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Abstract

In designing accelerated testing plans, cost is a factor that is missing in much of the literature.

This paper explicits considers cost by developing an optimization model with the objective to min-

imize costs for a simple step stress accelerated test plan. Two methodologies are employed. One is

an optimization approach in which an attempt is made to quantify the behavior of a series-parallel

hardware system over all stages of testing using a response surface, and then an optimization model

is used to determine the settings for stresses and failure mode modifications for all stages of testing

prior to the start of testing. The second methodology or sequential stage approach is to generate a

response surface using data from a completed test stage to determine the settings of stresses and

failure mode modifications for the next stage. Then this process is repeated for all stages of testing.

When validating the results of the optimization model through simulation, the model overes-

timated costs. Assuming the simulated optimal settings are the true value of cost, the sequential

approach produced suboptimal results. This is because each stage of testing results in narrowing

the search parameters of a solution. However, it was found that the sequential stage approach had

similar costs to that of the optimization model. Although the optimization model has a better so-

lution, it requires much more data initially whereas the sequential stage approach does not require

information about the system for all stages prior to testing. If information of the system’s behavior

is known for all stages prior to testing, then the optimization approach is more advantageous, yet

most cases have limited information so the sequential stage approach should be utilized.
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Chapter 1

Introduction

1.1 Background

The rise of reliability engineering dates back to the World War II era. Prior to World War II,

reliability was used in the study of the fatigue life of materials by Wallodie Weibull and was even

used in the insurance industry as the probability of a human’s survival [8]. During World War II,

complex electronic systems were introduced to the military and high failure rates were observed in

vacuum tubes, which were used in radios and radar [19]. Since then, the military has taken an in-

terest in the study of reliability to increase equipment reliability and prevent frequent maintenance

[3]. Some examples of this are: Aeronautical Radio, Inc. (ARINC), which was an organization

developed by airlines to investigate defective vacuum tubes initially and have since focused on re-

liability issues in the military; the Rome Air Development Center (RADC), which was developed

to study reliability issues in the Air Force; and the Advisory Group on the Reliability of Electronic

Equipment (AGREE), which was developed by the Department of Defense, that published a re-

port prompting the military to establish quality and reliability requirements for components from

suppliers, testing requirements for equipment, and the collection of data from testing for use in

diagnosing problems [19].

A majority of the research during this time period assumed an exponential distribution for

failure times, which was developed by Epstein and Sobel [10], and whose density is given as

f (x;θ) =
1
θ

e−x/θ, θ > 0, x≥ 0, (1.1)

where x is a measure of time and θ is average life of the equipment or component. However,

the Weibull distribution would also receive significant attention in research [19]. The Weibull

distribution is given as

1



F(x) = 1− e−φ(x), φ(x)> 0 (1.2)

where φ(x) is a positive, non-decreasing function [3]. Many of the documents developed during

this time period contributed to or became standards for the military like Military Handbook 781,

regarding the methods and requirements for environmental testing, the Military Handbook 217,

which catalogs the failure rates of military components, and the Military Handbook 189, which

provide guidelines for improving the reliability of military equipment [19].

Reliability growth testing is a method of improving reliability over time through engineering

redesign and a test-analyze-fix approach. Typically, testing is conducted for a fixed amount of time

or until a failure occurs in the system. Then failure data is analyzed, and changes are implemented

to reduce the number of failure modes in the system. However, in many cases, the testing time is

significantly less than the expected life of a component [8]. Thus, there is need for accelerated life

testing, which is subjecting tested units to elevated levels of environmental or operational stresses

like humidity, vibration, voltage, and temperature in order to estimate the life distribution of the

product or component under normal operating conditions [21].

The two most common types of accelerated life tests (ALT) are: constant stress accelerated

life tests and step stress accelerated life tests. In constant stress ALT, multiple copies of a unit

are tested at a constant level of high stress until failure, and in step stress ALT, multiple copies

of a unit are subjected to a high level of stress, x1, and then increased to another stress level x2

until all units fail. Many accelerated life tests only consider two stresses, which are called simple

stress accelerated life tests. Step stress ALTs can be categorized into two different types of tests:

time-step and failure-step. In time-step stress accelerated testing, units are tested at x1 until a

predetermined time, τ, and then all units still functioning are elevated to x2 until all units fail. In

failure-step stress accelerated testing, units are tested at x1 until a predetermined proportion, p1,

have failed, and then the remaining functioning units are elevated to x2 until the remaining units

fail. Failure-step stress ALT is not common because this requires continuous monitoring, which is

an inconvenience [20].
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There has been a renewed interest in the field of accelerated reliability growth testing (ARGT)

because there is a demand for high reliability requirements and long lifetimes for products, and

product testing under normal conditions would be time and cost consuming [16]. Therefore, ARGT

is necessary, and planning is essential to the success of ARGT [12]. Design of experiment (DOE)

methodologies have been integrated into ARGT to provide time and cost-efficient strategies while

keeping the effects of noise variables low [23]. The purpose of DOE is to minimize the number

of experiments (combinations of stresses) to conduct while predicting the expected lifetime of the

product or component under normal operating conditions [24].

1.2 Motivation

There has been an abundance of work conducted in planning accelerated life tests; however, a

majority of the work does not consider cost modeling within its framework [22]. This is an aspect

of the problem that has real world application as cost can be a driving force for projects or an

enormous limiting factor. The focus of this paper is to develop an accelerated testing plan employ-

ing a response surface that models the relationship between cost, testing time, and reliability, and

then using the response surface to find the most efficient plan to minimize costs while meeting a

target system reliability for a series-parallel hardware system. Although there is no evidence that

response surfaces have been used to plan accelerated reliability growth testing, it is believed that

this approach will help to minimize costs by means of optimization. Rather than developing an

experimental design to explore the surface, it is assumed that a model fit to the response surface

can generate a plan with minimal costs.

3



Chapter 2

Literature Review

In the following sections, a description of the systematic literature review process is given along

with an overview of accelerated life testing, design of experiment techniques, and the incorporation

of design of experiments in accelerated reliability growth testing.

2.1 Research Method

A systematic literature review inspired by [25] was conducted using the Compendex, EBSCO,

and Proquest databases. The purpose for using a systematic literature review was not only to find a

comprehensive list of articles regarding the subject matter but also to ensure that the material used

for the work is of high quality. The search criteria are summarized below:

Combinations of the search terms were used in each of the databases for a thorough search.

Many references were eliminated by use of the criteria given in Table 1. Additionally, several

papers regarding software systems and accelerated degradation testing were excluded by narrowing

the focus of the research. Many sources were added from doing a reverse reference search in

relevant articles.

Table 2.1: Search Criteria for Literature Review
Criteria Description
Search Terms Accelerated Testing

Design of Experiments
Reliability Growth

Databases Compendex
EBSCO
ProQuest

Exclusion Criteria Duplicate Papers
Papers written in languages other than English
Papers with incomplete information (title, author, publisher, year, etc.)

4



2.2 Accelerated Testing Models

Many ARGT models are extensions of existing reliability growth models by employing accel-

erating stresses and relating those stresses to the life of the product or component. The two most

common types of stress loading are constant and step-stress. Constant stress models run units at a

constant level of stress until failures and modify the level between test phases. Step stress models

apply a constant stress to units until a specified time and then increase the stress for another speci-

fied period of time. This is repeated until all units fail. Other methods of accelerated stress loading

are progressive, which is continuously increasing the stress level; cyclic, which is subjecting a unit

to repeating patterns of high levels of stress; and random, which is subjecting the unit to randomly

changing levels of stress. Although, these methods of stress loading exist, they are not typically

used in research and will not be discussed further. The most prevalent failure inducing mechanisms

are temperature, humidity, power cycling, and vibration. The following sections describe several

common constant stress and step stress models.

2.2.1 Constant Stress Models

In constant stress models, a constant level of stress is applied to units under testing until those

units fail. The level of stress can be adjusted after a stage of testing is complete. The advantages of

constant stress models are that it is easy to hold units at a constant stress, and there are proven data

analysis methods and empirical evidence to support these models [21]. An assumption for ARGT

is that failure modes operate in the same fashion during normal operating use as the accelerated

environment. ARGT yields failures more quickly than standard testing, and it also assumes that no

new failure modes are present [8]. The relationship between failure times is assumed to be linear

and is given as

tn = A(ts), (2.1)

where tn is the time to failure under normal stress, ts is the time to failure under an accelerated

stress, and A is an acceleration factor. The failure or hazard rate under normal conditions is given

5



as

λn(t) =
1
A

λs

( t
A

)
, (2.2)

where λs is the hazard rate under acceleration. Some common life distributions are the exponen-

tial, Weibull, normal, and lognormal distributions, which are discussed in detail in [21] and are

expressed as linear transformations of the accelerated conditions in [8].

When temperature is the failure mechanism, the Arrhenius model is the most widely used. The

Arrhenius model, based on chemical reaction rates, presents the time to failure as

θ = ae(
b
T ), (2.3)

where a and b are constants dependent on product specifications and test methods, and T is the

temperature in Kelvin. The acceleration factor for θ1 at temperature T1 and θ2 at T2 is given as

AF =
θ1

θ2
= e

[
B
(

1
T1
− 1

T2

)]
. (2.4)

Alternate forms of this model are given for temperatures with exponential, Weibull, and log-

normal distributions in [21].

