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Abstract 

Earth’s surface movement may cause as a potential hazard to infrastructure and people. 

Associated earthquake hazards pose a potential side effect of geothermal activity. Modern 

remote sensing techniques known as Interferometric Synthetic Aperture Radar (InSAR) can 

measure surface change with a high degree of precision to mm scale movements. Previous work 

has identified a deformation anomaly within the Coso Geothermal site in eastern California. 

Surface changes have not been analyzed since the 1990s, allowing a decade of geothermal 

production impact to occur since previously assessed. In this study, InSAR data was acquired 

and analyzed between the years 2005 and 2010.  Acquired by the ENVISAT satellite from both 

ascending and descending modes. This provides an independent dataset from previous work. 

Incorporating data generated from a new sensor covering a more modern temporal study period. 

Analysis of this time period revealed a subsidence anomaly in correlation with the extents of the 

geothermal production area under current operation. Maximum subsidence rates in the region 

reached approximately 3.8 cm/yr. A similar rate assessed from previous work throughout the 

1990s. The correlation of subsidence patterns suggests a linear source of deformation from 

measurements spanning multiple decades. Regions of subsidence branch out from the main 

anomaly to the North-Northeast and to the South where additional significant peaks of 

subsidence occurring. The extents of the deformation anomaly directly correlate with the 

dispersal of geothermal production well site locations. Depressurization within the geothermal 

system provides a leading cause to surface subsidence from excessive extraction of hydrothermal 

fluids. As a result of minimal reinjection of production fluids.  
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Chapter 1 

 

Introduction 

The Coso geothermal area is a constantly developing system in a significant tectonically 

active region. Natural and human-induced processes within the geothermal system can inhibit 

frequent and potentially dangerous seismicity. Utilization of advanced remote sensing techniques 

known as Interferometric Synthetic Aperture Radar (InSAR), provide an ability to accurately 

model and understand the factors at play within an active geothermal system in the region and 

the interplay with seismic events. In an attempt to study the active geothermal processes and 

seismic events occurring at the Coso geothermal site, this thesis will address the impacts that 

these occurrences have with the local crustal deformation. Geodetic data from Interferometric 

Synthetic Aperture Radar (InSAR) can be utilized to model deformation trends throughout the 

region. 

 

1.1 Study Site 

 The Coso geothermal area occurs within the Naval Air Weapons Station at China Lake in 

eastern California. This area is a part of the Coso Range located at the southern extent of the 

Owens Valley between the Sierra Nevada Mountains to the West and the Argus Range to the 

East (Figure 1.1). The total study area is contained within a bounding box of North latitude 

36.181488°, South latitude 35.879579°, W longitude -117.933384°, and East longitude -

117.682265. The region exhibits an arid climate on the backside of the Sierra Nevada crest. Land 

cover within this arid climate consists predominantly of desert scrub as a result of precipitation 

amounts accumulating to a few inches per year. 



 
 
 
 

        
 

2 

 The region is heavily impacted by tectonic influences associated with the plate movement 

interactions between the Pacific plate in relation to the North American plate occurring on both 

sides of the Coso region. Extensive faulting within the region as a result of these influences has 

created an environment for the existence of a geothermal system within these faults and fractures. 

Geothermal production practices began in 1987 and continue today. The combination of fluid 

injection practices and the natural instability of a tectonically active region contribute to one of 

the highest seismically active regions in Southern California (Walter and Weaver, 1980).   

 

1.2 Geological Setting 

The Coso Range and surrounding region has undergone multiple episodes of volcanic 

activity within the previous 4 Ma (Duffield et al, 1980) that has shaped the geological 

characteristics of the region. The Coso Range and more specifically the volcanic area containing 

the geothermal field are constructed primarily of a Mesozoic Basement complex overlain by a 

patchy veneer of volcanic rocks emplaced from volcanic episodes of Pliocene and Pleistocene 

age. The basement complex consists of granitic plutons, dioritic to gabbroic plutons and 

metamorphic rocks (Duffield et al, 1980). This complex has been moderately faulted and 

fractured as a result of extensional tectonics of the region. These faults in turn create the 

structure for the existence of the geothermal system within the fractures due to increased 

permeability.  

During time of increased activity in the last 4 my, approximately 35 cubic km of volcanic 

rock has been erupted and emplaced (Duffield et al, 1980; Bacon et al, 1980). This volcanic rock 

can predominantly be associated within two epochs of eruption time throughout the Pliocene and 

Pleistocene. The oldest units associated with Pliocene age activity consist of basalt flows. Basalt 
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Figure 1.1: Location map of the Coso geothermal area. The yellow box represents the boundaries 
of the Coso geothermal study area. The green triangle marks the location of the Haiwee Reservoir 
Climate Station (UofCal, 2014). The orange lines represent the Quaternary faults within the region 
courtesy of (U.S. Geological Survey, 2006). OVF stands for the Owens Valley fault system. LLF 
stands for the Little Lake fault system. ALF stands for the Airport Lake fault system, SNF stands 
for the Sierra Nevada Frontal Fault and WCF stands for the Wilson Canyon Fault. Aerial imagery 
courtesy of (ESRI, 2016).  
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makes up the most abundant deposits within the Coso Range. One of these significant deposits 

results in the step faulted terrane east of the Coso hot springs that is underlain by these basaltic 

emplacements (Duffield et al, 1980). Other characteristic deposits of the Pliocene consist of 

andesite, dacite, rhyodacite as air-fall pumice and lava flows and rhyolite as a pumiceous ash 

flow tuff.  

The Pleistocene age deposits are characterized as basalt and rhyolite eruptions. These 

deposits are assumed to be emplaced within the last 1.1 my. Rhyolite deposits are generally 

younger than their basaltic counterparts (Duffield et al, 1980). The most notable form of deposits 

for this time are the 38 rhyolite domes that characterize the landscape of the Coso volcanic field. 

Sugarloaf Mountain is the largest of these domes located at the center of the volcanic field. It is 

composed of a composite body of flows and domes roughly in the center of the volcanic field. 

All rhyolitic domes have been dated predominantly younger than 0.15 my (Duffield et al, 1980).  

Methods of emplacement for much of the volcanic flows and specifically Pleistocene 

rhyolite in the region are said to be of dike emplacement (Bacon et al, 1980).  Bacon et al (1980) 

suggest that timing and heat content within the system would support the ascent of magma 

vertically from beneath the center of the rhyolite field where the largest volume of volcanic rocks 

has been emplaced. Within this volcanic zone, a magma reservoir exists at depth that has 

provided a source energy to all of the volcanic rock emplacements excluding the oldest rhyolite 

of Pliocene age. Bacon et al (1980) suggest that the magma rose through the paths of dikes and 

provided source to even the extrusions on the outer perimeter of the volcanic field via offshoot 

dikes seen presently by the multitude of rhyolite domes within the volcanic field.  

Multiple studies have sought to determine the source at depth driving the geothermal 

system (Bacon et al, 1980; Duffield et al, 1980; Monastero et al, 2005; Pluhar et al, 2006; 
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Reasenberg et al, 1980). Reasenberg et al (1980) suggest evidence for a low-velocity body 

beneath the Coso geothermal area as an elongated body that is approximately 5 km in width. 

They suggest the presence of a partial melt buried beneath the Coso geothermal area, that is 

supported by seismic data (Walter and Weaver, 1980) where it is confined within the upper 8 to 

10 km suggesting ductile nature below 10 km. Combs (1980) also suggested the existence of a 

crustal magma body likely to exist at a depth between 5-20 km from teleseismic P wave analysis. 

Common ideas associate this body to supply heat to the fractured nature of the Basement 

complex within the Coso Range. Fracture density within the Basement complex can in turn 

provide the primary fluid-flow paths within the geothermal system where liquid is super heated.  

 

1.3 Tectonic Setting 

The Coso Range resides within a region bounded by the Sierra Nevada to the West and 

the Argus Range to the East.  This region is greatly impacted by the North American-Pacific 

plate movements. Here, approximately 50 km north of the Garlock Fault, is a regional feature 

known as the Eastern California Shear Zone (ECSZ), which plays a large role in the balance 

between plate motion and the impact that the San Andreas Fault activity has to the West (Miller 

et al, 2001). The ECSZ has been said to account for approximately 19-28 percent of the relative 

plate motion that is associated with the North American and Pacific plate interactions (Miller et 

al, 2001). The ECSZ constitutes a region of right lateral strain partitioned into six domains 

broken up by the major strike slip faults and extensional zones determined by Dokka and Travis 

(1990). Faults within the ECSZ have become active within approximately 6 to 10 Mya. The 

broad network of strike slip faulting occurring in this region results from a broad distribution of 

regional dextral shear accounting for approximately 65 km of right lateral since formation. Right 
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lateral movement with the similar strike slip faulting that occurs within the Death Valley region 

creates this regional zone of dextral shear (Dokka and Travis, 1990).  

As a result of these tectonic influences and dextral shearing throughout the region, 

significant faulting has occurred and continues to influence the processes throughout the Coso 

geothermal area. The order of faulting can be associated by the interaction of tectonic influences 

placed on the Coso Range where the seismotectonics of the region reflect the strike slip faulting 

of the San Andreas to the West and extensional faulting influenced by the Basin and Range to 

the East (Bhattacharyya and Lees, 2002).  

The Coso Range sits within a releasing stepover of the ECSZ between the Indian Wells 

valley and the Wild Horse Mesa (Monastero et al, 2005). Creating this stepover, the Airport Lake 

fault zone proceeds north from the Garlock Fault where it splits into two distinct fault zones 

(Figure 1.1). To the west, the Little Lake fault zone proceeds along the Sierra Nevada front 

ultimately linking to the Owens Valley fault zone north of the Coso Range. Motion of the Sierra 

Nevada is predominantly to the Northwest at approximately 13-14 mm/yr. The eastern split of 

the Airport Lake fault zone can be traced along the western margin of the Coso Wash that feeds 

part of the shearing partitioned into the Wild Horse Mesa (Lewis, 2007). East of the Wild Horse 

Mesa, the predominant motion is to the Southeast.  

The Coso Range is bounded to the east by the Wild Horse Mesa where it is separated by 

the Coso Wash fault zone. Our study area, the Coso geothermal area resides on the footwall to 

the west of this zone, amongst the horst and graben structure of the region (Pluhar et al, 2006). 

Here, Monastero et al (2005) suggest that the geothermal activity in the area is a result of a 

nascent metamorphic core complex below a detachment system at 3-4 km depth. Monastero et al 

(2005) suggest that the Coso field necessitates crustal thinning to accommodate horizontal plane-
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strain transtension. The crustal thinning is accomplished as a result of brittle faulting on high 

angle and low angle normal faults that reside within the upper 4 km of crust. They conclude that 

the metamorphic core complex at the Coso geothermal area is very immature in age and will 

likely continue to be an actively forming structure for at least the next 2-4 my. 

Faulting throughout the Coso Range accommodates the northwest striking dextral shear 

as imposed by the processes of the ECSZ. Regional Global Position System (GPS) data have 

shown that between the years 1993 to 2000, the Coso Range and immediate areas surrounding it 

have shown an average rate of dextral shearing of 6.5 ± 0.7 mm/yr throughout the Coso Range 

and Indian Wells Valley. Within the Coso Range faulting has been found to take the form of 

three dominantly trending fault sets all active in late Cenozoic time. The first set of faults are 

west-northwest to northwest trending faults of strike slip character (Duffield et al, 1980) that 

display vertical dip. These faults are well developed within the southern and western areas of the 

Coso Range. The northwest trending faults offset the Mesozoic basement complex as well as 

some Cenozoic volcanic rocks (Duffield et al, 1980; Bacon et al, 1980). The second set of faults 

are north trending normal faults (Duffield et al, 1980) with dips of 60°-70° east or west. These 

faults are well developed throughout most of the Coso Range (Bacon et al, 1980). The third set 

of faults within the Coso Range, consist of arcuate faults. These faults are predominantly a local 

phenomenon to the northern and northeastern parts of the volcanic field (Bacon et al, 1980). 

 

1.4 Recent Seismicity 

Extensive faulting and continued movement within the Coso range contributes to the 

presence of significant earthquakes. During the period of 1992 to 2015 in and around the Coso 

geothermal field, over 40,000 earthquake occurrences were recorded as shown in Figure 1.2 
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(SCEDC (2015)). The majority of the earthquakes that occur in the region are classified as 

micro-seismicity and up to small (M < 3.0) occurrences (Figure 1.3). Amongst the micro-

seismicity, periodically large earthquake occurrences in excess of magnitude 4.9 occur in 

approximately 20 year intervals (Bhattacharyya and Lees, 2002). A 12.5 year period preceding 

geothermal production operations (1975-1987) in the Coso area exhibited a total count for 

earthquake occurrences of 9601 (SCEDC (2013)). This supports a correlation that geothermal 

production practices within the region have contributed to a significant increase in seismicity 

over the last <30 years of production.  

