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Abstract

The rise of Big Data in recent years brings many challenges to modern statistical analysis and

modeling. In toxicogenomics, the advancement of high-throughput screening technologies

facilitates the generation of massive amount of biological data, a big data phenomena in

biomedical science. Yet, researchers still heavily rely on key word search and/or literature

review to navigate the databases and analyses are often done in rather small-scale. As a

result, the rich information of a database has not been fully utilized, particularly for the

information embedded in the interactive nature between data points that are largely ignored

and buried. For the past 10 years, probabilistic topic modeling has been recognized as an

effective machine learning algorithm to annotate the hidden thematic structure of massive

collection of documents. The analogy between text corpus and large-scale genomic data

enables the application of text mining tools, like probabilistic topic models, to explore hidden

patterns of genomic data and to the extension of altered biological functions. In this study,

we developed a generalized probabilistic topic model to analyze a toxicogenomics data set

that consists of a large number of gene expression data from the rat livers treated with drugs

in multiple dose and time-points. We discovered the hidden patterns in gene expression

associated with the effect of doses and time-points of treatment. Finally, we illustrated the

ability of our model to identify the evidence of potential reduction of animal use.

In online social network, social network services have hundreds of millions, sometimes

even billions, of monthly active users. These complex and vast social networks are tremen-

dous resources for understanding the human interactions. Especially, characterizing the

strength of social interactions becomes essential task for researching or marketing social net-

works. Instead of traditional dichotomy of strong and weak tie assumption, we believe that

there are more types of social ties than just two. We use cosine similarity to measure the

strength of the social ties and apply incremental Dirichlet process Gaussian mixture model to

group tie into different clusters of ties. Comparing to other methods, our approach generates

superior accuracy in classification on data with ground truth. The incremental algorithm



also allow data to be added or deleted in a dynamic social network with minimal computer

cost. In addition, it has been shown that the network constraints of individuals can be used

to predict ones’ career successes. Under our multiple type of ties assumption, individuals

are profiled based on their surrounding relationships. We demonstrate that network profile

of a individual is directly linked to social significance in real world.
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1 Introduction

1.1 The Rise of Big Data

Moore’s law [38] in 1965 not only predicted the tremendous improvement for semiconductor

component technology but also served as a good indicator of how fast the whole computer

hardware industry has grown through the decades. Computer hardware in general gets

a lot faster, smaller, cheaper, and more powerful. As a result, the rise of “Big Data”

becomes inevitable and ubiquitous. In 2001, Doug Laney [31] coined three characteristics

which are often used to describe big data over the years: volume, velocity, and variety.

That is, besides the size of data sets (volume), the speed of acquisition and processing

data sets (velocity) and the various kinds of data sources and structures (variety) are also

parts of the big data problem. Beyer and Laney again defined Big Data in 2012 [6] as the

following: “Big Data is high volume, high velocity, and/or high variety information assets

that require new forms of processing to enable enhanced decision making, insight discovery

and process optimization.” There are many aspects of tasks involving big data; for example,

database warehouse management, data pre-processing, and data modeling, etc. Due to the

complex nature of the big data, many traditional statistical or mathematical methodologies

simply won’t work or are very insufficient to handle the big data problem. Consequently,

interdisciplinary subfields (e.g., data mining and machine learning) are created to bridge

the gap between big data and the state-of-the-art methodologies. While some area, like

text documents or computer images, enjoy the benefits of early success of machine learning

algorithms, many areas still rely on traditional algorithms, which are getting more and more

insufficient day by day. There are still plenty of areas that haven’t benefited from the latest

machine learning algorithms.

1



1.2 Probabilistic Graphical Model

As Koller and Friedman defined in their book [30], probabilistic graphical models “use a

graph-based representation as the basis for compactly encoding a complex distribution over a

high-dimensional space.” Specifically, we are interested in Bayesian network which represents

its conditional independence in directed acyclic graphs.

In a traditional graphical model of a Bayesian network:

• Circles represent variables. Specifically, a shaded circle indicates an observed variable

and an empty circle indicates an unknown variable.

• Arrow represent conditional dependencies.

• Plate notion indicates the repetition of a relationship for a number of times.

One of the most important features of graphical model is using the combinations of circles

and arrows to demonstrate the conditional dependency in a Bayesian network. Consider a

Bayesian network in Figure 1 (A) as an example, we can see that variable C has a set of

parent variables, A and B, and a offspring variable D. Based on Bayes’ rule, the joint

probability distribution can be written as following:

p(A,B,C,D) = P (A)p(B|A)p(C|A,B)p(D|A,B,C) (1)

According to the conditional dependency implied in Figure 1 (A), we can simplify the

notation of the joint distribution of our model:

p(A,B,C,D) = p(A)p(B|A)p(C|A,B)p(D|A,B,C) (2)

= p(A)p(B)p(C|A,B)p(D|C) (3)

Here, Figure 1 (B) shows the graphical representation of a Gaussian mixture model which

specified by the following:

2



Figure 1: A graphical representation of Gaussian mixture model

• π is a K-simplex which
∑K

k=1 πk = 1

• ∀ i = 1, ..., N ,

– zi ∈ {1, ..., K} is the assignments of mixture components.

– Given zi = k, xi ∼ N(µk, σ
2
k).

Therefore, these graphical models not only provide compact visualizations of a com-

plicated distributions, but also help us to understand the conditional dependencies among

variables. Besides the two models shown here, well-knwon models like hidden Markov models

or neural networks are all parts of the graphical model family.

1.3 Probabilistic Topic Models

The Big Data era also brings digitization of information in all kinds of forms—texts, images,

sounds, videos, and social networks. On one hand, the internet along with digitization gives

us boundless access to online information to read, to watch, and to listen. On the other hand,

it is increasingly difficult to find the information which is relevant to what we are interested

in. Over the past decades, the combination of accelerating computer technology and the rise

3



of big data creates new interests on solving the problem by unsupervised machine learning

algorithms.

In 2003, David Blei et al. introduced Latent DirichLet allocation (LDA)[11], which is

among one of the earliest as well as the most important probabilistic topic models. In Blei’s

introductory article of the probabilistic topic models , Blei [10] define that “topic models are

algorithms for discovering the main themes that pervade a large and otherwise unstructured

collection of documents. Topic models can organize the collection according to the discovered

themes.” Therefore, finding meaningful “topic” in a large text corpus is the main goal of

topic modeling. Furthermore, the probabilistic topic model generally can be seen as a special

category of probabilistic graphical models. Therefore, almost all probabilistic topic models

can be expressed in a graphical model form. In particular, many probabilistic topic models

also assume certain generative process of their observations. Documents are assumed to

be generated based on a random mixture of hidden topics, where each topic is a random

distribution over a fixed vocabulary of words.

Assume there are D text documents and each document has Nd words, where d ∈

{1, ..., D}. LDA then follows the generative process below (also see Table 2):

Choose φk
i.i.d.∼ Dir(β), where k = 1, ..., K, φ = {φ1, ...φK}.

For each document d,

1. θ ∼ Dir(α).

2. For each of the Nd words,

(a) choose topic assignment zi ∼Multinomial(θ).

(b) choose a word wn from p(wn|zi = k, φ) = Multinomial(φk).

Under this assumption, words are organized into topics and each document is controlled

by topics. Consequently, instead of dealing with a huge amount of unstructured documents,

we are able to browse and interact with these documents through organized“topics”, whose

size is often much smaller and hence it is easier to deal with.
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Figure 2: A graphical representation of latent Dirichlet allocation

As Blei point out in his review article of probabilistic topic modeling [10], LDA model can

be utilized as a module to be built on. There have been many extensions to the traditional

LDA model to accommodate various aspects of big data. In chapter 2, we use a close relative

of LDA—author-topic model[45] with some alternations—to explore the hidden patterns in

toxicogenomic dataset. In chapter 4, we apply an incremental version of Dirichlet Gaussian

Mixture model[33] on social networks to discover multiple types of social ties. At first glance,

a Gaussian mixture model may seems to have little connection to LDA. One deals with

words—a discrete variable, and another handles numbers—a continuous variable. However, a

Dirichlet process version of LDA not only is structurally similar to Dirichlet Gaussian Mixture

model, many aspects of our approach to analyze social network data are also influenced by

probabilistic topic models. Namely, the characterization of individuals closely based on social

ties closely resemble profiling documents based topics. As a document is defined by topic, a

person may be defined by his/her social relationships.
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2 Asymmetric Author-topic Model for Knowledge Discovering of Big Data in

Toxicogenomics [14]

2.1 Background and Relative Works

As first introduced in 1999, toxicogenomics has emerged as a new subdiscipline of toxicology

to take advantage of the newly available genomics profiling technique to gain an enhanced

understanding of toxicity at the molecular level [47, 16, 40]. Since then, toxicogenomics

significantly contributes to toxicological research and has provided an avenue for joining of

multidisciplinary sciences including engineering and informatics into traditional toxicological

research [1]. On the other hand, due to high computational cost and lack of advanced

knowledge discovery as well as data mining tools, the pace of toxicogenomics has been tardy

in recent years [13]. First, a significant deterrent has been the enormous size of toxicogenomic

datasets. With perhaps thousands of samples and tens of thousands of genes, the tremendous

size of the toxicogenomic database often is cumbersome to handle, analyze and interpret.

Gene selection (i.e., selecting relevant genes) and grouping genes (i.e., dealing only partial

data at a time) has often been used to reduce complexity and make analyses more tractable

[44]. However, both gene selection and grouping run the risk of losing valuable information

contained in excluded data. Hence, a method that can efficiently handle the entire data

without losing potentially valuable information is desirable. Second, any given biological

phenomenon normally involves multiple biological pathways and mechanisms. Currently,

some existing clustering algorithms like hierarchical cluster analysis and k-means only allow

individuals to be assigned into mutually exclusive clusters. To capture the reality of biological

phenomena in gene expression data, we need an algorithm to assign individuals into multiple

clusters and to give each cluster a summary of most important genes. One might argue that

some fuzzy clustering algorithms [42, 19] are able to assign multiple clusters, yet very few

existing algorithm provide much interpretability for clusters. In order to thoroughly utilize

the rich interaction in a large database, we desire to organize our samples into meaningful
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clusters which can be directly linked by actual biological pathways.

The introduction of Latent Dirichlet Allocation (LDA) [11] along with its predecessor

Probabilistic Latent Semantic Analysis [23] provide a new type of statistical models, namely,

probabilistic topic models that have become a standard approach to analyze large collections

of unstructured text documents. For a large corpus, probabilistic topic models assume the

existence of latent variables (i.e., topics) that govern the likelihood of appearance for each

word. Topics are defined as distributions over a fixed vocabulary. Based on the most likely

words in each topic, we are able to interpret the meanings of topics. This intuition can be

seamlessly transformed into genomics datasets. For a large toxicogenomic data, we assume

that there exist latent biological processes that govern alteration of gene expression levels

after samples are treated with drugs at various dose levels and time-points. Each latent

biological process is characterized by a distribution of a fixed number of genes. By annotating

the mostly likely differentially expressed genes in a latent biological process, we then can link

the latent variable with a real biological pathway. In recent years, probabilistic topic models

have spawned many similar works on genomic data, noticeably in population genetics [43],

chemogenomic profiling [18] and microarray data [44, 8, 60]. However, most of the previous

works of probabilistic topic models on microarray data either have limited size of samples,

or probabilistic topic models are used merely for their clustering ability. The versatility of

probabilistic topic models has not been fully assessed. We proposed a probabilistic topic

model that was tailored to the structure of a dataset and applied the model to a large

toxicogenomics database recently made publicly available. This so-called asymmetric author-

topic model (AAT model) combines author-topic model [45] with asymmetric prior [55]. In

chapter 2.2, we outlined our data, the proposed model and its application to toxicogenomic

data. In chapter 3, we presented the analysis results. Analyses were done with MALLET

[36] that contains the option for asymmetric prior distributions.
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2.2 Topic Modeling on Microarray Data

2.2.1 Latent Dirichlet Allocation on Microarray Data

The fundamental concept of probabilistic topic modeling is the assumption of the existence of

latent variables. In Latent Dirichlet Allocation (LDA) [11], the latent variables are referred as

“topic” and words in documents are chosen based on what topics the document are related

to. “Topics” then stands for groups of words that are likely to co-occur in a document.

