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Abstract 

The Interior Highlands is a biodiversity hotspot, with at least 200 known endemic 

species, but is understudied compared to hotspots, such as the Southern Appalachians.  In order 

to begin to rectify this issue, a nine month study was conducted from mid-March through early 

December at a 4 ha site at Steel Creek, Buffalo National River, in Newton County, Arkansas.  

Thirteen collecting methods were employed, including three colors of Lindgren funnel trap, five 

colors of pan trap, Malaise traps, canopy traps with upper and lower collectors, pitfall traps, and 

Berlese-Tullgren extraction of leaf litter, which resulted in the collection of 1311 samples during 

17 collection events.  Target groups, including Formicidae, Carabidae, Cerambycidae, 

Curculionoidea, Araneae, Isopoda, Mecoptera, Phasmida, Vespidae, Ixodidae, Phalangodidae, 

and select Diplopoda and Orthoptera were identified.  This resulted in 47,481 specimens 

representing 706 species that were curated and identified, including 18 putatively undescribed 

species, 56 species that represented new state records, 15 non-native species, and three species of 

Carabidae endemic to the Interior Highlands, two of which (Rhadine ozarkensis and Scaphinotus 

infletus) were previously known only from the original type series.  Collection data for four 

beetle taxa – Buprestidae, Carabidae, Cerambycidae, and Curculionoidea excluding Scolytinae – 

as well as all taxa combined were analyzed.  Pitfall and Malaise traps were the most effective 

(define here as collecting the most species with fewest samples) combination of collection 

methods for Carabidae, Curculionoidea, and the combined taxa, while Malaise traps alone and 

Malaise or canopy traps and green Lindgren funnel traps were the most effective collection 

methods for Cerambycidae and Buprestidae, respectively.  Color of Lindgren funnel traps was 

important when targeting Buprestidae and some Curculionoidea, but not Carabidae or 

Cerambycidae.  Extrapolated rarefaction curves indicated that 300–600 samples were required 



 
 

per trap type (1000+ for pitfall traps) before species accumulation is saturated.  Finally, four 

rarely collected specimens or species – a Temnothorax curvispinosus gynandromorph, Orussus 

minutus, Eudociminus mannerheimii, and Merope tuber – are treated individually in detail.  
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I.  Introduction. 

Life on Earth is currently experiencing a sixth mass extinction, with species extinction 

rates 100–10,000 times higher than historic background rates (Pimm et al. 1995; Balmford 1996; 

Wake & Vredenburg 2008; Barnosky et al. 2011; de Vos et al. 2015).  Climate change, 

globalization, spread of exotic species, and habitat fragmentation have all been implicated as 

causes. Understanding the causes and developing strategies to avert or minimize this crisis has 

become a priority among biologists.  Vascular plants, vertebrates, and invertebrates are all 

disproportionally affected by the extinction crisis; however, invertebrates, especially endemic 

species with limited ranges, are often at the highest risk for extinction (Conrad et al. 2006; 

Thomas et al. 2004).   

One of potential solutions to the global extinction crisis is to protect biodiversity 

hotspots, which are areas of high biodiversity and endemism (Médail & Quézel 1999).  

Examples of such hotspots are the Mediterranean biome, which comprises 2% of the world’s 

surface but contains 20% of the total floristic richness, and the tropical Andes, which contains 

nearly 6% and 7% of the word’s total vertebrate and plant species, respectively (Médail & 

Quézel 1997; Meyers et al. 2000).  By focusing on protecting these areas instead of individual 

species, it is possible to protect large percentages of biodiversity in the most spatially- and 

monetarily-efficient manner (Meyers 1989; Meyers 1990).   

The Interior Highlands in the mid-central United States is a biodiversity hotspot with at 

least 200 endemic species, more than half of which are arthropods (Allen 1990, Robison and 

Allen 1995, Pringle and Witsell 2005, Zollner et al. 2005, Robison et al. 2008), and at least 58 

species that exhibit highly disjunct populations (The Nature Conservancy, Ozarks Ecoregional 

Assessment Team 2003).  It is a mountainous region surrounded by areas of lower elevation that 
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has remained unsubmerged and unglaciated since the Permian (~290 MYA) and thus acted as a 

refugia during times of inhospitable climate; additionally, the region was historically connected 

to the southern Appalachians, though this connection was severed by the early Cenozoic (60 

MYA) (Skvarla et al. in press). However, the Interior Highlands is under surveyed compared to 

other similar North American regions of high biodiversity, such as Great Smokey Mountain 

National Park and the Southern Appalachians more generally. 

Efficiently collecting terrestrial arthropods – defined here as collecting the highest 

number of species with the fewest number of samples – is an important component of survey 

work as they represent the majority of terrestrial.  Much has been written about surveying 

specific taxa (e.g., epigeal Carabidae: Greenslade 1964, Spence & Niemelä 1994; Formicidae: 

Andersen 1991, Agosti & Alonso 2000; Araneae: Duffey 1972) or habitats (e.g., dry riverbeds: 

Corti et al. 2013; decaying wood/wood fungi: Kaila 1993, Lachat et al. 2006, Ferro & Carlton 

2011), comparing a limited number of collection methods (e.g., Juillet 1963, Duelli et al. 1999, 

Wells & Decker 2006, Campbell & Hanula 2007, Lamarre et al. 2012, Corti et al. 2013), or 

comparing methods using specimens identified to higher taxonomic unites (e.g., order, family, 

genus) (e.g., Juillet 1963, Lamarre et al. 2012).  While these studies are laudable, few studies 

have compared multiple methods using specimens identified to species from a breadth of taxa. 

The goals of this dissertation are thus three-fold: 1) intensively survey a single site in 

order to establish a baseline list of taxa to which future change can be compared; 2) compare 

collecting methods in order to determine the most efficient combination of traps and the 

minimum number of samples needed to collect most species so future surveys in similar 

environments can maximize the return of effort; and 3) report rare and endemic terrestrial 
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arthropods, as well as species that are new to Arkansas, in order to better understand the 

arthropods native to the state. 

These goals have been addressed in the following manner: Chapters II and III extensively 

review pitfall and Malaise traps, respectively, which were found to produce the highest number 

of species and specimens, and exhibited the lowest similarity and overlap in trap catch of the 

collecting methods considered.  Understanding the nuances and issues with both traps is 

important when implementing them in biodiversity studies. Additionally, the chapters are 

included in lieu of a more formal literature review.   

Chapter IV provides an overview of the geologic history of the Interior Highlands and 

describes an intensive nine-month survey conducted at Steel Creek, at Buffalo National River.  

The identity of species in four diverse groups of beetles – Buprestidae, Carabidae, 

Cerambycidae, and Curculionoidea – were determined and new state records established for 31 

species.  Additionally, three Interior Highland endemic ground beetles, two of which are known 

only from the type series, are reported from the site.  Chapter V begins with a review of rapid 

biodiversity assessment techniques and reports analyses of the beetle species reported in Chapter 

IV, including the most efficient combination of traps for each larger taxon (superfamily/family), 

role of color in Lindgren funnel traps in attracting different species, and phenology and 

seasonality of each species.  Chapter VI expands upon Chapter V by reporting similar statistics 

for a much larger dataset that includes 46,146 specimens representing 533 species from a 

diversity of higher taxa, including beetles, wasps, spiders, mecopterans, millipedes, and others.  

A workflow for the analyses conducted in Chapters V and VI is presented in Appendix I.   

Chapters VII–X are examples of papers and analyses that can be extracted from larger 

survey efforts and include information about species new to or rare in Arkansas.  Chapter VII is 
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about an individual Temnothorax curvispinosus (Formicidae) exhibiting gynandromorphism. 

This species is common in forests and was previously recorded from the state, but this is the first 

time gynandromorphism is reported in the species.  It also highlights the rarity of finding such a 

genetic anomaly as this was the only gynandromorph collected out of more than 28,000 ants 

examined during the study.   

Chapter VIII reports Orussus minutus species from Arkansas for the first time.  The 

specimens represent a significant western range extension and first report west of the Mississippi 

River.  Collection data for unpublished specimens housed in the United States National 

Collection was provided by collaborator Dr. David Smith. These specimens more than double 

the number of specimens reported in the literature and include new state records for Michigan 

and West Virginia. Additionally, the paper includes data gathered from social media and citizen 

science websites, as well as a brief note about the future of such websites in natural history and 

descriptive science.   

Chapter IX reports Eudociminus mannerheimii (Coleoptera) from Arkansas for the first 

time.  Previously the species had been reported from coastal states from New York south to 

Florida, west to Louisiana and Mexico.  The Arkansas specimens therefore represent the 

northwestern-most, inland records for the species.  Eudociminus mannerheimii is reported to feed 

on various Cupressaceae, including bald cypress (Taxodium distichum), pond cypress (T. 

ascendens), and Japanese cedar (Cryptomeria sp.); however, eastern red cedar (Juniperus 

virginiana) is the only representative of the family at the collection site, so while I did not 

observe feeding or oviposition, I hypothesize it to be the host plant.  Additional information 

about specimens collected in North Carolina, including records from arborvitae, was provided by 

co-author Dr. Matt Bertone.   
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Chapter X reports the second largest collection of the rarely collected Merope tuber 

(Mecoptera).  We reported phenology and male clasper size of the specimens, as well as notes on 

the collecting technique so the species may be more easily collected in the future. 
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II.  Pitfalls and preservatives: A review. 

 

Abstract. 

An extensive review of the factors that affect the performance of arthropod pitfall traps is 

given.  Liquid preservatives are discussed in a separate section because the choice affects the 

quality and composition of taxa collected in pitfalls. 

Introduction. 

Pitfall traps are a popular method for collecting ground beetles, spiders, ants and other 

epigeal arthropods (Westberg 1977; Niemelä et al. 1992; Bestelmeyer et al. 2000; Southwood & 

Henderson 2000; Phillips & Cobb 2005).  While many shorter, general overviews exist (e.g., 

general techniques: Balogh 1958; Duffey 1972; Bestelmeyer et al. 2000; Southwood and 

Henderson 2000; Woodcock 2005; issues with pitfalls: Adis 1979), none have exhaustively 

examined the published literature recently.  Herein we present such a review with the hope it will 

provide a sound base for those incorporating pitfall traps into their research.   

While the choice of preservative will affect the quality of specimens in any type of trap, it 

is a critical decision in pitfalls for several reasons. Chiefly, preservatives differentially attract and 

repel select arthropod taxa, which will affect the composition of taxa collected (Weeks & 

McIntyre 1997). Additionally, pitfalls are often set without covers in open fields, so lose more 

preservative through evaporation than other traps and are affected to a greater degree by rain and 

dilution by rainwater (Porter 2005). Therefore, we include a section detailing possible positives 

and negatives of preservatives used in pitfall traps. 
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Pitfall Traps 

Pitfall traps were first described by Hertz (1927) and shortly thereafter by Barber (1931) 

(Fig. 1) for collecting cave-inhabiting insects.  A pitfall trap is simple in design, consisting of a 

collecting container buried flush with the ground that passively collects epigeal organisms that 

accidentally fall into the trap.  It may be constructed from any container large enough to hold the 

target organism, including a large bucket for reptiles or small mammals (Ellis 2013), small 

plastic cup for larger insects such as Carabidae and large Formicidae (Luff 1975; Abensperg-

Traun & Steven 1995), or a glass test tube for small insects such as most Formicidae and small 

Carabidae (Luff 1968; Abensperg-Traun & Steven 1995).  Pitfall traps are widely used in 

biodiversity surveys as they are cost-effective, ecologically sensitive, collect large numbers of 

arthropods (Gist & Crossley 1973; Ekschmitt et al. 1997; Southwood & Henderson 2000; Work 

et al. 2002), and collect nocturnal species missed by other methods (Törmälä 1982; Samways 

1983; Donnelly & Gilmee 1985; Huusela-Veistola 1996).   

Pitfall traps have been used to sample many arthropod groups, including Scorpionida 

(Tourtlotte  1974; Margules et al. 1994); Isopoda (Hamner et al. 1969; Hayes 1970; Paoletti & 

Hassall 1999; Hornung et al. 2007); Diplopoda (Van der Drift 1963; Kurnik 1988; Mesibov et al. 

1995; Kime 1997; Snyder et al. 2006), Chilopoda (Kurnik 1988; Fründ 1990; Adis 1992; Shear 

& Peck 1992; Voigtlander 2003), and Symphyla (Adis 1992; Shear & Peck 1992; Clark & 

Greenslade 1996); Araneae (Duffey & Millidge 1954; Muma 1973; Uetz 1977; Corey & Taylor 

1988; Bultman 1992; Koponen 1992; Bauchhenss 1995; Buddle et al. 2000); Acari (Zacharda 

1993; Wickings 2007; Kłosin´ska et al. 2009; Mayoral & Barranco 2009; Wohltmann & Mąkol 

2009; López-Campos & Vázquez-Rojas 2010; Clark 2013); Collembola (Joosse-van Damme 

1965; Pedigo 1966; Budaeva 1993; Cole et al. 2001; Frampton et al. 2001); Coleoptera 
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(Backlund & Marrone 1997; Simmons et al. 1998; Arbogast et al. 2000) including Carabidae 

(Anderson 1985; Kálás 1985; Cameron & Reeves 1990; Epstein & Kulman 1990; Togashi et al. 

1990), Tenebrionidae (Ahearn 1971), Staphylinidae (Anderson 1985; Braman & Pendley 1993; 

Ekschmitt et al. 1997), Scarabaeoidea (Young 1981; Peck & Howden 1985; Martínez et al. 

2009; Anlaş et al. 2011; Thakare et al. 2011), and certain Latridiidae (Hartley et al. 2007); 

Formicidae (Van der Drift 1963; Greenslade 1973; Anderson 1991; Abensperg-Traun & Steven 

1995; Bestelmeyer et al. 2000); and even terrestrial Amphipoda (Craig 1973; Margules et al. 

1994) and Decapoda(Williams et al 1985; Smith et al. 1991; Hamr & Richardson 1994; McGrath 

1994; McIvor & Smith 1995).  Of these taxonomic groups, ground-dwelling Araneae and 

Coleoptera have been the most studied (Westberg 1977). 

Variations on the basic trap have been developed, including more elaborate traps for use 

under snow (Kronestedt 1968; Steigen 1973); live traps with a layer of gauze that keeps trapped 

organisms from drowning in rainwater (Duffey 1972); modifications that allow excess rainwater 

to drain before overflowing the trap (Duffey 1972; Porter 2005); integrated internal funnel and 

rain cap (Fichter 1941); collecting cup integrated into a larger structure with a base or ramp 

(Muma 1970); use of holes or slits in the side of a container so an integrated cap can be used 

(Fig. 2) (Nordlander 1987; Lemieux & Lindgren 1999); modifications to facilitate emptying 

(Rivard 1962), including automated devices for segregating trap catch over time (Williams 1958; 

Blumberg & Crossley, 1988; Buchholz 2009); designs to reduce mortality of vertebrate bycatch 

including floating shelters and wire mesh (Kogut & Padley 1997; Pearce et al. 2005); and 

inexpensive designs using commonly discarded household materials (Morril 1975; Clark & 

Bloom 1992).  Other techniques, such as using an auger bit to drill placement holes for small 

diameter traps, and equipment, such as a device that can pull traps out of placement holes 
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without kneeling or disturbing the surrounding soil, have been developed to make pitfall trapping 

easier (Vogt & Harsh 2003). 

 

Figures 1–2. Examples of pitfall traps. Fig. 1. Pitfall trap described by Barber for collecting 
cave-inhabiting insects. After Barber (1931).   Fig. 2. Pitfall trap modified with entrances in the 
side of the collection cup, which discourages vertebrates from entering the trap and allows the 
use of an integrated rain cap. Modified from Nordlander (1987) with permission. 
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Barrier fences have been employed, either with a single pitfall situated in the middle of 

the fence or with pitfalls at the end of the fence (Fig. 3) (Haeck 1971; Meijer 1971; Reeves 1980; 

Durkis & Reeves 1982).  Linear pitfall traps constructed from house gutters have been employed 

with success in certain situations, such as investigating the speed and timing of insect 

populations moving between habitats (Pamanes & Pienkowski 1965; Goulet 1974; Pausch et al. 

1979). 

Ramp traps collect arthropods similarly to pitfall traps, but rather than being sunk into the 

ground target taxa are directs upwards into the trap via ramps; this allows them to be employed 

where conventional pitfalls cannot, such as where digging is difficult (e.g., on rocks or in caves) 

or prohibited by law (Bouchard et al. 2000; Campbell et al. 2011).  Bostanian et al. (1983) 

proposed the first ramp trap design, which is constructed from metal, making it rather bulky and 

expensive and biased towards large ground beetles.  Bouchard et al. (2000) proposed a revised 

design that utilizes plastic sandwich containers and plastic ramps, rendering it light-weight and 

inexpensive (Fig. 4).  Ramp traps have been successfully employed in caves (Campbell et al. 

2011), areas polluted due to industrial mining (Babin-Fenske & Anand 2010), orchards (Smith et 

al. 2004), and vineyards (Goulet et al. 2004).  Ramp traps capture a higher abundance and 

diversity of epigeal spiders than conventional pitfall traps, though when comparing other taxa 

(e.g., beetles) they collect a different species composition, thus making direct comparison 

between the trap types difficult or impossible (Pearce et al. 2005; Patrick & Hansen 2013).  

Additionally, ramp traps capture fewer vertebrates than conventional pitfall traps (Pearce et al. 

2005). 
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Figures 3–4. Examples of pitfall traps. Fig. 3. Pitfall traps (modified from Nordlander 1987) on 
either side of a barrier fence. Fig. 4. Ramp trap. After Bouchard et al. (2000). Used with 
permission. 
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Colored pan traps, sometimes referred to as water traps, are generally used to collect 

flying insects via visual response to color cues (e.g. yellow, blue, purple or red) (Kirk 1984; 

Aguiar & Sharkov 1997; Leong & Thorp 1999; Pucci 2008; Gollan et al. 2011).  While pan traps 

are generally set on or above the ground, they may be sunk into it, effectively becoming pitfall 

traps that also attract and capture flying insects. 

Issues with pitfall traps 

Objections have been raised to the use of pitfall traps in ecological studies (Adis 1979; 

Majer 1997; Southwood & Henderson 2000) because they do not evenly catch different taxa for 

several reasons:  

1. Different taxa react differently at the lip of the trap.  Gerlach et al. (2009) found that 

millipedes show the most trap-avoidant behavior (20–60%) and carabids show the least (10–

25%); overall they found an average of 28% of taxa that encountered a trap were caught, with a 

range of less than 5% (Enantiulus nanus (Latzel, 1884) (Julidae)) to 70% (Pterostichus 

burmeisteri Herr, 1838 (Carabidae)).  Luff (1975) found approximately 75% of Carabidae that 

encounter the edge of a pitfall are collected.   In mark-recapture studies, some species become 

trap-shy if they have been caught previously while other species do not (Benest 1989). 

2. Activity level (Ekschmitt et al. 1997), which is affected by variables such as species-

specific behavior (Greenslade 1964; Curtis 1980; Anderson 1991; Topping 1993; Spence & 

Niemelä 1994; Obrist & Duelli 1996); differences between gender and age (Hayes 1970; Benest 

1989; Topping & Sunderland 1992; Thomas et al. 1998) including mate-searching (Tretzel 

1954), post-copulatory dispersal of females (Merrett 1967) and searching for oviposition sites 

(Duffey 1956); weather (Williams 1940; Briggs 1961; Greenslade 1961; Juillet 1964; Ericson 

1979; Drake 1994); vegetation (Deseo 1959; Greenslade 1964; Novák 1969; Baars 1979), habitat 
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structure (Melbourne 1999; Melbourne et al. 1997; Thomas et al. 1998), and habitat type 

(Melbourne et al. 1997); size (Luff 1975; Thiele 1977; den Boer 1981; Franke et al. 1988) and 

speed (Braune 1974; Adis 1976); and hunger and prey density (Grüm 1971; Müller 1984; Henrik  

& Ekbom 1994), also affect the number of organisms trapped, both within and between taxa 

(Southwood, & Henderson 2000) and  are more influential factors than population size (Briggs 

1961) in determining trap catch. 

3. Larger species are caught in significantly higher numbers than smaller species 

(Carabidae: Franke et al 1988; Spence & Niemelä 1994).  Several reasons have been suggested 

for this.  Larger, faster beetles are successfully caught a higher percentage of the time than 

smaller, slower beetles (Braune 1974; Adis 1976) – though some authors have found size and 

speed do not affect the ability to be caught (Luff 1975; Halsall & Wratten 1988).  Smaller beetles 

may escape more readily from traps because scratches and soil on trap walls may be enough to 

support their mass as they try to climb out whereas larger beetles fall (Spence & Niemelä 1994). 

4. Species-specific morphology can affect escape ability; e.g., Demetrias atricapillus (L.) 

has adhesive setae on the underside of the tarsi that allow it to climb out of pitfalls more easily 

than other similarly sized carabids (Halsall & Wratten 1988).   

5. Pitfall traps do not accurately reflect absolute density of the organisms sampled.  This 

has been demonstrated in the field (Grüm 1959; Briggs 1961; Mitchell 1963; Marsh 1984; 

Topping & Sunderland 1992) and experimentally in a caged system (Lang 2000) – though 

caution should be exercised interpreting caged results as they may be skewed by “trap-happy” 

beetles that prefer dry pitfalls as refugia (Adis 1979, citing Thomas & Sleeper 1977) and may 

suffer from “Kreb’s effect” (Mac Arthur 1984).  However, it should also be noted that some 

studies have recorded 73–96% capture rates of marked beetles in caged systems (Bonkowska & 
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Ryszkowski 1975; Dennison & Hodkinson 1984; Desender et al. 1985; Desender & Maelfair 

1986; Clark et al. 1995; Holland & Smith 1999) and one study found no difference between 

population estimates of millipedes, spiders, and beetles based on hand collecting or pitfalls in a 

caged system (Gist & Crossley 1973), suggesting such systems may accurately reflect absolute 

density in certain situations with specific taxa.   

In response to these criticisms, various calculations have been proposed to correct for the 

differences between taxa collected and true population density based on locomotory activity and 

motility range (Heydemann 1953; Tretzel 1955; Braune 1974; Thomas & Sleeper 1977; Kuschka 

et al. 1987; Stoyan & Kuschka 2001; see also Seifert 1990), though these have been rejected by 

others (Adis 1979; Müller 1984; Franke et al. 1988; Gerlach et al. 2009). 

Additionally, it has been argued that samples pooled over an entire season correctly 

represent local species abundance as variations due to weather and other factors that affect 

activity level are averaged out (Baars 1979; den Boer 1986; Luff 1982).  Results of other studies 

are conflicting, with some showing a large amount of variation between sampling periods in 

similar habitat when the sampling periods are short (Niemelä et al. 1986), and others showing 

that traps set for short periods caught all species accumulated by longer trapping periods 

(Niemelä et al. 1990; Borgelt & New 2006).  In addition, much of the cited research has only 

examined carabids caught by pitfalls.  When collecting other taxa, pitfalls may estimate absolute 

population density relatively well (ants: Andersen 1991; Vorster et al. 1992; Lindsey & Skinner 

2001; cursorial spiders: Muma & Muma 1949; Duffey 1962; Huhta 1971; Uetz & Unzicker 

1976; tenebrionids: Thomas & Sleeper 1977).  
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Certain ecological questions, such as comparing taxa along a successional gradient 

(Bultman & Uetz 1982) or between similar plots (Koivula et al. 1999), may be answered as taxa 

will be equally biased to pitfall traps along the gradient or between plots. 

Pitfalls can be used to answer non-ecological questions, such as investigating the 

phenology (Maelfait & Baert 1975), seasonal and circadian activity (Williams 1959a, b; 

Williams 1962; Breymeyer 1966a, b; Doane & Dondale 1979), and lifespan (Goulet 1974) of 

commonly collected taxa, estimating the timing of movement of epigeal species between habitats 

(Pamanes & Pienkowski 1965; Pausch et al. 1979), and estimating dispersal using mark-release-

recapture methods (Ericson 1977; Best et al. 1981).  They also can be employed in taxonomic 

surveys, though should be paired with other sampling techniques that complement the 

deficiencies of pitfalls (Majer 1997) 

Pitfall trap design 

If pitfall traps are to be employed, several considerations must be made as there are many 

factors that can affect the taxa collected.   

Effects of shape, size, and material of receptacle. The shape of the trap affects the 

composition and number of taxa collected (Cheli & Corley 2010).  Pitfalls may be straight-sided 

or round (Southwood & Henderson 2000), depending on the container used; however, round and 

straight-edged traps with the same perimeter length catch different numbers of specimens 

(Braune 1974; Luff 1975; Adis 1976; Spence & Niemelä 1994). 

Different diameters of pitfall trap collect different taxa at different rates.  When 

examining ants, larger diameter pitfalls catch more species, though differences are primarily due 

to differential capture rates of rare species (Abensperg-Traun & Steven 1995).   Work et al. 

(2002) compared catch rates and species richness of Carabidae, Staphylinidae, and Araneae 
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across five diameters (4.5, 6.5, 11, 15, and 20 cm) of pitfall traps; they found that, after 

standardizing circumference, small traps caught more small carabids and staphylinids and large 

traps caught more wolf spiders.  Luff (1975) found that small traps (2.5 cm dia.) were the most 

efficient at catching small species of carabids, while large traps (10 cm dia.) caught relatively 

more large beetles; however, their small traps were made of glass and large traps made of metal, 

which probably had a confounding effect on the results.  Brennan et al. (1999) found the largest 

and second largest traps (17.4 and 11.1 cm dia.) they tested caught the most diverse assemblage 

of species, though considered the smaller of the two traps more appropriate for sampling spiders 

as it may decrease the potential of capturing non-target species.  One option when using larger 

traps is to add a funnel to the trap in order to increase trap retention (Vlijm et al. 1961). 

Another aspect of size is the depth of the trap.  Shallow (8 cm) and deeper (15 cm) 

pitfalls do not effect ant diversity capture (Pendola & New 2007), therefore, when targeting ants, 

shallow pitfalls are preferred as small vertebrates, such as skinks, may escape more easily from 

them, thus reducing vertebrate bycatch.  However, this has only been demonstrated in ants and 

may not hold true for large insects, such as some carabids, which are bigger than some small 

vertebrates. 

Pitfall traps used to collect insects have been constructed out of glass (Briggs 1961; 

Greenslade 1964; Borgelt & New 2006; Pendola & New 2007), plastic (Luff 1973; Morrill 1975; 

Clark & Blom 1992; Spence & Niemelä 1994), or metal (Ahearn 1971; Hinds & Rickard 1973; 

Clark & Blom 1992).  Choice of material can affect the taxa sampled in live traps as escape rates 

differ. One study on carabids found 0% escape from glass traps, 4% escape per day from plastic 

traps, and 10% escape per day from metal traps (Luff 1975).  Other studies have also found glass 

pitfalls retain more arthropods than plastic or metal (Vennila & Rajagopal 2000), though one 
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found no difference between glass and plastic traps (Waage 1985).  Similarly, Topping and Luff 

(1995) found plastic traps with rough surfaces caught fewer linyphiid spiders than similar traps 

with smooth surfaces. 