Another common model in ARGT is the inverse power law model, usually referred to as the

power law model. This model is applicable to a single accelerated stress, V , and given as

θ(V ) = aV b, (2.5)

where a and b are constants dependent on product specifications and test methods. The power can

also be expressed as

θ(V ) = a
(

V0

V

)b

, (2.6)

where a and b have the same definition, and V0 is a standard level of stress. Alternate forms of

model (2.5) are given for stresses that follow the exponential, Weibull, and lognormal distributions

6



in [21].

An alternative and similar model to the Arrhenius model, which is based on quantum mechan-

ics, is the Eyring model. This is given as

θ =
( a

T

)
e(

b
T ), (2.7)

where parameters have the same definition as model (2.3). This model is extended for cases when

temperature and other stresses are applied. The time to failure for the Generalized Eyring Model

is given as

θ =
( a

T

)
e(

b
T )e(V [c+(

d
T )]), (2.8)

where a, b, c, and d are constants dependent on product specifications and test methods, T is

temperature in Kelvin, and V is another stress. Model (2.8) can be expanded to include more than

two stresses [15]. The use of multiple stresses in ARGT provides a better estimation of the life of a

product than single stress testing, and using lower levels of multiple stresses can reduce the chance

of atypical failure modes under normal operating conditions [6].

Feinberg [12] proposed a ARGT constant stress model with the following assumptions: (i) an

acceleration factor, A, exists and can be estimated; (ii) time is linearly compressed by A; (iii) both

compressed and uncompressed time periods can yield the same reliability growth. The mean time

to failure (MTTF) under an acceleration applied at the beginning of testing, θA(t), is given as

θ
A(t) =

θu
1

1−α

(
t
tu
1

)α

Aα, ts
1 < t < ts

f , (2.9)

where θu
1 is the initial failure for an unstressed test, tu

1 is the initial unstressed test time, ts
f is the

end time of the stressed test, and α is the growth rate. Accelerated testing increases the effect of

reliability growth by a factor of Aα. model is extended in which different acceleration factors are

7



used for different phases of testing are considered and given as

θ
A
i (t) =

θu
1

1−α

(
t
tu
1

)α

Aα
i , ts

i < t < ts+1
f , (2.10)

where Ai is the ith acceleration factor in the ith stage of testing. Another extension of model (2.9)

considers an acceleration factor that is applied after the first failure during an unstressed test, which

is given as

θ
A(t) =

θu
1

1−α

(
t
t1

)α
(

1− t1
ts

f

)α

, t1 > ts. (2.11)

Krasich [16] develops a methodology for ARGT. Both environmental and operational stresses

are considered, and Krasich notes that a key to successful ARGT is knowledge of how the envi-

ronment and operations of the product will affect its life. The overall product reliability is given

as

R(t0) = RU(t0)∏
i

Rei(t0)∏
j

R0 j(t0), (2.12)

where Re is the reliability of the product under environmental stresses, Ro is the reliability of the

product under operational stresses, Ru is the reliability of the product under interaction of stresses,

and i and j are indexes for the respective number of environmental and operational stresses. Ther-

mal cycling, thermal exposure, humidity, vibration, and operational cycling are considered as ac-

celeration factors.

2.2.2 Step Stress Models

In step stress models, units under testing are subjected to a stress level for a fixed amount of

time, and then the stress level is increased if the unit does not fail. This is repeated until all units

fail. An assumption of step stress ARGT is that increases in stress linearly affect the time to failure.

The advantage of step-stress testing is that failures can appear quicker than constant stress testing.

However, failures induced at high level stresses in later stages of testing may not be reflective of

failures under normal operating conditions. Additionally, step stress tests need another model to
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approximate the life under constant stress as most products are run constantly. Like constant stress

models, a distribution (i.e., exponential, Weibull, lognormal, etc.) is usually assumed for the time

to failure. Thus, existing constant stress models with minor adjustments are applicable to step

stress ARGT [21].

Feinberg [12] proposed a step stress model that is given as

M(tss) =
M1

1−α

(
AefftssN

t1

)α

, tss > t1, (2.13)

where Aeff is the effective step-stress acceleration factor and the sum of all acceleration factors,

and tss is the hold time or time units are tested at a constant stress level.

Step stress models require an additional model that relates the stress to conditions of normal use

by assessing the cumulative effect of stresses that vary over time. Such a model is called a cumu-

lative damage or cumulative exposure model. Miner’s Rule [21] is a commonly used cumulative

damage model for fatigue. It is given as

k

∑
i=1

ni

Ni
=C, (2.14)

where k is the number of stresses, ni is the number of cycles accumulated at stress i, Ni is the

average number of cycles to fail at the ith stress, and C is the amount of life consumed. When

C = 1, failure occurs.

Miller and Nelson [20] consider a simple step stress ALT in which units are tested at one stress

for a length of time, τ1, and then the stress is changed. By minimizing the asymptotic variance

of the maximum likelihood estimation (MLE) of the mean time to failure, optimum times for

τ1 in a time-step SSALT and a optimum proportion, p1, for failure-step SSALT are developed.

The assumptions of the model are that the life distribution of units are exponential when stress is

constant, and the characteristic life, θ, is a log-linear function of the stress x given as

θ(x) = ea+bx, (2.15)
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where a and b are parameters of the log linear function between the stress and characteristic life.

Bai, Kim and Lee [2] extend this work by incorporating both Type I censoring, which is terminat-

ing the test at a predetermined time, and Type II censoring, which is terminating the test after a

predetermined number of failures.

In [1], a simple step stress ALT with a Weibull distribution and Type I censoring is considered

because the Weibull distribution allows for more flexibility. The assumptions are that the life

distributions of units are Weibull when stress is constant rather than exponential, stress is log-

linearly related to the scale parameter of the Weibull distribution, given as θ(x) = exp(a+bx), the

shape parameter of the Weibull distribution is constant and independent of the stress, and the test is

terminated at a predetermined time. Fard and Li [11] develop an optimal hold time by minimizing

the asymptotic variance of the MLE of reliability. Yuan and Liu [27] assume that the model’s

parameters (a, b, and β) are not known and apply a Bayesian approach to the problem. A joint

prior distribution is developed for the unknown parameters, and the asymptotic variance of the

MLE of the time to change stresses that corresponds to the closest approximation of the lifetime

distribution under normal operating conditions.

In [9] an optimum low stress level and hold time for a simple step stress ALT are developed by

minimizing the asymptotic variance of the reliability estimate at normal conditions. The assump-

tions of the simple step stress ALT are that there is only one stress with two different accelerated

levels and rather then assuming a distribution, failure rate is modeled using Cox’s proportional haz-

ards (PH) model, which is a multiple regression approach for reliability estimation that assumes

stresses are multiplicative instead of additive. The PH model is given as

λ(t : z) = λ0(t)eβββzzz, (2.16)

where zzz is a vector of stresses, βββ is a vector of regression coefficients, and λ(t) = a+ bt is the

baseline failure rate with parameters a and b. The ratio of hazard rates between at different stresses

is assumed to be constant. Assuming there are initial parameters a, b, and β from engineering
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judgments, an optimum plan for the low stress level and hold time was developed considering

censoring.

In [26] van Dorp et al. apply a Bayesian approach to a step stress accelerated life test. The

motivation for this model is that many models assume there is one stress is the primary failure in-

ducing mechanism, non-Bayesian approaches require large sample sizes because prior information

cannot be incorporated, and that given there are several different stresses, it is difficult to specify

a singular time transformation function or acceleration function. The assumptions of this model

are: (i) the test will be conducted on a few highly reliability units, (ii) the failure rates of the units

are exponential distributed, which increase as a function of the stress levels, (iii) there exists some

prior information on the failure rates at normal and accelerated operating conditions, (iv) testing is

identical for all units, which starts at normal operating stress and increases to a higher level after a

fixed period of time, and (v) failures can only be observed at discrete time intervals, in which they

are removed before testing is resumed.

The multivariate ordered Dirichlet distribution is considered as the prior distribution because

incorporating engineering judgments is facilitated and the quality of the information can be quan-

tified. The ordered Dirichlet distribution is given as

Π{(u0, . . . ,um)}=
Γ(β)

m+1

∏
j=0

Γ
(
βα j
) m+1

∏
j=0

(
u j−1−u j

)βα j−1
, (2.17)

where β > 0 and α j > 0 are prior parameters, j = 1, . . . ,m, u j = e−cλ j is the transformation of the

failure rate λ j, and ∑
m+1
j=0 α j = 1. When deriving the likelihood function, it is assumed that stress

levels are not changed instantaneously. Rather stresses increase linearly until the next level, which

is known as the ramping phenomenon. The likelihood given the number of initial testing units, n,

and the likelihood of the number of failures s′ is expressed as

L(u′|n,s′) =
m

∏
i=0

[
(ui)

2Li−ρi
2c (ui−1)

ρi
2c

]ni−si
[

1− (ui)
2Li−ρi

2c (ui−1)
ρi
2c

]si

, (2.18)
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where Li is the length of time a unit is tested at stress level i, ρi is the length of time to ramp from

stress level i to stress level i+ 1, c is a constant in the failure rate transformation, si is the total

number of failures in the time interval (ti, ti+1), and ni is the number of units remaining in the test.

