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ABSTRACT 

Soybean mosaic virus (SMV) causes the most serious viral disease in soybean worldwide. 

Seven SMV strains, G1 - G7, and three independent multi-allelic loci for SMV resistance, Rsv1, 

Rsv3, and Rsv4, have been identified. In the initial study, 299 soybean germplasm lines were 

genotyped for Rsv4 region, inoculated with SMV-G1 and G7 strains, and classified into several 

resistance groups. The Glyma.02g121400 locus was sequenced from ten soybean accessions, and 

alignment of the sequences revealed three SNPs displaying 100% polymorphic consistency when 

a soybean genotype carrying the Rsv4 gene was present. A cross between V94-5152 × Lee 68 

was made to create linkage map revealing a distance of 3.6 cM between the Rsv4 and the closest 

SNP. Five Rsv4 candidate genes have been proposed in this region. In the second study, three 

SMV R-genes were pyramided by crossing J05 and V94-5152. The gene-pyramided line GP20, 

was crossed with Williams 82, F2 plants were genotyped and collated with phenotypic data of 

F2:3 lines inoculated with SMV-G1 and G7 strains. The results confirmed a successful 

incorporation of three genes into one soybean line. In the third study, soybean germplasm PI 

438307 was crossed to Essex for the inheritance study, and to three differential parents for the 

allelism test. F2 population and F2:3 lines derived from all four cross combinations were screened 

with SMV-G7 strain. Additionally, F2 generation of PI 438307 x Essex were genotyped with two 

SSRs. The results revealed that resistance to SMV in PI 438307 is controlled by a single 

dominant gene at the Rsv4 locus. PI 438307 plants exhibited a unique symptoms; therefore, a 

new allele Rsv4-v was assigned to SMV resistance in PI 438307. In the final study, PI 96983 and 

York were crossed to evaluate allelomorphic relationship between Rsv1 and Rsv1-y. To break 

possible linkage, 3000 F2-plant population was phenotyped using the SMV-G1 strain. 

Occurrence of susceptible and segregating lines indicated tight linkage between two genes 



  

 
 

 

positioned in a distance of 2.2 cM. The Rsv2 symbol was proposed to be assigned instead of 

Rsv1-y. Results from this research may accelerate breeding efforts to develop multi-virus 

resistant crops. 
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https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCIQFjAAahUKEwjC1ofG-4fJAhUD02MKHSTJDmE&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSodium_dodecyl_sulfate&usg=AFQjCNHsxGw7OoBRU_-Z9ZHc4pFxXqf9OA&sig2=DsYKF5_Ww1aRgSc643JKGQ
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SOYBEAN PRODUCTION 

An estimated eight hundred million people around the world suffer from chronic food 

shortage, and millions more may go hungry due to current and future food crises. To meet this 

need, the United Nations has called for a 70% increase in food production by 2050 when a world 

population is expected to exceed 9 billion people (FAO, 2009). High-yielding crops can help 

feed a growing world population; therefore, improving seed quality, and developing 

tolerance/resistance to biotic and abiotic factors is a key to improving worldwide food 

production. From 2009 to 2014, the soybean yield increased from 44.0 to 47.8 bushels/acre in the 

U.S., reaching 50.0 bushels/acre in Arkansas (SoyStats, 2015).  

In 2014, the United States was the leader in worldwide soybean production (34%) 

followed by Brazil (30%), Argentina (18%), and China (4%). In 2014, approximately 83.7 

million acres (33.9 million hectares) in the U.S. were planted with a total production of 

approximately 4 billion bushels (108 million metric tons). Whereas soybean can be grown 

throughout the United States, the majority are planted in the Midwest, the Midsouth, the 

Southeast, and the Atlantic coast. Iowa, Illinois and Minnesota are the top producers, while 

Arkansas is on the 10th position (SoyStats, 2015). 

Soybean [Glycine max (L.) Merr.] is the top provider crop of oil and proteins in the 

world, and due to these tremendous values it is referred as “the miracle crop”. Soybean quality is 

typically determined by the protein, oil, saccharides, and mineral content of the seed. About 90% 

of total soybean meal production is used to supply livestock fodder; a part of soybean production 

is processed for human consumption (e.g. soy milk or tofu), and for industrial use (e.g. biodiesel, 

inks, plastics, solvents and cosmetics) (Singh, 2010). 
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SOYBEAN MOSAIC VIRUS  

Soybean mosaic virus (SMV) is a plant pathogenic virus (Potyviridae family, potyvirus 

genus). The genome is composed by a linear, positive sense, single-stranded RNA approximately 

10 kb long (Tolin, 1999). The RNA, accounting for 5.3% of the virus particle, encodes two 

different polyproteins that are proteolytically cleaved by self-encoded proteases into 11 mono- or 

multi-functional proteins (P1, HC-Pro, P3, P3N-PIPO, 6K1, CI, 6K2, NIa-VPg, NIa-Pro, NIb, 

and CP) (Chowda-Reddy et al., 2011; Gagarinova et al., 2008; Jayaram et al., 1992; Wen and 

Hajimorad, 2010; Zhang et al., 2009). The inactivation of SMV is possible by raising the 

temperature to 55-60°C for 10 minutes, or apply pH < 4 or > 9 (Tolin, 1999). 

Disease symptoms caused by SMV were first observed and documented in the U.S. by 

Clinton in 1915 (Clinton, 1916). Later, Gardner and Kendrick (1921) reported that SMV-infected 

plants had mosaic dark green areas on leaves and the leaflets were misshapen and stunted. Of the 

100 viruses that can infect soybean (Singh, 2010; Tolin, 1999), SMV is the biggest threat for 

soybean industry (Mandhare and Gawade, 2010; Singh, 2010). SMV causes the most common 

and serious viral disease of soybeans and also for many other commercially important plants 

worldwide. SMV may cause significant yield losses and deterioration of seed quality via 

reduction of seedling viability and vigor, seed coat mottling, flower abortion, reduction of pod 

set, seed number and size (Buss et al., 1989; Gunduz et al., 2004; Hill et al., 1987; Mandhare and 

Gawade, 2010; Ren et al., 1997; Ross, 1983). Moreover, SMV infection may result in seed 

composition of higher protein and lower oil content (El-Amrety et al., 1987; Wang et al., 2001). 

Depending on soybean genotype and SMV strain, yield can be reduced by 25% (Ren et al., 

1997), 60% (Cho et al., 1977) with some studies documenting a 90% reduction in yield (Wang et 

al., 2001). 
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SMV is transmitted vertically in about 30 plant species through seed by infected embryo 

and through pollen derived from an infected plant that can be transfer via wind and insects (Hill 

et al., 1987; Tolin, 1999). It may also be transmitted within a season by aphids (Aphis glycines) 

mouth parts in a non-persistent, non-circulative, stylet borne manner using a virus protein, the 

helper component protein (HC-Pro) which facilitates binding of virus particles to the aphid 

maxillary stylet (Ivanov et al., 2014). Aphids can acquire the virus after short probing, and 

usually retains the virus for a short period of time (minutes), they may carry SMV for a relatively 

short distances; however, strong winds may effectively spread SMV in a long distance. Due to 

the relatively easy transmission of the disease, it is difficult to control the virus and produce 

SMV-free seeds (Gardner and Kendrick, 1921; Balgude et al., 2012). For genetic studies and 

breeding purposes, SMV infection may be obtained by mechanical inoculation. Inoculum is 

composed of infected leaves smashed with mortar and pestle in a potassium phosphate buffer 

solution, and both unifolate leaves dusted with abrasive are rubbed by a pestle dipped into the 

inoculum (Buss et al., 1985; Chen et al., 1991). 

Maintenance of SMV strains may be achieved in three major ways. For short-term usage, 

in vivo continuous periodic infections of susceptible cultivars can be performed (Chen et al., 

1991). Chen et al. (1988) reported that SMV can also be maintained in vitro via virus infected 

callus culture (Mozzoni and Chen, 2010). For long-term maintenance, SMV may be stored ex 

vivo by freezing infected leaf tissues at -80°C (Ma et al., 1995). 

Various classification systems of SMV strains have been established in different 

countries. Conover (1948) proposed that SMV strains could be identified based on the 

differential reactions of soybean genotypes. Currently, SMV is classified into strains based on 

virulence on differential soybean genotypes (Pu et al., 1982). In Japan, five strains (A-E) have 
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been identified (Takahashi et al., 1963; 1980). In South Korea, G1-G7, SMV-N, G5H, G7a and 

G7H have been named (Seo et al., 2009). In China, strains have been grouped according to 

geographical regions and soybean responses, in 21 groups (SC1-SC21) (Li et al., 2010).  In the 

United States, SMV has been grouped into seven strains (G1 through G7) where G1 strain is the 

least and G7 strain is the most virulent on different soybean cultivars (Tables 1, 2) (Cho and 

Goodman, 1979). 

 SMV adapts and develops overtime, resulting in emergence of new strains that overcome 

SMV resistance in soybean. SMV-N, G5H, G7a and G7H have recently emerged in the Korean 

peninsula (Seo et al., 2009). In the early 1980s, SMV-G5 strain caused about 80% of yield 

losses, whereas in the late 1980s, SMV-G5H was the dominant strain, responsible for over 65% 

of observed lose (Cho et al., 1983; Kim, 2003). More recently, SMV-G7H became the most 

prevalent strain accounting for approximately 50% of the SMV incidence (Kim et al., 2003; Seo 

et al., 2009). Due to the genetic variability of SMV and strong selection pressure, resistance-

breaking isolates evolve in time, including CN18 identified in soybean fields in South Korea 

(Choi et al., 2005). Also, recombinant soybean mosaic virus (SMV-R) was recently identified 

and classified as a novel strain in Chongqing, China, exhibiting different pathogenicity on 

soybeans compared with other SMV strains (Yang et al., 2014). For those reasons, there should 

be extra caution when controlling SMV in soybean to avoid the evolutionary race between the 

host and the virus. 
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SMV DISEASE SYMPTOMS 

The symptoms induced by SMV depend on many factors including the host genotype, 

virus strain, plant age at infection, and environment (Buss et al., 1989; Chen et al., 1991). 

Development of soybean cultivars with genetic resistance to SMV seems to be the most efficient 

strategy to control the disease. The first and most important step in production of soybeans with 

SMV resistance is to identify germplasm with resistance and study the genetic mechanisms 

before an introduction into a breeding program (Foolad and Panthee, 2012; Song et al., 2010). 

Individual cultivar reactions to SMV strains are classified into three main responses; susceptible 

(mosaic), necrotic (systemic necrosis), or resistant (symptomless) (Fig. 1) (Chen et al., 1991; 

Cho and Goodman, 1979). 

The susceptible response is characterized by vein clearing, curled leaves, puckering, 

downward cupping, and reduction of leaf blade size. Infected plants are often stunted due to 

shortening of steams and petioles (Fig.1). As the disease progresses, a noticeable reduction in 

pod set numbers and size occurs, decrease of seeds size with characteristic coat mottling, 

reduction of secondary roots and bacterial nodulation, problems with seed germination and 

seedling vigor are also significant (Balgude et al., 2012; Bos, 1972; Cho and Goodman, 1979; 

Gardner and Kendrick, 1921). Susceptible plants often survive and finish plant life cycle, 

however, SMV infections at reproducible stages of plant development can significantly reduce 

yield (Cho et al., 1977; Ren et al., 1997; Tolin, 1999; Wang et al., 2001). A host plant is 

considered fully susceptible when the virus can successfully complete its replication, cell-to-cell 

movement trough plasmodesmata, and long distance movement through vascular tissues 

(Carrington and Whitham, 1998; Soosaar et al., 2005). The delayed vascular movement of SMV 

results in symptoms referred to late susceptible (LS) or early resistant (ER). Late susceptible 
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plants express resistance to SMV about 20 days after inoculation, and then susceptibility as small 

chlorotic to bronze lesions on one or more leaflets (Gunduz et al., 2004). 

The necrotic symptoms indicate extreme hypersensitive reaction of the host to SMV. In 

general, the necrotic reaction provides yellow and brown discoloration on upper leaves, stunting 

of the entire plant, browning the stems and petioles, defoliation, and ultimately plant death 

(Fig.1). The necrotic symptoms are a protective system which is activated in response to SMV in 

order to reduce spreading the disease within the crop (Li et al., 2009; Ma et al., 2003; Matthews, 

1991). Some soybean lines, e.g. PI 507389 and PI 96983, develop necrotic symptoms in a short 

period after infection leading to plant death at the V1 developmental stage, whereas other lines, 

e.g. PI 547857, need more time to develop the necrotic symptoms (Ma et al., 2003). In necrotic 

plants, viral replication, cell-to-cell and long distance movement are reduced although the virus 

is still detectable by molecular and immunohistochemical methods (Matthews, 1991). Genetic 

studies suggested that necrotic plants should be classified as resistant when evaluating 

segregating populations as the necrotic reaction is associated with heterozygous stage of the Rsv1 

locus (Chen et al., 1989; 1994). 

Resistant soybeans exhibit no disease symptoms and are indistinguishable from non-

infected plants (Fig.1). A host plant is resistant if it can block viral replication, cell-to-cell or 

long distance movement; therefore, SMV is not detectable in these plants (Soosaar et al., 2005). 

Chemical and cultural control of SMV is neither economical nor environmentally friendly 

(Mattews, 1991; Singh, 2010). Deployment of genetic resistance is considered to be the most 

effective alternative to control the disease (Chen et al., 1991; Shi et al., 2009). 
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SMV GENETIC RESISTANCE  

The inheritance of resistance to SMV has been extensively studied. Three independent 

dominant genes for SMV resistance (R-genes) have been discovered, and named as Rsv1, Rsv3 

and Rsv4 (Buss et al. 1997; Buzzel and Tu 1989 Kiihl and Hartwing, 1979). Rsv nomenclature 

confers resistant reaction and dominant nature, and rsv susceptible reaction via carrying a 

recessive allele (Ma et al., 2004). The Rsv2 locus was initially assigned as a resistance gene in 

OX670 soybean but later abandoned when confirmed to carry Rsv1 and Rsv3 (Gunduz et al., 

2001). 

The Rsv1 locus was the first SMV resistance gene identified and it is the most common in 

soybean germplasm. Rsv1 contains ten alleles Rsv1, Rsv1-t, Rsv1-y, Rsv1-m, Rsv1-k, Rsv1-r, 

Rsv1-s, Rsv1-n, Rsv1-h, and Rsv1-c identified in PI 96983, Ogden, York, Marshall, Kwanggyo, 

Raiden, LR1, PI 507389, Suweon 97, and Corsica, respectively (Buss et al., 1994; Chen et al., 

1991, 2001, 2002; Kiihl and Hartwig, 1979; Ma et al., 1995; Roane et al., 1983; Shakiba et al., 

2013). Most of these alleles exhibit partial dominance and confer resistance to less virulent 

strains from SMV-G1 through G3 and susceptibility or necrosis to the more virulent G5 - G7 

strains (Table 1). The first allele, Rsv1, was found in PI 96983 and displays resistance to G1 

through G6, and necrosis to G7 strain (Kiihl and Hartwing, 1979). Ogden cultivar carries Rsv1-t 

allele and shows necrotic response when inoculated with G3 and G7 strain (Chen et al., 1991; 

Gunduz et al., 2002; Li et al., 2010; Ma et al., 2002). York (Rsv1-y allele), Kwanggyo (Rsv1-k 

allele), and Raiden (Rsv1-r allele) are resistant to less virulent strains, and are susceptible or 

necrotic to more virulent strains (Chen et al., 1991, 2001; Roane et al., 1983). Marshal (Rsv1-m 

allele) expresses resistance to strains G1, G4 and G5, and necrosis to the rest of strains (Chen et 

al., 1991). PI507389 (Rsv1-n allele) does not show any resistance but necrosis when infected 
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with SMV-G1, G2, G5 and G6 (Ma et al., 2003). Suweon 97 carries the most valuable Rsv1-h 

allele that confers resistance to all SMV strains (Chen et al., 2002). Recently, a new allele Rsv1-c 

has been identified in Corsica that confers early resistance at the seedling stage (ER) to G2, G5, 

and G7 strains (Shakiba et al., 2013). 

The Rsv3 locus contains six alleles identified so far. These alleles exhibit complete 

dominance and confer resistance to more virulent strains G5 - G7, and susceptibility to the less 

virulent strains G1 - G4 (Table 1). Rsv3 alleles were identified in OX686, L29, Harasoy, PI 

61944, PI 61947, and PI 399091 (Buzzel and Tu, 1989; Buss et al., 1999; Cervantes, 2012; 

Gunduz et al., 2001; Shakiba et al., 2012b). L29 and Harasoy alleles display susceptibility to G1 

through G4, and resistance to G5 through G7 (Buss et al., 1999; Gunduz et al., 2001). OX686 

allele shows necrosis to G1 through G4, and resistance to G5 through G7 (Buzzel and Tu, 1989). 

PI 61944 (Rsv3-n allele) displays mix responses of necrosis and mosaic when infected by G1 or 

G2 strain, and confers  resistance to G4, G5, G6, and G7 (Cervantes, 2012). PI 61947 (Rsv3-h 

allele) shows the same response as PI 61944 with the exception of mix reaction necrosis/mosaic 

to G3 (Shakiba et al., 2012b). PI 399091 (Rsv3-c allele) confers early resistance to G3 and G7, 

full resistance to G5, and susceptibility to G1, G2, and G6 (Shakiba et al., 2012b). 

The Rsv4 locus has three alleles identified in V94-5152, PI 88788, and Beeson (Rsv4-b) 

and confers resistance to all or most strains (Buss et al., 1997; Gunduz et al. 2004; Ma et al., 

2002; Shakiba et al., 2011, 2013). This gene is dominant, non-necrotic and mostly non-strain 

specific (Table 1) (Saghai Maroof et al., 2010). The genotype V94-5152 carries Rsv4 gene 

conferring resistance to all strains (Buss et al., 1997) and it is derived from the cultivar Columbia 

carrying both Rsv3 and Rsv4 genes (Ma et al., 2002). Due to top-level resistance, there is a high 
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interest of pyramiding the Rsv4 locus with Rsv1 and Rsv3 loci as a defensive strategy for 

multiple SMV strains (Chen et al., 1994).  

In most soybean cultivars, resistance is conferred by a single dominant gene that makes it 

an easy target for genetic manipulation. Resistance that is controlled by single gene occurs in 

80% of all studied SMV resistant cultivars (Table 1) (Buss et al., 1989; Chen et al., 1991; Kang 

et al., 2005; Ma et al., 1995; Wang et al., 1998). Some resistant soybeans contain two 

complementary SMV resistance genes in various combinations (Table 2), reducing vulnerability 

of plant during virus infection (Chen et al., 1993; Liao et al., 2011; Shi et al., 2009; Zheng et al., 

2006).   

SMV resistance genes and host symptoms have been compared and summarized in Table 

1 and 2 (Chen et al., 1991). The presence of each R-gene in soybean genotypes from Table 1 and 

2 have been evaluated and confirmed by genetic and inheritance studies (Chen and Choi, 2008; 

Shi et al., 2008a, 2011); however, there is no information about those genes in most of the 

available germplasm collections. The germplasm collection was previously screened via SMV 

infections, and based on symptoms, R-genes have been proposed (Shakiba et al., 2012a; Shi et 

al., 2008b, 2012; Zheng et al., 2005).  

 

MOLECULAR MECHANISMS OF SMV INFECTION 

The molecular interactions between SMV and the host are complex and many 

mechanisms are still unknown. The virus is released directly into the host cell via mechanical 

damage of soybean tissue (Ivanov et al., 2014). 

In susceptible plants, after entry into the cell the coat protein (CP) is removed first (virion 

encapsidation) and then the genetic information is translated. The genome is composed of 



  

11 

 

 

positive-sense, single stranded RNA with the virus genome-linked (VPg) protein at the 5'UTR 

(untranslated region), and a poly-A tail at the 3'UTR. The genome is a direct template for 

translation using the cap-independent internal ribosome entry site (IRES) for initiation of 

translation (Ivanov et al., 2014). Two products of translation are produced as precursors of 

functional proteins: (A) long polyprotein as a result of translation of the entire genome, (B) short 

polyprotein P3N-PIPO produced via ribosomal frameshift. After translation, polyproteins are 

subjected to proteolytic processing by three self-encoded proteases to yield mature proteins 

(Ivanov et al., 2014; Soosaar et al., 2005). 

There are few main components of SMV infection: entry, uncoating, translation, 

replication, cell-to-cell and long-distance movement. Shortly after translation, the viral genome 

is replicated by its own replicase RdRp (RNA-dependent RNA polymerase) in association with 

cytoplasmic membranes that create a specific micro-environment to protect viral genome from 

silencing (Ivanov et al., 2014; Matthews et al., 1991; Soosaar et al., 2005). Some of the copied 

molecules are coated (virion assembly) while some copies remain uncoated and move into the 

neighbor cells through plasmodesmata as a nucleoprotein complex including viral movement 

proteins (CP, HC-Pro, CI, and p6K) that are capable of increasing a plasmodesmatal size 

exclusion limit (SEL) and mediate the passage of viral molecules between cells by interaction 

with the plant cytoskeleton. Long-distance movement occurs when the virus spreads through the 

vascular system and can infect cells located far from the initial infection point (systemic 

infection) (Rojas et al., 1997; Soosaar et al., 2005; Wei and Wang, 2008). 

From the 11 viral proteins produced after translation, CP, VPg, HC-Pro, CI, and P3N-

PIPO may play a role in viral transport through plasmodesmata (Dolja et al., 1994; Rojas et al., 

1997; Wei et al., 2010; Wen et al., 2010). Long-distance movement via phloem is poorly 
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understood but four viral proteins, CP, HC-Pro, VPg, and 6K2 are associated with this 

phenomenon (Dolja et al., 1994). Babu et al. (2008) used microarray technology to detect 

expression changes of Williams 82 SMV-susceptible genome infected by SMV-G2 strain. Many 

genes of hormone metabolism, cell wall biogenesis, chloroplast functions and photosynthesis 

were significantly down-regulated at 14 days of post inoculation. The genes involved in defense 

were up-regulated at the late stages suggesting that the response to SMV was delayed and the 

plant could not combat the infection. 

Molecular interactions between SMV and soybean R-genes have not been extensively 

studied. In a study of Rsv1-SMV interactions, Hajmorad et al. (2005, 2008) discovered that P3 is 

an elicitor of Rsv1-mediated necrosis; however, lack of P3 is not sufficient for G7 to gain 

virulence. Zhang et al. (2009) noticed that N- and C-terminal regions of the viral CI protein are 

required for Rsv3-mediated resistance. Based on the same strategy, Chowda-Reddy et al. (2011) 

described that the P3 of G2 strain is an avirulent elicitor for Rsv4.  

 

MAPPING OF SMV RESISTANCE 

The Rsv1 gene was mapped on chromosome 13 (MLG F) by performing a cross PI 96983 

(R) × Lee 68 (S), generating F2 population and using two RFLP (pA186 and pK644a) and one 

SSR (SM176) markers linked to the Rsv1 locus with distances of 1.5, 2.1, and 0.5 cM, 

respectively (Yu et al., 1994). One RAPD marker (OPN11980/1070), and one SCAR marker 

(SCN11980/1070) were also found linked to Rsv1 with the same distance of 3.03 cM (Zheng et al., 

2003). Gore et al. (2002) constructed a high resolution map with one RAPD, four SSRs, and 19 

RFLPs, and concluded that the Rsv1 gene is closely linked to the SSR marker Satt510 (<2.4 cM). 

In another study, a PCR-based primer Rsv1-f/r was developed based on 3gG2 gene with a 
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distance of 0 cM to the Rsv1 (Shi et al., 2008b). Ma et al. (2011) mapped SC14Q resistance on 

chromosome 13 between Satt334 and MY750, with genetic distances of 0.6 and 0.5 cM, 

respectively, approximately corresponding to a physical distance of 1.18 Mb. Additionally, one 

SNP marker, MY525, was developed between Satt334 and MY750, and the interval was further 

narrowed to a 616 Kb region. Yang et al. (2013) mapped the resistance gene SC7 in PI 96983 to 

a 380 Kb region. In study by Zheng et al. (2014), a cross Qihuang 1 (R) × Nannong 1138-2 (S) 

was used to study inheritance and linkage mapping of the SC3 R-gene. The results indicated that 

a single dominant gene (RSC3Q) located on chromosome 13 controls SMV resistance in Qihuang 

1. Two SSR markers BARCSOYSSR_13_1114 and BARCSOYSSR_13_1136 were found 

flanking the two sides of the gene with the interval of 651 kb. In the same study, quantitative 

real-time PCR (qRT-PCR) analysis of the candidate genes showed that five genes 

Glyma13g25730 (Glyma.13g187600), Glyma13g25750 (Glyma.13g187900), Glyma13g25950 

(Glyma.13g190300), Glyma13g25970 (Glyma.13g190400), and Glyma13g26000 

(Glyma.13g190800), were likely to be involved in soybean SMV resistance. Yan et al. (2015) 

performed linkage analysis using 184 RILs of a cross Kefeng No.1 (R) × Nannong 1138-2 (S), 

and association analysis using 191 soybean germplasm. The SC7 gene was positioned between 

BARCSOYSSR_13_1128 and BARCSOYSSR_13_1136 on chromosome 13.  

The Rsv3 gene was mapped on chromosome 14 (LG B2) by making two crosses L29 (R) 

× Lee 68 (S) and Tousan 140 (R) × Lee 68 (S), and using data collected from F2 generations. The 

Rsv3 gene was flanked by A519F/R at a distance of 0.9 cM and M3Satt at 0.8 cM (Jeong et al., 

2002). Moreover, Rsv3 was mapped in J05 cultivar using Sat_424 (1.5 cM) and Satt726 (2.0 cM) 

(Shi et al., 2008a). Recently, five nucleotide-binding leucine-rich repeat (NBS-LLR) genes 

Gylma14g38500, Gylma14g38510, Gylma14g38540, Gylma14g38560, and Gylma14g38590 
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were reported as Rsv3 candidates (Suh et al. 2011). Wang et al. (2011b) crossed Dabaima 

(R) × Nannong1138-2 (S) and mapped the SC4 resistance on chromosome 14 (MLG B2) flanked 

by a 100 Kb interval between BARCSOYSSR_14_1413 and BARCSOYSSR_14_1416. 

Quantitative real-time PCR further identified Glyma14g38510 (Wm82.a2.v1: 

Glyma.14g204600), Glyma14g38560 (Glyma.14g205000) and Glyma14g38580 

(Glyma.14g205200) to be likely involved in this resistance. 