Seismicity experienced within the geothermal area can be attributed to natural processes 

of rupture along faults as a result of tectonic processes, as well as the influence from injection of 

production fluids (Kaven et al, 2011). Feng and Lees (1998) state that fluid injection can increase 

the pore pressure and reduce effective stress within the system that likely creates local stress 

perturbations within the Coso geothermal area and activates faulting along the major pre-existing 

fractures. Within the geothermal area, Feng and Lees (1998) found that the indication of high 

preexisting fracture densities was correlated with high areas of seismicity. This suggests the 

likelihood that the fluid paths driving the geothermal system are located along these faults.  

 

1.5 Climate Setting and Precipitation 

 Extensive studies of the climate (Danskin, 1998) have been performed in the Owens 

Valley to the North of the Coso Range. The Owens Valley vastly shares a similar climate to the 

Coso geothermal area as the two regions share physiogeographic boundaries and similar 

characteristics as the valley floor within the Owens Valley. The Coso Range acts as a barrier to 

water flow at the South end of the Owens Valley where it impedes outflow of groundwater from 
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the lower extent (Danskin, 1998).  

 The climate of the Coso Range much like the Owens Valley is greatly impacted by the 

presence of the Sierra Nevada Mountains directly to the West. Shadowed by the Sierra Nevada 

Mountains, the Coso region is influenced significantly by continental mass forces as an interior 

climate unlike the oceanic influences that impact a much larger portion of California from the 

Pacific Ocean (California Climate Zone 14). The region is characterized by low annual 

precipitation, moderate to low humidity and high potential evapotranspiration in vegetated areas 

that are predominantly covered in desert scrub (Danskin, 1998). These settings create a semiarid 

to arid environment that is characteristic of a high desert basin.  

Temperature patterns in a high desert basin like the Coso Range consist of hot dry 

summers and cold winters. These temperatures also experience wide swings in range between the 

summer and winter months as well as daily temperature occurrences (California Climate Zone 

14). Monthly average temperatures are illustrated in Figure 1.4. These averages show the range 

of temperatures experienced between the cold winter months that are capable of falling to 

temperatures below 0°F (Danskin, 1998) and heating up to temperatures exceeding 110°F in the 

summer months.  

Temperature and low relative humidity coupled with topographic constraints create a 

region that experiences rain or snow that amounts to less than an inch per month (California 

Climate Zone 14). The orographic effect of the Sierra Nevada creates a rain shadow effect over 

the Coso region decreasing the precipitation accumulation experienced greatly from that West of 

the Sierra Nevada crest (Danskin, 1998). Illustrated in Figure 1.5, precipitation values per month 

are very low generally not exceeding 1 inch. This precipitation accounts for approximately 3 to 

12 inches per year.  
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Figure 1.2: Earthquake occurrences in the Coso region between the years 1992 to April 2015. The 
Y axis represents the total number of earthquake occurrences. The X axis is divided as the months 
of successive years throughout study period. Data courtesy of (SCEDC, 2013). 
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Figure 1.3: Earthquake magnitude distribution is displayed for earthquake occurrences within the 
Coso geothermal area. The Y axis represents the total number of earthquakes that fell within 
designated magnitude intensity. The X axis represents the range of magnitude intensities that 
occurred within the region. Data courtesy of (SCEDC, 2013).  
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An important factor in the amount of water within the hydrologic system in the Coso 

region is a process known as evapotranspiration. Evapotranspiration is the sum of evaporation 

and plant transpiration from the Earth’s land and ocean surface to the atmosphere. Duell (1990) 

studied this process within the Owens Valley to the North of the Coso Range. Here he showed 

that evapotranspiration rates on the valley floor ranged from about 12 inches per year to about 45 

inches per year. These rates were also dependent on the type and percentage of vegetative cover 

with the most evapotranspiration occurring within regions of native vegetation. These rates 

greatly exceed the amount of precipitation experienced in the Owens Valley floor and the Coso 

region by as much as 3 to 6 times (Duell, 1990). Within the vegetated areas, the ground water 

recharge of the region is heavily impacted by the quantity of water that is used by the overlying 

vegetation (Danskin, 1998).  

 

1.6 Groundwater and System Recharge 

The hydrologic region the Coso area resides within is known as the South Lahontan 

hydrologic region. This area spans from Owens Valley in the North to Indian Wells Valley in the 

South. The area within proximity to the Coso Range consists of three groundwater basins 

characterizing groundwater flow. The first of these groundwater basins is a 390,000 acre feet 

capacity basin known as the Coso Valley groundwater basin (Coso Valley Groundwater Basin, 

2004). This basin is located southeast of the Coso volcanic field where it is recharged from the 

runoff of the surrounding highlands of the Argus and Coso Ranges. The runoff serves as a 

recharge for the basin by percolating through alluvial fan deposits at the base of the ranges (Coso 

Valley Groundwater Basin, 2004).  

The second groundwater basin of the region is the Rose Valley Groundwater  
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Figure 1.4: Monthly average temperature 1992 to April of 2015. The red line represents daily 
maximum values. The yellow line represents daily average temperatures. The blue line represents 
daily minimum temperatures. The temperatures were recorded at the Haiwee Reservoir. Data 
courtesy of (UofCal, 2014). 
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Basin. This basin has a total storage capacity of 820,000 acre feet (Rose Valley Groundwater 

Basin, 2004). The Rose Valley Basin is located West-southwest of the Coso volcanic field. At 

this location the basin is recharged from runoff of the Sierra Nevada Mountains to the West and 

the Coso Range to the East.  

 The third and largest of basins within the region is known as the Indian Wells Valley 

groundwater basin. This basin is located to the South of the Coso Range and the Coso Valley 

groundwater basin. The basin has a total storage capacity of approximately 5,120,000 acre feet 

(Indian Wells Valley Groundwater Basin, 2004). Like the previous basins the Indian Wells 

basins is recharged from runoff of high altitude surroundings. The Indian Wells basin is 

recharged primarily by runoff from the Sierra Nevada Mountains to the West and a smaller 

contributing factor of rainfall amounting to approximately 4-6 inches per year (Indian Wells 

Valley Groundwater Basin, 2004).  

 Each basin within the region displays a classic basin and range form of recharge for 

groundwater systems. Maxey (1968) defined this classic form of recharge as a process of runoff 

from high altitude or mountainous regions (recharge areas) to low altitude areas within the 

adjacent valleys (discharge areas). Guler and Thyne (2004) were able to demonstrate this 

recharge process for the Indian Wells Valley through hydrochemical analysis of the water at 

various stages through its discharge cycle. They showed the passage through five phases 

represented by clusters starting at Group-1 as precipitation and snow runoff from the Sierra 

Nevada Mountains. It then passes through the basin-fill aquifer, typically the lower slopes of the 

Sierra Nevada and Coso Range. This is shown as the major-ions significantly increase as the 

groundwater interacts with the basin-fill deposit minerals of the region. Significant to the Coso 

Range, the water is potentially affected by geothermal leakage before ultimately evolving into 
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discharge area waters in their designation of Group-4 and Group-5 phases of groundwater 

clusters.  

 A form of recharge to the Coso geothermal system is relatively unknown, while the 

source of geothermal fluids has been suggested to derive from meteoric waters of the Sierra 

Nevada and Coso Ranges (Fournier and Thompson, 1980; Williams and McKibben, 1990). A 

change to the dry and arid climate has altered the fluid flow within the geothermal system. 

Adams et al (2000) states, that the earlier phases of geothermal development (>10 ka) were 

recharged by a low-salinity, non-thermal groundwater system.  

 

1.7 Hydrothermal Activity 

The approximately 30 square km geothermal system present within the Coso area has 

recorded activity for at least the last 300 ka. This geothermal field is located between Rose 

Valley to the West and the Coso Wash to the East. Activity continues in modern time displaying 

associated surface manifestations that primarily take place on or near the Coso Wash Fault (Coso 

Operating Company, 2008). The extensive faulting and fracturing within the region is the 

controlling factor of fluid flow within the geothermal system as this principally liquid-dominated 

system is heated by a shallow magma source associated with the brittle ductile transition zone at 

approximately 5 km. Davatzes and Hickman (2005) analyzed fault hosted fluid flow within the 

Coso geothermal field. They attributed the distribution of active fumaroles, surface alteration and 

steam ejection as an indicating factor of fluid flow along active fault segments trending NNE and 

at intersections between fault segments by the indication of perturbations in borehole 

temperature logs.  

Adams et al (2000) define that the geothermal system has experienced three distinct 
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episodes of thermal activity. The first episode of activity began approximately 307 ka with an 

above moderate temperature system producing travertine deposits on the eastern side of the field. 

The second episode of activity marks sinter deposits at approximately 238 ka driven by 

magmatic activity within the volcanic field. This period marks an increase in temperature 

exceeding 200°C (Adams et al, 2000). Travertine deposits have been observed as networks of 

veins that have filled fractures within the basement complex (Duffield et al, 1980). The travertine 

and some sinter deposits were emplaced prior to basaltic eruptions within the Pleistocene. The 

timing of activity suggests the association of a magmatic body directly heating the system prior 

to eruption (Duffield et al, 1980). The modern hydrothermal field is partitioned into three weakly 

connected or isolated reservoirs. These reservoirs are distinguishable by their differences in 

temperatures with the highest temperatures occurring beneath the southern part of the field in 

excess of 325°C, suggesting renewed magmatic activity beneath the Coso region (Adams et al, 

2000).  

Geothermal production for electrical power generation began in the Coso geothermal 

field in the latter half of 1987 (Coso Operating Company, 2008). With no direct recharge of 

groundwater to the geothermal system, the Coso Operating Company began to pump water from 

the nearby Rose Valley groundwater basins for injection (Coso Operating Company, 2008). 

Geothermal wells reach down to depths of 3,300 to 10,000 feet into the system (Adams et al, 

2000; Monastero, 2002). The fluid is flashed to steam allowing the steam to then power the 

turbine. The Coso Operating Company (2008) reports that the injection rate is approximately 50% 

of the production rate. This balance creates a loss of fluid within the reservoir that is continually 

being depleted each year causing the Coso Operating Company to seek other means of injection 

fluid from surrounding basins.  
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Figure 1.5: Precipitation summary 1992 to 2015. The precipitation values are representative to 
rainfall values experienced at Haiwee Reservoir, CA. Haiwee Reservoir is located on the NW 
extent of the Coso Volcanic field. On the X axis, data is ordered by month of progressing years 
throughout the years 1992 to April of 2015. The Y axis represents the experienced rainfall in 
inches. Data courtesy of (UofCal, 2014).  
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The loss of fluid has created a decrease in pressure within the system (Coso Operating 

Company, 2008). The large changes within the system over a 20-year period of production 

practices create a suitable situation for widespread surface deformation throughout the 

geothermal field. The continued contribution to instability within the system could also serve as 

a likely contribution to increases in seismicity occurrences above the assumed background 

seismicity expected within a tectonically active geothermal area. Feng and Lees (1998) 

supported this association with the spatial association of seismicity within the geothermal area to 

boreholes used for geothermal production. 

 

1.8 Previous InSAR Work 

 Deformation trend analysis has previously been analyzed with differential interferometric 

synthetic aperture radar (DInSAR) techniques (Fialko and Simons, 2000; Wicks et al, 2001) 

throughout the Coso geothermal area in eastern California. This analysis used deformation 

observations as a tool to apply inversion calculations as a process to infer source depths of the 

driving mechanism for the Coso geothermal field. Wicks et al (2001) utilize this data to examine 

the implications of magmatic and geothermal processes occurring beneath the Coso Range. A 

region of high magmatic activity in present time and impacted by multiple eruptions within the 

previous 4 Ma. Fialko and Simons (2000) differentiates slightly in the focus of research where 

the impact of geothermal production processes is a primary concern. InSAR techniques are 

utilized to delineate areas affected by stress perturbations due to geothermal production. These 

areas support the understanding of possible causative links between the geothermal plant 

operation and observed seismic activity. The following section will review the methods of these 

studies and present significant results as they are relevant to this thesis.  
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 Previous deformation analysis (Fialko and Simons, 2000; Wicks et al, 2001) in the Coso 

geothermal area has been performed and documented. This analysis covers trends throughout the 

years 1992-1998. SAR imagery covering the study period analysis was acquired from the 

European Space Agency (ESA) satellite missions of ERS-1/-2. Fialko and Simons (2000), 

utilized SAR imagery from 1992 through 1997, while Wicks et al (2001) focused on a slight 

temporal shift from years 1993 through 1998. The imagery covers a region approximately 50 to 

100 square km centered on the Coso basin where DInSAR techniques were employed in an effort 

to model temporal trends taking place in a large continuous area. 