The posterior distribution, which is a product of the prior and likelihood function given as

m

∏
i=0

[
(ui)

2Li−ρi
2c (ui−1)

ρi
2c

]ni−si
[

1− (ui)
2Li−ρi

2c (ui−1)
ρi
2c

]si m+1

∏
j=0

(
u j−1−u j

)βα j−1
. (2.19)

2.3 Design of Experiment Techniques

Complete lk factorial designs have k factors with l levels. Typically factorial designs are re-

stricted to two levels: high (’+’) and low (’-’). These designs provide the most information about

the experiment because it considers all combinations of levels of factors as well as the interactions

of the factors. However, complete factorial designs can become large even at two levels of each

factors [4]. An experiment with eight factors would require 25 = 32 runs. In the case of ALT, each

run may take several hundred hours, which would be practically infeasible to conduct 32 runs.

Thus, more efficient methods of conducting experiments is needed.

Fractional factorial designs can reduce the number of runs significantly by choosing a subset

or fraction of the complete factorial design. A 25−2 factorial design would reduce the number of

runs by 2−2 = 1/4 to eight runs. Although this provides an advantage of reducing the number of

runs significantly, the disadvantage is that many of the effects are hidden or confounded by the

main effect factors that the experimenter deems the most important. This assumes that many of the

confounded effects are not significant and do not affect the response. Fractional factorial designs

are particularly useful if it can be estimated which main effects and interactions are significant so

that the remaining effects can be confounded [4].

Two efficient methods, Latin square design and split-plot design, consider blocking, which is

the reduction of variation by noise factors. Latin square design considers two blocking factors

and reduces the number of runs by n, where n is the number of levels in treatments and blocks.

An experiment with three treatment levels and three levels for each block would normally require
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27 runs (i.e., running every combination of treatment level and block levels); however, the Latin

square design reduces it to 9 runs by only running each treatment level with every pair combination

of block levels, which can be seen in Figure 2.3 where A, B, and C are the treatment levels. The

disadvantages of Latin square design are that there must be two blocking factors and the levels in

the treatment and blocks must be the same and interaction effects are not discernible in this design

[4].

Figure 2.1: Latin Square Design

Split-plot designs consider multiple factors and are useful when one of the factors is not easily

manipulated. In a split-plot design, each block, referred to as a whole plot, is divided into subplots.

An example is given in [4], where four different types of coating are used to treat steel bars in dif-

ferent positions in a furnace. In the example, the furnace temperature is difficult to manipulate and

adjusting it for each run would result in large variances. The experiment can be found in Figure

2.3. The advantages of this design are that variance is reduced because all main effects and inter-

actions between the heat and position have the same source of error and it provides convenience

for scenarios where blocks may already exist.

Figure 2.2: Split-Plot Design [4]

Response surface methodology (RSM) is designed to develop a relationship between a response
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and a number of predictor variables, which can be expressed as

ŷ = b0 +b1x1 +b2x2 + . . .+bkxk + ε, (2.20)

where ŷ is an estimation of the response, bi, i = 0, . . . ,k are constant coefficients, xi, i = 1, . . . ,k

are the predictor variables, and ε is an error term. A technique of RSM is the method of steepest

ascent, in which the experimenter starts at a region near the normal operating conditions of the

system and moves toward the optimal response in a minimal amount of steps or runs. Using the

contour plot resulting from equation (2.20) at the initial region, the experimenter moves toward

the optimum region. This is continued until there is no increase in the response from equation

(2.20), and the experimenter is in the optimum region [4]. The line moving perpendicularly from

one contour plot to the next is termed the path of steepest ascent, and is also where the rate of

increase of the response is a maximum. Once in the optimum region, a more sophisticated model

is required like a second order model given as

ŷ = b0 +b1x1 +b2x2 + . . .+bkxk +b11x2
1 +b22x2

2 + . . .+bkkx2
k +b12x1x2 + . . .+bk−1,kxk−1xk + ε.

(2.21)

There are several optimal statistical criteria used to evaluate the experimental design. The most

widely cited in the literature is the D-optimal design. In the D-optimal design, the volume of the

confidence region is minimized, which maximizes the determinant of the information matrix of the

design. In the G-optimal design, the maximum variance of responses are minimized. Although the

D-optimal design requires a known underlying model, it is useful when other classical models are

not applicable.

2.4 Design of Experiment Approaches to ARGT

Design of experiments (DOE) is a suitable approach to ARGT because it can evaluate multiple

stresses in a single experiment, the interactions of those stresses, and allow the user to configure
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the design characteristics of the product to remain reliable under stress [17]. There are a num-

ber of advantages to combining DOE with ARGT. The primary advantage is that both methods

reduce the amount of time and cost of testing. The purpose of ARGT is to reduce the amount

of testing time while DOE provides the vast amounts of information from a minimum number of

tests. Advantages of incorporating DOE with ARGT are that no new failure modes are introduced

when combining accelerated stresses with normal operating stresses can be verified and appropri-

ate levels of stress for acceleration can be identified [15]. Additionally, there are methods like test

sequence randomization and blocking that can reduce variance and the effect of extraneous factors

[23]. The remainder of the section is dedicated to describing several methodologies of combining

DOE approaches with ARGT.

McKinney [18] develops a methodology for system-level ARGT that addresses the following

deficiencies: assumption of a life distribution, assumption of a stress relationship function, and ex-

trapolation outside of the test data. The assumptions for his methodology are: (i) the factors being

studied are quantitative, meaning they can be described as points on a scale; (ii) the interactions

are negligible; (iii) the factors can be equally spaced from one level to the next; (iv) the errors are

independent and normally distributed with mean zero and common variance; (v) the design limits

of the test article can be determined or approximated; (vi) multiple, identical units are available for

test; and (vii) the test stresses can be applied simultaneously.

There are three phases to this methodology: planning, design, and analysis. In the planning

phase, performance measures (i.e., time to failure), stresses (i.e., temperature, humidity, vibration,

etc.), and level of stresses (maximum operation levels to maximum design limits) are determined.

In the design phase, McKinney suggests the use of a one-third replicate of a three-factorial test

with three levels, requiring nine test cells. Furthermore, he estimates the minimum number of

units to be tested in each cell and gives guidelines for testing time. In the analysis phase, if a cell

has at least one failure, then the data is used for the MTTF. However, if there is not a failure for a

particular cell, then a 0.5 χ2 confidence limit with two degrees of freedom is used to calculate the

MTTF. Traditional analysis of variance (ANOVA) and regression analysis are used to evaluate the
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natural logarithms of the MTTFs. The null hypothesis (H0) is that none of the factors has an effect

on the MTTF. By using an experimental design, no assumptions regarding the life distribution or

stress relationship were necessary, and extrapolation was not an issue because the levels of stress

being tested overlapped with the operational levels.

Dietrich and Mazzuchi [7] raise concerns with McKinney’s methodology. The primary issue

is the use of standard analysis procedures: needing multiple components to satisfy the normal-

ity assumption when using a logarithmic transformation causes non-normality and calculating a

pseudo-MTTF using a 0.5 χ2
(2) confidence limit. Additionally, atypical failure modes were not

considered for combined stresses.

Hakim-Mashhadi [15] analyzes two different distributions in the context of a DOE methodol-

ogy: the power-Weibull and power-lognormal distribution. He first assumes that the product’s life

distribution follows the Weibull distribution under current stress, x, and the scale parameter, θ, is a

function of the stress, which can be expressed linearly as

lnθ(x) = a−b(lnx), (2.22)

where a and b are parameters of the product and test method. An example is presented for light

bulbs where the expected life of light bulbs are determined from accelerating levels of voltage and

estimating the values of lnθ for each level of stress through regression analysis. The expected life

of light bulbs is also determined using the power-lognormal distribution as the underlying assump-

tion for product’s life distribution. A demonstration of incorporating fractional factorial designs

and accelerated testing is given. Hakim-Mashhadi notes several considerations when designing

an experiment with accelerated life testing: the dependent measure, acceleration factors, levels

of the acceleration factors, interactions of factors, the number of runs, and the replications of the

experiment.

Clark et al. [5] present a methodology that does not assume design limits of a product to be

known. Rather in this methodology the design limits are determined through a technique called

destructive evaluation. In this technique, a N-factor, 2-level incomplete factorial design is used for
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N+1 experiments, in which each stress is started at its maximum design level and incremented until

failure. In the last experiment, all failures are incremented in a manner such that all failures should

occur simultaneously. However, failure typically occurs earlier due to the interactions among

stresses. The maximum stress level (MSL) is obtained from taking the lower tail of the probability

density function for the design limits in order to avoid non-stress failure modes.