The Rsv4 was mapped on chromosome 2 (LG D1b) by crossing V94-5152 (R) × Lee 68 

(S) using data of the F2 generation. Rsv4 was flanked between Satt542 at 4.7 cM and Satt558 at 

7.8 cM (Hayes et al., 2000). Later, two ESTs markers AI856415-g or AI856415-S and 

BF070293-S were mapped at 2.8 cM on one side of the gene, and two ESTs markers 

AW307114A (3.3cM) and AW471852A (2.4 cM) on the other side (Hwang et al., 2006). In 

addition, Fu et al. (2006) mapped the SC7 resistance in Kefeng No.1 to a 2.65 Mb region on 

chromosome 2. SSR markers Satt266, Satt634, Satt558, Satt157, and Satt698 were reported to be 

linked to the SC7 with distances of 43.7, 18.1, 26.6, 36.4 and 37.9 cM, respectively. Recently, 

several studies focused on fine mapping of the Rsv4 locus have been reported. Saghai Maroof et 

al. (2010) utilized the whole genome shotgun sequence for fine mapping the Rsv4 gene in two 

populations D26 (R) × Lee 68 (S) and V94-5152 (R) × Lee 68 (S). Six markers were used to 

localize the gene in 1.3-cM region in both mapping populations with a physical interval of less 

than 100 kb on chromosome 02. In this region, ten candidate genes Gylma02g13360, 

Gylma02g13370, Gylma02g13380, Gylma02g13390, Gylma02g13400, Gylma02g13410, 

Gylma02g13420, Gylma02g13430, Gylma02g13440, and Gylma02g13450 were proposed. Wang 

et al. (2011a) analyzed populations derived from Kefeng No.1 (R) × Nannong 1138-2 (S) to map 

SC8 resistance gene. Two SSR markers BARCSOYSSR_02_0610 and 
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BARCSOYSSR_02_0616 were identified that flank both sides of the gene with a 200 kb interval 

between them on chromosome 02. Further, expression analysis determined five candidate genes, 

Glyma02g13310 (Glyma.02g120700), Glyma02g13320 (Glyma.02g120800), Glyma02g13400 

(Glyma.02g121500), Glyma02g13460 (Glyma.02g121900), and Glyma02g13470 

(Glyma.02g122000).  In a recent study by Li et al. (2015), based on a cross of Kefeng No.1 (R) × 

Nannong 1138-2 (S) and SSR markers, the Rsc18A locus was mapped on chromosome 2 within a 

80 Kb region; 6 putative genes were predicted, and three, Glyma02g127800, Glyma02g128000, 

and Glyma02g128200, displayed differences at the amino acid level. 

Yan et al. (2015) used a set of 191 soybean accessions for association mapping and 184 

RILs derived from Kefeng No.1 (R) × Nannong 1138‐2 (S) to identify and fine‐map soybean 

genes associated with resistance to SMV strain SC7. Among 19 SNPs detected via association 

analysis, BARC‐021625‐04157 was located in the 2.65 Mb region, and fine‐mapped to the Rsv4 

region of approximately 158 kb between BARCSOYSSR_02_0621 and 

BARCSOYSSR_02_0632 on chromosome 2. From the fifteen genes within this region, three 

SC7 candidate genes Glyma09g34200 (Wm82.a2.v1: Glyma.09g208900, NBS-LRR type gene), 

Glyma11g08480 (Glyma.11g079900, HSP40 gene), and Glyma16g27560 (Glyma.16g159700, 

serine carboxypeptidase-type gene) have been proposed. 

In addition, Yang and Gai (2011) crossed ‘RN-9’ (R) × ‘7605’ (S) in order to study 

inheritance of resistance to SC15 Chinese SMV strain. Results indicated that a single dominant 

gene, designated as RSC15, conferred the SMV resistance. The genetic linkage analysis was used 

to map SC15 resistance between Sat_213 and Sat_286 with distances of 8.0 and 6.6 cM on 

chromosome 6 (MLG C2). 
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SMV RESISTANT ISOGENIC LINES 

 Isogenic lines are genetically identical pure-breeding group of individuals with a 

difference of a single gene (and its linkage drag) introduced into a susceptible cultivar by 

backcrossing technique. Two sets of isogenic lines for SMV resistance alleles have been released 

for breeding and genetic study purposes. These isogenic lines have been evaluated and their 

SMV resistance allele in each isogenic line was identified (Buss et al., 1997; Saghai Maroof et 

al., 2008; Wang et al., 2006).  

 Williams isogenic lines were developed by Dr. R.L. Bernard, Dep. of Crop Sciences, 

University of Illinois (Wang et al., 2006). Williams isogenic lines, designed as L-series, was 

derived by crossing Williams with 10 resistant lines: PI 96983, Buffalo (2×), Raiden, PI 486355, 

Suweon 97, Ogden, Marshall, Dorman, Hardee, and then backcrossing, resulting in isolines 

possessing different alleles of Rsv1 and Rsv3 loci. 

Essex isogenic lines (V-series) were developed by Dr. G.R. Buss, Dep. of Crop and Soil 

Environmental Sciences, Virginia Polytechnic Institute and State University (Buss et al., 1997; 

Li et al., 2009). Four out of six isolines V94-3971, V262, V229, and V97-9003 were derived 

from backcrosses of Epps (Rsv1) × Essex (rsv), PI 507389 (Rsv1-n) × Essex (rsv), L29 (Rsv3) × 

Essex (rsv), and V94-5152 (Rsv4) × Essex (rsv), respectively. Essex isolines show resistant, 

necrotic, or susceptible reactions when infected by the same SMV strain. For example, infection 

by G1 strain provides resistance in V94-3971 and V97-9003, necrosis in V262, and susceptibility 

in V229. Induced symptoms do not depend on virus strain but do depend on a host genotype.  
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MARKER-ASSISTED SELECTION AND GENE PYRAMIDING 

 The most effective way of controlling SMV is incorporation of genetic resistance into the 

susceptible genotype either via classical breeding or genetic engineering (transgenesis and gene 

editing) (Liu et al., 2012; Soosaar et al., 2005). Gene pyramiding (GP) is an excellent tool 

combining multiple resistance genes by performing crosses or a series of backcrosses. The 

soybean-SMV interactions have been studied at the molecular level and gene pyramiding can be 

implemented applying marker-assisted selection (MAS). MAS has been widely used in disease 

resistance selection by implementation of molecular markers (especially SSR and SNP) in order 

to identify genes or combine genes into a single target genotype (Collard and Mackill, 2008; 

Fooland and Panthee, 2012). Some soybean lines with resistance to all SMV strains contain two 

complementary resistance genes in diverse combinations that cannot be distinguished by plant 

reactions to SMV strains. Pyramiding of all three genes (Rsv1, Rsv3, and Rsv4) can be performed 

through MAS using linked molecular markers in order to develop new soybean lines with 

multiple SMV resistance genes (Fooland and Panthee, 2012; Shi et al. 2012; Song et al., 2010; 

Suh et al., 2011). To find polymorphism between parents it is necessary to conduct an initial 

screening using molecular markers at the MLG B2, D1b, and F (Table 3). Molecular markers are 

the basis for an efficient MAS in scientific research and commercial soybean breeding. The 

availability of various molecular markers closely linked to each of the resistance genes makes the 

identification of these genes possible (Collard and Mackill, 2008).  

 

 

 

 

http://rstb.royalsocietypublishing.org/search?author1=Bertrand+C.Y+Collard&sortspec=date&submit=Submit
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Table 1. Reactions of soybean genotypes carrying a single resistance gene to seven Soybean mosaic virus strains in the U.S.: R, 

resistant (symptomless), N, necrotic (systemic necrosis); S; susceptible (mosaic); ER, early resistant at seedling stage; N/S, 

mixture of necrotic and susceptible reactions; R/N, mixture of resistant and necrotic reactions. 

NAME ORIGIN G1 G2 G3 G4 G5 G6 G7 GENE REFERENCE 

PI 96983 Korea R R R R R R N Rsv1 Kiihl and Hartwing, 1979 

Suweon 97 Korea R R R R R R R Rsv1-h Chen et al., 2002 

York USA R R R N S S S Rsv1-y Chen et al., 1991 

Raiden Japan R R R R N N R Rsv1-r Chen et al., 2001 

Kwanggyo Korea R R R R N N N Rsv1-k Chen et al., 1991 

Ogden USA R R N R R R N Rsv1-t Chen et al., 1991 

Marshall USA R N N R R N N Rsv1-m Chen et al., 1991 

PI 507389 USA N N S S N N S Rsv1-n Ma et al., 2003 

LR1 USA R R R R N N R Rsv1-s Ma et al., 1995 

Corsica USA S ER S - ER S ER Rsv1-c Shakiba et al., 2012 

L29 USA S S S S R R R Rsv3 Buss et al., 1999 

OX 686 Canada N N N N R R R Rsv3 Buzzel and Tu, 1989 

Harosoy Canada S S S S R R R Rsv3 Gunduz et al., 2001 

PI 61944 China N/S N/S R - R R R Rsv3-n Cervantes, 2012 

PI 61947 China N/S N/S R/N - R R R Rsv3-h Shakiba et al., 2012 

PI 399091 Korea S S ER - R S ER Rsv3-c Shakiba et al., 2012 

V94-5152 USA ER ER ER ER ER ER ER Rsv4 Buss et al., 1997 

PI 88788 China ER ER ER ER ER ER ER Rsv4 Gunduz et al., 2004 

Beeson USA ER ER S - R ER R Rsv4-b Shakiba et al., 2012 
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Table 2. Reactions of soybean genotypes carrying none, two or three resistance genes to seven Soybean mosaic virus strains in 

the U.S.: R, resistant (symptomless); N, necrotic (systemic necrosis); S, susceptible (mosaic). 

 

 

NAME ORIGIN G1 G2 G3 G4 G5 G6 G7 GENE REFERENCE 

Essex USA S S S S S S S rsv Chen et al., 1991 

Lee 68 USA S S S S S S S rsv Chen et al., 1991 

Hourei Japan R R R R R R R Rsv1 Rsv3 Gunduz et al., 2002 

OX 670 Canada R R R R R R R Rsv1 Rsv3 Gunduz et al., 2001 

Tousan 140 Japan R R R R R R R Rsv1 Rsv3 Gunduz et al., 2002 

J05 China R R R R R R R Rsv1 Rsv3 Zheng et al., 2006 

Zao18 China R R R R R R R Rsv1 Rsv3 Liao et al., 2002 

Jindou 1 China R R R R R R R Rsv1 Rsv3 Shi et al., 2012 

PI 486355 Korea R R R R R R R Rsv1 Rsv4 Chen et al., 1993; Ma et al., 1995 

Columbia Korea R R R R R R R Rsv3 Rsv4 Ma et al., 2002 

8101 China R R R R R R R Rsv1Rsv3 Rsv4 Liao et al., 2011 
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Table 3. PCR-based markers and their positions in relation to three SMV resistance loci in 

soybean linkage map. 

MARKER MLG Chr. No. cM LOCUS REFERENCES 

 Sat_297 F 13 59.6 Rsv1 Cregan et al., 2003; Song et al., 2004 

 Sat_229 F 13 62.8 Rsv1 Cregan et al. 2003; Song et al., 2004 

 Satt114 F 13 63.7 Rsv1 Cregan et al., 2003; Song et al., 2004 

 Sat_234 F 13 66.6 Rsv1 Cregan et al., 2003; Song et al., 2004 

 SOYHSP176 F 13 68.4 Rsv1 Yu et al., 1996; Cregan et al., 2003 

 Sat_154 F 13 68.9 Rsv1 Cregan et al., 2003; Song et al., 2004 

 Rsv1-f/r F 13 69.1 Rsv1 Shi et al., 2006; Shi et al., 2008 

 Satt510 F 13 71.4 Rsv1 Gore et al., 2002; Cregan et al., 2003 

 Sat_317 F 13 73 Rsv1 Cregan et al., 2003; Song et al., 2004 

 Sct_103 F 13 74.1 Rsv1 Song et al., 2004 

 Sat_120 F 13 76 Rsv1 Gore et al., 2002; Cregan et al., 2003 

 Satt334 F 13 78.1 Rsv1 Cregan et al., 2003; Song et al., 2004 

 Satt063 B2 14 93.5 Rsv3 Jeong et al., 2002; Cregan et al., 2003 

 A519 B2 14 96.7 Rsv3 Jeong et al., 2002 

 M3Satt B2 14 97.5 Rsv3 Jeong et al., 2002 

 Satt560 B2 14 97.9 Rsv3 Cregan et al., 2003; Song et al., 2004 

 Sat_424 B2 14 100.1 Rsv3 Cregan et al., 2003; Song et al., 2004 

 Satt726 B2 14 100.6 Rsv3 Cregan et al., 2003; Song et al., 2004 

 Satt687 B2 14 113.6 Rsv3 Cregan et al., 2003; Song et al., 2004 

 Satt558 D1b 2 43.9 Rsv4 Hayes et al. 2000; Cregan et al., 2003 

 BF070293-S D1b 2 46 Rsv4 Hwang et al., 2006 

 AI856415-g D1b 2 46 Rsv4 Hwang et al., 2006 

 AI856415-S D1b 2 46 Rsv4 Hwang et al., 2006 

 BI470504 D1b 2 46.5 Rsv4 Song et al., 2004; Hwang et al., 2006 

 Satt634 D1b 2 46.6 Rsv4 Cregan et al., 2003; Song et al., 2004 

 Sat_254 D1b 2 46.9 Rsv4 Cregan et al., 2003; Hwang et al., 2006 

 BF070293 D1b 2 47.3 Rsv4 Cregan et al., 2003; Song et al., 2004 

 A1856415 D1b 2 50.1 Rsv4 Cregan et al., 2003; Song et al., 2004 

 AW307114A D1b 2 51.1 Rsv4 Hwang et al., 2006 

 AW471852R D1b 2 51.2 Rsv4 Hwang et al., 2006 

 Satt296 D1b 2 52.6 Rsv4 Cregan et al., 2003; Song et al., 2004 

 Satt542 D1b 2 53 Rsv4 Hayes et al., 2000; Cregan et al., 2003 
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Table 4. Previously reported candidate genes for the Rsv1, Rsv3, and Rsv4 SMV resistance genes. 

Genome Assembly 

Wm82.a1.v1 

Genome Assembly 

Wm82.a2.v1 
Physical Position Possible Function R-Gene References 

Glyma13g25730 Glyma.13g187600 30134637..30143817 LRR Kinase Rsv1 Yang et al., 2013 

Glyma13g25750 Glyma.13g187900 30174410..30180072 LRR Kinase Rsv1 Yang et al., 2013 

Glyma13g25950 Glyma.13g190300 30388583..30392233 LRR Kinase Rsv1 Yang et al., 2013 

Glyma13g25970 Glyma.13g190400 30402029..30409606 LRR Kinase Rsv1 Yang et al., 2013 

Glyma13g26000* Glyma.13g190800 30423894..30430435 LRR Kinase Rsv1 Hayes et al., 2004; Yang et al., 2013 

      

Gylma14g38500 Glyma.14g204500 46946496..46957734 LRR Kinase Rsv3 Suh et al., 2011 

Gylma14g38510 Glyma.14g204600 46968705.46974585. LRR Kinase Rsv3 Suh et al., 2011; Wang et al., 2011b 

Gylma14g38540 - na  Rsv3 Suh et al., 2011 

Gylma14g38560 Glyma.14g205000 47005574..47019661 LRR Kinase Rsv3 Suh et al., 2011; Wang et al., 2011b 

Glyma14g38580 Glyma.14g205200 47041931..47046048 Cytochrome P450 Rsv3 Wang et al., 2011b 

Gylma14g38590 Glyma.14g205300 47046209..47056610 LRR Kinase Rsv3 Suh et al., 2011 

      

Glyma02g13310 Glyma.02g120700 11904074..11910578 Cytochrome P450 Rsv4 Wang et al., 2011a 

Glyma02g13320 Glyma.02g120800 11926840..11931251 LRR Kinase Rsv4 Wang et al., 2011a 

Gylma02g13360 - 11983986..11999753 Unknown Rsv4 Saghai Maroof et al., 2010 

Gylma02g13370 - 12006720..12013300 Unknown Rsv4 Saghai Maroof et al., 2010 

Gylma02g13380 Glyma.02g121400 12028928..12030693 Unknown Rsv4 Saghai Maroof et al., 2010 

Gylma02g13390 - na na Rsv4 Saghai Maroof et al., 2010 

Gylma02g13400 Glyma.02g121500 12065640..12082937 MADS Box TF Rsv4 Saghai Maroof et al., 2010; Wang et al., 2011a 

Gylma02g13410 - na na Rsv4 Saghai Maroof et al., 2010 

Gylma02g13420 - 12084616..12089110 Unknown Rsv4 Saghai Maroof et al., 2010 

Gylma02g13430 - na na Rsv4 Saghai Maroof et al., 2010 

Gylma02g13440 - na na Rsv4 Saghai Maroof et al., 2010 

Gylma02g13450 - 12106072..12107969 Unknown Rsv4 Saghai Maroof et al., 2010 

Glyma02g13460 Glyma.02g121900 12112034..12115027 Unknown Rsv4 Wang et al., 2011a 

Glyma02g13470 Glyma.02g122000 12115284..12118493 Unknown Rsv4 Wang et al., 2011a 

Glyma02g14160 Glyma02g127800 13010651..13015848 LRR Kinase Rsv4 Li et al., 2015 

Glyma02g14190 Glyma.02g128000 13048160..13051248 Decarboxylase Rsv4 Li et al., 2015 

Glyma02g14200 Glyma02g128200 13093448..13095566 Methyltransferase Rsv4 Li et al., 2015 

-, no reported correspondence between genome assemblies; na, data not available; *3gG2 gene name; LRR, Leucine-Rich Repeat.  
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Figure 1. Foliar symptoms of soybean genotypes in response to Soybean mosaic virus G7 strain: 

resistant line L29 showing no symptoms of the disease (left); susceptible cultivar York 

displaying mosaic symptoms (middle); necrotic response of PI 96983 displaying a systemic 

necrosis and plant death (right). 
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GENETIC DIVERSITY AND SNP MARKERS FOR RESISTANCE  

TO SOYBEAN MOSAIC VIRUS IN SOYBEAN 
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ABSTRACT 

 Soybean mosaic virus (SMV) causes a substantial decrease in soybean yield and 

reduction of seed quality. The most effective management strategy to control the virus is the 

deployment of host resistance. Seven SMV strains, and three independent multi-allelic loci for 

SMV resistance have been identified previously. The goal of this research was to detect single 

nucleotide polymorphisms (SNPs) associated with SMV resistance at the Rsv4 locus. Ten 

soybean accessions, with confirmed resistance genes, were used for sequencing the candidate 

gene Glyma.02g121400. Alignment of these sequences revealed three SNPs displaying 100% 

consistency for genotypes carrying the Rsv4 gene. These SNPs were applied for a rapid screen of 

diverse soybean germplasm using the Sequenom iPLEX Gold platform, phenotyped with SMV-

G1 and G7 strains to determine phenotype and classified into several groups carrying the 

proposed R-gene. The population of V94-5152 (Rsv4) × Lee 68 (rsv) was screened using novel 

SNPs to create a genetic map with improved resolution to determine the location of the Rsv4. To 

observe the recombination frequencies within the population, three additional SNPs on both 

sides of the Glyma.02g121400 gene were added. A linkage map revealed a distance of 3.6 cM 

between the Rsv4 locus and the closest SNP, thus shifting the putative Rsv4 region downstream 

on chromosome 2. With regard to this distance, five candidate genes have been proposed. The 

genomic position of the discovered SNPs, linked to the Rsv4, could increase screening precision 

and accelerate breeding efforts to develop multi-strain resistant crops. 
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INTRODUCTION 

 Soybean mosaic virus infects soybean [Glycine max (L.) Merr.], considerably reducing 

yield and seed quality (Ren et al. 1997; Tolin 1999). The virulence of SMV has diverged during 

the co-evolution of virus and host, leading to the emergence of strains that display different 

levels of virulence. In the United States, SMV isolates have been grouped into seven strains, G1-

G7, where G1 is the least and G7 is the most virulent strain upon infecting differential soybean 

accessions (Cho and Goodman 1979).  

 Disease symptoms depend on host genotype, virus strain, time of infection, and 

environmental conditions (Chen et al. 1994; Li et al. 2009; Ren et al. 1997). Phenotypic reactions 

are classified into three major categories: resistant (R), susceptible (S), and necrotic (N) (Cho 

and Goodman 1979). Susceptible soybean genotypes typically display transient vein clearing 

followed by mosaic symptoms. As the disease progresses, leaf areas develop puckering or more 

general rugosity and leaf edges twist downward (Hill 1999; Tolin 1999). Necrotic symptoms are 

characterized by yellow discoloration of leaves, stunting, browning of steams and petioles, 

defoliation, and finally plant death (Buzzell and Tu 1989; Chen et al. 1994; Li et al. 2009; Ma et 

al. 2003). 

 Chemical and cultural control of SMV is neither economically nor environmentally-

friendly, and deployment of genetic resistance is the most effective alternative to manage the 

disease (Carrington and Whitham 1998; Shakiba et al. 2012b). Three multiallelic resistance loci, 

Rsv1, Rsv3, and Rsv4, have been previously reported (Buss et al. 1997; Buzzel and Tu 1989; 

Kiihl and Hartwing 1979), and mapped on chromosome 13 (MLG F), 14 (MLG B2), and 02 

(MLG D1b) respectively (Hayes et al. 2000; Jeong et al. 2002; Yu et al. 1994). Resistance to 

SMV is probably controlled by a single dominant gene (Buss et al. 1997; Chen et al. 1994; 
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Shakiba et al. 2012a); however, two or three complementary genes have also been identified 

(Liao et al. 2011; Ma et al. 2002; Shi et al. 2013). The Rsv1 gene confers resistance to less 

virulent strains (G1-G7), whereas the Rsv3 locus displays resistance to more virulent strains (G5-

G7). Genotypes carrying the Rsv4 locus display resistance to most or all strains identified in U.S. 

(G1-G7). Based on symptoms of genotypes, it is possible to predict classify them into groups of 

the resistance gene they carry; however, due to masking effect of each SMV gene, soybean lines 

resistant to all SMV strains cannot have their genes predicted (Chen et al. 1991; Zheng et al. 

2005). 

 The Rsv4 locus harbors at least three alleles identified in V94-5152, PI 88788, and 

Beeson (Rsv4-b) (Buss et al. 1997; Gunduz et al. 2004; Shakiba et al. 2012). The alleles exhibit 

complete dominance and confer resistance to all SMV strains (G1 - G7); however, they may 

express delayed and mild susceptibility exhibiting mosaic symptoms (ER) in some genotypes at 

a later stage (Buss et al. 1997; Gunduz et al. 2004) and delaying virus replication and movement 

(Ma et al. 1995). The Rsv4 gene was found to function in a non-strain specific and non-necrotic 

manner (Buss et al. 1997; Gunduz et al. 2004). 

 Several research studies focused on mapping the Rsv4 locus have been conducted. 

Microsatellite markers (SSRs) Satt634 (46.6 cM) and Satt542 (53 cM) were previously found to 

flank the Rsv4 (Hayes et al. 2000). At a later date, two ESTs markers AI856415 (46 cM) and 

BF070293 (46 cM) were mapped at 2.8 cM on one side of the gene and two ESTs markers 

AW307114 (51.1 cM) and AW471852 (51.2 cM) were mapped on the other side (Hwang et al. 

2006). Saghai Maroof et al. (2010) utilized the whole genome shotgun sequence to map the Rsv4 

in two populations D26 (Rsv4) × Lee 68 (rsv) and V94-5152 (Rsv4) × Lee 68 (rsv). Six new SSR 

markers were used to localize the gene in 1.3-cM region in both mapping populations with a 

physical interval of less than 100 kb on chromosome 02. In this region (Gm02:11,651,991-
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11,771,944), ten candidate genes were proposed: Gylma02g13360, Gylma02g13370, 

Gylma02g13380, Gylma02g13390, Gylma02g13400, Gylma02g13410, Gylma02g13420, 

Gylma02g13430, Gylma02g13440, and Gylma02g13450. Wang et al. (2011) analyzed 

populations derived from Kefeng No.1 (RSC8) × Nannong 1138-2 (rsv) to map a gene that causes 

resistance to the Chinese SMV strain SC8. Two SSR markers BARCSOYSSR_02_0610 and 

BARCSOYSSR_02_0616 were identified that flank both sides of the gene with 200 kb interval 

(Gm02:11,567,483-11,782,246). Expression analysis determined five candidate genes: 

Glyma02g13310 (correspondence for Wm82.a2.v1: Glyma.02g120700), Glyma02g13320 

(Glyma.02g120800), Glyma02g13400 (Glyma.02g121500), Glyma02g13460 

(Glyma.02g121900), and Glyma02g13470 (Glyma.02g122000). Ilut et al. (2015) used a 

population V94-5152 (Rsv4) × Sowon (rsv) BC3F2 to fine-map the Rsv4 to a 94 kb interval 

(12,071,517-12,165,890). Eleven candidate genes were proposed in the 12,065,640-12,163,084 

region: Glyma.02g121500, Glyma.02g121600, Glyma.02g121700, Glyma.02g121800, 

Glyma.02g121900, Glyma.02g122000, Glyma.02g122100, Glyma.02g122200, 

Glyma.02g122300, Glyma.02g122400, and Glyma.02g122500. Yan et al. (2015) used a set of 

191 accessions for association mapping and 184 RILs derived from Kefeng No.1 

(RSC7) × Nannong 1138‐2 (rsv) to fine‐map soybean genes associated with resistance to SMV-

SC7 strain. Among 19 SNPs, BARC‐021625‐04157 was located in the 2.65 Mb region between 

two closest SSR markers Satt266 and Satt634, and fine‐mapped to a region of approximately 

158 kb (11805400-11975404) on chromosome 2 containing fifteen genes. In research by Li et al. 

(2015), using a cross of Kefeng No.1 (R) × Nannong 1138-2 (S) and SSR markers, the Rsc18A 

locus was mapped on chromosome 2 within 80 Kb region (Gm02:13,010,651-13,095,566); six 

putative genes were predicted, and three of them, Glyma02g127800, Glyma02g128000, and 

Glyma02g128200, displayed differences at the amino acid level. 
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 Molecular markers provide a powerful substitution for the labor intensive and slow process 

of phenotyping; however, the value of markers is limited because the exact positions of SMV R-

genes in the soybean genome cannot be determined. Due to the limited number of simple sequence 

repeats (SSRs) in the genome, marker implementation has recently shifted to single nucleotide 

polymorphism (SNP) technologies, which allow for the saturation of a specific region with 

different marker densities (Shi et al. 2011). Now that the soybean genome has been sequenced 

(Schmutz et al. 2010), molecular markers can be connected to the specific positions of interest in 

the genome, thereby improving the information provided by SNPs. New markers can be detected 

from different cultivars by PCR-sequencing of short DNA fragments or large chromosomal regions 

using next generation sequencing (NGS). 

 The specific objectives of this study were to: (a) discover and validate SNP markers for 

marker-assisted selection (MAS); (b) assess genetic diversity of soybean germplasm towards 

SMV resistance; and (c) map the Rsv4 locus and propose candidate gene(s). The goal of this 

research was to discover SNPs associated with SMV resistance at the Rsv4 locus and thus allow 

for more effective ways to analyze and manage data, integrate phenotypic results, and apply new 

tools for breeding purposes.  