  Formation of interferograms requires the cross-multiplication of at least two complex 

SAR images by the multiplication of each pixel in one SAR image by the complex conjugate of 

corresponding pixels on the second SAR image. A processed interferogram allows the ability to 

infer ground deformation from the difference in phase values found in each pixel, an attribute 

contained in a complex SAR image as a result of SAR imaging processes. A more complete 

introduction to InSAR techniques is presented in section 2, showing the multiple steps that are 

required in the processing for InSAR analysis.  

After formation, the removal of multiple phase contributions must be performed to 

provide an output modeling solely the phase difference (∆ф), or ground deformation over time. 

In the studies of Fialko and Simons (2000) and Wicks et al (2001), interferograms were formed 

using a two-pass method. This entails that just two SAR images separated temporally are 

required for the formation of an interferometric pair. Topographic corrections are then applied 

using a previously established Digital Elevation Model (DEM), widely available from USGS 

sources. The phase values on an interferogram are a statistical quantity uniformly distributed 

over the interval (0,2π) therefore a process known as unwrapping must be applied for a direct 
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measurement of surface change. Wicks et al (2001) applied this process using a branch-cut 

method (Goldstein et al, 1988). Examples of unwrapped interferograms can be found in Figure 

3.2.2. Wicks et al (2001) built a period of analysis by establishing a series of five interferograms 

from scenes spanning twenty-four months between acquisitions. Atmospheric noise is an 

additional phase contribution that must be accounted for. This can be distinguished by analyzing 

signal persistence over several consecutive interferograms or several simultaneous 

interferograms spanning approximately the same time interval (Fialko and Simons, 2000).  

 Source modeling techniques present the ability to model relating ground surface 

deformations previously inferred from InSAR processes to volume changes at depth. Previous 

research (Fialko and Simons, 2000; Wicks et al, 2001) has employed multiple models of this 

analysis to the Coso geothermal area. The simplest model relating this occurrence is an isotropic 

point pressure source in a uniform elastic half-space (Mogi, 1958). Both studies determined that 

the deformation patterns throughout the Coso area is too complicated to be explained by such a 

model. To compensate for this, additional models were employed. Wicks et al (2001) employed 

one for a planar elastic dislocation (Okada, 1985), while Fialko and Simons (2000) incorporated 

a model using multiple prolate spheroidal sources (Yang et al, 1988). These models can be 

incorporated into a complex setting such as the Coso geothermal area by the addition of multiple 

model parameters such as movement perpendicular to the dislocation surface, and the strike and 

the dip of the planar surface as in the case of a planar dislocation source (Wicks et al, 2001).  

 Analyzing the calculated interferograms, deformation trends can be inferred for the study 

area. In this case, the inferred subsidence rate was found to be approximately 3 to 4 cm/year with 

an average volumetric subsidence rate of 106 m3 per year (Wicks et al, 2001). The deformation 

included in these values was found to be distributed largely within broad subsidence patterns 
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surrounding the producing areas of the geothermal field. There are two localized subsidence 

peaks present in the area. One peak is located in the western while the other in the northeastern 

part of the anomaly that are separated by several km between. Fialko and Simons (2000) relate 

these trends to be likely results from the cooling and depletion patterns of the geothermal 

reservoir. Occurring in the later years of the study period, these large subsidence peaks in the 

western and northeastern regions seem to broaden and perhaps merge with time. Fialko and 

Simons (2000) suggest that this inferred broadening may reflect the deepening or perhaps lateral 

expansion of the deformation sources. Creating an increase in the reservoir volume that could be 

a direct effect of geothermal production. A significant find from deformation analysis is the 

presence of a dominant short and long wavelength. The short wavelength (~2 km) is found 

within the geothermal field that is assumed to be associated with the geothermal production and 

an area of active venting near coso hot springs. The long wavelength (~10-15 km) is a deeper 

source of deformation association, also indicating that this is a long-term reservoir drawdown 

(Wicks et al, 2001).  

Source modeling that utilizes deformation trends from InSAR analysis allows the 

opportunity to model the source depths of the driving mechanism to the geothermal system in 

support of previous methods utilizing seismic data. Research in the Coso area has been focused 

around the determination for the heat source in the region. Reasenberg et al (1980) inferred that a 

body at depth was present from their research concluding low P wave velocity beneath the Coso 

geothermal area. Volcanic activity within the last 4 Ma supports the presence of a rhyolite 

magma body at depth contributing to two periods of eruption during this time. Previous analysis 

of long-wavelength deformation favors the presence of a source at range of 1-4 km depth (Fialko 

and Simons, 2000; Wicks et al, 2001). The structure of the heat flow impacting the geothermal 
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area is still in question. Wicks et al (2001) support the idea that the composite source is instead 

likely a shallow system of fractures driven by a magma body at greater depth and tectonic 

processes of the region. Source modeling from inversion calculations support the idea that this 

long-wavelength component of deformation is resultant from the thinning of the brittle rock 

above the magma body. This can create a scenario where breaches in the self-sealing zone allow 

movement of magmatic fluids upward into the region of circulating meteoric fluids creating the 

geothermal activity. The depressurization that occurs as a result to this breach of the brine-gas 

reservoir would then likely produce surface subsidence. 

 

1.9 Contributions 

The work assesses the patterns and magnitude of deformation at the Coso site from 2005 

through 2010. Previous work in this region is temporally limited to the 1990s generated from the 

European Space Agency’s (ESA) ERS-1/-2 satellite missions. This work employs a dataset that 

has not previously been considered from the ESA ENVISAT satellite mission. This ensures that 

the data utilized is from a different time period as well as generated from an independent sensor. 

Both flight modes are considered as a part of this work. Including both ascending and descending 

mode data assures the legitimacy of deformation patterns as data from independent flight modes 

are generated from different look directions. Results are consistent with the previous work of the 

Coso site for subsidence patterns and magnitude. The continuation of steady subsidence within 

the geothermal region suggest a linear deformation source over multiple decades.  

 

1.10 Synopsis 

Chapter 2 provides the technical background into the methods and understanding of 
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interferometric synthetic aperture radar (InSAR) analysis. Important SAR missions are presented 

with defining characteristics of missions utilized in this research. First, introduction of synthetic 

aperture radar (SAR) systems and SAR images are discussed. We then explain how these images 

can be paired accordingly to show deformation changes by the difference in phase lengths held 

in each image. We then describe how these calculated images can be used to model the temporal 

evolution of surface deformation for a region.   

Chapter 3 presents the data that was utilized throughout the research process. SAR data 

implemented into interferogram generation and the satellite missions that provided the data are 

summarized. Earthquake datasets are used for interpretation of the impact that deformation has 

on the region from the Southern California Earthquake Center. DEM and additional GIS data 

that were utilized for analysis are presented. Additionally, the processing steps behind generating 

interferograms to infer the deformation trends and impact that surface change can have on the 

region as a whole are explained.  

Chapter 4 presents the measured deformation rates exhibited at the Coso Geothermal site 

during the years 2005-2010 from differential InSAR analysis. Definition of potential trends that 

are discernible from the InSAR results. A discussion of the potential impacts or implications of 

these deformation trends are considered. As well as potential causes to the continued experience 

of these anomalies.  

Chapter 5 discusses the future applications the can be implemented to improve or 

broaden the results that were presented as a part of this research. Some of these methods may 

consist of the implementation of additional SAR data from additional satellite missions of ERS-2 

and Sentinel-1 that would broaden the range of years in the study period. Including the early 

2000’s and 2014 to the present. Additional steps may consist of the inclusion of additional 
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auxiliary data such as well data and the expansion of analysis with inverse modeling steps. 

Inverse modeling would allow a greater understanding towards the changes that have taken place 

in the subsurface during the study period.  

Chapter 6 provides conclusions on the applicability of the analysis steps that were taken. 

As well as a summary of the results that were discovered as a result of the InSAR techniques. 

Concluding with a final look at what these results can mean to the impact of active production 

processes taking place in an active tectonic and natural geothermal region.   
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Chapter 2 

 

InSAR for Crustal Deformation 

Interferometric Synthetic Aperture Radar (InSAR) is an advanced remote sensing 

technique that utilizes the combination of two, or more, Synthetic Aperture Radar (SAR) images 

to create maps of an area that display terrain characteristics, such as topography and surface 

deformation, with a very high accuracy. Surface characteristics are expressed by the difference in 

phase values attributed to the radar-backscattered waves.  

Radar technology has been utilized throughout the 20th century, with early practices 

consisting primarily of military intentions. Not until the early 1960s did side looking aperture 

radar become available to the scientific community from airborne sources. This followed the first 

experimental missions of spaceborne SAR, beginning in 1962 with the launch of Apollo 17. This 

Apollo Lunar Lander carried an L-band sounding radar to detect subsurface geologic structures, 

generate a continuous lunar profile, and map the lunar surface at radar wavelengths (Curlander 

and McDonough, 1991). Proceeding from the success of the lunar sounder mission and other 

airborne Jet Propulsion Laboratory tests, SAR found its first  scientific utilization for Earth 

observation in the 1970s with the launch of Seasat in 1978 (Curlander and McDonough, 1991; 

Massonnet and Feigl, 1998).  

The original purpose of the Seasat mission was the collection of data pertaining to sea 

surface characteristics (wave height, temperature, sea ice, and wind speed). The Seasat mission 

provided significant terrain data, along with sea surface data, to establish the validity of imaging 

for Earth observation using radar pulses aboard satellites. The success of the Seasat mission in 

turn led to the numerous Shuttle Imaging Radar missions, including SIR-A, SIR-B, and SIR-C. A 



 
 
 
 

        
 

26 

significant development in the SIR-B mission was a new antenna design that allowed images to 

be acquired at a varying degree of look angles from 15-60° (Curlander and McDonough, 1991).  

The 1980s saw early published research for terrestrial applications of InSAR techniques 

(e.g., Zebker and Goldstein, 1986). The research of this time is significant from the lack of 

InSAR data availability that existed for scientific application. Following the ERS-1 satellite 

mission for spaceborne SAR in 1991, data availability increased significantly and allowed a 

more widespread inclusion of research teams abroad. Over time, more significant missions have 

taken place such as the ERS-2, ENVISAT, TerraSAR-X, COSMO-SkyMed, and most recent 

Sentinel-1 missions amongst others. The continuation of SAR missions suitable for InSAR 

techniques has resulted in an abundance of data suitable for geodetic analysis in many fields of 

research. Examples of these research areas include land subsidence (Aly et al, 2009), volcano 

development (Aly and Cochran, 2011), tectonics and earthquakes (Zhang et al, 2013), and 

geothermal environments (Sarychikhina et al, 2010).   

 

2.1 Radar Basics 

Radar (radio detection and ranging) instruments can detect features (Earth’s surface) by 

emitting pulses of radio waves that are reflected off of surfaces (scatterers) and returned to be 

recorded (as backscatters) by the receiver of the radar system. These radar echoes can be used to 

infer the distance to the recorded scatterer and to generate a two-dimensional image of the area 

by measuring the two-way travel time (phase) from the antenna to the receiver. Radar imagery 

utilizes the microwave portion of the electromagnetic spectrum, which is approximately between 

1 mm and 1 m wavelengths. Optical imagery systems have been widely utilized in remote 

sensing applications but contain some limitations to use as they are dependent upon day-time 
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light and require clear atmospheric conditions. Radar sensing systems have the advantage in 

these conditions as they have their own power sources and the microwave frequency allows radar 

waves to penetrate the cloud cover.  

 

2.1.1 Real Aperture Radar (RAR) 

RAR consists of a Side Looking Radar (SLR) with a fixed antenna length. The physically 

constricted antenna length creates a major limitation for RAR. The potential spatial resolution 

produced by RAR systems is typically too coarse (5-10 km) for use in surface analysis 

applications (Burgmann et al, 2000). 