Similar to the previous studies [7, 60], we referred latent variables in toxicogenomics as

“latent biological process” and words in documents were replaced by genes. The elements of

document-word matrix, which usually are frequencies of occurrences of words in text mining,

were transformed to the fold change values in our treatment-gene matrix. Hence, the latent

biological processes represent the groups of genes that are significantly co-expressed (or often

have high fold change values within groups.). Unlike [44] which alters the original assumption

of LDA model, we utilized the original assumption of LDA and this enabled us to implement

our models via existing resources of LDA (i.e., MALLET, the open-source software used in

our analysis). Therefore, similar to LDA, the model inferences were primarily focused on

two probability distributions. In the context of TG-GATEs data, the probability distribution

of latent biological processes for each treatment is P (Z|Tr), where Z is defined as latent

process assignment while Tr is defined as treatment to describe biological processes that

are activated in a specific treatment. Meanwhile, the probability distribution of gene for

each latent biological process is P (Ge|Z), where Ge is defined as genes that are differentially

expressed genes (DEGs) from which we are able to associate the latent process to biological

pathways. The ability of linking latent process to biological pathway is a definite advantage

over other clustering algorithms and we explored its applications in chapter 2.2.3.
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Table 1: Summary of different feature specifications of asymmetric author-topic model.

Dataset Feature
Number of

Outputs
of individuals

1 Treatment 1554 P (Ge|Z), P (Z|Tr)
2 Drug 131 P (Ge|Z), P (Z|Dr)
3 Time-dose 12 P (Ge|Z), P (Z|DoTi)

2.2.2 Asymmetric author-topic model

Although LDA could be used for treatment-centric analysis, it doesn’t take many unique

features of the TG-GATEs data into account. In addition to examine the treatment-centric

view, drug-centric and/or time-dose-centric analysis were another important component of

this study. The author-topic model [45] is a proper methodology to incorporate other as-

pects of data into model construction. Authorship in author-topic model can be seen as a

regrouping of all the documents. While both models are essentially identical, author-topic

model groups documents together and give LDA model an author-oriented view for infer-

ences. In other words, once the regrouping is done, the whole process can be seen as an

LDA model again. For TG-GATEs data, treatment is defined as a unique drug-time-dose

combination, thus we can regroup treatments based on their drug or time-dose to provide

a drug-centric or a time-dose-wise analysis. The inferences on models are the same except

treatment is replaced by either drug or time-dose. Furthermore, P (Z|Tr) is replaced by

P (Z|Dr) (Dr stands for Drug) and P (Z|DoTi) (DoTi stands for time-dose) respectively.

Table 1 summarizes the total number of individuals in each setting.

As Wallach et al.[55] pointed out, asymmetric prior on the probability distribution of

topic for a document substantially increases the robustness of LDA, yet only adds negligible

model complexity and computational cost. Therefore, we further improved author-topic

model by introducing an asymmetric prior. Here, assume there are T treatments and each

treatment has Nt genes outcomes, where t ∈ {1, ..., T}. Asymmetric author-topic (AAT)

model then follows the generative process below:

9



Figure 3: A graphical representation of latent Dirichlet allocation

• Choose φk
i.i.d.∼ Dir(β), where k = 1, ..., K, φ = {φ1, ...φK}. Choose η ∼ Dir(α′)

• For each treatment t, a known value Fet = f is observed, and group assignment

xt = f, f ∈ {1, . . . , F}. Hence, every treatment is assigned into one of the F feature

groups.

1. θ ∼ Dir(αη).

2. For each of the Ns genes Gei,

(a) choose latent biological pathway assignment zi ∼Multinomial(θ).

(b) choose a gene Gei from p(Gei|zi = k, φ) = Multinomial(φk).

In particular, we can see that only half of the AAT model is different from LDA. First,

treatments are regrouped into feature group. In Table 1, we can see that Time-dose has the

smallest treatment group, while the first treatment group is essentially assigned to itself and

is mathematically equivalent as running a traditional LDA. Second, θ now has a hierarchical

Dirichlet prior where η ∼ DIR(α′) and θ ∼ Dir(αη). If η becomes a unit vector, then the

prior becomes symmetric again. Namely, LDA can be seen as a special case of AAT model.

10



Table 3 shows a comparison of three probabilistic topic models: (A) LDA, (B) Author-topic

model, and (C) Asymmetric author-topic model.

The asymmetry of priors can be easily achieved since the chosen software MALLET has

a build-in option in the command. More information about MALLET can be found on their

website (http://mallet.cs.umass.edu/).

2.2.3 Functional Annotation and Similarity Ranking

One essential aspect of any clustering algorithm is to organize individuals into their respec-

tive clusters. However, the clusters often are difficult to interpret. Through AAT model,

individuals are clustered to multiple latent biological processes based on the probability dis-

tribution P (Z|Tr) (or P (Z|Dr), P (Z|DoTi)). For each latent biological process, probability

distribution P (Ge|Z) controls how likely each gene is differentially expressed. According to

our results, there are often fewer than 200 genes (out of 31,042 total genes) that have posi-

tive probability in each latent biological process while other genes have probability of zeros.

We then annotate the found list of DEGs in each latent biological process through online

database DAVID [24]. Consequently, every feature (i.e., treatment, drug, or time-dose) in

the database is automatically connected to annotated biological pathways. The ability of

our proposed model to link from the latent biological processes to functional annotation,

such as real biological pathways, is a significant advantage over other existing methods. An-

other application of author-topic model is to find the feature most similar to a given one.

We can quantitatively measure the similarity between a pair of features by calculating the

symmetric Kullback–Leibler divergence (sKL) [45] between a pair of P (Z|Tr) (or P (Z|Dr),

P (Z|DoTi)). For instance, by finding the sKL between P (Z|Dr1) and P (Z|Dr2), we can

tell how similar Drug 1 and Drug 2 is (i.e., a low sKL score indicates that two drugs exhibit

similar topic distributions.). Given a drug, our model is able to recommend a list of drugs

ranked by the similarity score sKL. Due to (1) the similarity is based on P (Z|Dr), the prob-

ability of latent biological processes given drugs, and (2) all the latent biological processes

11
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are able to annotated to biological pathways, we know which drugs are similar as well as

exactly which pathways link them together.

3 Identifying Latent Biological Pathways in Toxicogenomic Data

3.1 Dataset

The Japanese Toxicogenomics Project [54, 13] is a 10-year collaborative project involving

two Japanese government institutes and 18 private companies [25]. The project produced

a comprehensive gene expression database, called Open TG-GATEs for the effects of 170

compounds (drugs) on liver and kidney as primary target organs in both in vivo and in vitro

experiments. Specifically, in the in vivo experiment, animals are treated at three different

doses (low, middle, and high) of drugs once every day for four different treatment durations

(3, 7, 14, and 28 days). In addition, control animals are concurrent with all the twelve

combinations of doses and durations. More details on the animals and experimental design

have been described previously [53]. Microarray based gene expression data were generated

using the R©GeneChip Rat Genome 230 2.0 Arrays (Affymetrix, Santa Clara, CA, USA)

that contains 31,042 probe sets. The data used in this study is obtained from the Annual

International Conference on Critical Assessment of Massive Data Analysis (CAMDA) 2013

(http://dokuwiki.bioinf.jku.at/doku.php/tgp_prepro, accessed on April 8th, 2014).

In this study, only the data from in vivo repeated dose experiment was used.

3.2 Data Preprocessing

Similar to others [44, 7, 60], our first step of analysis was to obtain a “document-word”

matrix for gene expression data to apply topic model. Instead of the sample-gene expression

matrix used in others’ works, we created treatment-fold change matrix for our studies. This

was due to the fact that TG-GATEs has multiple treated samples for one treatment (a

unique drug-time-dose combination) along with controlled group. Therefore, we were able

12
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to apply a more refined treatment-fold change matrix as our inputs. Here, all fold change

values of gene expressions between treated and control samples were calculated and used

as the value of elements of the matrix. Genes with absolute fold change greater than 1.5

were considered as differentially expressed genes (DEGs) and set the fold change values zeros

for the non-DEG. The final product is a treatment-fold change matrix where each column

represents a treatment and each row represents a gene.

3.3 Model Selection

We run all three of our models on MALLET, whose model inference is based on Gibbs

sampling algorithm. One common concern using Gibbs sampling is the convergence of the

model. Generally, convergence of the model is monitored via tracking the probability of the

likelihood function after burn-in. After the likelihood probability stabilizes, we can deem

convergence to be adequate. We run 3000 iterations for all models and observe stability after

about 1,500 iterations. We also perform sensitivity analyses for major parameters, including

number of latent biological processes, and the initial values for hyperpriors. Hyperpriors

are usually not big factors in the model as they are constantly revised during rounds of

Gibbs sampling inference. On the other hand, the number of latent biological processes is

important. While there is no way to know how many biological processes are involved in

the whole database, we can estimate the number based on perplexity performance [11]. In

addition, asymmetric topic models have been shown to be robust to variations in the number

of topics [55]. All the parameters are chosen based on 10-fold cross-validation. For model 1

(treatment), the number of latent biological processes is 200. For model 2 and 3 (drug and

time-dose) the number of latent biological processes is 100.
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3.4 Results

3.4.1 AAT model on Glutathione Depletion

One proven application of TGP database is detection of glutathione depletion [54]. Tak-

ing well-known hepatotoxin acetaminophen as an example, it was reported that glutathione

metabolism was related to acetaminophen-induced hepatotoxicity and the mechanisms that

underline such liver injury [2, 5]. For instance, James et al.[27] pointed out that ac-

etaminophen could induce potentially fatal, hepatic centrilobular necrosis when taken in

overdose, since the amount of active metabolite overwhelmed the detoxification capacity

of intracellular glutathione. Among our proposed models, model 1 gives us a treatment-

centric view of the TGP database. Table 2 shows P (Z|Tr) from model 1 that represents

the most likely latent biological processes that encode biological phenomena associated with

acetaminophen. Here, only top three topics for each different treatment (drug-dose-time)

are shown (for full table, see Supplementary 1). Latent process 161 is identified in 8 out of

12 time-dose combinations for acetaminophen, as early as the three-day treatment with the

middle dose of 600 mg. Furthermore, the list of most probable DEGs for latent process 161 is

extracted from P (Ge|Z) and functionally annotated by online database DAVID. In Table 3,

functional annotation is done on online database David. Only the top 3 annotated of Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway terms are shown here (for full table,

see Supplementary 2). As seen on Table 3, glutathione metabolism pathway is significantly

identified in the KEGG database, which is consistent with the previous findings.

In model 2, the drug-centric view of the TGP database, we observe similar results. Again,

the most likely active latent process for acetaminophen is latent process 92 (Table 4) and

it is once again significantly identified as glutathione metabolism pathway in the KEGG

database (Table 5). Again, only top three latent processes for each drug are shown (For

full table, see Supplementary 3 and 4 respectively). In addition, by simply searching the

drugs that also have No. 92 among the top ranked latent processes, we find that bromoben-
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Table 2: The probability of latent biological processes for acetaminophen under model 1.

