source:ReiSeq	520 (52.0	10
539 ENGCAL D0000025	<u>mRNA;Acc:NM_001031391</u>	538.0	52.9	10
ENSGALP00000035	epsilon globin [Source:RefSeq	500 C	164	11
591	peptide;Acc:NP_001026660]	522.6	16.4	11
ENSGALP0000006	keratin, type I cytoskeletal 15 [Source:	406 5	1= 0	1.5
098	RefSeq peptide;Acc:NP_001001312]	486.5	47.9	15
ENSGALP00000043	titin [Source:HGNC		3397	
135	Symbol;Acc:HGNC:12403]	456.8	.1	27
	Gallus gallus histone cluster 1, H4-VI,			
	germinal H4 (similar to human histone			
	cluster 1, class H4 genes) (HIST1H46),			
ENSGALP00000041	mRNA. [Source: RefSeq			<i>.</i>
526	mRNA;Acc:NM_00103/845]	449	11.4	6
	zona pellucida sperm-binding protein 1			
ENSGALP00000022	precursor [Source: RefSeq			
528	peptide;Acc:NP_990014]	443.2	99.7	10
ENSGALP0000003	alpha-enolase [Source: RefSeq			
737	peptide;Acc:NP_990451]	397.4	47.3	8
ENSGALP0000003	keratin 6A [Source: RefSeq			
695	peptide;Acc:NP_001001313]	397	57	9
ENSGALP0000038	Tropomyosin alpha-1 chain [Source:			
799	UniProtKB/Swiss-Prot;Acc:P04268]	392.9	32.9	12
ENSGALP00000010	myeloid protein 1 precursor [Source:			
210	RefSeq peptide;Acc:NP_990809]	388.4	35.2	7
ENSGALP00000042	transgelin 2 [Source: HGNC			
171	Symbol;Acc:HGNC:11554]	382	29	8
ENSGALP00000023	Glyceraldehyde-3-phosphate			
278	dehydrogenase [Source:	366.1	34.9	8

	UniProtKB/Swiss-Prot;Acc:P00356]			
ENSGALP00000032	annexin A1 [Source: RefSeq			
184	peptide;Acc:NP 996789]	334	38.5	9
	Zona pellucida sperm-binding protein 3			
	Processed zona pellucida sperm-			
ENSGALP0000002	binding protein 3 [Source:			
368	UniProtKB/Swiss-Prot:Acc:P79762]	331.6	46.7	3
	Elongation factor 1-alpha 1			
ENSGALP0000025	[Source:UniProtKB/Swiss-			
606	Prot: Acc: 090835]	328.2	50.1	10
	Gallus gallus histone cluster 1 H1 01	520.2	00.1	10
	(similar to human historie cluster 1			
	class H1 genes) (HIST1H101) mRNA			
ENSGAL P0000037	[Source: RefSeq			
266	mRNA: $A cc$ ·NM 001040642]	3267	22.5	7
200	nentidyl_prolyl_cis_trans_isomerase A	520.7	22.0	1
ENSGAL P00000041	[Source: RefSeq			
690	pentide: A cc:NP 0011507081	373.7	15.0	6
0,0	Apolinoprotein A I Prospolinoprotein	525.2	15.7	0
ENSCAL DOODOO11	A L Source: UniProtK B/Swiss			
510	Prot: A co: P082501	320.7	30.7	8
ENSCAL 00000042	karatin 18 tuna L[Sauraa:HGNC	520.7	50.7	0
500	Symbol: A ac: HCNC: 64201	210.2	10	5
	Symbol, Acc. HOINC.0450	516.5	19	5
ENSGALP0000018	Lumican [Source: UniProtKB/SWISS-	217	20 6	0
	PIOLACC.P51890	317	38.0	0
ENSUALP0000009	Annexin [Source. LiniDrotVD/TrEMDL: A co:E1C9V2]	212.0	267	o
JUJ ENSCAL D0000017	Oueslaidin 116 [Sourse:	515.0	50.7	0
ENSGALP0000001/	Ovocieldin-116 [Source:	212.2	7(0	C
	UniProtKB/SWISS-Prot;Acc:FINSM/	312.2	/6.8	6
ENSGALP0000019	heat shock /0 kDa protein [Source:	200.0	(0.0	11
120 ENGCAL D00000012	RefSeq peptide;Acc:NP_001006686]	300.9	69.9	11
ENSGALP00000013	tubulin beta-3 chain [Source: RefSeq		10.0	_
964	peptide;Acc:NP_001074329]	272.9	49.8	1
ENSGALP0000002	gelsolin precursor [Source: RefSeq		050	10
197	peptide;Acc:NP_990265]	272.4	85.8	10
ENSGALP00000005	Ovomucoid [Source:			_
544	UniProtKB/Swiss-Prot;Acc:P01005]	269.7	22.6	5
ENSGALP00000018	Serpin H1 [Source: UniProtKB/Swiss-			
265	Prot;Acc:P13731]	264.9	45.7	1
	Fructose-bisphosphate aldolase C			
ENSGALP00000043	[Source: UniProtKB/Swiss-			
256	Prot;Acc:P53449]	257.2	39.3	7
ENSGALP0000028	keratin 4, type II [Source:HGNC			
845	Symbol;Acc:HGNC:6441]	256.4	58.7	8
ENSGALP00000010	heat shock cognate 71 kDa protein			
510	[Source: RefSeq	255.4	70.8	2

	peptide;Acc:NP 990334]			
ENSGALP0000023	Triosephosphate isomerase [Source:			
396	UniProtKB/Swiss-Prot: Acc: P00940]	231.3	26.6	4
	Gallus gallus actinin alpha 4	20110	_0.0	
ENSGALP00000023	(ACTN4) mRNA [Source RefSeq			
085	mRNA: Acc:NM 205126]	217.2	71.6	5
ENSGAL P0000018	creatine kinase B-type [Source: RefSeq	217.2	/1.0	5
7/2	nentide: A cc:NP 0006/11	216.4	40.2	8
	proline/arginine-rich end leucine-rich	210.4	40.2	0
ENSCAL DOODOOD5	repeat protein [Source: HGNC			
607	Symbol: A cc:HGNC:9357]	210.0	12 9	6
	dogmin [Source: HGNC	210.9	42.9	0
LINSUALF00000010	Symbol: A co: UCNC: 2770]	204.5	10 0	6
424 ENSCAL D0000024	Dymy ato kinego DVM [Source:	204.3	40.0	0
ENSUALP00000034	Pyruvate Kinase PKIVI [Source.	200.1	570	6
	UIIPIOLKB/SWISS-PIOL,ACC.P00348]	200.1	37.8	0
ENSGALP0000021	Histone H2B [Source:	102	12.5	1
743	UniProtKB/IrEMBL;Acc:FINF30]	193	13.5	1
ENSGALP00000014	destrin [Source: RefSeq	100.0	10.4	-
097	peptide;Acc:NP_990859]	189.9	18.4	1
ENSGALP0000023	Uncharacterized protein [Source:	100 5	10.0	
926	UniProtKB/TrEMBL;Acc:E1C6R9]	182.5	19.9	4
	Beta-galactoside-binding lectin			
ENSGALP00000020	[Source: UniProtKB/Swiss-			
275	Prot;Acc:P07583]	176.9		
ENSGALP00000017	anterior gradient 2 [Source: HGNC			
578	Symbol;Acc:HGNC:328]	173.9	19.8	4
ENSGALP00000039	14-3-3 protein epsilon [Source:			
133	UniProtKB/Swiss-Prot;Acc:Q5ZMT0]	173.4	26.6	3
	collagen alpha-1(XII) chain precursor			
ENSGALP0000025	[Source: RefSeq		339.	
593	peptide;Acc:NP_990352]	171.6	6	1
ENSGALP00000010			452.	
853		161.2	4	3
	H2A histone family, member X			
ENSGALP00000042	[Source: HGNC			
357	Symbol;Acc:HGNC:4739]	159.5	15	3
	cold-inducible RNA-binding protein			
ENSGALP00000042	[Source:RefSeq			
528	peptide;Acc:NP_001026518]	159.5	186	2
	orsomucoid 1 (ovoglycoprotein)			
ENSGALP0000008	precursor [Source:RefSeq			
163	peptide;Acc:NP_989872]	158.4	22.3	3
	heat shock protein 90kDa alpha			
ENSGALP00000018	(cytosolic), class A member 1 [Source:			
498	HGNC Symbol;Acc:HGNC:5253]	157.7	83.2	3
ENSGALP00000041	tropomyosin beta chain [Source:	157.6	28.7	7

937	RefSeq peptide;Acc:NP_990777]			
	78 kDa glucose-regulated protein			
ENSGALP00000001	[Source: UniProtKB/Swiss-			
474	Prot;Acc:Q90593]	155.8	72	5
ENSGALP00000025	Thioredoxin [Source:			
280	UniProtKB/Swiss-Prot:Acc:P08629]	155.4	11.7	4
	collagen alpha-3(VI) chain precursor			
ENSGALP00000006	[Source:RefSeq		339	
240	pentide: Acc:NP 9908651	155.2	4	5
ENSGAL P00000019	Transgelin [Source: UniProtKB/Swiss-	100.2	· ·	
399	Prot: Acc:P19966]	147.2	223	5
577	Ribonuclease homolog	11/.2	22.5	5
ENSGAL PO000033	[Source:UniProtKB/Swiss_			
266	Prot: A cc:P3037/1	1/13 2	15.0	1
ENSCAL DO000020	avalbumin related protein V [Source:	145.2	15.7	1
067	PofSog poptido: A oo:NP 0010261721	141.6	12.8	5
507 ENSCAL D0000028	History H2A 7 [Source:	141.0	43.0	5
ENSUALF00000020	Histolie HZA.Z [Source.	120.7	126	2
211	S100 salaiwa hinding matein A12	139.7	13.0	
	S100 calcium binding protein A12			
ENSUALP0000040	Symbol: A control (10490)	120 /	105	1
	Symbol, Acc. HGNC: 10489	138.4	18.3	4
ENSGALP0000036	14-3-3 protein theta [Source:	120.2	27.0	1
	UniProtKB/Swiss-Prot;Acc:Q5ZMD1	138.3	27.8	1
ENSGALP0000002	vitellogenin-2 precursor [Source:	12(0	205	(
888	RefSeq peptide;Acc:NP_001026447]	136.8	205	6
ENSGALP00000019	Alpha-fetoprotein [Source:	100.0	51 1	
033	UniProtKB/IrEMBL;Acc:EIBV96]	133.9	71.1	6
ENSGALP0000040	stratifin [Source: HGNC	100.4		
672	Symbol;Acc:HGNC:10/73]	133.4	27.7	4
ENSGALP00000010	Uncharacterized protein [Source:		233.	_
852	UniProtKB/TrEMBL;Acc:F1NZY2]	133.1	4	2
ENSGALP0000026	Gallinacin-10 [Source:			
846	UniProtKB/Swiss-Prot;Acc:Q6QLQ9]	127.7	7.1	2
ENSGALP00000043	Cystatin [Source: UniProtKB/Swiss-			
172	Prot;Acc:P01038]	123.6	16.3	2
	Myosin regulatory light chain 2,			
	smooth muscle major isoform			
ENSGALP00000041	[Source:UniProtKB/Swiss-			
913	Prot;Acc:P02612]	117.8	19.8	4
	fatty acid-binding protein, heart			
ENSGALP0000000	[Source:RefSeq			
876	peptide;Acc:NP_001026060]	116.4	14.8	4
	L-lactate dehydrogenase A chain			
ENSGALP0000038	[Source:RefSeq			
626	peptide;Acc:NP_990615]	116.2	36.5	4
ENSGALP00000011	60S acidic ribosomal protein P0	114.8	34.6	2