Finally, color of the pitfall trap affects the taxa collected: white and yellow traps catch 

higher numbers of Apidae, Araneae, Carabidae, Diptera, and Formicidae, while brown and green 

traps catch higher numbers of Isopoda (Buchholz et al. 2010). 

Effects of trap design, layout, and site selection. Some studies have found that covers do 

not affect the composition of arthropods trapped by pitfall traps (Work et al. 2002; Buchholz & 

Hanning 2009; Cheli & Corley 2010) while others have found they do (Briggs 1961; Baars 1979; 

Spence & Niemelä 1994).  Some of this may be due to the material used as a cover.  Man-made 

covers, such as metal or ceramic tile, are generally used.  Suggestions have been made to use 

natural material such as bark or rock for covers (van der Berghe 1992), though this has not been 

systematically investigated. 

Pitfall traps that have an integrated cap and circular entrances in the sidewall of the trap 

(first proposed by Nordlander 1987) caught 80% of the same common carabid species as 

conventional pitfalls in one study (Lemieux & Lindgren 1999), but otherwise have not been 

thoroughly investigated and compared to conventional traps. 

Pitfall traps must be level with the soil surface as excessive inclination of the soil ringing 

the traps may direct some arthropods away from the trap (Heydemann 1953).  Similarly, a plastic 

disc surrounding the trap will influence sample size (Adis 1976). 

Subterranean pitfall traps have been employed to trap hypogaeic ants (Yamaguchi & 

Hasegawa 1996; Anderson & Brault 2010; Berghoff et al. 2003; Schmidt & Solar 2010), though 

these preform no better than conventional pitfalls (Pacheco & Vasconcelos 2012).   
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Use of a barrier fence consistently increases the number of ground beetles collected 

(Winder et al. 2001; Hansen & New 2005).  However, the length of the fence influences trap 

catch (Durkis & Reeves 1982; Morrill et al. 1990), with longer fences catching higher diversity 

of families and species (Brennan et al. 2005), making it difficult to compare trap catch between 

studies.  Location and number of the traps along the fence and fence material may also affect trap 

catch, though these variables have not been specifically investigated. 

Spacing between traps is an important consideration as populations, especially of larger 

taxa such as carabids, can become locally depleted if traps are placed closely together; this can 

affect trap catch and skew results. Snider and Snider (1986) found no difference in trap catch 

between pitfalls spaced 0.5, 1, 2, and 4 meters apart. Similarly, Ward et al. (2001) found no 

difference in trap catch between pitfalls spaced 1, 5, and 10 meters apart.  However, Digweed et 

al. (1995) found that carabid populations were depleted when pitfalls were placed 10 meters 

apart but not 25 meters; in addition, traps spaced at 10 meters had the most similar species 

assemblages and fewest rare species.  

The optimum number of pitfall traps depends on the environment of the trapping site.  As 

few as five traps aresufficient in an arid steppe environment (Cheli & Corley 2010), whereas ten 

to twenty pitfall traps effectively collected the majority of species in temperate areas 

(Formicidae: Santos et al. 2003; Coleoptera: Obrtel 1971; Isopoda Paoletti and Hassall 1999; 

Araneae: Niemelä et al. 1986), and at least twenty five are needed in tropical areas (Vennila & 

Rajagopal 1999).  Various non-parametric estimators have been tested to estimate species 

richness based on as few as five traps per site (Brose 2002). 

Finally, pitfall traps may not be the most efficient method for sampling epigeal 

arthropods in environments with rugged, steep slopes and a high density of rocks or roots in the 



22 
 

soil where the traps are difficult to set or at high elevation where the mean body size of taxa is 

generally smaller, and thus more difficult to trap (Nyundo & Yarro 2007).  Additionally, some 

studies have found pitfalls trap more ants in drier areas and seasons (Delsinne et al. 2008; Nunes 

et al. 2011), though others have found annual rainfall has no effect (Delsinne et al. 2010). 

Use of attractants in pitfall traps. The choice of preservative can affect the taxa collected 

in pitfall traps (Weeks & McIntyre 1997).  For instance, bark beetles (Curculionidae: 

Scolytinae), certain Staphylinidae, and Nitidulidae are caught in higher numbers in pitfalls that 

use ethanol as the preservative (Drift 1963; Greenslade & Greenslade 1971).  In one study, some 

Carabidae, especially Bembidion, were caught in higher numbers in ethylene glycol than water, 

though the effect varied by sex and time of year (Holopainen 1990, 1992); another study, 

however, found no difference between ethylene glycol and water when trapping four species 

ofDiplopoda, one species of Chilopoda, and two species of Carabidae (Gerlach et al. 2009), 

suggesting that any effect is species dependent.  Formaldehyde has been found to be repellant to 

Opiliones and Diplopodaand attractive to Carabidae and Staphylinidae (Luff 1968; Pekár 2002; 

Gerlach et al. 2009), though one study found no difference between water and formaldehyde 

when collecting Carabidae (Waage 1985).  Differences have been found between commercially 

available antifreeze and diluted ethylene glycol (Koivula et al. 2003).  Efficacy of preservatives 

can vary with trap size – one study found vinegar to be more effective in large traps but 

propylene glycol more effective in small traps (Koivula et al. 2003).  Brine and an ethanol-

glycerin mix have lower capture efficiency than other fluids such as pure water, ethanol-water, 

and ethylene glycol-water, possibly due to the high specific gravities of these fluids, which may 

allow captured arthropods to float and escape (Schmidt et al. 2006). Brine is also attractive to 

Lepidoptera (Cheli & Corley 2010).  Additionally, attraction and repulsion to preservatives can 
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vary due to sex (Adis 1976), season (Dethier 1947; Adis & Kramer 1975; Adis 1976), and 

environment (Koivula et al. 2003). Thus, careful consideration should thus be used in order to 

avoid or account for the influence of preservative on the taxa collected.   

A drop of detergent is often used to break the surface tension of the preservative in wet 

pitfalls.  This does not seem to affect the rate of capture of most arthropods, though Linyphiidae 

are caught in higher numbers (up to 1000%) in traps with detergent (Topping & Luff 1995; Pekár 

2002), whereas Staphylinidae are caught in higher numbers in traps without detergent (Pekár 

2002).   

Some Coleoptera naturally aggregate using pheromones to locate conspecifics 

(Greenslade 1963; Wautier 1970, 1971; Ahearn 1971), which can affect trap catch distribution as 

the first specimen captured may artificially attract others to the same trap (Luff 1968; Thomas & 

Sleeper 1977; Luff 1986).  

Digging-in effects have been recorded among Formicidae (Greenslade 1973), Carabidae 

(Digweed et al. 1995; Schirmel et al. 2010) and other Coleoptera (Schirmel et al. 2010), 

Collembola (Joosse-van Damme 1965; Joosse & Kapteijn 1968), Linyphiidae and other Aranaea 

(Topping & Luff 1995; Schirmel et al. 2010), and Isopoda (Schirmel et al. 2010).  These effects 

consist of high capture of certain taxa immediately after pitfall traps are established followed by 

a subsequent decline.  A variety of explanations – such as an increased level of CO2 

(Collembola: Joosse & Kapteijn 1968), decreased barriers to movement (Carabidae: Greenslade 

1964), increased number of prey that attract predators (Adis 1979), and decreasing number of 

foraging Formicidae workers (Romero & Jaffee 1989) – have been suggested, though no 

consensus has been reached.  If digging-in effects are to be avoided, it has been suggested either 

to place pitfalls inverted for one week before operating them as traps (Greenslade 1973; Schirmel 



24 
 

et al. 2010) or to install a tube or second container in which the pitfall can be placed in order to 

avoid disturbing the soil when it is serviced (Schirmel et al. 2010).  Alternatively, if the goal is to 

catch large numbers of arthropods without regard to comparing between-trap catch, traps may be 

serviced more frequently in order to take advantage of digging-in effects (Schirmel et al. 2010). 

Disturbance of leaf litter and vegetation around the traps can cause increased catch of 

highly mobile taxa, such as Gryllidae (Sperber et al. 2007).  Areas around active pitfalls should 

therefore not be visited unless the traps are being serviced.  Alternatively, regularly scheduled 

visits to the trap area will increase the catch of certain mobile taxa, though care should be taken 

in designing and executing such visits in order to provoke the same disturbance between traps 

(Sperber et al. 2007).  

If attraction is desired, baits can be used to purposely affect the taxa collected 

(Greenslade & Greenslade 1971).  Dung and carrion can used to collect Scarabaeidae, 

Staphylinidae, Silphidae, Ptiliidae, Histeridae, Hydrophilidae, and Leiodidae. Carnivore and 

omnivore dung provide good results – with human dung being among the most effective and 

readily available – while herbivore dung is generally poor (Newton & Peck 1975).  Meat, tuna, 

and honey can be used as baits for ants (Romero & Jaffee 1989).  Though not intentional, 

previously trapped insects may begin to rot in traps in which the preservative is ineffective due to 

dilution from rain or large numbers of trapped insects, thus attracting carrion feeding taxa 

(Holland & Reynolds 2005).  Vegetable oils have been shown to increase the catch of ants in the 

tropics (Pacheco & Vasconcelos 2012), especially army ants (Weissflog et al. 2000; Berghoff et 

al. 2002; Berghoff et al. 2003), although this has not been studied in temperate regions. 

Pests of pitfall traps. Occasionally, traps will be regularly disturbed by mammals between 

collections.  Van der Berge (1992) presented three situations with the possible culprits and 
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associated solutions.  For traps where the cup is still in the hole but pushed up “just enough so 

that the rim is no longer flush with the soil” he suggests moles or voles whose passage has been 

obstructed are to blame and moving the cup a short distance usually resolves the problem.  When 

one or a few cups, but not the entire trap line, are completely out of the hole, spilled clean, but 

not chewed on he suggests squirrels are attempting to burry or dig up nuts.  Unfortunately, “one 

is helpless against squirrel disturbance”.  The third case is when many, and often the whole line, 

of cups are out of the hole and chewed or mangled.  This, he suggests, is the work of raccoons, 

opossums or deer that are interested in consuming the preservative.  Raccoons are intelligent and 

will continue to harass a line of pitfall traps if they are reset, so it is best to abandon the line or 

add a distasteful substance to the preservative.  If deer are molesting the traps, it is best to switch 

from a salt-based preservative which is probably drawing their attention. 

Preservatives. 

 Pitfall traps can be used to collect insects to be kept alive or killed in preservative. If live 

specimens are required, such as for rearing experiments (as is common in parasitengone mites to 

correlate life stages) or in cases where the taxon of interest is endangered, e.g. the American 

burying beetle (Nicrophorus americanus (Olivier, 1790)), traps are run dry without preservative.  

In such cases, traps must be checked at least daily, and often more frequently, so captured 

individuals do not succumb to heat, desiccate, drown in accumulated rain water, or become 

predated on by other captured organisms (Mitchell 1963; Luff 1968; Weeks & McIntyre 1997; 

Bestelmeyer et al. 2000; Moreau et al. 2013).   

 When collecting specimens to be killed, the choice of trap preservative is an important 

consideration as it will affect the quality of specimens, cost of trap maintenance, and how 
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frequently traps must be serviced.  Many authors have investigated the preservation properties of 

different chemicals and solutions, which are summarized herein. 

 Ethylene glycol was once used as a preservative, especially in pitfall and pan traps, as it 

has low volatility compared to ethanol and other alcohols (Martin 1977), is relatively 

inexpensive, and is readily available as antifreeze.  When used in the field it has been reported to 

not preserve internal organs well and causes specimens to deteriorate to the point of breaking 

when pinned (Aristophanous 2010), though other studies report sufficient preservation 

(Sasakawa 2007; Cheli & Corley 2010).  Because ethylene glycol is toxic to vertebrates (Thrall e 

al. 1984) and is readily ingested due to its sweet taste (Grauer & Thrall 1982), its use has been 

discouraged (Hall 1991).   

 The addition of bitter agents, such as quinine, to ethylene glycol has been suggested as a 

way to deter vertebrates from drinking the fluid (Hall 1991).  Quinine added to ethylene glycol, 

propylene glycol, and formalin has been shown to have no effect on the number of spiders 

caught in pitfall traps; in addition, it improves the preservation quality of specimens collected in 

ethylene glycol (Jud & Schmidt-Entling 2008).  Alternatively, a red marking flag placed next to 

the trap may deter large vertebrates from investigating the trap and drinking the ethylene glycol 

(Cheli & Corley 2010). 

 An alternative to ethylene glycol but with similar characteristics is propylene glycol, 

which is sold as recreational vehicle and boat antifreeze.  It also has low volatility and is 

inexpensive.  Propylene glycol is nearly non-toxic as it is metabolized into constituents of the 

Krebb’s cycle and extremely large quantities must be ingested over a short period of time before 

acute toxicity is reached (Yu 2007).  In the field, propylene glycol preserves insects similarly to 

ethylene glycol (Jud & Schmidt-Engling 2008; Aristophanous 2010).  However, Moreau et al. 
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(2013) found no detectable difference in the quality of DNA preservation between propylene 

glycol and ethanol when undiluted chemicals were used in a lab setting.  One reason for the 

difference between field and lab studies may be due to the fact that ethylene glycol and 

propylene glycol are hygroscopic; when humidity is moderate to high, both substances will 

absorb water from the air and dilute naturally (Aristophanous 2010). 

 Salt brine and saturated borax solution are inexpensive and easy to make as the 

constituent materials are readily available in grocery stores.   The ability of these solutions to 

preserve insects is extremely poor, however, and not outweighed by cost-savings (Lemieux & 

Lindgren 1999; Sasakawa 2007; Aristophanous 2010) (though see Schmidt et al. 2006 for a 

counter opinion). 

 Carnoy’s fixative (60% ethanol, 30% chloroform, 10% acetic acid) and white vinegar 

(10% acetic acid) do not preserve DNA and cause specimens to become brittle, though they 

generally keep the specimens from rotting (Sasakawa 2007; Aristophanous 2010; Moreau et al. 

2013).  If DNA extraction is not intended, these may be acceptable preservatives. 

 Methanol and chloroform do not preserve specimens in a way that allows DNA 

extraction and amplification (Post et al. 1993; Fukatsu 1999).  In addition, chloroform is difficult 

to acquire, especially in the large quantities required for use as a trap preservative.   

FAACC solution (formaldehyde 4%, acetic acid 5%, calcium chloride 1.3%) and 4% 

phosphate buffered formaldehyde (4%PBF) both preserve internal organs well, with 4%PBF 

being the superior of the two (Aristophanous 2010).  However, specimens become excessively 

stiff and although DNA can be extracted from specimens preserved with formaldehyde solutions, 

DNA amplification is impossible with standard kits (such a Qiagen DNEasy) because 

formaldehyde causes DNA to cross-link with proteins (Schander & Halanych 2003).  Protocols 
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using prolonged extraction times (up to 7 days) (France & Kocher 1996; Chatigny 2000; 

Schander & Halanych 2003) and chemical agents (Johnson et al. 1995; Chatigny 2000) can be 

successful. 

Amyl acetate is sometimes used in insect jars as the killing agent.  This banana-smelling 

liquid keeps specimens relaxed, unlike other killing agents such as chloroform (Woodward 

1951).  It is commonly used as a water-removing solvent in industry and can be purchased 

through specialized suppliers.  Amyl acetate has been used for preservation of anatomical 

dissections (Saunders & Rice 1944) and insects “may be kept stored almost indefinitely between 

cotton-wool impregnated with this agent” (Woodward 1951), though it has not been tested for 

DNA preservation (Nagy 2010).  Additionally, it has not been tested as a preservative in pitfall 

traps, can be a skin irritant, and is probably attractive to some insect groups so other, more 

proven preservatives may be a better choice. 

Ethanol is probably the most widely used preservative.  It maintains the integrity of 

internal organs and allows DNA to be easily extracted and amplified (Gurdebeke & Maelfait 

2002; Aristophanous 2010; Moreau et al. 2013).  In the United States, price may be prohibitive 

for individuals who do not qualify for ethanol tax exemption; however, fuel ethanol has been 

shown to preserve specimens as well as pure ethanol, so this will provide an alternative source as 

fuel ethanol becomes more widespread (Szinwelski et al. 2012).  In addition, ethanol is the most 

volatile commonly used preservative.  In open containers such as pitfall traps ethanol can lose ¾ 

of its volume in fewer than 5 days (Aristophanous 2010).  Depending on the trap location this 

may have implications on how often the traps must be serviced. 

Isopropanol, commonly known as rubbing alcohol, is a cheap alternative to ethanol.  

Similar to ethanol, it preserves DNA well (Rake 1972), so it can be extracted with little 
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difficulty.  One drawback is that isopropanol often discolors specimens, which is a hindrance to 

identification and morphological studies involving color. 

Acetone has shown promise as a preservative.  It is relatively inexpensive and readily 

available as a paint solvent.  DNA has been extracted and successfully amplified from acetone-

preserved Copepods (Goetze & Jungbluth 2013), pea aphid (Acyrthosiphon pisum (Harris, 

1776)) (Fukatsu 1999), and Zygoptera (Logan 1999).  Additionally, acetone is used to preserve 

adult Odonata as it dissolves fat, dehydrates the specimen, and reduces decomposition of 

enzymatic color pigments (Abbott 2008). 

Other preservatives require more testing as contradictory results have been reported.  

Fukatsu (1999) reported DNA amplification after specimens were stored in 2-propanol, ethyl 

acetate, and diethyl ether, though Post et al. (1993) and Reiss et al. (1995) reported poor results 

with 2-propanol and ethyl acetate, respectively.    

Summary.  

Pitfall traps are often used to sample epigeal arthropods as they are inexpensive and easy 

to use.  However, many factors influence the taxa so collected.  Abiotic factors, such as weather, 

season, slope and aspect, degree of rockiness, and trap characteristics (color and material of the 

trap, diameter of the opening, spacing between traps, and number of traps at a site) affect the 

composition of collected taxa, often by affecting behavior of the target arthropods.  Biotic factors 

affecting trap catch include species-specific factors (activity level, size, aggregation to 

conspecifics, and behavior at the edge of the trap), response to digging-in effects, and habitat 

structure, including the density of low-growing vegetation.  The choice of preservative affects 

not only the level of preservation of specimens, but also the composition of specimens collected 
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because various compounds differentially repel and attract different taxa.  Taken together, these 

factors make comparisons between studies difficult.   

While there have been calls to standardize pitfall trapping, the design employed in 

individual studies will continue to be based on the research question and materials available.  An 

effort, however, should be made to report all of the factors that might influence the composition 

of specimens collected.  While this may not be immediately useful, comparisons may be made in 

the future after further studies elucidate the effects various factors have upon trap catch. 
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III. A review of terrestrial and canopy Malaise traps 

 

“Since the time of Linnaeus the techniques of catching insects has not improved very much.”  

– René Malaise, 1937. 

Abstract.   

An extensive review of the history and literature concerning Malaise and canopy traps is 

given.  Factors that affect trap catch, including trap design and placement, as well as different 

uses of the traps are discussed.  Both trap styles are compared to each other and other types of 

arthropod traps.  

Introduction. 

Malaise traps – which are large, tent-like structures made of fine mesh netting – are one 

of the most widely-used non-attractant, static insect traps (Muirhead-Thomson 1991).  Flying 

insects, especially Diptera and Hymenoptera, are passively intercepted by the mesh walls; many 

species, after encountering the mesh wall, climb up and are funneled into a collecting container 

(Zilihona et al. 1998; Achterberg 2009).   

Herein we use “Malaise trap” to refer to specifically to terrestrial Malaise traps (e.g., 

those traps set near, or in contact with the ground or over streams) and “canopy trap” to refer to 

those traps suspended at considerable height above the ground, generally in the forest canopy.  

While Malaise and canopy traps are based on the same design and Malaise traps set in different 

environments (e.g., field, forest, over streams) may sample diversity as different as that sampled 

by Malaise and canopy traps, we make the distinction between Malaise and canopy traps herein 

as such a distinction is made in the published literature. 
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History.   

René Malaise (1892–1978) was inspired to invent a new type of insect trap after watching 

insects fly into a tent and become trapped despite the open flaps.  His design consisted of mesh 

fabric stretched over a wooden box frame open at one end with a collection cylinder at the top 

(Fig. 1) (Malaise 1937).  It revolutionized the collection of flying insects.   

 
Figure 1. Malaise’s original trap.  After Malaise (1937). 
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Vecht (1939) translated Malaise’s design into Dutch after successfully testing it in 

Burma. 

Henry Townes (1913–1990) elaborated upon Malaise’s design and presented a modified 

version of the trap at the 1959 Annual Meeting of the Entomological Society of America.  After 

“many requests for plans of the trap” he published schematics for his design, though was worried 

the publication might “freeze the model at this stage of development rather than encourage 

further experimentation with it” (Townes 1962).  His fear may be correct in part: the most 

widely-available and commonly used Malaise traps are only slightly modified from Townes’ 

design.   

  Marston (1965) proposed improvements to Townes’ design, including the use of a 

prefabricated tubular aluminum frame instead of using a wooden frame (Fig. 2).  Móczár (1967) 

proposed additional modifications to Marston’s to lighten Townes’ design.  Townes (1972), after 

possibly reading of this improvement and realizing that a 13.5 pound trap was much too heavy,  

designed a light-weight Malaise trap (Fig. 3). 

Others continued to experiment with the design of Townes’ Malaise trap.  Schroeder et 

al. (1975) proposed a more durable design that used a metal frame instead of wood and bronze 

screen funnel instead of plastic for use on windswept rangelands.   Masner and Goulet (1981) 

noticed some Hymenoptera do not readily climb up the mesh into the collector, so designed a 

Malaise-type trap impregnated with fast-acting insecticide and a collecting trough underneath.  

Hutcheson (1991) suggested a modified collection jar to facilitate easy servicing.  Achterberg 

(2009) suggested further improvements, including angling the entrance of the collection jar at 

45° instead of horizontally as is the case in commercial designs; he also provided an excellent 

overview of various Malaise trap designs.  
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Figure 2. Large Malaise trap utalizing a prefabricated aluminum frame.  After Marston (1965). 
Used with permission. 
 

 
Figure 3.  Townes’ light-weight Malaise trap. After Townes (1972). Used with permission. 
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Gressit and Gressit (1962) introduced a variation of the Malaise trap that consists of a 

large (7m long by 3.6m high) sheet of fabric with collectors at either end.  The fabric is 

supported between two poles or trees (Fig. 4).  Townes (1962) commented on Gressit & 

Gressit’s trap, saying their “design is basically a good one and merits further development” and 

that compared to his trap their design “is much more portable and easier to make, but is possibly 

less efficient for some kinds of insects.”  This is perhaps less true now that collapsible fiberglass 

poles are used in commercial Townes-style Malaise traps; however, the Gressit and Gressit 

design is reported to be effective and warrants further study. 

 
Figure 4. Gressit and Gressit-style Malaise trap.  After Gressit and Gressit (1962). Used with 
permission courtesy of the Bishop Museum. 

 

Butler (1965) proposed a design which consists of a bed net with a hole cut in the roof 

and a hole cut in the side of one wall.  A collecting trap consisting of a metal cylinder and 
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polythene bag is placed in the hole in the roof. Butler (1966) modified this design for use in crop 

areas and reported a trapping rate of 370-450 insects/trap/day. 

Blotzhober and Riggs (1998) suggested changes to the standard Townes lightweight 

Malaise trap for trapping live Odonata. 

Malaise traps with four fabric panes open 360° were originally proposed for use in rice 

paddies (Nishida & Torii 1970; Yano et al. 1975). 

  Various methods have been described for using Malaise traps to sample canopy 

arthropods.  Some researchers have attached standard Malaise traps to tall scaffolding or 

platforms constructed in the canopy (Coulson et al. 1971; Crossley et al. 1973; Southwood et al. 

1979).  Others tied Townes-style Malaise traps off to a wooden frame and used ropes and pulleys 

in order to raise the structure into the canopy (Hammond 1990; Faulds and Crabtree 1995; Basset 

et al. 1997).  

Murchie et al. (2001) described a rotary device that segregates Malaise trap catch into 

two-hour time intervals. 

Malaise traps have been combined with other traps, including light traps (Dufour 1980), 

window traps (Basset 1988) (Fig. 5), and intercept traps, including colored pan traps, in order to 

modify taxa collected or increase efficiency.  The addition of yellow pan traps beneath Malaise 

traps increases the trap effectiveness in catching Diptera, Hymenoptera, Heteroptera, and 

Thysanoptera (Darling & Packer 1988; Campos et al. 2000). 

Steyskal (1981) provided an extensive bibliography on Malaise trap research. 
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Figure 5.  Diagram of a combined Malaise/window trap. After Basset (1988). Used with 
permission. 
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Taxa collected. 

Diptera and Hymenoptera are generally the numerically dominant taxa in Malaise traps, 

with Diptera often representing the largest percentage (Table 1). Because of this, Malaise traps 

are often used to survey diversity of and collect Diptera in general; however, they have also been 

used to specifically collect many taxa, including “Nematocera” Tabanidae, Syrphidae, 

Tachinidae, Oestridae, and Tephritidae (Table 2).  Hymenoptera are generally the second most-

collected taxa, though usually represent a much smaller percentage of the total catch than flies. 

As in Diptera, Malaise traps are often used to survey hymenopteran diversity in general, but have 

also been used to collect specific taxa (Table 3). Besides Diptera and Hymenoptera, Malaise 

traps have been used to collect a variety of Arachnida, Odonata, Coleoptera, Lepidoptera, and 

other insects (Table 4). 

Canopy traps have been used to collect Psocoptera, Thysanoptera, Coleoptera, Diptera, 

Lepidoptera, Neuroptera, and Hymenoptera (Table 5). 

Malaise traps have been shown to be some of the most consistent traps in terms of the 

composition of higher taxa collected, giving credence to the confidence hymenopterists and 

diperists have that they will invariably collect those taxa (Kitching et al. 2001).  While such 

consistency has not been studied in canopy traps, there is no reason to believe they do not sample 

similar groups irrespective of site locality.