Treatment
Dose

Time Top ranked Latent Biological Processes

index (Days) 1 Probability 2 Probability 3 Probability

36 Low 3 2 0.149 36 0.124 181 0.122

37 Middle 3 161 0.279 111 0.168 116 0.098

38 High 3 161 0.139 39 0.1 169 0.1

39 Low 7 68 0.305 162 0.211 69 0.165

40 Middle 7 161 0.366 149 0.12 57 0.079

41 High 7 161 0.275 27 0.08 39 0.066

42 Low 14 69 0.153 134 0.138 63 0.138

43 Middle 14 161 0.342 128 0.104 37 0.098

44 High 14 161 0.274 113 0.082 128 0.074

45 Low 28 69 0.175 96 0.175 160 0.153

46 Middle 28 161 0.278 96 0.152 14 0.085

47 High 28 161 0.366 197 0.091 164 0.07

Table 3: Functional annotation of KEGG pathways on latent biological process 161 under
model 1.

Term Count FDR P-value Gene

rno00480:Glutathione
8 1.55E-05 1.65E-08

GPX2, GSR, GCLC, G6PD, GSTA5,

metabolism GCLM, GSTP1, MGST2

rno00980:Metabolism of

7 0.00142 1.51E-06

GSTA5, ADH4, UGT2B1, EPHX1,

xenobiotics by CYP3A9, GSTP1, MGST2

cytochrome P450

rno00982:Drug
7 0.00420 4.47E-06

GSTA5, ADH4, UGT2B1, AOX1,

metabolism CYP3A9, GSTP1, MGST2
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Table 4: The probability of latent biological processes for acetaminophen, bromobenzene,
chlormezanone, coumarin, methimazole, and ticlopidine under model 2.

Drug
Dose

Top ranked Latent Biological Processes

index 1 Probability 2 Probability 3 Probability

3 acetaminophen 92 0.201 17 0.190 1 0.118

16 bromobenzene 92 0.318 1 0.138 17 0.125

27 chlormezanone 9 0.341 92 0.192 1 0.128

37 coumarin 98 0.293 92 0.193 1 0.142

81 methimazole 92 0.211 21 0.185 32 0.143

123 ticlopidine 9 0.248 92 0.093 1 0.089

Table 5: Functional annotation of KEGG pathways on latent biological process 92 under
model 2.

Term Count FDR P-value Gene

rno00480:Glutathione

11 5.67E-07 5.18E-10

GSTM1, GPX2, GSR, GCLC,

metabolism GSTM4, G6PD, GSTA5, GSTT1,

GCLM, GSTP1, GSTM7, MGST2

rno00980:Metabolism of

9 0.00384 3.51E-06

GSTM1, GSTM4, GSTA5, ADH4,

xenobiotics by UGT2B1, EPHX1, GSTT1, GSTP1,

cytochrome P450 GSTM7, MGST2

rno00982:Drug

9 0.00420 4.47E-06

GSTM1, GSTM4, GSTA5, ADH4,

metabolism UGT2B1, AOX1, GSTT1, GSTP1,

GSTM7, MGST2

zene, chlormezanone, coumarin, methimazole, and ticlopidine strongly link with glutathione

metabolism pathway (Table 4), and hence presumably become causes of glutathione deple-

tion. Such hepatotoxicity associated with these 6 drugs through the glutathione metabolism

pathway is well supported in other studies (Jollow et al., 1974;Thor et al., 1979;Wright et

al., 1996;Mizutani et al., 2000;Uehara et al., 2010;Shimizu et al., 2011). Overall, our results

indicate that the construction of our proposed model indeed matches with the well-known

biological processes and hence the model is able to detect potential treatments or drugs that

cause glutathione depletion.
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Table 6: Most similar drugs to acetaminophen based on sKL scores.

Drug name sKL score

bromobenzene 3.04238

phenacetin 4.47157

bucetin 4.51243

cimetidine 5.46445

disopyramide 5.85482

cephalothin 5.89109

papaverine 5.92761

Erythromycin ethylsuccinate 5.92976

coumarin 6.03134

nitrofurantoin 6.03479

3.4.2 AAT model on Drug Similarity and Potential Reduction of Animal Use

Through sKL score (described in chapter 2.2.3), functional similarity of drugs can be ex-

plored. As an example, we can obtain the most functionally similar drugs to acetaminophen

as shown in Table 6. Here, the smaller the sKL is, the more similar two drugs are. Notice

only top 10 ranked drugs are shown here (For full table, see Supplementary 5). The drugs

that have smaller sKL score with acetaminophen (i.e., a pair-wise score) will exhibit most

similar latent biological processes. We can observe that bromobenzene and coumarin, which

linked through glutathione depletion pathway, are on the list.

Another application of sKL score is to be used as potential evidence of reduction of

animal use. Reducing, replacing and refining animal use (3Rs) has been increasingly a goal

in toxicogenomics [46, 56]. While dose level and time-point are expected to be important,

there is generally no easy way to determine which treatment is ignorable for a given drug.

sKL scores measure the similarity between a pair of treatments. The idea is to see if either

dose or time in treatments of a drug does not play a significant role to affect sKL score.

If one of them is not significant to sKL score, then there exists the potential to reduce the

number of treatments without compromising study goals. Similar to multivariate analysis

of variance (MANOVA), the importance of dose and time can be attained with generalized
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linear models on sKL scores as the following:

sKL = β1XDose + β2XT ime, (4)

sKL = β1XDose, or (5)

sKL = β1XT ime. (6)

Here, XDose is defined as a categorical variable that includes six different dose pairs (i.e.,

Low-Low, Low-Middle, Low-High, Middle-Middle, Middle-High, and High-High). XT ime is

defined as a continuous non-negative variable that represents the difference between two

time-points. By fitting the generalized linear model using various common model criteria

(e.g., adjusted R-square, AIC, and BIC), we can compare dose and/or time significance

regarding to sKL score. A level of feature that has no significant impact on sKL score

can be potentially reduced. While only having 12 individuals, model 3 can be used to

detect the overall significance of dose and time. Unsurprisingly, dose and time generally

are both significant to sKL score as seen in Table 7. It is näıve to think we can remove

any treatment regardless which drug is been tested, yet there might be specific drugs that

fit our assumption. As examples, we chose acetaminophen, coumarin, and benzbromarone

to be tested in the generalized linear models. Among all, only benzbromarone consistently

demonstrate the superiority of dose only model under all three model criteria. Therefore, it

is possible to combine time-points for treatments of benzbromarone due to the insignificance

of time regarding to sKL score.
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Table 7: Generalized linear models for sKL scores under three (Adjusted R-square, AIC,
and BIC) criteria, with best outcomes bolded.

Adjusted

R-square AIC BIC

GLMs D&T Dose Time D&T Dose Time D&T Dose Time

Model 3 0.456 0.437 0.076 82.703 93.771 117.212 98.030 106.909 121.591

acetaminophen 0.559 0.453 0.051 204.660 216.462 246.815 219.988 229.600 251.194

coumarin 0.592 0.583 0.016 258.487 257.649 296.490 273.814 270.786 300.869

benzbromarone 0.813 0.816 0.004 225.281 223.221 340.736 240.609 236.359 345.115

4 Incremental Dirichlet Process Gaussian Mixture Model on Online Social Net-

works

4.1 Background

Recent explosive growth of online social networks such as Facebook and Twitter provides a

unique opportunity for many data mining applications including real time event detection,

community structure detection and viral marketing. While many researches focus on char-

acteristics of individuals, we aim at the building blocks of network structure—social ties. As

it is said, “It’s not what you know, it’s who you know.”

In his 2004 article [12], renowned social network scientist Ronald Burt demonstrates

that the network constraints of a person’s social network can be used to predict one’s career

success (e.g., salary, evaluation, or performance). In other words, a person with open network

around (i.e., surrounded by weak ties) has better chance to become successful comparing to a

person with closed network (i.e., surrounded by strong ties). Therefore, by simply analyzing

individual’s surrounding network, we will not only be able to chart their importance regarding

to the whole network, but also link them into real life performances.

There have been various studies which aim to understand the essence of social ties in

sociology and computational sciences [22, 17, 41]. However, studies often measure the re-

semblance between two persons by user profiles. Similar to [49], we choose to measure the tie

strength by merely using the graph structure in the social networks. In particular, each social
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tie has a tie strength, which can be estimated by a ratio of neighborhood overlap between

two adjacent vertices of the edge [17, 41]. Among many measure of the strength of social tie

(e.g., Jaccard index, cosine similarity, and topological overlap matrix [32]), we choose cosine

similarity since: (1) geometric mean (i.e., cosine) is generally stabler than arithmetic mean

(i.e., Jaccard), and (2) cosine [58].

In the past, social tie studies heavily relied on the assumption that there existing merely

two types of ties—strong and weak—in a static social network. Social relationships are very

complex and can consist of different kinds of ties including strong ties (e.g., close friends,

family members), weak ties (e.g., acquaintances), or something in between (e.g., colleagues,

co-authors, Twitter followers, etc.). We believe simple dichotomy is too generalized. Social

relationship are very complex and can consist of different kinds of ties including strong ties

(e.g., close friends, family members), weak ties (e.g., acquaintances), or something in between

(e.g., colleagues, co-authors, Twitter followers, etc.). Imaging a scenario shown in Figure 4.

Some ties (e.g., the solid line in Figure 4) form and bind community structures, while each

may be knitted with a different density. Some ties (e.g., short dash line between D and

E in Figure 4) serves as the bridge between different community structures. Finally, some

ties (e.g. long dash lines between C and R, and between C and Q in Figure 4) connect

with individuals who are not members of any community. Here, a hub like R plays a special

role which connect multiple communities, while outliers like Q and S are individuals on the

margin of community structures. To properly classify ties in this scenario, a simple dichotomy

between strong and weak ties will not be enough. Under our current highly interconnected

society, we aim to develop a framework that can accommodate the real complexity of social

networks.

Besides multiple types social ties, another crucial aspect that are often ignored is the

dynamics of social networks. Social ties are dynamic in the sense that a new tie may be

established through a meeting; and an existing tie may be either strengthened or weakened

due to the change of the proximity. Therefore, one remaining critical challenge of mining
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Figure 4: A scenario of multiple types of ties

online social networks is about understanding the dynamic nature of complex online rela-

tionship between individuals. To this end, we apply the Dirichlet Process Gaussian Mixture

Model (DPGMM) [33] on cosine similarity of social ties. One of the most difficult problems

in clustering is determining the total number of components. In contrast to traditional finite

mixture models, DPGMM infers the number of components from data by using the Dirichlet

process, which let data to determine the number of components to be generated. We further

enhance Lin’s DPGMM [33] to an incremental algorithm for dynamic social networks. While

an update of a tie (e.g., adding or removing) can cause changes to every adjacent ties, our

incremental algorithm requires re-run merely on the data that are affected by the update;

that is, it doesn’t require rerun on the whole data. This is especially useful for big data like

Facebook or Twitter.

The main contribution of our work is as follows:

1. We lay out the framework to cluster social ties beyond strong and weak ties in order

to reflect the true hyper-interconnected nature of social networks. We use real world

data to test the ability of our approach to capture multiple types of social ties.

2. We apply an incremental algorithm for dynamic social networks. Our algorithm sup-

ports both insertion and deletion as basic operations for any social tie update to online
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social networks.

3. The performance of the proposed algorithm is evaluated by the accuracy of identified

different types of social ties, as well as the running time using some real social networks.