 

2.1.2 Synthetic Aperture Radar (SAR) 

SAR systems possess a physically shorter antenna than that on RAR systems. SAR 

systems create a more precise resolution by synthesizing very long antennas through modified 

data recording and signal processing techniques. The SAR system follows the azimuth direction 

and continuously sends radar pulses across-track at designated time intervals. This results in the 

receiver sensing scatterers in consecutive echoes. SAR methods can distinguish the position of 

individual scatterers on the surface using the Doppler Effect from the relative motion of the 

antenna and the ground (Bamler and Hartl, 1998). In comparison to RAR systems, SAR spatial 

resolutions can be within a range of 4-30 m (Burgmann et al, 2000), providing a reasonable 

resolution appropriate for analyzing land surface changes. 

 

2.1.3 SAR Imaging 

The geometry of a spaceborne SAR system with a radar sensor mounted on a satellite at 
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height H is illustrated in Figure 1. The satellite travels along the orbit path (azimuth direction) at 

a designated velocity. With a side looking fashion, the system illuminates an area known as the 

antenna footprint on the Earth’s surface through a series of microwave pulses. The radar pulses 

are emitted toward the target along the slant range, also known as the Line-Of-Sight (LOS) 

direction. Pulses reflect off of scatterers within the illuminated antenna footprint where the radar 

echoes return to the SAR system receiver. This process continues along-track emitting and 

receiving radar echoes forming a continuous strip-map of data. 

Received radar echoes are summed to create a two-dimensional surface known as a 

complex SAR image. Recorded data within this image is in the form of a continuous pixel grid. 

The image is considered complex from the inclusion of attribute values within each pixel known 

as phase and amplitude (Feretti et al, 2007). Phase values represent the two-way propagation of 

the radar echoes, or the period of time that elapsed between emitting and receiving the radar 

signal. The amplitude, or the brightness of pixels, represents the intensity of backscattered 

energy off of scatterers on the surface. Usually, hard surface features such as urban areas and 

rocks will show a higher value of amplitude compared to surfaces such as water that will 

backscatter little energy returned to the receiver (Feretti et al, 2007). 

Radar wavelengths typically utilized in common SAR systems are approximately 3 cm 

(X-band), 6 cm (C-band), and/or 24 cm (L-band). Most commonly associated with deformation 

analysis, are C-band wavelengths due partly to the abundant distribution of C-band data from the 

European Space Agency (ESA) satellite missions (e.g., the European Remote-Sensing satellites, 

ERS-1/ERS-2, and the Environmental Satellite, ENVISAT, Table 1). The variations of 

wavelengths create advantages for utilization in different geographical and land cover 

environments. Finer wavelengths (X-band) provide a higher precision for surface movement 
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detection commonly utilized in sparsely vegetated regions. Finer wavelengths have the 

disadvantage that the radar signals have a high possibility of being reflected off of vegetated 

features not representative of the surface. As the wavelength increases (C-band/L-band) the 

signal gains the ability to by-pass such features and capture the surface scatterers despite the land 

cover above. An additional advantage exists as a shorter wavelength has the capability to detect 

smaller surface movements in the Z axis. Detection of very gradual deformation within a region 

would benefit from this finer frequency and greater accuracy to small measurements over a 

larger period of time. On the other hand, larger wavelengths (C-band/L-band) accommodate 

faster rates of motion, as the rate of deformation will not exceed the length of a single radar 

wavelength. 

 

2.1.4 SAR Data and Sensors 

ESA has launched multiple satellite missions suitable for InSAR applications. Beginning 

in the early 1990s, the ERS-1 mission was the first ESA program in Earth observation. It was 

launched on July 17, 1991 and lasted until March 10, 2000. Its objective was to provide 

environmental monitoring in the microwave spectrum (ERS-1) with a 35 day mapping orbit. A 

detailed breakdown for significant parameters of each selected SAR mission is summarized in 

Table 2.1.  

The ERS-1 satellite carried an Active Microwave Instrument (AMI). This sensor contains 

a SAR system that operates in two modes known as “Image Mode” and “Wave Mode”. The 

imaging mode operated at a C-band wavelength of 5.66 cm, and the wave mode served as a 

function to measure changes in radar reflectivity of the sea currents due to surface waves. The 

ERS-1 mission had multiple highlights throughout its lifespan. The benefits of this mission 
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served as a demonstration of range precision of 1 cm and the ability to detect small changes on 

the Earth’s surface. This led to a significant increase within the scientific community of 

adaptation for SAR data within research of terrestrial applications.  

The ERS-1 mission was followed by another ESA mission on April 21, 1995. This was 

the launch of a similar satellite known as ERS-2, until its retirement on September 5, 2011. The 

ERS-2 satellite was a base copy of the ERS-1 and contained the same mission objectives. The 

difference was that ERS-2 underwent some enhancements of sensor additions for improved 

vegetation analysis and the ability to measure chemical composition of the atmosphere. For SAR 

acquisitions, ERS-2 contained the similar AMI sensor operating at a C-band wavelength. One of 

the largest highlights during the lifespan of ERS-2 was its tandem mode with ERS-1 from July 

1995 to July 1996. During this period the satellites collected precise topographic information as a 

result from the short temporal baseline between the two satellites.  

A continuation of C-band data acquisition progressed with the launch of the ENVISAT 

satellite on March 1, 2002 until its end on May 9, 2012. The satellite followed a similar mapping 

orbital cycle of 35 days to its predecessors of ERS-1/-2. ENVISAT carried a sensor complement 

of Advanced SAR (ASAR), which is of similar development of the AMI sensors flown on ERS-

1/-2. Significant new advances with ASAR consist of a flexible swath positioning, dual 

polarization, and wide swath coverage of 405 km swaths.  

On June 15, 2007 the satellite mission TerraSAR-X was launched and managed by the 

German Aerospace Center (DLR). The intention of this mission is to make multi-mode and high-

resolution X-band data widely available for scientific applications in a variety of fields (TSX 

(TerraSAR-X) Mission). The sensor complement onboard TerraSAR-X for SAR imagery is the 

TSX-SAR, which is an active phased array X-band system (TSX).  
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Figure 2.1: Synthetic Aperture Radar satellite terminology. The gray box represents the SAR 
system following the orbit path that travels at a designated velocity. The Line-Of-Sight (LOS) 
also known as the Slant range represents the path emitted radar pulses to and from the satellite. 
The Azimuth direction is also known as the along track, which represents the imaging path 
along the path of the satellite orbit. The range dimension represents the across track and the Z 
dimension represents the elevation of the surface. The antenna footprint represents the 
illuminated area of the radar echoes and the strip map represents the continuous imaged swath 
that is recorded along track (Ferretti et al, 2007). 
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Parameters 
ERS-1 
(Image 
Mode) 

ERS-2 
(Image 
Mode) 

ENVISAT 
(Image Mode) 

TerraSAR-X 
(Strip-map Mode) 

Sentinel-1 
(Strip-map 
Mode) 

Launch date 7/17/1991 4/21/1995 3/1/2002 6/15/2007 4/3/2014 

Termination date 3/10/2000 9/5/2011 5/9/2012 On-going On-going 
Orbit elevation 
(km) 785 785 800  514.8 693 

Orbit interval time 
(days) 35 35 35 11 12 

Inclination 98.52° 98.52° 98.52° 97.44° 98.18° 
Antenna length 
(m) 10 x 1 10 x 1 10 x 1.3  4.8  12.3 x 1.02  

Sensor 
complement AMI AMI A SAR TSX-SAR C-SAR 

Frequency (GHz) 5.3 5.3 5.3 9.65 5.4 

Wavelength (cm) 5.66 (C-
band) 

5.66 (C-
band) 5.66 (C-band) 3.1 (X-band) 5.5 (C-band) 

Pulse bandwidth 
(MHz) 15.55 15.55 16 150 0 - 100 

Pulse repetition 
frequency (Hz) 1640-1720 1640-1720 1650 to 2100 2000-6500 1000–3000 

Pulse length (µs) 37.1 37.1 20 2 - 60 5 - 100 
Sampling 
frequency (MHz) 18.96 18.96 19.2 10 260 

Incidence angle 23° 23° 15 - 45° 15 - 60° 20 - 45° 

Swath width (km) 100 100 100  30 (single) 15 
(double) 80 

Polarization LV (linear 
vertical) 

LV (linear 
vertical) 

VV, HH, VV/HH, 
HV/HH, VH/VV 

HH, VV, HV, VH 
(single or dual) 

Dual 
HH+HV, 
VV+VH 

Ground range 
resolution (m) 28 28 28 1.7 - 3.5 5  

Slant range 
resolution (m) 10 10 8 1.2 1.7  

Azimuth 
resolution (m) 5 5 5  3.3  5  

One look range 
pixel size (m) 20 20 20  2 5  

One look azimuth 
pixel size (m) 4 4 4 2  5  

Ground coverage 
of one scene (km) 100x100 100x100 100x100 30x50 80x80 

 

Table 2.1:  Important parameters of selected SAR missions to demonstrate development of 
sensor technology over time. 
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One of the most recent launches of the ESA occurred on April 3, 2014. This was the 

launch of Sentinel-1. The objectives of Sentinel-1 primarily consist of the continuation of C-band 

SAR data availability. With that is the enhancement of data with the decrease of the mapping 

orbit to a 12-day cycle. The sensor complement onboard the Sentinel-1 is the C-SAR instrument. 

This component has four observation modes including the Stripmap mode for continued C-band 

imaging and an Interferometric Wide Swath (IWS) mode. The IWS mode has been given a new 

type of ScanSAR mode called Terrain Observation with Progressive Scan (TOPSAR) that is an 

attempt to reduce the disadvantages of the ScanSAR mode (Copernicus: Sentinel-1 – the SAR 

imaging constellation for land and ocean services). This new mode aims to produce the same 

coverage and resolution of past imagery from the ScanSAR, but with the advantage of nearly 

uniform Signal to Noise Ratio (SNR) and Distributed Target Ambiguity Ratio (DTAR).   

 

2.1.5 Complications of SAR Imaging 

Despite distinct advantages of SAR imageries, there are complications that need to be 

overcome throughout the imaging process in order to produce high quality images suitable for 

quantitative and qualitative analyses. These complications come from such aspects as land cover 

changes within ground pixels and topographic variations that cause LOS issues for the emitted 

radar pulses reaching the surface. Such complications and common practices employed to 

overcome them are discussed below. 

 

1. Speckle: 

Speckle is a complication that arises when several scatterers are within a single SAR 

resolution cell, then the amplitude values within the resolution cell fluctuate. This causes the 
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effect of speckle, which results in a grainy appearance throughout raw radar images. Use of 

multiple images covering the same region at slightly different times or look angles to average the 

values can greatly reduce this effect (Feretti et al, 2007; Bamler and Hartl, 1998). 

 

2. Foreshortening: 

Varying resolution cell sizes is greatly impacted by the slope of terrains in the across-

track direction. The slope angle in respect to the LOS (look angle) is the deciding factor in this 

process. Foreshortening occurs as the slope of the terrain increases toward the radar system as 

seen on the side of a mountain. As the slope angle increases the radar is reflected from the 

bottom of the slope before the top. This compression creates a shortening effect and a 

misinterpretation of the true surface slope. The low incidence angle as a result of this situation 

provides a higher intensity and a brighter representation of amplitude in the complex SAR image 

(Feretti et al, 2007; Burgmann et al, 2000). 

 

3. Lay-over: 

Lay-over is another occurrence of slope representation found at extreme slope angles (top 

of mountain) where the slope of the feature exceeds the look angle. In this situation, the top of 

the feature is reflected before the bottom of the slope. This causes a layover effect for the 

displacement of the top of the feature over the base (Feretti et al, 2007; Burgmann et al, 2000). 

 

4. Shadowing: 

A shadowing effect occurs as the slope angle exceeds the minimum slope extent (0°). 

This creates a loss of surface representation as the feature slopes away from the radar sensor. 
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This occurrence is commonly found on the backside of topographic features in the across-track 

direction (Feretti et al, 2007; Burgmann et al, 2000).      

 

2.2 SAR Interferometry (InSAR) 

InSAR is a state-of-the-art remote sensing technique that can be used to derive surface 

information using two or more complex SAR images. Surface information that would otherwise 

be unattainable from a single SAR image. InSAR imaging techniques can produce data suitable 

for differing areas of research by varying the imaging methods that are used to represent the land 

surface. Along-track interferometry images the land surface parallel to its flight path, across-

track interferometry images the land surface perpendicular to its flight path, and repeat-pass 

interferometry utilizes imaging of the land surface separated by designated periods of time to 

model long term surface changes.   