717	[Source:RefSeq			
	peptide;Acc:NP 990318]			
	phosphatidylethanolamine-binding			
ENSGALP00000011	protein 1 [Source: RefSeq			
961	peptide;Acc:NP 001185571]	113.9	20.9	4
ENSGALP00000000	Uncharacterized protein [Source:			
062	UniProtKB/TrEMBL;Acc:H9KYP2]	113.8	67.8	5
ENSGALP00000043	Uncharacterized protein [Source:			
361	UniProtKB/TrEMBL;Acc:R4GMA5]	113.2	26.7	2
ENSGALP00000043	Mimecan [Source: UniProtKB/Swiss-			
060	Prot;Acc:Q9W6H0]	110.1	33.2	3
	rab GDP dissociation inhibitor beta			
ENSGALP00000013	[Source: RefSeq			
267	peptide;Acc:NP 990335]	106.7	50.7	3
	Nucleoside diphosphate kinase			
ENSGALP00000034	[Source: UniProtKB/Swiss-			
078	Prot;Acc:O57535]	104	17.3	4
ENSGALP00000019	annexin A5 [Source: RefSeq			
365	peptide;Acc:NP_001026709]	103.3	36.2	5
ENSGALP0000026	60S ribosomal protein L8 [Source:			
126	RefSeq peptide;Acc:NP_001264657]	102.2	28	4
	aldehyde dehydrogenase 9 family,			
ENSGALP0000005	member A1 [Source: HGNC			
520	Symbol;Acc:HGNC:412]	101.7	57.1	3
ENSGALP0000000	major vault protein [Source: RefSeq			
316	peptide;Acc:NP_001006336]	96.5	93.7	6
ENSGALP0000036	ribosomal protein L15 [Source: HGNC			
963	Symbol;Acc:HGNC:10306]	95.8	24.1	2
ENSGALP0000020	Histone H5 [Source: UniProtKB/Swiss-			
094	Prot;Acc:P02259]	95.4	20.7	3
	isocitrate dehydrogenase 1 (NADP+),			
ENSGALP00000014	soluble [Source: HGNC			
317	Symbol;Acc:HGNC:5382]	93.3	46.9	2
ENSGALP0000008	transketolase [Source:HGNC			
498	Symbol;Acc:HGNC:11834]	91.9	68.4	3
ENSGALP00000039	60S ribosomal protein L19 [Source:			
326	RefSeq peptide;Acc:NP_001026100]	85.7	23.2	2
ENSGALP00000014	Protein S100-A11 [Source:			
912	UniProtKB/Swiss-Prot;Acc:P24479]	85	11.4	1
	Protein disulfide-isomerase A3			
ENSGALP00000013	[Source: UniProtKB/Swiss-			
574	Prot;Acc:Q8JG64]	84.9	56.1	4
ENSGALP00000016	ribosomal protein S3A [Source:RefSeq			
361	peptide;Acc:NP_001075886]	84.7	29.8	4
ENSGALP00000040	CD99 antigen precursor [Source:			
606	RefSeq peptide;Acc:NP 001185580]	79.3	18.2	2

ENSGALP0000006	annexin A6 [Source: RefSeq			
938	peptide;Acc:NP 990061]	77.5	75.2	2
ENSGALP00000040	Uncharacterized protein [Source:			
966	UniProtKB/TrEMBL;Acc:R4GG07]	74.1	13.2	1
ENSGALP00000007	moesin [Source: HGNC			
490	Symbol;Acc:HGNC:7373]	73.8	68.5	3
	Gallus gallus phosphoglycerate mutase			
ENSGALP00000038	1 (brain) (PGAM1), mRNA. [Source:			
677	RefSeq mRNA;Acc:NM 001031556]	73.4	23.7	3
	Vitelline membrane outer layer protein			
ENSGALP00000029	1 [Source: UniProtKB/Swiss-			
440	Prot;Acc:P41366]	69.1	20.2	1
ENSGALP00000024	40S ribosomal protein S15 [Source:			
468	UniProtKB/Swiss-Prot;Acc:P62846]	68	16.9	2
ENSGALP00000032	vitellogenin-1 precursor [Source:		210.	
611	RefSeq peptide; Acc:NP 001004408]	67.6	6	3
	peptidyl-prolyl cis-trans isomerase B			
ENSGALP00000003	precursor [Source: RefSeq			
455	peptide:Acc:NP 990792]	66.6	16.2	2
ENSGALP00000029	60S ribosomal protein L3 [Source:			
968	RefSeq peptide; Acc:NP 001006241]	65.8	26.1	3
	hydroxyacyl-coenzyme A			
ENSGALP00000025	dehydrogenase, mitochondrial [Source:			
929	RefSeq peptide; Acc:NP 001264826]	64.9	34.4	2
	60S ribosomal protein L22			
ENSGALP00000001	[Source:RefSeq			
013	peptide;Acc:NP 989472]	64.7	14.6	2
ENSGALP00000007	60S ribosomal protein L6 [Source:			
680	RefSeq peptide; Acc:NP 989483]	64	33.9	2
	L-lactate dehydrogenase B chain			
ENSGALP00000021	[Source: UniProtKB/Swiss-			
618	Prot;Acc:P00337]	61.6	36.3	3
ENSGALP00000038	protein TENP [Source: RefSeq			
462	peptide;Acc:NP 990357]	61.3	47.4	2
	protein disulfide-isomerase precursor			
ENSGALP00000011	[Source: RefSeq			
689	peptide;Acc:NP 001185639]	61.1	55.8	4
ENSGALP00000003	nucleophosmin [Source: RefSeq			
431	peptide;Acc:NP 990598]	60.5	30.3	2
ENSGALP00000041	ribosomal protein S26 [Source: HGNC			
639	Symbol;Acc:HGNC:10414]	59	18	2
ENSGALP0000008	vinculin [Source: HGNC		114.	
131	Symbol;Acc:HGNC:12665]	58.9	3	1
	WD repeat-containing protein 1			
ENSGALP00000024	[Source: RefSeq			
078	peptide;Acc:NP 001004402]	58.5	66.5	1

ENSGALP0000023	ribosomal protein, large, P2 [Source:			
089	HGNC Symbol;Acc:HGNC:10377]	57.8	14.2	1
ENSGALP0000007	protein SET [Source: RefSeq			
476	peptide;Acc:NP_001025862]	57.7	32.1	1
ENSGALP00000012	ribosomal protein S25 [Source: HGNC			
462	Symbol;Acc:HGNC:10413]	57.5	13.7	1
	heterogeneous nuclear			
ENSGALP0000000	ribonucleoprotein M [Source: RefSeq			
509	peptide;Acc:NP_001026103]	53	76	4
ENSGALP00000014	60S ribosomal protein L12 [Source:			
298	RefSeq peptide;Acc:NP_001264608]	52.2	17.7	1
ENSGALP0000027	60S ribosomal protein L31 [Source:			
030	RefSeq peptide;Acc:NP_001264684]	52.2	14.7	2
	acetyl-CoA acetyltransferase,			
ENSGALP0000027	mitochondrial [Source: RefSeq			
665	peptide;Acc:NP_001264708]	51.9	44.1	2
ENSGALP0000039	heat shock protein beta-1 [Source:			
447	RefSeq peptide;Acc:NP_990621]	51.9	21.8	1
ENSGALP0000025	Uncharacterized protein [Source:			
745	UniProtKB/TrEMBL;Acc:F1P304]	50.8	24.5	3
	heterogeneous nuclear			
ENSGALP0000039	ribonucleoprotein H [Source: RefSeq			
530	peptide;Acc:NP_989827]	50.4	56.5	2
	protein-glutamine gamma-			
ENSGALP0000038	glutamyltransferase 2 [Source: RefSeq			
435	peptide;Acc:NP_990779]	49.5	77.7	1
ENSGALP0000002	Uncharacterized protein [Source:			
333	UniProtKB/TrEMBL;Acc:F1NPG6]	47.6	93.8	2
	heterogeneous nuclear			
ENSGALP0000006	ribonucleoprotein H3 [Source: RefSeq			
284	peptide;Acc:NP_001012610]	46.3	36.6	2
ENSGALP00000021	caldesmon [Source: RefSeq			
314	peptide;Acc:NP_989489]	44.7	86.4	2
ENSGALP0000026	ribosomal protein S7 [Source:HGNC			
392	Symbol;Acc:HGNC:10440]	43	22.3	2
	ATP-dependent RNA helicase DDX3X			
ENSGALP0000026	[Source: RefSeq			
123	peptide;Acc:NP_001025971]	42.8	72.6	1
ENSGALP0000027	lysozyme g precursor [Source: RefSeq			
012	peptide;Acc:NP_001001470]	42.2	23.3	3
ENSGALP00000019	Uncharacterized protein [Source:			
979	UniProtKB/TrEMBL;Acc:F1NI80]	41.2	41.1	1
	actin-related protein 2/3 complex			
ENSGALP00000010	subunit 4 [Source :RefSeq			
800	peptide;Acc:NP_001244213]	41.1	19.7	8
ENSGALP00000025	Carbonic anhydrase 2 [Source:	41.1	29	1