The experiment demonstrates that our algorithm is scalable to large dynamic social

networks and can achieve a more accurate result comparing with existing algorithms.

4. We demonstrate that individual network profiles generated from our model can be

linked directly to real social significance. We further demonstrate the model ability to

measure network constraints of the communities in a online social network.

The study is organized as follows. We first give an overview of related work in chapter 4.2.

The proposed Dirichlet process Gaussian mixture model and an incremental model inference

algorithm are presented in chapter 4.3. The performance of proposed method is evaluated on

real social networks. The experimental design and result are described in chapter 5. Finally

we conclude the study with a summary and future works in chapter 6.

4.2 Related Work

The study of social ties is a major task in sociology. Granovetter [22] first investigated the

functional role of social ties. Granovetter [22] showed that “weak ties” would play critical

roles of bridging communities. In his seminal article entitled “The Strength of Weak Ties”,

the “weak tie hypothesis” postulates that individual community structures of a social network

are predominately bounded by strong ties, while weak ties function as bridges connecting

these densely knit community structures. In theory, a person with many weak ties (i.e.,

having a open network) tends to become a key role to translate information among differ-

ent communities and hence is essential to the whole network. On the other hand, a person

with many strong ties (i.e., having a closed network) has lesser impact on the community.

Removing persons with many strong ties will not affect the structure of the network signifi-

cantly since their many strong tie neighbors can take their place in holding the communities
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together. However, social ties at the time are rather elusive to quantify and strongly suf-

fer from cognitive biases, errors of perception, and ambiguities, especially when the data

collection is based on subjective self-reports from participants.

Since then, the rise of online social networks provide new opportunities on social tie

studies. Many researchers [29, 21, 20] relied on supervised learning which required labeled

training data that may not be available or difficult to obtained. Xiang et al. [57] develop

an unsupervised model to estimate tie strength from user interactions (e.g., communication,

tagging) and user similarity. In contrast to binary social ties their method can handle

various social ties such as close friends and acquaintances. Jones et al. [28] provide a study

of relevant features of strong ties and find the frequency of online interaction is diagnostic of

strong ties and is more informative than attributes of the user and the user’s friends. Tang

et al. [51] develop a semi-supervised learning framework to classify various social ties such

as colleagues and intimate friends. More specifically, they use user and link characteristics

to build a generative model that assigns the most likely type to a specific relationship. In

a follow-up study [50], they further generalize the proposed model for classifying social ties

by learning across heterogeneous networks through incorporating ideas from social theories

such as structural balance and social status. Although the approaches above either don’t

require labeled training data or only a portion of data being labeled, their all need user

information such as user profiles that may be noisy or incomplete. Recently Backstrom et

al. [3] propose a new network measure, dispersion, for the recognition of romantic partner

of Facebook users, which only uses the structure of the Facebook. Dispersion is designed for

the identification of romantic relationship, which is only a special type of strong ties; and

may not be generalized to the characterization of other social ties.

Recently, Sintos and Tsaparas [49] characterize the social ties into strong or weak ties

based on the Strong Triadic Closure (STC) principle. They are also among the first to

suggest the existence of multiple (strong) ties (e.g., strong family ties, strong work ties, or

strong friendship ties). Between the two algorithm proposed in [49] (i.e., Greedy and Max-
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imalMatching algorithms), Greedy algorithm achieves a better performance and produces

consistently a larger number of strong edges comparing to the MaximalMatching algorithm.

Our approach is closely related to their work in many aspects of the studies, yet our ap-

proach overcomes several shortcomings of Greedy algorithm. The differences are summarized

as follows:

1. Both develop methods for the characterization of social ties by solely using the network

structure. Yet, Sintos and Tsaparas use either count of coexistence or Jaccard similarity

as measure of tie strength, while we choose cosine similarity.

2. Whenever new edges are formed (or old edges are removed), non-incremental algo-

rithms require rerun of the whole data—is costly and time-consuming. Incremental

algorithms only require rerun for the edges that are affected by the changes. It pro-

vides speed and cost advantage over traditional algorithm, especially if the changes of

edges are relatively small comparing to the whole data set. While Greedy+ algorithm

is able to add new edges iteratively, it does not provide support for edge removal. On

the other hand, our model can handle both addition and removal of ties—hence, a true

incremental algorithm.

3. Finally, both of our works consider multiple types of social ties. In the MultiGreedy

Algorithm of [49], Greedy algorithm is repeatedly reused on the leftover weak ties in

order to generate new batch of strong ties. However, there is no natural way to stop

the iterative process of MultiGreedy algorithm—the number of types of social ties need

to be predetermined. On the contrary, our model is built on Dirichlet process, which

allow data themselves to determine the number of components.

The majority of our proposed algorithm has been discussed in Lin’s work [33]. However,

we make several improvements. First, we extend the original algorithm to a true incremental

one. Second, we derived a simple calculation of log-likelihood for cluster assignments of ties

(chapter 5.3). Third, while Lin shows the mathematical superiority of DPGMM in terms
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Figure 5: (a)Finite mixture model; (b)Dirichlet process mixture model

of log-likelihood performance, we further demonstrate the speed and classification accuracy

advantage of DPGMM in chapter 5.

4.3 Dirichlet Process Gaussian Mixture Model

Our hypothesis is that there exists different types of social ties; each type of ties can be

characterized by a statistical distribution. In our preliminary investigation, Gaussian distri-

bution performs better than other distribution assumption (e.g., Pareto, Beta). Therefore,

we applied mixture of Gaussian distributions on social ties.

A finite Gaussian model (Figure 5(a)) with K components and fix variance σ2 can be

seen as a generative process:

1. Choose θ ∼ Dirichlet(α), where θ = (θ1, . . . , θK).

2. Choose µ ∼ Gaussian(µ0, σ0), where (µ0, σ0) is the hyperparameter of the component

mean µ = (µ1, . . . , µK).

3. For each observation si, ∀i = 1, . . . , N ,
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(a) Draw the assignment of component p(zi|si) ∼ Multi(θ), where z = (z1, . . . , zN)

is the assignment of components for social ties.

(b) Once we draw zi = k, tie strength si is then generated from p(si|zi, µk) ∼

N(µk, σ
2).

The traditional mixture model requires the number of components K known as a priori.

Because of the dynamic nature of online social networks, a fixed number of component may

not be flexible enough to adapt the dynamic social networks. On the contrary, Bayesian

nonparametric models such as Dirichlet process mixture models (DPMM) allow the number

of components to vary during learning, thus providing great flexibility for analysis. DPMM

generally can be seen as a generative process with stick-breaking construction(Figure 5(b)).

Similar to the Gaussian Mixture model, we can describe a Dirichlet process Gaussian mixture

model as follow:

1. ∀ k = 1, 2, . . . ,∞,

βk ∼ Beta(1, α), θk = βk

K−1∏
l=1

(1− βl),

µk ∼ H = N(µ0, σ0), G =
∞∑
k=1

θkδµk .

2. For each observation si, i = 1, . . . , N ,

(a) Draw the assignment of component zi ∼Multi(θ).

(b) Once we draw zi = k, tie strength si is then generated from p(si|zi, µk) ∼

N(µk, σ
2).

As shown by Sethuraman [48], we define a Dirichlet process G distributed with concen-

tration parameter α and base distribution H, denoted by G ∼ DP (α,H). There are two

major differences between these otherwise similar generative processes. First, the prior of

µ, is changed from a pair of parameters (µ0, σ0) to H, a Gaussian distribution with mean
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µ0 and variance σ0. Second, there is no need to fix number of components K as in finite

mixture model since Dirichlet process automatically generated K from observation s via the

stick-breaking construction.

4.3.1 Variational Inference

Lin developed an algorithm [33] to infer the component parameters µ through a predictive

distribution of µ:

p(µ|s) = EG|s[p(µ|G)] (7)

The expectation is taken through p(G|s), and the goal is to find a tractable posterior

distribution of p(G|s) via variational inference. Assume N samples have been generated by

G ∼ DP (α,H) and it contains K components with component parameter θ = (θ1, . . . , θK).

Let C1, . . . , CK be the partition corresponding to component assignment z. Then, the pos-

terior distribution of G (denoted by Ĝ) is defined by: Ĝ ∼ DP (α̂, Ĥ), with α̂ = α + N ,

and

Ĥ =
α

α +N
H +

K∑
k=1

|Ck|
α +N

δµk . (8)

This expressions has a straightforward interpretation on how Dirichlet process assigns

new individuals into clusters. For an existing cluster k (1 ≤ j ≤ K) with mean µj, the

probability of assigning a new observation into cluster k is proportional to the number of

observations which are already in the cluster k; namely, |Ck|. On the other hand, the

probability of assigning observation into a brand new cluster K + 1 is proportional to the

pseudo count α, and a new mean µK+1 is again generated from base distribution H. The

posterior distribution of Dirichlet process G is approximated by a variational distribution

q(G|ρ,ν):

p(G|s) =
∑
z

p(z|s)p(G|s, z) ≈
∑
z

N∏
i=1

ρ(zi)qν(G|z)

.
= q(G|ρ,ν)

(9)
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Table 8: Symbol tables

K Number of components

N Total number of social ties

s = (s1, . . . , zN) Cosine similarities of social ties

z = (z1, . . . , zN) Component assignment for social ties

G Dirichlet process, G ∼ DP (α,H)

α Concentration parameter of the Dirich-
let process G

H Base distribution, H = N(µ0, σ
2
0)

θ = (θ1, . . . , θK) Parameters of multinomial distribution
that generate z

C1, . . . , CK Partitions of s corresponding to current
component assignment z

µ = (µ, . . . , µK) Means of the mixture Gaussian distri-
butions that generate s. One for each
component k.

σ2 Variance of mixture Gaussian distribu-
tion that generate s. Fixed for all com-
ponents.

ρ
(i)
k = ρ(zi = k) Variational distribution of

p(zi = k|si) for each component k at
i-th iteration

ν
(i)
k = ν

(i)
k (µk) Variation distribution of point mass of

µk for each component k at i-th itera-
tion
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Notice p(z|s) is approximated by variational distribution
∏N

i=1 ρ(zi), and p(G|s, z) is

approximated by variational distribution qν(G|z). Here, both p(G|s, z) and qν(G|z) are

special cases of Normalized Random Measures with independent increments [26]. According

to Lemma 1 of [33], we have

νk ∝ H(dµ)
∏
i∈Ck

p(si|µ), ∀1 ≤ k ≤ K, 1 ≤ i ≤ N. (10)

Hence, we can update (8) by replacing p(G|s) with the tractable variational distribution

q(G|ρ,ν):

Ĥ =
α

α +N
H +

K∑
k=1

∑n
i=1 ρi(zi = k)

α +N
νk. (11)

By comparison to (8), we have |Ck| =
∑n

i=1 ρi(zi = k), which records the current counts

of observations in each clusters. In addition, α still works as a pseudo count for brand new

clusters. Consequently, we will have the same interpretation as we do in (8) except we keep

tracking the posterior distribution νk instead of the point mass of µk.

4.3.2 Conjugate prior and exponential family

In general, an exponential family is a set of probability distributions that have a specific

format:

p(s|µ) = exp{η(µ)T (s)− A(µ) +B(s)} (12)

Here, s has a distribution of exponential family with parameter µ. η(µ) is called natural

parameter, T (s) is called sufficient statistics, and A(µ) is called log-partition. Assume prior

distribution H = p(µ|λ, λ′) and consider the probability density function (pdf) has following

form:

p(µ|λ, λ′) = exp{λη(µ) + λ′(−a(µ))− A(λ, λ′) +B(µ)} (13)
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Then, regarding to µ, (η(µ), (−a(µ))) are the sufficient statistics, and (λ, λ′) are the natural

parameters. In addition, assume the pdf of the observation s has the following form:

p(s|θ) = exp{η(µ)T (s)− γa(θ) + b(s)} (14)

Similarly, T (s) is the sufficient statistics, and η(µ) is the natural parameter regarding to s.