 

1. Along-track Interferometry: 

It utilizes two SAR antennas that are parallel to the flight direction. Each antenna emits 

and receives radar signals covering the same illuminated area in a single pass. The time delay 

between the two acquisitions is determined by the velocity of the system, which results in values 

typically within milliseconds of each other. Analysis of ocean currents and velocities (Romeiser 

and Thompson, 2000) is one of the main applications of the along-track interferometry. The 

analysis of rapidly changing scatterers is suited in this form of analysis by having the antennas 

separated in the along-track direction. This creates a very sensitive measure of the LOS velocity.  

 

2. Across-track Interferometry: 
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It utilizes two SAR antennas that are placed perpendicular to the flight direction. Unlike 

the along-track interferometry, in the across-track interferometry only one antenna is used to 

transmit the radar signals. The backscattered signals are then received by the two antennas 

simultaneously in a single pass. The process of across-track interferometry is applied to the 

practice of topographic mapping (Bamler and Hartl, 1998). Significant data accumulation 

utilizing the across-track interferometry was applied to the Shuttle Radar Topography Mission 

(SRTM) (Farr and Kobrick, 2000). The SRTM mission concluded in February of 2000 and 

resulted in the accumulation of digital elevation data of 30-m spatial resolution for the USA and 

Canada and of 90-m spatial resolution for the rest of the world. 

 

3. Repeat-pass Interferometry: 

Differential InSAR utilizes SAR images of temporal separation that ranges from one day 

to numerous years. Acquisition of InSAR data comes from imaging the same region by a single 

antenna with relatively the same viewing geometry. The temporal separation creates an 

advantage of monitoring of geophysical change. Repeat-pass interferometry has been applied to 

such research fields as volcanic activities (Hooper et al, 2007; Aly and Cochran, 2011), land 

subsidence (Hole et al, 2007; Aly et al, 2009 and 2012), seismic occurrences (Fialko and Simons 

2001), and glacier dynamics (Wangensteen et al, 2005). 

Illustrated in Figure 2 is the repeat-pass interferometry method. The separation between 

the satellites along-track is called the baseline (B). The baseline perpendicular to the orbit is 

called the interferometer baseline and the baseline perpendicular to the slant range is the 

perpendicular baseline. This serves as a factor in decorrelation effects discussed later. At time 

period t1, the radar pulses reflect ground pixel I1. The received echo provides a measurement of 
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phase value ф1. The second pass by the SAR satellite at time period t2, repeats this process for 

the same area at ground pixel I2. This again provides a measurement of phase value ф2. If 

scatterers within the ground pixel have changed minimally in the lapse of time, then they will 

contribute to ф2 the same as they had for ф1. Phase values from each pass provide the 

measurements to calculate the phase change (I) over the designated period of time between radar 

echoes.  

 

2.2.1 Interferogram Generation 

Interferometric processing begins with the acquisition of either raw data or Single Look 

Complex (SLC) images. Raw data contains signal information of the object of azimuth and range 

bandwidth. Raw data must undergo a series of processing steps before it is suitable for SAR 

interferometry processing. SLC images contain positional information as well as the phase and 

amplitude information from the SAR data. When two or more SAR images are acquired the 

second image must first be coregistered and resampled to the geometry of the first image. 

Coregistration requires precise association within sub-pixel accuracy of ~0.1 pixel.  

To form an interferogram, the images are then cross-multiplied for each pixel in the first 

image by the complex conjugate of corresponding pixels on the second image. Ignoring errors in 

the imaging hardware, the interferometric phase (∆ф) can represent the difference in path length 

to a designated scatterer from the imaging system to the target along the LOS direction. The 

interferogram is produced as follows (Hellwich, 1999): 

 

                 I = 𝐼"𝐼#* = 𝐴"𝐴# • 𝑒' ()*(+                  (1) 
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where, I1 is the amplitude and phase of image 1, and I2 is the amplitude and phase of image 2, 

and * indicates the complex conjugate of image 2, and 𝜙" − 𝜙# represents the interferometric 

phase. 

Surface deformation studies require the removal of the topographic phase contribution. 

This is estimated and removed by using a DEM created from InSAR processing techniques or by 

using an existing DEM generated from digital elevation data acquired by other missions such as 

the Shuttle Radar Topography Mission (SRTM). DEM accuracy is a vital factor of this step. 

DEM errors can result in direct translation to phase errors within the interferogram. Additionally, 

urban areas can create a difficulty from the elevation amongst structures. DEMs reflect the 

ground elevation, while the radar values of a SAR image will likely record the elevation of the 

building surfaces, creating a difference in elevation values. The topographic phase can be 

estimated as the following: 

 

𝜙./0/ =
4𝜋𝛽𝑧
𝜆𝜌𝑠𝑖𝑛𝜃 

 
(2) 

 

where, ϕtopo is the topographic phase, β is the perpendicular baseline between the imaging SAR 

antennas, z is the height of the topography recorded, 𝜆 is the radar wavelength, 𝜌 is the range, 

and 𝜃 is the look angle of the sensor. 

 

2.2.2 Phase Unwrapping 

Phase values represented in the raw interferogram are measured in the interval (0, 2π). This 

requires the need for conversion of the cyclic phase values to continuous absolute values. This 
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Figure 2.2: InSAR imaging geometry. At first time designation t1, point I1 is the designated 
target location. Radar pulses are emitted along the LOS and phase ϕ1 is measured. At an 
extended period of time following t1, ground at t2 reflects another radar pulse at ground pixel 
I2. The Z dimension of ground is measured by phase ϕ2. The phase difference I, is calculated 
utilizing equation (1) (Bamler and Hartl, 1998).  
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process of adding the correct integer multiple of 2π to the fringes is called phase unwrapping 

(Burgmann et al, 2000). Multiple phase unwrapping algorithms are discussed in Bamler and 

Hartl (1998). These consist of the least squares (Bamler and Hartl, 1998), branch-cut (Goldstein 

et al. 1988) and minimum cost flow methods (Constantini, 1998), among additional methods that 

have been applied in numerous studies. Following phase unwrapping, a geocoding step is 

traditionally implemented to project the interferometric data to a common reference system. This 

creates a more universal data platform to be combined with data from other sources.  

 

2.2.3 Phase Decorrelation and InSAR Limitations 

The unwrapped interferometric phase consists primarily of five phase contributions (Aly 

et al, 2009): 

  

∆ф = фdef + фtopo + фorb + фatm + фnoise (3) 

 

where, фdef refers to the phase due to ground deformation, фtopo refers to the phase due to 

topographic contributions, фorb refers to the orbital phase error, фatm refers to phase delay caused 

by atmospheric artifacts, and фnoise refers to the system phase noise. 

A quality assessment of InSAR data is the coherency between SAR acquisitions. 

Coherency results in a value between 0 and 1 (1 representing perfect phase correlation between 

both image pixels and 0 representing no correlation between coinciding image pixels). InSAR 

coherence can be affected by decorrelation between the image pairs.  

Phase decorrelation arises as a result of spatial and temporal changes. Spatial 

decorrelation occurs as the spatial separation between the SAR systems exceeds the critical 
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baseline. Temporal decorrelation occurs as the surface changes throughout time. Regions that 

undergo seasonal transitions can cause decorrelation as the growth and loss of vegetation results 

in no coherence. Seasonal transitions can consist of snowfall throughout the winter that will 

inhibit coherency differences as it is not present in the warm months. Estimation of phase noise 

is determined by the local coherence of the interferometric pair (Feretti et al, 2007). Local 

coherence is estimated by a cross-correlation coefficient between corresponding pixels of the 

interferometric pair contained within a small moving window. The coherence map is then formed 

as a result of the absolute value of coherence (Feretti et al, 2007). Phase noise reduction can be 

performed prior to phase unwrapping to ensure the success and accuracy of the unwrapping 

process. It can be achieved by applying a filter to the interferogram such as a moving-average 

filter or a non-linear adaptive filter (e.g., Goldstein and Werner, 1998). 

The interferometric phase measurement can be greatly affected by the accurate 

knowledge of the relative position of the two SAR system orbits. A priori knowledge of the 

orbital information is used to eliminate the inaccurate contribution of fringes. The interferometric 

effect can also be depleted if the images shift by more than a half a wavelength in corresponding 

pixels (Massonnet and Feigl, 1998). An inaccurate estimate of the perpendicular baseline will 

cause bias within the elevation estimate, and thus the deformation contribution will be inaccurate 

as a result of the wrong estimation of elevation.  

Despite the advantage of radar systems being able to image in all weather conditions, a 

medium, such as the atmosphere can still modify the propagation of electromagnetic waves by 

the changes within the refractive index. This will create a change within the travel time measured 

by the radar system. If the acquisition times have any temporal separation, then the 

interferomteric phase will be affected by the atmospheric artifacts. These errors can generally be 
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eliminated by applying a sequence of spatial and temporal filtering to preserve phase trends in a 

time series (e.g., Aly et al, 2009).  Interferogram stacking can also reduce the effects of 

atmospheric contributions. More advanced quantitative methods use atmospheric data acquired 

simultaneously by other sensors mounted onboard of the radar platform. 

 

2.2.4 InSAR for Topographic Mapping 

Output of topographic analysis utilizing InSAR techniques constitutes the generation of 

an interferometric DEM. InSAR serves as a reliable technique for modeling the Earth’s surface 

topography as the accuracy within tens of meters results in a high quality DEM output. SAR 

imaging processes also eliminate the restriction of optimal weather as radar imaging can be taken 

under any weather conditions during day and night.  

SAR images as a result of across-track interferometry and repeat-pass interferometry are 

utilized for DEM generation where the spatial baseline difference is present to create a slightly 

different viewing angle. Following interferogram generation and phase unwrapping techniques 

previously discussed, the topographic contribution to the phase is isolated to give the topographic 

values of locations within the interferogram, and then a phase to height conversion is conducted. 

 

ℎ = 𝑝	 sin (cos*"(
𝜙𝜆
2𝜋𝛽 − 𝜃)) (4) 

 

 

The vertical distance to the SAR antenna is determined with the along-track distance in 

order to determine the 3-dimensional location of each point in space (Zebker and Goldstein, 

1986) with the use of equation 4. This provides the topographic measurements within the region. 
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The image must then be transformed to geographic coordinates in a square grid by the following: 

 

𝑦 = 𝑝# − ℎ# " # (5) 

 

Topographic mapping utilizing InSAR techniques can be applied to many settings with 

world coverage provided by SAR imagery missions. Rossi et al (2012) tested the applicability 

and functionality for DEM generation provided by the tandem mission of X-band radar known as 

TanDEM-X (Figure 3). This mission consisted of a tandem operation between the DLR satellite 

missions TDX and TerraSAR-X. The DEM generation methods were applied to the Cordillera 

Central Mountains in Peru. Results of the DEM applicability by Rossi et al (2012) suggest a 

mean coherence for the DEM of 0.65 and a mean height error of elevation values within the 

DEM of 2.76 m.   

 

2.3 Common InSAR Processing 

 

2.3.1 Conventional InSAR Techniques 

 

Two-pass InSAR 

Two-pass interferometry is a method that is accomplished by using two SAR images 

accompanied by an external DEM for the corresponding area. After calculation of the 

interferogram, the topographic contribution is then removed using the existing DEM. This 

removes unwanted fringes, while the signal of interest is left behind (Massonnet and Feigl, 1998). 

The advantages of the two-pass method are a result of simplification and preservation of time 
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and effort. Minimal images are required to formulate an interferogram and there is no need for a 

topographic interferogram. The major disadvantage of this method is associated with the quality 

assumption of a previously formulated DEM. Unknown errors can exist within the DEM which 

result in errors within the interferogram.  

 

Three-pass InSAR 

Three-pass interferometry is another form of conventional InSAR that requires only the 

acquisition of three SAR images for the analysis. No external elevation data is required as two of 

the SAR images are used to construct a topographic interferogram that can be used for the 

topographic correction. Then, one of the SAR images used for the DEM creation is combined 

with a third SAR image for the formulation of an interferogram that contains topographic and 

surface deformation contributions. The extra processing steps for the unwrapping of the 

topographic interferogram is a disadvantage of this method. The unlikelihood of finding three 

radar images that are mutually coherent is the main disadvantage of 3-pass InSAR. 