525	UniProtKB/Swiss-Prot;Acc:P07630]			
	guanine nucleotide-binding protein			
ENSGALP00000039	G(I)/G(S)/G(T) subunit beta-1 [Source:			
575	RefSeq peptide;Acc:NP 001012853]	40.8	37.3	2
	glycerol-3-phosphate dehydrogenase 1			
ENSGALP00000028	(soluble) [Source: HGNC			
211	Symbol: Acc: HGNC: 4455]	40.2	38.6	1
	Gallus gallus heat shock 10kDa protein			
	1 (chaperonin 10) (HSPE1), nuclear			
	gene encoding mitochondrial protein			
ENSGAL P00000014	mRNA [Source: RefSeq			
746	mRNA: Acc:NM 2050671	39.6	12.1	2
ENSGAL P0000035	superovide dismutase [Source:RefSeq	57.0	12.1	2
006	nentide: A cc:NP 0003051	30.3	157	1
ENSGAL P0000012	60S ribosomal protein I 4 [Source:	57.5	13.7	1
181	RefSeg pentide: A cc:NP_0010074801	38.6	167	2
ENSCAL DO000006	ribosomal protain I 22a [Source: HCNC	50.0	40.7	<i>L</i>
200	Sumbol: A as: HCNC:10217]	20.2	176	2
508	betaraganaoug nuclear	30.3	17.0	۷
ENSCAL DO000010	ribenueleonrotein C. Source: DefSeg			
	nontide: A ac:ND_0010721061	20	41.5	2
414	ablarida intra callular channel 4	38	41.3	Z
	Chioride Intracellular channel 4			
ENSGALP0000001	[Source:HGNC	21.5	277	1
914	Symbol;Acc:HGNC:13518]	31.5	27.7	1
	glutathione peroxidase 1			
ENSGALP0000041	[Source:ReiSeq	21.4	17.0	1
423	peptide;Acc:NP_001264/82]	31.4	17.9	1
	40S ribosomal protein S2			
ENSGALP0000008	[Source:RefSeq	21	20.7	1
802	peptide;Acc:NP_001264093]	31	30.7	1
	60 kDa heat shock protein,			
	mitochondrial			
ENSGALP00000013	[Source:UniProtKB/Swiss-	• • •	60.0	
122	Prot;Acc:Q5ZL72]	30.8	60.9	1
	60S ribosomal protein L5			
ENSGALP0000009	[Source:UniProtKB/Swiss-			_
511	Prot;Acc:P22451	30.7	33.9	2
ENSGALP0000006	calreticulin 3 [Source:HGNC			
222	Symbol;Acc:HGNC:20407]	29.8	48	1
	capping protein (actin filament),			
ENSGALP00000041	gelsolin-like [Source:HGNC			
109	Symbol;Acc:HGNC:1474]	29.5	72.4	1
ENSGALP0000033	ribosomal protein S21 [Source:HGNC			
411	Symbol;Acc:HGNC:10409]	28.8	9.1	1
ENSGALP0000029	rho GDP-dissociation inhibitor 2			
993	[Source:RefSeq	28.1	23.2	1

		1	1	
	peptide;Acc:NP_001264293]			
	isocitrate dehydrogenase			
ENSGALP0000035	[Source:RefSeq			
366	peptide;Acc:NP_001026770]	26.7	50.4	1
ENSGALP0000035	carbonyl reductase [Source:RefSeq			
959	peptide;Acc:NP_001025966]	24.4	30.3	1
	Protein syndesmos			
ENSGALP00000041	[Source:UniProtKB/Swiss-			
772	Prot;Acc:Q9IAY5]	23.5	33.8	1
	40S ribosomal protein S17			
ENSGALP0000003	[Source:UniProtKB/Swiss-			
373	Prot;Acc:P08636]	20	9.5	1
	Heterogeneous nuclear			
ENSGALP0000037	ribonucleoprotein D-like [Source:			
222	UniProtKB/Swiss-Prot;Acc:Q5ZI72]	17.3	33.4	1

TADIC J. I IUCHIS IUCHIHIUCU III UAUUHIAI UAUAUASU	Table 3:	Proteins	identified	in	bacterial	database
---	----------	----------	------------	----	-----------	----------

	Accession	Protein	MW [kDa]	Scores	#Peptides
1	gi 294828133	histidine kinase/response	116.9	77.8	4
		regulator hybrid protein			
		[Leptospira interrogans serovar			
		Lai str. 56601]			
2	gi 517357534	serine/threonine protein kinase	67.9	65.8	2
		[Streptomyces sp. HmicA12]			
3	gi 655245428	protein kinase [Nocardioides sp.	72.9	63.7	2
		J54]			
4	gi 124514345	Precorrin-4 C11-	29.5	56.8	2
		methyltransferase			
		[Leptospirillum rubarum]			
5	gi 206742631	soluble lytic murein	73.8	55.6	2
		transglycosylase			
		[Thermodesulfovibrio			
		yellowstonii DSM 11347]			
6	gi 292642245	SWIM zinc finger domain protein	42.4	54.1	2
		[Enterococcus faecium PC4.1]			
7	gi 695172258	aminotransferase [Sphingomonas	33.6	49.5	1
		taxi]			
8	gi 345633807	LuxR family transcriptional	24.0	48.9	1
		regulator [Streptomyces			
		zinciresistens K42]			
9	gi 19705092	hypothetical protein FN1787	73.8	44.1	1
		[Fusobacterium nucleatum subsp.			
		nucleatum ATCC 25586]			
10	gi 124515012	putative hydrolase, haloacid	24.5	43.7	1
		dehalogenase-like family			
		[Leptospirillum rubarum]			
11	gi 422886479	cold shock-like protein	7.5	42.3	1
		[Alcaligenes sp. HPC1271]			
12	gi 618782811	ribonucleotide-diphosphate	107.0	38.8	1
		reductase subunit alpha			
		[Pseudomonas aeruginosa M10]			
13	gi 311693188	ATPase components of ABC	24.5	71.7	2
		transporters with duplicated			
		ATPase domains [Marinobacter			
		adhaerens HP15]			
14	gil297550774	serine/threonine protein kinase	73.8	65	2

		with TPR repeats [Ktedonobacter			
		racemifer DSM 44963]			
15	gi 405587154	transcription termination factor	65.9	63.3	2
		Rho [Bergeyella zoohelcum CCUG			
		30536]			
16	gi 618771208	F0F1 ATP synthase subunit alpha	55.4	61	1
		[Pseudomonas aeruginosa M10]			
17	gi 588290902	prolyl-tRNA synthetase	63.9	55.7	2
		[Thalassolituus oleivorans R6-15]			
18	gi 114739665	isocitrate dehydrogenase, NADP-	45.6	52.6	1
		dependent [Hyphomonas			
10		neptunium ATCC 15444]	2.1.2	10 -	
19	gi 755437351	der GTPase activator family	21.2	49.5	1
		protein [Yersinia kristensenii]	45.0	45.0	
20	gi 394456251	hypothetical protein 0/1_08395	45.3	45.8	1
0.4		[Pontibacter sp. BAB1700]	F 4.4	45	
21	g1 452006359	mutant NtrC-like activator	51.1	45	1
22	:1610700044	[Pseudomonas stutzeri NF13]	262		1
22	g1 618/89844	oxidoreductase [Pseudomonas	26.2	44.4	1
22	1000474140	aeruginosa M10j		40.4	1
23	g1 3284/4119	GIP-binding protein LepA [Vibrio	65.9	43.1	1
24	-: 1651010070	paranaemolyticus 10329	FD 1	40.4	1
24	gil021910070	Involutional protein	52.1	40.4	1
25	ail21160426E	[Buty11VID110 Sp. AC2005]	E0.2	12.0	1
25	gij511094205	protoin S6 modification onzumo	50.5	43.0	1
		[Marinobacter adhaerens HP15]			
26	gil546198376	MIII TISPECIES: ribosomal	20.7	43.8	1
20	gij540170570	protein L25 Ctc-form [Bacteria]	20.7	45.0	1
27	gil726045696	acetyltransferase [Candidatus	17.6	434	1
27	51/20010090	Scalindua brodael	17.0	10.1	1
28	gil452009578	hypothetical protein B381 02321	32.3	32.1	1
_0	8-110-000000	[Pseudomonas stutzeri NF13]	010	0 = . =	-
29	gil258592528	putative Histidine kinase	86.4	85.2	3
	8-1-0007-010	[Candidatus Methylomirabilis	0011	00.2	0
		oxyferal			
30	gi 516628378	MULTISPECIES: F0F1 ATP	55.6	84.4	4
	01	synthase subunit alpha		-	
		[Bacteria][Archaea]			
31	gi 292642035	hypothetical protein CUO_2557	97.6	80.2	3
		[Enterococcus faecium PC4.1]			
32	gi 695170760	2-keto-4-pentenoate hydratase	35.8	78.4	3
		[Sphingomonas taxi]			
33	gi 380733894	serine/threonine protein kinase	126.9	77	3
	-	[Corallococcus coralloides DSM			

		2259]			
34	gi 292637908	NADH:ubiquinone	55.7	70.5	2
		oxidoreductase, Na(+)-			
		translocating, A subunit			
		[Bacteroides xylanisolvens SD CC			
		2a]			
35	gi 114737610	putative helicase [Hyphomonas	42.9	69.2	3
		neptunium ATCC 15444]			
36	gi 288328957	tetratricopeptide repeat protein	67.0	62.7	2
		[Prevotella sp. oral taxon 317 str.			
		F0108]			
37	gi 618792792	selenocysteine synthase	49.7	62	2
		[Pseudomonas aeruginosa M10]			
38	gi 300402166	DNA mismatch repair domain	67.9	62	2
		protein [Escherichia coli MS 84-			
		1]			
39	gi 394454349	tex-like protein [Pontibacter sp.	83.4	54.4	1
		BAB1700]			
40	gi 695170101	phosphoadenosine	27.7	51.1	1
		phosphosulfate reductase			
		[Sphingomonas taxi]			
41	gi 618777703	ATP-binding protein	38.4	49.7	1
		[Pseudomonas aeruginosa M10]			
42	gi 291518125	Uncharacterized protein	9.1	46.6	1
		conserved in bacteria			
		[Butyrivibrio fibrisolvens 16/4]			
43	gi 726045751	hypothetical protein	23.3	46.2	1
		SCABRO_01635 [Candidatus			
		Scalindua brodae]			
44	gi 292643035	ribonuclease HIII [Enterococcus	33.9	45.2	1
		faecium PC4.1]			
45	gi 618771210	F0F1 ATP synthase subunit beta	49.5	45	1
		[Pseudomonas aeruginosa M10]			
46	gi 691636805	hypothetical protein IA69_10970	99.2	44.7	1
		[Massilia sp. JS1662]			
47	gi 726045041	hypothetical protein	15.4	44.6	1
		SCABRO_02256 [Candidatus			
		Scalindua brodae]			
48	gi 635597237	uncharacterized protein	45.0	43.7	1
		conserved in bacteria			
		[Comamonadaceae bacterium B1]			
49	gi 114740197	putative fimbrial assembly	26.7	42.5	1
		protein [Hyphomonas neptunium			
		ATCC 15444]			
50	gi 667096584	lytic transglycosylase	20.7	41	1

	[Xanthomonas vasicola pv.		
	vasculorum NCPPB 895]		

Figure 1: Functional annotation of proteins by **P**rotein Analysis through Evolutionary **R**elationships (PANTHER) a) biological process b) Molecular Functions

Molecular function

References:

Abeyrathne, E. D., H. Y. Lee, and D. U. Ahn. 2013. Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents--a review. Poult Sci 92:3292-3299. doi 10.3382/ps.2013-03391

Chakravarti, S. 2002. Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj J 19:287-293. doi 10.1023/A:1025348417078

Cordeiro, C. M., and M. T. Hincke. 2015. Quantitative proteomics analysis of eggshell membrane proteins during chick embryonic development. J Proteomics. doi 10.1016/j.jprot.2015.08.014

Das, K., M. Minkara, N. Melear, and E. Tollner. 2002. Effect of poultry litter amendment on hatchery waste composting. The Journal of Applied Poultry Research 11:282-290.