 

Citation Diptera 
(%) 

Hymenoptera 
(%) 

Lepidoptera 
(%) 

Coleoptera 
(%) 

Hemiptera 
(%) 

Plecoptera 
(%) 

Collembloa 
(%) 

"Other" 
(%) 

Marston 1965 66.3 12.3 4.8 5.6 6.8 - 3.4 4.2 
Geijskes 1968 58 19 14 4.6 2.3 - - 2.1 
Matthews & Matthews 
1969 

52.2 16.9 7.1 3.1 9.4 8.3 1.7 11.3 

Matthews & Matthews 
1969 

43.1 22.5 10 2 3.9 16.8 1.2 18.5 

Matthews & Matthews 
1969 

14.7 1.2 0.8 0.3 0 76.9 0.7 83 

Matthews & Matthews 
1969 

54.4 13 15.5 2.6 10.9 0.3 0.6 3.6 

Yano et al. 1975 69.7 4.6 4.6 0.8 13.6 0 3.2 6.7 
Rose 1978 84.2 5.85 3.52 0.11 3.74 - - 2.58 
Cooksey & Barton 1981 57 15 17 - 8 - - 3 
Moeed & Meads 1987 84.2 4 1.8 2.3 - - 4.9 2.8 
Basset 1988 47.8 8.1 3.7 10.3 19.5 - - 10.7 
Basset & Arthington 
1992 

- - - - - - - - 

Dutra & Marinoni 1994 85.1 3.2 5.7 1.7 2.5 <0.01 0.9 2 
Dutra & Marinoni 1994 72 3.3 13.5 2.6 1.4 0 5.3 7 
Campos et al. 2000 84.4 7.8 3.2 0.8 2.9 - - 0.9 
Campos et al. 2000 64.3 10 1.3 7 10 - - 7.4 
Campos et al. 2000 57.4 16.5 0.9 5.3 12.2 - - 7.7 
Hughes et al. 2000 69.2 14.3 - - - - - 16.5 
Kowk & Corlett 2002 80.6 3.9 5.3 6.3 - - - 3.9 
Brown 2005 84 - - - - - - - 
Brown 2005 81 - - - - - - - 
Brown 2005 64 - - - - - - - 
Horn et al. 2005 68.5 4.1 9.5 7.6 - - - 10.2 
Horn et al. 2005 26.6 7.3 30.8 18.1 - - - 17.2 

Table 1. Summary of Malaise trapping studies and taxa collected. 
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Citation 

Number of 
specimens 
collected 

Duration 
per trap 
(days) 

Number 
of traps 

Specimens/ 
trap/day Locality Trap type 

Marston 1965 2927 7 1 418.14 Kansas, USA Malaise 

Geijskes 1968 90,182 - - - Suriname Malaise 

Matthews & Matthews 1969 23,722 91 1 260.68 New York, USA Malaise 

Matthews & Matthews 1969 6138 91 1 67.45 New York, USA Malaise 

Matthews & Matthews 1969 7008 91 1 77.01 New York, USA Malaise 

Matthews & Matthews 1969 3480 91 1 38.24 New York, USA Malaise 

Yano et al. 1975 13,709 3.34 19 216.03 Thailand/China Malaise 

Rose 1978 37,198 127 6 48.82 Malaysia Malaise/canopy 

Cooksey & Barton 1981 10,830 12 1 902.50 Arkansas, USA Malaise 

Moeed & Meads 1987 45,965 365 1 125.93 New Zealand Malaise 

Basset 1988 14,597 365 5 8.00 Queensland, Australia Composite  

Basset & Arthington 1992 46,019 730 5 12.61 Queensland, Australia Composite 

Dutra & Marinoni 1994 62,924 365 1 172.39 Parana, Brazil Malaise 

Dutra & Marinoni 1994 38,868 365 1 106.49 Parana, Brazil Malaise 

Campos et al. 2000 6,120 14 4 109.29 Minas Gerais, Brazil Malaise 

Campos et al. 2000 2,436 14 4 43.50 Minas Gerais, Brazil Malaise 

Campos et al. 2000 4,816 14 4 86.00 Minas Gerais, Brazil Malaise 

Hughes et al. 2000 12,776 60 3 70.98 Colorado, USA Malaise 

Kowk & Corlett 2002 53,897 940 4 14.33 Hong Kong, China Malaise 

Brown 2005 4,646 5 1 929.20 Tambopata, Peru Malaise 

Brown 2005 905 4 1 226.25 Tambopata, Peru Malaise 

Brown 2005 1,064 3 1 354.67 Puntarenas, Costa Rica Malaise 

Horn et al. 2005 - - 5 - South Carolina, USA Canopy 

Horn et al. 2005 - - 5 - South Carolina, USA Canopy 
Table 1 (Cont.). Summary of Malaise trapping studies and taxa collected.
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Taxon Reference 
General Diptera Kitching et al. 2004; Roháček & Ševčik 2009 

"Nematocera" Salmela et al. 2007 

Tipulidae Dufour 1980; Toft & Beggs 1995; Peterson et al. 2004 

Sciaridae Steffan 1972; Vilkamaa et al. 2007 

Mycetophilidae Økland 1994; Toft et al. 2001; Toft & Chandler 2004; Jakovlev & Penttinen 
2007  

Culicidae Graham 1969; Witter et al. 2012 

Simuliidae Adler et al. 1983; Currie & Adler 2000; Witter et al. 2012 

Psychodidae Quate 1999; Alexander 2000; Alexander et al. 2001 

Tabanidae Strickler & Walker 1993 

Syrphidae Burgio & Sommaggio 2002; Thompson & Zumbado 2002; Krčmar et al. 
2005; Gittings et al. 2006; Nol et al. 2006; Smith et al. 2008; Whitemore et 
al. 2008; Birtele & Hardersen 2012 

Dolochopodidae Pollet et al.1989 

Agromyzidae Scheirs et al. 1997 

Stratiomyiidae Hauser 2008; Whitemore et al. 2008; Birtele & Hardersen 2012 

Calliphoridae Rosati & VanLaerhoven 2007 

Sarcophagidae Dahlem & Downes 1996; Whitemore et al. 2008 

Tachinidae Cerretti et al. 2004; Stireman et al. 2012 

Oestridae Capelle 1970; Cogley & Cogley 2000; Fleenor & Taber 2007; Witter et al. 
2012 

Axiniidae Colless 1994 

Tephritidae Asquith & Kido 1994 

Pipinculidae Skevington 2001 

Table 2. Diptera families collected in Malaise traps. 
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Taxon Reference 
General 
Hymenoptera 

Darling & Packer 1988; Noyes 1989; Campos et al. 2000; 
Shlyakhtenok 2000; Sobek et al. 2009 

"Symphyta" Holuša 2002; Brand et al. 2003; Harris 2006 

Apocrita Karem et al. 2006 

Evaniidae Deans & Kawada 2008 

Embolemidae Amarante et al. 1999 

Plumariidae Penteado-Dias & Scatolini 2003 

Chrysididae Shlyakhtenok 2000; Strumia 2003 

Diapriidae Masner 1976a,b 

Ichneumonidae Noyes 1989; Bartlett et al. 1999 Sääksjärvi et al. 2004; Sperber et al. 
2004; Sääksjärvi et al. 2006; Ulber & Nitzsche 2006; Veijalainen et al. 
2013 

Braconidae Shimbori & Shaw 2014 

Mymaridae Vance et al. 2007 

Platygastridae Stevens & Austin 2007; Burks et al. 2013 

Formicidae 
(especially alates) 

Collingwood 1981; Deyrup & Trager 1986; Longino & Colwell 1997; 
Delabie & Reis 2000; Kaspari et al. 2001; Collingwood & van Harten 
2005; Colby & Prowell 2006; Framenau & Thomas 2008; Fisher et al. 
2009; Guerrero et al. 2010 

Pompilidae Shlyakhtenok 2000 

Vespidae Archer 1990; Beggs et al. 1998; Beggs & Rees 1999; Shlyakhtenok 
2000; Sackmann et al. 2001 

Mutillidae 
(especially males) 

Pitts et al. 2004; Pilgrim & Pitts 2006 

Table 3. Hymenoptera families collected in Malaise traps 
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Taxon Reference 
Araeneae Wilkinson et al. 1980; Hauge & Midtgaard 1986; Jenning & Hilburn 

1988; Oxbrough et al. 2010; Vedel et al. 2011 
Acari Bo-yi 1996; Clark 2004; Behan-Pelletier & Winchester 2008;  

Bo-yi 2008 a, b; Ripka & Szabó 2010; Skvarla et al. 2014 
Opiliones Hicks et al. 2003 
Pseudoscorpiones Aguiar & Buhrnheim 1998 
Collembola Fjellberg 1992 
Odonata Muzón & Spinelli 1995;Roble 1995; Flint 1996; Glotzhober & Riggs 

1998 
Ephemeroptera Peterson et al. 2004 
Orthoptera Samways & Moore 1991; Quinn et al. 1993; Donnelly 1995; Johnson et 

al. 1995; Muzon & Spinelli 1995; Bomar 2001 
Plecoptera Peterson et al. 2004; Winterbourn 2005 
Hemiptera Cancelado & Yonke 1970; Hodkinson & Casson 1991 
Thysanoptera Olsen & Midtgaard 1996 
Coleoptera Hosking 1979; Hutcheson 1999; Hutcheson & Kimberley 1999; Harris et 

al. 2000; Toft et al. 2001; Grimbacher & Stork 2007; Stork et al. 2008; 
Ohsawa 2010 

    Carabidae Liebherr & Mahar 1979; Ulyshen et al. 2005; Ulyshen et al. 2006; 
Cassola 2009; Meng et al. 2012 

    Eucnemidae Hoffman et al. 2009 
    Elateridae Steiner 2000; Nol et al. 2006 
    Lampyridae Barrows et al. 2008 
    Mordellidae Jackman & Nelson 1995 
    Buprestidae Curletti & van Harten 2002 
    Cerambycidae Noguera et al. 2002; Warriner et al. 2002; Vance et al. 2003; Schiefer & 

Newell 2010 
    Chrysomelidae Schiefer 1998; Spencer et al. 1998; Spencer et al. 1999; Furth et al. 2003; 

Aslan et al. 2012 
    Scirtidae Ruta 2011 
    Curculionidae Dutcher et al. 1986; Deyrup & Atkinson 1987 
      Scolyinae 
      Platypodinae 

Atkinson et al. 1991 

    Staphylinidae   
      Pselaphinae Chandler 1987 
  Scarabaeoidea Kriska & Young 2002 

Table 4. Arthropod taxa, excluding Diptera and Hymenoptera, collected in Malaise traps. 
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Taxon Reference 
Neuroptera Hollier & Belshaw 1992, 1993; Vas et al. 2001; Abraham et al. 2003 
Mecoptera Byers 1973 
Lepidoptera Owen 1969; Butler et al. 1999; Harris et al. 2004; Campbell 2007 
    Tortricidae Eveleigh et al. 2007 
    Sesiidae Steinbauer et al 2000 
    Gracillariidae Steinbauer et al 2000 
Trichoptera Jones & Resh 1988; Sode & Wiberg-Larsen 1993; Peterson et al. 2004; 

Winterbourn 2007; Winterbourn et al. 2007 
Table 4 (Cont.). Arthropod taxa, excluding Diptera and Hymenoptera, collected in Malaise 
traps. 
 

 

Taxon Reference 
Psocoptera Santos et al. 2007; Sokolova et al. 2010 
Thysanoptera Santos et al. 2007 

Coleoptera 
Tangmitcharoen et al. 2006; Hardersen et al. 
2014 

    Cerambycidae Vance et al. 2003; Dodds et al. 2010 
    Buprestidae   
    Coccinellidae Santos et al. 2007 
    Curculionidae, 
Scolytinae Dodds et al. 2010 
Diptera Tangmitcharoen et al. 2006 
    Stratiomyidae Whitemore et al. 2008 
    Syrphidae Whitemore et al. 2008 
    Tachinidae Cerretti et al. 2004 
    Sarcophagidae Whitemore et al. 2008 
    Tephritidae Asquith & Kido 1994 
Lepidoptera Tangmitcharoen et al. 2006 
    Tortricidae Eveleigh et al. 2007 
    Zygaenidae Hoddle 2006 
Neuroptera Hollier & Belshaw 1993 
Hymenoptera Tangmitcharoen et al. 2006 

Table 5. Insect taxa collected in canopy traps.
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Uses. 

Malaise traps are excellent tools for surveying biodiversity, especially when used in 

conjunction with traps that collect non-overlapping assemblages of arthropods, such as pitfall 

traps (e.g., Peck 1989; Benton 1995; Winchester & Ring 1996; Handler 2007; Missa et al. 2009). 

They can also be used to sample a specific subset of biodiversity, such as natural enemies 

(Nishida & Torii 1970), or monitor specific species, such as pests or agents released for 

biological control (Steinbauer et al 2000; Toft & Changler 2004).     

Malaise and canopy traps have be used to investigate the arthropod community associated 

with specific habitats, such as specific tree species (Basset & Arthington 1992) tree fall gaps 

(Horn et al. 2005; Ozanne 2005; Nol et al. 2006; Ulyshen et al. 2006; Richard & Windsor 2007; 

Hiaro et al. 2008) and dead wood (Hutcheson & Jones 1999; Ozanne 2005).  They have also be 

used to investigate differences between patches of similar habitat (Hutcheson & Jones 1999; 

Choi et al. 2010; Fraser et al. 2007; Fraser et al. 2008), differently treated patches of similar 

habitat (burning: Cancelado & Yonke 1970; Campbell et al. 2007; harvesting: Dean et al. 2005; 

Newell & King 2009 ; insecticide treatment: Dilling 2007; Dilling et al. 2007; Santos et al. 2007) 

and different habitats (Coulson et al. 1971; Crossley et al 1973; Greiler & Tscharntke 1993; 

Bomar 2001; Hicks et al. 2003; Gittings et al. 2006; Tangmitcharoen et al. 2006; Cunningham & 

Murray 2007; Vance et al. 2007; Rohr et al. 2007; Smith et al. 2008; Rohr et al. 2009; Banks et 

al. 2010); community differences in monospecific and highly diverse tree canopies in 

agroforestry (Sperber et al. 2004); how arthropod communities change during plant succession 

(Hollier & Belshaw 1992; Hutcheson 1999; Shlyakhtenok & Agunovish 2001; Nol et al. 2006; 

Missa et al. 2009; Rohr et al. 2009) or stand growth (Hutcheson & Jones 1999), invasion by 

foreign plant species (Toft et al. 2001), or along an environmental (Harris et al. 2000; Vas et al. 
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2001; Lynch et al. 2002; Kato et al. 2004; Kitching et al. 2004; Karen et al. 2006; Hirao et al. 

2008x; Carr 2010) or latitudinal gradient (Kitching et al. 2004; Veijalainen et al. 2013); 

differences between arthropod communities associated with different tree species (Basset et al 

1996); vertical stratification within a habitat (Roberts 1976a; Rose 1978; Hollier & Belshaw 

1993; Asquith & Kido 1994; Hammon et al 1997; Preisser et al. 1998; Charles & Basset 2005; 

Grimbacher & Stork  2007; Sobek et al. 2009; Ulyshen  2011; Birtele & Hardersen 2012); and 

attractiveness of flowers (Rohrig et al. 2008). 

When operated for long periods of time (e.g., weeks to years), Malaise and canopy traps 

can be used to investigate meteorological variables affecting flight activity (Matthews & 

Matthews 1969; Burnett & Hays 1974; Nyrop & Simmons 1986; Isard et al. 1999; Briers & 

Cariss 2003; Witter et al. 2012) and diel (Rickleps 1975; Hammond 1990; Basset & Springate 

1992; Springate & Basset 1996; Spencer et al. 1998 Isard et al. 2000; Murchie et al. 2001; 

Shlyakhtenok & Agunovish 2001) and seasonal or phenological cycles (Evans & Owen 1965; 

Rickleps 1975; Denlinger 1980; Wright et al. 1984; Elliott 1986; Hammond 1990; Hollier & 

Belshaw 1993; Dutra & Marinoni 1994; Ellis & Simor; Thomas 1994; Jackman & Nelson 1995; 

Toft & Beggs 1995; Flint 1996; Tereshkin 1996; Spencer et al. 1998; Kaspari et al. 2001; 

Shlyakhtenok & Agunovish 2001; Noguera et al. 2002; Hicks et al. 2003; Sperber et al. 2004; 

Maleque et al. 2006; Whitemore et al. 2008; Winterbourn 2005; Ulber & Nitzsche 2006; 

Eveleigh et al. 2007; Pinheiro et al. 2008; Choi et al. 2010). 

Malaise and canopy traps can also be used to investigate insect movement, such as 

movement within and between habitat patches (Naranjo 1991; Spencer et al. 1999; Hossain et al. 

2002; Briers et al. 2004; Gangurde 2007; Williams et al 2007a; Macfadyen & Muller 2013), 

including into agricultural areas (Dutcher et al. 1986; Dyer & Landis 1997; Spencer et al. 1998; 
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Isard et al. 1999; Irwin et al. 2000; Nicholls et al. 2001; Ulber & Nitzsche 2006); flight patterns 

in relation to wind direction (Pruess & Pruess 1966; Isard et al. 1999) and mating (Abbott 2006); 

and movement and dispersal (Cooksey & Wright 1987), especially of adult aquatic insects 

(Buskirk 1975; Mendl & Müler 1979; Müller 1982; Jones & Resh 1988; Sode & Wiberg-Larsen 

1993; Williams & Williams 1993; Griffith et al. 1998; Briers et al. 2004; Peterson et al. 2004; 

Winterbourn 2005; Solem & Bongard 2007; Winterbourn et al. 2007).  However, caution should 

be used as mark-recapture studies have shown that instantaneous direction, which is indicated by 

the side of the trap insects are collected on, may not always be a reliable way to determine 

overall direction of movement between habitats or along gradients (Macneale et al. 2004). 

Malaise and canopy traps can be used to estimate abundance individual species (Beggs et 

al. 1998) and establish damage thresholds (Beggs & Rees 1999) or create an index of abundance, 

availability, and biomass of aerial prey available to predators (Lynch et al. 2002; Araneae: 

Buskirk 1975; Kato et al. 2003; Kato et al. 2004; Odonata: Kirkton & Schultz 2001; Anura: 

Horn et al. 2005; Chiroptera: Jong & Ahlen 1991; Fukui et al. 2006; Aves: Poulin et al. 1992; 

Rodenhouse & Holmes 1992; Duguay et al. 1997; Duguay et al. 2000; Johnson & Sherry 2001; 

Kwok & Corlett 2002; Murakami & Nakano 2002; Iwata et al. 2003). Collected taxa can also be 

associated with specific habitats and used as habitat indicators (Fraser et al. 2007). 

Malaise traps can also be used to collect specific guilds of insects, such as those attracted 

to corpses and potentially useful in forensic studies (De Jong 2010) and medically important 

species (Roberts 1971, 1972; Alexander 2000). 

Trap setup. 

Location of a trap affects the taxa collected (Ozanne 2005).  Insects often follow specific 

flight paths through vegetation and a trap located along a flight path will catch more specimens 
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than one that is not (Matthews & Matthews 1983; Hutcheson 1990; Southwood & Henderson 

2000).   Traps set in sunny, exposed areas collect more insects than those in sheltered, shaded 

areas (Noyes 1989; Irvine & Woods 2007).  Topography, wind, water, light, and other abiotic 

conditions should also be taken into consideration (Gressitt & Gressitt 1962; Richards & 

Windsor 2007).  Additionally, some researchers have suggested setting traps in a north-south 

orientation with the trap head facing the sun’s zenith (Noyes 1989). 

While environmental factors have been little studied, Matthews and Matthews (1969) 

reported temperature and precipitation had a strong influence on trap catch, with the largest 

catches happening on hot, sunny days following rain.  

Few studies have investigated how many traps are required to effectively sample a given 

area.  Two that focused on parasitoid wasps found that species accumulation curves failed to 

reach an asymptote even after sixteen and twenty seven traps were operated after multiple 

months (Sääksjärvi et al. 2004; Fraser et al. 2008). 

The addition of a bottom collector to canopy traps is important as some taxa are 

preferentially caught in the top or bottom collector depending on whether the trap is set in the 

understory or canopy (Vance et al. 2007). 

Wet or dry killing agents may be used in the collecting head.  Both have advantages 

depending on the taxa targeted.  Wet killing agents – such as 70-90% ethanol or propylene glycol 

– also function as a preservative, which is needed if traps are serviced on a weekly or longer 

basis.  Delicate specimens, especially Lepidoptera, may be damaged by wet killing agents and 

unidentifiable beyond higher taxonomic levels (e.g., family or genus).  Dry killing agents – such 

as naphthalene, insecticide-permeated strips, or urinal cakes – help alleviate this but require traps 
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be serviced more often, potentially daily, as specimens may damage themselves before 

succumbing to the agent if an excess of specimens builds up in the trap head. 

Factors influencing catch. 

Various aspects of trap design affect the taxa collected.  Matthews and Matthews (1983) 

found Towne’s style Malaise traps caught ten times as many specimens as Cornell-style Malaise 

traps.  Mesh size is an important consideration when collecting Hymenoptera as coarse mesh is 

more effective in collecting Aculeata, fine mesh is more effective in collecting 

microhymenoptera, and both coarse and fine mesh are effective in collecting Ichneumonoidea 

(Darling & Packer 1988).  The color of the mesh panels has been shown to affect the catch of 

Tabanidae and Culicidae (Roberts 1970, 1972); black, in particular, increases the overall number 

of specimens and species collected (Hansen 1988).  Disney et al. (1982) found that slightly 

altering the position of the collecting container from the peak of a Malaise trap to just below the 

peak significantly reduced the overall number of certain Diptera species collected and somewhat 

reduced the number of species collected.  The age of Malaise traps has also been shown to 

significantly alter trap catch, possibly changes in color due to exposure to sunlight (Roberts 

1975; Duarte et al. 2010). 

Species-specific factors of target taxa such as behavior, habitat preference, and activity 

level influence trap catch.   For instance, many species of Syrphidae are readily collected in 

Malaise traps, though some abundant species avoid the trap altogether (Burgio & Sommaggio 

2007).  Collections of mosquitos are biased towards Aedes and Culex (Acuff 1976) while 

collections of Agromyzidae are female-biased (Scheirs et al. 1997).  When used to collect 

spiders, Malaise traps sample a greater proportion of arboreal, web-building species compared to 

terrestrial, active-hunting species (Jenning & Hilburn 1988; Oxbrough 2010).   
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The addition of various lures can increase the catch of specific taxa. For example, the 

addition of carbon dioxide in the form of dry ice or compressed gas released over time increases 

the trap catch of hematophagous Diptera and mammalian parasites (Easton et al.1968; Smith et 

al. 1965; Geijskes 1968; Witter et al. 2012; Tabanidae: Roberts 1971; Anderson & Hoy 1972; 

Blume et al. 1972; Roberts 1976b; Hollander & Wright 1980; Strickler & Walker 1993; Leprince 

et al. 1994; Culicidae: Breeland & Pickard 1965; Graham 1969; Oestridae:  Capelle 1970; 

Wright et al. 1984; Cogley & Cogley 2000; Fleenor & Taber 2007; Witter et al. 2012).  Most 

studies have found 1-octen-3-ol (French & Kline 1989; Schreck et al. 1993; Krčmar et al. 2005; 

Krčmar et al. 2010), ammonia (Hribar et al. 1992; Krčmar et al. 2010), acetone (Krčmar et al. 

2010), lactic acid (Krčmar et al. 2010), and aged animal urine (Krčmar et al. 2005; Krčmar et al. 

2006; Krčmar et al. 2010), as well as the addition of a large, round, black object (such as an 

inflated beach ball covered in black cloth) (Catts 1970; Schreck et al. 1993) increase the number 

of Tabanidae caught in Malaise and canopy traps, though some have not (Leprince et al. 1994). 

1-octen-3-ol is also attractive to Culicidae (Nilssen 1998).  2,4-hexadlenyl butyrate and heptyl 

butyrate are highly potent, specific lures attractive to Vespula yellowjackets; Malaise traps baited 

with these chemicals can be used to control yellowjacket populations over small areas such as 

fruit orchards (Davis et al. 1973).  Methyl eugenol is attractive to some species of Hawaiian 

Drosophilidae and Muscidae (Asquith & Kido 1994). 

Terrestrial / canopy trap comparison. 

Within temperate forests, some studies have found that Malaise traps, when compared to 

canopy traps, catch more insect specimens and sample a higher diversity at both the family 

(Preisser et al. 1998; Rohr et al. 2007; Barkley 2009) and species level (Syrphidae: Birtele & 

Hardersen 2012; Tachinidae: Cerretti et al. 2004; Stireman et al. 2012).  However, other studies 
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have found that Malaise and canopy traps have similar observed species richness, though capture 

significantly different species assemblages (Cerambycidae: Vance et al. 2003; Hardersen et al. 

2014 Neuroptera: Hollier & Belshaw 1993), while others have found no difference in species 

composition (Stork & Grimbacher 2006).  Additionally, while observed species richness is 

equivalent or higher in Malaise traps, expected species richness, which is based on various 

species richness estimators, may be higher in canopy traps (Vance et al. 2003; Stireman et al. 

2012).  Finally, canopy and Malaise traps collect similar feeding-guild assemblages, at least 

when considering Coleoptera (Grimbacher & Stork 2007). 

When both styles of trap collect the same taxon, relative abundance in per trap may vary 

significantly depending on the taxonomic level analyzed (family: Barkley 2009; genus: Roberts 

1976b; species: Eveleigh et al. 2007).  

Comparisons to other traps and collecting methods. 

Specimens collected by Malaise traps, including delicate Culicidae, are preserved in 

better condition that those taken in other traps (Graham 1969). 

Malaise traps are more frequently in forests while window traps are preferred in open 

landscapes; both traps, however, can be used in either situation (Duelli et al. 1999). 

Malaise traps, when compared to glass-barrier, window, and sticky, collect more 

specimens of Diptera, Hymenoptera, and Hemiptera but fewer specimens of Coleoptera (Juillet 

1963; Lamarre et al. 2012).  However, other studies that used finer taxonomic units found that 

Malaise traps collect more specimens of certain beetle families (e.g., Cleridae, Curculionidae, 

Elateridae) than light, window, and sticky traps (Hosking 1979).  
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Malaise traps are less efficient than colored pan traps when targeting pollenating insects, 

including bees, though the addition of colored fabric to Malaise traps increases the number of 

pollinators collected (Bartholomew & Prowell 2005; Campbell & Hanula 2007).  

Möricke/yellow pan and Malaise traps collect significantly different assemblages: one 

study found only 12% overlap in the Hymenoptera species collected by either method 

(Finnamore et al. 2012).  Yellow pan traps generally collect more specimens but are dominated 

by a few species while Malaise traps collect fewer specimens representing more species with a 

more even distribution of species (Wells & Decker 2006).  When considering Ichneumonidae 

specifically, Möricke traps collect more Orthocentrinae and Cryptini (Mazón & Bordera 2008; 

Aguiar & Santos 2010).  Within a species, sexes may be preferentially collected by each method: 

Malaise traps catch collect more male Ichneumonidae and female Agromyzidae while Möricke 

or yellow pan traps collect more female Ichneumonidae and male Agromyzidae (Scheirs et al. 

1997; Aguiar & Santos 2010).   

Malaise and white pan traps are more or less efficient depending on the family of Diptera 

considered (Disney et al. 1982).   

Malaise traps are more efficient than hand rearing when collecting Ichneumonoidea 

(Bartlett 2000) but less effective when hand collecting Cerambycidae (Noguera et al. 2002).   

Malaise traps and canopy fogging collect similar assemblages of Formicidae, which is 

significantly different than the assemblage sampled by collecting leaf litter (Longino & Colwell 

1997).  Furth et al. (2003) found broad overlap between the flea beetle (Chrysomelidae: 

Alticinae) taxa collected by Malaise traps and canopy fogging in Costa Rica; they also found 

fogging to be more efficient than Malaise traps on a per sample basis but Malaise traps were 

more efficient on a per individual basis, so Malaise traps are more efficient over long time spans. 
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While effectiveness is reduced, Malaise traps continue to function in damp conditions, so 

may be preferable to vacuum-sampling understory vegetation that is constantly wet (Noyes 

1989). 

Suction traps are more efficient at collecting Culicidae than Malaise traps (Lothrop et al. 

2002). 

Social wasps are collected more efficiently with watered-down honey bait (Noll & 

Gomes 2009) and hand collecting (Silveira 2002) than with Malaise traps. 

Malaise traps and sweep netting differentially sample genera when collecting Tabanidae: 

the majority of Tabanus and Hybomitra are collected in Malaise traps while the majority of 

Chrysops are collected by netting (Tallamy et al. 1976; Strickler & Walker 1993). 