 

Four-pass InSAR 

The four-pass InSAR method uses a similar process as the three-pass method but requires 

the association of four SAR images taken at different times. Two of the images are associated to 

create a topographic interferogram while the other two unused images are associated to create an 

interferogram that contains topographic and deformation contributions. 
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Figure 2.3: Hill-shaded relief generated from DEM data as a result of the TanDEM-X mission 
by Rossi et al (2012). Elevation heights illustrated by color ramp in upper left corner (Rossi et 
al, 2012).  
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2.3.2 Advanced InSAR Techniques 

 

Persistent Scatterer Interferometry 

Feretti et al (2000; 2001) formulated an extension to conventional InSAR techniques 

called Permanent Scatterer InSAR to overcome decorrelation problems of conventional InSAR 

by using a pixel-by-pixel approach. Individual pixels are selected as dominant scatterers that 

exhibit coherence over significant periods of time. Examples of such scatterers consist of bare 

rocks and urban structures. Other similar approaches with some modifications called Persistent 

Scatterer InSAR (PSI) were introduced in the following years (e.g., Hooper et al, 2004; Hole et 

al, 2006; Hooper et al, 2007). These methods allow almost all archived SAR images, regardless 

of their perpendicular and temporal baselines, to be considered for PSI analysis by addressing 

problems with decorrelation and atmospheric inhomogeneity within the pixels of the created 

interferograms for a specific region.   

Contributions to an individual pixel’s variation of phase and amplitude values are a sum 

of individual wavelets reflected by multiple scatterers within the resolution cell. The amount of 

decorrelation within the cell is determined by this balance of constructive and destructive 

contributions of wavelets. Complete temporal decorrelation occurs as scatters within the 

contributing pixel are not stable over time when they have move large distances during 

acquisition periods in comparison to their radar wavelength (Feretti et al,, 2001). In contrast, a 

PS pixel will entail the contribution of an individual scatterer much brighter than the others. This 

brighter scatterer likewise is the greatest contributor to the phase of the pixel. As the other 

scatterers move around, the pixel phase is relatively unchanged as the signal received is 

primarily controlled by the measurement of this PS (Feretti et al, 2001).  
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Small BAseline Subset (SBAS) 

An additional extension to conventional InSAR methods is known as the Small BAseline 

Subset (SBAS) technique proposed by Berardino et al (2002). The aim of this technique is to 

minimize the spatial decorrelation and topographic errors that are experienced from traditional 

InSAR methods. This is accomplished by combining a large number of SAR images into a time 

series of interferograms that all contain a small spatial and temporal baseline as well as a small 

Doppler center frequency difference relative to each other (Liu et al, 2013). For a detailed 

explanation consult Berardino et al (2002). Similar to PSI, SBAS methods apply a pixel by pixel 

approach to high coherence areas within the intended region of study. This creates advantages of 

this method in the removal of possible errors of a DEM and the removal of atmospheric artifacts 

with the utilization of a space-time filtering operation (Berardino et al, 2002). 

 

2.4 Solid Earth Applications 

 

Active Volcanoes 

Volcanic eruptions can pose a potential great threat to infrastructure and public safety. 

Even collapsed calderas that are deemed inactive can regain energy once more. Currently, all 

active volcanoes and volcanic centers are monitored by InSAR satellites. Aly and Cochran (2011) 

analyzed crustal deformation at Yellowstone between 1992 and 2009 utilizing various InSAR 

data acquired by ERS-1/-2 and ENVISAT satellites. Their investigation determined four distinct 

episodes of subsidence and uplift (Figure 4) during the study period. Episode 1 consisted of 

broad subsidence measuring approximately 2.7 cm/year, centered within the caldera throughout 
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1992-1995. Episode 2 consisted of a slower rate of regional subsidence measuring approximately 

0.5 cm/year throughout 1996-2000. Episode 3 consisted of regional subsidence measuring 

approximately 0.7 cm/year throughout 2000-2004. Episode 4 consisted of regional uplift 

measuring approximately 3-8 cm/year throughout 2004-2009. They concluded that the magmatic 

and hydrothermal processes that are present beneath the Yellowstone caldera can be linked as the 

primary causes for the deformation occurrences and the major structural faults have no role to 

play as no differential displacements have occurred along any of these faults.  

 

Earthquakes and Fault Interactions 

The interplay between tectonic processes and earthquake occurrences can be modeled 

and studied with InSAR techniques. Zhang et al (2013) applied these methods to the 7.1 

magnitude Yushu earthquake that occurred in 2010. They aimed to obtain a robust rupture 

process and slip distribution of the event. From the analysis they determined that InSAR analysis 

was even able to resolve better fault slip at near surface depths than teleseismic data (Figure 5). 

 

Land Subsidence and Ground Stability 

Ground subsidence can serve as an indicator of active tectonic or volcanic process or 

even indicate areas of significant subsurface fluid loss. The effects of subsidence can cause 

costly infrastructure damage yearly. Aly et al (2009) analyzed subsidence patterns within Cairo, 

the capital of Egypt. They applied Persistent Scatterer InSAR utilizing ERS-1 and ERS-2 data 

and measured an annual rate of subsidence throughout the area of approximately 7 mm between 

1993 and 2000 (Figure 6). 
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Landslides and Mass Movements 

InSAR can be utilized also in monitoring active and potential landslides. Hilley et al 

(2004) demonstrate this capability for the Berkeley vicinity in eastern San Francisco Bay area. 

The Permanent Scatterer technique was employed to demonstrate the increases of ground 

displacement with seasonal precipitation increases. To aid this assumption the El Nino event of 

1997-1998 was captured within the study period of 1992 to 2001. Before and after the El Nino 

event, the displacement could not be detected, while during the El Nino event (November 1997 - 

April 1998) range-change rates increased by approximately 30% to maximum rates of 35 mm/yr 

(Hilley et al, 2004). They concluded that the association of landslide motion with high 

precipitation indicates that the near-surface groundwater flow does initiate and accelerate the 

association and rate of surface sliding in areas of slope increases. 

 

Geothermal Processes 

Areas of geothermal activity can pose a threat from significant subsidence and induced 

earthquake activity. Constant fluctuation of fluids within a geothermal system cause movement 

and create a potential scenario for increased seismicity. Sarychikhina et al (2010) analyzed the 

geothermal field in the Mexicali Valley in northwestern Mexico with Differential InSAR 

techniques. They employed ENVISAT data throughout the study period of October 2003 to 

March 2006. They determined an area of significant deformation approximately 10-16 cm/year 

(Figure 8).  
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Figure 2.4: InSAR interferograms showing episodic inflation and deflation at Yellowstone 
(from Aly and Cochran, 2011). Images contain periods of deformation indicated by time 
designations in lower left of individual images. Each color fringe represents 2.83 cm of Earth’s 
surface motion toward or away from the satellite (Aly and Cochran, 2011).  
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Figure 2.5: Coseismic deformation of the 2010 Yushu earthquake detected by InSAR from 
Zhang et al (2013). Peak deformation along the causative fault resulted in approximately 42 
cm of motion on the south side and approximately 38 cm of motion along the north side 
(Zhang et al, 2013). 
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Figure 2.6: Average velocity of ground deformation in Cairo, Egypt, during 1993-2000 (from 
Aly et al, 2009). Mean LOS surface velocity is superimposed on the average amplitude image. 
Solid white lines represent major surface faults. Dotted white lines represent major subsurface 
faults. Deformation from InSAR is displayed with correlation to the color ramp (Aly et al, 
2009). 

 

 



 
 
 
 

        
 

53 

 

Figure 2.7: Range-change rates for the Berkeley vicinity in eastern San Francisco Bay area  
(from Hilley et al, 2004). Time periods indicated in upper right corner of individual images. 
Precipitation accumulation is indicated by bold numbers measured in meters (Hilley et al, 
2004).  
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Figure 2.8: Surface displacements occurred at the geothermal field in the Mexicali Valley in 
northwestern Mexico (from Sarychikhina et al, 2010). (a) displays the displacement measured 
by stacking 4 differential interferograms from December 2004 to December 2005. (b) displays 
displacement rates obtained from a leveling survey during 1994-1997 (Sarychikhina et al, 
2010). 
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2.5 Software for InSAR Processing  

Various software packages can be utilized for InSAR analysis. Different software 

packages present a different aspect of applying the InSAR techniques to a desired study 

application. Preference of use for each package is predominantly selected based on the individual 

need in their specific area of research. Commercial level packages offer the most resources as far 

as applying to the intended field of study. Common packages in this category consist of 

GAMMA Remote sensing, SARscape, and DIAPASON. GAMMA is a Swiss corporation 

producing software for radar remote sensing applications including interferometry. It utilizes a 

command line operation in C language. SARscape is another commercial package for processing 

SAR images under the IDL scientific programming environment. In addition, the French Space 

Agency (CNES) produces a commercial software package known as DIAPASON with good 

processing capabilities for SAR images.  

There is also a large accumulation of open source software packages for InSAR analysis. 

One of these packages is produced by the Jet Propulsion Laboratory named Repeat Orbit 

Interferometry Package (ROI_PAC). This package led to the production of the InSAR Scientific 

Computing Environment (ISCE). ISCE was produced to fit the specific needs of current and past 

spaceborne data as an update to ROI_PAC incorporating the recent SAR sensors. Other open 

source packages exist such as DORIS that is developed and maintained by the University of 

Netherlands, GMTSAR that is developed by the University of California in San Diego, and 

STAMPS that was produced originally at Stanford University. Matlab is the interface used in 

STAMPS.
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Chapter 3 

 

Data and Methods 

 

The methods described within this chapter represent a process of skill development for 

InSAR and advanced remote sensing techniques. A large portion of the research process was 

spent as a skill development process towards understanding how to perform InSAR analysis. 

While understanding the intricate steps involved to complete an appropriate analysis utilizing 

these cutting edge remote sensing techniques to analyze a real world problem.  

Additionally, this research serves as an analysis of modern deformation trends within the 

Coso Geothermal site. Deformation trends from 2005 to 2010 will be assessed to judge the 

stability or change in deformation rates from earlier analysis of the 1990’s (Fialko and Simons, 

2000; Wicks et al, 2001). The Coso region has been untouched in the assessment of deformation 

rates from the conclusion of these preceding studies. Modern analysis of these trends are 

necessary to determine the potential change or stability of deformation rates in the region as time 

continues to progress and geothermal production practices continue to operate at the site.  

 

3.1 Data 

Synthetic Aperture Radar (SAR) data utilized in this research was provided by the 

European Space Agency (ESA) satellite mission of ENVISAT. The ENVISAT satellite was 

launched on March 1, 2002. Imagery is available from this launch date until approximately May 

9, 2012 coinciding with the mission’s termination date. Individual images for a designated study 

sight can be retrieved every 35 days. A period of time that is associated with the satellite’s orbit 
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interval rate.   

The ENVISAT mission as discussed in Chapter 2 carried the sensor component ASAR 

(Advanced SAR) that measured radar backscatter at C-band wavelengths (5.66 cm). A C-band 

wavelength is appropriate for the study area located in southeastern California. This regions 

predominant land cover consists of high desert scrub. The lack of vegetative cover allows radar 

signals to reflect off of the true ground surface unimpeded. Imagery of high accuracy and high 

coherence can be acquired under these conditions.  

The ASAR sensor was capable of imagery in multiple operating modes such as Wide 

Swath Mode, Wave Mode, Alternating/Cross Polarization and Image Mode. The appropriate 

imaging mode for this research is provided by the Image Mode. The Image Mode provides data 

accumulation over a predetermined swath (up to 100 km) in a total viewing area of 485 km and a 

spatial resolution of 30 m.  

Data collected from the European Space Agency’s ENVISAT mission consisted of a total 

of 21 images from Track 349 Frame 711 of the ascending mode with dates between March 03, 

2006 to October 08, 2010. 31 images were also collected from Track 442 Frame 2289 of the 

descending mode with dates between October 16, 2003 to August 05, 2010.  The term ascending 

mode corresponds to the predominantly South to North orbit direction of the satellite. During this 

pass the imagery is recorded in the across track direction pointed to the East as a result of the 

side looking fashion of the sensor. Likewise, the descending mode corresponds to the 

predominantly North to South orbit direction that captures imagery as the across track direction 

is pointed to the West.  

Two-pass differential interferometry methods as applied in this research, require the use 

of two Synthetic Aperture Radar (SAR) images for calculation of the interferogram and the use 
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of a digital elevation model for the removal of the topographic contributions from the 

interferograms (as discussed in Chapter 2). Removal of the topography along with additional 

contributing factors allows the ability for deformation movements throughout the study period to 

be isolated and displayed in the form of interferograms. The DEM data utilized in this research 

are generated by the Jet Propulsion Laboratory (JPL) as a result of the Shuttle RADAR 

Topography Mission (SRTM). and archived at the United States Geological Survey (USGS) 

where the data is readily available for download.  