Figure 2.3: Destructive Evaluation of a Three-Stress Accelerated Life Test [5]

Accuracy and acceleration should be considered as objectives when designing the ALT. When

trying to achieve greater acceleration, choose stress profiles close to the MSL. Additionally, testing

more units at higher stress levels in a constant stress test or increasing the length of steps in a

step stress test would have to the same effect. When trying to achieve greater accuracy, choose

stress profiles closer the maximum design limits, testing more units at lower stress levels in a

constant test, or decrease the length of steps as stress level increases in a step stress test. Using

an appropriate model, the failure rate can be predicted, and an s-confidence can be obtained by

setting the number of test units, the length of the test, and stress levels. This approach was applied

to commercial off-the-shelf single-board electronics, and assumes that all units were identical,

that units should be of low-cost and high-volume to keep costs minimal, and that the length of

experiments should be kept as short as possible to ensure that failures occur due to stress rather

than reliability issues.
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Thomas and Gaines [24] address the difficulties in balancing a statistically designed experi-

ment and incorporating engineering judgments because statistically designed experiments provide

the most insight when little is known about the system under testing and incorporating prior infor-

mation is difficult especially when much is known about some aspects of the system while little

else is known about the rest of the system. Engineering judgment is vital to initialize the design of

the ALT, and then using statistical criteria improvements can be made. The methodology laid forth

is dependent on engineering knowledge about some performance measure of the combination of

factors. In this example, relative severity was used; however, a number of different measures can

be considered.

First, a full factorial design is considered and a severity rating is assigned to each combination

of stress levels. Next the severity rating of each of the main factors was calculated. The main effect

with the highest severity was selected and split so that the remaining main effects are conditioned

on a high level of that stress. The main effect with the next highest severity is the next split and

the remaining main effects are conditioned on the high level of that stress. This continues until

all main effects have been selected. The construction of this hierarchal tree is such that the large

horizontal distances indicate a large importance. Experiments with large importance are kept and

others are eliminated reducing the complete factorial design to an engineering design, a set of five

conditional tests.
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Figure 2.4: Conversion of Factorial Test Design to Engineering Design [24]

The five tests are used to generate a polynomial response surface. The elimination of tests

create an issue because several effects are confounded. Thus, fractional factorial design should

be considered for supplemental testing. The use of extrapolation is necessary in order to describe

the system under normal operating conditions, and the use of extrapolation is allowable by using

multiple levels of stresses. It is recommended that at least five stresses be used assuming that the

same failure mode is the primary failure mode in all five levels.

Dietrich and Mazzuchi [7] continue the work from van Dorp et al. [26] by observing that the

testing order is not significant. Rather the prior estimates of the failure rates and the rank order of

the failure rates are the only necessary information to conduct the test at each level. This allows the

incorporation of DOE methodologies, which Dietrich and Mazzuchi use by randomizing the test

order and by combining different stresses. Somerville et al. [23] extend the work of the randomly

ordered life testing design. It is shown that when ordering the stress levels in a strictly increasing

distribution, the conditional reliability or probability that a unit will survive test stage i, ui, can be

expressed as

ui =
R(τi+1)

R(τi)
= e−λi(τi+1−τi), (2.23)
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where τi is the time at the end of test i−1, R(t) is the reliability of a unit from time 0 to time t, and

λi is the average failure rate at stress i. Then each item at each test stage is considered a Bernoulli

trial resulting in a joint conditional sampling probability density function or likelihood function for

the ALT, which is given as

f (s|u) =
m

∏
i=1

(
ni

si

)
(1−ui)

si (ui)
ni−si , ni =

k

∑
j=1

ni j, si =
k

∑
j=1

si j (2.24)

where ni is the number of units at the start of test stage i and si is the number of failed units at test

stage i.

Guo and Pan [14] develop a D-optimal design for two-stress two-level ALT with both censored

and uncensored data, which minimizes the uncertainty of estimation of the model’s parameters.

The assumptions are that failure times are lognormally distributed and the only the location pa-

rameter, β, is affected by stress. The log-failure time is given as

Yi, j = ln ti, j = β0 +β1Xi,1+β2Xi,2 +β12Xi,1Xi,2 +σεi, j, (2.25)

where ti, j is the failure time for the ith run and the jth unit, βββ is a vector quantifying the effect of

stress on failure times, σ is the variance, and εi, j is random error. For uncensored failure data, the

optimal design is found at the boundary of the feasible region by maximizing the determinant of

the Fisher information matrix. For censored failure data, the optimal design is dependent on β and

σ. These parameters can be estimated from engineering judgment or existing data analysis.

Ginebra and Sen [13] employ a minimax approach to experiment design for ALT. Both the log-

normal and Weibull distributions are considered. Minimax designs seek to minimize the maximum

of the optimality function over a feasible region of interest, P. A search over the entire region is

too difficult so a subset is used for a rectangular region bounded by the upper and lower limits of

the probabilities of failure for the design and highest stress. Two design sets are investigated: a

set of designs with k equally spaced stress levels with equal units tested at each stress, and a set

of designs with k equally spaced stress levels with a number of allocated units proportional to the
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level of stress. The minimax approach requires the best performance from the smallest number of

failures at the design and highest stresses, and it was found that the recommended design use the

locally optimal designs for the lowest feasible probabilities of failure for the design and highest

stresses.
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Chapter 3

Problem Formulation and Methodology

3.1 System Description

A series-parallel hardware system is considered. This is a common system in which multiple

subsystems modeled as a parallel system are joined in series. The system is composed of n sub-

systems each with mi components, where i = 1, . . . ,n, and each component mi has k failure modes,

where k = 1, . . .. Multiple failure modes within a component are modeled as components in series.

A general example of the systems under consideration can be found in Figure 3.1.

The assumptions of the model are:

• one failure in the series configuration causes system failure;

• each failure mode is Weibull distributed;

• the scale (η) and shape (β) parameters can vary between components;

• the shape parameter is constant and independent of stress;
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• the scale parameter is a log linear function of transformed stress, temperature (T ) and voltage

(V ), given as

η =
a
T

e(
b
T +V [c+ d

T ]); (3.1)

• the parameters β, a, b, c, and d are assumed to be known or derivable;

• there are multiple failure modes for each different component in the system;

• the cause of each failure can be identified with certainty;

• modifications of the system are instantaneous and perfect;

• modifications can remove the failure mode completely or increase the performance of the

component;

• failure modes can experience improvement more than once;

• and modifications are identical for all copies of the system.

The measure of interest is the system reliability, given as

Rsys =
n

∏
i=1

[
1−

mi

∏
j=1

(1−R j)

]
. (3.2)

3.2 Testing Procedure

A simple step stress accelerated life test is used with two levels of two different stresses: tem-

perature and voltage. There are two steps in each stage of testing. In the first step, N identical

copies of the system are tested at stresses x1 and y1 for a fixed amount of time (hold time), τ. At

the end of the first step, t = τ, failed units are removed, and at least one of the stresses are in-

creased, such that x1 ≤ x2 and y1 ≤ y2 . The remainder of the units are tested until they all fail.

The levels of stresses in testing are between the operating stress or design stress and the maximum

load stress, xD ≤ x1 < x2 ≤ xM and yD ≤ y1 < y2 ≤ yM, such that exposing the system to these
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high levels of stress should not yield failure modes that are uncharacteristic of normal use. At the

end of each stage of testing, repairs and modifications are made with a probability of reducing the

effect of each failure mode. Modifications are identical for each copy of the system under testing.

Testing is concluded when one of the following criteria are met: (i) system reliability meets the

target reliability, (ii) the total testing time allocation is exhausted, or (iii) fixes become too costly

(e.g., system redesign).

The goal of this problem is to identify the minimum cost of an accelerated testing plan given

specific constraints on time and reliability and the ability to manipulate factors during testing. The

constraints of this problem are that a desired reliability must be met and testing must not exceed

the total testing time allocation for the program. The factors that can be manipulated are the levels

of stresses during each step of each stage of testing and the level of improvement made to each

failure mode. It is assumed that the number of failure modes in each component is known. It is

also assumed that the experimenter knows how the system behaves. This can normally be obtained

from engineering judgment. An optimization model can be used to minimize costs, which is given

as

min C =
S

∑
i=1

[
2

∑
j=1

cT
i j(t j)+

F

∑
k=1

cI
i (zki)

]

s.t. Rsys ≥ Rgoal

S

∑
i=1

ti ≤ T ,

(3.3)

where C is the total cost of testing, cT
i j(t) is a time-dependent cost function of testing of step j

in stage i, cI
i (zki) is the improvement cost of making modifications to failure mode zki in stage

i for k = 1, . . . ,F , F is the total number of failure modes, S is the total number of stages, ti is

the total testing time of stage i, T is the total testing time allocation. It is assumed that cT
i1 < cT

i2

and cT
i j < cT

(i+1) j. This is a reasonable assumption because the cost of testing at higher levels

of stress would accrue higher energy costs. Additionally, costs would increase in later stages of

testing because the system is closer to being released into the field. It is also assumed that making
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improvements and modifications to the system will increase in later stages of testing, cI
i < cI

i+1.

3.3 Test Environment

For each failure mode, estimates were made for the scale and shape parameters. Units were

placed on test at a high level of temperature and voltage. At time τ, failed units were removed

from the test, and the remainder of the units are tested until they fail. Testing time was recorded

along with the failure mode that caused the failure. At the end of each stage of testing, modi-

fications are made to each component, where failure modes of the component can either be (i)

completely removed, (ii) improved, which would increase the performance of the component, or

(iii) not affected. However, making modifications to the system could introduce new failure modes.