Malaise traps undersample Neuropteroidea, with the exception of Raphidioptera, when 

compared to light and suction traps (Abraham et al. 2003). 

When sampling pecan weevil (Curculio caryae), Malaise traps situated in the first crotch 

of pecan trees collect more beetles than cone emergence traps (Dutcher et al. 1986). 

Summary.  

Malaise traps revolutionized the collection of flying insects.  Many iterations and 

refinement in design have been proposed since their inception.   

An array of insects are collected by the traps.  Trap catch is generally dominated by 

Diptera and Hymenoptera, with actively flying species of other orders also commonly 

represented.  The traps can be used for a number of purposes, including general collecting and 

biodiversity surveys, investigating insect movement, vertical stratification, and diel and seasonal 

patterns of abundance. 
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Many factors influence the taxa collected.  Abiotic factors, such as weather, season, and 

trap design, orientation, and placement can variously affect the behavior of target taxa and 

influence the species trapped.  Biotic factors affecting trap catch include the type and density of 

surrounding vegetation and species-specific behavior.  The addition of various lures increases 

number of certain species; this has been best studied in hematophagous Diptera and other pest 

species.   
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IV. Terrestrial arthropods of Steel Creek, Buffalo National River, Arkansas. I. Select 
beetles (Coleoptera: Buprestidae, Carabidae, Cerambycidae, Curculionoidea 
excluding Scolytinae). 

 

Abstract. 

Background 

The Ozark Mountains are a region with high endemism and biodiversity, yet few 

invertebrate inventories have been made and few sites extensively studied. We surveyed a site 

near Steel Creek Campground, along the Buffalo National River in Arkansas, using twelve trap 

types – Malaise traps, canopy traps (upper and lower collector), Lindgren multifunnel traps 

(black, green, and purple), pan traps (blue, purple, red, white, and yellow), and pitfall traps – and 

Berlese-Tullgren extraction for eight and half months. 

New information 

We provide collection records of beetle species belonging to eight families collected at 

the site.  Thirty one species represent new state records: (Buprestidae) Actenodes acornis, 

Agrilus cephalicus, Agrilus ohioensis, Agrilus paracelti, Taphrocerus nicolayi;  (Carabidae) 

Agonum punctiforme, Synuchus impunctatus; (Curculionidae) Acalles clavatus, Acalles 

minutissimus, Acoptus suturalis, Anthonomus juniperinus, Anametis granulata, Idiostethus 

subcalvus, Eudociminus mannerheimii, Madarellus undulates, Magdalis armicollis, Magdalis 

barbita, Mecinus pascuorum, Myrmex chevrolatii, Myrmex myrmex, Nicentrus lecontei, 

Otiorhynchus rugostriatus, Piazorhinus pictus, Phyllotrox ferrugineus, Plocamus hispidulus, 

Pseudobaris nigrina, Pseudopentarthrum simplex, Rhinoncus pericarpius, Sitona lineatus, 

Stenoscelis brevis, Tomolips quericola. Additionally, three endemic carabids, two of which are 

known only from the type series, were collected. 
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Introduction. 

The Interior Highlands is a mountainous physiogeographic division in the central United 

States and the only significant topographic relief between the Appalachian and Rocky Mountains 

(Fig. 1).  The area is known to harbor high biodiversity and many endemic species but remains 

grossly understudied.  It is comprised of two regions with different geological histories: the 

Ouachita Mountains, which occupy west-central Arkansas and southeastern Oklahoma, and the 

Ozarks, which occupy southern Missouri, northern Arkansas, and extreme southeastern Kansas 

(Fig. 2). 

 
Figure 1. The Buffalo River from an overlook on the Buffalo River Trail near Steel Creek. Photo 
© Jasari. Used under Creative Commons license Attribution-ShareAlike 3.0 (CC BY-SA 3.0) 
(Creative Commons 2015). 
 

The Ouachita Mountains are east-west trending fold mountains approximately 100 km 

wide and 190 km long (3,237,600 ha), with elevations up to 818 m (Robison and Allen 1995).  

They are the largest exposure of the Ouachita orogeny, which formed during the assembly of 

Pangea (by ~270 Ma); other exposures of the orogeny include the Marathon Mountains in 

Mexico and the base of the Sierra del Carmen in Coahuila, Mexico (Flawn 1968, Spearing 1991, 
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U.S. Geological Survey 2014).  Historically, the Ouachitas were connected to the Marathon 

Mountains to the west and Appalachian Mountains to the east.  However, the break-up of Pangea 

and subsequent expansion of the Western Interior Seaway during the Cretaceous eroded and 

covered the mountains to the west while the formation of the Mississippi embayment, which 

resulted from the uplifting, rapid erosion, and subsequent subsidence of the area between the 

Ouachita and Appalachian Mountains from the mid-Cretaceous through early Cenozoic, severed 

the connection to the Appalachians (Carlton and Cox 1990, Spearing 1991, Cox and Van Arsdale 

2002, Poole et al. 2005, U.S. Geological Survey 2014). 
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Figure 2. Geologic subregions of the Interior Highlands.  Inset shows the region in context of the 
entire United States. 
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Prior to European settlement, the Ouachita Mountains were dominated by shortleaf pine 

(Pinus echinata Mill.), pine-hardwood, and mixed oak (Quercus L.) forests, with diverse, fire-

dependent forb and grass understories (Hedrick et al. 1999); fire return intervals averaged 10 

years and tree densities averaged 420 trees per ha with a mean diameter of 29 cm (Kreiter 1992, 

Masters et al. 1995).  However, most virgin forest was heavily logged between 1910 and 1940 

(Smith 1986) and presently tens of thousands of hectares have been converted to loblolly pine 

(Pinus taeda L.) plantations (Hedrick et al. 1999).  The understory is dominated by woody 

vegetation and tree density has increased to 494–618 trees per ha while the mean diameter has 

decreased to 23 cm and average fire return intervals range from 40 to 1,200 years (Kreiter 1992, 

Masters et al. 1995). 

The Ozarks, also referred to as the Ozark Mountains or Ozark Plateau, is divided into 

four geologic subdivisions.  The Saint Francois Mountains, the oldest subdivision, is the exposed 

remains of a Proterozoic mountain range that formed through volcanic and intrusive activity 

1485 Ma (Denison et al. 1984); it is also the smallest subdivision, covering approximately 180 

square kilometers (Bretz 1965).  The Salem Plateau, Springfield Plateau, and Boston Mountains 

are younger (Ordivician, Mississippian, and early Pennsylvanian age, respectively) plateaus that 

formed as the result of sedimentation and deposition along the edge of Laurentia.  The Salem and 

Springfield Plateaus are composed largely of limestone and dolomite and are typified by karst 

topography, with thousands of caves and hundreds of springs documented in the region, while 

the Boston Mountains are composed largely of sandstone and shale (Bretz 1965, Arkansas 

Geological Survey 2015, Missouri Department of Natural Resources 2015, National Park Service 

2015). The plateaus have been repeatedly uplifted and weathered, with the final uplift of the 
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Ozarks occurring during the formation of the Ouachita orogeny; the region has remained 

exposed for the last 270 million years (Bretz 1965, Robison and Allen 1995, Guccione 2008, 

U.S. Geological Survey 2014). 

The Salem and Springfield Plateaus rise to elevations of 450 m and 550 m, respectively, 

and are characterized by relatively flat plateau surfaces that form extensive plains cut into 

rolling, level-topped hills around rivers and other flowing water (Foti 2014).  Oak/hickory forests 

and open woodlands are typical for the region, though extensive rocky, open glades can be 

common; additionally, the Springfield Plateau historically had extensive prairies, though these 

have largely been converted to agriculture (Foti 2014).  The Boston Mountains is a highly 

dissected plateau, due to differential weathering of the relatively soft shale and harder sandstone, 

and the most rugged subdivision of the Ozarks, with an average elevation around 500 m and 

peaks up to 780 m.  Oak/hickory forests predominate in most of the region, though drier south-

facing slopes with extensive sandstone support short-leaf pine forests and moist, protected 

ravines support beech and sugar maple, which are uncommon elsewhere in the Ozarks (Foti 

2014).  For more information about the regions as they occur in Arkansas see Anderson 2006. 

The Ouachita Mountains and Ozarks have never been connected as the Arkansas Valley 

(also called the Arkansas River Valley), which is part of the Arkoma Basin, formed as a foreland 

basin through downwarping along the Ouachita orogeny when the Ouachita Mountains were 

uplifted (Morris 1974, Wickham et al. 1976).  The Arkansas River and its tributaries have 

increased the disconnection by eroding thousands of feet of sediment from the valley floor, 

which currently has an elevation of 90–150 m, and act as a physical barrier to poor-dispersing 

species (Carlton and Cox 1990, Foti and Bukenhofer 1998, Foti 2011).  Differential erosion 

throughout the valley has left a few steep-sided, sandstone capped plateaus: Mount Magazine, 
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Petit Jean Mountain, and Mount Nebo, which rise to elevations of 839 m, 741 m, and 411 m 

respectively (Higgins 2015, Peakery 2015). 

The Interior Highlands can also be divided by ecoregion.  Ecoregions, as defined by the 

Commission for Environmental Cooperation, are divided into three levels: Level I is the most 

inclusive and places the region "in context at global or intercontinental scales"; Level II regions 

are subdivisions of Level I regions and are "intended to provide a more detailed description of 

the large ecological areas nested within the level I regions"; finally, Level III has the smallest 

subdivisions that "enhance regional environmental monitoring, assessment and reporting, as well 

as decision-making" and "allow locally defining characteristics to be identified, and more 

specifically oriented management strategies to be formulated" (Commission for Environmental 

Cooperation 1997, Environmental Protection Agency 2015).  At Level I, the Interior Highlands 

are included in the Eastern Temperate Forests, along with much of Eastern United States.  At 

Level II the Interior Highlands are included in the Ozark, Ouachita-Appalachian Forests division, 

which also includes mountainous forests in the Appalachians. At Level III the Saint Francois 

Mountains, Salem and Springfield Plateaus are considered together as one subdivision – the 

Ozark Highlands – while the Boston Mountains, Arkansas Valley, and Ouachita Mountains are 

each considered separate subdivisions. 

As may be expected with the regions inclusion in the Level I Eastern Temperate Forests 

ecoregion, many species found in the Interior Highlands are typical of eastern North America.  

However, some western species reach their eastern range limit in the Interior Highlands (e.g., 

Texas brown tarantula [Aphonopelma hentzi (Jean-Étienne Girard, 1852)], eastern collared lizard 

[Crotaphytus collaris (Say, 1823)], western diamondback rattlesnake [Crotalus atrox Baird & 

Girard, 1853]); these species likely colonized the Interior Highlands during the post-glacial 
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Xerothermic Interval (6,000-4,000 b.p.), during which time prairies and xeric habitat similar to 

that in the west expanded into the Interior Highlands, and remained after the climate became 

more moist (Dowling 1956, Smith 1965, Trauth 1989, Trauth and Cochran 1992).  Additionally, 

many species exhibit highly disjunct populations or are endemic to the region due to a number of 

factors: the abundance of caves and karst habitat support numerous localized cavernicolous 

species (Crandal 1998, Culver et al. 2000, Graening et al. 2003, Sarver and Lister 2004, 

Graening et al. 2006);  rare habitats, such as xeric limestone prairies and glades, support 

specialized species assemblages (Baskin and Baskin 1988, Heikens 1999, Baskin and Baskin 

2000, Ware 2002, Lawless 2005); previous connections to similar habitat (e.g., the Ouachitas and 

Appalachians, the River Valley plateaus and higher elevation habitat) have been severed for 

millions of years, allowing isolated populations of poor-dispersing organisms to speciate (e.g., 

Carlton and Cox 1990); and the Interior Highlands served as a refugia during periods of high sea 

levels and glaciation due to the unique geographic history discussed above (Redfearn 1986, The 

Nature Conservancy, Ozarks Ecoregional Assessment Team 2003). 

The Nature Conservancy, Ozarks Ecoregional Assessment Team 2003 reported 58 

species with highly disjunct populations in the Ozarks and a number of authors have discussed 

the disjunct populations of taxa in the region (birds: Selander 1965; fish: Bailey and Allum 1962; 

amphibians: Blair 1965; reptiles: Trauth et al. 2004; aquatic insects: Ross 1965; plants: 

Steyermark 1959, Redfearn 1986, Hemmerly 2002).  While a comprehensive list of Interior 

Highland endemics is lacking, various authors have worked on geographic or taxonomic subsets: 

e.g., Pringle and Witsell 2005 stated that at least 20 species of plants are endemic to the Ouachita 

Mountains and Zollner et al. 2005 listed 36 plants endemic to the Interior Highlands; Allen 1990 

reported 68 species of endemic insects and suggested there are at least 200 endemic plant and 
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animal species in the Interior Highlands overall; Robison and Allen 1995 recorded 117 species 

endemic to Arkansas, most of which were found in the highland regions, though Robison et al. 

2008 later reduced the number of Arkansas endemics to 100; and The Nature Conservancy, 

Ozarks Ecoregional Assessment Team 2003 reported 159 endemic species in the Ozarks.  

Additional disjunct and endemic species continue to be found and described (Table 1), so the 

number of such species is likely to continue to increase for the foreseeable future. 

Range 
status 

Taxonomic 
category Select references 

Disjunct  lichens Lendemer & Harris 2007, Harris & Ladd 2008, Harris & 
Lendemer 2009, Barton & Lendemer 2014, Lendemer & 
Harris 2014 

  plants Simurda & Knox 2000, Rimmer & Summers 2006, Peck 
2011 

  molluscs Nekola & Coles 2001 
  arthropods Carlton & Robison 1998 
  fish Berendzen et al. 2008 
Endemic lichens Knudsen & Lendemer 2009 
  plants Rothrock & Reznicek 2001, Pringle & Witsell 2005, 

Campbell 2006, Nelson 2008, Floden et al 2009, 
Yatskievych et al. 2013 

  arthropods Wolfe & Harp 2003, Sokolov et al 2004, Holsinger et al 
2006, Dillmann et al 2010, Hildebrandy & Maddison 
2011, Radwell et al 2011 

  fish Kinzinger & Wood 2010, Adams et al. 2013 
Table 1. Select references to recently discovered and described species with disjunct and 
endemic distributions in the Interior Highlands. 
 

Aquatic insects and crayfish have been relatively well surveyed within the Interior 

Highlands (Table 2). Terrestrial insects and other arthropods, however, have been poorly 

surveyed and represent an excellent opportunity to find new endemic and disjunct species 

(though see Carlton and Robison 1998 concerning litter-dwelling beetles in the Ouachitas). This 

manuscript is the first in a series examining the arthropod fauna at a single site at Steel Creek 

along the Buffalo National River in the Boston Mountains of Arkansas.  In addition to the new 
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species records and other notes included below, it is intended to serve as an in-depth introduction 

and reference for future papers based on data collected during the study and other surveys in the 

Interior Highlands. 

Taxon Select references 
Ephemeroptera McCafferty & Provonsha 1978, Sarver & Kondratieff 1997, 

Baumgardner & Kennedy 1999, Ferro & Sites 2007 
Plecoptera Ernst et al 1986, Poulton & Steward 1991, Ferro & Sites 2007 
Trichoptera Bowles & Mathis 1989, Mathis & Bowles 1992, Moulton & Stewart 

1996, Ferro & Sites 2007, Etnier 2010 

Astacoidea Williams 1954 
Table 2. Select references for well-sampled aquatic arthropods in the Interior Highlands. 
 

Sampling Methods. 

Sampling description: The following traps were maintained within the site:  five 

Malaise traps (MegaView Science Co., Ltd., Taichung, Taiwan), twenty-five pan traps (five of 

each color: blue, purple, red, yellow, white) which were randomly arranged under the Malaise 

traps (one of each color per Malaise trap) so as to also act as intercept traps; fifteen Lindgren 

multi-funnel traps (ChemTich International, S.A., Heredia, Costa Rica) (five of each color: 

black, green, purple); four SLAM (Sea, Land, and Air Malaise) traps (MegaView Science Co., 

Ltd., Taichung, Taiwan) with top and bottom collectors that acted as canopy traps; and seventeen 

pitfall trap sets.  Sixteen of the seventeen pitfall sets were placed in two transects of sets spaced 

every five meters centered on two Malaise traps while the final set was placed away from other 

traps.  Additionally, ten leaf litter samples were collected for Berlese extraction when traps were 

serviced. 

Pitfall traps were based on a design proposed by Nordlander 1987; they were made using 

plastic soup containers and modified from the original design by cutting three slots into the side 

of each container instead of circular entrances.  The slots were cut 2 cm under the rim and 
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measured 2 cm tall x 9.3 cm wide, resulting in three equidistant 1.5 cm posts and a 28 cm 

collecting surface.  The diameter at the base of the slots is approximately 10.5 cm and the cups 

are 10.5 cm deep below the slots, resulting in a collecting volume of 2,988 cm3.  This design 

allowed the matching lids to be used as rain covers instead of using separate covers, such as 

ceramic tiles or bent metal sheeting.  Each pitfall trap set was made by burying a single cup on 

either side of a 30.5 cm x 15.5 cm aluminum fence; trap catch from both cups was combined and 

treated as a single sample. 

Berlese-Tullgren samples were collected from a variety of habitats, including thin leaf 

litter away from objects; thick leaf litter accumulated along logs and rocks; moss; tree holes; 

bark from fallen, partially decayed trees; and bark and leaf litter accumulated at the base of 

standing, dead trees. An attempt was made to collect moist, non-desiccated litter in order to 

increase the number of specimens collected; this resulted in fewer samples being taken from thin 

leaf litter, moss, and tree bark during the hot, dry summer months.  Tree holes were only 

collected from once each so as not to totally destroy them as potential habitat; as the number of 

tree holes within the site was limited, this resulted in only a handful of collections from this 

habitat type. Leaf litter samples were processed for four to seven days until the litter was 

thoroughly dry using modified Berlese-Tullgren funnels. 

Trap placement began on 8 March 2013 and all traps were set by 13 March 2013, except 

Lindgren funnels, which were set on 1 April 2013. Traps set earlier than 13 March were reset on 

that date in order to standardize trap catch between traps.  Traps were serviced approximately 

every two weeks (Table 3).  The last collection of pitfall traps and pan traps occurred on 6 

November 2013; Malaise, SLAM, and Lindgren funnel traps were run for an additional month, 

with the final collection on 4 December 2013.  Berlese-Tullgren samples were not collected on 
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13 April, 15 May, and 6 November due to heavy rain that began during trap servicing and 

precluded sample collection.  Berlese-Tullgren samples collected on 28 June were lost due to 

evaporation of ethanol in the funnel collecting cups after sample processing began.  Pitfall cups 

were dislodged on 13 April (one set), 15 May (one set), 28 June (four sets), 17 July (five sets) 

due to unknown circumstances, though the pattern of litter and debris around the cups on two 

occasions suggested heavy rainfall and water accumulation forced the cups from the holes.  In 

total, 1311 samples were collected (Table 4). 

Collection period 
13 March 2013 – 1 April 2013 
1 April 2013 – 13 April 2013 
30 April 2013 – 15 May 2013 
15 May 2013 – 29 May 2013 
29 May 2013 – 12 June 2013 
12 June 2013 – 28 June 2013 
28 June 2013 – 17 July 2013 
17 July 2013 – 30 July 2013 
30 July 2013 – 13 August 2013 
13 August 2013 – 28 August 2013 
28 August 2013 – 11 September 2013 
11 September 2013 – 25 September 2013 
25 September 2013 – 8 October 2013 
8 October 2013 – 23 October 2013 
23 October 2013 – 6 November 2013 
6 November 2013 – 20 November 2013 
20 November 2013 – 4 December 2013 
Table 3. Collection periods. 

 

Propylene glycol (Peak RV & Marine Antifreeze) (Old World Industries, LLC, 

Northbrook, IL) was used as the preservative in all traps as it is non-toxic and generally 

preserves specimens well (Skvarla et al. 2014).  Insect escape was impeded by the addition of a 

squirt of unscented, hypoallergenic dish detergent to the propylene glycol to act as a surfactant.  



113 
 

Trap catch was sieved in the field and stored in Whirl-Pak bags (Nasco, Fort Atkinson, WI) in 

90% ethanol until sorting. 

Trap type Number of 
traps or 

collections 

Number 
of 

samples 
Berlese-Tullgren 10 140 
Canopy trap (lower) 4 72 
Canopy trap (upper) 4 72 
Lindgren funnel 
(black) 5 85 
Lindgren funnel 
(green) 5 85 
Lindgren funnel 
(purple) 5 82 
Malaise trap 5 95 
Pan trap (blue) 5 82 
Pan trap (purple) 5 81 
Pan trap (red) 5 83 
Pan trap (white) 5 83 
Pan trap (yellow) 5 83 
Pitfall 17 268 
Table 4. Maximum number of traps collected (canopy, Lindgren funnel, Malaise, pan, and pitfall 
traps) or collections made (Berlese-Tullgren) per collecting period and total number of samples 
per sampling type; traps were occasionally destroyed or otherwise lost during the 2-week 
sampling period. 

 

Quality control: Samples were coarse-sorted using a Leica MZ16 stereomicroscope 

illuminated with a Leica KL1500 LCD light source and a Wild M38 stereomicroscope 

illuminated with an Applied Scientific Devices Corp. Eco-light 20 fiber optic light source.  After 

sorting, specimens were stored individually or by family in 2 mL microtubes (VWR 

International, LLC, Randor, PA) in 70% ethanol.  Hard-bodied specimens (e.g., Carabidae, 

Curculionidae) were pinned or pointed as appropriate. 

Specimens were identified with the use of published keys (Table 5).  In some cases, 

difficult to key specimens were photographed through the eye piece of the stereomicroscope 



114 
 

using the camera on an HTC Droid Incredible 4G LTE cell phone or Samsung Galaxy S5 cell 

phone; the photographs were uploaded to Bugguide (Iowa State University 2015b) and 

identifications were proposed by Bugguide members.  Proposed identifications were then double 

checked using published sources and either confirmed or corrected on the website. 

The sole representative of Lymantes collected keys to L. sandersoni in Sleeper 1965.  

However, the character that separates L. sandersoni and L. arkansasensis is dubious, especially 

given that the two species are described from one and two specimens, respectively, from areas 

that are geographically similar and not widely separated (less than 300 km).  Furthermore, R. S. 

Anderson, who is currently revising the genus, believes that all Lymantes in the eastern United 

States (excluding Texas) belong to a single species, L. scrobicollis (Paquin and Anderson 2009).  

Considering this, we identify the specimen collected as L. sandersoni with the caveat that it is 

likely that both L. sandersoni and L. arkansasensis will be synonymized with L. scrobicollis in 

the future. 

Ormiscus consists of 14 described and approximately 30 undescribed species in North 

America north of Mexico (Valentine 2002).  Species are most easily identified by the male 

secondary sexual features (e.g., characters on the mid and hind tibiae), however some species 

appear to be parthenogenetic (B. Valentine, pers. comm., via Iowa State University 2015b).  In 

summary, this genus is in need of a major revision.  As two-thirds or more of the North 

American species remain undescribed, we have declined to assign the single specimen collected 

to species. 

Two weevil species, Auleutes nebulosus and Laemosaccus nephele, are thought to be 

complexes of multiple cryptic species that are in need of revision (Anderson 2002, Ciegler 

2010).  As a limited number of specimens (2 and 4 per species complex, respectively) were 



115 
 

collected, it is unlikely that multiple species were collected; additionally, modern revisions are 

lacking and identification of putative species is impossible.  Specimens were therefore identified 

as the nominative species with the caveat that future studies may break the species complexes up 

and assign specimens collected in this study to other species. 

The males of nine of 17 species of Cercopeus in the United States, including the 

widespread species C. chrysorrhoeus, are undescribed (O'Brien et al. 2010).  All female 

Cercopeus collected in this study were identified as C. chrysorrhoeus; we therefore assumed that 

the males collected, which do not conform to the nine described males, are also C. 

chrysorrhoeus. 

The Chrysobothris femorata species group consists of a dozen species that are difficult to 

seperate (with the exception of C. adelpha) as the characters used to distinguish species, 

including genitalia, are variable and often intermediate between species (Paiero et al. 2012).  

Further revision of the group is needed to positively identify species so, except for C. adelpha, 

we have chosen not to assign specimens to individual species. 

All specimens have been deposited in the University of Arkansas Arthropod Museum 

(UAAM), with the following exceptions: 1) 1–5 exemplars of each species have been deposited 

in the Dowling Lab Collection at the University of Arkansas; 2) the following specimens were 

sent to Peter Messer for identification confirmation and have been deposited in the P. W. Messer 

Collection: Agonum striatopunctatum (MS 13-0529-072, #136215; MS 13-0612-022, 

#139663), Cicindela rufiventris (MS 13-0717-001, #134492), Cyclotrachelus incisus (MS 13-

0413-023, #139591; MS 13-0413-019, #139592; MS 13-0413-006, #139594; MS 13-1008-075, 

#139596), Cyclotrachelus parasodalis (MS 13-0430-019, #131983; MS 13-0529-037, #135057; 

MS 13-1106-002, #138280), Lophoglossus haldemanni (MS 13-0529-066, #135053), 
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Pterostichus punctiventris (MS 13-0401-018, #135065; MS 13-1023-021, # 136216), Rhadine 

ozarkensis (MS 13-0925-027, #134547), Scaphinotus fissicollis (MS 13-1106-037, #137830), 

Selenophorus ellipticus (MS 13-0925-005, #136223), Selenophorus opalinus (MS 13-0813-034, 

# 136217), Trichotichus autumnalis (MS 13-0730-005, #136226), Trichotichnus vulpeculus (MS 

13-0911-027, #136218). 

New Arkansas state records for Buprestidae are based on the range data given by Paiero 

et al. 2012; for Carabidae are based on range data given by Bousquet 2012b; and for Attelabidae 

and Curculionidae are based on O'Brien and Wibmer 1982 and supplemented by more recent 

literature (see individual species notes for specific citations).  No attempt was made to assess the 

state record status of Cerambycidae as recent checklists and keys  (e.g., Linsley 1962a, Linsley 

1962b, Linsley 1963, Linsley 1964, Linsley and Chemsak 1972, Linsley and Chemsak 1976, 

Chemsak and Linsley 1982, Linsley and Chemsak 1984, Linsley and Chemsak 1995, Yanega 

1996, Lingafelter 2007, Bezark and Monné 2013) report regional presence rather than presence 

by state and/or contain range maps for a few species with a limited number of records and J. A. 