Devlin, G. L., and S. P. Bottomley. 2005. A protein family under 'stress' - serpin stability, folding and misfolding. Front Biosci 10:288-299.

Fredrickson, B. L., K. M. Grewen, K. A. Coffey, S. B. Algoe, A. M. Firestine, J. M. Arevalo, J. Ma, and S. W. Cole. 2013. A functional genomic perspective on human well-being. Proc Natl Acad Sci U S A 110:13684-13689. doi 10.1073/pnas.1305419110

Funderburgh, J. L., L. M. Corpuz, M. R. Roth, M. L. Funderburgh, E. S. Tasheva, and G. W. Conrad. 1997. Mimecan, the 25-kDa corneal keratan sulfate proteoglycan, is a product of the gene producing osteoglycin. J Biol Chem 272:28089-28095.

Gong, D., P. W. Wilson, M. M. Bain, K. McDade, J. Kalina, V. Hervé-Grépinet, Y. Nys, and I. C. Dunn. 2010. Gallin; an antimicrobial peptide member of a new avian defensin family, the ovodefensins, has been subject to recent gene duplication. BMC Immunol 11:12. doi 10.1186/1471-2172-11-12

Guaní-Guerra, E., T. Santos-Mendoza, S. O. Lugo-Reyes, and L. M. Terán. 2010. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 135:1-11. doi 10.1016/j.clim.2009.12.004

Hazlett, L., and M. Wu. 2011. Defensins in innate immunity. Cell Tissue Res 343:175-188. doi 10.1007/s00441-010-1022-4

Jäger, S., J. Wehkamp, and E. F. Stange. 2012. Innate immunity includes defensins. Ann Gastroenterol 25:3-5.

Kao, W. W., J. L. Funderburgh, Y. Xia, C. Y. Liu, and G. W. Conrad. 2006. Focus on molecules: lumican. Exp Eye Res 82:3-4. doi 10.1016/j.exer.2005.08.012

Kovacs-Nolan, J., M. Phillips, and Y. Mine. 2005. Advances in the value of eggs and egg components for human health. J Agric Food Chem 53:8421-8431. doi 10.1021/jf050964f

Lu, J., and A. Holmgren. 2014. The thioredoxin antioxidant system. Free Radic Biol Med 66:75-87. doi 10.1016/j.freeradbiomed.2013.07.036

Makkar, S., R. Liyanage, L. Kannan, B. Packialakshmi, J. O. Lay, and N. C. Rath. 2015a. Chicken Egg Shell Membrane Associated Proteins and Peptides. J Agric Food Chem. doi 10.1021/acs.jafc.5b04266

Makkar, S., N. Rath, B. Packialakshmi, W. Huff, and G. Huff. 2015b. Nutritional effects of egg shell membrane supplements on chicken performance and immunity. Poultry science:pev098.

Mine, Y., C. Oberle, and Z. Kassaify. 2003. Eggshell matrix proteins as defense mechanism of avian eggs. J Agric Food Chem 51:249-253. doi 10.1021/jf020597x

Nicosia, R. F., E. Bonanno, and M. Smith. 1993. Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. Journal of cellular physiology 154:654-661.

Nordberg, J., and E. S. Arnér. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287-1312.

Rau, J. C., L. M. Beaulieu, J. A. Huntington, and F. C. Church. 2007. Serpins in thrombosis, hemostasis and fibrinolysis. J Thromb Haemost 5 Suppl 1:102-115. doi 10.1111/j.1538-7836.2007.02516.x

Risau, W., and V. Lemmon. 1988. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125:441-450.

Thompson, A. J., M. Abu, and D. P. Hanger. 2012. Key issues in the acquisition and analysis of qualitative and quantitative mass spectrometry data for peptide-centric proteomic experiments. Amino Acids 43:1075-1085. doi 10.1007/s00726-012-1287-x

Wang, L., B. L. Foster, V. Kram, F. H. Nociti, P. M. Zerfas, A. B. Tran, M. F. Young, and M. J. Somerman. 2014. Fibromodulin and Biglycan Modulate Periodontium through TGF β /BMP Signaling. J Dent Res 93:780-787. doi 10.1177/0022034514541126

V. Nutritional supplement of hatchery eggshell membrane improves poultry performance and provides resistance against lipopolysaccharide induced effects

S. K. Makkar^{1,2}, B. Packialakshmi³; Z. Zhou⁴; G. R. Huff¹; S. Dridi², N. C. Rath¹

Poultry Production & Product Safety Research Unit; Agricultural Research Service, USDA¹, Department of Poultry Science², Cell & Molecular Biology Program, University of Arkansas³, Fayetteville, AR 72701, Department of Veterinary Medicine, Rongchang Campus of Southwest University, Rongchang County, China⁴

Abstract

Eggshells are significant part of hatchery waste which consist of calcium carbonate crust, membranes, and proteins and peptides of embryonic origins along with other entrapped contaminants such as microbes. We hypothesized that using this product as a nutritional additive in poultry diet may confer better immunity to the chickens in the paradigm of mammalian milk that enhances immunity. Therefore, we investigated the effect of hatchery eggshell membranes (HESM) as a short term feed supplement on growth performance and immunity of chickens under bacterial lipopolysaccharide (LPS) challenged condition. Three studies were conducted to find the effect of HESM supplement on post hatch chickens. In the first study, the chickens were fed either a control diet or diets containing 0.5% whey protein or HESM as supplement and evaluated at 5 weeks of age using growth, hematology, clinical chemistry, plasma immunoglobulins, and corticosterone as variables. The second and third studies were done to compare the effects of LPS on control and HESM fed birds at 5 weeks of age where the HESM was also treated with ethanol to inactivate bacterial factors, and the effects of LPS evaluated at 4 and 24 h of treatment. HESM supplement caused a numerical but nonsignificant weight gain in 2 experiments and consistently decreased the blood corticosterone levels. LPS caused a significant loss in body weight at 24 h following its administration but the HESM supplemented birds showed significantly less body weight loss compared with the control fed birds. The WBC, heterophil/lymphocyte ratio, and the levels of IgG were low in chickens fed HESM supplement diet compared with the control fed group. LPS challenge increased the expression of proinflammatory cytokine gene IL-6 but the HESM fed birds showed its effect curtailed also, favored the up-regulation of some anti-inflammatory genes compared with control fed chickens.

Post hatch supplementation of HESM appears to modulate immunity, and increase their resistance to endotoxin.

Key words: Hatchery eggshell membrane, chicken, lipopolysaccharide, gene expression, corticosterone

Introduction

Eggshells which constitute a significant part of hatchery waste consist of calcareous crust, shell membranes, proteins and peptides of embryonic origins, and entrapped contaminants including microbes [1, 2]. Proteomic analysis of the eggshell membranes (ESM) have shown the presence of over 200 proteins and peptides belonging to structural, antimicrobial, and cell-regulatory genre [3-5] with the hatchery eggshell membrane (HESM) enriched with many blood derived proteins (Makkar et al., in preparation). We hypothesized that HESM as a feed supplement may be beneficial to post hatch poultry in the paradigm of mammalian milk, which contain many similar proteins and peptides such as lactoferrin, lysozyme, albumin, and other factors that help gastrointestinal development and help development of immunity in neonates [6, 7]. However, the functional stability of these proteins to harsh processes such as, drying, decontamination, and passage through the gastrointestinal tract is not known. Reports in the literature have shown the biological effects of different enzymes, antibodies, recombinant cytokines, and other bioactive protein additives in animal feed [8-13]. Previously, we showed that nutritional supplement of eggshell membrane (ESM) from fresh unfertilized eggs given to the chickens during first 2 weeks post hatch, improved growth, increased serum immunoglobulins, and reduced several stress variables such as plasma corticosterone, heterophils, and heterophil/lymphocyte ratios[14]. The growth supportive effects of fetal proteins have also been demonstrated in other experimental models [15, 16], The muco-adhesive membrane particles may also act as carriers of microbial antigens along with other adjuvant-like proteins and peptides [17, 18] that help to develop resistance or tolerance to pathogens. Hence, the objective of this research was to explore the effect of HESM supplements on the performance of post hatch chickens stressed with endotoxin during the grow-out period.

Materials and Method

Preparation of HESM and its sterilization

Empty eggshells collected from a hatchery were dried at room temperature and the membranes separated from the shells and pulverized to powders and flakes with an IKA mill (Cole Parmer). The protein nitrogen content of the membrane powder before and after mixing with feed were estimated by Duma's nitrogen analyzer using duplicate samples [14]. Three feeding experiments were conducted: study 1 utilized intact HESM while the studies 2 and 3 utilized HESM flakes sterilized with ethanol to reduce bacterial and endotoxin contaminants. In studies with ethanol sterilization, the HESM flakes were treated with 3 volumes (w/v) of reagent grade ethanol, enough to wet the flakes, and then air dried in a chemical hood without decantation. The effect of this treatment was evaluated using bacterial colony count assays [19] and the production of nitrite by HTC macrophages due to endotoxin [20]. Briefly, duplicate samples of untreated and ethanol treated HESM powders were extracted with sterile saline at the concentrations of 100 mg/ mL at room temperature for 2 h and centrifuged at 21,000 g. Respective supernatants were serially diluted and 100 µl of each sample was plated on agar plates in triplicate, and incubated for 24 h at 37°C to evaluate for bacterial growth. The same extracts were also evaluated for endotoxin activities using nitrite production by the HTC chicken macrophages following 24 h of stimulation and compared with Salmonella LPS (1µg/ml) used as a positive control [20].