 

MATERIALS AND METHODS 

Plant material and growth conditions 

A total of 299 soybean accessions, including 40 checks with known R-genes, were used 

to identify SMV resistance. An average of 12 seeds from each genotype were planted in three 

sets; one for iPLEX genotyping and two for phenotyping by SMV-G1 and G7 strains. The 

greenhouse was maintained at 25-28°C and 14 h photoperiod at the Harry R. Rosen Alternative 

Pest Control Center of University of Arkansas, Fayetteville, AR. 
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DNA extraction and iPLEX genotyping 

A bulk of young trifoliate leaves was collected from each line for DNA extraction. 

Genomic DNA was extracted from young leaves using the modified CTAB 

(cetyltrimethylammonium bromide) method (Doyle and Doyle 1990). Frozen leaves were crushed 

to powder with metal beads using TissueLyser II (Qiagen), then 750 µl extraction buffer (2% 

CTAB, 100mM Tris-Cl, 20mM EDTA pH 8.0, 1.4M NaCl, and 1% of volume β-

mercaptoethanol) was added to each tube and incubated at 60°C. After one hour, tubes were 

cooled down and 1 ml chloroform:isoamyl alcohol (24:1) was added to each tube. Samples were 

centrifuged at 12,851 g for 15 min. The supernatant was transferred to a new tube and incubated 

with RNase A for one hour at 37°C. For DNA precipitation, 1 ml 95% ethanol was added and 

tubes were gently inverted several times. Samples were centrifuged at 20,817 g for 5 min and 

DNA pellets were washed with 75% ethanol. DNA was dissolved in 200 µl sterilized distillated 

water, and total concentration was measured using a NanoDrop
™

 ND-2000 (Thermo Scientific). 

  For initial screening, a total of 11 SNP primers linked to the Rsv4 were preselected for 

random testing for polymorphisms among the 40 checks, covering the region between 

11,904,074-12,107,969 on chromosome 2 and containing previously reported candidate genes 

(Shaghai Maroof et al. 2010; Wang et al. 2011). Screening with the three discovered SNPs, 

ss244712651, ss244712651, and ss244712653 was performed by multiplex PCR. Genotyping 

was conducted at the University of Minnesota Genomics Center using the Sequenom iPLEX 

Gold genotyping platform, followed by mini-sequencing reactions in a single well. The size of 

reaction products was determined directly by MALDI-TOF mass spectrometry, yielding 

genotype information.  
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Sequencing 

  Ten genotypes with known SMV reactions and resistance loci were used for sequencing 

the Glyma.02g121400 locus and its flanking regions: PI 96983 (Rsv1), V94-3971 (Rsv1), L29 

(Rsv3), V229 (Rsv3), Harosoy (Rsv3), V94-5152 (Rsv4), V97-9003 (Rsv4), PI 88788 (Rsv4), 

Essex (rsv), and Williams 82 (rsv). Three pairs of gene-specific primers were designed via 

BatchPrimer3 software to amplify overlapping fragments of approximately 600 bp long covering 

a chromosomal region of 1,539 bp. Each polymerase chain reaction (PCR) mixture consisted of 

15×Green GoTaq Flexi Buffer (Promega), 45mM MgCl2, 2.5mM dNTPs, 5mM primer mix, 1U 

Taq (Promega), and 80ng DNA. PCR products were amplified with a program of 94°C for 5 min 

initial denaturation; 30 cycles of 45 s at 94°C denaturation, 45 s at 47°C primers annealing, 45 s 

at 68°C extension, and 5 min at 72°C final extension after the last cycle. After PCR, amplified 

products were separated on 1.2% high-melting agarose (Amresco) gels containing GelRed, in 

1×TAE buffer. Amplified DNA fragments were visualized under UV light, extracted from the 

gel, and purified by Zymoclean™ Gel DNA Recovery Kit.  

 Sequencing of both DNA strands of the products was performed using ABI 3130xe 

Genetic Analyzer (Applied Biosystems) for capillary electrophoresis at the DNA Resource 

Center, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR. 

Sequences of both DNA strains were aligned to the Williams 82 reference genome (Grant et al. 

2010) and data were analyzed using BioEdit (Clustal W function).  

 

Population development and KASP genotyping 

  In order to map and validate discovered SNPs linked to the Rsv4 locus, a population 

V94-5152 (Rsv4) × Lee 68 (rsv) was developed at the Arkansas Agricultural Research and 
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Extension Center, University of Arkansas, Fayetteville, AR. Pubescence color and SSR marker 

Sat_254 were used to confirm true F1 hybrids.  

 Leaf tissues were collected from 766 F2 plants for DNA extraction. Three additional 

putative SNPs on each side of the Glyma.02g121400 gene were designed to observe 

recombination frequencies within a population. Genotyping was conducted using KASP™ assay 

(LGC Genomics, Beverly, MA) according to Semagn et al. (2014). A Chi-square test (χ
2
) was 

used to determine the goodness of fit of observed recombination fraction from the F2 population 

to the expected genetic ratios. In addition, corresponding F2:3 lines were used for phenotypic 

screening with SMV-G7 strain inoculation in the greenhouse. 

 For linkage and genetic map construction, F2 genotypic data and F2:3 phenotypic results 

were collated by JoinMap version 3.0 at a logarithm of odds ratio (LOD) of 3.0 to indicate 

linkage. Recombination values were converted to genetic distances using LOD value for a single 

linkage group. Whole genome information available at Phytozome 10.3 

(www.phytozome.net/soybean) and SoyBase were used to define the soybean candidate genes.  

 

SMV inoculation 

 Two SMV strains, G1 and G7, were used to screen the germplasm collection and G7 

strain was used to phenotype F2:3 lines of V94-5152 × Lee 68. Strain identities were confirmed 

by their foliar reactions on sets of differentials including: PI 96983 (Rsv1), York (Rsv1-y), V262 

(Rsv1-n), L29 (Rsv3), V229 (Rsv3), V94-5152 (Rsv4), V97-9003 (Rsv4), and Lee 68 (rsv). SMV 

was introduced into each plant by mechanical inoculation of at least 15 individuals/genotype 

according to Chen et al. (1991). Briefly, the inoculum was prepared by grinding infected leaves 

in ice-cold 0.01M potassium phosphate buffer (pH=7.2) at an approximate dilution 1:10 (w/v). 

Both unifolate leaves of each plant (before V1 stage) were pre-dusted with 600-mesh 
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carborundum, and rubbed with a pestle dipped in the inoculum. Inoculations using two strains 

were performed in separate greenhouses to prevent cross contamination. The greenhouse 

conditions were maintained at 28°C with a 14 h photoperiod at the Harry R. Rosen Alternative 

Pest Control Center, University of Arkansas in Fayetteville, AR.  

 Foliar reactions to each SMV strain were monitored each week, compared with set of 

checks 2-4 weeks after inoculation, and classified foliar reactions into three major phenotypes as 

resistant, susceptible, and necrotic. Based on specific reaction of symptoms obtained from G1 

and G7 infection, R-genes were proposed. Phenotyping was further compared and collated with 

SNP genetic marker results for validation of SNPs accuracy in marker-assisted selection (MAS). 

 

RESULTS 

Initial genotyping 

 Eleven putative SNPs linked to the Rsv4 were preselected (Soybase SNP list) to 

randomly test for polymorphisms among 40 soybean checks with known SMV resistance (Table 

1) using the Sequenom iPLEX Gold genotyping platform covering the region 11,904,074-

12,107,969 on chromosome 2 and containing previously proposed candidate genes (Shaghai 

Maroof et al. 2010). In this run, a single SNP (ss244712651) displayed polymorphism and this 

became a deciding factor to sequence the region where the SNP was located. The location of this 

SNP was found by pair-wise comparisons of the SNP-flanking sequence with the reference 

genome of Williams 82 (Grant et al. 2010; Schmutz et al. 2010). The SNP was identified in the 

coding sequence of the Glyma.02g121400 locus (Gm02:11,692,905-11,694,242), which was 

previously reported as a candidate SMV resistance gene (Shaghai Maroof et al. 2010). 

 

 

http://soybase.org/gb2/gbrowse/gmax1.01?name=Gm02:11692905..11694242
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Sequencing  

 Ten soybean accessions with known SMV resistance alleles were used as checks for the 

Glyma.02g121400 locus sequencing, including two without R-loci, two carrying the Rsv1 locus, 

three with the Rsv3, and three with the Rsv4 (Table 2). Final sequences of 1,539 bp of each check 

genotype were aligned to their complementary strands to assure quality of the sequencing 

procedure. Clustal W analysis revealed three polymorphic SNPs: ss244712651 

(Gm02:11,693,196), ss244712652 (Gm02:11,693,604), and ss244712653 (Gm02:11,693,900). 

These SNPs displayed perfect polymorphic consistency when a soybean genotype carrying the 

Rsv4 gene was present (Table 2). The results were confirmed by direct comparisons of the 

sequences with the reference genome of Williams 82 (Wm82.a2) at SoyBase. 

 

Germplasm classification  

 Identified SNPs, ss244712651, ss244712651, and ss244712653, were used for large scale 

testing of 299 soybean accessions by the Sequenom iPLEX Gold genotyping platform. The 

results were compared and combined with phenotypic data obtained via inoculations with SMV-

G1 and G7 strains. The reactions of 40 soybean checks displayed the expected foliar symptoms 

as reported in previous studies (Table 1) thus confirming the integrity of the SMV strains used in 

this study. Phenotypic and genotypic results of the soybean checks revealed perfect consistency 

indicating 100% accuracy between SNP markers, response to the virus, and the Rsv4 locus 

(Table 5). The soybean checks carrying Rsv4 displayed a characteristic nucleotide pattern of A-

G-G obtained from ss244712651, ss244712652, and ss244712653 respectively. Checks without 

the Rsv4 locus exhibited the T-C-A nucleotide pattern (Tables 3, 4).  

 Soybean germplasm collection was separately phenotyped with SMV-G1 and G7 strains 

to observe differences in reaction of symptoms, and lines with unknown SMV resistance genes 
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were classified into several groups based on symptoms pattern of the 40 checks; however, 

genotypes displaying resistance to both strains could not be differentiated based on phenotype 

due to the masking effect of multiple resistance genes that can be present as single genes or in 

combination within a single soybean genotype. This unclassified group could potentially carry 

some alleles at the Rsv1 (Rsv1-r, Rsv1-h) and Rsv4 locus, or a combination of two (Rsv1+Rsv3, 

Rsv1+Rsv4, and Rsv3+Rsv4), and three (Rsv1+Rsv3+Rsv4) R-genes. These accessions were 

further differentiated by the Rsv4 locus presence/absence based on a specific SNP marker pattern 

(A-G-G vs. T-C-A) obtained from genotyping by three identified SNPs (Tables 3, 4, 5). 

 A total of 299 accessions were divided into two sub-groups as carrying the SNP pattern 

of A-G-G (potentially carrying the Rsv4) or T-C-A (without the Rsv4 locus). The grouping was 

accomplished using the phenotypic results obtained from inoculation by SMV strains. There 

were 62 accessions classified into the first sub-group (A-G-G), whereas 29 of them displayed 

resistant reactions to both, G1 and G7 strains (Table 5). The second sub-group (T-C-A) of 237 

accessions was further sorted into fractions of genotypes with absence of any SMV R-gene (rsv) 

(Table 3) or carrying alleles at the Rsv1 and Rsv3 loci (Table 4). Among this sub-group, 70 

accessions were susceptible to both strains and classified as rsv; 56 lines displayed resistance to 

G1 strain and systemic necrosis to G7; and therefore they potentially carry Rsv1, Rsv1-k, Rsv1-t, 

or Rsv1-m alleles of the Rsv1 locus; 57 showed resistance to G1 and susceptibility to G7, 

probably carrying Rsv1-y allele at the Rsv1 locus; 21 lines were resistant to both strains 

presumably carrying Rsv1-h, Rsv1-r, Rsv1-s, or a combination of two loci Rsv1+3; only 3 

genotypes potentially carrying Rsv1-n allele; and 20 with alleles of the Rsv3 locus. In addition, 

10 lines displayed unique reaction pattern and were categorized as sources of possible new 

alleles of the Rsv1 or Rsv3 loci (Table 4).  
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Rsv4 linkage and mapping  

 SNPs validation was accomplished using V94-5152 (Rsv4) × Lee 68 (rsv), and 766 F2 

plants were screened with the three SNPs linked to the Rsv4 locus. For mapping purposes, four 

additional SNPs on each side of the target SNP markers at the Glyma.02g121400 gene were 

added to observe recombination frequency in the region of interest. Six SNPs were polymorphic, 

including three SNPs previously discovered by sequencing displaying 1A:2H:1B segregation for 

a single dominant gene within the mapping population (Table 6). Also, phenotyping results of 

inoculated F2:3 lines by SMV-G7 strain fitted into the 1R:2H:1S ratio of single dominant gene 

segregation (data not shown). 

 Those results were used to assess linkage between the Rsv4 resistance gene and SNPs, 

based on 766 individuals derived from the population. All markers were mapped on one side of 

the Rsv4 with the closest marker, ss244712671, located in genetic distance of 3.58 cM upstream 

the DNA sequence (Table 6). Other SNPs, ss244712652, ss244712653, ss244712651, 

ss244712591, and ss244712184, were positioned at 3.62, 3.65, 3.72, 3.8, and 4.12 cM to the 

locus respectively (Table 6). The total genetic distance of 3.58 cM was translated into physical 

distance of 700 kb (Schmutz et al. 2010), and with regard to this interval, the physical region of 

12,100,000 - 12,600,000 bp on chromosome 2 was closely analyzed. Williams 82 sequence 

annotation database (www.phytozome.net/soybean) retrieved 43 putative genes in the target 

region. Among them, there were only three genes with kinase functions and two transcription 

factors (Table 7).  
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DISCUSSION 

 The reference genome of Williams 82 (Grant et al. 2010; Schmutz et al. 2010) does not 

carry genetic resistance to SMV at the Rsv4 locus. For this reason, researchers need to rely on 

mapping and sequencing of short chromosomal fragments derived from soybean accessions 

resistant to the virus. In this study, a non-standard method of SNP identification was applied by 

choosing DNA regions through proposed R-genes in previous studies and testing them with 

putative SNPs. After sequencing of the Glyma.02g121400 locus, three SNPs were found and 

used for screening of a germplasm collection to assess genetic diversity and to validate marker 

accuracy in tagging the Rsv4 gene for SMV resistance. 

 Based on distinct reaction pattern of each differential genotype to SMV strains, it was 

possible to divide most of other soybean accessions into groups with predicted SMV R-gene. 

Moreover, in some cases, differentiation of specific alleles was possible; however, phenotyping 

using only two SMV strains could not distinguish genotypes into all alleles. Also, soybean 

accessions susceptible to both SMV strains were classified as the ones that did not carry any 

SMV resistance gene. Our phenotypic results were consistent with previously published studies 

where phenotypic screening was performed on soybean germplasm collection (Li et al. 2010; 

Shakiba et al. 2012a, 2012b; Zheng et al. 2005). 

 Although this classification system seem to be efficient, it becomes a restraint when 

trying to separate soybean accessions resistant to all strains. If a given accession shows 

resistance to both G1 and G7, it may be due to several gene/allele combinations: Rsv1-h, Rsv4, 

Rsv1Rsv3, Rsv1Rsv4, Rsv3Rsv4, or Rsv1Rsv3Rsv4. In such situations, allelism/inheritance studies 

or use of molecular markers are necessary for efficient assessing the genetics of SMV resistance. 
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The SNPs identified in this study were useful for differentiating soybean germplasm for specific 

R-genes; however, it did not provide information on how many genes each accession carries.  

 The consistent results of genotyping and phenotyping allowed for the identification of 

lines carrying resistance alleles at the Rsv4 locus. Among these, the majority come from Asia 

(China, Korea, Japan, and Russia), Africa (Zimbabwe, Algeria, and South Africa), North 

America (USA), and Europe (France and Bulgaria) (data not shown). China is the origin of 

soybean and it was not surprising that most of Rsv4-resistant genotypes come from Asia, 

whereas significant part of susceptible genotypes were from non-Asian countries. 

 In this study, 766 individuals derived from V94-5152 (Rsv4) × Lee 68 (rsv) assisted in 

the development of a linkage map for the Rsv4 region with six SNP markers where ss244712671 

was the closest one linked to the Rsv4 locus with genetic distance of 3.6 cM. Because this marker 

is located at 11,697,977 position on chromosome 02 (MLG D1b), the Rsv4 gene is located 

downstream of the DNA sequence at the physical chromosomal position of about 12,400,000 bp; 

however, this region may be much expanded due to presence of heterochromatin condensed 

structure.  

 In previous studies, the Rsv4 region was fine-mapped within a small size physical 

interval; however, the gene is still elusive (Ilut et al. 2015; Li et al. 2015; Saghai Maroof et al. 

2010; Wang et al. 2011; Yan et al. 2015). Our results were based on a large population size that 

indicated the analyzed Rsv4 region should shift downstream in chromosome 2. According to this 

distance, we marked three candidate genes with the kinase function and two potential 

transcription factors (Suh et al. 2011). Glyma.02g121900 and Glyma.02g122000 encode leucine-

rich repeat receptor-like protein kinases that may function in cellular signal transduction 

pathways as a part of the two-component system responsible for rapid cascade of reactions upon 

SMV infection (SoyBase 2016). Similarly, Glyma.02g123700 encodes a highly conserved 
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hosphatidylinositol kinase-like protein, an enzyme responsible for signaling pathways that 

regulate functions of cell metabolism, survival, and vesicle trafficking (Engelman et al. 2006; 

SoyBase 2016). Glyma.02g122900 and Glyma.02g124300 encode a BSD domain-containing 

protein and Myb-like protein, respectively, that could work as transcription factors (TF), and 

could have a role in DNA binding and regulating gene expression during SMV infection (Doerks 

et al. 2002, SoyBase 2016). 

 Our prediction of Rsv4 gene candidates was in agreement with the conclusions of Wang 

et al. (2011), Ilut et al. (2015), and Li et al. (2015). Molecular mechanisms of disease resistance 

are very complex that may be controlled by a network of genes (Marone et al. 2013; Suh et al. 

2011). The candidate genes must be further investigated by designing gene specific SNPs based 

on full genome sequencing, expression analysis, and eventually transforming them into a 

susceptible soybean cultivar. It is also possible that the Rsv4 gene may belong to a different 

family than the genes with NBS-LRR domain displaying an unknown functionality and therefore 

other genes present in this region may be considered. 

 Traditional ways of breeding for resistance require germplasm screening to identify 

sources of resistance, studying the mode of inheritance, introgression of the resistance in elite 

cultivars, and testing their performance under pathogen infection in the field. Identification of 

SNPs for MAS or genomic selection shorten the duration of a breeding program, increase the 

selection efficiency, and substitute for phenotypic screening. Our studies have provided 

information on the approximate location of the Rsv4 gene. Finding the exact location of SMV R-

genes will facilitate cloning and incorporation of them into susceptible cultivars. Development of 

a new approach to combat the disease caused by SMV is going to be more feasible when we 

know where the genes are located and what molecular functions they have. The SNPs discovered 
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in this study will enable a more effective way to analyze and manage genotyping results, 

integrating phenotypic data, and applying new tools to breeding programs. 
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Table 1. Differential reactions to Soybean mosaic virus of soybean checks. 

Check 
 

Reactions to SMV
a
 

R-Gene 
G1 G2 G3 G4 G5 G6 G7 

Essex  S S S S S S S rsv 

Lee 68 S S S S S S S rsv 

Williams S S S S S S S rsv 

Williams 82 S S S S S S S rsv 

PI 96983 R R R R R R N Rsv1 

V94-3971 R R R R R R N Rsv1 

L78-379 R R R R R R N Rsv1 

Suweon 97 R R R R R R R Rsv1-h 

L92-8580 R R R R R R R Rsv1-h 

York R R R N S S S Rsv1-y 

Davis R R R N S S S Rsv1-y 

L85-2308 R R R N S S S Rsv1-y 

Raiden R R R R N N R Rsv1-r 

L88-8431 R R R R N N R Rsv1-r 

L88-8440 R R R R N N R Rsv1-r 

Kwanggyo R R R R N N N Rsv1-k 

Ogden R R N R R R N Rsv1-t 

L93-3327 R R N R R R N Rsv1-t 

Marshall R N N R R N N Rsv1-m 

L84-2112 R N N R R N N Rsv1-m 

PI 507389 N N S S N N S Rsv1-n 

V262 N N S S N N S Rsv1-n 

Corsica S ER S - ER S ER Rsv1-c 

L29 S S S S R R R Rsv3 

V229 S S S S R R R Rsv3 

Harosoy S S S S R R R Rsv3 

PI 61944 N/S N/S R - R R R Rsv3-n 

PI 61947 N/S N/S R/N - R R R Rsv3-h 

V94-5152 ER ER ER ER ER ER ER Rsv4 

Peking ER ER ER ER ER ER ER Rsv4 

Virginia ER ER ER ER ER ER ER Rsv4 

V97-9003 ER ER ER ER ER ER ER Rsv4 

PI 88788 ER ER ER ER ER ER ER Rsv4 

PI 438307 R R R R R R ER Rsv4-v 

Beeson ER ER S - R ER R Rsv4-b 

Zhao shu 18 R R R R R R R Rsv1+3 

Hourei R R R R R R R Rsv1+3 

Tousan 140 R R R R R R R Rsv1+3 

PI 486355 R R R R R R R Rsv1+4 

Columbia R R R R R R R Rsv3+4 

N8101 R R R R R R R Rsv1+3+4 

a
 Foliar symptoms under SMV infection with different strains (G1-G7) isolated in U.S.: R, 

resistant (symptomless); N, necrotic (systemic necrosis); S, susceptible (mosaic); ER, early 

resistant at seedling stage; N/S, mixture of symptoms: necrotic and susceptible; R/N, mixture 

of symptoms: resistant and necrotic; -, missing data. 
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Table 2. Phenotypic characterization of ten checks to Soybean mosaic virus infection used for 

sequencing of the Glyma.02g121400 locus. 

Genotype  
Reactions to SMV

a 

R-Gene  
Rsv4 SNP markers

b 

G1             G7   ss244712651 ss244712652 ss244712653 

Williams 82 S S rsv T C A 

Essex S S rsv T C A 

PI 96983 R N Rsv1 T C A 

V94-3971 R N Rsv1 T C A 

L29 S R Rsv3 T C A 

V229 S R Rsv3 T C A 

Harosoy S R Rsv3 T C A 

V94-5152 R R Rsv4 A G G 

V97-9003 R R Rsv4 A G G 

PI 88788 R R Rsv4 A G G 

a
  Foliar symptoms under infection with SMV-G1 and G7 strains: R, resistant (symptomless); N, 

necrotic (systemic necrosis); S, susceptible (mosaic). 

b
 SNPs located at the Glyma.02g121400 locus, displaying the T-C-A and A-G-G patterns for 

different genotypes. 
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Table 3. Soybean lines without identified Soybean mosaic virus (SMV) resistance, displaying 

the T-C-A SNP pattern (checks underlined). 

Soybean Accession 
SMV Reactionsa 

 R-Gene 

G1 G7 

1133 (PI 96984); 5693 (PI 88306); 7413 (PI 90479-1); 8085 (PI 70242); Accomac (PI 597388); 

Akanedzumime (PI 243516); Aobishi (PI 243519);  Avery (PI 518663); BARC-19 (PI 652935);      

Bedford (PI 548974); Boggs (PI 602597); Braxton (PI 548659); Bryan (PI 542712); Camp (PI 553044);  

Chamberlain (PI 548635); Charleston (PI 567902); Chesapeake (PI 583366); Cisne (PI 593256);      

Darby (PI 614154); Dare (PI 548987); Daruma niju (PI 80834-1); Edison (PI 542711);                   

Egyptian (PI 506417); Essex (PI 548667); Fayette (PI 518674); Gail (PI 548978); Gordon (PI 553047); 

Harper 87 (PI 518667); Hartwig (PI 543795); Haskell (PI 572238); Iroquois (PI 593259);                    

KAS 200-23-1 (PI 398371); KAS 353-8 (PI 509080); KAS 540-27 (PI 458184); KLS 906 (PI 399045); 

Kurakake Daizu (PI 506949); Lamar (PI 533604); Lee 68 (PI 559369); Lyon (PI 576857);                

Macon (PI 593258); Manokin (PI 559932); Maverick (PI 598124); Mitchell (PI 548679);             

Murasaki No Mi (PI 417169); Mustang (PI 595363); No. 50 (PI 54610); Pearl (PI 583367);             

Pharaoh (PI 548645); Pickett 71 (PI 548982); Pyramid (PI 512039); Roanoke (PI 548485);                 

Scott (PI 548613); Semmes (PI 548661); Sherman (PI 548614); Shiro Aki Daizu (PI 417310); 

Shironomai (PI 538409); Spry (PI 553051); Stafford (PI 508269); Stonewall (PI 53 1068);           

Stressland (PI 593654); Suzuhime (PI 494182); Tanba Kuro (PI 507336); Thorne (PI 564718);          

Union (PI 548622);  Usuda Zairai (PI 507504); Vinton (PI 548618); Vinton 81 (PI 548625);           

Williams (PI 548631); Williams 82 (PI 518671); Woods Yellow (PI 548496). 

S S rsv 

a
  Foliar symptoms under infection with SMV-G1 and G7 strains: S, susceptible (mosaic). 
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Table 4. Soybean lines potentially carrying Rsv1 and Rsv3 showing the T-C-A SNP pattern. 

Soybean Accession 
SMV Reactionsa 

 R-Gene 

G1 G7 

6053 (PI 89061); 552 (PI 96257); 1248 (PI 82210); 1384 (PI 97235); 7381 (PI 90401);                           

Aze daizu (PI 416807); Brim (PI 548986); Calhoun (PI 576440); Casa Grande (PI 159923 A);         

Chang-uwal (PI 157410); Chankon (PI 84949); Cook (PI 553045); Davis (PI 553039);                        

Dillon (PI 592756); Doles (PI 576154); Dorman (PI 548653); Fukuyutaka (PI 506675);                         

GL 2678B/96 (PI 603167); H-060013 (PI 417582); Jitsuka (PI 494181); KAERI 540-4 (PI 407975 B); 

KAERI 543-3 (PI 407994); KAS 530-5 (A) (PI 407907 A); KAS 530-5 (B) (PI 407907 B);                 

KAS 643-8 (A) (PI 424159 A); KAS 643-8 (B) (PI 424159 B); KAS 643-8 (C ) (PI 424159 C);   

KAS172-9-2 (PI 398289); KLS 121 (PI 398877); KLS 743-1 (PI 399012); Kosuzu (PI 594208);   

Kyeong-du (PI 157447); Kyongsang pukdo (PI 399107); L85-2308 (PI 547873); Mejiro (PI 507033); 

Musen (PI 599333);    No. 23 (PI 339999); Okute mame (PI 19986); ORD 8113 (PI 407788 A);                                           

Ping ding huang (PI 567577); Prolina (PI 597389);  Qi Huang No.1 (B) (PI 468408 B);                           

Qi Huang No.1 (C) (PI 468408 C); Ripley (PI 536636); Rokugastu daizu (PI 507189 A);             

Shibahara mame (PI 417288); Suzumaru (PI 593972); Toano (PI 508268); Tockikubo (PI 417387);  

Xu dou No.1 (PI 556950); Xu dou No.2 (PI 495020); York (PI 553038); You bian 30 (PI 518716);  

Young (PI 508266); Yuwoltae (C) (PI 339868 C); Yuwoltae (D) (PI 339868 D);                            

Yuwoltae (E) (PI 339868 E); Yuwoltae (F) (PI 339868 F). 