We claim that H is the conjugate prior of p(s|µ), if the posterior distribution p(µ|s, λ, λ′)

has the same type of probability distribution as H. Applying basic Bayes’ theorem, we can

derive the the posterior distribution of µ:

p(θ|s, λ, λ′) ∝ p(θ|λ, λ′)p(s|θ)

= exp{(λ+ t(s))η(θ) + (λ′ + γ)(−a(θ)) (15)

− A(λ, λ′) +B(θ) + b(s)}.

Notice p(θ|s, λ, λ′) still follows same distribution as H with the same sufficient statistics

(η(µ), (−a(µ))) and updated natural parameters

λ← λ+ t(s), λ′ ← λ′ + γ. (16)

In our case, we have µ ∼ H = N(µ0, σ
2
0) and s ∼ N(µ, σ2). Hence, we observe that

the variational posterior distribution νk in equation (10) is still Gaussian distributed since

the base distribution H is a conjugate prior of p(si|µ). Consequently, we have t(s) = s/σ2,

γ = 1/σ2, λ = µ0/σ
2
0, and λ′ = 1/σ2

0.

4.4 Incremental Learning of Dirichlet Process Gaussian Mixture Model

One of the major challenges of online social network is that the data is highly dynamic with

different update operations such as insertion of a new tie or a change of an existing tie that

may occur in an extremely high frequency. A traditional algorithm will require rerun on
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not only the changed part of data but also the unchanged part as well. This is a waste

of time and resources and is especially problematic if data are enormous in size. A truly

incremental algorithm should not only be able to deal with both inserting a new social tie

and deleting an old social tie, but also will only require adding computational cost for the

changed data. Overall, any change of data can typically be classified as one of these three

actions: (1) inserting a new social tie, which involves adding a new similarity measure of the

social tie; (2) deleting a social tie, which removes an existing similarity measure of the social

tie; and (3) changing an existing social tie, which involves both removing the old similarity

measure and adding an updated similarity measure. Furthermore, any change in a single

social tie also has a ripple effect on neighbor ties. Therefore, all the adjacent ties will require

the action of changing an existing tie as well. We extend Lin’s online algorithm [33], which

only involve adding information, to a fully incremental algorithm by allowing both adding

and removing information.

4.4.1 Insertion Algorithm

To initialize the Dirichlet process, assume we observe the first social tie strength s1. Since

there is no existing cluster at this point, the variational distribution ρ(z1 = 1) = 1, which is a

variational distribution to represent p(z1 = 1|s1). We also have s1 ∈ C1 and |C1| = 1. Recall

that both our base distribution H and the p(s1|z1, µ1) are Gaussian distributions; that is, H

is the conjugate prior for p(s1|z1, µ1). Based on what we have established in 4.3.2, we can
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update the variational posterior distribution ν
(1)
1 as follows:

ν
(1)
1 ∝ H(dµ)

∏
i∈C1

p(si|µ)

∝ p(µ1|µ0, σ
2
0)p(s1|z1 = 1, µ1)

∝ exp(
µ0

σ2
0

µ1 +
1

σ2
0

µ2
1) exp(

s1
σ2
µ1 +

1

σ2
µ2
1)

∝ exp((
µ0

σ2
0

+
s1
σ2

)µ1) + (
1

σ2
0

+
1

σ2
)µ2

1)

.
= p(µ1|λ(1)1 , λ

′(1)
1 ).

Here, we define ν
(i)
k as the variational posterior distribution of point mass of µk in compo-

nent k at i-th iteration, (λ
(i)
k , λ

′(i)
k ) are the natural parameters for ν

(i)
k , and ρ

(i)
k = ρ(zi = k).

Due to the convenience of calculation, we keep track of the natural parameters (λ
(i)
k , λ

′(i)
k )

instead of the mean and the variance of ν
(i)
k . However, it should be straightforward to see

that ν
(i)
k is still Gaussian distributed and ν

(i)
k = N(

λ
(i)
k

λ
′(i)
k

, 1

λ
′(i)
k

).

After seeing first observation s1, the rest of data are introduced sequentially. At the

same time, ρ
(i)
k , Ck, and ν

(i)
k are updated accordingly at each iteration for every k. Suppose

we observe a total of N observations from social ties, and obtain K clusters with updated

parameters (C1, . . . , CK), (ν
(N)
1 , . . . , ν

(N)
K ), and (ρ(1), . . . , ρ(N)) (where ρ(i) = {ρ(i)1 , ..., ρ

(i)
K }).

To interpret a new observation, sN+1 can either belong to one of the existing K components

(i.e., zN+1 = k, k ∈ {1, ..., K}) or to a new component (i.e., zN+1 = K + 1) with newly

introduced ρ
(N+1)
k , and ν

(N+1)
k . Similar to (9), we then have the iterative posterior distribution

p(zN+1, µ1:K+1|s1:N+1) following:

p(zN+1, µ1:K+1|s1:N+1) (17)

∝ p(zN+1, µN+1|s1:N)p(sN+1|zN+1, µN+1|) (18)

≈ q(zN+1|ρ(1), . . . , ρ(N), ν
(N)
1 , . . . , ν

(N)
K )p(sN+1|zN+1, µ1:K+1) (19)

.
= q(zN+1, µ1:K+1|ρ(1), . . . , ρ(N+1), ν

(N+1)
1 , . . . , ν

(N+1)
K ) (20)
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Here,
.
= denotes “is defined as”. Then, to minimize the Kullback-Leibler divergence

between (18) and (19), we can calculate ρ
(N+1)
k and ν

(N+1)
k by [33]:

ρ
(N+1)
k ∝

 |Ck|
∫
µk
p(sN+1|µk)ν(N)

k (dµk) (k≤K),

α
∫
µk
p(sN+1|µk)H(dµk) (k = K+1).

(21)

ν
(N+1)
k ∝

 Ĥ(dµk)
∏N+1

i=1 p(si|µk)ρ
(i)
k (k≤K),

Ĥ(dµk)p(sN+1|µk)ρ
(N+1)
k (k = K+1).

(22)

In particular, we can rewrite the second part of (21) by:

∫
µk

p(sN+1|µk)ν(N)
k (dµk)

=

∫
µk

p(sN+1|µk)p(µk|λ(N)
k , λ

′(N)
k )dµk

=

∫
µk

exp{(λ(N)
k + t(sN+1))η(µk) + (λ

′(i)
k + γ)(−a(µk))

− A(λ
(i)
k , λ

′(i)
k ) +B(µk) + b(sN+1)}dµk

= exp{A(λ
(N)
k + t(sN+1), λ

′(N)
k + γ)− A(λ

(N)
k , λ

′(N)
k ) + b(sN+1)}

.
= φ(λ

(N)
k , λ

′(N)
k )

(23)

Hence, we can calculate the φ(λ
(i)
k , λ

′(i)
k ) part in (21) by:

exp{A(λ
(n)
k + t(sn+1), λ

′(n)
k + γ)− A(λ

(n)
k , λ

′(n)
k ) + b(sn+1)} (24)

Regarding ν
(N+1)
k in (22), we can instead derive the update formulas of (λ

(N+1)
k , λ

′(N+1)
k ), as

we previously defined in (16). In particular, once there is more than one cluster introduced,

the update formulas for (λ
(N+1)
k , λ

′(N+1)
k ) needed to be adjusted by the likelihood of assigning

s to clusters; that is, adjusted by multiplying ρ
(N+1)
k = ρ(zi = k). We have shown in (11)

that Ĥ ∝
∑n

i=1 ρ
(N+1)
k

α+N
νk. Therefore, for our incremental Dirichlet process mixture model, we
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have the following iterative formula:

ρ
(N+1)
k ∝

 |Ck|φ(λ
(N)
k , λ

′(N)
k ) (k≤K),

α φ(λ0, λ
′
0) (k = K+1).

(25)

λ
(N+1)
k ← λ

(N)
k + ρ

(N+1)
k

sN+1

σ2
, (26)

λ
′(N+1)
k ← λ

′(N)
k + ρ

(N+1)
k

1

σ2
(27)

The pseudo code of the incremental algorithm for the insertion of any n tie strengths

is described in Algorithm 1. ε is set as a cut-off value and we only increase the number of

clusters from K to K + 1 if ρ
(i)
K+1 > ε. As stated in [33], setting ε is an efficient way to

control the number of clusters while still providing freedom for the model to determine the

number of clusters.

4.4.2 Deletion Algorithm

Due the fact that base distribution H is the conjugate prior and Gaussian is a member of the

exponential family, calculating Ck and (λ
(N+1)
k , λ

′(N+1)
k ) are fairly easy and repetitive tasks.

In fact, if we keep records of all the ρ
(i)
k , for i = 1, . . . , N , it is mathematically possible to

erase the contribution from a specific social tie to the model. Here, we devise an incremental

algorithm for the deletion of any m social ties in Algorithm 2. Notice the main differences

between the insertion and the deletion algorithm are the updates for (λ
(N+1)
k , λ

′(N+1)
k ) and

|Ck|. That is, the plus signs in insertion are replaced by the minus signs in deletion. Due to

the iterative nature of the original insertion algorithm, we can obtain the new results as if

those social ties have never been read.
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Algorithm 1 The insertion algorithm of iDPGMM

1: Set σ2, µ0, σ
2
0, α, ε.

2: Initialize K = 1, p(z1 = 1|s1) = 1, λ
(1)
1 = (µ0/σ

2
0 + s1/σ

2), and λ
′(1)
1 = (σ−20 + σ−2). .

Only needed in the first run.
3: for i = 1 to n do
4: Update ρ

(i)
k according to Equation (25).

5: Normalize ρ
(i)
k , for k=1, . . . , K+1.

6: if ρ
(i)
K+1 > ε then

7: |Ck| = |Ck|+ ρ
(i)
k , for k = 1, . . . , K.

8: |CK+1| = ρ
(i)
K+1.

9: Update λ
(i)
k according to Equation (26).

10: Update λ
′(i)
k according to Equation (27).

11: K = K + 1.
12: else
13: Remove ρ

(i)
K+1.

14: Renormalize ρ
(i)
k .

15: |Ck| = |Ck|+ ρ
(i)
k , for k = 1, . . . , K.

16: Update λ
(i)
k according to Equation (26).

17: Update λ
′(i)
k according to Equation (27).

18: end if
19: Save ρ

(i)
k for future use.

20: end for
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4.5 Cosine Similarity

Let us consider simple, undirected graph < V,E >, where V is a set of vertices; and E

is set of unordered pairs of distinct vertices. For e ∈ E, we denote the unordered pair of

vertices by (v, w) for e = (v, w) ∈ V , which is called an edge. The neighborhood of a vertex

includes all the vertices connected to it by edges. The social network can then be defined

upon this graph. We calculate the social tie strengths s of social network based on the

structural similarities of a graph. Cosine similarity is a structural similarity based on the

counting of ”common neighbors”[39]. For a vertex v ∈ V , we denoted its neighbors by γ(v),

the number of neighbors is called the degree of vertex v, denoted by |γ(v)|. Cosine similarity

between two vertices v and w is defined as the number of common neighbors normalized by

the geometric mean of the degrees of v and w; that is:

σ(v, w) =
|Γ(v) ∩ Γ(w)|√
|Γ(v)||Γ(w)|

(28)

The value of cosine similarity ranges from 0 to 1.