Experimental Schedule

The animal study protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Arkansas. Newly hatched Cobb 500 male chicks were raised on floor pens at a density of 8 square feet /bird with 23:1 light: dark schedule and provided feed

formulated per National Research Council [21] specification and *ad libitum* water. The HESM was added at 0.5% level to broiler starter diet based on previous experiments. In Study 1 the effects of crude HESM and a comparable level of whey protein powder were tested on the growth performance and general physiological parameters of 5-wk-old chickens as described later. In Studies 2 and 3, the HESM powder was ethanol sterilized and used as the feed supplement where the effects of *Salmonella typhimurium* lipopolysaccharide was evaluated following 24 or 4 h of treatment. In all the experiments, the chickens were fed diets containing the supplement for 14 days post hatch then switched to un supplemented diet for the rest of the time until necropsy. The birds were monitored daily for mortality, welfare and evaluated weekly for body weight (BW), and feed consumption. The BW of the birds were measured before LPS injection and prior to necropsy when necessary.

In Study 1, 72 one day-old chicks were divided into 3 groups each with 24 birds in two replicate pens. The three groups received diets as follows: 1) control feed with no supplement, 2) feed containing 0.5% whey protein powder as a secondary control to find whether the effect was due to protein supplement alone, and 3) feed containing 0.5% HESM. Prior to necropsy, 6 birds from each pen (12/group) were bled by cardiac puncture, blood collected using EDTA containing Vacutainer as well as rapid serum tubes (BD Falcon) for hematology and clinical chemistry assays respectively [14].

Studies 2 and 3 were done with ethanol sterilized HESM. Growth performance of the birds along with differnt physiological changes including the effects of *Salmonella typhimurium* LPS (cat # HC4060 Sigma-Aldrich, St. Louis, MO) were determined. In Study 2, the day-old chickens were allocated into 2 groups and given feed with or without 0.5% HESM as described above then switched to regular feed through 5 weeks of age. On day 34, 12 birds in each group

were injected intramuscularly in the thigh with LPS at the concentration of 1 mg/kg BW in saline and the rest received equal volumes of saline. The effect of LPS was monitored visually for 5 h following injection with the BW measured before and after 24 h of injection. Prior to necropsy, 12 chickens/group were bled for hematology and clinical chemistry assays. At necropsy, the weights of selective organs from all the birds were recorded.

In Study 3, the effect of LPS on splenic expression of selective genes associated with different immune function were determined. Chickens from control and HESM groups received either saline or LPS injection as described earlier. Four h after the injection 6 chickens from each group were killed and the spleens placed in liquid nitrogen for RNA extraction, and the rest killed after 24 h to record BW and organ weights.

Necropsy

The liver, heart, spleen, and bursa weights from all birds were used to calculate the percentage relative to BW. In Study 2, a cm length of ileum below the pancreatic loop was excised from each of six control and HESM fed birds and fixed in Carnoy's fluid for ~5 h, transferred to 70% alcohol then processed for histology. Six micron paraffin sections were stained with periodic acid Schiff (PAS) hematoxylin staining and examined for villus health, mucous secretion, and gross abnormality by visual observation. The sections were photographed in BX Olympus microscope.

Hematology

Blood cell counts along with hemoglobin content, mean corpuscular volume (MCV), hematocrit, microhematocrit (MCH), red blood cell distribution width (RDW) values were measured using EDTA anticoagulated blood by the use of Cell-Dyn 3500 blood analysis system (Abbott

Diagnostics, Abbott Park, IL) standardized for avian blood and the heterophil to lymphocyte ratios (H/L) calculated.

Serum assays

The serum metabolic parameters were assayed using a clinical chemistry analyzer (Ciba Corning Diagnostics Corp, Medfield, MA). Corticosterone concentrations were measured by Detect X enzyme immunoassay kitTM (Arbor Assays, Ann Arbor, MI) using predetermined dilutions of sera [14]. The IgM, IgG, and IgA concentrations were similarly, determined using respective assay kits from Bethyl Laboratory (Montgomery, TX) with the serum diluted to 1:1000 with the manufacturer supplied buffer for IgA, 1:50,000 for IgG, and 1:20,000 for IgM, respectively. The concentrations of antibodies in the sera were calculated from their respective standard curves.

Gene expression

The expressions of inflammation regulatory genes such as pro-inflammatory (IL-1 β , IL-6, IFN- γ), anti-inflammatory (IL-4, IL-10, IL-12), and immunosuppressive, wound repair supportive factors (TGF- β 3 and vascular endothelial growth factor (VEGF) [22-24] were determined using splenic tissue RNA and quantitative RT-PCR. Six frozen spleens from each treatment group were split into 4 quarters and ~ 100 mg of tissues from equivalent region of each spleen were extracted with Tri Reagent (Sigma-Aldrich) to prepare RNA. Complementary DNA (cDNA) was synthesized using 1 µg of RNA and qScriptTM cDNA SuperMix (Quanta biosciences) following manufacturer's protocol. Quantitative real-time PCR was performed using SYBR[®] Green PCR Master mix (Life technologies) in an ABI 7500 Real-Time PCR system (Applied Biosystems, Carlsbad, CA). A 25 µl reaction containing 5 µl cDNA (1 µg of RNA equivalent) and primers specific against chicken IL-1 β , IL-4, IL-6, IL-10, IFN- γ , TGF- β 3, VEGF and IL-12

(Supplementary Table 1) were subjected to PCR with initial denaturation at 95°C for 10 minutes followed by 40 PCR cycles as follows: 95 °C for 15 s, 58 °C for 1 min. Expression of target genes were analyzed by the $2^{-\Delta\Delta Ct}$ method [25] with 18S RNA used as reference gene.

Statistical analyses

All results were evaluated using Duncan's t test using SAS software [26] and a *P*-value of ≤ 0.05 considered to be significant. The results are shown as mean \pm SEM.

Results

HESM

The average protein content of HESM was determined to be approximately 88% (w/w) the addition of which did not significantly alter the protein content of feed (Control: 25.1% and HESM: 25.3%, n=2 samples/group). The number of bacterial colonies showed a significant reduction from 30,000 / ml in untreated HESM extract to less than 5 colonies in ethanol treated HESM. Similarly, the ethanol treatment reduced the endotoxin content of HESM judged by a significantly low level of nitrite production by the HTC cells (Figure. 1)

Effect on BW, mortality

In Study 1, there were no significant differences in body weight (BW) or relative organ weights of the birds given HESM supplemented feed compared with either control or whey protein supplemented groups (Supplementary Table 2). In both Studies 2 and 3, the birds fed HESM supplement diet showed a slight but statistically nonsignificant increase in BW and no differences in relative organ weights compared with control group. Cumulative mortality rate in
all 3 experiments combined, showed no differences between control and HESM fed chicks (Table 1).

LPS effect

LPS treated chickens showed symptoms of sickness indicated by lack of activity, eyelid closure, and feed avoidance within 3 h of treatment and decreases in BW by 24 h. The relative liver weights were significantly increased and bursa weights decreased in LPS treated groups although this effect was not seen with heart and spleen. The chickens that received HESM showed comparatively less ($p \le 0.05$) BW loss relative to control fed birds (Table 1, Figure. 2).

Hematology and serum chemistry

The results from Study 2 and the effect of LPS are shown in Table 2. HESM treatment *per se* had no effect on lymphocyte (L), monocyte (M), heterophil (H), or basophil (B) percentages, and H/L ratios. On LPS treatment, there was an increase in percentages of heterophil, monocyte, and basophils, and H/L ratios, and a reduction in lymphocyte counts in both groups. The relative decrease in heterophil and increase in the lymphocyte counts resulted in a significant decrease of H/L ratios in HESM group compared with controls and challenged with LPS (Table 2). There were few other changes including increased hematocrit in HESM birds and treated with LPS. HESM produced a moderate decrease in serum protein, calcium, and magnesium levels some of which increased upon LPS treatment. LPS caused a decrease in serum iron and increase in triglycerides in both groups (Table 3). The cholesterol and HDL levels were down regulated in serum of control birds as compared to HESM when challenged with LPS. Neither alanine nor the aspartate amino transferases were affected by HESM indicating the lack of liver toxicity.

Serum immunoglobulins and corticosterone

In Study 1 there was no changes in serum IgM levels of chickens fed whey protein or intact HESM but the IgG levels decreased with HESM (Supplementary Table 3). Similar trend was observed in the 2nd study that upon LPS treatment increased the serum IgM while the IgG level remained unchanged in HESM fed birds. Neither treatment had any effect on serum IgA (Table 4). The corticosterone was consistently lower in both studies in HESM fed birds but with LPS treatment, it increased moderately reaching to the same levels as control birds (Table 4).

Gene expression

The splenic gene expression results are shown in Table 5. Chickens fed regular diet and challenged with LPS had a significant increase in IL-6 gene expression compared with HESM fed group (Figure 3). The anti-inflammatory gene IL-10 showed a significant increase in the HESM group when challenged with LPS (Figure 4). The IL-4 gene was downregulated in HESM birds but on LPS treatment its expression was significantly higher compared with control fed chickens (Figure 5). There was no change in the expressions of IFN-g or IL-12. But the TGF- β expression showed a significant decrease by LPS treatment in both control and HESM fed groups whereas the VEGF downregulated in HESM birds regardless of LPS treatment.

Histology

There were no differences in the overall health of intestine between the control and HESM diet fed birds judged by villus morphology, muscularis, and mucus deposition (Supplementary Figure 1).

Discussion

Our results show that feeding HESM is beneficial to chickens particularly in decreasing stress levels and improving resistance to LPS-induced changes. These results are consistent with our previous report where the egg shell membranes (ESM) from fresh unfertilized eggs improved the performance of 3 week old chickens with respect to body weight and downregulated corticosterone and other stress parameters[14]. In the previous study with ESM we observed an increase in the levels of IgG and IgM at 3 weeks but in the present study the IgM levels appeared not to be affected which may be due to later sampling time of 5 weeks when the early response to antigens tend to subside [27-29]. However, the cause of IgG downregulation in HESM fed birds is not understood.

Weight loss is a hallmark of endotoxemia in both mammals and birds which is mediated through several pro inflammatory cytokines such as IL-1, IL-6, and TNF- α [30-33]. These cytokines not only cause hypophagia but also promote protein catabolism [34]. The HESM appears to curb the effect of endotoxin promoting weight loss also modifies the splenic expression of cytokine genes that are associated with inflammation [35-39]. Similarly, there was a persistent downregulation of corticosterone and other stress markers such as heterophil to lymphocyte ratios [40] in HESM fed birds that could account for their better performance. Glucocorticoids can not only be anti-anabolic but also immunosuppressive [41]. Lower stress can improve feeding and decrease susceptibility to pathogens in poultry [42]. However, the mechanism by which the ESM lower the stress parameters is not understood since the effect appears to persist beyond the period of discontinuation of feeding HESM. Hypothetically a decreased serum level of adrenal steroids can be expected upon endocrine exhaustion occurring under conditions such as chronic endotoxemia. However, it is not the case in this study because

the HESM was not only deplete of endotoxin but also, the chickens fed on it showed any sign of sickness judged from their BW, intestinal pathology and blood profiles.