R S Rsv1-y 

197 (PI 471938); 1132 (PI 96983); 19-1 (PI 235339); 30-1 (PI 235344); Choutan shirome (PI 416841); 

Chuzu (PI 86740); Clifford (PI 596414); Epps (PI 548977); F.A.V. 24-3 (PI 264555);                    

Fengsan Iu tsao shen (PI 504481); Hakuho No.1 (PI 248511); Holladay (PI 572239); Hood (PI 548980); 

Iwate wase kurome (PI 506809); Johnston (PI 508267); Kantou 63 (PI 417005);                          

Kawanagare (Iwate) (PI 417015); Kou kei 74 (PI 417071); Kwang kyo (PI 406710);                             

L78-379 (PI 547844); L80-5227 (PI 547851); L81-4420 (PI 547857); L84-2112 (PI 591513);             

L93-3327 (PI 591515); Lu tsao shen (PI 504488); Mao 205 (PI 518287); Marshall (PI 548693);  

Mocinave 7 (PI 507690); Mukden (PI 548391); No. 31 (PI 181550); No. 38 (PI 181555);                      

No. 40 (PI 181557); Ogden (PI 548477); Okushirome (PI 423888); Pace (PI 602496);                     

Pulaska zolta wczesna (PI 417559); Saturn (PI 583837); Seneca (Cornell) (PI 235340);                     

Shakkin-nashi (PI 229352); Shimoda Shitachi (PI 246367); Shin No.4 (PI 219789);                            

Shiro higo (PI 594268A); Sundar No.1 (PI 504504); Suzuyataka (PI 561395); Tachiyutaka (PI 594289); 

Tanrei (PI 594295); Tohoku No.1 (PI 229359); Tousan 101 (PI 507439); Tousan 122 (PI 561397); 

Tousan 26 (PI 417412); Tousan 58 (PI 507396); Tousan 65 (PI 507403); Tousan kei B62 (PI 417423); 

V94-3971; Yao tou (PI 504487); Yatsufusa (PI 507548). 

R N Rsv1 

Rsv1-k 

Rsv1-t 

Rsv1-m 

37-2 (PI 407765); Bukalasa 2 (PI 381659); Sakyuu ki mame (PI 417263); Ching tao No.21 (PI 200460); 

Enrei (PI 385942); Hingukongu (PI 87013); Hourei (PI 561394); Ito san (PI 438494);                      

Jiunong 21 (PI 612735); L88-8431 (PI 547885); L88-8440 (PI 547886); L92-8580 (PI 591516);        

Miyagi shirome (PI 417159); Okatsu mame (PI 507127); Raiden (PI 360844); Suweon 97 (PI 483084); 

Tousan 140 (PI 561398); Tsuronoko (PI 561392); Zao shu 18 (PI 603290); Zhao shu 18 (PI 612732). 

R R Rsv1-h 

Rsv1-r 

Rsv1-s 

Rsv1+3 

He feng 25 (PI 518703); Tousan 50 (PI 507389); V262. N S Rsv1-n 

Corsica (PI 559931); Cordell (PI 533605); Enoki (PI 59849); Freedom (PI 636463);                         

Graine jaune unie (PI 189891); H 67-6 (PI 323555); H 67-7 (PI 323556); Harosoy (PI 548573); 

Hutcheson (PI 518664); L29; OCB 81 (PI 504510); Paoting (PI 179825); PLSO-63 (PI 346307);      

PLSO-70 (PI 346308); V229; VIR 5532 (PI 438427). 

S R Rsv3 

Rsv1-c 

7385 (PI 90402); Kakira 13 (PI 381668). N R Rsv3 

568 (PI 61944); 586 (PI 61947). N/S R Rsv3 

E dou No.2 (PI 436563); Krasnoarmejskaja (PI 404167); Shang tsai (PI 103079); Sherwood (PI 

417578); Tailungyuan (PI 62 199); Tun czou (PI 404164). 

R/N R Rsv1-? 

Rsv3-? 

CNS-65F (PI 283332); Kolhida 4 (PI 404159); Tekkyou seitou (PI 417380). R/N S Rsv1-? 

7618 (PI 91346). S N Rsv1-? 

a
  Foliar symptoms under infection with SMV-G1 and G7 strains: R, resistant (symptomless); N, 

necrotic (systemic necrosis); S, susceptible (mosaic); R/N and N/S, mixed symptoms. 
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Table 5. Soybean lines potentially carrying the Rsv4 locus showing the A-G-G SNP pattern 

(checks underlined). 

Soybean Accession 
SMV Reactionsa 

 R-Gene 

G1 G7 

11/45S95 (PI 170896); 5913 (PI 88788); Beeson (PI 548510); Bergerac (PI 153309);                    

Columbia (PI 548317); Da Bai Ma (PI 556948); Dun cuan (PI 404165); Fen dou 31 (PI 574477);            

Il-soy (PI 157435); Jin dou No.1 (A) (PI 578494 A); Ju xuan 23 (A) (PI 578498 A);                                 

Ju xuan 23 (B) (PI 578498 B); Ke feng No.1 (PI 556949); N8101 (PI 654355); No. 36 (PI 181554);      

No. 42A (PI 171434); Pekin kuro diazu (PI 417243); Peking (PI 548402); Rhosa (PI 324924);                  

S-17 (PI 84594); SAO 196-C (PI 438335); SS74185 (PI 486355); V94-5152 (PI 596752); V97-9003;         

VIR 2980 (PI 438307); VIR 964 (PI 437482); Virginia (PI 548422); VU-5817 (PI 438357 A);        

Yuwoltae (B) (PI 339868 B). 

R R Rsv4 

Rsv1+4 

Rsv3+4 

Rsv1+3+4 

 

PI 339870; PI 399091; A.K. (Harrow) (PI 548298); CNS (PI 548445); Hardee (PI 548666);               

Hubert 33 (PI 229738); Kaigen's Kingenzu (PI 88486); KAS 301-14 (PI 458120);                                 

Kuro masshokutou (Kou 205) (PI 417094); Shin 2 (PI 507239); Wilson (PI548427). 

S R Rsv3 

Rsv1-c 

Akita ani (PI 506516); Ani 31 (PI 229314); Iwate No.1 (PI 229325); Kantou 9 (PI 506840 A);        

Mercury (PI 583835); Nohrin No.3 (PI 224271); Nooki No.1 (PI 229341); Shou outou (PI 417345 A); 

Tokishi (PI 229361); Tousan 52 (PI 507391). 

R N Rsv1 

Rsv1-k 

Rsv1-t 

Rsv1-m 

Azeminori (PI 219782); KLS 806-1(PI 399022); Qi Huang No.1 (PI 561375). R S Rsv1-y 

Tej sen da baj pi (PI 404172). S N Rsv1-? 

Jin dou No.1 (B) (PI 578494 B); KAS 390-4 (PI 398593). N/S R Rsv3 

Dyn haj hun mao czy (PI 404185); Gun li huang (PI 567541 A); Moshito (PI 81786); N230A (PI 

79727); ORD 8113 (PI 407788C); Tun san si he czao (PI 404170). 

S S rsv 

a
  Foliar symptoms under infection with SMV-G1 and G7 strains: R, resistant (symptomless); N, 

necrotic (systemic necrosis); S, susceptible (mosaic); N/S, mixed symptoms. 
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Table 6. SNP markers used for competitive allele specific PCR (KASP) genotyping the Rsv4 

region and their genetic distances in a F2 population V94-3132 × Lee 68.  

 

SNP
a 

Position Type V94-5152 Lee 68  χ
2
          p-value Distance

b 

ss244712184   11613852 [T/C] = Y C T 0.49 0.7816 - 4.12 

ss244712591   11685678 [T/A] = W A T 0.49 0.7816 - 3.80 

ss244712651   11693196 [T/A] = W A T 0.72 0.6966 - 3.72 

ss244712652   11693604 [C/G] = S G C 0.63 0.7292 - 3.62 

ss244712653   11693900 [A/G] = R G A 0.61 0.7384 - 3.35 

ss244712671   11697977 [T/G] = K G T 0.41 0.8145 - 3.58 

a
  SNPs located in the coding sequence of the Glyma.02g121400 gene were underlined.  

b 
 Genetic distances between SNPs and the Rsv4 locus (in cM). 
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Table 7. Gene annotations of Rsv4 candidate genes identified in relevance of a distance between 

analyzed SNPs and the Rsv4 gene. 

Locus Positiona Protein/Familyb Function 

Glyma.02g121900 12,112,034-12,115,054 Leucine-rich repeat receptor-like kinase Signal transduction 

Glyma.02g122000 12,115,287-12,118,397 Leucine-rich repeat receptor-like kinase Signal transduction 

Glyma.02g122900 12,259,463-12,264,960 BSD domain-containing protein Transcription factor 

Glyma.02g123700 12,351,993-12,355,050 Phosphatidylinositol 4-kinase Signal transduction 

Glyma.02g124300 12,425,993-12,427,856 Myb domain-containing protein Transcription factor 

a
  Physical position on chromosome 2 (in bp) of the Rsv4 candidate genes retrieved from the 

reference genome Wm82.a2.v1. 
b 

 Possible protein identified based on presence of specific domains (SoyBase). 
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Figure 1. Foliar symptoms of soybean genotypes in reaction to soybean mosaic virus (SMV): R, 

resistant, showing no symptoms of the disease; N, necrotic with systemic tip necrosis; S, 

susceptible line displaying typical mosaic symptoms of the SMV disease. Upper part presents 

entire plants, and lower part exhibits a detailed view. 
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position 1473   [A/T] = W, in Williams 82 at 11693196bp = ss244712651 

 

Query: 1321     aagaacttcaatgaggttgttgttgatgatggtgcagaaagtgattcaagttctgatctg 1380 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11693348 aagaacttcaatgaggttgttgttgatgatggtgcagaaagtgattcaagttctgatctg 11693289 

                                                                             

Query: 1381     tttgaattgcaaaactatgacttgagatactattcaagtggcctacctgtctatgaaact 1440 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11693288 tttgaattgcaaaactatgacttgagatactattcaagtggcctacctgtctatgaaact 11693229 

                                                                             

Query: 1441     accaacatggatagcatcaagagaggagcaccwatttccaatggccctctgtgatgtttg 1500 

                |||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||| 

Sbjct: 11693228 accaacatggatagcatcaagagaggagcaccaatttccaatggccctctgtgatgtttg 11693169 

                                                                             

Query: 1501     gtgtacaatatttttcttccttctttaattggttaaggtttaatatttagcatgttagaa 1560 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11693168 gtgtacaatatttttcttccttctttaattggttaaggtttaatatttagcatgttagaa 11693109 

                                                                          

Query: 1561     gctatgaaaaaaggaaaatctattagattttgcttgtttcccccagggtttcatgatttc 1620 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11693108 gctatgaaaaaaggaaaatctattagattttgcttgtttcccccagggtttcatgatttc 11693049 

 

 

 

position 1065    [G/C] = S in willams82 at 11693604bp = ss244712652 

 

Query: 901      agctcaagcactgcagattcaaagtccttgtactcctccttgagttcagggtttagaact 960 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11693768 agctcaagcactgcagattcaaagtccttgtactcctccttgagttcagggtttagaact 11693709 

                                                                             

Query: 961      cctccttatgtacaaacaccaacaaagagctgcaaggaattcagaaccttctcttcagaa 1020 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11693708 cctccttatgtacaaacaccaacaaagagctgcaaggaattcagaaccttctcttcagaa 11693649 

                                                                             

Query: 1021     aacaagcatgcactgtccttttcagcaaagtacaacaataacaasaacaacaatggacaa 1080 

                |||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||| 

Sbjct: 11693648 aacaagcatgcactgtccttttcagcaaagtacaacaataacaagaacaacaatggacaa 11693589 

                                                                             

Query: 1081     catgtaagatcatcaacagcaaccaccactttgcaaaatgagtttttgtgggatgagaag 1140 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11693588 catgtaagatcatcaacagcaaccaccactttgcaaaatgagtttttgtgggatgagaag 11693529 

                                                                             

Query: 1141     aaaaagagggaaccaacaacaacaacaaccttgttggatgataatagcaaccacaaacac 1200 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11693528 aaaaagagggaaccaacaacaacaacaaccttgttggatgataatagcaaccacaaacac 11693469 

 

 

 

 

position 769   [T/C] = Y in Willams82 at 11,693,900bp = ss244712653 

 

Query: 601      aggcaccatcatcatcatcatcatggacatagagctgccagaatcagcttagacatgcca 660 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11694068 aggcaccatcatcatcatcatcatggacatagagctgccagaatcagcttagacatgcca 11694009 

 

Query: 661      atgagaagcttgctcccacagcaattccatggcatggagaagcaaatcatcatgaaggag 720 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11694008 atgagaagcttgctcccacagcaattccatggcatggagaagcaaatcatcatgaaggag 11693949 

                                                                             

Query: 721      aagaagcacaagcagcctagctctcctggtggaaggcttgcaagcttcytgaactctctc 780 

                |||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||| 

Sbjct: 11693948 aagaagcacaagcagcctagctctcctggtggaaggcttgcaagcttcttgaactctctc 11693889 

                                                                             

Query: 781      ttcagccaatcagcatcaaagaagaagaagtcaaataagtcaagctcacagtccatgaaa 840 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11693888 ttcagccaatcagcatcaaagaagaagaagtcaaataagtcaagctcacagtccatgaaa 11693829 

                                                                             

Query: 841      gatgaagatgagagccctggtggaaggaggagaagaaggagcagcattagccatttcaga 900 

                |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct: 11693828 gatgaagatgagagccctggtggaaggaggagaagaaggagcagcattagccatttcaga 11693769 

 

 

 

Figure 2. Blast output of sequenced V94-5152 (Rsv4) soybean accession against SoyBase 

database (http://soybase.org) of Williams 82 (rsv) reference sequence. Discovered SNPs located 

in the Glyma.02g121400 gene were marked in black box. 
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________________________________________________________________________ 

______________________________________________________________________ 

Figure 3. Clustal W (BioEdit) output of ten soybean checks for the target Glyma.02g121400 

(Glyma02g13380) sequences aligned to Williams 82 sequence (Wm82.a2.v1) (SoyBase). 

Positive and negative strand of each DNA was sequenced and aligned. Letters designate changes 

in nucleotides (SNPs), dots indicate no change while blasting with the Williams 82 (rsv), the "N" 

letter indicates a possibility of presence of any base. 
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>Glyma02g13380.1 class=Sequence position=Gm02:11692903..11694668 (- strand) 

 

ACAACCACGT ACTTAACACC AAACTCCCAC TCAAACCCAT AGAAGCATAT AGAATCCAAG GAAACACAGC TCTTTGCTCC 

CCACAATCCC TAACAAAATC CTCTGGTTTT TAACAGCATG AGGAGGATAA AAAGCACTGT TCCCCACTTA TATCTTTATT 

GCTAATGCAC ATATTCACAT CATGTGTGGA CCTCACACAA AAACCTCCAA AACTCCCTCA TCATATAAAA TTATGCCTTG 

AGTTATTGAT TAACCTAAAC TGACCCTCCC CACTACTCTC CATCATTCGA AACCCAGTAT CCCCCCCCCC TTCTTGTTAC 

ATATTGCTAT ATCCATAATT CCACACACCA TTTCATTCAT TCATTCACCT CTTGTTACAT ATATAACTTG TTAATACAAG 

TCCTAAACTC AAACTTGCAC CACACTATGT CCATAGCAGG CCTTATAGAC CCAGAAATGA ATCACAACAA GTCCTTCCAC 

CGGCGAAATA ACTCCGGCGA GCTCGATGTG TTTGAGGCAG CAAGGTACTT CTCAGGATAC AGTGAAGTTC TTGGCTCCAC 

CACCACCACC TACACTCAGA AGATCAATAT GAGAGAAGAA AGGCACCATC ATCATCATCA TCATGGACAT AGAGCTGCCA 

GAATCAGCTT AGACATGCCA ATGAGAAGCT TGCTCCCACA GCAATTCCAT GGCATGGAGA AGCAAATCAT CATGAAGGAG 

AAGAAGCACA AGCAGCCTAG CTCTCCTGGT GGAAGGCTTG CAAGCTTCYT GAACTCTCTC TTCAGCCAAT CAGCATCAAA 

GAAGAAGAAG TCAAATAAGT CAAGCTCACA GTCCATGAAA GATGAAGATG AGAGCCCTGG TGGAAGGAGG AGAAGAAGGA 

GCAGCATTAG CCATTTCAGA AGCTCAAGCA CTGCAGATTC AAAGTCCTTG TACTCCTCCT TGAGTTCAGG GTTTAGAACT 

CCTCCTTATG TACAAACACC AACAAAGAGC TGCAAGGAAT TCAGAACCTT CTCTTCAGAA AACAAGCATG CACTGTCCTT 

TTCAGCAAAG TACAACAATA ACAASAACAA CAATGGACAA CATGTAAGAT CATCAACAGC AACCACCACT TTGCAAAATG 

AGTTTTTGTG GGATGAGAAG AAAAAGAGGG AACCAACAAC AACAACAACC TTGTTGGATG ATAATAGCAA CCACAAACAC 

TTATCAGAGA AACAAAAGAA CAACAACAAC AAGGGAAGTC ATGAGTTATT ACTTGAGAAA GATAGGATGT TAGTGGACAA 

CAAGTACTCA TCAGAAGAGA AGGAAACCAC CACTCAATTC AAGAACTTCA ATGAGGTTGT TGTTGATGAT GGTGCAGAAA 

GTGATTCAAG TTCTGATCTG TTTGAATTGC AAAACTATGA CTTGAGATAC TATTCAAGTG GCCTACCTGT CTATGAAACT 

ACCAACATGG ATAGCATCAA GAGAGGAGCA CCWATTTCCA ATGGCCCTCT GTGATGTTTG GTGTACAATA TTTTTCTTCC 

TTCTTTAATT GGTTAAGGTT TAATATTTAG CATGTTAGAA GCTATGAAAA AAGGAAAATC TATTAGATTT TGCTTGTTTC 

CCCCAGGGTT TCATGATTTC AACTGATCCT TTCAATACTT TTTTTTTTCT GTGTACATAT TGGAATGTTG GCTTGTCTTA 

TCTAATTTCA TGATCTAATG TCCTTTGCTT TTGGACCTTT GTTTTTAGAG TGCAAAAACA AAAACAAAAC AAAAGTTAAT 

GCCCAC 

 

Figure 4. Physical positions of three SNPs identified (marked in black box) at the sequenced 

Glyma.02g121400 (Glyma02g13380) coding sequence (marked in light grey) and its flanking 

sequences (marked in dark grey). Three SNPs: ss244712653 [T/C]=Y (position 769; in Williams 

82 at 11,693,900bp), ss244712652 [G/C]=S (position 1065; in Williams 82 at 11693604bp), and 

ss244712651 [A/T]=W (position 1473; in Williams 82 at 11693196bp) were identified by Blast 

function available at SoyBase website.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://soybase.org/gb2/gbrowse/gmax1.01?name=Gm02:11692903..11694668
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Figure 5. Genetic linkage map of partial chromosome 2 (MLG D1b) created with JoinMap using 

data from the F2:3 population derived from V94-5152 (Rsv4) × Lee 68 (rsv). Genetic distances 

(in cM) between discovered SNPs and the Rsv4 gene were indicated on the left side. 
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CHAPTER THREE 

 

VALIDATION OF MARKER-ASSISTED GENE PYRAMIDING          

FOR SOYBEAN MOSAIC VIRUS RESISTANCE 
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ABSTRACT 

 Soybean can be infected and severely damaged by Soybean mosaic virus (SMV) causing 

a significant decrease in soybean yield. To prevent or reduce this destruction, pyramiding of 

SMV resistance genes (R-genes) is of vital importance leading to durable crop protection against 

multiple strains of the pathogen. Three SMV resistance genes Rsv1, Rsv3, and Rsv4 have been 

pyramided by crossing two SMV resistant accessions J05 (Rsv1+Rsv3) and V94-5152 (Rsv4) 

using marker-assisted selection (MAS). In this study, we tested ten F4:7 lines for a presence of all 

three R-genes at the homozygous stage using simple sequence repeat (SSR) and single 

nucleotide polymorphism (SNP) markers. For inheritance study, we crossed the GP20 

(Rsv1+3+4) line with homozygous recessive parent Williams 82 (rsv) and 155 F2 plants were 

genotyped by three SSR markers linked to the Rsv1, Rsv3, and Rsv4 loci, and F2:3 lines were 

separately inoculated with SMV-G1 and SMV-G7 strains to determine plants foliar symptoms. 

The results confirmed a successful integration of three SMV R-genes into one soybean 

background displaying segregation of three independent genes in the progeny. The gene 

pyramiding line GP20 provides durable resistance to all SMV strains, thus helping the host in an 

evolutionary race with the virus. We propose the GP20 line for future release as a source of SMV 

resistance in soybean breeding programs worldwide. 
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INTRODUCTION 

SMV causes the most devastating viral disease in soybean-growing areas around the 

world and results in deterioration of seed quality and significant yield losses up to 90% in 

severely infected fields (Ren et al. 1997; Wang et al. 2001). In the United States, SMV isolates 

have been classified into seven strains (G1 - G7) based on a set of differential cultivars (Cho and 

Goodman 1979). Individual soybean reactions to these strains are classified into three main 

responses as resistant (R, symptomless), susceptible (S, mosaic) or necrotic (N) (Cho and 

Goodman 1979; Chen et al. 1991). 

 To date, three multiallelic SMV R-genes have been identified: Rsv1, Rsv3, and Rsv4 

(Buss et al. 1997; Buzzel and Tu 1989; Kiihl and Hartwig 1979). These genes follow a 

Mendelian mode of major gene inheritance and each expresses a distinct pattern of reaction to 

the seven SMV strains. The Rsv1 locus confers resistance to less virulent strains (G1 - G4), and 

susceptibility or necrosis to more virulent strains (G5 - G7). In contrast, the Rsv3 harbors 

resistance to more virulent strains (G5 - G7), and susceptibility to less virulent strains (G1 - G4) 

(Chen et al. 1991). The Rsv4 provides resistance to G1 - G7, but may express early resistance 

(ER) at the seedling stage and mild susceptibility at later developmental stages (Buss et al. 

1997). The Rsv1, Rsv3, and Rsv4 R-genes have been physically mapped on chromosome 13 

(MLG F) (Yu et al. 1994), 14 (MLG B2) (Hayes et al. 2000), and 2 (MLG D1b) (Jeong et al. 

2002) respectively. 

  Limited number of SMV resistant resources is available in soybean breeding programs 

(Shakiba et al. 2012a). Most of resistant soybean accessions carry a single dominant gene, and 

only a few contain two R-genes  in various combinations (Rsv1+3, Rsv1+4, or Rsv3+4) (Chen et 

al. 1993; Gunduz et al. 2002; Liao et al. 2002; Shakiba et al. 2012b). Recently, all three genes 
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were identified in the Korean landrace ‘8101’ (Liao et al. 2011). Combination of two or three 

genes for SMV resistance diminishes vulnerability of the plant by conferring complementary 

resistance to multiple viral strains (Chen et al. 1993; Shi et al. 2009). 

 SMV adapts and develops overtime, resulting in emergence of new strains that overcome 

resistance in soybean (Ivanov et al. 2014). Due to the genetic variability of SMV and strong 

selection pressure, resistance-breaking isolates SMV-N, G5H, CN18, G7a and G7H have 

recently emerged in the Korean peninsula (Ahangaran et al. 2013; Choi et al. 2005; Kim et al. 

2003; Seo et al. 2009). Also, recombinant soybean mosaic virus (SMV-R) was recently identified 

and classified as a novel strain in Chongqing, China, exhibiting different pathogenicity on 

soybeans compared with other SMV strains (Yang et al. 2014).  

 Qualitative resistance is often less durable because of rapid changes of virulence caused 

by counter-evolution of a host and its pathogen (Ivanov et al. 2014). This gene-specific 

resistance is usually considered as a gene-for-gene type of response, and is relatively easy to 

manipulate in both genetic research and breeding programs; however, their use is often limited to 

a specific race or strain of a pathogen (Ivanov et al. 2014; Rubiales et al. 2015).  The main 

objective of gene pyramiding (GP) is to obtain an ideal genotype with all genes of desirable 

traits. Pyramiding of multiple SMV R-genes in a single soybean genotype is needed to provide 

more durable and non-race-specific resistance for soybean improvement (Shi et al. 2009). 

 Due to dominance and epistasis of genes governing disease resistance, pyramiding is 

difficult using conventional breeding methods; however, it is often performed using marker-

assisted selection (MAS), also called as marker-assisted pyramiding. MAS is a method of 

selecting desirable individuals in a breeding scheme to improve or develop new cultivars based 

on indirect selection on traits of interest by molecular markers that assist phenotypic selections 

http://www.tandfonline.com/author/Rubiales%2C+D
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for crop improvement (Collard and Mackill 2008). The general principle of MAS is existence of 

polymorphisms, natural variations in DNA sequence that have no adverse effect on the 

individuals, and if the location of a polymorphism is known, it can serve as a landmark for 

locating specific genes (Jeong et al. 2002; Yu et al. 1994). Since these markers and genes are 

linked to each other on the same chromosome, they tend to be inherited together by the standard 

laws of inheritance from one generation to the next (Collard and Mackill 2008). 

Up to now, two attempts have been made to pyramid SMV resistance genes in soybeans. 

Saghai Maroof et al. (2008) pyramided SMV resistance genes Rsv1, Rsv3 and Rsv4 using three 

Essex isogenic lines V94-3972 (Rsv1), V229 (Rsv3) and V97-9003 (Rsv4), resulting in lines with 

two- and three-gene combinations. In their study, F2 plants were screened by two flanking SSR 

markers per locus. Two gene and three gene isogenic lines of Rsv1+Rsv3, Rsv1+Rsv4 and 

Rsv1+Rsv3+Rsv4 acted in a complementary manner conferring resistance against six SMV 

strains; whereas isogenic lines of Rsv3Rsv4 displayed a late susceptible reaction to the selected 

SMV strains. Subsequently, Shi et al. (2009) pyramided three SMV resistance genes from a cross 

between J05 (Rsv1+Rsv3) and V94-5152 (Rsv4) using eight PCR-based markers. Two SSR 

markers (Sat_154 and Satt510) and one gene-specific marker (Rsv1-f/r) were used for selecting 

plants containing Rsv1, Satt560 and Satt063 for Rsv3, and Satt266, AI856415, and AI856415-g 

for Rsv4. Five F4:5 lines were identified to be homozygous for all eight marker alleles and 

presumably carry all three SMV resistance genes that would potentially provide multiple and 

durable resistance to SMV.  