Earthquake records can be utilized as an additional measuring device to the severity of 

impact that they region of deformation is having on local to regional processes and potential 

geohazards that may be a possibility as a result to the movement in the study area. Earthquake 

records were collected for the Coso region for each year of analysis represented by the 

interferograms (2005-2010). These records were collected from the Southern California 

Earthquake Data Center (SCEDC). The data is the archive of the California Seismic Network 

(CSN). The earthquake records compared to the deformation patterns can be viewed in Figures 

4.2 to 4.15 Earthquake occurrences for the years of combined deformation analysis are displayed 

as an overlay on the record of deformation for the region. This allows the possibility of inferring 

any connections between the pattern of deformation and potential earthquake clustering. High 

clustering in the center of deformation can be a result of dominant ground movement.  

 

3.2 InSAR Processing 

SAR data in its raw format requires multiple processing steps before it can be utilized for 

InSAR analysis. This raw data is a collection of signal data that consists of amplitude and phase 

measurements. An accumulation of data that cannot be viewed as an image. 
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 The first step is to transform the raw data to a format referred to as a Single Look 

Complex (SLC). SLC images retain the amplitude and phase values while correcting for satellite 

reception errors. The transformation to SLC images will also align the reflected values to their 

proper location within the study area. SLC images are stored in slant range geometry. This 

entails that the pixels are not traditional square pixels but ones that will increase as the slant 

range increases in the across track direction.  

A process referred to as multi-look averaging can be applied to SLC images. This process 

combines adjacent looks to form a more consistent pixel size. These outputs form a displayable 

amplitude output of the study area as illustrated in Figure 3.1. The brightness values of each 

pixel displayed in this image represent the amplitude (or the strength of signal reflection to the 

sensor).  

 Two-pass differential interferometry was applied in this research. This requires the usage 

of two SLC images to calculate the resulting interferograms. Prior to interferogram calculation, 

SLC images must be compared to determine acceptable pairs for combination. This is 

determined primarily by two factors. First consisting of the perpendicular baseline. The 

perpendicular baseline is a measurement of difference between the satellites baseline 

perpendicular to the slant range. When comparing baselines, the smaller the value the more 

likely the SAR pair is to be combined with high coherence. Optimally, the value will be around 

100 m or lower. The second factor is referred to as the temporal baseline. The temporal baseline 

is the separation of time in days between the orbits of each SAR image in the intended pair. 

Selected SAR pairs for interferogram calculation and inclusion in this research are presented in 

Tables 3.1 and 3.2. Tables are separated according to their association with the ascending and 

descending modes of data acquisition. Dates of the pairs as well as the perpendicular baseline 
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Figure 3.1: Amplitude image of the Coso region. Image is multi-looked to 4 looks in range and 
20 looks in azimuth from a generated SLC image. Data acquired from ascending mode of the 
ENVISAT satellite mission.  
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and temporal baseline values are summarized as well.  

 Differential InSAR processing starts with the coregistration of the two SAR images from 

the selected pair. This step ensures that the pixels within the two selected images have been 

aligned to each other precisely within sub-pixel accuracy of -0.1. Precise alignment is necessary 

for the coherence of the resulting interferogram. Poor coherence will result in corresponding 

inaccurate surface movement measurements.   

 Properly coregistered SAR images can then be combined to form the initial interferogram. 

The process to calculate the interferogram involves the multiplication of each pixel to the 

complex conjugate of the corresponding pixel in the paired image. The resulting interferogram as 

discussed in Chapter 2 contains the real deformation experienced within the study area as well as 

multiple other contributions of which need to be removed. The removal of these additional 

contributions will isolate the real deformation that has taken place over the designated time 

period.  

 Two-pass differential interferometry also requires the usage of an existing digital 

elevation model for the removal of the topographic contribution. A Digital Elevation Model 

(DEM) can be acquired from the United States Geological Survey (USGS). This DEM must be a 

coverage that exceeds all extents of the SAR data in use. The DEM is clipped to the extent of the 

selected interferogram. The DEM must then be coregistered to the interferogram to ensure an 

accurate removal of the topographic contribution. A parameter file created in these steps is 

utilized for the forward and backward geocoding of the DEM and output interferogram later 

discussed. 

Deformation patterns (values) are displayed on the initial interferogram as range change 

modulo 2π as the radar signal reflects from the ground back to the satellite sensor. Fringes are  
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Master 
Date 

Master 
Orbit 

Slave 
Date 

Slave 
Orbit 

Perpendicular Baseline 
(m) 

Δt 
(days)  

 20060303 20944 20070112 25453 -187 315  
 20060825 23449 20080516 32467 18 630  
 20060825 23449 20090605 37978 178 1015  
 20060825 23449 20100521 42988 162 1365  
 20070112 25453 20080201 30964 -131 385  
 20070112 25453 20101008 44992 127 1365  
 20080201 30964 20091127 40483 -118 665  
 20080201 30964 20100903 44491 -138 945  
 20091127 40483 20100903 44491 -20 280  
         

Table 3.1: ENVISAT pairs from ascending mode. Interferograms were generated for these SAR 
pairs. Perpendicular baseline and temporal baseline values are presented for comparison.  
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Master 

Date 
Master 
Orbit 

Slave 
Date 

Slave 
Orbit 

Perpendicular Baseline 
(m) 

Δt 
(days)  

 20051124 19534 20060413 21538 -393 140  
 20051124 19534 20060622 22540 218 210  
 20051124 19534 20070712 28051 -196 595  
 20051124 19534 20070920 29053 301 665   

Table 3.2: ENVISAT pairs from descending mode. Interferograms were generated for these SAR 
pairs. Perpendicular baseline and temporal baseline values are presented for comparison. 
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illustrated by cycles throughout a predetermined color ramp. Unwrapping of the interferogram 

refers to the process of converting the interferogram to continuous absolute measurements. 

Removing the measurement of 2π uncertainty. Unwrapping of the interferogram was performed 

utilizing the minimum cost flow method (Constantini, 1998). Filtering of interferograms is 

required to remove phase noise.  

 The remaining InSAR processing steps required the creation of a displacement map and 

the backward geocoding of the interferogram to geographic coordinates. The process of creating 

a displacement map will transform the measurements within the interferogram from units of 

phase value to meters. Allowing the outputs to be understood by a real world unit of measure. 

The final step is to create an output that has been backward geocoded from radar coordinates to a 

geographic coordinate system. The tool will utilize the DEM parameter file again to establish the 

coordinate system along with additional measurements such as the extents of the data, the pixel 

size and the pixel spacing throughout the image.   

 Further analysis and modeling can be performed on the interferograms through the use of 

a GIS. The interferogram outputs from the backward geocoding step can be brought into a GIS 

with a few changes made to the image parameters. An output from radar coordinates will be in 

float format and will consider the origin point the lower left pixel of the image. To properly 

utilize the images within a GIS, a header (.hdr) file needs to be created for each image. This 

header file will consist of the number of rows and columns, the x and y coordinate of the origin 

point and the cellsize. A GIS such as ArcGIS considers the origin point the upper left pixel in the 

image. Because of this, the upper left corner of the interferogram needs to be calculated from the 

given location of the lower left pixel transformed to the upper left pixel. 
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Chapter 4 

 

Results and Discussion 

 

4.1 Results  

 Concluding InSAR analysis, a continuous presence of deformation was measured. This 

deformation is apparent as increasing range values or a movement away from the satellite during 

the elapsed time between data acquisition dates included within the generated interferograms. 

Movement away from the satellite thus represents an element of subsidence within the study area. 

The average peak subsidence rates at the Coso site range from as low as approximately 2.5 cm/yr 

and upwards as much as approximately 3.5 cm/yr. Deformation patterns throughout the Coso site 

are illustrated in Figures 4.3 to 4.15. Peak subsidence rates at the center of the deformation 

pattern occur just East-Southeast of Sugarloaf Mountain, the largest rhyolite dome in the 

volcanic field.  

Precise subsidence rates were extracted from each interferogram along transect lines A-A’ and 

B-B’ located in Figures 4.1 and 4.2. Figures present the location of transect lines within the local 

topography as well as within the deformation anomaly. Subsidence rates can be compared 

comprehensively in Figures 4.16 and 4.17. Graphs showing subsidence rates illustrate the 

evolution of subsidence increases as the period of time analyzed is increased. These graphs show 

the distinct bowl of subsidence that is apparent within the Coso geothermal site. Illustrating a 

sharp downward movement that does not extend laterally out of the geothermal field.  

The area of subsidence represents an area approximately 50-55 km2. This area coincides 

directly with the boundaries of the presumed location of well sites utilized in geothermal 
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Figure 4.1: 3D topographic map of the Coso Geothermal Site. Black lines represent the active 
faults active within the Quaternary courtesy of (U.S. Geological Survey, 2006). White lines 
represent the transect lines that were utilized to extract deformation values displayed in Figures 
4.15 and 4.16. Z-value is exaggerated 4 times. Elevation data courtesy of NASA/JPL-Caltech.   
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Figure 4.2: 3D Interferogram map of the Coso Geothermal site. Black lines represent the active 
faults active within the Quaternary courtesy of (U.S. Geological Survey, 2006). Deformation 
patterns represented by the interferogram represents trends between the years 2006-2010. White 
lines represent the transect lines that were utilized to extract deformation values displayed in 
Figures 4.15 and 4.16. Z-value is exaggerated 4 times.  
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production practices from satellite imagery. The locations of well sites overlain by the extent of 

the deformation anomaly is illustrated in Figure 4.18. The Coso geothermal site is under 

operation by private operating companies of the Coso Operating Company and Terra-Gen Power. 

Information regarding well data and production rates are proprietary and difficult to obtain.  

 Fialko and Simons (2000) suggested that after 1995 their analysis presented that the 

subsidence anomaly of the Coso Geothermal site was undergoing an expansion to the South. The 

interferograms throughout 2005 to 2010 as a part of this research have seen a similar expansion. 

The subsidence to the South of the main production region is undergoing a more gradual 

deflation, as the anomaly takes a longer time period of analysis to be of measurable amounts. In 

addition to this pattern, there appears to be a similar but less developed expansion to the North as 

time of analysis increases between interferogram pair dates.  The expansion along the eastern 

end of the volcanic field follows a northeast trending direction. Direction of this subsidence 

expansion parallels the northeast trending faults along the east margin of the volcanic field 

(Figure 4.2).  

 Interferograms of the ascending orbit path and the descending orbit path as expected, 

display slightly different visual details. In the form of subsidence pattern extents to the East and 

West due to the look direction difference in a side looking fashion. However, subsidence in both 

the ascending and descending orbit paths are similar in amounts and rates per year.  

 Earthquake occurrences are included as an overlay upon each interferogram (Figures 4.3-

4.15). The displayed earthquakes are representing only earthquakes that have occurred in the 

Coso site within the time period of the calculated interferogram. Examination for the distribution 

of earthquake occurrences yields, suggests that there is a significant clustering of seismicity 

within each center of subsidence. The average rate of seismicity throughout the study period was 
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03/03/2006 – 01/12/2007 

 
Figure 4.3: Interferogram of the Coso Geothermal site for the period 03/03/2006 to 
01/12/2007 overlain on terrain hillshade. Interferogram is generated from ascending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 2.72 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 1,465 earthquakes.  
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08/25/2006 – 05/16/2008 

 
Figure 4.4: Interferogram of the Coso Geothermal site for the period 08/25/2006 to 
05/16/2008 overlain on terrain hillshade. Interferogram is generated from ascending mode 
SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 4.58 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 1,986 earthquakes. 
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08/25/2006 – 06/05/2009 

 
Figure 4.5: Interferogram of the Coso Geothermal site for the period 08/25/2006 to 
06/05/2009 overlain on terrain hillshade. Interferogram is generated from ascending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 7.58 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 3,133 earthquakes. 
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08/25/2006 – 05/21/2010 

 
Figure 4.6: Interferogram of the Coso Geothermal site for the period 08/25/2006 to 
05/21/2010 overlain on terrain hillshade. Interferogram is generated from ascending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 8.18 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 4,921 earthquakes. 
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01/12/2007 – 02/01/2008 

 
Figure 4.7: Interferogram of the Coso Geothermal site for the period 01/12/2007 to 
02/01/2008 overlain on terrain hillshade. Interferogram is generated from ascending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 3.32 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 1,082 earthquakes. 
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01/12/2007 – 10/08/2010 

 
Figure 4.8: Interferogram of the Coso Geothermal site for the period 01/12/2007 to 
10/08/2010 overlain on terrain hillshade. Interferogram is generated from ascending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 10.48 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 4,878 earthquakes. 
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02/01/2008 – 11/27/2009 

 
Figure 4.9: Interferogram of the Coso Geothermal site for the period 02/01/2008 to 
11/27/2009 overlain on terrain hillshade. Interferogram is generated from ascending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 5.97 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 1,926 earthquakes. 