Although the expression of IL-6, was upregulated by LPS treatment in both feed groups, it was significantly low in birds fed HESM. Similarly, there were also the upregulation of IL-4 and IL-10, both of which are considered as anti-inflammatory cytokines implicated in the development of immune tolerance [43, 44]. Anti-inflammatory effect of natural ESM has been reported in experimental models of joint inflammation where the effects were attributed to the proteoglycan content of the preparation [45, 46]. Similar findings were reported by Shi et.al in mice where the effect of hydrolysate of eggshell membrane provided protection against dextran sodium sulfate induced intestinal inflammation [47]. The TGF- β expression was lower in both feed groups injected with LPS while the VEGF showed consistently lower expression in HESM birds. Since these growth factors help tissue repair and angiogenesis, associated with the resolution of inflammation, [23] their downregulation during early phases of inflammation is likely. However, the decrease in VEGF expression in birds fed HESM treatment is not understood. Whether the patterns of expressions of pro and anti-inflammatory cytokines have any relevance in curbing the body weight loss in HESM fed chickens is not known. Evidently, a modified immune response due to HESM confers resistance to endotoxin induced changes. As the susceptibility to infection can increase in immunocompromised individual likewise, it may confer tolerance to disease in immune strengthened birds.

There were no significant differences in IgM or IgA levels of chickens fed either control or HESM diet with or without LPS challenge. By contrast, the IgG levels were reduced in birds fed

HESM that did not substantially change even after LPS treatment. Hypogammaglobinemia with normal IgM and IgA have been noted in human patients with physical trauma such as burn and nephrosis [48]. But the chickens fed HESM had neither physical trauma nor their clinical chemistry showed any indication of dysregulated kidney function such as hypoalbumenemia and hyperlipidemia that can be associated with nephrotic conditions. The HESM induced down regulation of serum corticosterone is consistent with our previous results with ESM [14]. We presume that post hatch exposure to HESM which is laden with different regulatory proteins and peptides and the remnants of bacterial and parasite contaminants possibly, condition the neuroimmune system lowering the disposition of birds to stress and higher tolerance to LPS. In newly hatched birds as in mammalian neonates, the immune and neuroendocrine system is immature and prone to epigenetic conditioning. At this stage not only the maternal but also other biodiverse factors such as diets, and microbes provide signals that can shape immunity and establish tolerance and resistance to pathogens [49-52]. There is increasing evidence showing that the neonatal exposure to stress, diets and microbiome have long term effect on immunity, health, and wellbeing of individuals [53, 54]. Besides, the enteric system houses the second largest density of neurons that could be impacted by bioactive factors thereby can influence immunity; for example, it is now known that the immune functions of lymphoid organs such as spleen can be prone to control through neural output of autonomic system and T cell regulation is subject to cholinergic output [55, 56]. Thus, the bioactive embryonic factors in HESM modulating the immune response of chickens is a possibility. Also, it is now well recognized that maternal factors such as milk along with exposure to microbiome are important factors for establishing disease resistance and post-natal conditioning in mammals [57]. The plethora of proteins and peptides present in the eggshell membrane could simulate those effects in chickens.

From the foregoing discussion it is clear that HESM supplementation of feed is beneficial to post hatch poultry and it curtails the harming effects of LPS. Whether the effects are due to the bioactive proteins and peptides or some other factors is not known. Very little is known as to whether and how food associated bioactive proteins influence immunity because most omnivorous birds and mammals rely on some sort of raw proteins and peptides for their early nutrition which could provide epigenetic conditioning of immune system and build their resistance against common infections. The postnatal immune system being immature but plastic it certainly provides opportunity for nutritional modulation for building better immunity [58] In conclusion, our results show that HESM supplement can be a sustainable feed additive to improve immunity and health physiology of poultry.

Acknowledgment

We acknowledge the technical help of Scott Zornes, Sonia Tsai, and Wally McDonner in animal experiments and David Cross with histology.

Author Contribution

Conceived and designed by NCR, SKM, experiments performed by SKM, NCR, GR, BP, ZYZ, data analyzed by SKM, NCR, manuscript written by SKM, NCR, discussed and approved by NCR and AMD.

Table 1. Body weight (BW) and the relative organ weights (% BW) of 5-week-old chicken fed diets with sterilized HESM and challenged with LPS for 24 h: Studies 2 and 3 combined (n=32-36).

	Saline		LPS	
Parameters	Control	HESM	Control	HESM
BW (g)	2238.27±33.38ª	2327.23±40.77 ^a	2021.30±37.02 ^c	2135.38±28.55 ^b
Heart	0.52±0.01 ^a	0.51±0.01 ^a	0.52±0.01 ^a	0.52±0.01 ^a
Liver	$2.63{\pm}0.04^{b}$	2.48±0.06 ^b	3.41±0.08 ^a	3.30±0.09 ^a
Spleen	0.12±0.01 ^a	0.12±0.00 ^a	0.13±0.01 ^a	0.13±0.01 ^a
Mortality (%)*	9±1.53 ^a	14.33±3.48 ^a	-	-

Values with different superscripts in a row are significantly different ($P \le 0.05$). *Results based on 3 experiments

	Saline		LPS	
Parameters	Control	HESM	Control	HESM
WBC $(10^{3}/\mu L)$	49.76±1.42 ^a	46.01±1.75 ^b	54.09± 3.12 ^a	45.60±3.0 ^b
Heterophil (H) (%)	11.44±0.36°	12.62±0.46 ^c	30.85±2.35 ^a	22.94±3.14 ^b
Lymphocytes (L) (%)	83.81±0.65 ^a	82.31±0.70 ^a	61.80±2.22°	69.92±3.10 ^b
(H/L)	0.14±0.01 ^c	0.15±0.01°	0.50±0.06 ^a	0.32±0.05 ^b
Monocytes (M) (%)	2.32±0.18 ^b	$2.75{\pm}0.28^{\mathrm{b}}$	4.31±0.33 ^a	4.01±0.26 ^a
Eosinophil (E) (%)	0.02±0.01 ^a	0.01±0.00 ^a	0.02±0.00 ^a	0.02±0.00 ^a
Basophil (B) (%)	$1.99{\pm}0.17^{b}$	$2.3{\pm}0.18^{\text{b}}$	2.99±0.19 ^a	3.03±0.17 ^a
Red blood cell (× $10^{6}/\mu L$)	2.18±0.04 ^a	2.18±0.04 ^a	2.24±0.03 ^a	2.33±0.02 ^a
Hemoglobin (g/dL)	$6.77 {\pm} 0.09^{b}$	6.80±0.085 ^b	6.92 ± 0.062^{b}	7.17±0.073 ^a
Hematocrit (%)	$59.26\pm\!\!1.15^b$	$60.27{\pm}0.98^{\mathrm{b}}$	$60.11{\pm}0.68^{b}$	63.02±0.65 ^a
Mean corpuscular volume (MCV)(fL)	271.23±1.73 ^b	276.16±1.69ª	$267.32{\pm}1.58^{b}$	271.07±1.16 ^b
Thrombocyte (k/µL)	0.03±0.03 ^a	0.00 ±0.00 ^a	0.64 ± 0.44^{a}	0.003±0.00 ^a

Table 2.Hematology profiles of chickens fed with or without HESM containing feed and treated with LPS: Study 2 (n=12)

	Saline		LPS	
Parameters	Control	HESM	Control	HESM
Albumin (g/dL)	$1.15 \pm 0.02^{a,b}$	1.08± 0.02 ^b	1.17± 0.02 ^a	1.19± 0.03 ^a
Glucose(mg/dL)	213.15±4.18 ^a	216.15± 3.64 ^a	199.08 ± 4.14^{b}	212.85± 5.63 ^a
Inorganic phosphate (mg/dL)	3.31±0.16 ^b	3.28 ± 0.13^{b}	3.28 ± 0.17^{b}	4.01 ± 0.21^{a}
Total protein(g/dL)	3.12 ± 0.06^{a}	2.76 ± 0.04^{b}	3.15 ± 0.05^a	3.22 ± 0.01^{a}
Alkaline phosphate (U/L)	$193.77 \pm 24.24^{a,b}$	226.31 ± 28.60^{a}	139.77 ± 14.90^{b}	192.85±24.93 ^{a,b}
Alanine aminotransferase (U/L)	3.85 ± 0.62^{a}	2.49 ± 0.49^{a}	2.75 ± 0.44^{a}	3.85 ± 0.56^{a}
Aspartate Aminotransferas e (U/L)	309.45±17.4 ^a	348.67±29.45 ^a	324.95±18.49 ^a	380.83±24.72 ^a
Blood urea nitrogen (mg/µL)	1.61 ± 0.13^{a}	1.05± 0.15 ^a	1.33 ± 0.08^{a}	1.30 ± 0.08^{a}
Magnesium (mEq/L)	1.90± 0.05 ^a	1.58 ± 0.04^{b}	1.73± 0.05 ^a ,b	1.68 ± 0.11^{b}
Calcium (mg/dL)	10.53 ± 0.23^{a}	$7.99 \pm 0.26^{\circ}$	10.28 ± 0.29^{a}	9.40 ± 0.27^{b}

Table 3. Serum clinical chemistry variables of 5 week-old chickens fed with regular diet or the diet supplemented with 0.5% HESM and challenged with LPS: Study 2 (n=12).