As we mentioned in 4.4, any change in a single social tie also has a ripple effect on neighbor

ties. For example, consider a graph demonstrated by the top of Figure 6. Suppose we add

an additional edge (G,F ) to to graph. Because cosine similarities solely utilize γ(G) and

γ(F ), we only need to re-calculate cosine similarities of edges (G,F ), (B,G), (E,G), (H,F )

and (E,F ), as illustrated by different color of edges by the right side of Figure 6. Our

incremental version of DPGMM are then able to run additional iterations for 5 edges instead

Algorithm 2 The deletion algorithm of iDPGMM

1: for i = 1 to m do
2: Recall ρ

(i)
k for those m social ties.

3: |Ck| = |Ck| − p(zi = k|si), for k = 1, . . . , K.

4: λ
(i)
k ← λ

(i)
k − p(zi = k|si)t(si).

5: λ
′(i)
k ← λ

′(i)
k − p(zi = k|si)γ.

6: end for
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Figure 6: The demonstration on incremental learning

of the whole 12 edges. The time and resources saved will be dramatic if the change of network

is relatively small in a big social network.

4.6 Complexity Analysis

In this chapter, An investigation on the computation complexity is presented by walking

through the workflow of our algorithm. Suppose we were given a network with N edges

and M vertices. Initially, a calculation of cosine similarities over all edges is required. This

procedure, according to [58], has an O(N) running time. Using the cosine similarities as

input, we then conduct the proposed incremental Dirichlet process Gaussian mixture model
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(iDPGMM) algorithm to evaluate the tie strength. During the first run, only insertion

algorithm is preformed. Each insertion needs to access K current components, this has to

be operated over all edges. Thus, the total running time at this phase is O(NK).

After first full run, for each edge addition or deletion action in social network, as stated in

chapter 4.5, O(|γ(v)|+ |γ(w)| − 1) edges needs to be updated on cosine similarity. However,

according to [4], most of the real networks—including World Wide Web, citation network,

social network, word co-occurrence network, co-authorship network, etc.—are scale-free net-

works, meaning that there only a few (such as 3 or 4) neighbors for most vertices. After

the calculation of cosine similarities for certain edges, the process of tie strength evaluation

then involves both insertion and deletion algorithm as atomic operations. First, we need to

delete outdated cosine similarities from the record, then insert the updated ones back. The

running time is hence O(2K(γ(v) + γ(w)− 1)). Therefore, the complexity of our algorithm

is in general O(KN) and with K small, can be considered linear in N .

5 Discovering Multiple Social Ties for Characterization of Individuals in Online

Social Networks

5.1 Datasets

We will use some publicly available social network data about community structures for our

experiment. Table 9 shows the basic statistics of the data sets. In particular, only NCAA

football data has multiple types of ties ground truth. We now describe them in detail as

following.

NCAA Football [58]: The National Collegiate Athletic Association (NCAA) divides 115

schools into eleven conferences. Here, a tie is formed when two school play against each other.

In addition, there are four independent schools at this top level: Army, Navy, Temple, and

Notre Dame; they are hubs. Each Bowl Subdivision School plays against schools within their

own conference (intra-conference ties), against schools in other conferences (inter-conference
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Table 9: Datasets statistics

Dataset
Number Number Ground

of Vertices of Edges Truth
NCAA Football 180 787 Yes

Bible 79 290 No
DBLP Ego 51 130 No

Retweet 48,106 56,334 No
Higgs 456,631 12,508,442 No

ties), and against lower division schools or independent schools (special ties). The network

contains 180 vertices (119 Bowl Subdivision schools and 61 lower division schools) intercon-

nected by 787 edges.

Bible: We create the network of coappearances of characters in the same chapter of Bible.

We prune characters who coappeared less than 3 times to concentrate on more significant

connections

Retweet: We create this dataset by starting with a set of reporters from 12 news

agencies—ABC, The Associated Press, BBC, Bloomberg, CNN, Financial Times, The Guardian,

NPR, The New York Times, Reuters, The Washington Post, and The Wall Street Journal.

Then, we go through each retweet message in the month of June, 2015. For a given retweet

message in which person A retweeted person B, if at least one of them is from the starting

reporter set, a edge (A,B) was defined and its frequency was incremented by 1. While the

edges are originally directed, we treat them as undirected edges. We might investigate a di-

rected network in the future. At the end, we have the information about number of retweets

between two persons and organizations each person belonged to. If a person did not belong

to one of the 12 news agencies, the organization of person is labeled as “other”.

Higgs [15]: This Twitter friends/followers social network is constructed after monitoring

the spreading processes on Twitter before, during and after the announcement of the dis-

covery of a new particle with the features of the elusive Higgs boson on 4th July 2012. The

messages posted in Twitter about this discovery between 1st and 7th July 2012 are consid-
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ered. The network contains friends/followers social relationships among all users involved

in the above activities. Again, While the edges are originally directed, we treat them as

undirected edges. Notice that we purposefully choose Higgs dataset solely for testing the

speed of each algorithm due to its size.

5.2 Reference algorithms

We compare our iDPGMM algorithm with following algorithms in terms of the accuracy and

running time:

• VBEM: It is a variational inference algorithm for finite Gaussian mixture model (Fig-

ure 5(a)) based on chapter 10.2 of Bishops’ book [9]. Matlab codes are written by

Emtiyaz Khan, June 2007, and can be downloaded here (http://www.cs.ubc.ca/

~murphyk/Software/VBEMGMM/index.html). The main differences between VBEM

and iDPGMM are (1) VBEM requires fixed the number of clusters; (2) VBEM is not

an incremental algorithm.

• Greedy: It characterizes social ties into strong or weak ties based on the Strong Triadic

Closure (STC) principle and works by constructing a vertex cover of the graph in a

greedy fashion [49]. A online version of Greedy is called MultiGreedy in which Greedy

algorithm is repeatedly used on the leftover weak ties after each run. Therefore, a

predetermined number of runs will decide the number of cluster at the end. The codes

are written in Java and we obtain the codes directly from the original authors [49].

5.3 Cluster Assignments

In order to compare the classification accuracy, we need to develop a framework to assign tie

into components. The Greedy algorithm has built-in classification ability. For DPGMM and

VBEM, we simply compare the log-likelihood of each social ties to all components. That is,

we calculate the Gaussian probability density function with the final version of µk (i.e., we
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calculate P (si|µk, σ2), for i = 1, . . . , N , and k = 1, . . . , K). We then assign each social tie to

the cluster with the highest P (si|µk, σ2). For instance, if P (s10|µ2, σ
2) has the highest values

among all the P (s10|µk, σ2), then tie strength s10 is assigned to cluster 2.

5.4 Evaluation criteria

The detected types of social ties will be evaluated in terms of accuracy and efficiency. The

accuracy of the types of social ties will be measured in terms of community structures

following the same evaluation method as proposed in [49]. In the following we describe the

measures that can be used for the dataset where a ground truth about the type of social

ties in terms of community structures is given. For instance, the ground truth of the types

of social ties has three categories including intra-community ties, inter-community ties, and

special ties to individuals playing special roles such as hubs—which are denoted by Tintra,

Tinter, and Tspecial respectively, and let Eintra, Einter, and Especial denote the corresponding

set of edges obtained by the proposed algorithm. Then, we can define the precision Ptype

and recall Rtype for each type of social ties as follows:

Ptype =
|Ttype ∩ Etype|

Etype
and Rtype =

|Ttype ∩ Etype|
Ttype

where type = {intra, inter, special}. In addition, an F measure is calculated to compare the

overall performance our algorithm with others.

Ftype = 2 · Ptype ·Rtype

Ptype +Rtype

Furthermore, the result of the proposed model is a partition of social ties denoted by

C = {C1, C2, . . . , CK}, which can be compared with the ground truth partition of the

social ties in the dataset denoted by T = {T1, T2, . . . , TK}. One common way to measure

cluster quality is to compute the mutual information between C and T . To this end, let

PCT (i, j) =
|Ci∩Tj |

n
be the probability that a randomly chosen object belongs to cluster Ci
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in C and Tj in T . Also, let PC(i) = |Ci|
N

be the probability that a randomly chosen object

belongs to cluster ci in C; define PT (j) =
|Tj |
N

similarly. Then we have

I(C,T ) =
K∑
i=1

K∑
j=1

PCT (i, j) log
PCT (i, j)

PC(i)PT (j)

The value of mutual information is between 0 and minimum of the entropies. Unfortunately

the maximum of mutual information can be achieved by using many small clusters. A remedy

of this problem is to use the normalized mutual information (NMI),

NMI(C,T ) =
I(C,T )

(H(C) +H(T ))/2
,

where H(C) and H(T ) are entropies. NMI lies between 0 and 1.

Another accuracy measure for data clustering is adjusted Rand index (ARI), which is

the version of Rand index corrected for chance. Let nij = |Ci ∩ Tj|, ai = |Ci|, and bj = |Tj|.

ARI(C, T ) =
Index− ExpectedIndex

MaximumIndex− ExpectedIndex

=

∑
i,j

(
nij

2

)
− [
∑

i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2
[
∑

i

(
ai
2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
Unlike a typical Rand Index, which lies between 0 and 1, ARI can also yield negative value

if index is smaller than Expected index, which causes the numerator to be negative.

5.5 Results

The performance of the proposed model is evaluated in terms of the accuracy and the ef-

ficiency by using both benchmark data and real online social network data. The goal of

performance evaluation is to make sure that the result achieved by using the proposed ap-

proach matches with the ground truth about social ties in terms of community structures.

We run different experiments to demonstrate this. All the experiments are conducted on
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tie read (1 unit = 10 observations.)
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Figure 7: The average log-likelihood from 10-fold cross validation on NCAA Football

a HP DL980 server with 8 Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz (each CPU has 10

cores) and 4 TB memory.

5.5.1 Model Convergence

We typically set σ2 = 0.1, µ0 = 0, σ2
0 = 0.5, α = 0.5, and ε = 0.1 1. We monitored the

convergence of the model using average log-likelihood on held-out data from 10-fold cross

validation. The likelihood of held-out data can be calculated by:

p(stest|strain) =
∑
k

p(z|strain)p(stest|λ̂k, λ̂′k)

∝
∑
k

|Ck|
n
p(stest|λ̂k, λ̂′k)

where (λ̂k, λ̂′k) is natural parameters after running all training data and p(stest|λ̂k, λ̂′k) has a

probability density function of N(
λ
(i)
k

λ
′(i)
k

, 1

λ
′(i)
k

). As we can see in Figure 7 from cross validation

1For all experiments except Retweet, we use σ2 = 0.1, µ0 = 0, σ2
0 = 0.5, α = 0.5, and ε = 0.1. For

Retweet data, we only adjust ε to 0.15 in order to reduce redundant components.
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on NCAA Football, the model is relatively stable after seeing around 120 data. We see

similar early convergences in all our other experiments.

5.5.2 Classification Accuracy

As we mentioned in 5.3, we develop a framework to compare classification accuracy among

different algorithms. Hence, we use the only dataset with ground truth of multiple types of

ties to test our results. Fortunately, NCAA football dataset is among the very few that con-

tains the ground truth of multiple types of social ties—intra-conference ties, inter-conference

ties, and special ties. Under our model specification, iDPGMM is able to obtain multiple

types of ties with (µ1, µ2, µ3) = (0.22, 0.27, 0.57). Because the values of the cosine similarities

are associated with the strength of the tie, we instinctively associate µ3 with intra-conference

ties, µ2 with special ties, and µ1 with inter-conference ties. For MultiGreedy algorithm, we

let it run two times in order to generate 3 types of ties. Similar to [49], the strong ties from

the first run is associated with intra-conference ties. The Greedy algorithm is then reused

again on the weak ties of the first runs. The strong ties from the second run is associated

with special tie, and the weak ties from the second run is associated with inter-conference

ties. For VBEM, like MultiGreedy, it requires a predetermined number of clusters. After

we set the number of clusters equal to 3, we obtain three Gaussian models with various

degree of µk. Again, we associate the largest µk to intra-conference ties, middle µk to special

ties, and weakest µk to inter-conference ties. We then calculate several evaluation criteria

to compare the outcomes—precision, recall, f-measure, normalized mutual information, and

adjusted Rand index. The results as shown in Table 10, Table 11, Table 12, and Table

13.