In the present study, we validated the pyramided lines created by Shi et al. (2009), and 

confirmed a successful transfer of SMV resistance alleles at each of these three loci into a single 

soybean background using classical breeding and molecular marker approach. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Collard%20BC%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mackill%20DJ%5Bauth%5D
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MATERIALS AND METHODS 

Plant material and initial screening 

 We planted 11 F4:7 pyramided (GP) lines, derived from the cross J05 (Rsv1+3) × V94-

5152 (Rsv4) developed by Shi et al. (2009), in the field at Arkansas Agricultural Research and 

Extension Center, Fayetteville, AR. Young trifoliate leaves were collected and genomic DNA 

was extracted from fresh leaves using the CTAB method (Doyle and Doyle 1990) with minor 

modifications. For initial screening, we picked twenty plants from each line for genotyping using 

SNP and SSR markers screening (Table 1). We used three polymorphic SNPs, ss244712651 

(Gm02:11,693,196), ss244712652 (Gm02:11,693,604), and ss244712653 (Gm02:11,693,900), to 

confirm the presence of the Rsv4 locus and genotyped the lines at the Genomics Center, 

University of Minnesota, Minneapolis, MN, using Sequenom iPLEX platform. We also 

employed five SSR markers Sat_317 (Gm13: 30,984,436-30,984,483) and Sat_154 

(Gm13:27,312,436-27,312,485) for presence of Rsv1 locus, Sat_424 (Gm14:46,983,684-

46,983,731) and Satt560 (Gm14:47,849,680-47,849,691) for Rsv3 locus, and Satt634 

(Gm02:11,441,849-11,441,887) for Rsv4 locus. Moreover, we phenotyped minimum 50 plants 

per GP line by mechanical inoculations with SMV-G1 and G7 strains in a greenhouse. 

 

Population development and genotyping 

 To study inheritance of SMV resistance, we crossed the GP20 line with homozygous 

recessive cultivar Williams 82 and monitored F2 plants for hypocotyl and flower color 

segregation at the Arkansas Agricultural Research and Extension Center of University of 

Arkansas, Fayetteville, AR. We collected leaf tissue for DNA extraction and used three selected 

polymorphic SSR markers Sat_317 for Rsv1, Sat_424 for Rsv3 and Satt634 for Rsv4 locus for 
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molecular screening of each F2 plant derived from the validation population GP20 × Williams 

82. 

 Each polymerase chain reaction (PCR) mixture consisted of 15×Green GoTaq Flexi 

Buffer (Promega), 45mM MgCl2, 2.5mM dNTPs, 5mM primer mix, 1U Taq (Promega), and 

80ng DNA. We amplified PCR products with a program of 94°C for 5 min initial denaturation; 

35 cycles of 25 s at 94°C denaturation, 25 s at 61⁰C for Sat_317, 50⁰C for Sat_424, and 48⁰C for 

Satt634 primers annealing, 25 s at 72°C extension, and 5 min at 72°C final extension after the 

last cycle. We separated the PCR products in 6% non-denaturing polyacrylamide gel in 0.6 TBE 

and visualized by staining with ethidium bromide. To analyze the results from 155 F2 samples, 

we used a scoring system "A" (GP20 parental allele), B (Williams 82 parental allele), and AB 

(presence of both parental alleles). 

 

SMV inoculation 

 We used two SMV strains, G1 and G7, to screen the validation population (VP) of GP20 

× Williams 82. To confirm strains identities, we observed foliar symptoms on sets of 

differentials including: PI 96983 (Rsv1), York (Rsv1-y), V262 (Rsv1-n), L29 (Rsv3), V229 

(Rsv3), V94-5152 (Rsv4), V97-9003 (Rsv4), and Lee 68 (rsv). We introduced SMV into each 

plant by mechanical inoculation of at least 20 individuals per F2:3 VP line according to Chen et 

al. (1991). We prepared the inoculum by grinding infected leaves in ice-cold 0.01M potassium 

phosphate buffer (pH 7.2) at an approximate dilution 1:10 (w/v). We pre-dusted both unifolate 

leaves before V1 stage with 600-mesh carborundum, and rubbed with a pestle dipped in the 

inoculum. To prevent cross contamination of SMV strains, we performed inoculations in 

separate greenhouses. The greenhouse conditions were maintained at 28°C with a 14 h 
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photoperiod at the Harry R. Rosen Alternative Pest Control Center, University of Arkansas in 

Fayetteville, AR. We monitored foliar reactions to each SMV strain each week, compared with 

set of checks 2-4 weeks after inoculation, and classified foliar reactions into four groups as all 

resistant (R), all susceptible (S), all necrotic (N) and segregating (R+S or R+N+S) phenotypes. 

 

Data analysis 

 A Chi-square test (χ
2
) was used to determine the goodness of fit of observed segregation 

ratios of three independent genes assortment based on the proposed genetic model (Table 2). 

This test was used for genotyping of F2 plants (pooled classification) and phenotyping of F2:3 

lines separately. Pooled classification of F2 plants was made based on a presence or absence of a 

particular SMV gene that was observed after genotyping, ignoring their homozygous or 

heterozygous stage. Also Chi-square was performed when the marker data was collated with 

phenotypic data of SMV-G1, SMV-G7, and SMV-G1 and G7 together. 

 

RESULTS 

Evaluation of pyramided lines 

 In a previous study, three SMV resistance genes, Rsv1, Rsv3 and Rsv4 were pyramided 

by crossing two resistant soybean accessions J05 (Rsv1+Rsv3) and V94-5152 (Rsv4) using 

marker-assisted breeding approach (Shi et al. 2009). In this research, we tested the homozygosity 

status of the F4:7 GP lines using two SSR markers, Sat_317 and Sat_154, linked to the Rsv1 

locus; two SSR markers, Sat_424 and Satt560, linked to the Rsv3 locus; one SSR marker, 

Satt634, and three SNP markers, ss244712651, ss244712652 and ss244712653, linked to the 

Rsv4 locus (Table 1). Based on the SNPs, the "A-G-G" pattern was expected in genotypes 
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carrying the Rsv4 gene, whereas the "T-C-A" pattern indicated an absence of this locus. In 

accordance to genotyping, we inoculated about 50 plants from each GP line with SMV-G1 and 

G7 strains to verify their resistance under greenhouse conditions (Table 1). Based on the marker 

and SMV inoculation results, we identified ten GP lines potentially carrying three SMV R-genes 

at homozygous stages. In order to confirm the presence of these three genes in the GP 

population, we selected the homozygous line GP20 (Rsv1+3+4) to perform further inheritance 

studies. 

 

Validation population analysis 

 To create the validation population, we crossed SMV resistant F4:8 GP20 line with the 

homozygous recessive at three analyzed loci Williams 82 (rsv) soybean cultivar susceptible to 

both SMV-G1 and G7 strains (Table 1). We employed three polymorphic SSR markers, Sat_317, 

Sat_424 and Satt634 to detect Rsv1, Rsv3 and Rsv4 genes respectively and assess a number of 

observed genotypes in 155 F2 plants (Table 2). Sat_317 (position 72 cM on MLG F, approximate 

distance of 4 cM to the Rsv1) marker analysis revealed the genetic ratio of 39A:80H:36B. 

Similarly, Sat_424 marker (position 101.1 cM on MLG B2, approximate distance of 3 cM to the 

Rsv3) was scored as 46A:67H:42B, and Satt634 (position 46.4 cM on MLG D1b, approximate 

distance of 2 cM to the Rsv4) marker scored as 37A:74H:44B (Figure 2). Based on the Chi-

square test, all marker results fit to a 1:2:1 genetic ratio (data not showed). 

 From the total of 155 F2 samples, 62 displayed presence of all three R-genes with 3 plants 

being homozygous at all three loci (R1R1R3R3R4R4) (Table 3); 62 plants had alleles of two R-

genes in various combinations (22 Rsv1+3, 16 Rsv1+4, and 24 Rsv3+4 samples); 25 plants 

contained one single R-gene (6 with Rsv1, 13 with Rsv3, and 9 with Rsv4); and 3 plants were 



  

72 

   

homozygous recessive at all three loci (r1r1r3r3r4r4). These observed genotyping results (Table 

3, Figure 2) were compared with expected genetic ratio of three independent genes assortment 

(Table 2) using a Chi-square (χ
2
) goodness of fit test. The results showed a good fit to 

segregation of three independent genes in the VP population with a score of 7.2 and two-tailed p-

value of 0.4 (Table 3). 

 We also analyzed the F2:3 VP lines under greenhouse conditions to confirm the 

phenotypic reaction to inoculation about 25 plants per line with SMV-G1 and G7 strains 

separately (Table 3). We classified foliar symptoms of the VP lines infected by the G1 strain as 

53 resistant lines (R), 27 susceptible lines (S) and 75 lines segregating (R+S). No necrotic 

symptoms occurred with G1 infection (Table 3, Figure 3). Infection by the G7 strain revealed 93 

resistant lines (R), 3 necrotic lines (N),  3 susceptible lines (S), 27 segregating lines with two 

classes of reaction (R+S) and 29 segregating lines with three classes of reaction (R+N+S) (Table 

3, Figure 3). 

 

Genetic segregation analysis 

 We collated the observed F2:3 phenotypic data of SMV-G1 only, SMV-G7 only, and 

SMV-G1 and G7 together with F2 genotyping results (Table 3), and tested for the expected 

genetic ratio of three independent gene assortment (Table 2) using a two-tailed Chi-square (χ
2
) 

goodness of fit test. Chi-square testing using molecular data and phenotypic results of SMV-G1 

(with 81% accuracy) fit into the segregation of three independent genes with a χ
2
 value of 10.19 

and a p-value of 0.1781. The same results were obtained by testing molecular data and 

phenotypic results of SMV-G7 (85% accuracy) getting a χ
2
 value of 9.77, and a p-value of 0.202. 

However, in testing for SMV-G1 and G7 together, from a total of 155 samples, 115 exhibited 
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consistency between F2 molecular data and expected phenotype with SMV-G1 and G7 infection 

resulted in 74% accuracy. The results showed a χ
2
 value of 17.23 and a p-value of 0.016. 

According to the criteria, this difference was considered to be statistically significant (with 99% 

confidence), and thus, the null hypothesis (H0) of three independent genes segregation ratio was 

rejected due to small population size, marker distances to a specific R-gene, and experimental 

errors in phenotyping.  

 

DISCUSSION 

 The purpose of gene pyramiding is to incorporate multiple genes from different parents 

into a single genotype to enhance trait performance (Collard and Mackill 2008). Improving 

qualitative traits, such as SMV resistance, is relatively easy because the presence of particular 

gene must have an effect on phenotypic performance of the plant (Saghai Maroof et al. 2008; Shi 

et al. 2009). Resistance breeding has been very successful in the past and provided various 

resistant crop varieties highly adapted to adverse growing conditions (Collard and Mackill. 2008; 

Saghai Maroof et al. 2008). For example, marker-assisted gene pyramiding has been used to 

pyramid major genes for resistance to blight (Huang et al. 1997) and blast (Fukuoka et al. 2015) 

in rice. In wheat, it was used for pyramiding Pm2+Pm4a, Pm2+Pm21, Pm4a+Pm21 for 

powdery mildew (Wang et al. 2001) and the Lr41, Lr42, and Lr43 genes for leaf rust resistance 

(Cox et al. 1994). In soybeans, multiple Rpp genes of Asian soybean rust (Yamanaka et al. 

2015); and rag3, rag1b, rag4, and rag1c aphid-resistant genes were pyramided with help of 

MAS (Chandrasena et al. 2015). 

 In the study by Shi et al. (2009), F4:5 lines have been identified as presumably carrying all 

three SMV resistance genes using the cross J05 (Rsv1+3) × V94-5152 (Rsv4). The soybean 



  

74 

   

accessions, used as the parents for gene pyramiding, were both resistant to SMV-G1 and G7 

strains (Table 1). The F4:5 GP lines were used to advance to the F4:7 generation to reduce their 

heterozygosity levels. The GP lines displayed the same resistance as their parents, and for this 

reason, genotyping with available molecular markers was necessary for choosing the right GP 

parent for a validation population.  

 To verify the presence of all three SMV resistance genes in one soybean genotype our 

goal was to make a cross between the chosen inbred F4:7 GP line, GP20 (Rsv1+3+4) and 

Williams 82 (rsv) to examine genetic segregation for SMV reaction and linked SSR markers 

(Figure 1). Observed genetic segregation of F2 plants and phenotypic relationship of F2:3 lines 

inoculated with SMV-G1 and G7 strains indicated the presence of three genes for SMV 

resistance at the homozygous state in the GP20 line (Table 3). 

This study demonstrated three independent resistant genes segregating according to 

Mendelian laws that made it simple to predict 64 individuals as a minimal population size. One 

SSR marker per each SMV locus was used for tracing the presence or absence of the target 

genes, and their efficiency was good enough to fit into three independent genes segregation ratio 

(Table 3, Figure 2). However, these markers displayed 74% consistency when compared with 

F2:3 phenotypic results of infection and both SMV strains, and the results did not fit into the three 

genes ratio. This could be due to possible inconsistency between genotyping and phenotyping 

data that was caused by using SSR markers that were not perfectly linked with three SMV loci. 

There is still a possibility for recombination between the gene and the marker located far from 

each other thus causing deviations in the results. For validation purposes, using one marker per 

locus was effective; however, it is advised to use at least two markers per locus while tracking 

SMV R-genes in a breeding program.  
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The successful effort on SMV resistance gene pyramiding using MAS was performed in 

previous studies using similar breeding strategies (Saghai Maroof et al. 2008; Shi et al. 2009); 

however, no validation cross was performed to confirm the number of pyramided genes in 

selected lines. The validation is often skipped as it needs several more years to confirm the 

results; therefore, the pyramided lines cannot be released to be used in breeding programs, and 

rather they are used in genetic studies. Our research provided the first evidence of successful 

incorporation of three dominant SMV resistance genes into the soybean GP20 line by performing 

a validation cross with the susceptible recessive line Williams 82. The confirmed GP20 line 

provides durable resistance to all SMV strains identified in the United States, thus protecting 

soybeans against an evolutionary race between host and pathogen.  

This GP method was based on a cross between two distinct soybean germplasm lines, and 

selected progeny was a result of random gene shuffling that could potentially have an effect on 

expression of other important traits because gene pyramiding was not performed by backcrossing 

where crossing with the recurrent parent eliminate the linkage drag. Using the GP20 line as a 

donor parent for backcrossing with elite lines would be of higher importance in breeding 

programs in the future, and final progenies could be confirmed by background analysis using 

genome-wide molecular markers; therefore, it can be directly developed as a commercial variety. 

Molecular markers used for genotyping in this study could facilitate the backcrossing process by 

reducing the number of generations that breeders must evaluate to ensure the presence of desired 

SMV R-gene combination 

The impact of molecular breeding is increasingly being appreciated by researchers as a 

method for improving the lower efficiency of traditional breeding methods. The strategy of 

introgression and screening multiple R-genes by molecular markers is a powerful method that 
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reduces the cost and the time required for the isolation of desirable recombinants with target 

resistance genes. It is important to test reliability of markers to predict the phenotype. To 

improve the effectiveness of MAS, it is necessary to identify markers as close as possible to the 

target gene to reduce the recombination frequency between the target gene and the marker. By 

providing broader and durable resistance against all existing SMV isolates, our inbreed GP20 

line has been proposed as a potential future release, that is practical for breeders and will have 

a high impact on the yield stability and sustainability of soybean production when combined with 

backcrossing strategies. 

 Although SMV resistance loci have been reported in many soybean genotypes, most of 

the modern commercial cultivars are susceptible to SMV, particularly to more virulent strains 

(Zheng et al. 2005; Shakiba et al. 2012a). New resistance-breaking SMV strains cause a real 

danger, and for these reasons, gene pyramiding is crucial for breeding and production purposes 

and will contribute to provide effective resistance to a broad and ever-changing range of SMV 

pathotypes. 
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Table 1. Genotypic and phenotypic characterization of soybean accessions used to create gene pyramiding and validation populations. 

Soybean 

Accession 

  

R-Gene 

SSRa 
 SNPb 

 SMVc 

Sat_317 

(Rsv1) 

Sat_154 

(Rsv1) 

Sat_424 

(Rsv3) 

Satt560 

(Rsv3) 

Satt634 

(Rsv4) 

 ss244712651 

(Rsv4) 

ss244712652 

(Rsv4)  

ss244712653 

(Rsv4)  

 
G1 G7 

J05 Rsv1+3 + + + + -   T C A  R R 

V94-5152 Rsv4 - - - - +  A G G  R R 

GP20 Rsv1+3+4 + + + + +  A G G  R R 

Williams 82 rsv - - - - -  T C A  S S 

a
  SSR genotyping: +, presence of SMV resistance locus; -, absence of SMV resistance locus. 

b
  SNP genotyping: A, T, C, G correspond to DNA nucleotide changes. 

c
  Symptoms upon infection by SMV-G1 and G7 strains: R, resistant (symptomless); S, susceptible (mosaic). 
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Table 2. Genetic model for segregation of three independent SMV resistance genes and F2:3 

phenotypic reactions in the validation population GP20 (Rsv1+3+4) × Williams 82 (rsv). 

 

Genotypea Sat_317 

Rsv1 

Sat_424 

Rsv3 

Satt634 

Rsv4 
Codeb Expected Observed SMV-G1c SMV-G7c 

R1R1 R3R3 R4R4 + + + 1+3+4 2.42   (1/64) 4 R R 

R1R1 R3R3 R4r4 + + + 1+3+4 4.84   (2/64) 6 R R 

R1R1 R3R3 r4r4 + + - 1+3+0 2.42   (1/64) 6 R R 

R1R1 R3r3 R4R4 + + + 1+3+4 4.84   (2/64) 5 R R 

R1R1 R3r3 R4r4 + + + 1+3+4 9.68   (4/64) 7 R R+S 

R1R1 R3r3 r4r4 + + - 1+3+0 4.84   (2/64) 3 R R+S 

R1R1 r3r3 R4R4 + - + 1+0+4 2.42   (1/64) 4 R R 

R1R1 r3r3 R4r4 + - + 1+0+4 4.84   (2/64) 4 R R+S 

R1R1 r3r3 r4r4 + - - 1+0+0 2.42   (1/64) 3 R S 

R1r1 R3R3 R4R4 + + + 1+3+4 4.84   (2/64) 5 R R 

R1r1 R3R3 R4r4 + + + 1+3+4 9.68   (4/64) 8 R+N+S R 

R1r1 R3R3 r4r4 + + - 1+3+0 4.84   (2/64) 4 R+N+S R 

R1r1 R3r3 R4R4 + + + 1+3+4 9.68   (4/64) 10 R R 

R1r1 R3r3 R4r4 + + + 1+3+4 19.36 (8/64) 17 R+N+S R+N+S 

R1r1 R3r3 r4r4 + + - 1+3+0 9.68   (4/64) 9 R+N+S R+N+S 

R1r1 r3r3 R4R4 + - + 1+0+4 4.84   (2/64) 4 R R 

R1r1 r3r3 R4r4 + - + 1+0+4 9.68   (4/64) 4 R+N+S R+N+S 

R1r1 r3r3 r4r4 + - - 1+0+0 4.84   (2/64) 3 R+N+S R+N+S 

r1r1 R3R3 R4R4 - + + 0+3+4 2.42   (1/64) 3 R R 

r1r1 R3R3 R4r4 - + + 0+3+4 4.84   (2/64) 8 R+S R 

r1r1 R3R3 r4r4 - + - 0+3+0 2.42   (1/64) 6 S R 

r1r1 R3r3 R4R4 - + + 0+3+4 4.84   (2/64) 4 R R 

r1r1 R3r3 R4r4 - + + 0+3+4 9.68   (4/64) 9 R+S R+S 

r1r1 R3r3 r4r4 - + - 0+3+0 4.84   (2/64) 7 S R+S 

r1r1 r3r3 R4R4 - - + 0+0+4 2.42   (1/64) 3 R R 

r1r1 r3r3 R4r4 - - + 0+0+4 4.84   (2/64) 6 R+S R+S 

r1r1 r3r3 r4r4 - - - 0+0+0 2.42   (1/64) 3 S S 

a
   SMV allele symbols: R1=Rsv1; r1=rsv1; R3=Rsv3; r3=rsv3; R4=Rsv4; r4=rsv4; non-bold 

symbols signify the same genotype as above. 
b 

  Simplified genetic coding system for scoring R-genes: 1= Rsv1, 3= Rsv3, 4=Rsv4, 0=rsv. 
c
   Phenotypic symptoms of F2:3 lines upon SMV-G1 and G7 strains infection: R, resistant 

(symptomless); N, systemic necrosis; S, susceptible (mosaic). 
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Table 3. Collated classification of observed genotypic and phenotypic segregation in a 

population GP20 (Rsv1+Rsv3+Rsv4) × Williams 82 (rsv) to the expected genetic model. 
 

 

Codea 
R-gene(s) 

No. F2 lines genotypedb 
 No. F2:3 lines phenotypedc 

Expected Observed  G1  G7 G1+G7 

1+3+4 Rsv1+3+4 65.34  (27/64) 62  48 51 40 

1+3+0 Rsv1+3 21.78  (9/64) 22  20 18 18 

1+0+4 Rsv1+4 21.78  (9/64) 16  15 15 15 

0+3+4 Rsv3+4 21.78  (9/64) 24  17 20 15 

1+0+0 Rsv1 7.26  (3/64) 6  6 6 6 

0+3+0 Rsv3 7.26  (3/64) 13  11 12 11 

0+0+4 Rsv4 7.26  (3/64) 9  7 8 7 

0+0+0 rsv 2.42 (1/64) 3  3 3 3 

  155 (100%)        155 (100%)             127 (81%) 133 (85%) 115 (74%) 

   
χ2 = 7.2 

p = 0.4 

 
χ2 = 10.19 

p = 0.1781 

χ2 = 9.77 

p = 0.202 

χ2 = 17.23 

p = 0.016** 

 
a
   Simplified genetic coding system for scoring R-genes: 1= Rsv1, 3= Rsv3, 4=Rsv4, 0=rsv. 

b     
Pooled classification of observed F2 plants in comparison with the expected genetic model. 

c     
Pooled classification of F2:3 lines displaying consistent data between genotypic SSR marker 

results and phenotypic reactions to SMV-G1 and G7 strains; Chi-square scores were obtained 

by observed phenotypic and genotypic data; **, significance level of p ≤ 0.01.
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Table 4. Summary of F2 genotypes and their corresponding F2:3 phenotypes in response to soybean mosaic virus G1 and G7 strains of 

the gene pyramiding validation population from GP20 (Rsv1+3+4) × Williams 82 (rsv). 

Possible 

Genotype† 

No. F2 

Plants ‡ 

F2:3 Phenotypes for SMV-G1 § F2:3 Phenotypes for SMV-G7 § 

Expected Observed Expected Observed 

R1R1 R3R3 R4R4 4 R -    +   +   + R +   +   +   + 

R1R1 R3R3 R4r4 6 R +   +   +   +   +   + R +   +   +   +   +   + 

R1R1 R3R3 r4r4 6 R +   +   +   +   +   + R +   +   +   +   +   + 

R1R1 R3r3 R4R4 5 R +   +   +   -    + R +   +   +   +   + 

R1R1 R3r3 R4r4 7 R +   +   +   +   +   +   + R+S -    -    +   +   -    +   - 

R1R1 R3r3 r4r4 3 R -    +   + R+S -    +   - 

R1R1 r3r3 R4R4 4 R +   +   +   + R +   +   +   + 

R1R1 r3r3 R4r4 4 R -    +   +   + R+S -    +   +   + 

R1R1 r3r3 r4r4 3 R +   +   + N+S +   +   + 

R1r1 R3R3 R4R4 5 R -    -    -    -    - R -    +   +   +   + 

R1r1 R3R3 R4r4 8 R+N+S +   +   +   +   +   +   +   + R +   +   +   +   +   +   +   + 

R1r1 R3R3 r4r4 4 R+N+S +   +   +   + R +   +   +   + 

R1r1 R3r3 R4R4 10 R +   -    -    +   +   +   +   -    +   + R +   +   +   +   +   +   +   +   +   + 

R1r1 R3r3 R4r4 17 R+N+S +   +   +   +   +   +   +   -    +   +   +   +   +   -   -   -  + R+N+S +   +   +   +   +   -    +   +   +   +   -   +   -   -   -   +  - 

R1r1 R3r3 r4r4 9 R+N+S +   +   +   +   +   -    +   +   + R+N+S +   +   +   +   +   -    +   +   - 

R1r1 r3r3 R4R4 4 R +   +   +   + R +   +   +   + 

R1r1 r3r3 R4r4 4 R+N+S +   +   +   + R+N+S +   +   +   + 

R1r1 r3r3 r4r4 3 R+N+S +   +   + R+N+S +   +   + 

r1r1 R3R3 R4R4 3 R -    -    - R +   +   + 

r1r1 R3R3 R4r4 8 R+S +    +   +   +   +   -    +   + R +   +   +   +   +   +   +   + 

r1r1 R3R3 r4r4 6 S +    +   -    +   +   + R +   +   +   +   +   + 

r1r1 R3r3 R4R4 4 R -    +   -    + R +   +   -    + 

r1r1 R3r3 R4r4 9 R+S +   +   +   -    +   +   +   +   + R+S +   -    +   -    +   -    +   +   + 

r1r1 R3r3 r4r4 7 S +   +   -    +   +   +   + R+S +   +   -    +   +   +   + 

r1r1 r3r3 R4R4 3 R -    +   + R +   +   + 

r1r1 r3r3 R4r4 6 R+S +   +   +   -    +   + R+S +   +   +   -    +   + 

r1r1 r3r3 r4r4 3 S +   +   + S +   +   + 

†  SMV allele: R1, Rsv1; r1, rsv1; R3, Rsv3; r3, rsv3; R4, Rsv4; r4, rsv4; Non-bold symbols signify the same genotype as above. 

‡  Frequency of F2 plants with specific SMV resistance alleles detected by three SSR markers. 