For example, if a microchip with two failure modes is replaced on a circuit board with a higher

quality chip. One failure mode could be completely eliminated, and the other failure mode could

be improved, reducing the rate of occurrence of that failure mode. However, replacing the chip

could have also introduced a new failure mode. New failure modes are not exclusive to making

improvements to the system but can also be revealed through more extensive testing.

Reliability is a function of the failure modes, {Rsys : f (zki) i = 1, . . . ,S; k = 1, . . ., F}, where

0 ≤ zki ≤ 1 indicates the level of improvement of the failure mode in stage i. A value of 0 means

there is no fix to the failure mode and a value of 1 means the failure mode is completely removed.

As failure modes are removed and components are improved, the reliability of the system

should be improving. Test duration is a function of the stresses and reliability, {ti : f (x j,y j,Ri) i =

1, . . . ,S; j = 1,2}, where x j,y j are the levels of stresses x and y in the jth step of testing. As the

levels of stress increase, test duration decreases. However, reliability should be extending the

length of tests because the system’s performance is improving.

To calculate testing cost, costs were estimated for each level of stress with increasingly higher

costs for higher levels of stress. Testing cost is a function of stresses and test duration, {cT
i j :

f (x j,y j, ti) i = 1, . . . ,S; j = 1,2}. It is assumed that higher levels of stress and longer tests stages

would consume higher levels of energy, thereby incurring higher levels of costs. To calculate
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improvement costs, costs were estimated for making improvements to each failure mode. It was

assumed that if a failure mode remained unchanged it would not incur a cost but completely remov-

ing a failure mode would be more expensive than simply improving its performance. Improvement

costs are a function of failure modes, {cI
i (zki)i = 1, . . . ,S; k = 1, . . . ,F ; 0≤ zk ≤ 1}. Additionally,

It is assumed that both testing and improvement costs would increase from stage i to stage i+ 1.

This is a reasonable assumption because the costs would increase in later stages of testing because

the system is closer to being released into the field.

3.4 Methodology

A major assumption of the problem is that some knowledge of the system’s behavior is avail-

able to the user. In most cases engineering judgment can be used to estimate the behavior of a

system, or there could be previous sets of data that can be used as estimations for system perfor-

mance. However, in instances where neither are available, simulation can be employed.

The main approach is to optimize a test design plan in which all settings are determined prior

to testing. The steps to the optimization approach are:

• Obtain data for system performance in all stages

• Use data to construct response surface

• Fit model to response surface

• Use optimization model to determine optimal settings

• Test system

• Compare results to the model

Another approach is a sequential stage approach in which analysis is completed after each stage

of testing to determine the optimal settings for the next stage of testing. The steps to this sequential

approach are:
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• Test system

• Construct response surface from test data

• Fit model to response surface

• Determine optimal settings for next stage

• Repeat until all stages have been completed

The main difference in the two approaches is that the optimization approach attempts to es-

tablish test settings prior any testing based on previously collected data whereas the sequential

approach uses the previous stage testing data to establish test settings for the next stage of test-

ing. Another difference is the amount of data being analyzed. In the optimization approach the

entire response surface is evaluated for all three stages of testing, and although more analysis is

conducted during testing, the sequential approach only evaluates portions of the response surface.
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Chapter 4

Results

4.1 Test Setup

A three stage accelerated simple step stress was considered for a series-parallel system. The

system consists of three subsystems: one subsystem with two of the same components in parallel,

another subsystem is a single component, and the third subsystem has two different components in

parallel. The three subsystems are connected in series, and the connections are modeled as com-

ponents with failure modes to emulate the failure modes that emerge from connecting subsystems.

A diagram of the system is represented below.

Figure 4.1: Diagram of series-parallel system

Each component was assumed to have two different known failure modes initially, and one

additional failure mode introduced in each subsequent testing stage. It was also assumed that each

component had different failure modes such that no failure mode overlapped between components.

Failure modes are denoted as zki, where z is the component, i is the stage of testing, and k is an

index of the failure mode (e.g., component A has two failure modes in Stage 1: A11, A21). Each

failure mode was assumed to have Weibull distributed failure times with estimated values for the

shape and scale parameter. The scale parameter was modeled using the Generalized Eyring model
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with the constant parameters, a, b, c, and d, estimated by the Method of Maximum Likelihood

using Reliasoft Weibull++. The improvement for all failure modes if they were modified but not

completely removed was 0.7.

A simulation model was developed using Visual Basic in Microsoft Excel. The simulation

model was used to generate random failure times of the system. The data was collected used to

construct an underlying model for a response surface. The next section described in detail the steps

to construct the response surface.

4.2 Constructing the Response Surface

Four testing stages of data were collected; however, only three stages were used in the con-

struction of the response surface. This is because no improvements are made in the first stage and

because subsystems were tested independently. Testing in the first stage, which will be referred to

as Stage 0, is used to determine the initial failure modes and establish a baseline reliability.

Each subsystem was tested independently, and the connection was assumed to be perfect for

this stage of testing, which would establish an upper bound for the total system’s reliability. How-

ever, this is not necessarily a realistic assumption because there can be failure modes which emerge

from joining subsystems. Therefore, failure modes are introduced in the subsequent testing stage

to model failures due to connecting subsystems. The regression for testing time in Stage 0 is

t0 =−(−0.000306x1 +0.000449x2−0.000267y1 +0.000391y2)
−5, (4.1)

where x j and y j, j = 1,2, are the temperature and voltage stresses, respectively. The Minitab

results can be found in Figure A.1 in Appendix A. The residuals followed all assumptions for

normality, and the normal probability plot for the residuals were checked for normality with a

p-value of 0.13. The graphs can be found in Figures A.2 and A.3 in Appendix A.
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The regression for testing cost is

cT
0 =−(−0.007378−0.000022x1 +0.000017x2−0.000016y1 +0.000013y2)

−2. (4.2)

The system reliability was the same for all test trials of varying stresses, which was approx-

imately 0.113, so no regression was necessary. This is expected because reliability is a function

of the modifications of the failure modes, and no improvements were made in the first stage of

testing. Furthermore, no analysis was necessary for improvement costs.

In the second stage of testing or Stage 1, the subsystems were connected together, and the full

system is simulated. It was assumed that failure modes would be introduced where the subsystems

were connected. A new component with failure modes was added in series between the subsys-

tems to model the connections. The Minitab results for testing time, reliability, testing cost, and

improvement cost can be found in Appendix A along with their residual plots and the associated

normal probability plot. The regression for improvement cost is

cI
1 =4265A11 +5110A21 +4885B11 +6397B21 +7445C11 +3425C21

+3405D11 +6046D21 +2512G11 +3915G21 +4095H11 +6649H21

(4.3)

This was a perfect fit because all the costs for each failure mode were estimated and not based

on simulated information, it was not necessary to a residual analysis for improvement cost. The

regression for reliability is given as

R1 =(0.333+0.070A11 +0.069A21 +0.063B11 +0.062B21 +0.038C11 +0.038C21

+0.033D11 +0.032D21 +0.051G11 +0.052G21 +0.058H11 +0.058H21)
1/0.281.

(4.4)
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The regression for test time is given as

t1 =− (−0.02491−0.000115x1 +0.000001x2−0.000088y1 +0.000001y2

+0.003190A11 +0.003067A21 +0.001382B11 +0.001491B21

+0.001451C11 +0.001415C21 +0.001025D11 +0.001109D21

+0.001016G11 +0.001089G21 +0.001341H11 +0.001243H21)
1/−0.248.

(4.5)

The regression for test cost is given as

cT
1 =− (−0.272−0.000105x1 +0.000086x2−0.000062y1 +0.000072y2

+0.004713A11 +0.00472A21 +0.006368B11 +0.006365B21

+0.00181C11 +0.002071C21 +0.001752D11 +0.001531D21

+0.004781G11 +0.004866G21 +0.006047H11

+0.005993H21)
1/−0.137.

(4.6)

The complete regression analysis, residual plots, and normal probability plots for residuals can be

found in Appendix A.

In Stage 2, the number of failure modes was increased to model introduced failure modes,

which may emerge from making improvements to existing and known failure modes or failure

modes that may result from longer testing times. Furthermore, if more failure modes are not

introduced in subsequent stages of testing, then it would be pragmatic to make all fixes after the

first stage of testing because costs increase in subsequent stages of testing. The regressions for

testing time, reliability, testing cost, and improvement cost are similar to those for Stage 1 with the

exception of an additional failure mode per component. Improvement cost was not evaluated for

the regression because the R2 value will be 100% because all costs were estimated. The regression
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for improvement cost is given as

cI
2 =21232A12 +25548A22 +21323A32 +24424B12

+31983B22 +24424B32 +37226C12 +17126C22

+37726C32 +17026D12 +30232D22 +17026D32

+12560G12 +19574G22 +12560G32 +20476H12

+33246H22 +20476H32.

(4.7)

The regression for reliability is given as

R2 =(0.711+0.0113A12 +0.0117A22 +0.0087A32

+0.0076B12 +0.0056B22 +0.0101B32 +0.0064C12

+0.0050C22 +0.0077C32 +0.0049D12 +0.0049D22

+0.0051D32 +0.0054G12 +0.0057G22 +0.0056G32

+0.0064H12 +0.0068H22 +0.0067H32)
1/0.1973.