Chemsak sadly passed before completing his "Illustrated Revision of the Cerambycidae of North 

America" series, which includes detailed range maps for the species treated (though see 

Chemsak 1996 for Parandrinae, Spondylidinae, Aseminae, and Prioninae and Chemsak 2007 for 

Lepturinae). 
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Family Genus Reference 
Anthribidae  Valentine 1960, Valentine 1998 
Attelabidae  Hamilyon 1971, Hamilton 1989, Hamilton 2002 
Brentidae  Anderson and Kissinger 2002 
Buprestidae  Nelson et al. 2008, Paiero et al. 2012 
Carabidae  Ball 1959, Lindroth 1969, Ciegler 2000, Arnett and Ivie 

2001, Ball and Bousquet 2001, Pearson et al. 2006 
Carabidae Abacidus Lindroth 1969, Sadek 1982 
Carabidae Agonum Liebherr 1994 
Carabidae Anisodactylus Noonan 1973 
Carabidae Brachinus Erwin 1970 
Carabidae Calathus Ball and Negre 1972 
Carabidae Carabus Haldeman 1852 
Carabidae Chlaenius Bell 1960 
Carabidae Clinidium Bell and Bell 1975, Bell 1999 
Carabidae Clivina Ball 2001, Bousquet 2009 
Carabidae Cychrus Gidaspow 1973 
Carabidae Cymindis Hunting 2013 
Carabidae Dicheirus Noonan 1973 
Carabidae Harpalus Noonan 1991 
Carabidae Lebia Madge 1967 
Carabidae Notiophilus Larochelle and Lariviere 1990 
Carabidae Notobia Noonan 1973 
Carabidae Platynus Liebherr and Will 1996, Bousquet 2012b 
Carabidae Progaleritina Ball and Nimmo 1983 
Carabidae Pseudophonus Ball and Anderson 1962 
Carabidae Pterostichus Bousquet 1992 
Carabidae Rhadinae Barr 1974 
Carabidae Scaphinotus Van Dyke 1938, Allen and Carlton 1988 
Carabidae Stenolophus Bousquet and Messer 2010 
Carabidae Tachyta Erwin 1975 
Cerambycidae  Yanega 1996, Lingafelter 2007 
Cerambycidae  Astylopsis Schiefer 2000 
Cerambycidae Purpuricenus MacRae 2000 
Cerambycidae  Saperda Schiefer and Newell 2010 
Curculionidae  Schaeffer 1907, Blatchley and Leng 1916, Anderson 2002, 

Hespenheide 2002, Ciegler 2010, Lyal 2010, WTaxa et al. 
2012 

Curculionidae Cercopeus O'Brien et al. 2010 
Curculionidae Conotrachelus Schoof 1942 
Curculionidae Cossonus Van Dyke 1915 
Curculionidae Curculio Gibson 1969 
Table 5. References used for specimen identification. 
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Family Genus Reference 
Curculionidae Dichoxenus Sleeper 1956 
Curculionidae Eubulus Anderson 2008 
Curculionidae Geraeus Prena 2009 
Curculionidae Lechriops Hespenheide 2003 
Curculionidae Linogeraeus Prena 2009 
Curculionidae Lissorhoptrus O'Brien and Haseeb 2014 
Curculionidae Lymantes Sleeper 1965, Paquin and Anderson 2009 
Curculionidae Notiodes Board 1972 
Curculionidae Oopterinus O'Brien 1985 
Curculionidae Otiorhynchus Warner and Negley 1976 
Curculionidae Pandeletius Howden 1959 
Curculionidae Rhinoncus Hoebeke and Whitehead 1980 
Curculionidae Tychius Clark 1971 
Curculionidae Tyloderma Wibmer 1918 
Table 5 (cont.). References used for specimen identification. 

 

Geographic Coverage. 

Description: The survey was conducted at 4 hectare plot established at Steel Creek along 

the Buffalo National River in Newton County, Arkansas, centered at approximately N 

36°02.269', W 93°20.434'.  The site is primarily 80–100 year old mature second-growth Eastern 

mixed deciduous forest dominated by oak (Quercus) and hickory (Carya), though American 

beech (Fagus grandifolia) and eastern red cedar (Juniperus virginiana) are also abundant.  A 

small (14 m x 30 m), fishless pond and glade (10 m x 30 m) with sparse grasses are present 

within the boundaries of the site. 

Coordinates: 36.0367 and 36.0397 Latitude; -93.3917 and -93.3397 Longitude. 

 

Taxonomic Coverage. 

Description: All specimens of Anthribidae, Attelabidae, Brachyceridae, Brentidae, 

Bupresidae, Carabidae, Cerambycidae, Curculionidae excluding Scolytinae were identified to 

species. 
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Usage Rights. 

Use license: Creative Commons CCZero. 

 

Data Resources. 

Data package title: Steel Creek survey 

Resource link: http://dx.doi.org/10.5061/dryad.4h40n 

Number of data sets: 1 

 Data set name: Steel Creek beetles 

 Data format: Darwin Core Archive 

 Data format version: 1.0 

See Table A1 for explainations of column headings in the data set spreadsheet. 

Additional Information. 

Analysis 

8,048 specimens representing 251 species and 188 genera were collected during this 

study (Table 6), with the following totals by family:  Anthribidae: 15 specimens, 4 species, 4 

genera; Attelabidae: 19 specimens, 3 species, 3 genera; Brachyceridae: 1 specimen, 1 species, 1 

genus; Brentidae: 6 specimens, 1 species, 1 genus; Buprestidae: 375 specimens, 27 species, 9 

genera; Carabidae: 1970 specimens, 62 species, 36 genera; Cerambycidae: 1885 specimens, 82 

species, 57 genera; Curculionidae: 3777 specimens, 71 species, 52 genera. 
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Family Genus Species Total specimens 
collected 

Anthribidae Euparius Euparius marmoreus 11 
Anthribidae Eurymycter Eurymycter fasciatus 2 
Anthribidae Ormiscus Ormiscus 1 
Anthribidae Toxonotus Toxonotus cornutus 1 
Attelabidae Eugnamptus Eugnamptus angustatus 12 
Attelabidae Synolabus Synolabus bipustulatus 1 
Attelabidae Temnocerus Temnocerus aeratus 6 
Brachyceridae Notiodes Notiodes limatulus 1 
Brentidae Arrhenodes Arrhenodes minutus 6 
Buprestidae Acmaeodera Acmaeodera tubulus 70 
Buprestidae Acmaeodera Acmaeodera pulchella 1 
Buprestidae Actenodes Actenodes acornis* 1 
Buprestidae Agrilus Agrilus arcuatus complex 1 
Buprestidae Agrilus Agrilus bilineatus 35 
Buprestidae Agrilus Agrilus cephalicus* 18 
Buprestidae Agrilus Agrilus defectus 1 
Buprestidae Agrilus Agrilus fallax 1 
Buprestidae Agrilus Agrilus geminatus 1 
Buprestidae Agrilus Agrilus lecontei 4 
Buprestidae Agrilus Agrilus masculinus 1 
Buprestidae Agrilus Agrilus ohioensis* 1 
Buprestidae Agrilus Agrilus olentangyi 1 
Buprestidae Agrilus Agrilus obsoletoguttatus 12 
Buprestidae Agrilus Agrilus paracelti* 3 
Buprestidae Anthaxia Anthaxia viridifrons 6 
Buprestidae Brachys Brachys aerosus 1 
Buprestidae Chrysobothris Chrysobothris adelpha 60 
Buprestidae Chrysobothris Chrysobothris femorata 

complex 70 
Buprestidae Chrysobothris Chrysobothris sexsignata 7 
Buprestidae Dicerca Dicerca divaricata* 3 
Buprestidae Dicerca Dicerca lurida 58 
Buprestidae Dicerca Dicerca obscura 8 
Buprestidae Dicerca Dicerca spreta 1 
Buprestidae Ptosima Ptosima gibbicollis 5 
Buprestidae Taphrocerus Taphocerus gracilis 3 
Buprestidae Taphrocerus Taphrocerus nicolayi* 2 
Table 6. Species collected, including total number of specimens. New state records are indicated 
by an an asterisk (*). 
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Family Genus Species Total specimens 
collected 

Carabidae Agonoleptus Agonoleptus conjunctus 17 
Carabidae Agonum Agonum punctiforme* 2 
Carabidae Agonum Agonum striatopunctatum 3 
Carabidae Amara Amara aenea 3 
Carabidae Amara Amara cupreolata 14 
Carabidae Amara Amara musculis 30 
Carabidae Anisodactylus Anisodactylus rusticus 33 
Carabidae Apenes Apenes sinuata 8 
Carabidae Badister Badister notatus 3 
Carabidae Bembidion Bembidion affine 6 
Carabidae Bembidion Bembidion rapidum 2 
Carabidae Brachinus Brachinus americanus 91 
Carabidae Calathus Calathus opaculus 14 
Carabidae Calleida Calleida viridipennis 8 
Carabidae Carabus Carabus sylvosus 20 
Carabidae Chlaenius Chlaenius platyderus 1 
Carabidae Chlaenius Chlaenius tomentosus 3 
Carabidae Cicindela Cicindela rufiventris 3 
Carabidae Cicindela Cicindela sexguttata 32 
Carabidae Clinidium Clinidium sculptile 1 
Carabidae Clivina Clivina pallida 1 
Carabidae Cyclotrachelus Cyclotrachelus incisus 797 
Carabidae Cyclotrachelus Cylotrachelus parasodalis 33 
Carabidae Cymindis Cymindis americana 9 
Carabidae Cymindis Cymindis limbata 203 
Carabidae Cymindis Cymindis platycollis 8 
Carabidae Dicaelus Dicaelus ambiguus 22 
Carabidae Dicaelus Dicaelus elongatus 11 
Carabidae Dicaelus Dicaelus sculptilis 78 
Carabidae Dromius Dromius piceus 1 
Carabidae Elaphropus Elaphropus granarius 1 
Carabidae Galerita Galerita bicolor 19 
Carabidae Galerita Galerita janus 2 
Carabidae Harpalus Harpalus faunus 1 
Carabidae Harpalus Harpalus katiae 1 
Carabidae Harpalus Harpalus pensylvanicus 5 
Table 6 (cont.). Species collected, including total number of specimens. New state records are 
indicated by an an asterisk (*). 
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Family Genus Species Total specimens 
collected 

Carabidae Lebia Lebia analis 1 
Carabidae Lebia Lebia marginicollis 1 
Carabidae Lebia Lebia viridis 37 
Carabidae Lophoglossus Lophoglossus haldemanni 1 
Carabidae Mioptachys Mioptachys flavicauda 12 
Carabidae Notiophilus Notiophilus novemstriatus 67 
Carabidae Platynus Platynus decentis 9 
Carabidae Platynus Platynus parmarginatus 2 
Carabidae Plochionus Plochionus timidus 2 
Carabidae Pterostichus Pterostichus permundus 105 
Carabidae Pterostichus Pterostichus punctiventris 11 
Carabidae Rhadine Rhadine ozarkensis 1 
Carabidae Scaphinotus Scaphinotus unicolor 4 
Carabidae Scaphinotus Scaphinotus fissicollis 12 
Carabidae Scaphinotus Scaphinotus infletus 1 
Carabidae Selenophorus Selenophorus ellipticus 4 
Carabidae Selenophorus Selenophorus gagatinus 8 
Carabidae Selenophorus Selenophorus opalinus 1 
Carabidae Stenolophus Stenolophus ochropezus 5 
Carabidae Synuchus Synuchus impunctatus* 3 
Carabidae Tachyta Tachyta parvicornis 3 
Carabidae Tachys Tachys columbiensis 4 
Carabidae Tachys Tachys oblitus 2 
Carabidae Trichotichnus Trichotichnus autumnalis 176 
Carabidae Trichotichnus Trichotichnus fulgens 11 
Carabidae Trichotichnus Trichotichnus vulpeculus 1 
Cerambycidae Aegomorphus Aegomorphus  modestus 8 
Cerambycidae Aegormorphus Aegormorphus quadrigibbus 1 
Cerambycidae Anelaphus Anelaphus parallelus 162 
Cerambycidae Anelaphus Anelaphus pumilus 4 
Cerambycidae Astyleiopus Astyleiopus variegatus 1 
Cerambycidae Astylidius Astylidius parvus 2 
Cerambycidae Astylopsis Astylopsis macula 4 
Cerambycidae Astylopsis Astylopsis sexguttata 1 
Cerambycidae Bellamira Bellamira scalaris 2 
Cerambycidae Brachyleptura Brachyleptura champlaini 5 
Cerambycidae Callimoxys Callimoxys sanguinicollis 4 
Table 6 (cont.). Species collected, including total number of specimens. New state records are 
indicated by an an asterisk (*). 
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Family Genus Species Total specimens 
collected 

Cerambycidae Centrodera Centrodera sublineata 1 
Cerambycidae Clytoleptus Clytoleptus albofasciatus 6 
Cerambycidae Cyrtinus Cyrtinus pygmaeus 5 
Cerambycidae Cyrtophorus Cyrtophorus verrucosus 17 
Cerambycidae Dorcaschema Dorcaschema alternatum 2 
Cerambycidae Dorcaschema Dorcaschema cinereum 15 
Cerambycidae Dorcaschema Dorcaschema nigrum 2 
Cerambycidae Dorcaschema Dorcaschema wildii 2 
Cerambycidae Eburia Eburia quadrigeminata 7 
Cerambycidae Ecyrus Ecyrus dasycerus 1 
Cerambycidae Elytrimitatrix Elytrimitatrix undata 30 
Cerambycidae Elaphidion Elaphidion mucronatum 196 
Cerambycidae Enaphalodes Enaphalodes rufulus 1 
Cerambycidae Euderces Euderces reichei 1 
Cerambycidae Euderces Euderces picipes 5 
Cerambycidae Euderces Euderces pini 3 
Cerambycidae Eupogonius Eupogonius pauper 2 
Cerambycidae Gaurotes Gaurotes cyanipennis 1 
Cerambycidae Graphisurus Graphisurus despectus 8 
Cerambycidae Graphisurus Graphisurus fasciatus 10 
Cerambycidae Heterachthes Heterachthes quadrimaculatus 18 
Cerambycidae Hyperplatys Hyperplatys maculata 1 
Cerambycidae Knulliana Knulliana cincta 10 
Cerambycidae Leptostylus Leptostylus transversus 18 
Cerambycidae Leptura Leptura emarginata 2 
Cerambycidae Lepturges Lepturges angulatus 1 
Cerambycidae Lepturges Lepturges confluens 9 
Cerambycidae Micranoplium Micranoplium unicolor 3 
Cerambycidae Molorchus Molorchus bimaculatus 65 
Cerambycidae Monochamus Monochamus titillator 2 
Cerambycidae Neoclytus Neoclytus acuminatus 60 
Cerambycidae Neoclytus Neoclytus caprea 2 
Cerambycidae Neoclytus Neoclytus horridus 2 
Cerambycidae Neoclytus Neoclytus jouteli 1 
Cerambycidae Neoclytus Neoclytus mucronatus 133 
Cerambycidae Neoclytus Neoclytus scutellaris 129 
Cerambycidae Necydalis Necydalis mellita 2 
Table 6 (cont.). Species collected, including total number of specimens. New state records are 
indicated by an an asterisk (*). 
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Family Genus Species Total specimens 
collected 

Cerambycidae Oberea Oberea ulmicola 1 
Cerambycidae Obrium Obrium maculatum 10 
Cerambycidae Oncideres Oncideres cingulata 2 
Cerambycidae Orthosoma Orthosoma brunneum 7 
Cerambycidae Parelaphidion Parelaphidion aspersum 7 
Cerambycidae Phymatodes Phymatodes amoenus 2 
Cerambycidae Phymatodes Phymatodes testaceus 8 
Cerambycidae Phymatodes Phymatodes varius 4 
Cerambycidae Physocnemum Physocnemum brevilineum 1 
Cerambycidae Prionus Prionus imbricornis 1 
Cerambycidae Purpuricenus Purpuricenus humeralis 1 
Cerambycidae Purpuricenus Purpuricenus paraxillaris 13 
Cerambycidae Saperda Saperda discoidea 9 
Cerambycidae Saperda Saperda imitans 29 
Cerambycidae Saperda Saperda lateralis 9 
Cerambycidae Saperda Saperda tridentata 3 
Cerambycidae Sarosesthes Sarosesthes fulminans 5 
Cerambycidae Stenocorus Stenocorus  cinnamopterus 7 
Cerambycidae Stenosphenus Stenosphenus notatus 73 
Cerambycidae Sternidius Sternidius alpha 6 
Cerambycidae Strangalepta Strangalepta abbreviata 1 
Cerambycidae Strangalia Strangalia bicolor 31 
Cerambycidae Strangalia Strangalia luteicornis 205 
Cerambycidae Strophiona Strophiona nitens 24 
Cerambycidae Tilloclytus Tilloclytus geminatus 2 
Cerambycidae Trachysida Trachysida mutabilis 2 
Cerambycidae Trigonarthris Trigonarthris minnesotana 2 
Cerambycidae Trigonarthris Trigonarthris proxima 3 
Cerambycidae Typocerus Typocerus lugubris 2 
Cerambycidae Typocerus Typocerus velutinus 46 
Cerambycidae Typocerus Typocerus zebra 5 
Cerambycidae Urgleptes Urgleptes querci 28 
Cerambycidae Urgleptes Urgleptes signatus 9 
Cerambycidae Xylotrechus Xylotrechus colonus 360 
Table 6 (cont.). Species collected, including total number of specimens. New state records are 
indicated by an an asterisk (*). 
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Family Genus Species Total specimens 
collected 

Curculionidae Acalles Acalles carinatus 11 
Curculionidae Acalles Acalles clavatus* 5 
Curculionidae Acalles Acalles minutissimus* 5 
Curculionidae Acoptus Acoptus suturalis* 1 
Curculionidae Anthonomus Anthonomus juniperinus* 1 
Curculionidae Anthonomus Anthonomus nigrinus 3 
Curculionidae Anthonomus Anthonomus rufipennis 5 
Curculionidae Anthonomus Anthonomus suturalis 22 
Curculionidae Aphanommata Aphanommata tenuis 9 
Curculionidae Apteromechus Apteromechus ferratus 600 
Curculionidae Anametis Anametis granulata* 5 
Curculionidae Auleutes Auleutes nebulosus complex 2 
Curculionidae Buchananius Buchananius sulcatus 4 
Curculionidae Canistes Canistes schusteri 26 
Curculionidae Caulophilus Caulophilus dubius 1 
Curculionidae Cercopeus Cercopeus chrysorrhoeus 560 
Curculionidae Chalcodermus Chalcodermus inaequicollis 1 
Curculionidae Conotrachelus Conotrachelus affinis 9 
Curculionidae Conotrachelus Conotrachelus anaglypticus 39 
Curculionidae Conotrachelus Conotrachelus aratus 162 
Curculionidae Conotrachelus Conotrachelus carinifer 56 
Curculionidae Conotrachelus Conotrachelus elegans 44 
Curculionidae Conotrachelus Conotrachelus naso 130 
Curculionidae Conotrachelus Conotrachelus posticatus 979 
Curculionidae Cophes Cophes fallax 73 
Curculionidae Cophes Cophes obtentus 1 
Curculionidae Cossonus Cossonus impressifrons 12 
Curculionidae Craponius Craponius inaequalis 1 
Curculionidae Cryptorhynchus Cryptorhynchus fuscatus 6 
Curculionidae Cryptorhynchus Cryptorhynchus tristis 168 
Curculionidae Curculio Curculio othorhynchus 1 
Curculionidae Cyrtepistomus Cyrtepistomus castaneus 133 
Curculionidae Dichoxenus Dichoxenus setiger 76 
Curculionidae Dietzella Dietzella zimmermanni 1 
Curculionidae Dryophthorus Dryophthorus americanus 30 
Curculionidae Epacalles Epacalles inflatus 65 
Curculionidae Eubulus Eubulus bisignatus 28 
Curculionidae Eubulus Eubulus obliquefasciatus 193 
Table 6 (cont.). Species collected, including total number of specimens. New state records are 
indicated by an an asterisk (*). 
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Family Genus Species Total specimens 
collected 

Curculionidae Eudociminus Eudociminus mannerheimii 1 
Curculionidae Eurhoptus Eurhoptus sp. 1 28 
Curculionidae Eurhoptus Eurhoptus pyriformis 15 
Curculionidae Geraeus Geraeus penicillus 1 
Curculionidae Hypera Hypera compta 4 
Curculionidae Hypera Hypera meles 19 
Curculionidae Hypera Hypera nigrirostris 1 
Curculionidae Hypera Hypera postica 1 
Curculionidae Idiostethus Idiostethus subcalvus* 1 
Curculionidae Laemosaccus Laemosaccus nephele group 3 
Curculionidae Leichrops Lechriops oculatus 30 
Curculionidae Lymantes Lymantes sandersoni 1 
Curculionidae Madarellus Madarellus undulatus* 9 
Curculionidae Magdalis Magdalis armicollis* 3 
Curculionidae Magdalis Magdalis barbita* 5 
Curculionidae Mecinus Mecinus pascuorum* 2 
Curculionidae Myrmex Myrmex chevrolatii* 7 
Curculionidae Myrmex Myrmex myrmex* 1 
Curculionidae Nicentrus Nicentrus lecontei* 1 
Curculionidae Oopterinus Oopterinus perforatus 17 
Curculionidae Otiorhynchus Otiorhynchus rugosostriatus* 46 
Curculionidae Pandeletius Pandeletius hilaris 51 
Curculionidae Piazorhinus Piazorhinus pictus* 2 
Curculionidae Phyllotrox Phyllotrox ferrugineus* 20 
Curculionidae Plocamus Plocamus hispidulus* 1 
Curculionidae Pseudobaris Pseudobaris nigrina* 9 
Curculionidae Pseudopentarthrum Pseudopentarthrum simplex* 13 
Curculionidae Rhinoncus Rhinoncus  pericarpius* 1 
Curculionidae Sitona Sitona lineatus* 1 
Curculionidae Stenoscelis Stenoscelis brevis* 4 
Curculionidae Tachyerges Tachyerges niger 1 
Curculionidae Tomolips Tomolips quercicola* 2 
Curculionidae Tychius Tychius prolixus 7 
Curculionidae Tyloderma Tyloderma foveolatum 1 
Table 6 (cont.). Species collected, including total number of specimens. New state records are 
indicated by an an asterisk (*). 

 

Thirty one species (12%) collected during this study represent new Arkansas state 

records: (Buprestidae) Actenodes acornis, Agrilus cephalicus, Agrilus ohioensis, Agrilus 
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paracelti, Taphrocerus nicolayi; (Carabidae) Agonum punctiforme, Synuchus impunctatus; 

(Curculionidae) Acalles clavatus, Acalles minutissimus, Acoptus suturalis, Anthonomus 

juniperinus, Anametis granulata, Eudociminus mannerheimii, Idiostethus subcalvus, Madarellus 

undulatus, Magdalis armicollis, Magdalis barbita, Mecinus pascuorum, Myrmex chevrolatii, 

Myrmex myrmex, Nicentrus lecontei, Otiorhynchus rugostriatus, Piazorhinus pictus, Phyllotrox 

ferrugineus, Plocamus hispidulus, Pseudobaris nigrina, Pseudopentarthrum simplex, Rhinoncus 

pericarpius, Sitona lineatus, Stenoscelis brevis, Tomolips quericola. 

Three endemic carabids – Cyclotrachelus parasodalis, Rhadine ozarkensis, Scaphinotus 

infletus – were also collected. 

Notes on select species 

Agrilus ohioensis has been recorded from many eastern states, but is rarely collected.  

Larvae have been reported from American hornbeam, Carpinus caroliniana Walter, (Nelson and 

MacRae 1990, Wellso and Jackman 2006) and winged elm, Ulmus alata Michx., (Nelson et al. 

1981), both of which are present at the site.  One reason for their apparent rarity may be 

from a lack of specialized collecting.  Collecting small branches of hosts and rearing specimens 

is a specialized technique frequently used by wood borer enthusiasts.  More work of this nature 

with these and other hosts should yield a wider distribution for this species and many other "rare" 

buprestids, including Agrilus cephalicus. 

Agonum punctiforme occurs from North Carolina to southeastern Texas, with a record 

from Missouri that "needs confirmed", and Amara cupreolata has been previously recorded in 

Arkansas but "the record needs confirmation" (Bousquet 2012a), so it is unsurprising the species 

were collected in Arkansas. 
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Cyclotrachelus parasodalis is an Arkansas endemic which has only been reported in the 

literature a handful of times, including the original description and description of the larvae 

(Freitag 1969, Allen and Thompson 1977, Thompson 1979, Hamilton 2015). Approximately 

3,000 specimens are housed in the UAAM collection, most of which coincide with the collection 

localities and dates given by Allen and Thompson 1977, though the authors did not provide 

specific label data or the number of specimens collected per site in the publication (Fig. 3). 

Given the abundance of specimens and apparently wide range within the state, it is surprising the 

species has not been recorded in Missouri or Oklahoma sections of the Interior Highlands.  

Additionally, two specimens collected in cotton fields in the Mississippi Alluvial Plain indicate 

the species is not restricted entirely to the Interior Highlands, though it may be endemic to the 

region immediately surrounding the Interior Highlands. 

 
Figure 3. Known collection localities of Cyclotrachelus parasodalis. 
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Rhadine ozarkensis is previously known only from the type series collected in Fincher’s 

Cave, near Black Oak, Arkansas (Washington County, not Craighead County) (Barr 1960, 

Bousquet 2012b).  This specimen represents a range expansion of over 65 km.  That it was 

collected in a pitfall trap on the surface suggests that the species may not be restricted to caves or 

can move between suitable cave habitat using the karst topography of the region. 

Pterostichus punctiventris ranges from northern Georgia south to Alabama west to east-

central Missouri, eastern Oklahoma, and Texas (Bousquet 2012b).  It is apparently known from a 

limited number of specimens and localities; in Arkansas, it has only been collected previously in 

Blanchard Springs State Park in Stone County (Bousquet 1992). 

Scaphinotus infletus is known from only three specimens collected from three localities 

within 30 km of the study site (Allen and Carlton 1988, Bousquet 2012b). This specimen 

represents a new locality for the species and confirms its presence in the area after nearly thirty 

years without being collected. 

Synuchus impunctatus is known from Missouri and Kansas, but has not previously been 

recorded from Arkansas (Bousquet 2012b). 

Tachys columbiensis was thought to be confined to the Coastal Plain and Piedmont 

Plateau, ranging from southeastern Pennsylvania to southern Florida west to Mississippi and 

eastern Texas, though it has also been recorded from central Arkansas  (Pulaski and Garland 

Counties) (Bousquet 2012b).  These specimens represent a new northwestern range  limit and a 

new physiogeographic region  (Ozark Mountains) for the species. 
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Trichotichnus vulpeculus is recorded from western New Brunswick south to eastern 

Georgia, west to Wisconsin and northern Arkansas (Bousquet 2012b).  These specimens are 

therefore likely near the southwestern range limit for this species. 

Acalles clavatus was previously known from Florida, South Carolina and Louisiana 

(Ciegler 2010, O'Brien and Wibmer 1982); it has been reared from small twigs of Quercus 

falcata Michaux (Ferro et al. 2009). 

Acoptus suturalis is known from northeastern North America, from Quebec south to 

North Carolina and Illinois and Iowa; addition records are known from Georgia and Mexico 

(O'Brien and Wibmer 1982). It has been raised from the branch of an American elm (Ulmus 

americana L.) and may be a vector of butternut canker virus (Sirococcus clavigignenti-

juglandacearum) in butternut (Juglans cinerea L.) (Hoffman 1942, Halik and Bergdahl 2002). 

Anametis granulata is found in northern and eastern North America, from Newfoundland 

and Quebec, south to New Jersey, west to Missouri, Wyoming and Montana; additional 

specimens are known from Texas, New Mexico, and Mexico (O'Brien and Wibmer 1982, Ocaña 

1996). 