§  Expected and observed phenotypes of F2:3 lines in response to SMV-G1 and G7 strains; +, lines consistent with expected phenotype 

and F2 molecular data; -, lines inconsistent with expected phenotype and F2 molecular data.
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Figure 1. Schematic representation of pyramiding Rsv1, Rsv3, and Rsv4 genes for SMV 

resistance using J05 (Rsv1+3) × V94-5152 (Rsv4) and validation cross of GP20 (Rsv1+3+4) × 

Williams 82 (rsv). 
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Figure 2. PCR amplification patterns of validation parents and F2 population derived from a 

cross GP20 × Williams 82 using SSR markers linked to SMV resistance loci: A) Sat_317 

(annealing temp. 61⁰C) linked to Rsv1; B) Sat_424 (annealing temp. 50⁰C) linked to Rsv3; C) 

Satt634 (annealing temp. 48⁰C) linked to Rsv4. P1, parent GP20; P2, parent Williams 82; A, 

resistance allele derived from GP20; B, susceptible allele derived from Williams 82; H, both 

alleles derived from both parents. 
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Figure 3. Foliar symptoms of SMV infection on F2:3 population derived from GP20 (R) × 

Williams 82 (S) cross: Resistant plants inoculated with SMV-G1 strain (upper left); Susceptible 

(mosaic) plants inoculated with SMV-G1 strain (upper right); Early systemic necrosis symptoms 

with SMV-G7 infection (lower left); Segregating line expressing resistant and susceptible (R+S) 

reactions (lower right). 
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CHAPTER FOUR 

 

A NOVEL ALLELE AT THE Rsv4 LOCUS                                        

FOR RESISTANCE TO SOYBEAN MOSAIC VIRUS  
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ABSTRACT 

Soybean mosaic virus (SMV) is the most prevalent viral pathogen and economic threat to 

soybean production worldwide. Three independent genes harboring SMV resistance have been 

identified: Rsv1, Rsv3, and Rsv4. Although the resistance genes (R-genes) have been found in 

some germplasm, usually they provide protection to some, but not all, viral strains. The objective 

of this research was to identify a new source of SMV resistance in Korean soybean accession PI 

438307. The soybean genotype PI 438307 was crossed with susceptible parent Essex (rsv), and 

differential parents PI 96983 (Rsv1), L29 (Rsv3), and V94-5152 (Rsv4). F2 plants and F2:3 lines 

derived from all four cross combinations were screened with SMV-G7 strain. Additionally, F2 

plants obtained from PI 438307 (R) x Essex (S) were genotyped with two simple sequence 

repeat (SSR) markers on chromosome 2 (MLG D1b). Inheritance and allelic studies revealed that 

resistance to SMV in PI 438307 is controlled by a single dominant gene allelic to the Rsv4 locus. 

PI 438307 exhibited unique symptomology when compared to reported Rsv4 alleles in V94-

5152, PI 88788 and Beeson. PI 438307 was resistant to SMV-G1 through G6 and resistant at 

seedling stages to SMV-G7. Therefore, it was proposed that the new allele Rsv4-v should be 

assigned to the SMV resistance in this soybean accession. Soybean sources carrying Rsv4 alleles 

are rare among the soybean germplasm and confer resistance to all or most SMV strains; 

therefore, this allele may be a good choice for breeding programs in the future. 
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INTRODUCTION 

 Among over one hundred viruses that are known to infect soybeans, soybean mosaic virus 

is the most common and detrimental pathogen causing substantial yield reduction and significant 

seed quality deterioration (Ren et al., 1997). Not only does it cause the mosaic disease in soybeans, 

but it also infects many other commercially important plants worldwide (Balgude et al., 2012). 

Susceptible soybean genotypes develop characteristic stunted growth and crinkled leaves, display 

reduction in seedling viability and vigor, and produce fewer, smaller, and often mottled seeds 

(Ross, 1983; Buss et al., 1989; Hill et al., 1987).  

 Host resistance is the preferred means of managing pathogens and preventing yield loses in 

economically important crops (Kang et al., 2005). Three independent multiallelic loci, Rsv1, Rsv3 

and Rsv4 have been reported in soybean (Buss et al. 1997; Buzzel and Tu 1989 Kiihl and Hartwig, 

1979), and mapped on chromosome 13 (MLG F), 14 (MLG B2), and 2 (MLG D1b), respectively 

(Hayes et al., 2000; Jeong et al., 2002; Yu et al., 1994). The Rsv1 locus includes at least ten alleles 

(Chen et al., 1991, 2001, 2002; Kiihl and Hartwig, 1979; Roane et al., 1983; Shakiba et al., 2013) 

and generally confers resistance to less virulent strains (G1 - G4) and susceptibility or necrosis to 

more virulent strains (G5 - G7) (Table 1) (Chen et al., 1991; Gunduz et al., 2002; Ma et al., 2002; 

Li et al., 2010). The Rsv3 locus contains at least six alleles (Buzzel and Tu, 1989; Gunduz et al., 

2001; Cervantes-Bousher et al., 2015; Shakiba et al., 2012) and confers resistance to more virulent 

strains (G5 - G7) and susceptibility to less virulent strains (G1 - G4) (Table 1). The Rsv4 locus has 

at least three alleles conferring resistance to all or most strains (G1 - G7) (Buss et al., 1997; Ma et 

al., 2002; Gunduz et al., 2004; Shakiba et al., 2013); however, often shows resistance at early 

vegetative stage and delayed mild susceptibility at a later stage (Table 1) (Buss et al., 1997; 

Gunduz et al. 2004) 

 To understand the principles of SMV infection and identify genetic sources of resistance, 
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extensive genetic studies need to be conducted. In 80% of all reported resistant cultivars, it was 

conferred by a single R-gene (Buss et al., 1989; Chen et al., 1991; Shakiba et al., 2012, 2013; 

Wang et al., 1998), only some soybean accessions contain two R-genes in diverse combinations 

(Rsv1+3, Rsv1+4, and Rsv3+4) (Chen et al., 1993; Gunduz et al., 2001; Liao et al., 2002; Ma et 

al., 1995; Shi et al., 2012; Zheng et al., 2006), and three R-genes have been identified in the 

Korean landrace ‘8101’ (Liao et al., 2011). Presence of two or three genes for SMV resistance 

diminishes vulnerability of the plant by working in a complementary fashion to protect the host 

against multiple and ever-changing viral strains (Chen et al. 1993; Liao et al., 2011; Shi et al. 

2012). 

 The old Korean plant introduction PI 438307 displayed resistance to SMV-G1 and SMV-

G7, and therefore, it was assumed to carry either Rsv1-r, Rsv1-h, Rsv4, Rsv1Rsv3, Rsv1Rsv4, 

Rsv3Rsv4, or a new allele for SMV resistance (Zheng et al., 2005). Shi et al. (2008) observed the 

same reactions and postulated that PI 438307 carries Rsv1-yRsv3 or Rsv1-yRsv4 gene combinations 

because PCR-based marker Rsv1-f/r did not amplify a fragment of a 3gG2 gene, a candidate for 

Rsv1, suggesting that the R-gene in PI 438307 was not at the Rsv1 locus, and leaving a possibility 

that this accession carries an allele at the Rsv3 or Rsv4. In another study by Zheng et al. (2008), PI 

438307 exhibited resistance to SMV-G1 through G6, and early resistance (ER) to G7 SMV strains 

(Table 1) indicating presence of new SMV resistance allele. 

 The objective of this study was to investigate a source of SMV resistance in PI 438307 

soybean accession by performing genetic studies, and determine plant reaction symptoms of to all 

SMV strains identified in the United States. Identifying new allele(s)/gene(s) with specific 

symptom patterns under different SMV strain inoculations will provide new knowledge of resistance 

to utilize in breeding programs (Kang et al., 2005). 
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MATERIALS AND METHODS 

Population development 

 PI 438307 (VIR2980), a Korean plant introduction, was provided from the Soybean 

Germplasm Collection, USDA-ARS. In this study, PI 438307 (Rsv-?) was crossed with a 

susceptible cultivar Essex (rsv) to study the inheritance of SMV resistance. To determine 

allelomorphic relationships with the reported resistance loci, PI 438307 was crossed with a set of 

resistant differential parents PI 96983, L29 and V94-5152 carrying Rsv1, Rsv3 and Rsv4, 

respectively. All cross combinations were conducted in the field at the Arkansas Agricultural 

Research and Extension Center of University of Arkansas, Fayetteville. The F1 hybrids were 

grown at 28°C and 14 h photoperiod in the Altheimer greenhouse of University of Arkansas, 

Fayetteville. Flower and/or pubescence color were used as morphological markers and Satt634 

SSR marker was used to confirm true hybrids from each cross combination. One portion of the 

F2 seeds of each cross was used for greenhouse inoculation and the second portion was planted in 

the field to advance F2:3 lines. 

 

SMV inoculations 

 The F2 population and F2:3 lines were used for inoculation using SMV-G7 strain kindly 

provided by Dr. Sue Tolin, Virginia Polytechnic Institute and State University. The strain 

identity and purity was confirmed on a set of differential soybean genotypes, including PI 96983 

(Rsv1), York (Rsv1-y), V262 (Rsv1-n), L29 (Rsv3), V229 (Rsv3), V94-5152 (Rsv4) and Essex 

(rsv). The virus was introduced into at least 100 F2 plants and 50 F2:3 lines by mechanical 

inoculation according to Chen et al. (1991). The inoculum was prepared by grinding infected 

leaves in ice-cold 0.05M potassium phosphate buffer (pH=7.2) at an approximate rate of 1 g 
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tissue per 10 ml buffer. Both unifolate leaves of each plant, before V1 stage, were pre-dusted 

with 600-mesh carborundum and rubbed with a pestle dipped in the inoculum. The greenhouse 

conditions were maintained at 28°C and 14 h photoperiod at the Harry R. Rosen Alternative Pest 

Control Center, University of Arkansas, Fayetteville. Individual plant reactions to SMV-G7 

strain were monitored each week and compared with set of differentials 4-6 weeks after 

inoculation. F2 plants were classified into three distinct phenotypes as resistant (R), susceptible 

(S), or necrotic (N) whereas F2:3 lines were grouped as all R, all S, or segregating (H) based on 

individual plant reaction. Additionally, PI 438307 was inoculated with seven U.S. SMV strains, 

G1 through G7, to establish symptoms of reaction, and the results were compared with known 

reactions of soybean genotypes carrying SMV resistance at all three loci (Table 1). 

 

SMV detection 

A dot blot serological procedure was performed to detect the presence of SMV in the F2 

plants derived from each cross and the corresponding parents three weeks after inoculation. 

Leaf samples were randomly picked from plants displaying resistant, susceptible, and necrotic 

symptoms. SMV-infected plant stock was used as a SMV-positive control, and SMV-free tissue 

was applied as a negative control. The procedure was performed as described by Tzanetakis et 

al. (2004). SMV-specific antibodies were provided by Dr. Ioannis Tzanetakis, University of 

Arkansas, Fayetteville. In short, leaf tissue was ground in 1 ml of water and 10 μl of each sap 

sample was blotted onto nitrocellulose membranes, washed twice with PBS and blocked by 

soaking in blocking buffer (PBS + 5% nonfat milk powder) for 1 h. After a washing with PBS-

Tween, the membranes were transferred to SMV antiserum solution (1:1,000 to 1:25,000 

diluted in PBS) and incubated at RT for 1 h.  The membranes were rinsed three times with 

PBS-Tween solution for 5 min each, transferred to goat anti-rabbit alkaline phosphatase 
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conjugate (1:2,000 to 1:5,000 diluted in PBS containing 2% PVP-10,000 and 0.2% nonfat milk 

powder) and incubated at RT for additional 1 h. After triple washing with PBS-Tween solution 

for 5 min each, the filters were placed in substrate buffer (0.1 M Tris pH = 9.5; 0.1 M NaCl; 5 

mM MgCl2) containing precipitating substrate NBT/BCIP). Reactions were terminated by 

transferring the membranes to deionized water. The samples were considered as infected by 

SMV when the tissue dot changed to the brown/purple color after incubation with alkaline 

phosphatase. 

 

DNA extraction and genotyping 

 Genomic DNA was extracted from F2 plants of PI 438307 (R) × Essex (S) cross using the 

CTAB method (Doyle and Doyle, 1990) with minor modifications. In this procedure, frozen 

leaves were crushed to powder with metal beads using Qiagen Retsch TissueLyser Mm301 

Mixer Mill Grinder. 750 µL of extraction buffer (2% CTAB, 100 mM Tris-Cl, 20 mM EDTA pH 

8.0, 1.4 M NaCl and 1% volume β-mercaptoethanol) was added to each tube and incubated at 

65°C in a water bath. After 1 hour of incubation, 1 ml chloroform:isoamyl alcohol (24:1) was 

added and samples were centrifuged at 12,000 rpm for 15 min at RT. To precipitate DNA, the 

upper layer was transferred to a new tube containing 1 ml ice-cold 95% ethanol. Pellets were 

washed in 1 ml 75% ethanol, dried for 2 hours, and dissolved in 200 µl nuclease-free water. 

DNA concentrations were measured using the NanoDrop ND-2000 1-Position spectrophotometer 

(Thermo Scientific).  

Two SSR markers, Satt634 (Gm02: 11,441,849-11,441,887) and Satt296 (Gm02: 

12,975,935- 12,975,997) linked to the Rsv4 locus, were used for genotyping the F2 plants PI 

438307 (Rsv-?) × Essex (rsv). Each polymerase chain reaction (PCR) was consisted of 10×Green 

GoTaq Flexi Buffer (Promega), 45mM MgCl2, 2.5mM dNTPs, 5mM primer mix, 1U Taq 
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(Promega), and 60ng DNA. PCR products were amplified with a program of 95°C for 10 min 

initial denaturation; 35 cycles of 25 s at 95°C denaturation, 25 s at 50⁰C for both primers 

annealing, 25 s at 72°C extension, and 5 min at 72°C final extension after the last cycle. PCR 

products were run in 6% non-denaturing polyacrylamide gel in 0.6 TBE and visualized by 

staining with ethidium bromide. To analyze the results, a scoring system of "A" for presence of 

PI 438307 allele, "B" for presence of Essex allele, or “H” for presence of both alleles was 

utilized. 

In addition, PI 438307 was genotyped using three single nucleotide polymorphism (SNP) markers 

ss244712651 (Gm02: 11,693,196), ss244712652 (Gm02: 11,693,604), and ss244712653 (Gm02: 

11,693,900), to confirm the presence of the Rsv4 locus. Sequenom iPLEX genotyping was 

performed at the Genomics Center, University of Minnesota, Minneapolis. Based on these SNPs, 

the "A-G-G" pattern was expected in genotypes carrying the Rsv4 gene, whereas the "T-C-A" 

pattern indicated absence of this locus. 

 

Data analysis 

 Segregation ratios for SMV symptoms showed in F2 plants and F2:3 lines derived from 

all cross combinations were tested to fit expected genetic ratios of one, two and three genes 

segregations using a chi-square (χ
2
) goodness-of-fit test. The necrotic plants were classified as 

resistant when evaluating segregating populations (Chen et al., 1994). A chi-square goodness of 

fit test was also used to compare molecular marker data to the expected genetic 1A:2H:1B ratio 

of a single dominant gene segregation. 
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RESULTS 

Inheritance of SMV resistance in PI 438307 

 Identification of resistance genes in plant genome is usually based on genetic and 

phenotypic analysis of segregating populations to establish their inheritance and allelism tests 

(Buss et al., 1989; Chen et al., 1991; Gunduz et al., 2004; Liao et al., 2011).  To determine 

inheritance of SMV resistance in PI 438307 soybean accession, a cross was performed between a 

resistant genotype in question, PI 438307 (Rsv-?), and susceptible cultivar Essex (rsv). 

Greenhouse SMV-G7 strain inoculations were used to evaluate observed segregation ratios of F2 

plants and F2:3 lines with expected genetic ratios. Phenotypic results of F2 population indicated a 

monogenic segregation pattern of 3R:1S (109R:31S) with χ
2
 = 0.6 and

 
p = 0.43 (Table 2). The 

F2:3 population from the same cross displayed a good fit to 1R:2H(R+S):1S ratio (23R:48H:18S) 

with χ
2
 = 1.135 and p = 0.56 (Table 3). In addition, dot blot results performed on F2 population 

detected 22 samples with high concentration of SMV and 49 samples without the virus (Table 5), 

confirming a segregating population for SMV infection and reaction. These results indicated that 

PI 438307 carries a single dominant gene for SMV resistance.  

 Furthermore, the F2 population was genotyped by two SSR markers and the results 

exhibited a good fit to the 1A:2H:1B ratio (Table 4, Figure 2). Satt634 revealed the 

57A:132H:54B ratio with χ
2
 = 1.75 and 

 
p = 0.416 whereas Satt296 displayed 58A:129H:56B 

ratio with χ
2
 = 0.86 and 

 
p = 0.65. The molecular marker screening indicated that PI 438307 

could carry an allele at the Rsv4 locus for SMV resistance.  
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Allelic relationship of SMV resistance in PI 438307 

 The allelism test was performed by crossing PI 438307 (Rsv-?) with a set of differential 

resistant genotypes PI 96983 (Rsv1), L29 (Rsv3) and V94-5152 (Rsv4). To determine whether PI 

438307 carries resistance at the Rsv1 locus, a cross PI 438307 (Rsv-?, R) × PI 96983 (Rsv1, N) 

was performed. Analyzed 214 F2 plants exhibited a digenic segregation ratio of 15(R+N):1S 

(148R+50N:19S) with χ
2
 = 2.39 and p = 0.12 (Table 2), whereas 56 F2:3 lines showed a 

7R:8H(R+N+S):1S (24R:29H:3S) segregation ratio with χ
2
 = 0.116 and p = 0.94 (Table 3). This 

segregation ratios indicated the presence of two dominant resistance genes thus confirming that 

PI 438307 does not carry the Rsv1 gene for SMV resistance, and the resistance gene in this 

accession is located at a different locus. Dot blot results performed on F2 population derived 

from this cross detected 22 samples with presence of SMV and 25 samples without the virus 

(Table 5), clearly showing genetic segregation for SMV infection and reaction within this the 

population. 

 To examine whether PI 438307 carries a resistance allele at the Rsv3 locus, a cross PI 

438307 (Rsv-?, R) × L29 (Rsv3, R) was performed. Upon infection by SMV-G7, investigated 

145 F2 plants showed a digenic ratio of 15R:1S (137R:8S) with χ
2
 = 0.11 and p = 0.73 (Table 2), 

and 73 F2:3 lines derived from the same cross showed a good fit to the 7R:8H(R+S):1S 

segregation ratio (29R:39H:5S) with χ
2
 = 0.58 and p = 0.74 (Table 3). These results indicated 

that SMV resistance in PI 438307 is not harbored by the Rsv3 locus. Dot blot results performed 

on F2 population detected 20 samples with SMV and 34 samples without the virus (Table 5), 

confirming the digenic segregation for SMV infection. 

 To determine whether PI 438307 carries resistance at the Rsv4 locus, a cross PI 438307 

(Rsv-?, R) × V94-5152 (Rsv4, R) was performed. There was no phenotypic segregation observed 
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within 112 F2 plants when inoculated with SMV-G7 (Table 2). Also, all 71 F2:3 lines showed a 

complete resistance to the virus (Table 3). Lack of segregation in the progenies indicated that 

both parents PI 438307 and V94-5152 carry resistance alleles at the same locus. Dot blot results 

confirmed these results as the virus was not detected in any of analyzed 68 samples (Table 5). 

 

Reactions of PI 438307 to various SMV strains 

Visual symptoms upon SMV-G7 infection were detected in the susceptible parent Essex 

with typical venial clearing and mosaics in the first trifoliate leaves approximately one week after 

inoculation. PI 96983 plants initially developed venial clearing symptoms during the first few 

days after inoculation and then became necrotic approximately seven days later. In contrast, L29 

did not exhibit symptoms of disease on trifoliate leaves at any time during the experiment, 

whereas V94-5152 displayed resistance with mild mosaics at late developmental stages.  These 

observations ratified the identity and purity of the SMV-G7 strain, and confirmed the reactions of 

all parents (Table 1, Figure 1). 

The inheritance and allelism studies indicated that the SMV resistance gene in PI 438307 

was allelic to the Rsv4 locus. To determine whether resistance in PI 438307 is due to a new allele 

at the Rsv4 locus, it was necessary to compare SMV reaction pattern of this soybean accession 

with Rsv4 alleles previously reported: V94-5152, PI 88788, and Beeson (Buss et al., 1997; 

Gunduz et al., 2004; Shakiba et al., 2013) (Table 1). The inoculation with seven SMV strains 

(G1 - G7) showed that PI 438307 exhibited different response pattern to SMV strains than 

genotypes with known Rsv4 alleles. In this study, PI 438307 conferred full resistance to SMV-

G1 through G6 strains, and resistance at seedling stage to SMV-G7 strain (Table1).  
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DISCUSSION 

The greenhouse results confirmed genetic segregations in F2 plants and F2:3 lines advanced 

from crosses PI 438307 × Essex (rsv), PI 438307 × PI 96983 (Rsv1), and PI 438307 × L29 

(Rsv3); but not from PI 438307 × V94-5152 (Rsv4) (Table 2, 3). This outcome provided evidence 

that PI 438307 carries a single dominant gene that is allelic to Rs4 locus and is independent of 

Rsv1 and Rsv3 loci. Dot blot immunoassay verified and confirmed segregations in populations PI 

438307 × Essex (rsv), PI 438307 × PI 96983 (Rsv1), and PI 438307 × L29 (Rsv3); however, in 

population derived from PI 438307 × V94-5152 (Rsv4), no virus was detected, indicating the 

resistant response. These results confirmed that the phenotypic classification used in this study 

was reliable for detecting genetic segregation and testing goodness-of-fit to the expected ratios.  

Presence of the Rsv4 allele in PI 438307 was validated using two polymorphic SSR 

markers flanking the Rsv4 locus and covering 6 cM interval on chromosome 2 (MLG D1b). In 

addition, PI 438307 was genotyped by three SNP markers linked to the Rsv4 locus displaying the "A-G-

G" nucleotide pattern. Marker data supported the conclusion that the SMV resistance gene in the 

PI 438307 resides on chromosome 2 (MLG D1b) where the Rsv4 locus was previously mapped 

(Hayes et al., 2000). Moreover, three SSR markers linked to the Rsv1 on chomosome 13 (MLG F) 

and three SSR markers near the Rsv3 on chromosome 14 (MLG B2) were used to screen the 

population PI 438307 × Essex (rsv) but no association was identified (data not showed), 

confirming that the R-gene in PI 438307 was allelic neither to Rsv1 nor Rsv3.  

The results from the inheritance and allelism studies, serological tests, and molecular 

marker analysis consistently proved that PI 438307 soybean accession carries a single dominant 

R-gene at the Rsv4 locus.  

Upon SMV infections using different strains identified in the U.S., PI 438307 was resistant to 
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six of them (G1 - G6), and resistant at early developmental stages to G7 strain. Our results were 

in agreement with previous phenotyping of this accession with G1 and G7 strains (Zheng et al., 

2005; Shi et al., 2008), and G1 through G7 strains (Zheng et al., 2008). This reaction pattern was 

unique and different from resistance caused by other Rsv4 alleles previously reported in V94-

5152, PI 88788 and Beeson; therefore, we proposed that a novel allele Rsv4-v should be assigned 

to the SMV resistance in PI 438307. 

Soybean genotypes carrying the Rsv4 gene are rare in nature and only a few have been 

previously reported, including V94-5152, PI 88788, Beeson, PI 486355, Columbia, and 8101 (Buss 

et al., 1997; Chen et al., 1993; Gunduz et al., 2004; Liao et al., 2010; Ma et al., 1995, 2002; Shakiba et 

al., 2013). PI 438307 is an old plant introduction collected from North Korea and donated by 

Russian Federation in 1979 (http://www.ars-grin.gov/). There is no information available about 

its pedigree; therefore, it was not possible to analyze the Rsv4 gene sources in the ancestors.  

The novel Rsv4-v allele offers significant potential values for SMV genetic studies and 

breeding purposes. First of all, this allele contributes to genetic diversity as an option for plant 

breeders to improve soybean yield and seed quality, and therefore, save farmers' income. Second, 

it provides a mechanism of extra protection to variations in SMV pathogenicity. The Rsv4-v 

allele may provide additional blockade against dynamic nature of SMV virulence driven by natural 

selection and fitness that cause diversification of new strains defeating SMV R-genes (Kang et al., 

2005). Third, the new allele may serve as a differential parent for identification and 

characterization of SMV strains, particularly G7. Fourth, PI 438307 carrying the Rsv4-v provides 

additional option to study molecular mechanisms of SMV-soybean interactions. 

The Rsv4-v confers the strongest resistance to all U.S. SMV strains among known Rsv4 

alleles, and belongs to one of the most significant alleles among all R-genes followed by the Rsv1-



   

100 
   

h allele of the Rsv1 locus (Table 1), and therefore, PI 438307 becomes an excellent choice for breeding 

SMV resistance. Deployment of genetic resistance is considered to be the most economical and 

powerful method to control SMV infections, and a single dominant gene could be easily 

incorporated into elite breeding lines using backcrossing and marker-assisted selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

101 
   

REFERENCES 

Balgude, Y.S., D.M. Sawant, and A.P. Gaikwad. 2012. Transmission studies of soybean mosaic 

virus. J. Plant Dis. Sci. 7(1): 52-54. 

Buss, G.R., G. Ma, P. Chen, and S.A. Tolin. 1997. Registration of V94-5152 soybean germplasm 

resistant to soybean mosaic potyvirus. Crop Sci. 37:1987-1988. 

doi:10.2135/cropsci1997.0011183X003700060068x 

Buzzell, R.I., and J.C. Tu. 1989. Inheritance of a soybean stem-tip necrosis reaction to soybean 

mosaic virus. J. Hered. 80:400-401. 

Cervantes-Bouscher, I., Orazaly M., Klepadlo M., and Chen P. 2015. Identification of a new 

allele at the Rsv3 locus for resistance to Soybean mosaic virus in PI 61944 soybean 

accession. Crop Science 55(3): 999-1005. doi:10.2135/cropsci2014.08.0569 

Chen, P., G.R. Buss, C.W. Roane, and S.A. Tolin. 1991. Allelism among genes for resistance to 

soybean mosaic virus in strain-differential soybean cultivars. Crop Sci. 31:305-309. 

doi:10.2135/cropsci1991.0011183X003100020015x 

Chen, P., G.R. Buss, and S.A. Tolin. 1993. Resistance to soybean mosaic virus conferred by two 

independent dominant genes in PI 486355.  J. Hered. 84:25-28. 

Chen P, Buss GR, Roane CW, Tolin SA (1994) Inheritance in soybean of resistant and necrotic 

reactions to soybean mosaic virus strains. Crop Sci 34:414-422. 

doi:10.2135/cropsci1994.0011183X003400020021x 

Chen, P., G.R. Buss, S.A. Tolin, I. Gunduz, and M. Cicek. 2002. A valuable gene in Suweon 97 

soybean for resistance to soybean mosaic virus. Crop Sci. 42:333-337. doi: 

10.2135/cropsci2002.0333 

Chen, P., G. Ma, G.R. Buss, I. Gunduz, C.W. Roane, and S.A. Tolin. 2001. Inheritance and 

allelism tests of Raiden soybean for resistance to soybean mosaic virus. J. Hered. 92:51-55.  