(4.8)

The regression for test time is given as

t2 =− (−0.5970−0.000163x1 +0.000003x2−0.000126y1 +0.000001y2

+0.001501A12 +0.001329A22 +0.002102A32 +0.001279B12

+0.000905B22 +0.001815B32 +0.001447C12−0.00330C22

+0.002515C32 +0.000361D12 +0.000963D22 +0.000828D32

+0.000913G12−0.000010G22 +0.001299G32 +0.001081H12

+0.001651H22 +0.001571H32)
1/−0.0385.

(4.9)

32



The regression for test cost is given as

cT
2 =− (−0.566−0.000089x1 +0.000072x2−0.000055y1 +0.000058y2

+0.001354A12 +0.001047A22 +0.001472A32 +0.003439B12

+0.002230B22 +0.004949B32 +0.001013C12−0.000203C22

+0.002204C32 +0.000353D12 +0.000987D22 +0.000839D32

+0.002287G12 +0.000022G22 +0.003692G32 +0.003421H12

+0.004684H22 +0.004608H32)
1/−0.0518.

(4.10)

The complete regressions can be found in Appendix A along with their residual plots and the

associated normal probability plots for residuals.

Stage 3 is similar to the previous two stages of testing with an increased number of failure

modes. Improvement cost was not evaluated for the regression because the R2 value will be 100%.

The regression for improvement cost is given as

cI
3 =21232A13 +25548A23 +21323A33 +25548A43

+24424B13 +31983B23 +24424B33 +31983B43

+37226C13 +17126C23 +37726C33 +17126C43

+17026D13 +30232D23 +17026D33 +30232D43

+12560G13 +19574G23 +12560G33 +19574G43

+20476H13 +33246H23 +20476H33 +33246H43.

(4.11)
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The regression for reliability is given as

R3 =(0.601−0.0041A13−0.0034A23−0.0034A33−0.0048A43

−0.0012B13−0.0141B23−0.0116B33−0.0137B43

−0.0086C13−0.0095C23−0.0001C33−0.0011C43

−0.0088D13−0.0087D23−0.0094D33−0.0083D43

−0.0174G13−0.0136G23−0.0175G33−0.0234G43

−0.0164H13−0.0122H23−0.0168H33−0.0014H43)
−1/5.

(4.12)

The regression for test time is given as

t3 =− (−0.0671−0.000163x1 +0.000001x2−0.000124y1 +0.000001y2

+0.000572A13 +0.00056A23 +0.00006A33 +0.002932A43

+0.000002B13 +0.000781B23−0.000014B33 +0.001918B43

+0.00128C13−0.000304C23 +0.00228C33 +0.002132C43

+0.000373D13 +0.000999D23 +0.000439D33 +0.001007D43

+0.000062G13 +0.000043G23 +0.000787G33 +0.001368G43

+0.000025H13 +0.001588H23 +0.000045H33 +0.001529H43)
1/−0.1881.

(4.13)
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The regression for test cost is given as

cT
3 =− (−0.5333−0.000084x1 +0.000681x2−0.000052y1 +0.000052y2

+0.000507A13 +0.000349A23 +0.000014A33 +0.002255A43

+0.000028B13 +0.001854B23−0.000034B33 +0.004848B43

+0.001169C13−0.000245C23 +0.001889C33 +0.001858C43

+0.000464D13 +0.001137D23 +0.000443D33 +0.000046D43

+0.000046G13 +0.000017G23 +0.002128G33 +0.003571G43

−0.000031H13 +0.004467H23 +0.000056H33 +0.004366H43)
1/−0.1881.

(4.14)

The complete regressions can be found in Appendix A along with their residual plots and the

associated normal probability plots for residuals.

The regressions for stages 1-3 were used to construct the response surface with total cost being

Ci = cT
i +cI

i . The response of interest is total cost, and the independent variables are reliability and

testing time. The response surface can be seen in Figures 4.2 and 4.3. Two figures are given to

provide different perspectives.

Figure 4.2: Response Surface of System Performance
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Figure 4.3: Wireframe of Response Surface

The response surface seems like a reasonable fit because total cost increases with longer testing

times and higher reliabilities along with later stages of testing. Furthermore, high system reliability

is only achievable in the last stage of testing because additional failure modes are not uncovered in

the earlier stages.

The response surface was fitted with a quadratic model in R to estimate the cost of each test

stage from stresses and failure mode fixes. The resulting model is given as

C =−702500+0.1917t +1577000R−0.00001219t2 +1667000R2 +5.360tR, (4.15)

where t is the function for test time and R is the function for reliability. The function for time is

given as

t =−13719x1 +13592x2−2648y1 +1853y2 +11599R. (4.16)
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The reliability function is given as

R =0.3459+0.01465A1 +0.01515A2 +0.0234A3 +0.07672A4

+0.007418B1 +0.004301B2 +0.0277B3 +0.07086B4

+0.006036C1 +0.004035C2 +0.02345C3 +0.07266C4

+0.003925D1 +0.004159D2 +0.01695D3 +0.07433D4

+0.002362G1 +0.004053G2 +0.001456G3 +0.06438G4

+0.0004075H1 +0.005368H2 +0.01609H3 +0.07893H4

(4.17)

The results and analysis of the cost, test time, and reliability functions are given in Appendix

A.

4.3 Numerical Example

A simple problem to consider is the series-parallel system shown in Figure 4.1 is under design.

The objective is to minimize costs while making modifications to the system to achieve a system

reliability of 0.9 at the end of testing. An additional constraint is that the system must be released

within the year or approximately within 500,000 minutes of test time. The approach to this problem

is to use an optimization model to determine the settings for stresses and failure mode modifications

for all three stages prior to the start of testing. Then simulation can be used to compare the results

of the optimization model to data from the simulation model.

Following the structure of model (3.3), the optimization model is given as

min C =
3

∑
i=1

ci

s.t. Rsys ≥ 0.9

ti ≤ 500,000

(4.18)

Because it is assumed that the number of failure modes is known at each stage, constraints can
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be added to indicate which failure modes are not addressed. For stage 1, it is known there are

two failure modes per component. Therefore adding a constraints z31 = 0 and z41 = 0 for all

components z would ensure that those failure modes are not observed or modified in the first stage.

Furthermore, constraints can be added to indicate which failure modes have been improved. An

example is that the second failure mode of the A component is perfectly fixed for stage 1. The

constraint A22 = 1 and A23 = 1 would be added for stages 2 and 3 to show that a component

cannot regress in its level of improvement.

The optimization model is given as

min C =
3

∑
i=1

cT
i + cI

i

s.t. R3 ≥ 0.9

3

∑
i=1

ti ≤ 500000

z31 = 0 ∀ z31

z41 = 0 ∀ z41

z42 = 0 ∀ z42

zk(i+1) ≥ zki ∀ zki

300≤ x1 < x2 ≤ 400

120≤ y1 < y2 ≤ 240

0≤ zki ≤ 1 ∀ zki

(4.19)

4.3.1 Solution

A nonlinear optimization package was used to solve for optimality in R. The optimal solution

found is given in Table 4.1 The complete settings for optimality for the accelerated testing plan

can be found in Table 4.2. This solution seems reasonable, and all constraints are satisfied. The

stresses increase from stage to stage to accommodate the longer test times from higher reliability.
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Table 4.1: Optimal solution
Stage 1 Stage 2 Stage 3 Total

Reliability 0.386 0.463 0.900
Test Time (min) 28,070 31,819 119,772 179,661
Cost 214,530.08 468,033.51 2,638,966.58 3,321,530.17

However, the time for stage 3 seems very high because the the test times for the other stages were

much lower.

For Stage 1, it was best to completely remove failure modes: B1, B2, C1, and H1 in Stage 1

and partially fix: A1, A2, C2, and D1. For Stage 2, it was best to completely remove failure modes:

D3 and H3 and partially fix: A3, B3, and C3. For Stage 3, it was best to completely remove failure

modes: C4, D4, G4, and H4 and partially fix: A4.

An alternative approach was considered in which the reliability was maximized in each stage.

This is a more intuitive approach because it seems reasonable to make the most improvements in

the earlier stages when costs are lower and then making minimal improvements in the last stage

because costs would be higher. The solution for maximizing reliability is found in Table 4.3.

The complete settings for the maximum reliability approach is given in Table B.1 in Appendix

B. In each stage, all known failure modes are completely removed after testing. In Stage 1, the

failure modes: A1, A2, B1, B2, C1, C2, D1, D2, G1, G2, H1, and H2 are completely removed. In

Stage 2, the failure modes: A3, B3, C3, D3, G3, and H3 are completely removed. In Stage 3, all

failure modes are completely fixed with the exception of H4.

Like the optimal solution, the stresses increase from stage to stage. As expected, the reliability

is higher in the earlier stages. However, there is about an 13% increase in total cost and a 14%

increase in total test time. This is appropriate because the higher reliabilities in each stage would

cause test times to be longer. Additionally, the optimal solution had a reliability that was closer to

the desired reliability, which would reduce costs, whereas the maximum reliability approach had a

higher end reliability.