Anthonomus juniperinus is known from the eastern United States, from Massachusetts 

south to Florida, west to West Virginia, as well as Texas, Oregon, and Paget, Bermuda (O'Brien 

and Wibmer 1982, Clark and Burke 2010).  It feeds on Gymnosporangium juniperi-virginianae 

Schwein., a fungus parasitic on Juniperus  L., and juniper berries (Ciegler 2010, Clark and Burke 

2010). 

Buchananius sulcatus is widely distributed in the eastern and southeastern United States 

(O'Brien and Wibmer 1982).  It has been reared from the fruiting bodies of the ascomycete 
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fungus Trichoderma peltatum (Berk.) Samuels, Jaklitsch, and Voglmayr (Prena et al. 2014) and 

adults have been collected in leaf litter and under branches (Kissinger 1957). 

Caulophilus dubius is known from Quebec and New York south to Georgia, west to 

Illinois and and Mississippi, as well as Texas (O'Brien and Wibmer 1982, Douglas et al. 2013).  

Adults are found beneath dead tree bark and in tree holes (Blatchley and Leng 1916, Ciegler 

2010). 

Eubulus bisignatus is widespread in eastern and southern North America, ranging from 

Ontario south to Florida, west to Nebraska, Texas, Arizona, and California; it is also recorded 

from Mexico and Guatamala.  It was not recorded from Arkansas by O'Brien and Wibmer 1982 

but was reported by Anderson 2008. Adults are frequently collected at lights and in Malaise and 

flight-intercept traps and have been collected from a number of hardwood species including 

Quercus L., Castanea Mill., Fagus L., Betula L., Carya Nutt., and Acer L. (Anderson 2008 . 

Eubulus obliquefasciatus is commonly collected in flight-intercept traps and at lights.  

Adults have been collected on dead oak and sweetgum; otherwise, nothing is known about their 

biology (Anderson 2008). 

The Eudociminus mannerheimii specimen collected during this study was included with 

other specimens collected near the field site in a forthcoming publication (Skvarla et al. in press 

[Chapter IX]) that suggests eastern red cedar (Juniperus virginiana L.) as a possible host as it is 

the only species of Cupressaceae present at the site.  Additionally, the specimens represented a 

new state record and northwestern range expansion from previous records. 

Idiostethus subcalvus is found from Pennsylvania south to South Carolina, west to 

Illinois and Missouri (O'Brien and Wibmer 1982, Ciegler 2010).  Downie 1958 reported it is 

"very abundant" in April and May in Indiana.  It been taken on Caulophyllum thalictroides (L.) 
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Michaux, Hydrophyllum appendiculatum Michx., Phacelia Juss. and Ranunculus hispidus 

Michx. var. nitidus (Chapm.) T. Duncan (Robertson 1929, Ciegler 2010, Graham et al. 2012). 

Madarellus undulatus is found in eastern North America, from Quebec and Connecticut 

south to Florida, west to South Dakota, Kansas, and Missouri (O'Brien and Wibmer 1982). It has 

been collected with black pyramid traps (Bloem et al. 2002), Malaise traps, fogging (Werle 

2002) and at lights (Ciegler 2010).  Larvae have been reported to feed on Vitis L., Toxicodendron 

radicans (L.) Kuntze and Parthenocissus quinquefolia (L.) Planch. (Blatchley and Leng 1916, 

Bouchard et al. 2005). 

Magdalis armicollis is found in the eastern United States from Connecticut south to 

Georgia, west to North Dakota, Montana, Nebraska, and Texas (O'Brien and Wibmer 1982, 

Quinn 2000).  Larvae mine galleries in stressed, dying, and dead Ulmus L. and adults feed on the 

leaves (Blatchley and Leng 1916, Hoffman 1942, Majka et al. 2007).  Larval feeding is generally 

confined to branches smaller than 7.5 cm; however, in large numbers, larval and adult feeding 

can cause significant damage that may result in tree death (Baker 1941, Booth and Johnson 

2009).  Magdalis armicollis is not a vector of Dutch elm disease (Goeden and Norris 1963). 

Magdalis barbita is found in North Ameica from Conneticut and Ontario south to 

Georgia, west to Montana, Texas, Nevada, and California (O'Brien and Wibmer 1982). Larvae 

mine galleries in the branches of dead and dying Quercus, Ulmus, and Carya and adults feed on 

the leaves of Ulmus (Blatchley and Leng 1916, Hoffman 1942, Majka et al. 2007).  Magdalis 

barbita is not a vector of Dutch elm disease (Goeden and Norris 1963). 

Myrmex myrmex is native to the eastern United States, from Conneticut south to Florida, 

west to Indiana and Iowa (O'Brien and Wibmer 1982).  It develops in the dead and dying wood 

of sycamore (Burke et al. 1975), which was present in small numbers at the site. 
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Notiodes limatulus is widespread in North Ameica, ranging from New York south to 

Georgia, west to Idaho, Texas, and California, and into Mexico. It was not recorded in Arkansas 

by O'Brien and Wibmer 1982 but was reported in the state by O'Brien and Anderson 1996. 

Otiorhynchus rugostriatus is adventive from Europe and has been established in North 

America since 1876; it is now widespread through the United States and Canada (O'Brien and 

Wibmer 1982, Mattson et al. 1994).  Larvae larvae feed on roots of Rosaceae and other plants 

(Mattson et al. 1994). 

Rhinoncus pericarpius is adventive from the Palaerctic (Majka et al. 2007).  It was first 

recorded in northeastern North America in 1895 and the Pacific Northwest in 1913; in the east it 

is known from Nova Scotia south through Georgia, west to Illinois (O'Brien and Wibmer 1982, 

Majka et al. 2007). Rhinoncus pericarpius is reported to feed on Rumex L. and Cannabis L. and 

have been collected from Rheum L. and Medicago sativa L. (Harada 1930, Hoebeke and 

Whitehead 1980). 

Stenoscelis brevis is widespread is eastern North America, from Ontario and Quebec 

south to Florida, west to Wisconsin, Kansas, and Mississippi (O'Brien and Wibmer 1982).  

Larvae bore under the bark of dead hardwood (O'Brien 1997).  Adults have been collected in 

Lindgren multifunnel traps baited with manuka oil, from leaf litter using Berlese extraction and 

under the bark of dead trees (Johnson et al. 2014, Ferro et al. 2012. 

Tachyerges niger was not reported from Arkansas by O'Brien and Wibmer 1982 but was 

recorded from the state by Sweeney et al. 2012; it is assoxiated with Salix L. 

Tychius picirostris is adventive from Europe and widely established in North America 

(Anderson and Howden 1994). 
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Discussion 

It is unsurprising that few Carabidae represented new state records as carabid workers 

formerly associated with the University of Arkansas (e.g., R. T. Allen, C. E. Carlton, R. G. 

Thompson) have heavily sampled the region.  Conversely, nearly one in five Buprestidae (19%) 

and one in three Curculionidae (32%) collected during this study represent new state records.  

Such high percentages of unrecorded species in charismatic and diverse taxa highlights how little 

attention many groups have received in the state and how much basic science and natural history 

is left to be done in 'The Natural State'. 

Buprestids are capable of flying between habitat patches and rapidly colonizing new 

areas, so it is unlikely that new species will be discovered even though buprestids are 

understudied in the Interior Highlands. However, considering the high number of endemic 

species that are restricted to leaf litter habitats or are poor dispersers, how relatively understudied 

leaf litter weevils are, and that known but undescribed species were collected during this study, it 

is likely that the Interior Highlands is a fruitful area for finding new and disjunct weevil species. 
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Appendix I. Dataset description. 

Column label Column description 
typeStatus Nomenclatural type applied to the record 

catalogNumber 
Unique within-project and within-lab number applied to 
the record 

recordedBy Who recorded the record information 
individualCount The number of specimens contained within the record 
lifeStage Life stage of the specimens contained within the record 
kingdom Kingdom name 
phylum Phylum name 
class Class name 
order Order name 
family Family name 
genus Genus name 
specificEpithet Specific epithet 

scientificNameAuthorship 
Name of the author of the lowest taxon rank included in 
the record 

scientificName Complete scientific name including author and year 
taxonRank Lowest taxonomic rank of the record 
country Country in which the record was collected 
countryCode Two-letter country code 
stateProvince State in which the record was collected 
county County in which the record was collected 
municipality Closest municipality to where the record was collected 

locality 
Description of the specific locality where the record was 
collected 

verbatimElevation Average elevation of the field site in meters 

verbatimCoordinates 
Approximate center point coordinates of the field site in 
GPS coordinates 

verbatiumLatitude 
Approximate center point latitude of the field site in 
GPS coordinates 

verbatimLongitude 
Approximate center point longitude of the field site in 
GPS coordinates 

decimalLatitude 
Approximate center point latitude of the field site in 
decimal degrees 

decimalLongitude 
Approximate center point longitude of the field site in 
decimal degrees 

Table A1. Column headings and description of column data of the data set. 

 

 



153 
 

Column label Column description 

georeferenceProtocol Protocol by which the coordinates were taken 
identifiedBy Who identified the record 
eventDate Date or date range the record was collected 
habitat Description of the habitat 

language 
Two-letter abbreviation of the language in which the 
data and labels are recorded 

institutionCode 
Name of the institution where the specimens are 
deposited 

basisofRecord The specific nature of the record 
Table A1 (cont.). Column headings and description of column data of the data set. 
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V. Collecting beetles: Analysis of a single-site data set and comparison of trapping 

techniques (Coleoptera: Carabidae, Buprestidae, Cerambycidae, Curculionoidea 

excluding Scolytinae) 

 

Abstract. 

Beetles (Coleoptera) are a charismatic group of insects targeted by collectors and often 

used in biodiversity surveys.  As part of a larger project, we surveyed a small (4 hectare) plot in 

the Boston Mountains of Arkansas using 70 traps of 12 trap types and Berlese-Tullgren 

extraction of leaf litter and identified all Buprestidae, Carabidae, Cerambycidae, and 

Curculionoidea excluding Scolytinae to species.  This resulted in the collection of 7973 

specimens representing 242 species arranged in 8 families.  The combination of pitfall and 

Malaise traps effectively collected Carabidae, Cerambycidae, and Curculionoidea while 

Buprestidae were most effectively collected by Malaise and green Lindgren funnel traps.  

Species accumulation curves based on the data did not become asymptotic and extrapolated 

rarefaction curves did not become asymptotic until 350–1000 samples, suggesting that much 

more effort is required to completely inventory even a small site.  Additionally, seasonal activity 

is presented for each species and the similarity and overlap between collecting dates and seasons 

is discussed for each family. 

 

Introduction. 

We are currently in the midst of a global extinction crisis as species are becoming extinct 

at rates 100-10,000 times greater than historic background rates, with some suggesting it is the 

beginning of the sixth mass extinction (Pimm et al. 1995; Balmford 1996; Wake & Vredenburg 

2008; Barnosky et al. 2011; Voss et al. 2015).  Vascular plants, vertebrates, and invertebrates are 
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all experiencing higher-than-average extinction rates, with invertebrates experiencing some of 

the most rapid declines (Conrad et al. 2006; Thomas et al. 2004).  Averting this crisis has 

become a priority among biologists. 

One of many proposed ways of solving the global extinction crisis is to protect 

biodiversity hotspots, which are those areas of high biodiversity and endemism (Médail & 

Quézel 1999).  Examples of such hotspots are the Mediterranean biome, which comprises 2% of 

the world’s surface but contains 20% of the total floristic richness, and the tropical Andes, which 

contains 6.7% and 5.7% of the word’s total plant and vertebrate species, respectively (Médail & 

Quézel 1997; Meyers et al. 2000).  By focusing on protecting these areas instead of individual 

species it is possible to protect large percentages of biodiversity in the most spatially- and 

monetarily-efficient manner (Meyers 1989; Meyers 1990).   

Known hotspots in the U.S. include the southern Appalachians, temperate rainforests of 

the Northwest, and southern California. The Interior Highlands (Fig. 1) comprise some of the 

oldest continuously exposed land worldwide and have been proposed to be a hotspot on par with 

these (The Nature Conservancy, Ozarks Ecoregion Assessment Team 2003; Skvarla et al. 2015 

[Chapter VIII] ). Many species found in the Interior Highlands are characteristic of other refugia, 

such as the southern Appalachians and the Sierra Madre in Mexico and over 200 species are 

known to be endemic to the region (Allen 1990; Robison & Allen 1995; Redfearn 1986; Skvarla 

et al. 2015 [Chapter VIII]).  Still, in comparison to other regions of hyperdiversity, the Interior 

Highlands remain understudied, especially with regards to terrestrial invertebrates, which are 

vital components of biodiversity and play important roles in pollination, decomposition, soil 

formation and fertility, nutrient turnover, and population regulation of other organisms through 

parasitism and predation (Daily et al. 1997; Yen & Butcher 1997; Wickings & Grandy 2011).  
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They have also been shown to be important indicators of environmental change and can be used 

to assess conservation and biodiversity (Ward & Larivière 2004). 

 
Figure 1. View of the Ozarks from an overlook on the Buffalo River Trail near Steel Creek. 

Arthropods, however, are often ignored because they are considered too difficult to deal 

with: sampling arthropods produces thousands to millions of specimens that must be curated and 

identified; many species are still undescribed; and there are few useable keys and fewer experts 

to consult about identification (Ward & Larivière 2004).  Rapid biodiversity assessment (RBA) 

approaches, which aim to reduce cost and effort, have been suggested to circumvent these 

problems.  RBA approaches fall into four categories: (1) restricted sampling in place of intensive 

sampling (sampling surrogacy); (2) use of higher taxonomic levels other than species (species 

surrogacy); (3) the use of morphospecies (otherwise known as recognizable taxonomic units or 
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parataxonomic unit) identified by non-specialists (taxonomic surrogacy); and (4) the use of 

surrogate taxa in place of all taxa (taxon-focusing) (Ward & Larivière 2004). 

Sampling surrogacy involves some manner of reduced sampling, including but not 

limited to shorter sampling duration, reduced number of sampling methods, and sub-sampling 

existing material.  A few limited studies have shown that such reduced sampling, if done 

correctly, can be used in place of more intensive sampling (e.g., Niemelä et al. 1990; Hammond 

1994; Sparrow et al. 1994; Samu & Lövei 1995).  Care must be taken, however, as sampling 

methods do not evenly collect species (e.g., pitfall traps: Skvarla et al. 2014 [Chapter II]) and 

some species are active for very brief periods of time. 

Species surrogacy involves using higher taxonomic levels, such as genus or family, 

instead of species.  This method has the benefits of being less time- and resource-intensive as 

these levels are generally much easier to identify.  Species surrogacy can be used confidently in 

areas where the relationship between genera and species is near 1:1; for example, Pik et al. 

(1999) and Neville and New (1999) demonstrated such a relationship within ants in forested 

areas of Australia.  In areas that such a relationship does not hold species surrogacy can severely 

skew any estimate of species richness.  Depending on the level chosen species surrogacy can also 

mask various qualities, such as differences in feeding types and trophic levels.   

Taxonomic surrogacy is the use of morphospecies in place of species.  The benefit of 

using morphospecies is that large quantities of prepared material can be processed by 

parataxonomists who do not possess extensive formal training in identification.  Abadie et al. 

(2008) compared the accuracy of parataxonomic identifications of plants by volunteers with 

identifications performed by taxonomic experts and found that morphotype identification varied 

significantly between and within volunteers; morphotype identification was sensitive to 
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differences among habitats but less sensitive than species identification; and that the number of 

morphotypes identified by volunteers was strongly correlated with species-richness.  Derraik et 

al. (2002) similarly found that volunteers correctly separated as species 91% of Lepidoptera but 

only 63% and 50% of Coleoptera and Araneae. 

Taxonomic surrogacy also falls short because less can be done with the data generated 

outside of the project that generated the identifications.  Reporting Carabidae sp.1, Carabidae sp. 

2, and Carabidae sp. 3 is sufficient for generating a biodiversity index based on the number of 

species or for generating a species accumulation curve but is useless when trying to assess beta 

diversity between different habitats, identifying biodiversity hotspots and endemic species, or 

any other meaningful comparisons between the study site and other areas. 

Taxon focusing includes a number of techniques that involve identifying a species or 

group of species in place of a wider range of species.  These approaches assume that data and 

patterns from the identified species can be used to inform and protect the larger group of species.  

Few guidelines for choosing focal taxa have been suggested; as a result, focal taxa are generally 

chosen for practical reasons, such as ease of identification, personal interest, and prior use in 

similar hypotheses (New 1998; 1999).  In addition, there is little evidence that the patterns of a 

handful of species can accurately predict or reflect larger biodiversity patterns (Prendergast et al. 

1993; Lawton et al. 1998; Lindenmayer et al. 2002).  Some authors have tried to work around 

this by analyzing many diverse organisms.  For example, Kotze and Samways (1999) used 

Carabidae, Staphylinidae, and Formicidae and Lawton et al. (1998) examined Aves, 

Papilionoidea, Coleoptera, Formicidae, termites, and soil Nematodes.   

As RBA approaches often cannot fully capture or predict the arthropod biodiversity of an 

area, more intensive surveys must be done in order to find and confirm biodiversity hotspots.  
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Although optimum sampling methods have been extensively tested for a few groups (e.g., ants: 

Agosti et al. 2000) for others groups they have not. Additionally, while certain collecting 

techniques are assumed to collect high diversity (e.g., Malaise and pitfall traps), few studies have 

actually tested those assumptions.   

As part of a larger project examining the efficiency and overlap of various collecting 

techniques, we identified the Buprestidae, Cerambycidae, Carabidae, and Curculionoidea 

excluding Scolytinae.  These families were chosen because, at least in the Nearctic where this 

study was conducted, they are generally easy to identified to family, have an abundance of 

material such as keys and checklists available to aid in identification, and we assumed it is easier 

for non-experts to switch between groups with similar morphology (e.g., different beetle 

families) than between groups with disparate morphology (e.g., beetles and flies or millipedes).  

The collection data and new state records of species in those families were reported in Chapter 

IV.  Herein we analyze the data in order to compare and contrast the different collecting 

techniques within and between families and suggest the most efficient single and combined 

collection techniques. 

 

Materials and Methods. 

Site description 

A 4 ha plot was established at Steel Creek along the Buffalo National River in Newton 

County, Arkansas, centered at approximately N 36°02.269’, W 93°20.434’.  The site is primarily 

mature second-growth deciduous forest dominated by oak (Quercus L. [Fagaceae]) and hickory 

(Carya Nutt. [Juglandaceae]), although American beech (Fagus grandifolia Ehrh. [Fagaceae]) 

and eastern red cedar (Juniperus virginiana L. [Cupressaceae]) are also abundant. 
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Sampling methods 

The methods used were covered in detail in Chapter IV, so we provide the following 

summary: The following traps were maintained within the site:  five Malaise traps (MegaView 

Science Co., Ltd., Taichung, Taiwan), twenty-five pan traps (five of each color: blue, purple, red, 

yellow, white) which were randomly arranged under the Malaise traps (one of each color) so as 

to also act as intercept traps; four SLAM (Sea, Land, and Air Malaise) traps (MegaView Science 

Co., Ltd., Taichung, Taiwan) with top and bottom collectors (Fig. 2);  fifteen Lindgren multi-

funnel traps (ChemTich International, S.A., Heredia, Costa Rica) (five of each color: black, 

green, purple) (Fig. 3); and seventeen pitfall trap sets (Fig. 4).  Sixteen of the seventeen pitfall 

sets were placed in two transects of sets spaced every five meters centered on two Malaise traps 

while the final set was placed away from other traps (a third transect was planned, but eliminated 

due to the added collection time. The set placed away from the others is a remnant of that third 

transect).  Additionally, ten leaf litter samples were collected for Berlese extraction when traps 

were serviced. 

Pitfall traps were made using plastic soup containers based on a modified design 

proposed by Nordlander (1987).  The pitfall traps had three slots measuring 2 cm tall x 9.3 cm 

wide cut 2 cm under the rim, resulting in three equidistant 1.5 cm posts and a 28 cm collecting 

surface.  The diameter at the base of the slots was approximately 10.5 cm and the cups were 10.5 

cm deep below the slots, resulting in a collecting volume of 2,988 cm3.  The container lids were 

used as rain covers.  Each pitfall trap set was made by burying a single cup on either side of a 

30.5 cm x 15.5 cm aluminum fence; trap catch from both cups was combined and treated as a 

single sample. 
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Traps were placed non-randomly within the plot in order to maximize the efficiency of 

each trap, though an attempt was made to evenly space like-traps in order to decrease the chance 

of interference between traps.  Malaise traps were placed in perceived flight paths.  SLAM and 

Lindgren funnel traps were suspended from the branches of large trees 4–10 meters above the 

ground in the lower canopy; the location of appropriately sized trees dictated trap placement 

within each block.   

Berlese-Tullgren samples were collected from a variety of habitats, including thin leaf 

litter on open ground; thick leaf litter accumulated along logs and rocks; moss; tree holes; bark 

from fallen, partially decayed trees; and bark and leaf litter accumulated at the base of standing, 

dead trees.  Tree holes were only collected from once each so as not to totally destroy them as 

potential habitat; as the number of tree holes within the site was limited, this resulted in only a 

handful of collections from this habitat type.  Litter was processed in the field using a litter 

reducer until approximately one gallon of processed litter was collected; this was stored in one 

gallon self-sealing bags during transport.  Litter samples were collected after all traps had been 

serviced in order to reduce exposure to heat and reduce mortality of collected specimens.  Leaf 

litter samples were processed for four to seven days until the litter was thoroughly dry using 

modified Berlese-Tullgren funnels. 
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Figures 2–4. Fig. 2. Malaise trap with pan traps underneath acting as intercept traps and a 

S.L.A.M. canopy trap. Fig. 3. Black Lindgren funnel trap. Fig. 4. Pitfall set. The canopy 
trap and Lindgren funnel trap were lowered from the canopy for the photographs. 
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All traps were set by 13 March 2013, except Lindgren funnels, which were set on 1 April 

2013. Traps were serviced approximately every two weeks (14 days ± 3 days).  The final 

collection of pitfall traps and pan traps occurred on 6 November 2013 and the final collection of 

Malaise, SLAM, and Lindgren funnel traps occurred on 4 December 2013.  Berlese-Tullgren 

samples from 13 April, 15 May, 28 June and 6 November were not taken or were lost.  Pitfall 

sets were lost on 13 April (one set), 15 May (one set), 28 June (four sets), 17 July (five sets).  In 

total, 1311 samples were collected.   

Propylene glycol (Peak RV & Marine Antifreeze) (Old World Industries, LLC, 

Northbrook, IL) was used as the preservative in all traps as it is non-toxic and generally 

preserves specimens well (Skvarla et al. 2014 [Chapter II]).  Trap catch was sieved in the field 

and stored in Whirl-Pak bags (Nasco, Fort Atkinson, WI) in 90% ethanol until sorting.   

Sample preparation and identification 

Samples were coarse-sorted using a Leica MZ16 stereomicroscope illuminated with a 

Leica KL1500 LCD light source and a Wild M38 stereomicroscope illuminated with an Applied 

Scientific Devices Corp. Eco-light 20 fiber optic light source.  After sorting, specimens were 

stored individually or by family in 2 ml microtubes (VWR International, LLC, Randor, PA) in 

70% ethanol.  Hard-bodied specimens (e.g., Carabidae, Curculionidae) were pinned or pointed as 

appropriate.   

Carabidae, Cerambycidae, and Curculionidae were identified with the use of published 

keys.  In some cases, difficult-to-key specimens were photographed through the eye piece of the 

stereomicroscope using the camera on an HTC Droid Incredible 4G LTE cell phone or Samsung 

Galaxy S5 cell phone; the photographs were uploaded to Bugguide (Iowa State University 2015) 

and identifications were proposed by Bugguide members.  Proposed identifications were then 
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checked using published sources and either confirmed or corrected on the website.  Buprestidae 

were sent to Kyle Schnepp at the Florida State Collection of Arthropods for identification. 

Cerambycidae were identified by Hailey Higgins (University of Arkansas) as part of an 

undergraduate research project; identifications confirmed by the lead author. 

One to five voucher specimens of each species have been retained in the Dowling Lab 

collection at the University of Arkansas while the remaining species have been submitted to the 

University of Arkansas Arthropod Museum (UAAM). 

Statistical Analysis 

Specimen abundance per trap per date was recorded in Excel (Microsoft 2013). For each 

family analyzed, the following procedures were followed: 

A one-way analysis of variance (ANOVA) test (α = 0.05) was performed in Excel to 

compare the effect of trap type on number of species and specimens.  Due to uneven trapping 

effort and because traps were randomly lost due to rain and animal disturbance, we compared the 

average number of species and specimens collected per trap type per date after correcting for the 

number of traps per type (Eqs. 1, 2).  

 

  (1) 

 

  (2) 

 

If a significant difference was detected, the means were separated using a Tukey-Kramer 

test (α = 0.05) performed in Excel using the Real Statistics Resource Pack add-in (Zaiontz 2015).  

We chose to use ANOVA and Tukey-Kramer rather than their non-parametric equivalents as 
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both tests are relatively robust with respect to violations of the normality assumption (Kirk 1995; 

Samuels & Witmer 2003) and easily performed within Excel. 

EstimateS (Colwell 2013) was used to calculate species accumulation estimators for each 

trap type using all samples collected per trap type: abundance coverage-based estimator of 

species richness (ACE) (Chao et al. 2000); incidence coverage-based estimator of species 

richness (ICE) (Chao et al. 2000); Chao 1 richness estimator (Chao1) (Chao 1984); Chao 2 

richness estimator (Chao2) (Chao 1984, 1987); first-order Jackknife richness estimator (Jack1) 

(Burnham & Overton 1978, 1979); second-order Jackknife richness estimator (Jack2) (Burnham 

& Overton 1978, 1979) (see Gotelli & Colwell [2010] for a synopsis of each estimator).  

Additionally, the sample-based rarefaction curve (S(est)) (Colwell et al. 2004), which is the 

expected number of species in t pooled samples given the reference sample, was also calculated.  

EstimateS was run on default settings except that classic Chao1 and Chao2 estimators were used 

instead of the default bias-corrected Chao1 and Chao2 as suggested by the program.  One 

hundred randomizations of sample order were performed in order to smooth the curves.  As the 

various estimators generally calculated similar trends, we report only Chao1 estimators for each 

trap type per family in a single graph rather than all estimators per trap type in separate graphs 

for clarity and include graphs of all of the estimators in Appendix I.  Because uneven sampling 

effort between trap types does not allow the number of species collected by each trap type to be 

directly compared, EstimateS was used to extrapolate the number of samples per trap type to 

1000 samples, at which point the number of estimated species collected per trap type were 

compared. Samples were randomized across traps within a trap type and across dates.  Error bars 

were excluded from accumulation and rarefaction graphs in order to enhance clarity. 
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Species similarity between trap types and seasonality was investigated by calculating 

shared species indices using EstimateS.  EstimateS output was organized in Excel and final 

graphs were constructed in Adobe Illustrator (Adobe 2012).  EstimateS calculates a number of 

different shared species estimators; herein we report the Sørensen similarity index, an incidence-

based (i.e., presence/absence) index, and Chao’s Sørensen similarity index, an abundance-based 

index (Chao et al. 2005).  These indices indicate the similarity of the compared samples, which 

varies between 0 and 1 and indicate no to complete similarity.  The statistical significance of 

similarity cannot be determined from these indices; therefore, when discussing the estimated 

similarity, we use the terms low (0–0.24), medium (0.25–0.49), high (0.50–0.74) and very high 

(0.75–1.0).   