Cholesterol (mg/dL)	165.15± 6.91 ^a	166.00 ± 4.16^{a}	138.54±4.05 ^b	161.31 ± 6.20^{a}
Creatinine kinase(U/L)	546.8±83.43 ^{a,b}	821.9 ± 166.59^{a}	288.9 ± 36.06^{b}	388.7±46.39 ^b
Triglycerides (mg/dL)	55.00 ± 4.86^{b}	51.07 ± 3.28^{b}	93.00 ± 5.49^{a}	86.31 ± 6.93^{a}
High density lipoprotein (mg/dL)	45.15± 2.81 ^a	44.77± 1.28 ^a	35.69± 1.24 ^b	41.23 ± 1.61^{a}
Iron (µg/dL)	99.54± 4.94 ^a	93.85 ± 4.80^{a}	55.46±5.18 ^b	57.77± 9.27 ^b

Table 4. Serum IgG, IgM, IgA, and corticosterone levels of chickens fed regular NRC diet or diets supplemented with ethanol sterilized HESM and challenged with LPS for 24 h.: Study 1 (n=12)

Saline			LPS	
Parameters	Control	HESM	Control	HESM
IgM (mg/ml)	2.84±0.30 ^{b.a}	1.93±0.24 ^b	3.83±0.40 ^a	3.50±0.47 ^a
IgG (mg/ml)	4.78±0.68 ^a	1.23±0.17 ^b	3.53±0.53 ^a	$0.98{\pm}0.17^{b}$
IgA (mg/ml)	0.56±0.15 ^a	0.54±0.22 ^a	1.18±0.17 ^a	0.81±0.39 ^a
Corticosterone	7.74±0.95 ^a	5.01±0.53 ^b	6.7±0.60 ^{a,b}	$6.58{\pm}0.96^{a,b}$

Saline		LPS		
Parameters	Control	HESM	Control	HESM
IL-1	$1.00 \pm 0.24^{b,a}$	0.75±0.11 ^b	1.32±0.25 ^{b,a}	1.83±0.61 ^a
IL-6	1.00±0.24 ^b	1.08±0.17 ^b	3.52±0.37 ^a	2.42 ± 0.49^{b}
IL-10	$1.00 \pm 0.10^{b,c}$	0.89±0.19 ^c	2.3±0.34 ^b	4.26±0.95 ^a
IFN-γ	1.00±0.28 ^a	0.99±0.26 ^a	0.68±0.13 ^a	1.15±0.31 ^a
TGF-β	1.00±0.20 ^a	0.97±0.14 ^a	$0.28{\pm}0.04^{b}$	$0.30{\pm}0.04^{b}$
IL-12	1.00±0.13 ^a	1.43±0.32 ^a	1.13±0.26 ^a	1.64±0.19 ^a
VEGF	1.00±0.13 ^a	0.32 ± 0.08^{b}	0.86±0.11 ^a	0.31 ± 0.04^{b}
IL-4	1.00±0.13 ^{b,c}	0.67±0.12 ^c	1.76±0.32 ^b	2.82±0.68 ^a

Table 5. Study 3. The expression of splenic genes quantified by RT-PCR in birds fed with and without HESM and injected with LPS or saline (n=6)

Figure legends

Figure 1. Nitrite production at 24 h by the HTC chicken macrophage in response to different treatments.

Figure 2. Effect of HESM on body weight of 5 week old birds, challenged with LPS for 24h n=(32-26). Values with different superscripts are significantly different.

Figure 3. Comparison of splenic IL-6 gene expression in chickens fed control and HESM diet and challenged with LPS or Saline for 4 h (n=6). Values with different superscripts are significantly different ($p\leq0.05$).

Figure 4. Splenic IL-10 gene expression comparison of chickens fed control or HESM supplemented diet and treated with LPS or Saline for 4 h (n=6). Values with different superscripts are significantly different ($p \le 0.05$).

Figure 5 Comparison of splenic IL-4 gene expression in chickens fed control and HESM diet and challenged with LPS or Saline for 4 h (n=6). Values with different superscripts are significantly different ($p \le 0.05$).

Figure 2

Target	Accession	Primer sequences	Length of
genes	number		product (bp)
IL-1β	NM_204524.1	SF: CGAGGAGCAGGGACTTTGC	71
		SR: GAAGGTGACGGGCTCAAAAA	
IL-6	NM_204628.1	SF: GCTTCGACGAGGAGAAATGC	63
		SR:GGTAGGTCTGAAAGGCGAACAG	
IL-10	NM_001004414.2	SF: CGCTGTCACCGCTTCTTCA	63
		SR: CGTCTCCTTGATCTGCTTGATG	
IFN-γ	NM_205149	SF: AAAGCCGCACATCAAACACA	64
		SR: GCCATCAGGAAGGTTGTTTTTC	
TGF-β3	NM_205454.1	SF: TGCGGCCAGATGAGCAT	55
		SR: TGCACATTCCTGCCACTGA	
18S rRNA	NC_006088.3	SF: TCCCCTCCCGTTACTTGGAT	60
		SR: GCGCTCGTCGGCATGTA	
IL-12	NC-46430425	SF:TGCCCAGTGCCAGAAGGA	57
		SR:TCAGTCGGCTGGTGCTCTT	
VEGF-A	GI 160358852	SF:AAATTCACAGACTCACGTTGCAA	61
		SR: ATCTGCAAGTGCGCTCGTTT	
IL-4	NM_0010079.1	SF: GCTCTCAGTGCCGCTGATG SR: GAAACCTCTCCCTGGATGTCAT	60

Supplementary Table 1. PCR primers and accession numbers of candidate genes for chicken cytokine and other proteins

Parameters	Control	0.5% whey protein	0.5% HESM
BW (g)	2153.95±45.97 ^a	2219.65±37.20 ^a	2148.00±37.74 ^a
Heart	0.56±0.02 ^a	0.53±0.02 ^a	0.57±0.02 ^a
Liver	2.20±0.04 ^a	2.18±0.05 ^a	2.3±0.06 ^a
Spleen	0.11±0.01 ^a	0.12±0.01 ^a	0.11±0.01 ^a
Bursa (%)	0.15±0.01 ^a	0.16±0.02 ^a	0.16±0.01 ^a

Supplementary Table 2. Study 1. Body weight (BW) and the relative organ weights (% BW) of 5 week-old chicken fed diets containing 0.5% whey protein powder or 0.5% HESM (n=20-23).

Supplementary Table 3. Study 1. Comparison of serum IgG, IgM, and corticosterone levels of chickens fed with regular NRC diet or 0.5% whey protein, or HESM supplemented diet. The results are shown as mean \pm SEM. (n=12/ group)

Parameters	Control	0.5% whey protein	0.5% HESM
IgG (mg/mL)	1.20±0.07 ^a	1.07±0.06 ^a	0.82±0.07 ^b
IgM (mg/mL)	2.69±0.24 ^a	2.54±0.30 ^a	2.60±0.22 ^a
Corticosterone (ng/mL)	5.75±0.77 ^a	4.26±0.33 ^{a,b}	3.81±0.41 ^{b,c}

Supplementary Figure 1. Histology of intestine sections of control and HESM fed birds (magnification X400)

Reference

1. Tsai WT, Yang JM, Lai CW, Cheng YH, Lin CC, Yeh CW. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour Technol. 2006;97(3):488-93. doi: 10.1016/j.biortech.2005.02.050. PubMed PMID: 15896954.

2. EFSA. Scientific opinion on hatchery waste as animal by products. EFSA Journal. 2011;9:2321. doi: 10.2903/j.efsa.2011.2321.

3. Makkar S, Liyanage R, Kannan L, Packialakshmi B, Lay JO, Rath NC. Chicken Egg Shell Membrane Associated Proteins and Peptides. J Agric Food Chem. 2015. doi: 10.1021/acs.jafc.5b04266. PubMed PMID: 26485361.

4. Cordeiro CM, Hincke MT. Recent patents on eggshell: shell and membrane applications. Recent Pat Food Nutr Agric. 2011;3(1):1-8. PubMed PMID: 21114472.

5. Mann K, Mann M. In-depth analysis of the chicken egg white proteome using an LTQ Orbitrap Velos. Proteome Sci. 2011;9(1):7. doi: 10.1186/1477-5956-9-7. PubMed PMID: 21299891; PubMed Central PMCID: PMCPMC3041730.

6. Zabielski R, Godlewski MM, Guilloteau P. Control of development of gastrointestinal system in neonates. J Physiol Pharmacol. 2008;59 Suppl 1:35-54. PubMed PMID: 18802215.

7. Chakrabarti S, Jahandideh F, Wu J. Food-derived bioactive peptides on inflammation and oxidative stress. Biomed Res Int. 2014;2014:608979. doi: 10.1155/2014/608979. PubMed PMID: 24527452; PubMed Central PMCID: PMCPMC3914560.

8. Thormar H. Patented non-antibiotic agents as animal feed additives. Recent Pat Food Nutr Agric. 2012;4(2):155-68. PubMed PMID: 22741929.

9. Chen CH, Abi-Ghanem D, Waghela SD, Chou WK, Farnell MB, Mwangi W, et al. Immunization of chickens with an agonistic monoclonal anti-chicken CD40 antibody-hapten complex: rapid and robust IgG response induced by a single subcutaneous injection. J Immunol Methods. 2012;378(1-2):116-20. doi: 10.1016/j.jim.2012.02.006. PubMed PMID: 22366632.

10. Strobel S. Immunity induced after a feed of antigen during early life: oral tolerance v. sensitisation. Proc Nutr Soc. 2001;60(4):437-42. PubMed PMID: 12069395.

11. Cook M. Antibodies: Alternatives to antibiotics in improving growth and feed efficiency. The journal of applied poultry research. 2004;13(1):106-19.

12. Seal BS, Lillehoj HS, Donovan DM, Gay CG. Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Anim Health Res Rev. 2013;14(1):78-87. doi: 10.1017/S1466252313000030. PubMed PMID: 23702321.

13. Sand JM, Arendt MK, Repasy A, Deniz G, Cook ME. Oral antibody to interleukin-10 reduces growth rate depression due to Eimeria spp. infection in broiler chickens. Poult Sci. 2016. doi: 10.3382/ps/pev352. PubMed PMID: 26772659.

14. Makkar S, Rath NC, Packialakshmi B, Huff WE, Huff GR. Nutritional effects of egg shell membrane supplements on chicken performance and immunity. Poultry Science. 2015. doi: 10.3382/ps/pev098.

15. Chang S-J. Antimicrobial proteins of maternal and cord sera and human milk in relation to maternal nutritional status. The American journal of clinical nutrition. 1990;51(2):183-7.

16. Miranda R, Saravia NG, Ackerman R, Murphy N, Berman S, McMurray DN. Effect of maternal nutritional status on immunological substances in human colostrum and milk. The American journal of clinical nutrition. 1983;37(4):632-40.

17. Nicholls EF, Madera L, Hancock RE. Immunomodulators as adjuvants for vaccines and antimicrobial therapy. Annals of the New York Academy of Sciences. 2010;1213(1):46-61.

18. Dar A, Tipu M, Townsend H, Potter A, Gerdts V, Tikoo S. Administration of Poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) and Avian Beta Defensin as Adjuvants in Inactivated Inclusion Body Hepatitis Virus and its Hexon Protein-Based Experimental Vaccine Formulations in Chickens. Avian Dis. 2015;59(4):518-24. doi: 10.1637/11202-052815-Reg.1. PubMed PMID: 26629626.

19. Jett BD, Hatter KL, Huycke MM, Gilmore MS. Simplified agar plate method for quantifying viable bacteria. Biotechniques. 1997;23(4):648-50. PubMed PMID: 9343684.

20. Zhou ZY, Packialakshmi B, Makkar SK, Dridi S, Rath NC. Effect of butyrate on immune response of a chicken macrophage cell line. Vet Immunol Immunopathol. 2014;162(1-2):24-32. doi: 10.1016/j.vetimm.2014.09.002. PubMed PMID: 25278494.

21. NRC. Nutrient requirements of poultry: National Academies Press; 1994.

22. Ozato K, Tsujimura H, Tamura T. Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. Biotechniques. 2002;Suppl:66-8, 70, 2 passim. PubMed PMID: 12395929.