Rather than attempting to determine optimal settings at the beginning of testing, a more realistic

approach may be to conduct analysis prior to each subsequent stage of testing. After the first
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Table 4.2: Optimal solution settings
Stage 1 Stage 2 Stage 3

x1 325 350 375
x2 350 375 400
y1 150 120 180
y2 180 150 240
A1 0.7 0.7 0.7
A2 0.7 0.7 0.7
A3 0 0.7 0.7
A4 0 0 0.7
B1 1 1 1
B2 1 1 1
B3 0 0.7 0.7
B4 0 0 0.7
C1 1 1 1
C2 0.7 0.7 0.7
C3 0 0.7 0.7
C4 0 0 1
D1 0.7 0.7 0.7
D2 0 0 0
D3 0 1 1
D4 0 1 1
G1 0 0 0
G2 0 0 0
G3 0 0 0
G4 0 0 1
H1 1 1 1
H2 0 0 0
H3 0 1 1
H4 0 0 1

Table 4.3: Maximum Reliability Solution
Stage 1 Stage 2 Stage 3 Total

Reliability 0.418 0.540 0.901
Test Time (min) 28,436 56,703 119,784 204,923
Cost ($) 312,229.75 799,288.30 2,644,650.22 3,756,168.27
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Figure 4.4: Sequential Approach Stage 1

Figure 4.5: Sequential Approach Stage 2

stage of testing, the data can be used to construct and fit a response surface. Then settings can

be determined for the next stage of testing. Then in each subsequent testing stage, the data is

combined with all the previous testing data to construct another response surface. This is repeated

until the last test stage. It is important to note that optimization will not work in earlier stages of

testing unless it is specifically known what levels of reliability are desired after each testing stage.

In this instance, after each stage of testing, a response surface was generated, and a search was

conducted for the lowest cost in the areas with the highest reliability.

The response surfaces of Stage 1, 2, and 3 can be found in Figures 4.4, 4.5, and 4.6, respectively.
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Figure 4.6: Sequential Approach Stage 3

The results of the sequential stage analysis approach is given in Table 4.4. The settings for the

Table 4.4: Sequential Approach Solution
Stage 1 Stage 2 Stage 3 Total

Reliability 0.354 0.629 0.900
Test Time (min) 36,950 44,634 61471 143,055
Cost ($) 127,164.14 473,646.81 2,642,466.90 3,243,277.85

sequential approach are found in Table B.2. After Stage 1, it was determined that all failure modes

should be completely removed with the exception of A1, A2, and C1. After introducing new failure

modes, the number of modifications to be considered are greatly reduced because those failure

modes that are completely removed cannot be changed anymore. For Stage 2, it was determined

that A1 and A2 should now be completely removed; A3 and B3 are to remain unaffected; C3 and

D3 are to be improved; and G3 and H3 are to be completely removed. In Stage 3, the best settings

are to completely remove the remaining failure modes with the exception of A3, C1, and D3, which

will be improved and H4, which will remain unaffected in the system.

It is important to note that an optimization model was not used in the first two stages be-

cause a desired reliability was not known. Furthermore, an optimization model was not developed

for Stage 3. Rather all possibilities were completely enumerated using simulation, and the low-

est cost settings with reliability closest to 0.9 were selected. This is because the fixes in failure
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Table 4.5: Comparison of Simulated Results of Optimization Model and Sequential Approach
Stage 1

Opt Model Opt Sim Sequential
Reliability Average 0.3860 0.3083 0.3548
Reliability Std Dev 0.0148 0.0187
Test Time Average 28,070 33,596 36,951
Test Time Std Dev 2,425 3,237
Total Cost Average 214,530.08 110,445.34 127,164.14
Total Cost Std Dev 8,655.85 6,473.99

Stage 2
Opt Model Opt Sim Sequential

Reliability Average 0.4630 0.4875 0.6295
Reliability Std Dev 0.0269 0.0170
Test Time Average 31,819 57,373 44,634
Test Time Std Dev 5,503 7,043
Total Cost Average 468,033.51 528,036.42 473,646.81
Total Cost Std Dev 12,552.03 30,174.57

Stage 3
Opt Model Opt Sim Sequential

Reliability Average 0.9000 0.9069 0.9002
Reliability Std Dev 0.0293 0.0173
Test Time Average 119,772 58,909 61,471
Test Time Std Dev 9,165 16,867
Total Cost Average 2,638,966.58 2,213,321.43 2,642,465.90
Total Cost Std Dev 17,183.92 41,734.20

modes greatly reduces the number of possibilities from stage to stage as completely removed fail-

ure modes cannot change.

4.3.2 Results Validation

The settings for both the optimization model and sequential approach were run through the

simulation with 1000 replications. A comparison of the results can be found in Table 4.5.

The use of a response surface for all three stages prior to testing fairly estimated the behavior

of reliability when simulating the optimization model settings and the sequential approach as well

as total cost in the later stages of testing. It did a poor job at estimating testing time in any of the
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stages as it was over in stages 1 and 3 and under in stage 2. One possibility for the poor estimation

of testing time is that there is high variance in testing time. However, there is also high variability

in total cost because testing time is a factor in the cost calculation. The sequential approach had

higher variance for total cost and test time in all three stages. It is noteworthy that the sequential

approach had more similarities to the optimization model than just simulating using the optimal

settings. This can be observed in the reliability and total cost in stage 3. This indicates that the

optimization model may not have been a good fit for the data. Rather, the sequential approach fits

the data better because of the iterative analysis and model fitting.

There are similarities in the response surfaces for stage 1 in both of these scenarios. How-

ever, subsequent stages show signs of difference. In the optimization model, the curves are much

smoother because all possibilities are considered whereas the sequential approach looks at a subset

of the data. This is because the amount of possibilities are reduced when the settings for the next

stage of testing are determined. An advantage of the sequential approach is that analysis of data is

focused on only a subset of the all possibilities, which reduces the amount of time needed to search

for a solution. However, the sequential approach does require analysis after each stage of testing

whereas the optimization model only requires analysis prior to testing. Although, the optimiza-

tion model approach does require less analysis during testing, the model in this instance was not

necessarily a good fit because the sequential approach had more similar results to the optimization

model than the simulation based on the optimal settings.

4.4 Alternative Scenarios

Additional scenarios were considered to observe how changes in the shape parameters of com-

ponents, β, and fix effectiveness factor would affect the results. For the shape parameter, the

values were manipulated to either be relatively close together (Tight β) or manipulated to be far

apart (Loose β) while all other parameters remained the same from the original problem. For the

FEF scenario, the FEF was varied between components (e.g., 3 components have FEF of 0.9 and

3 components have FEF of 0.6) and within components (e.g., 2 failure modes of the same compo-
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Table 4.6: Comparison of Scenarios
Stage 1

Tight β Loose β Intercomponent Intracomponent
Reliability Average 0.3433 0.3681 0.3710 0.3642
Reliability Std Dev 0.0260 0.0148 0.0129 0.0108
Test Time Average 47,418 34,250 51,874 59,262
Test Time Std Dev 3,723 1,279 5,339 6,316
Total Cost Average 169,721.83 121,762.31 156,178.34 155,133.51
Total Cost Std Dev 7,446.20 2,558.90 5,812.22 5,614.62

Stage 2
Tight β Loose β Intercomponent Intracomponent

Reliability Average 0.5467 0.6431 0.5664 0.4045
Reliability Std Dev 0.0325 0.0305 0.0115 0.0172
Test Time Average 67,026 45,163 64,989 65,330
Test Time Std Dev 11,330 6,210 14,685 9,289
Total Cost Average 529,997.59 441,802.29 547,060.49 445880.85
Total Cost Std Dev 45,319.22 24839.10 78,319.22 37,156.98

Stage 3
Tight β Loose β Intercomponent Intracomponent

Reliability Average 0.9084 0.9010 0.9024 0.9003
Reliability Std Dev 0.0473 0.0145 0.0199 0.0183
Test Time Average 63,095 61,112 85,806 76,582
Test Time Std Dev 25,407 17,668 18,648 18,124
Total Cost Average 2,353,521.25 2,556,116.46 2,485,388.35 2,271,892.10
Total Cost Std Dev 50,814.36 35,336.96 37,296.17 27,186.51

nent have FEF of 0.9 and the other 2 failure modes have FEF of 0.6) while all other parameters

remained unchanged from the original problem. The FEF variation between components will be

referenced as Intercomponent, and the FEF variation within components will be referenced as In-

tracomponent. The results of these variations can be found in Table 4.6, and the settings for each

scenario can be found in Appendix B.

The tight β scenario demonstrated higher variance for reliability, test time, and total cost for

all three stages when compared to both the loose β scenario and the optimization and sequential

approaches. It also had higher averages for test time in all three stages and higher averages for total

cost in all stages except for stage 3 when compared to loose β. In the tight β variant, there were
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a three failure modes that did not have any fixes whereas the loose β scenario had modifications

made to all failure modes.