Doyle, J.J., and J.L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15. 

Gunduz, I., G.R. Buss, P. Chen, and S.A. Tolin. 2002. Characterization of SMV resistance genes 

in Tousan 140 and Hourei soybean. Crop Sci. 42:90-95. 

Gunduz, I., G.R. Buss, P. Chen, and S.A. Tolin. 2004. Genetic and phenotypic analysis of 

soybean mosaic virus resistance in PI 88788 soybean. Phytopathology 94:687-692. 

doi:10.1094/Phyto.2004.94.7.687 

Gunduz, I., G.R. Buss, G. Ma, P. Chen, and S.A. Tolin. 2001. Genetic analysis of resistance to 

soybean mosaic virus in OX 670 and Harosoy soybean. Crop Sci. 41:1785-1791. 

Hayes, A.J., G. Ma, G.R. Buss, and M.A. Saghai Maroof. 2000. Molecular marker mapping of 

Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus. Crop Sci. 

40:1434-1437. doi:10.2135/cropsci2000.4051434x 



   

102 
   

Hill, J.H., T.B. Bailey., H.I. Benner., H. Tachibana, and D.P. Durand. 1987. Soybean mosaic 

virus: Effects of primary disease incidence on yield and seed quality. Plant Dis. 71(3):237-

239. doi:10.1094/PD-71-0237 

Jeong, S.C., S. Kristipati, A.J. Hayes, P.J. Maughan, S.L. Noffsinger, I. Gunduz, G.R. Buss, and 

M.A. Saghai Maroof. 2002. Genetic and sequence analysis of markers tightly linked to the 

soybean mosaic virus resistance gene, Rsv3. Crop Sci. 42:265-270. doi: 

10.2135/cropsci2002.0265 

Kang, B.C., I. Yeam, and M.M. Jahn. 2005. Genetics of plant virus resistance. Annu. Rev. 

Phytopathol. 43:581-621. doi:10.1146/annurev.phyto.43.011205.141140 

Kiihl, R.A.S., and E.E. Hartwig. 1979. Inheritance of reaction to soybean mosaic virus in 

soybean. Crop Sci. 19:372-375. doi:10.2135/cropsci1979.0011183X001900030024x 

Li, D., P. Chen, J. Alloatti, A. Shi, and Y.F. Chen. 2010. Identification of new alleles for 

resistance to soybean mosaic virus in soybean. Crop Sci. 50:649-655. 

doi:10.2135/cropsci2009.06.0302 

Liao, L., P. Chen, G.R. Buss, Q. Yang, and S.A. Tolin. 2002. Inheritance and allelism of 

resistance to soybean mosaic virus in Zao18 soybean from China. J. Hered. 93(6):447-452. 

doi: 10.1093/jhered/93.6.447 

Liao, L., P. Chen, I. Rajcan, G.R. Buss, and S.A. Tolin. 2011. Genetic analysis of ‘8101’ 

soybean containing three genes for resistance to soybean mosaic virus (SMV). Crop Sci. 

51:503-511. doi:10.2135/cropsci2010.02.0113 

Ma, G., P. Chen, G.R. Buss, and S.A. Tolin. 2002. Complementary action of two independent 

dominant genes in Columbia soybean for resistance to soybean mosaic virus. Am. Genet. 

Assoc. 93:179-184. doi:10.1093/jhered/93.3.179 

Ma, G., P. Chen, G.R. Buss, and S.A. Tolin. 1995. Genetic characteristics of two genes for 

resistance to soybean mosaic virus in PI 486355 soybean. Theor. Appl. Genet. 91:907-914. 

doi:10.1093/jhered/esh059 

Ren, Q., T.W. Pfeiffer, and S.A. Ghabrial. 1997. Soybean mosaic virus incidence level and 

infection time: Interaction effects on soybean. Crop Sci. 37:1706-1711. doi: 

10.2135/cropsci1997.0011183X003700060005x 

Roane, C.W., S.A. Tolin, and G.R. Buss. 1983. Inheritance of reaction to two viruses in the 

soybean cross ‘York’ × ‘Lee 68’. J. Hered. 74:289-291. 

Ross, J.P. 1983. Effect of soybean mosaic virus on component yields from blends of mosaic 

resistant and susceptible soybeans. Crop Sci. 23:343-346. 

doi:10.2135/cropsci1983.0011183X002300020038x 

Shakiba, E., P. Chen, K. Brye, and A. Shi. 2013. Inheritance and allelism of resistance to 

soybean mosaic virus in Corsica and Beeson, Crop Sci. 53:1455-1463. 

doi:10.2135/cropsci2012.01.0006 



   

103 
   

Shakiba, E., P. Chen. D. Li, K. Brye, and D. Dong. 2012. Two novel alleles at the Rsv3 locus for 

resistance to soybean mosaic virus in PI 399091 and PI 61947 soybeans. Crop Sci. 52:2587-

2594. doi:10.2135/cropsci2012.01.0010 

Shi, A., P. Chen, R. Vierling, Li, D., and C. Zheng. 2012. Identification of soybean mosaic virus 

resistance alleles in Jindou 1 soybean. Euphytica 192:181-187. doi:10.1007/s10681-012-

0816-8 

Shi, A., P. Chen, D. Li, C. Zheng, A. Hou, and B. Zhang. 2008. A PCR-based marker for the 

Rsv1 locus conferring resistance to soybean mosaic virus. Crop Sci. 48:262-268. 

doi:10.2135/cropsci2007.02.0076 

Tzanetakis, I.E., A.B. Halgren, K.E. Keller, S.C. Hokanson, J.L. Maas, P.L. McCarthy, and R.R. 

Martin. 2004. Identification and detection of a virus associated with strawberry pallidosis 

disease. Plant Dis. 88:383-390. doi:org/10.1094/PDIS.2004.88.4.383 

Wang, Y., R.L. Nelson, and Y. Hu. 1998. Genetic analysis to soybean mosaic virus in four 

soybean cultivars from China. Crop Sci. 38:922-925. 

doi:10.2135/cropsci1998.0011183X003800040005x 

Yu, Y.G., M.A. Saghai-Maroof, G.R. Buss, P.J. Maughan, and S.A. Tolin. 1994. RFLP and 

microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathol. 84:60-64. 

doi:10.1094/Phyto-84-6 

Zheng, C., P. Chen, and R. Gergerich. 2005. Characterization of resistance to soybean mosaic 

virus in diverse soybean germplasm. Crop Sci. 45:2503-2509. doi:10.2135/cropsci2005.0114 

Zheng, C., P. Chen, D. Li, and R. Gergerich. 2008. New sources of resistance to soybean mosaic 

virus in soybean. Can. J. Plant Path. 30:595-603. doi:10.1080/07060660809507560 

Zheng, C., P. Chen, and R. Gergerich. 2006. Genetic analysis of resistance to soybean mosaic 

virus in J05 soybean. J. Hered. 97(5):429-437. 

 



   

 
   

1
0
4
 

Table 1. Reactions of soybean genotypes possessing a single resistance gene to seven soybean mosaic virus strains.  

 

NAME ORIGIN 

SMV REACTIONS †   

GENE 

 

REFERENCE 

G1 G2 G3 G4 G5 G6 G7   

PI 96983 Korea R R R R R R N  Rsv1  Kiihl and Hartwing, 1979 

Suweon 97 Korea R R R R R R R  Rsv1-h  Chen et al., 2002 

York USA R R R N S S S  Rsv1-y  Chen et al., 1991 

Raiden Japan R R R R N N R  Rsv1-r  Chen et al., 2001 

Kwanggyo Korea R R R R N N N  Rsv1-k  Chen et al., 1991 

Ogden USA R R N R R R N  Rsv1-t  Chen et al., 1991 

Marshall USA R N N R R N N  Rsv1-m  Chen et al., 1991 

PI 507389 USA N N S S N N S  Rsv1-n  Ma et al., 2003 

LR1 USA R R R R N N R  Rsv1-s  Ma et al., 1995 

Corsica USA S ER S - ER S ER  Rsv1-c  Shakiba et al., 2012 

L29 USA S S S S R R R  Rsv3  Buss et al., 1999 

OX 686 Canada N N N N R R R  Rsv3  Buzzel and Tu, 1989 

Harosoy Canada S 
     

R  Rsv3  Shi et al., 2008 

PI 61944 China N/S N/S R - R R R  Rsv3-n  Cervantes, 2012 

PI 61947 China N/S N/S R/N - R R R  Rsv3-h  Shakiba et al., 2012 

PI 399091 Korea S S ER - R S ER  Rsv3-c  Shakiba et al., 2012 

V94-5152 USA ER ER ER ER ER ER ER  Rsv4  Buss et al., 1997 

PI 88788 China ER ER ER ER ER ER ER  Rsv4  Gunduz et al., 2004 

Beeson USA ER ER S - R ER R  Rsv4-b  Shakiba et al., 2012 

PI 438307 Korea R R R - R R ER  Rsv?  Zheng et al., 2008 

    †  G1 - G7, SMV strains; R, resistant (symptomless); N, necrotic (systemic necrosis); S, susceptible (mosaic); ER, early resistant at 

seedling stage; N/S, mixture of necrotic and susceptible; R/N, mixture of resistant and necrotic. 
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Table 2. Reactions of parents and F2 populations from PI 438307 × Essex, and crosses of PI 

438307 with allele differential genotypes (PI 96983, L29, and V94-5152) inoculated with 

soybean mosaic virus G7 strain. 

Cross/Parent 
Number of Plants Observed†  

R N S Total Expected Ratio χ
2 

p-value 

PI 438307 × Essex 109 0 31 140 3R:1S 0.6 0.4386 

PI 438307 (ER) 14 0 0 14    

Essex (S) 0 0 17 17    

PI 438307 × PI 96983 148 50 19 214 15(R+N):1S 2.39 0.1217 

PI 438307 (ER) 15 0 0 15    

PI 96983 (N) 0 19 0 19    

PI 438307 × L29 137 0 8 145 15R:1S 0.11 0.7344 

PI 438307 (ER) 18 0 0 18    

L29 (R) 10 0 0 10    

PI 438307 × V94-5152 112 0 0 112 No segregation   

PI 438307 (ER) 15 0 0 15    

V94-5152 (ER) 12 0 0 12    

†   R, resistant (symptomless); N, necrotic (systemic necrosis); S, susceptible (mosaic); ER, early 

resistance at seedling stage; the ER responses were categorized as R due to resistance during 

scoring of plants symptoms. 
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Table 3. Reactions of parents and F2:3 lines from PI 438307 × Essex, and crosses of PI 438307 

with allele differential genotypes (PI 96983, L29, and V94-5152) inoculated with soybean 

mosaic virus G7 strain. 

Cross/Parent 
Number of Plants Observed†  

R H S Total Expected Ratio χ
2 

p-value 

PI 438307 × Essex 23 48 18 89 1R:2H(R+S):1S 1.135 0.5669 

PI 438307 (ER) 20 0 0 20    

Essex (S) 0 0 15 15    

PI 438307 × PI 96983 24 29 3 56 7R:8H(R+N+S):1S 0.116 0.9435 

PI 438307 (ER) 9 0 0 9    

PI 96983 (N) 0 14 0 14    

PI 438307 × L29 29 39 5 73 7R:8H(R+S):1S 0.586 0.7458 

PI 438307 (ER) 17 0 0 17    

L29 (R) 10 0 0 10    

PI 438307 × V94-5152 71 0 0 71 No segregation   

PI 438307 (ER) 15 0 0 15    

V94-5152 (ER) 14 0 0 14    

† R, resistant (symptomless); H, segregating (R+N+S); S, susceptible (mosaic); ER, early 

resistance at seedling stage; the ER responses were categorized as R due to resistance during 

scoring of plants symptoms. 
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Table 4. Genetic segregation of selected polymorphic SSR molecular markers Satt634            

and Satt296 (MLG D1b) in F2 population derived from PI 438307 × Essex. 

SSR† Cross/Parent 
Marker Segregation Observed‡  

A H B Total Expected Ratio χ
2 

p-value 

Satt634 PI 438307 × Essex 57 132 54 243 1A:2H:1B 1.75 0.416 

 PI 438307 (R) 8 0 0 8    

 Essex (S) 0 0 8 8    

         

Satt296 PI 438307 × Essex 58 129 56 243 1A:2H:1B 0.86 0.65 

 PI 438307 (R) 6 0 0 6    

 Essex (S) 0 0 7 7    

†   SSR markers located close to the Rsv4 locus. 

‡   A, presence of resistance allele from PI 438307; B, presence of susceptible allele from Essex; 

H, presence of both alleles from the two parents. 
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Table 5. Tissue blotting of parents and F2 populations from testcross PI 438307 × Essex, and 

crosses of PI 438307 with allele differential genotypes (PI 96983, L29, and V94-5152) 

inoculated with soybean mosaic virus G7 strain. 

Cross/Parent † 
Number of Plants ‡  

Phenotype 

+ -  Total  

PI 438307 × Essex 22 49 71  Segregation 

PI 438307 (ER) 0 5 5  Resistant 

Essex (S) 5 0 5  Susceptible 

PI 438307 × PI 96983 22 25 47  Segregation 

PI 438307 (ER) 0 5 5  Resistant 

PI 96983 (N) 0 5 5  Necrotic 

PI 438307 × L29 20 34 54  Segregation 

PI 438307 (ER) 0 5 5  Resistant 

L29 (R) 0 3 3  Resistant 

PI 438307 × V94-5152 0 68 68  Resistant 

PI 438307 (ER) 0 5 5  Resistant 

V94-5152 (ER) 0 4 4  Resistant 

†  R, resistant (symptomless); N, necrotic; S, susceptible (mosaic); ER, early resistant. 

‡  +, presence of SMV; -, absence of SMV. 
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Figure 1. Major symptoms of soybean plants under SMV infection: resistant (R), necrotic (N), 

and susceptible-mosaic (S) 
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Figure 2. Amplification of SSR markers (A) Satt634 and (B) Satt296 in F2 population from PI 

438307 × Essex: A, resistance dominant allele from PI 438307; B, susceptible recessive allele 

from Essex; H, both alleles from PI 438307 and Essex; underlined samples correspond to the 

parents. 
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Figure 3. Symptoms of F2:3 lines inoculated with SMV-G7: R, resistant; S, susceptible;  H, heterozygous segregating (R+N+S). 
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ABSTRACT 

 Soybean mosaic virus (SMV), a member of the Potyviridae family, is the most common 

virus negatively affecting yield and seed quality in soybean. Seven SMV strains, G1 through G7, 

and three independent SMV resistance genes (R-genes), Rsv1, Rsv3 and Rsv4, have been 

previously identified. The Rsv1 locus contains at least ten alleles displaying differential plant 

reactions to SMV strains, and it was mapped at very complex resistance-gene-rich region. In this 

study, two alleles of the Rsv1 locus were analyzed crossing PI 96983 and York soybean 

accessions to evaluate whether Rsv1 and Rsv1-y belong to the same or different but closely 

linked loci. To break possible linkage, 3,000 F2:3 lines were developed and investigated using 

infections of the SMV-G1 strain in a greenhouse. The occurrence of segregating and susceptible 

lines indicated tight linkage between two genes. The recombination frequency (RF) was 

estimated using the maximum likelihood formula concluding that Rsv1 and Rsv1-y are two 

distinct tightly linked loci located apart with genetic distance of 2.2 cM. We proposed a symbol 

of the Rsv2 to be assigned for a new gene instead of Rsv1-y. This research provided the first 

evidence of two R-genes existence on chromosome 13, conferring resistance to different SMV 

strains. Both loci, Rsv1 and Rsv2, can be easily transferred into susceptible cultivars in a 

breeding program to provide broad and durable protection against SMV strains with lower 

virulence. 
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INTRODUCTION 

 Soybean mosaic virus induces various disease symptoms in infected soybean plants 

including mild to severe mosaic symptoms or systemic necrosis (Chen et al., 1991; Gunduz et 

al., 2002; Kiihl and Hartwig, 1979). In the United States, SMV was classified into strains, G1 

through G7, based on differences in the pathogenic variability, where G1 strain is the least and 

G7 strain is the most virulent upon infection of soybean cultivars (Cho and Goodman, 1979). 

Three independent SMV resistance loci, Rsv1, Rsv3, and Rsv4, have been identified and mapped 

on chromosome 13, 14, and 2, respectively (Hayes et al., 2000; Jeong et al., 2002; Yu et al., 

1994). 

The Rsv1 is the most common SMV R-gene present among soybean germplasm (Chen et 

al., 1991; Kiihl and Hartwig, 1979; Yu et al., 1994), and contains at least ten alleles: Rsv1 (PI 

96983), Rsv1-t (Ogden), Rsv1-y (York), Rsv1-m (Marshall), Rsv1-k (Kwanggyo), Rsv1-r 

(Raiden), Rsv1-s (LR1), Rsv1-n (PI507389), Rsv1-h (Suweon 97), and Rsv1-c (Corsica) (Chen et 

al., 1991; 2001; 2002; Ma et al., 2003; Roane et al., 1983; Shakiba et al., 2013). All alleles at the 

Rsv1 locus, except for Rsv1-h, confer resistance only to some, mostly less virulent SMV strains, 

and may be associated with necrosis (Table 1). The Rsv1 allele, named the same as the locus, 

was discovered by performing a cross PI 96983 (Rsv1) × Lee 68 (rsv) what resulted in 

identification of SM176 marker 0.5 cM distant to Rsv1 on chromosome 13 (MLG F) (Yu et al., 

1994). The Rsv1 allele is dominant and confers resistance to SMV-G1 though G6, and systemic 

necrosis to G7 strain (Table 1). The Rsv1-y allele was identified in York and it was confirmed 

that SMV resistance is triggered by a single dominant gene (Chen et al., 1991; Roane et al., 

1983). York displays resistance to less virulent strains G1 - G3, necrosis to G4 and susceptibility 

to more virulent strains G5 - G7 (Table 1) (Cho and Goodman, 1979). 
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Rsv1-y and Rsv1 have been recognized and classified as alleles of the Rsv1 locus; 

however, several phenomena raised a question whether the Rsv1-y allele belongs to the Rsv1 or it 

is just a distinct but tightly linked locus. According to the study by Shi et al. (2008), a PCR-

based marker Rsv1-f/r for detection of the Rsv1 candidate gene 3gG2 (Wm82.a2.v1: 

Glyma.13g190400), completely linked to Rsv1, could amplify a specific sequence from 55 

soybean accessions carrying all Rsv1 alleles except Rsv1-y present in York and 16 other 

genotypes. Recently, Yang et al. (2013) concluded that there might be one or two dominant R-

genes tightly flanking the Rsv1 locus by performing a cross of PI 96983 (R) × Nannong 1138-

2 (S) and screening their recombinant inbreed lines (RILs) with molecular markers. The potential 

Rsc-pm gene confers resistance to the Chinese strains SMV-SC3, SC6, and SC17, was positioned 

between BARCSOYSSR_13_1128 and BARCSOYSSR_13_1136. The other gene Rsc-ps brings 

resistance to SMV-SC7, and was spotted between BARCSOYSSR_13_1140 and 

BARCSOYSSR_13_1155.  

 The Rsv1 locus is located at resistance-gene-rich region on the long arm of chromosome 

13 (MGL F) (Hayes et al., 2004; Yu et al., 1994) and is tightly linked to a cluster of genes 

containing N-terminal nucleotide binding site domain and C-terminal leucine-rich repeat domain 

(NBS-LRR) (www.soybase.org). This area of the chromosome is extremely complicated and 

besides resistance to SMV, it also locates R-genes to the soybean aphids (Kim et al., 2010) and 

other plant pathogens e.g. Phytophthora (Gunadi, 2012) and Fusarium (Ellis et al., 2012). The 

Rsv1 locus on this chromosome seems to be complex itself with possibility having a variety of at 

least ten different copies of the same gene. Because of many tightly linked genes that confer 

resistance to other diseases are localized on this chromosome, mapping individual gene members 
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requires developing advanced techniques to detect single genes and then mapping these genes to 

independent loci (Hayes et al. 2004; Yang et al., 2013; Yu et al. 1994).  

According to classical genetics, closely linked genes tend to be inherited together, and 

they don't segregate independently as they don't obey Mendel's Second Law of Independent 

Assortment (Xu, 2010). Genetic distance between two genes can be calculated based on 

recombination frequency occurring in bi-parental population. To measure this linkage, there 

must be linkage disequilibrium (LD) in the studied population to assess the allele independence 

at two or more loci. If two alleles from two different loci are found together more often than 

would be expected based on Mendelian segregation, it can be inferred that such alleles are in LD 

(Table 2). The stronger the linkage between two loci, the more difficult it is to observe 

recombination between them and the higher population size is required for detection (Flint-

Garcia et al., 2003; Xu, 2010). 

 The goal of this study was to evaluate whether the two alleles Rsv1 and Rsv1-y belong to 

the same or different but closely linked loci. To break the linkage between two closely linked 

genes, high population size was developed in order to increase a chance of crossing-over 

occurrence during meiosis. Based on Mendelian genetics, if Rsv1 (R) and Rsv1-y (R) are 

different genes, then segregating and homozygous susceptible lines should appear in F2:3 

generation. The homozygous susceptible lines (rsv1rsv1-y) could bring evidence that 

recombination occurred between two closely linked genes and Rsv1 and Rsv1-y belong to 

different loci. 
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MATERIALS AND METHODS 

Population development and progeny test 

Two soybean accessions, PI 96983 and York, were used in this research to determine 

allelic relationship between Rsv1 and Rsv1-y. PI 96983 (Rsv1), a plant introduction from Korea, 

was crossed with York (PI 553038), a soybean cultivar developed in Virginia, USA; in the field 

at the Arkansas Agricultural Research and Extension Center of University of Arkansas, 

Fayetteville. The F1 seeds were planted in the Altheimer greenhouse of the University of 

Arkansas, and true hybrids were indicated using purple flower color as a morphological marker. 

F2 seeds were planted in the field lines, monitored for hypocotyl and flower color segregation, 

and tagged individually to advance 3,000 F2:3 lines. 

 Progeny testing was performed in seventeen F2:3 lines classified as resistant (R), 

segregating (R+N, R+S, or R+N+S) or susceptible (S). These lines were transferred into the field 

at the Arkansas Agricultural Research and Extension Center of University of Arkansas, 

Fayetteville, to obtain F3:4 seeds. F3:4 progeny lines were re-inoculated with SMV-G1 strain to 

observe symptoms.  

 

SMV inoculation 

The SMV-G1 strain has been chosen for this experiment due to resistant symptoms of 

both analyzed soybean accessions, PI 96983 and York, under infection. The SMV-G1 was kindly 

provided by Dr. Sue Tolin, Virginia Polytechnic Institute and State University, Blacksburg. The 

strain identity and purity was confirmed on a set of differential soybean genotypes, including PI 

96983 (Rsv1), York (Rsv1-y), V262 (Rsv1-n), Corsica (Rsv1-c), L29 (Rsv3), V229 (Rsv3), V94-

5152 (Rsv4) and Essex (rsv), and maintained by periodical passage to susceptible genotype Essex 
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(rsv). The virus was introduced into F2:3 lines by mechanical inoculation of about 20 plants per 

genotype according to Chen et al. (1991) in the Altheimer greenhouse of University of Arkansas, 

Fayetteville, in batches of about 200 lines per day. Briefly, the inoculum was prepared by 

systematically grinding the infected Essex leaves in 0.05M potassium phosphate buffer (pH=7.2) 

at an approximate rate of 1 g tissue per 10 ml buffer. Both unifolate leaves pre-dusted with 600-

mesh carborundum were gently rubbed with a pestle dipped in the inoculum. The greenhouse 

conditions were maintained at 28°C with a 14 h photoperiod. Foliar reactions to each SMV strain 

were monitored each week, compared with set of checks 2-4 weeks after inoculation, and 

classified into three distinct phenotypes as resistant (R), susceptible (S), and segregating 

(R+N+S, R+N or R+S). Every F2:3 line containing less than ten inoculated plants was not 

included into final counting, unless all plants displayed mosaic symptoms.  

 

SMV detection 

 Polymerase chain reaction (PCR) based detection of the SMV virus was performed in 

eight plants of the susceptible F2:3 line. The Zymo Research ZR Plant RNA MiniPrep
TM 

was used 

for extraction of total RNA, followed by cDNA synthesis by Reverse Transcription System 

(Promega) according to the manuals. SMV specific primers were used to detect its coat protein 

(CP) via SMV-CP130F: CCGCGTTTGCAGAAGATTAC and SMV-

CP645R: AGCCTTCATCTGCGCTATT. SMV-infected soybean plants displaying resistant and 

susceptible symptoms were included as positive and negative control. Each PCR reaction 

mixture of a volume of 25 µl consisted of 2.5 µl of 15 µl of sterile water, 10x Taq buffer 

(GenScript), 4 µl of 2.5 mM dNTPs, 1.0 µl of 20 µM primers, 0.1 µl 5U/μl Green Taq DNA 

polymerase (GenScript), and 2.5 µl of cDNA template. The bands were amplified with a 
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program of 94°C for 2 min of initial denaturation, and 40 cycles of 30 seconds at 94°C of 

denaturation, 15 seconds at 58°C of primers annealing, 35 seconds at 72°C of extension; and 10 

min at 72°C of final extension after the last cycle. Amplified products were separated on 6% 

polyacrylamide gels containing 0.5 μg/ml ethidium bromide in 0.5X TBE buffer. Sampler was 

run at 350 V for 2 hours and the bands were visualized under UV light. 

 

DNA extraction and genotyping 

 Genomic DNA was extracted from tagged F2 plants based on the 

cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1990) with minor 

modifications. In this procedure, frozen leaves were crushed to powder with metal beads using 

Qiagen Retsch TissueLyser Mm301 Mixer Mill Grinder. 750 µL of extraction buffer (2% CTAB, 

100 mM Tris-Cl, 20 mM EDTA pH 8.0, 1.4 M NaCl and 1% volume β-mercaptoethanol) was 

added to each tube and incubated at 65°C in a water bath. After 1 hour of incubation, 1 ml 

chloroform:isoamyl alcohol (24:1) was added and samples were centrifuged at 12,000 rpm for 15 

min at RT. To precipitate DNA, the upper layer was transferred to a new tube containing 1 ml 

ice-cold 95% ethanol. Pellets were washed in 1 ml 75% ethanol, dried for 2 hours, and dissolved 

in 200 µl nuclease-free water. DNA concentrations were measured using the NanoDrop ND-

2000 1-Position spectrophotometer (Thermo Scientific).  