23. Lokmic Z, Musyoka J, Hewitson TD, Darby IA. Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int Rev Cell Mol Biol. 2012;296:139-85. doi: 10.1016/B978-0-12-394307-1.00003-5. PubMed PMID: 22559939.

24. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616-30. doi: 10.1038/nrm3434. PubMed PMID: 22992590; PubMed Central PMCID: PMCPMC4027049.

25. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. doi: 10.1006/meth.2001.1262. PubMed PMID: 11846609.

26. SAS I. SAS/Stat User's Guide, Version 8: SAS Institute Inc., Cary, NC; 2009.

27. van der Zijpp AJ, Scott TR, Glick B. The effect of different routes of antigen administration on the humoral immune response of the chick. Poult Sci. 1986;65(4):809-11. PubMed PMID: 3737512.

28. Yonash N, Leitner G, Cahaner A, Heller DE. The dynamics of antibody response to Escherichia coli vaccination in meat-type chicks. Poult Sci. 2000;79(10):1418-23. PubMed PMID: 11055847.

29. Haghighi HR, Gong J, Gyles CL, Hayes MA, Sanei B, Parvizi P, et al. Modulation of antibody-mediated immune response by probiotics in chickens. Clin Diagn Lab Immunol. 2005;12(12):1387-92. doi: 10.1128/CDLI.12.12.1387-1392.2005. PubMed PMID: 16339061; PubMed Central PMCID: PMCPMC1317071.

30. Buchanan JB, Johnson RW. Regulation of food intake by inflammatory cytokines in the brain. Neuroendocrinology. 2007;86(3):183-90. doi: 10.1159/000108280. PubMed PMID: 17823502.

31. Hataya Y, Akamizu T, Hosoda H, Kanamoto N, Moriyama K, Kangawa K, et al. Alterations of plasma ghrelin levels in rats with lipopolysaccharide-induced wasting syndrome and effects of ghrelin treatment on the syndrome. Endocrinology. 2003;144(12):5365-71. doi: 10.1210/en.2003-0427. PubMed PMID: 12960078.

32. Stofkova A. Cachexia-the interplay between the immune system, brain control and metabolism. Rijeka, Croatia: Intech Open; 2012.

33. Xie H, Rath NC, Huff GR, Huff WE, Balog JM. Effects of Salmonella typhimurium lipopolysaccharide on broiler chickens. Poult Sci. 2000;79(1):33-40. PubMed PMID: 10685886.

34. Kovarik M, Muthny T, Sispera L, Holecek M. The dose-dependent effects of endotoxin on protein metabolism in two types of rat skeletal muscle. Journal of physiology and biochemistry. 2012;68(3):385-95.

35. Jing M, Munyaka PM, Tactacan GB, Rodriguez-Lecompte JC, O K, House JD. Performance, serum biochemical responses, and gene expression of intestinal folate transporters of young and older laying hens in response to dietary folic acid supplementation and challenge with Escherichia coli lipopolysaccharide. Poult Sci. 2014;93(1):122-31. doi: 10.3382/ps.2013-03384. PubMed PMID: 24570431.

36. De Boever S, Beyaert R, Vandemaele F, Baert K, Duchateau L, Goddeeris B, et al. The influence of age and repeated lipopolysaccharide administration on body temperature and the concentration of interleukin-6 and IgM antibodies against lipopolysaccharide in broiler chickens. Avian Pathol. 2008;37(1):39-44. doi: 10.1080/03079450701784875. PubMed PMID: 18202948.

37. Leshchinsky TV, Klasing KC. Profile of chicken cytokines induced by
lipopolysaccharide is modulated by dietary alpha-tocopheryl acetate. Poult Sci. 2003;82(8):126673. PubMed PMID: 12943297.

38. Degen WG, Daal N, Rothwell L, Kaiser P, Schijns VE. Th1/Th2 polarization by viral and helminth infection in birds. Vet Microbiol. 2005;105(3-4):163-7. doi: 10.1016/j.vetmic.2004.12.001. PubMed PMID: 15708812.

39. Shang Y, Regassa A, Kim JH, Kim WK. The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella Enteritidis lipopolysaccharides. Poultry science. 2015;94(12):2887-97.

40. Gross WB, Siegel HS. Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis. 1983;27(4):972-9. PubMed PMID: 6360120.

41. Beishuizen A, Thijs LG. Review: endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. Journal of endotoxin research. 2003;9(1):3-24.

42. Humphrey T. Are happy chickens safer chickens? Poultry welfare and disease susceptibility. Br Poult Sci. 2006;47(4):379-91. doi: 10.1080/00071660600829084. PubMed PMID: 16905463.

43. Chatterjee P, Chiasson VL, Bounds KR, Mitchell BM. Regulation of the Anti-Inflammatory Cytokines Interleukin-4 and Interleukin-10 during Pregnancy. Front Immunol. 2014;5:253. doi: 10.3389/fimmu.2014.00253. PubMed PMID: 24904596; PubMed Central PMCID: PMCPMC4034149.

44. Mingomataj E, Bakiri AH. Regulator Versus Effector Paradigm: Interleukin-10 as Indicator of the Switching Response. Clin Rev Allergy Immunol. 2016;50(1):97-113. doi: 10.1007/s12016-015-8514-7. PubMed PMID: 26450621.

45. Ruff KJ, Winkler A, Jackson RW, DeVore DP, Ritz BW. Eggshell membrane in the treatment of pain and stiffness from osteoarthritis of the knee: a randomized, multicenter, double-blind, placebo-controlled clinical study. Clin Rheumatol. 2009;28(8):907-14. doi: 10.1007/s10067-009-1173-4. PubMed PMID: 19340512; PubMed Central PMCID: PMCPMC2711914.

46. Ruff KJ, DeVore DP, Leu MD, Robinson MA. Eggshell membrane: a possible new natural therapeutic for joint and connective tissue disorders. Results from two open-label human clinical studies. Clin Interv Aging. 2009;4:235-40. PubMed PMID: 19554094; PubMed Central PMCID: PMCPMC2697588.

47. Shi Y, Rupa P, Jiang B, Mine Y. Hydrolysate from eggshell membrane ameliorates intestinal inflammation in mice. Int J Mol Sci. 2014;15(12):22728-42. doi: 10.3390/ijms151222728. PubMed PMID: 25501329; PubMed Central PMCID: PMCPMC4284733.

48. Agarwal S, Cunningham-Rundles C. Assessment and clinical interpretation of reduced IgG values. Ann Allergy Asthma Immunol. 2007;99(3):281-3. doi: 10.1016/S1081-1206(10)60665-5. PubMed PMID: 17910333; PubMed Central PMCID: PMCPMC3099256.

49. Bowers EK, Hodges CJ, Forsman AM, Vogel LA, Masters BS, Johnson BG, et al. Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology. 2014;95(11):3027-34. doi: 10.1890/14-0418.1. PubMed PMID: 25505800; PubMed Central PMCID: PMCPMC4260523.

50. De Cort W, Haesebrouck F, Ducatelle R, van Immerseel F. Administration of a Salmonella Enteritidis ΔhilAssrAfliG strain by coarse spray to newly hatched broilers reduces colonization and shedding of a Salmonella Enteritidis challenge strain. Poult Sci. 2015;94(1):131-5. doi: 10.3382/ps/peu018. PubMed PMID: 25535402.

51. Rook GA, Lowry CA, Raison CL. Microbial 'Old Friends', immunoregulation and stress resilience. Evol Med Public Health. 2013;2013(1):46-64. doi: 10.1093/emph/eot004. PubMed PMID: 24481186; PubMed Central PMCID: PMCPMC3868387.

52. Pi C, Allott EH, Ren D, Poulton S, Lee SY, Perkins S, et al. Increased biodiversity in the environment improves the humoral response of rats. PLoS One. 2015;10(4):e0120255. doi: 10.1371/journal.pone.0120255. PubMed PMID: 25853852; PubMed Central PMCID: PMCPMC4390306.

53. Walker C-D. Nutritional aspects modulating brain development and the responses to stress in early neonatal life. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2005;29(8):1249-63.

54. Schuijs MJ, Willart MA, Vergote K, Gras D, Deswarte K, Ege MJ, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science. 2015;349(6252):1106-10.

55. Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol. 2004;5(6):575-81. doi: 10.1038/ni1078. PubMed PMID: 15164017.

56. Matteoli G, Boeckxstaens GE. The vagal innervation of the gut and immune homeostasis. Gut. 2013;62(8):1214-22. doi: 10.1136/gutjnl-2012-302550. PubMed PMID: 23023166; PubMed Central PMCID: PMCPMC3711371.

57. Verduci E, Banderalli G, Barberi S, Radaelli G, Lops A, Betti F, et al. Epigenetic effect of human breast milk. Nutrients. 2014;6:1711-24.

58. Kussmann M. "Nutrition and immunity." *Mass spectrometry and nutrition research*. Ed. Laurent Bernard Fay, Martin Kussmann. 2010. 268-309. Print

VI. CONCLUSION

The immune system of a newly hatched chick is functionally immature and plastic. It can be primed and modulated by numerous ways, which can make it more resilient to fight infections in later life. Pre and postnatal life is critical time for the immune system for epigenetic programming for development of resistance and tolerance and the nutritional modulation can be a major option to this end. In mammals for example, the mother's milk that contains a plethora of defense proteins, peptides, and growth factors provide such programming boosting resistance against microbes, provide probiotic factors for microbiome, and anti-infective benefits to the immature gut. The diets in birds living in wild may consist of fresh worms, insects, fish or food which can provide such programming which the domesticated poultry raised under controlled conditions may not have that exposure. Using eggshell membrane matrix and following its physiological modulation that provides protection of chicks against LPS induced changes.

Using ESM from both fresh unfertilized as well as from hatchery egg membranes, we found that it contain more than 270 proteins, which are not only antimicrobial in nature, but they are also associated with cell signaling, development process, and immune system regulation processes (chapter2/4) largely of embryonic and hematological origins. The rejuvenation potential of body fluid factors of young animals was shown using parabiotic mice () suggesting that these factors can influence physiology. In extrapolating the concept we think that ESM factors which contain many antimicrobial, cell organizing, and cell signaling proteins perhaps produce the effects through neuroendocrine immune organizational pathways (chapters 3 and 5).

These experiments can be foundational to explore the idea that post hatch modulation of physiology and immunity using allogeneic or xenogeneic bioactive factors and microbes may confer life time resistance and tolerance to poultry against pathogens.

With respect to ESM, this byproduct can be reusable and saleable without causing any biosecurity issues. This research would help for utilization of hatchery waste eggshell membranes in a potentially valuable and profitable manner.