Similar to what Sintos et al. has shown in [49], the MultiGreedy algorithm generally

produces impressive precision on strong ties (intra-conference ties) and recall on weak ties

(inter-conference ties). However, other measures from MultiGreedy are often less accurate.

For VBEM, while there have been one instance that VBEM outperforms iDPGMM (i.e.,
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Table 10: Number of ties found in NCAA Football dataset

Ground
iDPGMM MultiGreedy VBEM

Truth
Inter-conf. 207 182 369 183

Special 123 149 98 25
Intra-conf. 457 456 320 579

Table 11: Precision and Recall on NCAA Football dataset

iDPGMM MultiGreedy VBEM

Precision Recall Precision Recall Precision Recall

Inter-conf. 0.87 0.77 0.46 0.82 0.87 0.77

Special 0.63 0.76 0.39 0.31 0.36 0.07

Intra-conf. 0.99 0.98 0.99 0.69 0.79 1

Table 12: F-measures on NCAA Football dataset

iDPGMM MultiGreedy VBEM
FInter 0.82 0.59 0.82
FSpecial 0.69 0.34 0.12
FIntra 0.99 0.82 0.88

Table 13: AIR and NMI on NCAA Football dataset

iDPGMM MultiGreedy VBEM

ARI 0.83 0.31 0.54

NMI 0.70 0.32 0.48
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Recall of intra-conference ties), the differences are insignificant. Furthermore, VBEM is the

worst to identify special ties—it only identified 25 out of 123 true special ties. For iDPGMM,

it has the best score in FSpecial, FIntra, ARI, and NMI, suggesting it is the best in overall

performance for this example. In addition, iDPGMM is the best in finding special ties.

Recall that DPGMM is an unsupervised algorithm without the need to specify number of

clusters. Under our model specification, we are still able to discover all three types of tie for

NCAA Football with good accuracy.

5.5.3 Deletion of Social Ties

As we have shown, changing social ties may only lead to a small number of changes for

the cosine similarities. To demonstrate this, we randomly remove one social tie, the edge

between vertex 78 and vertex 107 (edelete), in NCAA football data. After recalculating cosine

similarity based on the new social structure, this removal of a single tie causes a total of 22

changes of cosine similarities from the adjacent ties. Here, we compare the results from the

following two methods:

1. Rerun our iDPGMM on the new set of cosine similarities.

2. Utilize our insertion and deletion algorithms to replaced only the changed cosine sim-

ilarities.

In our second approach, we first utilize our deletion algorithm to remove a total of

23 cosine similarities, including edelete and 22 others which were affected by edelete. Then,

we utilize our insertion algorithm to add 22 updated cosine similarities back. We record

both running time. The first method required 0.253597 seconds while second only 0.021764

seconds in our machine. Not only is the incremental method 11 times faster, we have obtained

identical cluster assignments from both methods. This supports the claim that we can save

time and computation resources using our method. This time savings will even become much

greater if data are truly dynamic and enormous in size, e.g. Facebook, Twitter, etc.
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Figure 8: The running times on Twitter

5.5.4 Running time on Higgs data

Traditional models required rerun on all data whenever the data are added or deleted.

Therefore, the increase of data will mean the increase of running time. On the other hand,

iDPGMM is very suitable for big data because it only needs to run on the changed part

of the data while keeping the unchanged part in tact. Consequently, the running time stay

relatively stable. We compare our model running time with VBEM on Higgs data, which

contain a whopping 12,508,442 ties. Notice iDPGMM and VBEM are the only two model-

based algorithms among all three. Comparing to the Greedy algorithm is not fair since the

two are built on different hypotheses. Because VBEM is a truncated algorithm, it is required

to set a initial number of clusters and the initial number should be greater than the expected

number of clusters. As long as the initial number is large enough, the results from different

setting should be the same. However, the running time grows as the number of initial cluster

increases. We first separate the Higgs data into 12 equal size batches. We run our iDPGMM

and VBEM with different initial clusters (k=2, 3, and 4) while adding one batch of the Higgs

data at a time. All algorithms run under the same computer hardware and software (i.e.,
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Table 14: Cluster outcomes for Bible network

Cluster 1 2 3 4
µk 0.42 0.69 0.88 0.24

Count 105 56 80 49

Matlab) configuration. In Figure 8, as expected, the running time of iDPGMM is stable

because iDPGMM only runs on the additional data. On the contrary, the running times of

all VBEMs are increasing when a new batch of data is inserted. Note the running time for

VBEM with k=3 and 4 is partially plotted in Figure 8 for better comparison.

5.5.5 Multiple Types of Social Ties in Bible

Under our approach, iDPGMM characterizes social ties into multiple types with various levels

of estimated mean cosine similarities (i.e., µk, for k = 1, ..., K). Hence, the strength of each

type of social tie in iDPGMM can simply be determined by µk. In traditional topic modeling

on text documents, documents are profiled based on their topic distributions. Similarly,

we can profile individuals by their cluster distribution found by iDPGMM. Combining the

knowledge of network constraints on the importance of the network, we can profile each

person under multiple type assumption and project them based on their profile. Here, our

goals can be summarized by:

1. Identify legitimate multiple types of social ties in a large social network.

2. Characterize individuals using the cluster distribution generated from iDPGMM.

In the Bible dataset, a tie is only formed if two persons have more than 3 coappearances

in one chapter of the Bible, so that we can concentrate on meaningful connections. At the

end, our iDPGMM identifies 4 clusters with various degree of µk (Table 14).

As seen in Table 15, each type of social tie can be found to associate with certain social

traits. The tie leaders in cluster 3, the strongest tie, are all apostles. That is, the strongest

relationship classified in cluster 3 is closely related to people who are in a highly connected
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Table 15: Tie leaders in each cluster of the bible network

C3(0.88) C2(0.69)
Name Count Name Count
John 12 Peter 17

Andrew 11 David 10
James(son of Zebedee) 11 Pilate 7

Matthew 11 John the Baptist 5
Philip(the apostle) 11 Herod(Antipas) 5

C1(0.42) C4(0.24)
Name Count Name Count
Jesus 29 Jesus 44
Paul 15 Abel 2

Moses 14 Paul 2
John the Baptist 12 Aaron 1

Abraham 11 Adam 1
Note: µk of each cluster is shown between parentheses.

community (i.e., Jesus’ apostles). Along with David, Pilate, John the Baptist, and Herod,

Peter has the most ties in cluster 2, that is, the second strongest relationship. This type

of relationship is associated with leaders in communities. In other words, they are usually

related to a highly connected community (e.g., a nation, an organization, or a church) yet

they still often need to communicate with other “outsiders”. Indeed, Peter is a church leader,

David is a king of a nation, Pilate is a ruler of a land, and John the Baptist is a leader of a

religious group. They are all leaders in their own group and often have need to communicate

with people who are in different communities. In cluster 1 and cluster 4 (i.e., the weakest

relationships), we have the people who are associated with a wide range of communities. In

particular, cluster 4, the weakest relationship, is nearly exclusive to Jesus. As we discussed

previously, these “social brokers” (i.e., people who many weaker ties) often play a significant

role of translating information among different groups and is key to hold the whole network

together. Jesus, being the key figure of the whole book, is definitely qualified as a “social

broker”.

Each of the top tie leaders—John, Peter, and Jesus—have the most connections regarding

their own category, and they also present different type of social status regarding to the
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Table 16: Tie leaders cluster distribution

Name C3(0.88) C2(0.69) C1(0.42) C4(0.24) Sum
John 12 3 4 0 19
Peter 1 17 7 1 26
Jesus 0 2 29 44 75

Figure 9: John’s surrounding network
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Figure 10: Peter’s surrounding network
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Figure 11: Jesus’ surrounding network
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network. For John, who has significant amounts of ties in cluster 3 (strongest) and no tie in

cluster 4 (weakest) (Table 16, he represents a “local leader” type in a network, who often

receives and translates information solely within his own group.

To visualize John’s surrounding community, we pick people whom John has ties with and

plot them in Figure 9. Here, the distance between the John and other people represents the

value of cosine similarities between John and them—the closer the stronger. The color of

ties represents different types of ties: red represents the cluster 3 tie (strongest, µ3 = 0.88),

yellow represents the cluster 2 tie (less strong, µ2 = 0.69), green represents the cluster 1 tie

(weaker, µ1 = 0.42), and blue represents the cluster 4 tie (weakest, µ4 = 0.24). Figure 9

illustrates that John is indeed in a closed “apostle” community where there exists plenty of

red ties (i.e., strongest) surrounding John. We called it “apostle” community since people

who have red ties with John are either one of the Jesus’ apostles or one of the apostle’s

father.

In Peter’s surrounding network (see Table 16), besides one cluster 3 tie (strongest,

µ3 = 0.88) with John and one cluster 4 tie (weakest, µ4 = 0.24) with Mary Magdalene,

Peter has significant amounts of cluster 2 (less strong, µ2 = 0.69) and cluster 1 ties (less

weak, µ1 = 0.42). As a result, Peter represents a “regional leader” type in a social network.

While still connecting with their own communities, “regional leader” type also interact with

people outside—hence, forming less strong relationships. We can see that Figure 10 closely

illustrates our assumption of a “regional leader” type. Finally, the dominant number of green

(less weak) and blue (weakest) ties make Jesus a ”global leader” type—a person who bridges

different communities together (Figure 11 ).

5.5.6 Multiple Types of Social Ties in Twitter

In Retweet dataset, retweets are generally used to share information with tweeters’ followers.

By tracking the tweeters and retweeters, we have the traces of information access and flow

in a online social network. In our run, 3 types of ties are identified for Twitter network
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Table 17: iDPGMM outcomes for Twitter network

Cluster 1 2 3
µk 0.06 0.59 0.37

Count 50674 779 4881

Table 18: Persons who have most ties in each cluster of Twitter network

C2(0.59) C3(0.37) C1(0.06)
ID Org. Count ID Org. Count ID Org. Count

samjordison guardian 7 rachelapoly ap 43 mark beech bloomberg 23737
jimschachter nyt 6 bindelj guardian 36 spiegelpeter ft 2461
abby aguirre nyt 6 dancancel bloomberg 34 rolandsmartin cnn 2156
wayneparryac ap 6 davehill guardian 32 paulmasonnews bbc 1597

vranicawsj wsj 5 oliverburkeman guardian 31 jaketapper abc 1246

(Table 17). In the retweet network, we observe that counts of social ties in clusters are in

contrast to the strengths of social ties—most of the ties belong to weak relationships while

very few ties belong to strong relationships. Following our previous conclusion, strong ties

are associated with more local, highly connected communities while weak ties are associated

with more global, less connected communities. Here, we focus on several tie leaders (i.e.,

mark beech, jimschachter, and rachelapoly) in each cluster to see if specific retweet patterns

can be detected (Table 18).