Shared species indices for trap types were calculated based on the total number of 

specimens per species collected per trap type.  Shared species indices for collection dates were 

calculated based on the total specimens collected per species per date; the four trap types that 

collected the most species per family are reported.   

The effect of Lindgren funnel trap color was investigated per species by performing a 

one-way ANOVA test (α = 0.05) as described above on the total number of specimens collected 

per date by each color of Lindgren funnel when more than five specimens of a species were 

collected by any color of Lindgren funnel trap.  Collection periods in which no beetles were 

collected by any trap were excluded from the analyses. 

Results. 

Buprestidae 

Collection efforts resulted in 347 specimens representing 27 species.  Malaise traps 

generally caught the most species (Figs. 5a,b) and specimens (Figs. 6a,b). Berlese-Tullgren 
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extraction of leaf litter produced no buprestids and was not considered in the analyses.  Most 

species were represented by fewer than 20 specimens, with 11 species (41%) being represented 

by singletons (Fig. 7). 

There was a significant (p<0.05) effect of trap type on the number of species collected for 

the twelve trap types (F(11,189) = 4.61, p = 1.40 × 10-6).  The mean number of species collected 

by Malaise traps (M = 0.72, SD = 1.04) was not significantly different from green Lindgren 

funnel traps (M = 0.44, SD = 0.67) and purple Lindgren funnel traps (M = 0.31, SD = 0.52) but 

was significantly different than all other trap types (p>0.05, Tukey-Kramer). The mean number 

of species in upper canopy traps (M = 0.56, SD = 0.83) were significantly different from red pan 

traps and pitfall traps.  All other  trap types were not significantly different from each other: 

lower canopy trap (M = 0.04, SD =0.10 ), black Lindgren funnel trap (M = 0.18, SD = 0.17), 

blue pan trap (M = 0.08, SD = 0.21), purple pan trap (M = 0.03, SD = 0.08), red pan trap (M = 

0.02, SD = 0.05), white pan trap (M = 0.08, SD = 0.16), yellow pan trap (M = 0.04, SD = 0.08) 

(p>0.05) (Fig. 5a).  



168 
 

 
Figures 5,6.  Average number of buprestid species and specimens collected per trap. Fig 5a. Average number of species/trap. Fig. 5b. 

Average number of species/trap/date. Fig. 6a.Average number of specimens/trap. Fig. 6b. Average number of 
specimens/trap/date. Figs. 5a,6a. Bars indicate one standard deviation, letters indicate mean separation as determined by 
Tukey-Kramer test. Figs. 5b, 6b. Trap type indicated by the same color. 
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Figure 7. Total number of buprestid specimens/species collected across all traps. 

 

There was a significant (p<0.05) effect of trap type on the number of specimens collected 

for the twelve trap types (F(11,189) = 3.79, p = 3.3 × 10-5).  The mean number of specimens 

collected by Malaise traps (M = 1.66, SD = 2.95) was not significantly different from green 

Lindgren funnel traps (M = 0.65, SD = 1.13), purple Lindgren funnel traps (M = 0.55, SD = 

1.24), and upper canopy traps (M = 0.74, SD = 1.15) but was significantly different (p<0.05) 

than all other trap types. All other trap types were not significantly different from each other: 

lower canopy trap (M = 0.04, SD =0.10 ), black Lindgren funnel trap (M = 0.1820, SD = 0.22), 

blue pan trap (M = 0.08, SD = 0.21), purple pan trap (M = 0.03, SD = 0.07), red pan trap (M = 

0.01, SD = 0.05), white pan trap (M = 0.12, SD = 0.30), yellow pan trap (M = 0.04, SD = 0.08) 

(p<0.05, Tukey-Kramer) (Fig. 6a).   

The effects of the color of Lindgren funnel traps was tested for seven species. Color had a 

significant (p<0.05, Tukey-Kramer)  effect on the number of specimens collected for six species; 

the mean number of specimens was significantly higher in green traps for three species, 

significantly higher in black and purple traps for one species each, and significantly higher in 

both green and purple traps for one species (Table 1).  
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Species 
ANOVA Tukey-Kramer 

  df ss F p-value trap color mean sd Separation of means 
Agrilus bilineatus Between groups 2 2.11 1.38 0.283 black 1.17 0.98 - 
  Within groups 15 11.5   green 0.67 1.03 - 
  Total 17 13.61     purple 0.33 0.52 - 
Agrilus cephalicus Between groups 2 3735 19.29 <0.001* black 0 0 b 
  Within groups 9 8.75   green 3.75 1.71 a 
  Total 11 46.25     purple 0 0 b 
Agrilus lecontei Between groups 2 3.56 16 0.004* black 0 0 b 
  Within groups 6 0.67   green 1.33 0.58 a 
  Total 8 4.22     purple 0 0 b 

Agrilus 
obsolettoguttatus Between groups 2 20.17 7.12 0.014* black 0 0 b 
  Within groups 9 12.75   green 2.75 2.06 a 
  Total 11 32.92     purple 0 0 b 
Dicerca lurida Between groups 2 13.5 4.26 0.007* black 0 0 b 
  Within groups 9 6.75   green 0 0 b 
  Total 11 20.25     purple 2.25 1.5 a 
Dicerca obscura Between groups 2 2.17 13 0.002* black 1 0 a 
  Within groups 9 0.75   green 0 0 b 
  Total 11 2.92     purple 0.25 0.5 b 
Ptosima gibbicollis Between groups 2 2.89 6.5 0.031* black 0 0 b 
  Within groups 6 1.33   green 1.33 0.58 a 
  Total 8 4.22     purple 0.33 0.58 a,b 

Table 1. Results of ANOVA tests comparing the effect of color on the number of specimens of different species of Buprestidae 
collected in Lindgren funnel traps.  P < 0.05 is considered significant. Significant values are indicated by as asterisk (*). 
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Species accumulation estimator curves for six of the thirteen trap types (Berlese-Tullgren, 

upper and lower canopy traps, purple, red, and white pan, and pitfall traps) became asymptotic 

and coalesced with the actual number of species collected (Figs. 8, A1a–m). However, those trap 

types collected the fewest buprestids.  Malaise and green Lindgren funnel traps are estimated to 

collect the most species after 1000 samples, with green Lindgren funnels collecting the most 

species for the first 150 samples and Malaise traps collecting more species thereafter (Fig. 9).   

Green and purple Lindgren funnel and Malaise traps exhibit, with a single exception, 

medium similarity with each other and medium to very high similarity with canopy traps (Fig. 

10).  All four trap types exhibit medium to very high similarity with black Lindgren funnel and 

blue pan traps and generally exhibit low similarity with yellow, purple, and red pan and lower 

canopy traps, though all pan traps, excepting blue, collected relatively few species.     

Buprestidae exhibited distinct seasonal trends, which is reflected in the number of species 

and specimens collected per trap type (Figs. 5b, 6b).  Eleven of twelve species that were only 

sampled during one trapping period and five of six species that exhibited population increases 

did so during the same time period; additionally, only seven species were collected after 17 July, 

all of which were collected before that date.  When comparing trap collection dates using 

similarity indices, Malaise traps (Fig. 11a) typically exhibit high to very high similarity between 

trap dates within 6 weeks of each other.  Conversely, green Lindgren funnel traps, with a few 

exceptions, exhibited low to medium similarity regardless of the trapping periods compared (Fig. 

11b).  Overall, collections made within four to six weeks of each other typically have high to 

very high similarity, while collections made beyond six weeks apart show low to medium 

similarity (Fig. 11c) and most species and specimens were collected from late spring through 

early summer (early June–mid July) (Fig. 12). 
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Figures 8, 9. Species rarefaction curves. Fig. 8. Chao 1 rarefaction curves based on the data. Fig. 
9. Estimated rarefaction curves (S(est)) extrapolated to 1000 samples. 



173 
 

 
Figure 10. Similarity of trap catch as determined by Sørensen and Chao’s Sørensen Indices.  

Number of species collected per trap type is indicated parenthetically after each trap type. 
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Figure 11. Sørensen and Chao’s Sørensen Indices comparing similarity of trap catch by date in Malaise and green Lindgren funnel 

traps and all trap catch combined. 174
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Figure 12. Phenology of buprestids collected during this study summed across all trap types.  
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Carabidae 

Collection efforts resulted in 1964 specimens representing 62 species.  Pitfall traps 

caught the most species (Figs. 13a,b) and specimens (Figs.14a,b).  Most species were represented 

by fewer than 20 specimens, with 17 species (27%) being represented by singletons (Fig. 15). 

There was a significant (p<0.05) effect of trap type on the number of species collected for 

the thirteen trap types (F(12,203) = 23.55, p = 2.60 × 10-32).  The mean number of species 

collected by pitfall traps (M = 1.84, SD = 0.66) was significantly different than all other trap 

types; green Lindgren funnel (M = 0.60, SD = 0.55) was significantly different from blue, white, 

and yellow pan traps but not other trap types (p<0.05, Tukey-Kramer); the remaining trap types 

were not significantly different from each other: Berlese-Tullgren (M = 0.49, SD = 0.28), lower 

canopy trap (M = 0.26, SD = 0.30), upper canopy trap (M = 0.32, SD = 0.35), black Lindgren 

funnel (M = 0.42, SD = 0.35), purple Lindgren funnel (M = 0.47, SD = 0.35), Malaise trap (M = 

0.49, SD = 0.43), blue pan trap (M = 0.15, SD = 0.21), purple pan trap (M = 0.29, SD = 0.36), 

red pan trap (M = 0.25, SD = 0.35), white pan trap (M = 0.15, SD = 0.25), and yellow pan trap 

(M = 0.06, SD = 0.14) (p>0.05) (Fig. 13a).   
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Figures 13,14.  Average number of carabid species and specimens collected per trap. Fig 13a. Average number of species/trap. Fig. 

13b. Average number of species/trap/date. Fig. 14a. Average number of specimens/trap. Fig. 14b. Average number of 
specimens/trap/date. Figs. 13a,14a. Bars indicate one standard deviation, letters indicate mean separation as determined by 
Tukey-Kramer test. Figs. 13b, 14b. Trap type indicated by the same color. 
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Figure 15. Total number of carabid specimens/species collected across all traps. 
 

There was a significant effect (p<0.05) of trap type on the number of specimens collected 

for the thirteen trap types (F(12,203) = 24.03, p = 8.05 × 10-33).  The mean number of specimens 

collected by pitfall traps (M = 4.69, SD = 2.89) was significantly different than all other trap 

types and that all other trap types were not significantly different from each other: Berlese-

Tullgren (M = 0.71, SD = 0.40), lower canopy trap (M = 0.32, SD = 0.38), upper canopy trap (M 

= 0.67, SD = 1.04), black Lindgren funnel (M = 0.68, SD = 0.99), green Lindgren funnel (M = 

0.85, SD = 0.79), purple Lindgren funnel (M = 0.86, SD = 1.10), Malaise trap (M = 0.73, SD = 

0.88), blue pan trap (M = 0.20, SD = 0.47), purple pan trap (M = 0.45, SD = 1.0), red pan trap 

(M = 0.28, SD = 0.44), white pan trap (M = 0.20, SD = 0.48),and yellow pan trap (M = 0.06, SD 

= 0.13) (p<0.05, Tukey-Kramer) (Fig. 14a).   

The effects of the color of Lindgren funnel traps was tested for three species.  Color did 

not have a significant effect on the number of specimens collected at the p<0.05 level (Table 2). 
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Species 

ANOVA Tukey-Kramer 

  df ss F p-value trap color mean sd 
Separation  of 

means 
Amara 
musculis Between groups 2 6.5 1.5 0.274 black 3.50 6.08 - 
  Within groups 9 19.5   green 2.42 2.94 - 
  Total 11 26     purple 3.83 6.53 - 
Cymindis 
limbata Between groups 2 13.17 0.22 0.801 black 0.75 1.50 - 
  Within groups 33 971.58   green 2.00 2.00 - 
  Total 35 984.75     purple 0.25 0.50 - 
Lebia viridis Between groups 2 10.11 1.64 0.228 black 0.50 1.22 - 
  Within groups 15 46.33   green 2.33 2.42 - 
  Total 17 56.44     purple 1.50 1.38 - 

Table 2. Results of ANOVA tests comparing the effect of color on the number of specimens of different species of Carabidae 
collected in Lindgren funnel traps. P < 0.05 is considered significant. Significant values are indicated by as asterisk (*). 
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Species accumulation estimator curves for nine of the thirteen trap types (Berlese-

Tullgren, upper and lower canopy traps, black and green Lindgren funnel traps, blue, purple, red, 

and white pan traps) became asymptotic (Figs. 16, A2a–m). However, those trap types collected 

the fewest carabids and in only the white pan traps, which collected the fewest species, did the 

estimators and actual number of specimens collected coalesce.  Pitfall, Malaise, and purple 

Lindgren funnel traps were estimated to collect the most species after 1000 samples (Fig. 17).   

Pitfall traps exhibited medium to very high similarity (Sørensen = 0.47, Chao’s Sørensen 

= 0.82) with Berlese-Tullgren sampling (Fig. 18).  Lindgren funnel, Malaise, and canopy traps 

exhibited medium to very high similarity (Sørensen = 0.26–0.70, Chao’s Sørensen = 0.49–0.94) 

with each other, but, with a single exception, low to medium similarity (Sørensen = 0.13–0.32, 

Chao’s Sørensen = 0.1–0.15) with pitfall traps.  Blue, purple, red, and yellow pan traps exhibited 

high to very high similarity with each other (Sørensen = 0.50–0.73, Chao’s Sørensen = 0.60–

0.90), but low to medium similarity with white pan traps (Sørensen = 0–0.35, Chao’s Sørensen = 

0–0.22).  Purple and white pan traps generally exhibited medium to very high similarity with 

non-pan traps (Sørensen = 0.26–0.59, Chao’s Sørensen = 0.25–0.86), while yellow pan traps 

exhibited the lowest similarity with non-pan traps (Sørensen = 0–0.18, Chao’s Sørensen = 0–

0.19).   
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Figures 16, 17. Species rarefaction curves. Fig. 16. Chao 1 rarefaction curves based on the data. 

Fig. 17. Estimated rarefaction curves (S(est)) extrapolated to 1000 samples. 
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Figure 18. Similarity of trap catch as determined by Sørensen and Chao’s Sørensen 

Indices.  Number of species collected per trap type is indicated parenthetically after 
each trap type. 

 

Carabidae exhibited distinct seasonal trends with the most specimens collected in late 

spring (late May – early June) and late summer/early fall (mid-August – mid-September) (Fig. 

14b), although the number of species collected remained relatively constant throughout the study 

with a small increase in early summer (June) (Fig. 13b).  When comparing trap collection dates 

using similarity indices, pitfall traps generally exhibited at least medium similarity regardless of 

the date considered and high to very high similarity between dates within two to four weeks of 

the date considered (Fig. 19a).  Malaise traps exhibited high to very high similarity among spring 

and fall dates, but no similarity between them (Fig. 19b).  When all traps were combined, the 

similarity between dates was similar to that exhibited by pitfall traps (Fig. 19c). 
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Figure 19. Sørensen and Chao’s Sørensen Indices comparing similarity of trap catch by date in Malaise and green Lindgren 

funnel traps and all trap catch combined. 
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Approximately a third of the total species were collected in sufficient numbers to 

examine species-level phenology (Fig. 20a), while approximately a quarter were collected 

throughout the study but in low numbers that did not allow any interpretation of phenology (Fig. 

20b). Forty percent of the species collected were found in low numbers during only a few 

trapping periods (Fig. 20c).   
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Figure 20. Phenology of carabids collected during this study summed across all trap types. Fig. 
20a. Species with more than five specimens collected in at least one collecting period. 
Fig. 20b.  Species with five or fewer specimens collected in any collection period but 
found in at least four collection periods. Fig. 20c. Species with five or fewer specimens 
collected in any collection period and found in three or fewer collection periods. 
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Cerambycidae 

 Collection efforts resulted in 1885 specimens representing 82 species.  Malaise and upper 

canopy traps caught the most species (Figs. 21a,b) and specimens (Figs. 22a,b). Berlese-Tullgren 

extraction of leaf litter produced no cerambycids and is not considered in the analyses.  Half of 

all species were represented by six or more specimens, while 16 species (19.5%) were 

represented by a single specimen (Fig. 23).  

There was a significant (p<0.05) effect of trap type on the number of species collected for 

the twelve trap types (F(11,189) = 7.22, p = 3.10 × 10-10).  The mean number of species collected 

by Malaise traps (M = 2.62, SD = 3.19) and upper canopy traps (M = 2.40, SD = 3.01) were not 

significantly different from black Lindgren funnel traps (M = 1.40, SD = 1.51), green Lindgren 

funnel traps (M = 1.12, SD = 1.04) and purple Lindgren funnel traps (M = 1.60, SD = 1.52) but 

were significantly different than all other trap types (p<0.05, Tukey-Kramer). Lindgren funnel 

traps were not significantly different from pan traps, lower canopy traps, or pitfall traps.  Pan 

traps, lower canopy traps, and pitfall traps were not significantly different from each other: lower 

canopy trap (M = 0.14, SD =0.36 ), blue pan trap (M = 0.14, SD = 0.23), purple pan trap (M = 

0.14, SD = 0.21), red pan trap (M = 0.14, SD = 0.20), white pan trap (M = 0.15, SD = 0.12), 

yellow pan trap (M = 0.06, SD = 0.20), pitfall trap (M = 0.02, SD = 0.06) (Fig. 21a) (p>0.05).   

There was a significant (p<0.05) effect of trap type on the number of specimens for the 

twelve trap types (F(11,189) = 4.57, p = 3.80 × 10-6).  The mean number of specimens collected 

by Malaise traps (M = 6.49, SD = 10.88) was not significantly different from purple Lindgren 

funnel traps (M = 2.48, SD = 3.08) and upper canopy traps (M = 3.76, SD = 5.76) (p>0.05, 

Tukey-Kramer) but was significantly different than all other trap types (p<0.05). Purple Lindgren 
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funnel traps and upper canopy traps were not significantly different from all other trap types and 

no significant difference was detected between all other trap types: lower canopy trap (M = 0.17, 

SD =0.38 ), black Lindgren funnel trap (M = 1.82, SD = 2.67), green Lindgren funnel  trap (M = 

1.71, SD = 2.27), blue pan trap (M = 0.14, SD = 0.20), purple pan trap (M = 0.11, SD = 0.18), 

red pan trap (M = 0.10, SD = 0.23), white pan trap (M = 0.11, SD = 0.17), yellow pan trap (M = 

0.04, SD = 0.11), pitfall trap (M = 0.02, SD = 0.06) (p>0.05) (Fig. 22a).   

The effects of the color of Lindgren funnel traps was tested for twelve species.  Color had 

a significant (p<0.05 ) effect on the number of specimens collected for Xylotrechus colonus 

(Fab.) but not other species; the mean number of X. colonus specimens collected by black 

Lindgren funnel traps was significantly higher than green traps but not purple traps and that 

purple and green traps were not significantly different (p<0.05, Tukey-Kramer) (Table 3).    

Species accumulation estimator curves for six of the twelve trap types (lower canopy and 

blue, purple, red, white and yellow pan traps) became asymptotic (Figs. 24, A3a–m). However, 

those trap types collected the fewest cerambycids and in only the yellow pan traps, which 

collected the fewest species, did the estimators and actual number of specimens collected 

coalesce.  Malaise and upper canopy traps were estimated to collect the most species and become 

asymptotic after approximately 400 samples (Fig. 25).   
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Figures 21,22. Average number of cerambycid species and specimens collected per trap. Fig 21a. Average number of species/trap. 
Fig. 21b. Average number of species/trap/date. Fig. 22a. Average number of specimens/trap. Fig. 22b. Average number of 
specimens/trap/date. Figs. 21a,22a. Bars indicate one standard deviation, letters indicate mean separation as determined by 
Tukey-Kramer test. Figs. 21b, 22b. Trap type indicated by the same color. 189
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Figure 23. Total number of cerambycid specimens/species collected across all traps. 
 

Malaise, upper canopy, and Lindgren funnel traps had high to very high similarity 

(Sørensen = 0.57–0.68, Chao’s Sørensen = 0.62–0.94) (Fig. 26 – trap comparison).  The 

remaining traps collected significantly fewer species and specimens and will not be considered 

further. 

Cerambycidae exhibited distinct seasonality, with most species and specimens collected 

during the early summer (Figs. 21b, 22b).  Overall, samples collected in the summer and fall 

were highly similar and distinct from samples collected in the spring when examining individual 

trap types (Fig. 27a,b) and all  traps together (Fig. 27c). 

Approximately 24% of the total species were collected in sufficient numbers to examine 

species-level phenology (Fig. 28a), while 15% were collected throughout the study but in low 

numbers that do not allow any interpretation of phenology (Fig. 28b) and 62% were found in low 

numbers during only a few trapping periods (Fig. 28c).  
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Species 

ANOVA Tukey-Kramer 
  df ss F p-value trap 

color mean sd Separation  of means
Anelaphus parallelus Between groups 2 66.89 0.96 0.433 black 4.67 4.73 - 
  Within groups 6 208    green 8.33 2.31 - 
  Total 8 274.89     purple 11.3 8.74 - 
Elaphidion mucronatum Between groups 2 26.47 0.77 0.472 black 4.20 6.29 - 
  Within groups 27 462.5    green 1.90 1.52 - 
  Total 29 488.97     purple 3.00 3.09 - 
Elytrimitatrix undata Between groups 2 0.13 0.06 0.94 black 1.00 1.22 - 
  Within groups 12 12.8    green 0.80 0.84 - 
  Total 14 12.93     purple 1.00 1.00 - 
Heterachthes 
quadrimaculatus 

Between groups 2 2.17 1.15 0.36 black 1.25 1.50 - 

  Within groups 9 8.5    green 0.25 0.50 - 
  Total 11 10.67     purple 0.50 0.58 - 
Molorchus bimaculatus Between groups 2 250.89 5.02 0.052 black 3.67 1.53 - 
  Within groups 6 150    green 14.3 8.37 - 
  Total 8 400.89     purple 2.67 1.53 - 
Neoclytus acuminatus Between groups 2 1.58 1.6 0.225 black 0.50 0.76 - 
  Within groups 21 10.38    green 0.25 0.46 - 
  Total 23 11.96     purple 0.88 0.83 - 

Table 3. Results of ANOVA tests comparing the effect of color on the number of specimens of different species of Cerambycidae 
collected in Lindgren funnel traps. P < 0.05 is considered significant. Significant values are indicated by as asterisk (*). 
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Species 

ANOVA Tukey-Kramer 
  df ss F p-value trap 

color mean sd 
Separation  of 

means 
Neoclytus mucronatus Between groups 2 51.71 1.93 0.174 black 3.71 3.40 - 
  Within groups 18 240.86    green 0 0 - 
  Total 20 292.57     purple 2.71 5.35 - 
Neoclytus scutellaris Between groups 2 0.13 2.72 0.106 black 1.40 2.61 - 
  Within groups 12 41.6    green 1.40 1.67 - 
  Total 14 41.73     purple 1.60 0.89 - 
Parelaphidion aspersum Between groups 2 3.56 2.72 0.106 black 1.67 2.08 - 
  Within groups 6 10.00    green 0.33 0.58 - 
  Total 8 13.56     purple 0.33 0.58 - 
Saperda imitans Between groups 2 8.22 3.7 0.09 black 1.00 1.00 - 
  Within groups 6 6.67    green 0 0 - 
  Total 8 14.89     purple 2.33 1.53 - 
Stenosphenus notatus Between groups 2 370 2.72 0.106 black 0.40 0.55 - 
  Within groups 12 817.6    green 1.40 1.34 - 
  Total 14 1187.6     purple 11.4 14.2 - 
Xylotrechus colonus Between groups 2 78.79 4.83 0.015* black 3.72 2.8 a,b 
  Within groups 30 244.73    green 0.09 0.3 b 
  Total 32 323.52     purple 2.82 4.07 a,b 

Table 3 (cont.). Results of ANOVA tests comparing the effect of color on the number of specimens of different species of 
Cerambycidae collected in Lindgren funnel traps. P < 0.05 is considered significant. Significant values are indicated by as 
asterisk (*). 
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Figures 16, 17. Species rarefaction curves. Fig. 16. Chao 1 rarefaction curves based on the data. 
Fig. 17. Estimated rarefaction curves (S(est)) extrapolated to 1000 samples. 
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Figure 26. Similarity of trap catch as determined by Sørensen and Chao’s Sørensen Indices.  
Number of species collected per trap type is indicated parenthetically after each trap type. 
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Figure 27. Sørensen and Chao’s Sørensen Indices comparing similarity of trap catch by date in Malaise and purple Lindgren funnel 
traps and all trap catch combined. 195
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Figure 28. Phenology of cerambycids collected during this study summed across all trap types. 
Fig. 28a. Species with more than five specimens collected in at least one collecting 
period. Fig. 28b.  Species with five or fewer specimens collected in any collection period 
but found in at least four collection periods. Fig. 28c. Species with five or fewer 
specimens collected in any collection period and found in three or fewer collection 
periods.  
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Curculionoidea 

 Collecting efforts resulted in 3777 specimens representing 71 species.  Malaise and pitfall 

traps caught the most species (Figs. 29a,b), while Malaise and upper canopy traps caught the 

most specimens (Fig. 30a,b).  Half of the species collected were represented by five or fewer 

specimens and 28% of the species were represented by singletons (Fig. 31). 

There was a significant (p<0.05) effect of trap type on the number of species collected for 

the thirteen trap types (F(12,203) = 5.45, p = 5.30 × 10-8).  The mean number of species collected 

by Malaise traps (M = 2.24, SD = 1.79) were not significantly different (p>0.05, Tukey-Kramer) 

from pitfall (M = 1.78, SD = 0.66), purple pan (M = 1.51, SD = 0.90), white pan (M = 1.43, SD 

= 0.94), and upper canopy traps (M = 1.31, SD = 1.23) but were significantly different than all 

other trap types (p>0.05). Pitfall traps were not significantly different from purple and white pan 

and upper canopy traps and Berlese-Tullgren sampling (M = 1.11, SD = 0.47), but were 

significantly different from blue, yellow, and red pan, lower canopy, and Lindgren funnel traps.  

Purple pan traps were significantly different from black Lindgren funnel traps (M = 0.37, SD = 

0.33), but not significantly different from all other trap types.  The remaining trap types were not 

significantly different from each other: Blue pan (M = 0.95, SD = 0.60), yellow pan (M = 0.90, 

SD = 0.60), red pan (M = 0.75, SD = 0.54), green Lindgren funnel (M = 0.91, SD = 1.12), purple 

Lindgren funnel (M = 0.74, SD = 0.73), and black Lindgren funnel (M = 0.37, SD = 0.33). (Fig. 

29a).   