 



 
 
 
 

        
 

76 

02/01/2008 – 09/03/2010 

 
Figure 4.10: Interferogram of the Coso Geothermal site for the period 02/01/2008 to 
09/03/2010 overlain on terrain hillshade. Interferogram is generated from ascending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 8.43 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 3,636 earthquakes. 
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11/27/2009 – 09/03/2010 

 
Figure 4.11: Interferogram of the Coso Geothermal site for the period 11/27/2009 to 
09/03/2010 overlain on terrain hillshade. Interferogram is generated from ascending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 1.83 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 1,717 earthquakes. 
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11/24/2005 – 04/13/2006 

 
Figure 4.12: Interferogram of the Coso Geothermal site for the period 11/24/2005 to 
04/13/2006 overlain on terrain hillshade. Interferogram is generated from descending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 2.96 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 725 earthquakes. 
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11/24/2005 – 06/22/2006 

 
Figure 4.13: Interferogram of the Coso Geothermal site for the period 11/24/2005 to 
06/22/2006 overlain on terrain hillshade. Interferogram is generated from descending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 2.37 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 925 earthquakes. 
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11/24/2005 – 07/12/2007 

 
Figure 4.14: Interferogram of the Coso Geothermal site for the period 11/24/2005 to 
07/12/2007 overlain on terrain hillshade. Interferogram is generated from descending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 5.49 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 2,506 earthquakes. 
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11/24/2005 – 09/20/2007 

 
Figure 4.15: Interferogram of the Coso Geothermal site for the period 11/24/2005 to 
09/20/2007 overlain on terrain hillshade. Interferogram is generated from descending 
mode SAR data from the ENVISAT mission. Interferogram is displayed with a wrapped 
symbology. Each fringe color cycle represents approximately 2.83 cm of surface change. 
Total peak subsidence experienced amounts to 6.39 cm. Earthquake occurrences for the 
time period are represented by red dots courtesy of (SCEDC, 2013). Total occurrences 
amounts to 2,753 earthquakes. 
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Figure 4.16: Ascending mode SAR data deformation values plot. Transects A-A’ and B-B’ 
locations are displayed in Figure 4.1. Deformation values from each interferogram were taken 
along transect lines.  
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Figure 4.17: Descending mode SAR data deformation values plot. Transects A-A’ and B-B’ 
locations are displayed in Figure 4.1. Deformation values from each interferogram were taken 
along transect lines. 
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approximately 1,200 per year. The rate of earthquake occurrences ranges between 700 to 1500 

annually. Difficulties are found in a tectonic setting such as the Coso site in determining a clear 

designation on what is directly connected to geothermal production practices and what is a result 

of natural tectonic movements throughout the region. 

 

4.2 Discussion 

 In a region such as the Coso site, many factors can provide a leading cause to subsidence 

as exhibited there. Many natural forces may play a role in the deflation of the geothermal zone 

due to the high tectonic activity and the development of the volcanic system over time. Analysis 

of subsidence patterns provide support as the overwhelming impact of geothermal production 

practices form a likely cause to the localized and distinct subsidence exhibited within the site 

throughout the previous two decades.  

 Rates of subsidence amounting to approximately 2.5 to 3.5 cm/year, display a change in 

the Earth’s surface that moves with relative similarity per year. Separated by less than a 

centimeter difference between individual interferograms in annual rates of subsidence. This 

correlation suggests a steady state of deformation is taking place in the Coso Geothermal site. 

This rate of subsidence continues the trends presented by Fialko and Simons (2000) and Wicks et 

al (2001) throughout the 1990s. They concluded that subsidence rates amounted to 

approximately 3.5 cm/year. They concluded from inverse modeling methods that a short 

wavelength (2 km) deformation was taking place within the Coso Geothermal site that is 

characteristic from a source of geothermal production impacts. The timeline methods of analysis 

presented within this research characterizes this same form of deformation within the localized 

study area surrounding the active geothermal production field. Similar methods have been 



 
 
 
 

        
 

85 

emplaced to analyze deformation in active geothermal fields that concluded subsidence as a 

result of pumping mechanisms associated with geothermal production practices (Carnec and 

Fabriol, 1999; Sarychikhina et al, 2010; Ali et al, 2015).    

The presence of active geothermal production practices in the Coso site for the previous 

<30 years raises concern to the impact that production methods can have on the subsidence 

anomaly experienced. Illustrated in Figure 4.18, the distribution of presumed geothermal 

production wells throughout the Coso site are shown as the stations of man-made buildings 

scattered across the surface. An overlay of the deformation anomaly area is displayed with an 

interferogram covering a 2007 to 2010-time period. From this comparison it can be seen that the 

focal area of the Coso site that is undergoing subsidence is directly correlated with the presumed 

extents of geothermal production areas currently under operation.  

Factors of geothermal operations can be attributed to this pattern of subsidence 

surrounding the production area. The Coso Operating Company (2008) set forth a proposal amid 

controversy, that would allow the company to pump water from the nearby Rose Valley basin. 

The pumping would consist of a rate of 4,800 acre-feet per year. The proposal was approved and 

pumping of water from Rose Valley began in 2009 where it will be used for injection as well as 

cooling of geothermal facilities. A move by the operating company to impede on the immense 

deficit of fluids and pressure within the Coso geothermal reservoir. Factors inspiring this mode 

of operation come from the reports of the Coso Operating Company (2008) that states production 

methods yield only a 50% percent return of fluids that are extracted. These fluids are extracted, 

flashed to steam for energy production and then reinjected. An extended period of such 

operations have contributed to a depressurization of the reservoir over the greater than 20 years 

of production. Adams (2000) have suggested the development of a vapor-dominated zone within 
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Figure 4.18: Location of Coso Geothermal production wells. Area of subsidence derived from 
interferogram calculation between the years 2007 and 2010 overlain by satellite imagery 
portraying presumed location of production wells courtesy of (ESRI, 2016).  
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the reservoir as a result of the depressurization. 

While rates of subsidence are relatively steady within a centimeter of change in rates, 

there is some fluctuation. Depending on the year intervals that were selected for analysis in 

individuals interferograms. Rates of subsidence varied between ~2.5 to ~3.5 cm/yr. While some 

variance could be attributed to atmospheric effects in the imaging process, the variability could 

suggest a not completely constant impact of subsidence. This could likely be a result of 

fluctuating production methods. That will vary depending on production needs for each borehole 

location. Contrasting a natural source of deformation such as a leaking magmatic system 

deriving from tectonic influences of extensional strain as suggested by Bacon et al (1980) that 

likely provides a more consistent annual rate of subsidence.   

Local seismicity can highlight the impact of activity levels that practices such as 

geothermal production are putting on the system. In a highly tectonic region such as the Coso 

site, levels of seismicity, mostly consisting of micro-seismicity will be present at any time. These 

levels of seismicity can be referred to as background seismicity.  It is difficult to differentiate the 

background seismicity from that which is a direct response to the production practices from 

injection of fluids into the ground. Significant clustering of seismicity can be used as evidence to 

support the claim whether there is any sense of correlation between local production impacts on 

the region at a level exceeding the natural background seismicity.  

Earthquake records are included in the interferograms within Figures 4.3c to 4.15c. 

Earthquake records are included as an overlay to the interferogram of the designated time period. 

Only earthquake records coinciding with that time period are displayed. The overlay allows the 

analysis of such in determining the degree at which clustering of seismicity is occurring.  

Conclusions that can be established from this examination show that there is significant 
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clustering within the subsidence anomaly present at the Coso site. Knowledge gained from this 

concludes that there is a significant degree of impact that is present on the system by production 

methods. The highly clustered earthquake occurrences consist of primarily micro-seismicity with 

few outliers of small earthquakes (<3 magnitude). Feng and Lees (1998) supported the 

distinction of subsidence occurrences occurring as a result of geothermal production practices 

with the association of high seismicity levels in regard to borehole locations within the 

geothermal field. 
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Chapter 5 

 

Future Directions  

Many steps can be taken to improve or expand upon results that are presented as a part of 

this research. Some methods may consist of implementing more SAR data from additional 

satellite missions. To expand upon the period of study additional GIS or auxiliary data may be 

included to refine the results. This may lead to a more precise conclusion on the true deformation 

impact that is taking place in this highly active zone of tectonism. Understanding the subsurface 

changes may provide an additional method to building a concise analysis of this region as a 

whole.  

SAR data from additional satellite missions such as ERS-2 as well as Sentinel-1 will 

expand that years of analysis that are a part of this research. ERS-2 data can expand the years of 

analysis to earlier time periods than analyzed here. Including additional years between 2000 to 

2005 will account for an extension into the years that were not included in previous studies from 

the 1990s. As well as include an additional five years to the data presented here. Including 

Sentinel-1 data will likewise expand the study period. Sentinel-1 data will provide an even more 

modern set of data from 2014 to the present. This will provide the newest deformation trends that 

have occurred in recent years. Inclusion of these additional data sets would create a more 

comprehensive and robust analysis while providing the potential to exposing any trends that may 

have been overlooked by the results presented as a part of this research. Including data up to the 

present would also provide an analysis of the Coso site in a time period after the Coso Operating 

Company began pumping water from the nearby Rose Valley reservoir for injection. This 

analysis would highlight whether or not these additional measures have made a positive impact 



 
 
 
 

        
 

90 

on the deflation of the geothermal system or not.  

 A potentially valuable form of additional data to add to this research is the location of 

drilling holes throughout the geothermal production fields in the Coso region. The well data 

would allow knowledge of where the exact location that geothermal production practices are 

occurring. Along with the designations of each well to their usage. May they be an injection, 

extraction or injection/extraction wells. Having this knowledge may provide the necessary 

information to be able to decipher whether local peaks of deformation during the study periods 

can be correlated to one of the well locations.  

 The final beneficial addition to this research consists of the incorporation of inverse 

modeling to understand the evolution of the subsurface over the same study period. The results 

generated from the interferogram calculations can be utilized to perform inverse modeling of the 

subsurface of the Coso geothermal site. Multiple variations of point source models can be 

applied (Mogi, 1958; Okada, 1985; Yang, 1988). The complexity of the deformation exhibited at 

the Coso geothermal site will determine the applicability of an individual point source model 

over the others. Performing this analysis will provide the ability to infer the depth and 

dimensions of a potential source for the geothermal system at depth. Knowing this enables the 

possibility to model this source over the established study period to provide a conclusion on the 

evolution of the source over time as it has impacted surface changes. This form of information 

may provide a clearer understanding as to why the surface deformation is occurring. 
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Chapter 6 

 

Conclusions 

 Necessary methods and data required for an analysis of deformation trends throughout a 

designated region is presented in this research. A cutting edge remote sensing technique known 

as Interferometric Synthetic Aperture Radar (InSAR) is utilized for the performance of surface 

movement analysis. This technique provides the necessary precision to measure differentiating 

slow and rapid shifts in the surface location over time. Two-pass differential interferometry 

methods were employed for the generation of interferograms, of which visually and 

quantitatively present the deformation trends throughout a designated study period in the form of 

an image that contains phase values within pixels, to form an overall grid of the region.  

 InSAR analysis was performed throughout the Coso Geothermal site in eastern California. 

The analysis covered the years between 2005 to 2010. Local subsidence was measured in the 

Coso site amounting to a range of 2.5 to 3.5 cm/year throughout an area of approximately 50 to 

55 km2. The local subsidence anomaly is concluded to be a direct surface response to the 

geothermal production procedures that are employed within the site. Extraction and reinjection 

of fluids as a practice of production methods has created a net loss of fluid within the geothermal 

system resulting in depressurization throughout the system. Depressurization provides the 

mechanisms for the experienced subsidence creating a cone of deflation at the Coso site. 

Additionally, support of the subsidence relation to production methods are displayed as the 

extents of the subsidence anomaly coincide directly with the visible locations of production wells 

at the Coso site. 

 This research employs InSAR techniques to infer the on-going deformation patterns and 
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magnitudes present at the Coso site. Previous work sought to analyze this anomaly throughout 

the 1990s. While this work extends this knowledge base throughout 2005-2010. The steady rate 

of deformation measured in this analysis as well as the correlation of similar deformation rates of 

the 1990s suggests that the deformation experienced within the Coso site is a result of linear 

deformation. Likely brought on as a continuation of depressurization due in part to the continual 

extraction of hydrothermal fluids.    
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