Similar to how we analyze Bible network, we can identify “local leader” type, “regional

leader” type, and “global leader” type in Retweet network. As we can see in Table 19,

each example has different distributions of social ties. mark beech, being a well-known art

journalist, has the most cluster 2 ties of all and his tweets are widely retweeted. Hence,

mark beech is a “global leader” type in Retweet network. rachelapoly is a correspondent

Table 19: Cluster distributions for selected examples in Twitter network

Name C2(0.59) C3(0.37) C1(0.06) Sum
jimschachter 6 1 0 7
rachelapoly 0 43 5 48
mark beech 0 0 23737 23737
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Table 20: iDPGMM outcomes for Kleinberg’s ego-network

Cluster C1 C2 C3 C4

µk 0.42 0.31 0.74 0.84
Count 68 86 66 40

for The Associated Press and she cover politics and breaking news in Washington state.

Hence, her inference on the network is mostly related to a specific region (i.e., Washington

state). With the most cluster 3 ties, rachelapoly is indeed our “regional leader” type in

the network. Finally, jimschachter is a radio station host in New York city and hence his

social interactions should be mostly about New York City. Hence, with many cluster 1 ties,

jimschachter is a “local leader” type. To this end, we observe that the distributions of social

ties of individuals reflect not only the network constraints of the surrounding networks, but

also the degree of influences individuals have on the network. The types of social ties ones

have will determine whether they have a global, regional, or local influence on the network.

In general, the more weaker ties a individual has, the more influential a individual is in the

network.

5.5.7 Multiple Types of Social Ties in Ego-network

Following work of Sintos et al. [49], we create ego-network for Jon M. Kleinberg from DBLP

dataset. An ego-network, as name suggests, is the network containing relationships of a

single individual and the ties between the individual and his neighbors. We prune the co-

authors who have less than 3 publications together in order to focus on more meaningful

results. As Sintos et al. demonstrated, multiple social types can be associated with certain

social traits. In our experiment, iDPGMM identifies 4 clusters in Kleinberg’s ego-network

(Table 20). We observe that cluster 4 (the strongest) is associated with the collaborations

within a single institution—Cornell and IBM. Cluster 3 (less strong) is associated with

the collaborations related to multiple institutes—IBM, Yahoo, and Google. Cluster 1 (less

weak) is associated with Kleinberg’s closest colleges. Finally, cluster 2 (the weakest) is almost
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Table 21: Tie leaders in each cluster for Kleinberg’s ego-network

C4(0.84) C3(0.74)
Name Count Name Count

Daniel P. Huttenlocher 3 Ravi Kumar 7
Sridhar Rajagopalan 3 Andrew Tomkins 7

Anupam Gupta 2 Prabhakar Raghavan 6
Amit Kumar 0001 2 Jure Leskovec 4

Moses Charikar 2 Sridhar Rajagopalan 3
C1(0.42) C2(0.31)

Name Count Name Count

Éva Tardos 12 Jon M. Kleinberg 42
Jon M. Kleinberg 8 Robert D. Kleinberg 2

Jure Leskovec 7 Éva Tardos 1
Ravi Kumar 6 David Liben-Nowell 1

Prabhakar Raghavan 4 Yuval Rabani 1

Table 22: Tie leaders cluster distribution in Kleinberg’s ego-network

Name C4(0.84) C3(0.74) C1(0.42) C2(0.31) Sum
Daniel P. Huttenlocher 3 0 1 1 5

Ravi Kumar 1 7 6 0 14
Andrew Tomkins 1 7 3 0 11

Prabhakar Raghavan 0 6 7 0 10

Éva Tardos 0 1 12 1 14
Jon M. Kleinberg 0 0 8 42 50

exclusively associated to Kleinberg himself.

Apply the same rationale we developed previously in Bible network, individuals can be

characterize in Kleinberg’s ego-network in the same way. As seen in Table 22, Kumar,

Tomkins, and Raghavan, having the most amount of middle strength ties, have all worked

for IBM, Yahoo, and Google overtime and are the “regional leaders” of the network—Being

“regional” perfectly reflect their experiences in different companies. Being the Dean and

Vice Provost of Cornell Tech, Huttenlocher works closely within the Cornell community and

is our “local leader” regarding to the network.

Regarding to weak relationships, Kleinberg unsurprisingly has the most weaker ties and is

the true ”global leader”, a person who bridge the whole network. Besides Kleinberg himself,
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Tardos has the most weaker ties and hence should be the second most important “global

leader”. In Sintos’ finding, the tie between Kleinberg and Tardos was classified as a weak

relationship. However, Tardos is not only one of the most frequent co-authors with Kleinberg,

but she is also a colleague of Kleinberg in the same department of Cornell. Their relationship

should definitely be classified as strong, as iDPGMM does in our experiment. This shows the

advantage of our approach—which successfully captures the importance of Tardos—and the

shortcoming from Greedy+—simply maximizing the number of strong ties sometimes lead to

a failure of capture the true strength of the relationship between individuals. Furthermore,

with iDPGMM, there is no need to specify the number of clusters in advance. iDPGMM

decides the number of cluster itself.

6 Discussion and Future Work

Our proposed asymmetric author-topic model is useful in the large-scale genomics data set

analysis because of their ability to handle large numbers of potentially interrelated variables,

and because of their ability to discern statistical relationships between drugs and their inner

pathways. In this study, we first give our rationale on why a probabilistic topic model is suit-

able for genomic profiling expression, such as the Japanese Toxicogenomics Project database.

We have demonstrated that our AAT model can be implemented to explore hidden relation-

ships among different features (treatment, drug, and time-dose) and genes through latent

biological processes. The straightforward data preprocessing makes the transition of data

format manageable and easy to expand. In fact, the same principle of data preprocessing can

also be applied to next-generation sequencing (NGS) technology since microarray expression

intensity can be simply replaced by read counts in NGS [60]. Since our model enhances the

traditional probabilistic topic modeling approach without altering the core assumptions, our

framework can be easily adapted for new probabilistic topic model. For example, if we have

labels or classes attached to each treatment, we can again enhance supervised topic models

[35] with asymmetric priors and apply the model to a database with the same feature-centric
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analysis capacity. Because of the popularity of probabilistic topic modeling, there are many

existing and well-built software packages ready to be used, including MALLET. Therefore,

the implementation of newer probability topic models should also be straightforward in the

future. Moreover, other models can also potentially improve some of the limitations our

model has. Although changing a continuous value (i.e., fold change values) into a discrete

value (i.e., counts) has been done before [18], this process ultimately decreases the precision

of the data. Models like the Gaussian mixture model that supports continuous outcome will

eliminate the need of altering data. Another limitation of our model is the need to determine

the number of latent biological processes in advanced. While the perplexity analysis ensures

a relatively proper number of latent processes were chosen initially, finding an optimal num-

ber of latent processes is still difficult and costly. Many nonparametric Bayesian models have

been developed, including Hierarchical Dirichlet Processes [52], and Hierarchical Pachinko

Allocation [37], and the number of latent processes is automatically determined within the

algorithm.

One definite advantage of AAT model is the ability to connect the latent biological pro-

cesses with functional annotation. By connecting our finding with Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways via DAVID [24], we further increase the interpretabil-

ity of latent biological processes. Therefore, we are able to browse and interact with TGP

data through meaningful and interpretable biological pathway (i.e., glutathione metabolism).

Regarding the application on glutathione depletion, acetaminophen is a well-known drug

that can potentially cause fatal liver injury due to an overdose. Through our approach, we

identify that the alteration of glutathione metabolism at even the middle dose (600 mg) of

acetaminophen as early as treatment day three. The conclusion of linkages among pathway

glutathione metabolism, acetaminophen, and other 5 drugs are found and confirmed in other

studies. This demonstrates the possibility of finding existing or new pathway-like annotation

through our proposed model, and the ability to cluster drugs with similar mechanisms of

action. It is possible to even predict potential pathways for a new drug by estimating the
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probability distribution of latent biological processes under this framework. Our model also

has the capability to adapt analysis that put focus on different features of data. We show

how to identify the dominant factor in dose and time combinations in our second applica-

tion through generalized linear model. As animal reduction in experiment becomes a global

trend, the outcome of similarity of time-dose combination is a viable approach to reducing

animals needed for future study. Overall, AAT model has demonstrated potential to be an

accessible and flexible approach for finding hidden patterns in large toxicogenomic data.

In our second study, understanding the dynamic nature of social ties between individuals

plays an essential role for many applications including community structure detection, real

time event detection and viral marketing. Therefore, it remains as a major task for disci-

plines such as sociology, education, economics, and psychology. In this study we propose an

unsupervised approach to the characterization of social ties. We apply the Dirichlet process

Gaussian mixture model for grouping tie strengths into clusters that correspond to different

type of social ties. To address update in the data we implement an incremental model infer-

ence algorithm for dynamic online social networks. The empirical evaluation using some real

social networks demonstrates a superior performance in terms of both accuracy and running

time in comparison with other algorithms. In addition, our algorithm doesn’t require the

number of clusters as a parameter, which is very beneficial for very large dynamic online so-

cial networks such as Twitter. Furthermore, our approach demonstrate strong performance

on real online social networks as well. In Bible data, iDPGMM successfully identified ”global

leader”, ”regional leader”, and ”local leader” based on the characteristics of one’s social ties.

In Retweet data, we again demonstrate that the degree of impact one has is linked to the

distribution of one’s social ties. In DBLP, we explore Kleinberg’s ego-network and discover

various types of social connections. Our model identified a close colleague of Kleinberg as

one of the ”global leader”, while Greedy algorithm labeled it as a weak relationship.

There are several areas which we would like to explore in the future. First, although our

approach is effective, it is not fully Bayesian approach; that is, only µk is treated as random
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variables. A fully Bayesian approach will require a σ2
k to be random variables and base dis-

tribution will be a Gaussian-inverse-gamma distribution in order to preserve the conjugate

prior property. On the other hand, a fully Bayesian approach will require additional pa-

rameters and hence potentially create overfitting problem. Furthermore, the inverse-gamma

distribution has two hyperparameters which have range from greater than 0 to ∞ and are

hard to initialize correctly. A true fully Bayesian approach, where all four hyperparameters

are updated iteratively, may be possible, but it is hard to see overwhelming benefit because

iDPGMM already performs fairly well—sometimes even outperforming others. One may

consider other distributions, like Beta or Pareto distributions, since they both have range

form 0 to 1, which match the range of cosine similarity. We did build models based on

Pareto and Beta, yet each has their own problems. Although many social network are highly

skewed, some have significant amounts of strong ties—skewed to the left, which does not fit

Pareto distribution well. For Beta distribution, while it may be the most obvious choice,

lack of conjugate prior support remains a big issue. In 2011 article [34], Ma proposed a clean

closed-form solution. We adapted Ma’s approach yet the performance is highly unstable. By

simply changing random number generator, we have 4 completely different outcomes. This is

mainly due to the wide range of possible values (again, from greater than 0 to∞) and the lack

of proper restrictions for both parameters of Beta. Therefore, a flat base distribution—often

used in Dirichlet process—create huge differences in each run.

In Lin’s study [33], cluster pruning and merging are also proposed to handle redundant

cluster problems. while we didn’t use pruning or merging in our experiments, we have already

added pruning to our model. It is specially useful for a distribution like Beta because it is

more vulnerable to overfitting. On the other hand, merging requires a pair-wise similarity

measures of ρ1:Nk for all k, which is problematic when number of ties N is going very large.

Besides improvement on the model, iDPGMM can also be extended to other areas, like

text document. A Dirichlet process Multinomial mixture model(DPMMM) has just been

proposed [59], yet there is still no truly incremental version of DPMMM. Overall, we see
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much potential in our work and we plan to explore them in the future.
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