 Molecular markers linked to the Rsv1 locus, SOYBAR_SSR_1133-31, 

SOYBAR_SSR_1133-33, SOYBAR_SSR_1133-34, SOYBAR_SSR_1133-35, Sat_154, 

Sat_234, Sat_297, Sat_317, Satt114, Satt334, Satt510, and one gene specific primer Rsv1f/r, 

covering a chromosomal region of 13.37 cM, were tested for polymorphisms between parents, 

and Satt114 marker (Gm13: 27718778 - 27718828) was chosen as a background marker to test 
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F2:3 and F3:4 lines, and soybean differential checks. PCR was consisted of 4.3 µl autoclaved 

distillated water, 3 µl 5X Green GoTaq Flexi Buffer (Promega), 0.9 µl 25mM MgCl2, 1.0 µl 

2.5mM dNTPs, 0.2 µl 5 u/µl GoTaq Flexi DNA Polymerase (Promega), 1.0 µl 5µM Satt114 

primers, and 3 µl 20 ng/µl DNA template. The products were amplified with a program of 95°C 

for 10 min of initial denaturation, 35 cycles of 25 seconds at 95°C of denaturation, 25 seconds at 

48°C of primers annealing, 25 seconds at 72°C of extension; and 5 min at 72°C of final 

extension. After PCR, amplified products were separated on 6% polyacrylamide gels containing 

0.5 μg/ml ethidium bromide in 0.5X TBE buffer. Sampler was run at 350 V for 2 hours and the 

bands were visualized under UV light. 

 

Data analysis 

 Recombination frequency (RF) was calculated using maximum likelihood considering 

segregating (H) and susceptible (S) F2:3 lines. In this method, the recombination fraction was 

computed using the Maximum likelihood (ML) estimator and calculated using a VB 

programming language. The RF between loci was transformed according to the Kosambi 

function using the formula for recombination fraction of two dominant genes segregation: 

 

ML = n1  log(2-2r
2
) +  n2 log(2) +  n3 log(r

2
) 

 

Where: ML is the maximum likelihood, r is the estimated recombination fraction, n1 is a number 

of resistant F2:3 lines, n2 is a number of segregating F2:3 lines, and n3 is a number of susceptible 

F2:3 lines (Liu, 1997). Soybean pedigrees were extracted from the uniform soybean tests 

parentage information available on SoyBase (www.soybase.org). 
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RESULTS 

 Three thousands F2 plants derived from the cross PI 96983 (Rsv1) × York (Rsv1-y) were 

individually threshed, hand-planted, and F2:3 lines inoculated with the SMV-G1 strain. Results 

from 295 F2:3 lines were discarded due to low number of seeds, low germination rate or missing 

genotyping data. From remaining 2,705 lines, 2,026 lines were classified as all resistant (R) 

(74.89 %), 516 lines segregating for resistance and necrosis (R+N) (19.07 %), 71 lines as 

segregating for resistance and susceptibility (R+S) (2.62 %), 91 lines as segregating for 

resistance, necrosis, and susceptibility (R+N+S) (3.36 %), and 1 susceptible line (S) (0.03 %) 

(Table 3, Figure 1). The sergeants classified into R+N, R+S, and R+N+S and were grouped 

together as the segregating F2:3 population of 678 lines in total (25.06 %). From total of 2,705 

F2:3 lines investigated, only one line displayed susceptible symptoms on all eight infected plants, 

possibly leading to the rsv1rsv1-y homozygous genotype (aabb) (Table 3).  

 Seventeen F2:3 lines displaying various symptoms were proceeded to develop F3:4 lines 

for progeny testing to observe further segregations in next generations (Table 4). It was possible 

to test progenies from most of the resistant and susceptible plants; however, many progenies of 

necrotic F3 plants did not produce seeds. Resistant and segregating progeny lines displayed 

expected results when infected with SMV-G1. Eight plants of the susceptible F2:3 line displayed 

intense and unambiguous symptoms of SMV infection during entire life cycle starting with vein 

clearing, development of mosaics with strong puckering, and twisting leaf edges downward at 

late stage of infection (Figure 2). Moreover, all infected susceptible plants were stunted due to 

shortening steams and petioles. These plants displayed flower abortion and single or no pods 

were produced with a characteristic coat mottling, and re-inoculation of F3:4 lines with SMV-G1 

was not necessary as the virus was transferred to the next generation via infected embryos. In 
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addition, all plants from seventeen F3:4 generation, used for the progeny test, were analyzed for 

virus detection by PCR (Table 4). The virus detection confirmed that phenotypic characterization 

and classification used in this study was in agreement with SMV infection. These results 

indicated that all eight plants of the susceptible F2:3 line were infected with SMV displaying a 

band of ~500 bp. 

 The F2 population and eight susceptible F2:3 plants were tested with the background SSR 

marker, Satt114, to validate genetic segregation within the cross PI 96983 (Rsv1) × York (Rsv1-

y) (Table3, Figure 3). The genotyping F2 results (679A:1,349H:677B) fitted perfectly into the 

1A:2H:1B genetic segregation ratio of a single dominant gene, with χ
2
 = 0.021, and p =  0.98. 

The results of this research displayed a characteristic pattern as most phenotypically segregating 

F2:3 lines contained only the York allele (315 lines), and there was a significantly less segregating 

lines with the PI 96983 allele (117 lines). The parents, PI 96983 and York, displayed single 

polymorphic bands ("A" and "B"), whereas the F2 susceptible sample amplified two bands that 

corresponded to both parents ("H"). Moreover, eight F2:3 plants revealed three plants with both 

bands ("H") and five plants with a single PI 96983 band ("A") (Figure 3). 

 Recombination fraction (RF) was calculated using the maximum likelihood formula. The 

results revealed that the RF equals to 0.022 (2.2%). The genetic and physical distance between 

the Rsv1 and Rsv1-y was calculated as the percentage of recombination between those genes. 

One centiMorgan (cM), a unit of recombinant frequency which is used to measure genetic 

distance, is equal to 1% RT (Griffiths et al., 2015). Based on this general rule, 2.2% 

recombination was estimated be equivalent to 2.2 cM. As the genetic distance of 1 cM in 

soybean equals to 200 Kb in euchromatine (Schmutz et al., 2010), the physical distance between 

the Rsv1 and Rsv1-y corresponded to 440 Kb. It is important to point out that the linkage map 

http://www.macmillanhighered.com/Catalog/Author/anthonyjfgriffiths
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units like centiMorgans do not correspond to any fixed length of chromosome and can depend on 

many factors, e.g. frequency of crossover can be affected by location on chromosome (distance 

to the centromere) and proximity to another crossover. 

 York cultivar, resistant to G1 and susceptible to G7, was developed from the cross of 

Dorman (resistant to G1 and susceptible to G7) × Hood (resistant to G1 and necrotic to G7) 

(Figure 4). Dorman was developed from the cross of Arksoy 2913 (resistant to G1 and 

susceptible to G7) × Dunfield; whereas Hood was derived from N45-745 (resistant to G1 and 

necrotic to G7) × Roanoke (susceptible to G1 and G7). Ogden (resistant to G1 and necrotic to 

G7) and C.N.S. (susceptible to G1 and resistant to G7) were ancestors of N45-745. 

  

DISCUSSION 

 This study was performed to evaluate allelomorphic relationship between Rsv1 in PI 

96983 and Rsv1-y in York using phenotypic response of soybean population developed from the 

cross PI 96983 (Rsv1) × York (Rsv1-y) that utilized artificial inoculations under controlled 

conditions in the greenhouse, which were ideal for development of SMV symptoms, and 

eliminated potentially ambiguous effects of the natural environment or mixed infections. Our 

hypothesis was that Rsv1 and Rsv1-y are two distinct loci tightly linked that are inherited 

together in a very high frequency rate, and due to this reason, the Rsv1-y was incorrectly 

designated to belong to the Rsv1 locus as one of its alleles. To break possible linkage between 

two closely located genes, high population size was necessary to be developed in order to 

increase the chance of the crossing-over occurrence. This experiment was proceeded with 

extreme carefulness as any source of contamination would affect the results. As the distance 

between Rsv1 and Rsv1-y was unknown, a population size of 3,000 F2:3 lines were developed 
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from the cross between PI 96983 and York. If the Rsv1 (R) and Rsv1-y (R) are two different but 

linked loci, after crossing there should be some segregating and susceptible F2:3 lines occurring at 

low frequency (Xu, 2010), thus the recombination between these genes could be indicated by a 

presence of fully susceptible lines to the SMV-G1 strain.  

 PI 96983 was the first soybean accession where resistance to SMV was identified (Kiihl 

and Goodman, 1979), reassigned as dominant Rsv1 locus (Chen et al., 1991), and mapped on 

chromosome 13 (MLG F) (Yu et all., 1994). Later, York was confirmed to be controlled by a 

single dominant gene (Roane et al., 1983). Both parents used for this research were previously 

analyzed by performing inheritance and Rsv1 allelism tests (Chen et al., 1991; Kiihl and 

Hartwig, 1979; Roane et al., 1983). Based on the results of Chen et al. (1991), when York was 

crossed to a susceptible genotype Lee 68, nearly a one fourth of the plants observed in the F2 

population were necrotic (100R:45N:43S). When PI 96983 was crossed to a susceptible 

genotype Lee 68, only few necrotic plants were noticed (158R:5N:49S). In Chen et al. (1991) 

study, both populations fitted into a genetic ratio of a single dominant gene (3R:1S) when R and 

N were counted as resistant plants, what was in agreement with the previous reports of SMV 

resistance in York (Roane et al., 1983) and PI 96983 (Kiihl and Hartwig, 1979). Chen et al. 

(1991) found that the necrotic F2 plants were indicated to be heterozygous for the resistance gene 

what was confirmed in F3 population where the majority of the necrotic plants occurred in 

segregating rows, while homozygous rows were completely resistant. In this research, the same 

assumption was implemented that systemic necrosis is highly associated with plants at the 

heterozygous stage for the resistance allele Rsv1, but may be influenced by environment and 

genetic background. 
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The F2 susceptible plant, possibly explaining the rsv1rsv1-y homozygous genotype 

(aabb), displayed two amplified bands, and its F3 plants were scored as either A or H. This 

indicated that this F2:3 line was derived from the original cross and it was not a source of 

contamination. For future analysis, whole genome genotyping (e.g. 50K SNP chip) of the 

susceptible line and its parents will be necessary to perform in order to identify if the susceptible 

line is a true progeny of the PI 96983 × York cross. The Satt114 marker could not be used to 

differentiate two potential genes as the amplified bands from each parents gave the resistant 

reaction. However, SMV-G7 strain could be used as an indicator because PI 96983 and York 

display different reaction patterns: necrosis and susceptibility, respectively (Table 1). 

 In this preliminary study, 2,705 F2:3 lines were inoculated with the SMV-G1 strain, and 

one fully susceptible line was observed making an assumption that approximate number of 3,000 

F2:3 lines is the minimal population size to detect recombination between the two investigated 

genes. In general, if two soybean accessions, carrying resistance at the same locus, were crossed 

to each other, the following generations could display full resistance. However, in this study, the 

presence of one susceptible and 678 segregating F2:3 lines provided an evidence that the Rsv1 in 

PI 96983 and the Rsv1-y reside at two loci. Evidently, the frequency of susceptible lines was 

much lower (1 out of 2'705) than expected segregation of two independent genes (166 out of 

2'705), therefore, the two genes seem to be closely linked. The results were additionally 

validated by performing the progeny test and observing further segregations of 17 F2:3 lines 

including the susceptible line No. 3423 in reaction to SMV-G1. Interestingly, all plants derived 

from the susceptible line displayed mosaics in next generations and SMV was detected by PCR.  

The presence of the susceptible line, as well as a big number of segregating lines 

indicated that two SMV resistance genes are located on chromosome 13. Based on the 
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segregating population, the recombination frequency was calculated and it was concluded that 

the R-genes are linked at genetic distance of 2.2 cM what corresponds to 440 Kb in the soybean 

genome. This distances need to be closer analyzed in the future, as only one susceptible line was 

observed. Also, SMV infection of about 20 plants per line could not identify all segregants. We 

propose to assign a symbol Rsv2 for a new gene instead of the Rsv1-y nomenclature which was 

assigned by Chen et al. (1991) for SMV resistance present in York soybean accession.  

 Chen et al. (1991) performed an allelism test by crossing PI 96983 (R) × York (R), and 

analyzing 122 F2 plants and 80 F2:3 lines. A low level (about 0.6-1.3%) of necrotic plants and no 

susceptible lines were detected in F2 (118R:4N:0S), and F3 (79R:1H:0S) populations. The lack of 

segregation for susceptibility in both generations indicated a high probability that the resistance 

genes in these cultivars are alleles at a common locus; and therefore, the resistance in York was 

classified as an allele Rsv1-y of the Rsv1 locus. Certainly, a tight linkage between Rsv1-y and 

Rsv1 loci could not be detected by the population size used by Chen et al. (1991), as no 

segregation was observed in the progeny as a result of low recombination frequency between 

these two loci.  

 According to study by Shi et al. (2008), Rsv1-f/r PCR-based marker amplified the 3gG2 

gene (Hayes et al., 2004), a strong candidate for Rsv1, from all soybean accessions carrying 

different Rsv1 alleles except Rsv1-y present in York and 16 other genotypes. Unluckily, this 

marker could not be used in this experiment because the Rsv1-y allele cannot be detected at all, 

and the amplified Rsv1 allele cannot be differentiated between homozygous and heterozygous 

state. Moreover, Yang et al. (2013) concluded that there might be an extra dominant R-gene 

tightly flanking the Rsv1 locus conferring resistance to different SMV Chinese strains. The 

potential Rsc-pm R-gene (probably the Rsv1) was positioned between BARCSOYSSR_13_1128 
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(Gm13: 28,919,973- 28,920,014) and BARCSOYSSR_13_1136 (Gm13: 29,264,742-

29,264,795), whereas Rsc-ps gene was positioned between BARCSOYSSR_13_1140 (Gm13: 

29,301,702-29,301,734) and BARCSOYSSR_13_1155 (Gm13: 29,682,501- 29,682,520). The 

marker results proposed by Yang et al. (2013) suggested that the minimal distance between Rsc-

pm and Rsc-ps was ~345 Kb. In the recent study, we detected a linkage distance of ~440 Kb 

between Rsv1 and Rsv2 loci. The molecular research made by Yang et al. (2013) was in 

agreement with our study, and we could suggest that the Chinese Rsc-pm and Rsc-ps R-genes 

might be equivalent to the American Rsv1 and Rsv2 loci. Gore et al. (2002) concluded that there 

is a possibility that PI 96983 may carry two linked genes controlling SMV infection, Rsv1 and 

Rvp1. We also do not reject the possibility that PI 96983 could possess both R-genes, Rsv1 and 

Rsv2, because only one susceptible line was observed in our experiment; nevertheless, a large 

number of segregating lines gave us the first evidence for existence of the Rsv2 locus. If PI 

96983 harbors SMV resistance at Rsv1 and Rsv2, it could be possible that other soybean 

accessions with Rsv1-assigned alleles could carry an extra Rsv2 locus as these linked genes tend 

to be inherited together, giving an additional protection against SMV. For example, PI 96983 

could carry the same allele as Kwanggyo (Rsv1-k) or Ogden (Rsv1-t) and additional Rsv2 locus 

which would contribute to additional resistance to wider range of SMV strains (Table 1). If this 

is true, the entire classification of ten identified alleles at the Rsv1 locus need to be investigated 

and re-classified in the future. 

 The soybean genome is complex due to the presence of duplicate copies of genes that 

account for up to 80% of the total gene number. These copies are scattered throughout the 

genome and so are difficult to locate. In addition, the soybean genome contains large numbers of 

transposable elements which are mobile DNA pieces that may impact gene expression (Schmutz 
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et al., 2010). Therefore, it is highly possible that two SMV R-genes might be located in a close 

proximity. The Rsv2 resistance gene in York seems to be derived from Arksoy through Dorman 

cultivars, even though Ogden occurred in its ancestors. The analysis of soybean genome shows 

that duplication and diversification of individual genes (paralogs) seems to be one of several 

forces to drive evolution of eukaryotic genomes via producing copies of a gene with similar but 

slightly different functions in the process pushed by natural selection (Lynch and Conery, 2000).  

 Viruses, such as SMV, have a high rate of mutations during their replication leading to 

the co-evolution of plant defenses in response to viral infections (Fraile and Garcia-Arenal, 

2010). Among the seven U.S. strains of SMV, the G1 is the least, and G7 is the most virulent 

strain. SMV-G1 is also the most prevalent and predominant in nature (Cho and Goodman, 1979). 

The Rsv1 is the most common in SMV resistant soybean germplasm, and most diverse 

multiallelic locus with ten indentified alleles (Li et al., 2010; Shakiba et al., 2012; Zheng et al., 

2005). The SMV-G1 strain and the Rsv1 gene must have gone through a long course of co-

evolution in nature, which let to emerge new more aggressive strains and other resistance genes. 

The Rsv2 (Rsv1-y) is also the most common R-gene in soybean germplasm collection (Li et al., 

2010; Shakiba et al., 2012; Zheng et al., 2005); therefore, there is possibility that the Rsv1 and 

Rsv2 are the earliest resistance genes that confer resistance to the less aggressive SMV strains 

(Table1). The Rsv1 locus appears to be very complex with abundant genetic diversity, and the 

Rsv2 gene (Rsv1-y) is linked to the Rsv1 locus. The region of a long arm of chromosome 13 

contains the most complex sequences and it is known to contain a cluster of genes related to 

defense mechanisms. Since the Rsv1 and Rsv2 loci are located nearby, they most likely act as one 

genetic unit and can be transferred to the progeny feasibly in natural conditions as well as in 

breeding programs. The greatest advantage of having two commercially important genes linked 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Fraile%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20965070
http://www.ncbi.nlm.nih.gov/pubmed/?term=Garc%C3%ADa-Arenal%20F%5BAuthor%5D&cauthor=true&cauthor_uid=20965070
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to each other is enhancement of protection against constantly evolving SMV strains, and 

reduction of genetic vulnerability to mutations. The two tightly linked genes identified in this 

study provide additional sources of genetic diversity and would be helpful in cloning of SMV R-

genes and classical breeding of multiple resistances through marker-assisted selection (MAS). 
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Table 1. Reactions of soybean genotypes carrying different alleles at the Rsv1 locus to seven 

soybean mosaic virus strains.  

 

Name 

Reactions to SMV † 

Allele Reference 

G1 G2 G3 G4 G5 G6 G7 

PI 96983 R R R R R R N Rsv1 Kiihl and Hartwig, 1979 

York R R R N S S S Rsv1-y Chen et al., 1991 

Suweon 97 R R R R R R R Rsv1-h Chen et al., 2002 

Raiden R R R R N N R Rsv1-r Chen et al., 2001 

Kwanggyo R R R R N N N Rsv1-k Chen et al., 1991 

Ogden R R N R R R N Rsv1-t Chen et al., 1991 

Marshall R N N R R N N Rsv1-m Chen et al., 1991 

PI 507389 N N S S N N S Rsv1-n Ma et al., 2003 

LR1 R R R R N N R Rsv1-s Ma et al., 1995 

Corsica S ER S - ER S ER Rsv1-c Shakiba et al., 2013 

 

†   G1 - G7, SMV strains; plant symptoms: R, resistant (symptomless); N, necrotic (systemic 

necrosis); S, susceptible (mosaic); ER, early resistance at seedling stage. 
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Table 2. Summary of genotypic and phenotypic frequencies in the F2 and F2:3 populations segregating for two genes based on 

independent assortment and complete linkage. 

 

  
Reaction to SMV-G1‡ SSR Amplification§ Genotypic frequency 

SMV 

Genotype 
F2 Genotype† F2 F2:3 PI 96983 

allele 
York allele 

Independent 

Assortment 

(50 cM) 

Complete 

Linkage 

(0.0 cM) 

Rsv1Rsv1-y AABB R R + + 6.25 0 

Rsv1Rsv1-y AABb R R + + 12.5 0 

Rsv1rsv1-y AAbb R R + - 6.25 25 

Rsv1Rsv1-y AaBB R R + + 12.5 0 

Rsv1Rsv1-y AaBb R 15(R+N):1S + + 25 50 

Rsv1rsv1-y Aabb R+N 3(R+N):1S + - 12.5 0 

rsv1Rsv1-y aaBB R R - + 6.25 25 

rsv1Rsv1-y aaBb R 3R:1S - + 12.5 0 

rsv1rsv1-y aabb S S - - 6.25 0 

 

†  A, presence of the Rsv1 allele from PI 96983; B, presence of the Rsv1-y allele from York; a, presence of the rsv1 allele from           

PI 96983; b, presence of the rsv1-y allele from York.  

‡   R, resistant; R+N, segregation of R and N; R+N+S, segregation of R and N and S; R+S, segregation of R and S; S, susceptible.  

§   +, presence of a specific allele; -, absence of a specific allele.
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Table 3. Summary of the molecular data of F2 population screened with SSR marker Satt114 closely linked to the Rsv1 locus, and the 

phenotypic reactions of corresponded F2:3 lines derived from PI 96983 (R) × York (R) to SMV-G1 strain. 

 

F2 Genotype† 
F2:3 Phenotypic Reaction to SMV-G1‡ 

Total 

R R+N R+S R+N+S S 

A 562 67 26 24 0 679 

B 431 194 22 30 0 677 

H 1033 255 23 37 1 1349 

Total 2026 516 71 91 1 2705 

 

†   A, presence of the Rsv1 allele (AAbb or Aabb); B, presence of the Rsv1-y allele (aaBB or aaBb); H, presence of both alleles Rsv1 

and Rsv1-y (AABB, AABb, AaBB, or AaBb). 

‡   R, resistant; N, necrotic; S, susceptible; R+N, R+S and R+N+S, segregating line. 
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Table 4. Reactions of F2:3 lines and soybean mosaic virus detection, and progeny test of F2:4 lines infected with G1strain. 

F2:3 Line No. F2:3 Phenotype† F2:3 SMV Detection F3:4 Phenotype† 

3018 14R+2S  -  -  -  -  -  -  -  -  -  -  -  -  -  -  + + R R R R R S S R R R S R S S S S 

3073 16R+2N+1S  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  + + + R R R R R N R S N R R R R N N R na S 

3093 10R+2N+1S  -  -  -  -  -  -  -  -  -  -  + + + R R N R R R N S R R na na na  

3203 9R+2S  -  -  -  -  -  -  -  -  -  + + S R R R R R R S R S S 

3229 13R+1S  -  -  -  -  -  -  -  -  -  -  -  -  -  + R R S R R R R R R R R S R S 

3261 7R+3N+1S  -  -  -  -  -  -  -  + + + + N R N R S S R R N N S 

3423 8S  + + + + + + + + S  na  na  S  na  na  na  na 

3645 9R+2N+2S  -  -  -  -  -  -  -  -  -  + + + + R R N S N R R R N R N S S 

3785 21R  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -   R R R R N R R R R N R R R R R R R S R R R 

3945 10R+1N+1S  -  -  -  -  -  -  -  -  -  -  + + R R R R N R R R R N R S 

4053 2R+4N+4S  -  -  + + + + + + + + R R N R R R S na na S 

4099 4R+7N+3S  -  -  -  -  + + + + + + + + R R R R R na R na N na na S S S 

4316 20R  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -   R R R R R R R R R R R R R R R N R R R R 

4980 11R+2N  -  -  -  -  -  -  -  -  -  -  -  + + R R R R R R R N N R R na na 

5743 9R+1N+1S  -  -  -  -  -  -  -  -  -  + + R N N R S R R R R R S 

5865 14R  -  -  -  -  -  -  -  -  -  -  -  -  -  -   R R R R R R R R R R R R R R 

5920 11R+2N+2S  -  -  -  -  -  -  -  -  -  -  -  + + + + S R R R N N R R R R R R na S S 

†  Reaction of plants inoculated with SMV-G: R, resistance; N, necrosis; S, susceptibility (mosaics).
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Figure 1. Symptoms representation of F2:3 lines derived from the cross PI 96983 (R) × York (R) 

inoculated with SMV-G1 strain: resistant line (upper left); segregating line R+S displaying one 

susceptible plant (upper right);  segregating line R+N displaying two necrotic plants (lower left), 

and segregating line R+N+S displaying resistant, susceptible and necrotic plants (lower right). 
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Figure 2. Foliar symptoms of the susceptible F2:3 soybean line. 
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Figure 3. Amplification of SSR marker Satt114 in population derived from PI 96983 × York. 

Above: segregation of F2 population: A, presence of the Rsv1 allele from PI 96983; B, presence 

of the Rsv1-y allele from York; H, presence of both alleles from PI 96983 and York. Below: 

analysis of the F2:3 susceptible line: P1, presence of Rsv1 allele from PI 96983; P2, presence of 

Rsv1-y allele from York; F2, presence of both bands in the F2 susceptible line; 1-8, F2:3 progenies 

of the susceptible line. 
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Figure 4. Analysis of York pedigree for SMV resistance: host reaction to SMV (G1+G7) strains; 

R, resistance; N, necrosis; S, susceptibility (mosaics). 
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CONCLUSIONS 
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 Through this research we discovered six SNP markers for detection of the Rsv4 SMV 

resistance locus in soybean. These markers were used to analyze the genetic diversity of 299 

soybean accessions, and together with phenotyping, allowed for the classification into groups of 

potential SMV resistance genes. The markers were validated by segregating population and 

distances between the Rsv4 and SNPs were calculated, what was the base of proposing Rsv4 

candidate genes.  

In order to confirm a presence of three SMV resistance genes into one soybean line by 

gene pyramiding, an inheritance study was performed by crossing it with a homozygous 

recessive parent. The progenies were analyzed phenotypically and genotypically, confirming a 

successful incorporation of three SMV R-genes into one soybean line with three independent 

genes. This line will be proposed for future release as a source of SMV resistance for soybean 

breeding programs worldwide.  

A new allele for differential reactions to SMV strains was identified in the soybean 

genotype PI 438307. Results from inheritance study and allelism test revealed that resistance to 

SMV in PI 438307 is controlled by a single dominant gene, allelic to the Rsv4 locus. This 

information was supported by molecular analysis which showed that this gene is located on 

chromosome 2. PI 438307 exhibited a unique reaction pattern than other reported Rsv4 alleles; 

therefore we proposed that a new allele Rsv4-v be assigned to the SMV resistance in this soybean 

accession. This allele may provide additional protection against SMV virulence change over time 

driven by natural selection and fitness causing diversification of new strains that defeat host's R-genes. 

No allelic relationship was found between the Rsv1 in PI 96983 and Rsv1-y in York. This 

study demonstrated that Rsv1 and Rsv1-y are two tightly linked genes. We proposed a symbol 

Rsv2 to be assigned to the SMV resistance in York. Since the Rsv1 and Rsv2 genes are linked on 
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chromosome 13, they can be easily transferred as one genetic unit in progeny in a breeding 

program, and it is possible that some soybean genotypes with identified Rsv1 alleles may also 

possess the Rsv2 locus, giving an additional protection against SMV. 

The findings reported in this dissertation may assist researchers in future studies on SMV 

resistance, and may be helpful for breeders in selecting crossing parents for SMV resistance and 

accelerating breeding efforts to develop multi-virus resistant crops avoiding escapes due to 

pathogen evolution to overcome resistance. 
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