There was not a significant difference between the intercomponent and intracomponent scenar-

ios. However, there was more variance for both scenarios for test time and total cost in all three

stages when compared to the optimization and sequential approaches. This is expected because

the fix effectiveness factors for the failure modes were varied rather than remaining constant.
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Chapter 5

Conclusion

5.1 Conclusion

From a review of the literature, there are few instances when cost is considered in the frame-

work of an accelerated testing framework. In this study, cost is explicitly considered as the ob-

jective was to minimize the total cost of the test given a desired reliability at the end of testing

and a time constraint. Response surfaces were used as estimators of the system’s behavior, and

two approaches were considered. In one approach, a response surface was constructed for all three

stages, and an optimization model was used to determine the settings for temperature and failure

mode fixes prior to any testing. The other approach used response surfaces to analyze a testing

stage to determine the best settings for the subsequent stage of testing.

The approach of optimizing all settings for all stages prior to testing performed decently in

later stages in estimating both reliability and total cost. However, it was poor in estimating testing

time for any testing stage. One possible reason for this is that simulation was used where failure

times are randomly generated as evidenced by high variance. It would be interesting to evaluate

this methodology would be using a non-simulated data set.

The sequential approach where response surfaces are generated after each test stage seems like

a much more pragmatic approach and had similar end results to that of the optimization method.

However, there is much more computation involved because a complete set of analysis is required

after each stage of testing whereas analysis is only required once before testing using the optimiza-

tion model. Furthermore, the variance was higher than that of the optimization method for test

time and for total cost in later stages. Another disadvantage of the sequential approach was that

an optimization model was not used in this instance because desired reliabilities were not known

for each stage and it was less efficient construct a optimization model. One avenue of exploration
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for this could be the use of dual response surface optimization where one objective is to maxi-

mize reliability and the other objective is to minimize costs. Another avenue could be the use of

experimental design to explore the response surface.

The largest deviation from fit was the test time as the optimization model overestimated test

time in stages 1 and 3 and underestimated in stage 2. As previously stated, this may be due to the

stochasticity of generating failure times with simulation. However, it may indicate a better fitting

model is necessary for test time. In this study, linear regressions were used and the normality

tests were generally close to 0.05. It is possible that nonlinear regression may have been more

appropriate to estimate test time.

5.2 Future Work

One area where this problem can be further investigated is instead of assuming a constant

value for the fix effectiveness factor, the fix effectiveness factor can be a random variable with a

probability of being fixed or remaining in the system. Additionally, the problem can be expanded

to consider censored data.

It was previously mentioned that a dual response surface optimization or design of experiments

approach could be incorporated to the sequential stage approach.
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Appendix A

Response Surface Results

Figure A.1: Results for Stage 0 Time Regression

Figure A.2: Residuals for Stage 0 Time
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Figure A.3: Normal Probability Plot for Stage 0 Time

Figure A.4: Results for Stage 0 Cost Regression
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Figure A.5: Residuals for Stage 0 Cost

Figure A.6: Normal Probability Plot for Stage 0 Cost
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Figure A.7: Results for Stage 1 Improvement Cost Regression

Figure A.8: Results for Stage 1 Reliability
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Figure A.9: Residuals for Stage 1 Reliability

Figure A.10: Normal Probability Plot for Stage 1 Reliability
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Figure A.11: Results for Stage 1 Test Time
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Figure A.12: Residuals for Stage 1 Test Time

Figure A.13: Normal Probability Plot for Stage 1 Test Time
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Figure A.14: Results for Stage 1 Test Cost
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Figure A.15: Residuals for Stage 1 Test Cost

Figure A.16: Normal Probability Plot for Stage 1 Test Cost
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Figure A.17: Results for Stage 2 Reliability
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Figure A.18: Residuals for Stage 2 Reliability

Figure A.19: Normal Probability Plot for Stage 2 Reliability
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Figure A.20: Results for Stage 2 Test Time
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Figure A.21: Residuals for Stage 2 Test Time

Figure A.22: Normal Probability Plot for Stage 2 Test Time
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Figure A.23: Results for Stage 2 Test Cost
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Figure A.24: Residuals for Stage 2 Test Cost

Figure A.25: Normal Probability Plot for Stage 2 Test Cost

65



Figure A.26: Results for Stage 3 Reliability
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Figure A.27: Residuals for Stage 3 Reliability

Figure A.28: Normal Probability Plot for Stage 3 Reliability
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Figure A.29: Results for Stage 3 Test Time
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Figure A.30: Residuals for Stage 3 Test Time

Figure A.31: Normal Probability Plot for Stage 3 Test Time
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Figure A.32: Results for Stage 3 Test Cost
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Figure A.33: Residuals for Stage 3 Test Cost

Figure A.34: Normal Probability Plot for Stage 3 Test Cost
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Figure A.35: Regression of Reliability for Entire Response Surface

Figure A.36: Regression of Test Time for Entire Response Surface
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Figure A.37: Regression of Total Cost for Entire Response Surface
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Appendix B

Variable Settings

Table B.1: Maximum Reliability Settings
Stage 1 Stage 2 Stage 3

x1 325 350 375
x2 350 375 400
y1 150 120 180
y2 180 150 240
A1 1 1 1
A2 1 1 1
A3 0 1 1
A4 0 0 1
B1 1 1 1
B2 1 1 1
B3 0 1 1
B4 0 0 1
C1 1 1 1
C2 1 1 1
C3 0 1 1
C4 0 0 1
D1 1 1 1
D2 1 1 1
D3 0 1 1
D4 0 0 1
G1 1 1 1
G2 1 1 1
G3 0 1 1
G4 0 0 1
H1 1 1 1
H2 1 1 1
H3 0 1 1
H4 0 0 0
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Table B.2: Sequential Approach Settings
Stage 1 Stage 2 Stage 3

x1 325 350 300
x2 350 400 325
y1 210 180 150
y2 240 210 240
A1 0.7 1 1
A2 0.7 1 1
A3 0 0 0.7
A4 0 0 1
B1 1 1 1
B2 1 1 1
B3 0 0 1
B4 0 0 1
C1 0.7 0.7 0.7
C2 1 1 1
C3 0 0.7 0.7
C4 0 0 1
D1 1 1 1
D2 1 1 1
D3 0 0.7 0.7
D4 0 0 1
G1 1 1 1
G2 1 1 1
G3 0 1 1
G4 0 0 1
H1 1 1 1
H2 1 1 1
H3 0 1 1
H4 0 0 0
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Table B.3: Tight β Settings
Stage 1 Stage 2 Stage 3

x1 325 325 300
x2 375 350 350
y1 120 210 120
y2 210 240 240
A1 1 1 1
A2 1 1 1
A3 0 0 0
A4 0 0 1
B1 1 1 1
B2 1 1 1
B3 0 1 1
B4 0 0 1
C1 1 1 1
C2 0 0 0
C3 0 0.7 0.7
C4 0 0 0.7
D1 0.7 1 1
D2 1 1 1
D3 0 0 0.7
D4 0 0 0.7
G1 1 1 1
G2 1 1 1
G3 0 0.7 1
G4 0 0 1
H1 1 1 1
H2 1 1 1
H3 0 0 1
H4 0 0 0
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Table B.4: Loose β Settings
Stage 1 Stage 2 Stage 3

x1 325 300 325
x2 350 375 400
y1 210 150 180
y2 240 180 240
A1 0.7 1 1
A2 0.7 0.7 1
A3 0 0 0.7
A4 0 0 1
B1 1 1 1
B2 1 1 1
B3 0 0.7 1
B4 0 0 1
C1 0.7 0.7 0.7
C2 1 1 1
C3 0 0.7 0.7
C4 0 0 0
D1 1 1 1
D2 1 1 1
D3 0 0 0.7
D4 0 0 1
G1 1 1 1
G2 1 1 1
G3 0 1 1
G4 0 0 1
H1 1 1 1
H2 1 1 1
H3 0 1 1
H4 0 0 1
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Table B.5: Intercomponent Settings
Stage 1 Stage 2 Stage 3

x1 325 300 325
x2 350 375 375
y1 210 150 120
y2 240 240 150
A1 0.9 0.9 0.9
A2 0.9 1 1
A3 0 0 0.9
A4 0 0 0.9
B1 0.6 0.6 0.6
B2 1 1 1
B3 0 0.6 1
B4 0 0 0.6
C1 0.9 0.9 0.9
C2 1 1 1
C3 0 0.9 1
C4 0 0 0.9
D1 1 1 1
D2 1 1 1
D3 0 1 1
D4 0 0 0
G1 1 1 1
G2 1 1 1
G3 0 0 0.9
G4 0 0 0.9
H1 1 1 1
H2 1 1 1
H3 0 0.6 1
H4 0 0 1
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Table B.6: Intracomponent Settings
Stage 1 Stage 2 Stage 3

x1 325 350 300
x2 350 400 325
y1 210 180 150
y2 240 210 240
A1 0.9 0.9 0.9
A2 0.6 1 1
A3 0 0 0.9
A4 0 0 0.6
B1 0.9 0.9 0.9
B2 0.9 0.9 1
B3 0 0.6 1
B4 0 0 0.9
C1 1 1 1
C2 0.6 0.6 1
C3 0 0.6 0.6
C4 0 0 0.9
D1 0.9 0.9 1
D2 1 1 1
D3 0 0 0
D4 0 0 0
G1 1 1 1
G2 1 1 1
G3 0 0.9 1
G4 0 0 1
H1 0.9 1 1
H2 1 1 1
H3 0 0 1
H4 0 0 1
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