There was a significant (p<0.05) effect of trap type on the number of specimens collected 

for the thirteen trap types (F(12,203) = 4.57, p = 3.80 × 10-6).  The mean number of specimens 

collected by Malaise traps (M = 6.16, SD = 8.17) and upper canopy traps (M = 5.88, SD = 8.85) 

were not significantly (p>0.05, Tukey-Kramer) different from pitfall (M = 4.41, SD = 2.25), 
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purple Lindgren funnel traps (M = 1.09, SD = 1.32), white pan (M = 3.03, SD = 2.92), blue pan 

(M = 2.35, SD = 2.74), yellow pan (M = 2.21, SD = 2.62), red pan (M = 1.86, SD = 2.68), or 

Berlese-Tullgren extraction (M = 1.80, SD = 1.09) but were significantly (p<0.05) different from 

black Lindgren funnel (M = 0.48, SD = 0.46), green Lindgren funnel (M = 1.30, SD = 1.48), 

purple Lindgren funnel (M = 1.09, SD = 1.34), and lower canopy (M = 0.96, SD = 1.15) traps. 

The number of specimens collected in pitfall, pan, Lindgren funnel and lower canopy traps were 

not significantly different from each other (p>0.05) (Fig. 30a). 

The effects of the color of Lindgren funnel traps was tested for fourteen species.  Color 

had a significant (p<0.05) effect on the number of specimens collected at the p<0.05 level for ten 

species; the mean number of specimens was significantly (p<0.05, Tukey-Kramer) higher in 

green Lindgren funnel traps for two species, higher in purple traps for four species, could not be 

separated for two species, higher in green compared to black but not purple for one species, and 

higher in black compared to purple but not green for one species. (Table 4).   

Species accumulation estimator curves for three of the thirteen trap types (black and 

purple Lindgren funnel and yellow pan traps) became asymptotic (Figs. 32, A4a–m), and in two 

trap types (black and purple Lindgren funnel traps) the estimators and actual number of 

specimens collected coalesced. However, those trap types collected the fewest curculionoids.  

Green Lindgren funnel traps were estimated to not become asymptotic and collect the most 

species after 1000 samples; however, Malaise traps were estimated to collect more species than 

green Lindgren funnel traps for the first 250 samples (Fig. 33). 
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Figures 29,30. Average number of cerambycid species and specimens collected per trap. Fig 29a. Average number of species/trap. 
Fig. 29b. Average number of species/trap/date. Fig. 30a. Average number of specimens/trap. Fig. 30b. Average number of 
specimens/trap/date. Figs. 29a,30a. Bars indicate one standard deviation, letters indicate mean separation as determined by 
Tukey-Kramer test. Figs. 29b, 30b. Trap type indicated by the same color. 202
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Figure 31. Total number of curculionoid specimens/species collected across all traps. 
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Species 

ANOVA Tukey-Kramer 
  df ss F p-value trap 

color mean sd 
Separation  of 

means 
Anthonomus rufipennis Between groups 2 3.56 16 0.004* black 0 0 b 
  Within groups 6 0.67    green 1.3 0.58 a 
  Total 8 4.22     purple 0 0 b 
Anthonomus sutralis Between groups 2 22.93 4.05 0.045* black 0.4 0.89 a 
  Within groups 12 34    green 0 0 a 
  Total 14 56.93     purple 0 0 a 
Apteromechus ferratus Between groups 2 0.08 0.02 0.983 black 1.63 1.77 - 
  Within groups 21 51.25    green 1.75 1.67 - 
  Total 23 51.33     purple 1.63 1.19 - 
Conotrachelus anaglypticus Between groups 2 4.95 4.46 0.027* black 1.29 0.95 a 
  Within groups 18 10    green 0.43 0.79 a,b 
  Total 20 14.95     purple 0.14 0.38 b 
Conotrachelus aratus Between groups 2 28.58 1.59 0.228 black 0.25 0.71 - 
  Within groups 21 189.25    green 1.13 0.99 - 
  Total 23 217.83     purple 2.88 5.06 - 
Conotrachelus elegans Between groups 2 16.33 49 0.005* black 0 0 b 
  Within groups 3 0.5    green 0 0 b 
  Total 5 16.83     purple 3.5 0.71 a 
Conotrachelus naso Between groups 2 1.78 1.54 0.247 black 0.33 0.52 - 
  Within groups 15 8.67    green 1.00 1.10 - 
  Total 17 10.44     purple 0.33 0.52 - 

Table 4. Results of ANOVA tests comparing the effect of color on the number of specimens of different species of Curculionoidea 
collected in Lindgren funnel traps. P < 0.05 is considered significant. Significant values are indicated by as asterisk (*). 
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Species 

ANOVA Tukey-Kramer 
  df ss F p-value trap 

color mean sd 
Separation  of 

means 
Cossonus impressifrons Between groups 2 6 6.35 0.019* black 0 0 b 
  Within groups 9 4.25    green 0 0 b 
  Total 11 10.25     purple 1.75 0.96 a 
Cyrtepistomus castaneus Between groups 2 16.44 4.4 0.031* black 0.33 0.82 b 
  Within groups 15 28    green 1.33 1.03 a,b 
  Total 17 44.44     purple 2.67 1.97 a 
Dryophthorus americanus Between groups 2 25 25 <0.001* black 0 0 b 
  Within groups 9     green 0 0 b 
  Total 11       purple 1.25 0 a 
Eugnamptus angustatus Between groups 2 5.56 25 0.001* black 0 0 b 
  Within groups 6 0.67    green 0 0 b 
  Total 8 6.22     purple 1.67 0.58 a 
Hypera meles Between groups 2 8 12 0.008* black 0 0 b 
  Within groups 6 2    green 2 0 a 
  Total 8 10     purple 0 0 b 
Lechriops oculatus Between groups 2 14.78 4.1 0.038* black 0.17 0.41 a 
  Within groups 15 27    green 2.17 2.14 a 
  Total 17 41.78     purple 0.33 0.82 a 
Madarellus undulatus Between groups 2 4.33 2.17 0.262 black 0.50 0.71 - 
  Within groups 3 3    green 1.00 1.41 - 
  Total 5 7.33     purple 2.50 0.71 - 

Table 4 (cont.). Results of ANOVA tests comparing the effect of color on the number of specimens of different species of 
Curculionoidea collected in Lindgren funnel traps. P < 0.05 is considered significant. Significant values are indicated by as 
asterisk (*). 
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Figures 32, 33. Species rarefaction curves. Fig. 32. Chao 1 rarefaction curves based on the data. 
Fig. 33. Estimated rarefaction curves (S(est)) extrapolated to 1000 samples. 
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 Green Lindgren funnel, Malaise, and purple pan traps exhibited high to very high 

similarity with respect to the species collected with each other (Sørensen = 0.55–0.61, Chao’s 

Sørensen = 0.71–0.90) (Fig. 34).  With one exception, Berlese-Tullgren and pitfall sampling 

exhibited medium similarity with Green Lindgren funnel and Malaise traps (Sørensen = 0.33–

0.47, Chao’s Sørensen = 0.39–0.47), but high to very high similarity with purple pan traps 

(Sørensen = 0.56, 0.59, Chao’s Sørensen = 0.70, 0.93).  Pan traps exhibited high to very high 

similarity with each other (Sørensen = 0.55–0.78, Chao’s Sørensen = 0.88–0.98) and Malaise 

and upper and lower canopy traps exhibited medium to very high similarity (Sørensen = 0.41–

0.63, Chao’s Sørensen = 0.79–0.95). 

Curculionoidea exhibited seasonality, with the most species and specimens collected in 

late spring and a secondary peak in the number of specimens collected in the fall (Figs. 29b, 

30b).  Overall, samples collected within five collection periods (approximately 10 weeks) have 

high to very high similarity with each other and medium to high similarity with samples further 

removed in time (Fig. 35c).  However, individual trap types show less similarity: for example, 

Malaise traps collected distinct spring and fall species assemblages that both had medium 

similarity with the assemblage collected in the summer (Fig. 35a ), while purple pan traps 

collected a distinct spring assemblage that was different from that collected in summer and fall 

(Fig. 35b). 

Thirty five percent of the curculionoid species were collected in sufficient numbers to 

examine species-level phenology (Fig. 36a), while fifteen percent were collected throughout the 

study but in low numbers that do not allow any interpretation of phenology (Fig. 36b). Sixty four 

percent of the species, including all of the non-curculionid curculionoids, were found in low 

numbers during only a few trapping periods (Fig. 36c).   
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Figure 34. Similarity of trap catch as determined by Sørensen and Chao’s Sørensen Indices.  

Number of species collected per trap type is indicated parenthetically after each trap type. 
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Figure 35. Sørensen and Chao’s Sørensen Indices comparing similarity of trap catch by date in Malaise and purple pan traps and all 

trap catch combined. 
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Figure 36. Phenology of curculionoids collected during this study summed across all trap types. 
Fig. 36a. Curculionidae with more than five specimens collected in at least one collecting 
period. Fig. 36b.  Curculionidae with five or fewer specimens collected in any collection 
period but found in at least four collection periods. Fig. 36c. Curculionidae with five or 
fewer specimens collected in any collection period and found in three or fewer collection 
periods.  Fig. 36d. Anthribidae. Fig. 36 e. Attelabidae. Fig. 36f. Brachyceridae. Fig. 36g. 
Brentidae. 

 

 

 

 

 



215 
 

Discussion. 

Buprestidae 

Malaise, upper canopy, green and purple Lindgren funnel traps collected the most 

buprestid species and specimens.  Malaise and upper canopy traps exhibited high to very high 

similarity in the species collected with each other but, with two exceptions comparing Malaise 

traps to green and black Lindgren funnel traps using Chao’s Sørensen index, only medium 

similarity with Lindgren funnel traps.  Additionally, Malaise and upper canopy traps collected 

the largest buprestids at the site – Chrysobothris Eschscholtz and Dicerca Eschscholtz – in 

higher abundance than other methods. This indicated that Malaise and upper canopy traps, which 

were constructed from similar material and collect taxa in a similar fashion, targeted a species 

assemblage (i.e., large species) that other methods poorly sampled and also suggested that the 

large species are active both near the ground and in the canopy. 

Trap color appeared to be an important component of Lindgren funnel traps when 

targeting buprestids.  Green and purple Lindgren funnel traps exhibited only medium similarity 

in the species collected and differentially peaked in the number of species and specimens 

collected.  Six of seven species analyzed were caught in significantly higher numbers by specific 

colored traps: four were caught in higher numbers by green traps, one by purple traps, and one 

by black traps. Other studies have examined the role of color in attraction and trapping of 

Buprestidae but most have either focusing at the family level or on economically important 

species (e.g., emerald ash borer, Agrilus planipennis Fairmaire) (Table 5).  However, two studies 

(i.e., Petrice et al. 2013, Peatrice & Haack 2015) found that, while there was no difference in the 

attraction of emerald ash borer to green or purple traps, other Agrilus Curtis species demonstrate 

significant preference for green or green and purple traps. It is therefore probable that green and 
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purple Lindgren traps attract different species and that the bulk of studies that have examined 

color preference in emerald ash borer may not be applicable to other Agrilus or buprestids in 

general. 

Highest-level taxon 
considered 

Lowest taxonomic 
level identified Reference 

Insecta family Skvarla & Holland 2011 

Coleoptera family Oliver et al. 2002 

Coleoptera species Sakalian et al. 1993 

Buprestidae species Sakalian 1993; Oliver et al. 2003; 
Sakalian & Langourov 2004; Peatrice 
et al. 2013; Peatrice & Haack 2015 

Agrilus species Domingue et al. 2013 

Agrilus planipennis 
Fairmaire 

species Francese et al. 2005; Otis et al. 2005; 
Francese et al. 2008; Lelito et al. 
2008; Crook et al. 2009; Francese et 
al. 2010a; Francese et al. 2010b; 
Francese et al. 2011; Francese et al. 
2013a; Francese et al. 2013b; Poland 
& McCullough 2014 

Agrilus sulcicollis 
Lacordaire 

species Petrice & Haack 2014 

Agrilus bilineatus (Weber) species Petrice & Haack 2014 

Table 5. Select references pertaining to color attraction in Buprestidae. 

 

Malaise and upper canopy traps were estimated to collect approximately the same 

number of buprestid species for the first fifty samples or so; however, species accumulation 

curves for upper canopy traps became asymptotic by 70 samples while the extrapolated 

rarefaction curve for Malaise traps was not estimated to approach an asymptote until nearly 1000 

samples.  This resulted in Malaise traps being expected to collect more than triple the number of 

species when large numbers of samples are taken. 
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Species accumulation curves for green and purple Lindgren funnel traps did not become 

asymptotic after 85 and 82 collections, respectively.  Extrapolated rarefaction curves for both 

traps became asymptotic after approximately 350 samples 

Pan traps generally collected the fewest buprestid species and specimens.  Whether this 

was due to their placement under Malaise traps in this study, which may have obscured them to 

beetles in the canopy, or because buprestids were less likely to fly into traps placed on the 

ground is unclear.  The only other study that compared the efficiency of pan traps to other trap 

types found that pan traps caught the fewest buprestid species and specimens (McIntosh et al. 

2001), which suggests the results presented here were to be expected.  However, blue pan traps 

may be an exception as they collected nearly as many species and specimens as black Lindgren 

funnel and upper canopy traps and were estimated to collect the third most species after 

approximately 220 samples. 

Seasonality in buprestids is attracting interest as emerald ash borer and other invasive 

buprestids threaten native and managed landscapes.  In temperate climates similar to the site 

studied herein, Dodds and Ross (2002) found buprestids active throughout the summer with a 

peak in late summer, while Sakalian and Langourov (2004), found them to be most active in the 

early summer.  However, Klingeman et al. (2015), after accumulating collection data from 

15,217 specimens of 135 species from North Carolina and Tennessee, found seasonality varied 

by species, with many species active in early summer while others are found only in the spring or 

are active throughout the warm months.  Thus, while there is some seasonality to buprestids in 

general, it is likely that much of the apparent seasonality in this and other studies was due to a 

relatively few number of specimens from a limited number of species.   
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Carabidae 

Pitfall traps are generally thought to be the most effective trap to collected carabids and 

are often used to collect them (e.g., Greenslade 1964; Baars 1979; Waage 1985; Desender 

&Maelfait 1986; Halsall & Wratten 1988; Morrill et al. 1990; Niemelä et al. 1990; Wiedenmann 

et al. 1992; Work et al. 2002; Raworth & Choi 2003; Buchholz et al. 2010).  Unsurprisingly, 

pitfall traps collected the most carabid species and specimens.  However, leaf litter samples 

processed with Berlese-Tullgren extractors exhibited high species similarity with pitfall traps, 

which suggests both methods target the same assemblage of ground-dwelling carabids when 

samples are taken from forest floor leaf litter habitat and Berlese-Tullgren samples are better 

suited for qualitative sampling (Sabu & Shiju 2010; Sabu et al. 2011) as the fauna collected by 

pitfall traps are affected by a number of factors, such as trap diameter, trap material, and activity 

level of target species (for a detailed discussion of issues with pitfall traps see Skvarla et al. 2014 

[Chapter II]).  Additionally, Spence and Niemelä 1994 found large-bodied carabids dominate 

pitfall catch and small-bodied species dominate litter samples, so while both methods primarily 

target terrestrial species and may adequately sample that community after many samples, they 

may preferentially sample certain species when a limited number of samples are taken.   

Aerial traps (i.e., Malaise, canopy, and Lindgren funnel traps) generally exhibited only 

low to medium similarity with pitfall traps and collected fifteen species in four tribes not caught 

in pitfall traps (number of species noted parenthetically): Lebiini (7), Bembidiini (4), Harpalini 

(2), and Platynini (2).  Lebiini and Tachyta Kirby (Bembidiini) are arboreal and an expected 

component of aerial traps (Ball & Bousquet 2001).  Two species, Agonum crenulatum (LeConte) 

and Tachys oblitus Casey (Platynini and Bembidiini, respectively) are attracted to UV lights 

(Ciegler 2000), so may fly frequently and encounter aerial traps.  The remaining five species are 
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hygro- or mesophilous (Ciegler 2000); we therefore suggest these species were collected in aerial 

traps as they moved between preferred habitat patches and that pitfall traps placed near such 

habitat may have collected them.  Considering this, aerial traps appeared to target a different, 

complimentary assemblage of carabids to pitfalls.  This has been previously suggested by 

Ulyshen et al. (2005), who reported that canopy traps (top + bottom collector) collect smaller, 

more aerial carabid species more effectively than pitfall traps and should be used in combination 

with pitfall traps when surveying carabid diversity. 

Different colored Lindgren funnel traps did not collect significantly different numbers of 

specimens in the two species tested.  Color was likely not an important consideration when 

targeting aerial carabids. 

Pan traps (except white pans) exhibited low to medium similarity with pitfall and aerial 

traps.  However, pan traps collectively only caught three species – Clivina pallida (Say), 

Cyclotrachelus torvus (LeConte), Galerita janus (Fab.) – that were unique to pan traps and one 

species – Galerita bicolor (Drury) – in higher numbers in pan traps than other trap types.  Of the 

three unique species, two were represented by singletons and one by two specimens, suggesting 

they were either uncommon in the habitat or none of the methods employed were suitable for 

collecting them.  We therefore suggest that, while pan traps exhibited low similarity with other 

trap types, they are generally unsuitable for collecting carabids, especially when other more 

effective methods are employed. 

Species accumulation curves for pitfall, Malaise, and purple Lindgren funnel traps did not 

became asymptotic after 268, 95, and 82 2-week samples, respectively, and extrapolated 

rarefaction curves for all three trap types did not became asymptotic after 1000 samples.  This 

indicated that significantly more trapping effort is needed in order to inventory all species at the 
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site.  Additionally, the extrapolated rarefaction curves suggest Malaise traps may be more 

effective than pitfall traps after approximately 500 samples.   

Most species collected in large numbers were active during at least two seasons and only 

four species –Amara musculis (Say), Calathus opaculus LeConte, Calleida viridipennis (Say), 

Cicindela sexguttata Fab. – were found during a single season.  Of these, Cicindela sexguttata 

and Calleida viridipennis are most active in spring and early summer (Zhou et al. 1993; Pearson 

et al. 2006), while Amara musculis and Calathus opaculus are active outside the period they 

were collected (Ciegler 2000).  It is unclear why A. musculis and C. opaculus exhibited marked 

seasonality, though it may be due in part to the fact the study was only conducted for a single 

year. 

No single species appeared to account for the high number of specimens collected during 

the late spring as a handful of species reached their peak densities at that time (e.g., Brachinus 

americanus (LeConte), Trichotichnus autumnalis (Say), Anisodactylus rusticus (Say), Dicaelus 

sculptilis Say).  In contrast, the large number of Cyclotrachelus incisus LeConte combined with 

smaller, but significant, numbers of Cymindis limbata Dejean and Pterostichus permundus Say 

collected between 1 August and 8 October drove the high number of total specimens collected 

during that time.   

Most species collected in low numbers were taken during the summer, with one species 

collected only in the spring and four species collected only in the fall.  Rhadine ozarkensis 

Sanderson and Miller is likely the only species that is truly rare, as it is known only from the type 

series, which was collected from the twilight and dark zone of Fincher’s Cave in adjacent 

Washington County (Sanderson & Miller 1941; P. Messer pers. comm.).  Other species that were 
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collected in low numbers were likely either uncommon transients in the surveyed habitat or were 

present in the habitat but not readily collected by the methods employed. 

While the most abundant species were generally present throughout the warm months, we 

suggest traps be continuously employed rather than during a single season because species 

compositions varied somewhat between seasons and species abundances varied markedly.  If 

traps can’t be used continuously, then representative samples should be taken during each 

season. 

Cerambycidae 

Cerambycidae have been collected using a variety of methods, including active methods 

such as beat-sheeting and sweeping of vegetation (Yanega 1996) and passive methods such as 

light trapping (Yanega 1996), rearing traps (Yanega 1996; Ferro et al. 2009; Ferro & Carlton 

2011), pan traps (Groot & Nott 2001), Malaise and canopy traps traps (Vance et al. 2003; 

Noguera et al. 2007; Dodds et al. 2010), clear window traps (Ulyshen & Hanula 2007; Bouget et 

al. 2009; Sama et al. 2011) and silhouette intercept traps such as Lindgren funnel and panel traps 

(Dodds et al. 2010; Dodds et al. 2010; Miller & Crowe 2011).  Of the trap types included in this 

study, Malaise and canopy traps collected the highest number of species and had significant 

similarity.  This is useful for vertical stratification studies (e.g., Vance et al. 2003) as they do not 

collect different assemblages so are comparable.  However, when conducting faunal surveys it 

would be more efficient to choose a complimentary trap rather than include both Malaise and 

canopy traps. 

Lindgren funnel traps were estimated to collect approximately the same number of 

species after 600 samples and exhibited high to very high similarity in the species collected with 

Malaise and upper canopy traps and between differently colored Lindgren funnel traps. Trap 
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color did not generally affect the response of species to the traps as only one of the nine species 

analyzed, Xylotrechus colonus, was attracted in significantly higher numbers to one color (black) 

over another (green).  Only a few studies have examined the role of color in attraction and 

trapping of cerambycids: Shipman (2011) and Skvarla and Holland (2011) found that when 

analyzed at the family level, longhorns are preferentially attracted to red and purple, respectively, 

though neither study included a large diversity of color choices and Sakalian et al. (1993) and 

Imrei et al. (2014) found that individual species are attracted to yellow.  Other studies (e.g., 

Macias-Samano n.d.) found no effect of color when trapping cerambycids.  It is likely that color 

attraction is species-specific and tied to biological traits, such as flower feeding and host-finding.  

Our data suggest that many cerambycids were attracted to the vertical silhouette of the trap 

regardless of the color used.  Additionally, all but two species – Molorchus bimaculatus Say and 

Stenosphenus notatus (Oliver), both of which were collected in the spring – were collected in 

similar or higher numbers in Malaise and/or upper canopy traps, so we suggest that Lindgren 

funnels should generally not be considered if Malaise or canopy traps are also used. 

Species accumulation curves for Malaise, upper canopy, and black, green, and purple 

Lindgren funnel traps did not become asymptotic after 95, 72, 85, 85, and 82 samples, 

respectively, and extrapolated rarefaction curves for the five trap types became asymptotic after 

approximately 400, 500, 500, 350, and 200 samples, respectively.  This indicateed that 

significantly more trapping effort is needed in order to inventory all species at the site.   

Of the twenty species collected in high enough abundance to examine phenology, four 

reached peak densities in the spring and 16 reached peak densities during the late spring to mid-

summer.  Species that were found in more than three collection periods but not in high numbers 

exhibited a similar patter, with three of twelve species being present only in the spring and nine 
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of twelve species being present from late spring through summer.  Of the rarely collected species 

found in low numbers during three or fewer collection periods, approximately half were found in 

the spring and half during the summer; only two species – Hyperplatys maculata Blatchley and 

Oncideres cingulata (Say) – were found only in the fall.  While there were a few cerambycids 

that can be collected during the fall and a few that may be collected in the early spring, the most 

efficient collection effort was from the late spring through mid- to late summer when most 

species reach their peak populations. 

Curculionoidea 

Weevils are a diverse group of beetles and no one method is commonly used to collect 

their diversity (Table 6).  The most effective combination of traps should target both aerial and 

terrestrial species.  Of the traps included in this study, Malaise and upper canopy collected the 

most aerial species on average; however, when extrapolating to 1000 samples, Malaise traps 

were estimated to collect the most species for the first 250 samples and green Lindgren funnels 

were estimated to collect the most species after 250 samples.  Depending on the number of 

samples to be collected, either trap would be an acceptable choice for collecting flying weevils.   

Trap type Select References 
Malaise trap Dutcher et al. 1986; Anderson 2008a; Ohsawa 2008; 

Hespenheide 2009 

Pan trap Setyo Leksono 2005 

Pitfall trap Raffa & Hunt 1988; Levesque & Levesque 1994; Hanula 1999; 
Lowe et al. 2010 

Berlese extraction Boland & Room 1983; Sakchoowong et al. 2007 

Lindgren funnel trap Anderson 2008b; Lowe et al. 2010; Hanula et al. 2011; Brar et 
al.2012; Nam et al. 2013; Rassati et al. 2014 

Window trap Levesque & Levesque 1994; Anderson 2009a; Anderson 2008b 

Table 6. Select references pertaining to trapping Curculionidae. 
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Pitfall traps and Berlese-Tullgren extraction collected the most terrestrial species on 

average and did not differ significantly with respect the the numbers collected.  However, 

Berlese-Tullgren extraction is estimated to collect twenty addition species after 1000 samples.  

Depending on the facilities available, either method would be acceptable when targeting 

terrestrial weevils.  

Purple and white pan traps also collected high numbers of species, but exhibited high 

similarity with Malaise, canopy, and pitfall traps and Berlese sampling in the species collected, 

which suggests pan traps were collecting both aerial and terrestrial species.  Because pan traps 

were set under Malaise traps in this study, it is unknown whether pan traps set alone would be as 

effective as was suggested by these results.  However, the addition of pan traps should be 

considered if Malaise traps are also being employed. 

The attractiveness of various colors to different weevils has been previously 

investigated, almost exclusively in relation to pestiferous species in agricultural settings (e.g., 

Roach et al. 1972; Leggett & Cross 1978; Riley & Schuster 1994; Smart et al. 1997; Reddy & 

Raman 2001; Leskey 2006; Abuaglala & Al-Deeb 2012).  In this study, ten of the fourteen 

weevil species analyzed were collected in significantly higher numbers by at least one color of 

Lindgren funnel trap: one species was most attracted to black traps, three were most attracted to 

green traps, four were most attracted to purple traps, and one was attracted to both green and 

purple traps.  Three of the four species in which no difference was detected were collected in 

higher abundance in Malaise traps; these species were likely flying around in abundance and 

happened to be collected in funnel traps.   

The weevils collected exhibited a diversity of activity periods.  Some species were most 

abundant during one or two seasons (e.g., Apteromechus ferratus (Say), Conotrachelus Aratus 
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(Germar), Cercopeus chrysorrhoeus (Say)) but were collected in low numbers throughout the 

year; others exhibited a bimodal distribution in abundance (e.g., Conotrachelus naso LeConte, C. 

posticatus Boheman) or were present during only one season (e.g., Eubulus bisignatus (Say), 

Anthonomus suturalis LeConte).  More than half (51%) of species represented by one or a few 

specimens were collected in the spring, while only 17% of such species were collected in the 

summer or more than one season and 14% were collected only in the fall,; additionally, only 16 

of the 71 species collected (22%) were not collected at all during the spring. 

The number of specimens collected exhibited a bimodal distribution, with the most 

collected in spring and fall, while the number of species peaked in the spring and declined 

thereafter.  The spring peaks of species and specimens were likely driven by the fact that most 

species were collected in the spring but some were not present later in the year and because a 

handful of species reach peak densities at that time while the fall spike in the number of 

specimens appear driven solely by the high abundance of Conotrachelus postacatus.   

If collection time is limited, spring is the most effective time to sample as the most 

species are present.  A small percentage of species were present only in the summer or fall, and 

those were collected in low numbers that are not indicative of phenology.  Additionally, only a 

few species were most abundant in the summer and fall and a majority of these were also present 

during the spring. 

Conclusions. 

The combination of pitfall and Malaise traps can be used to sample Carabidae, 

Cerambycidae, and Curculionoidea as pitfall traps effectively collected terrestrial carabids and 

curculionoids and Malaise traps effectively collected cerambycids and the aerial assemblage of 
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carabids and curculionoids.  Large buprestids were collected by Malaise traps, but the smaller 

species (e.g., Agrilus) were most effectively green Lindgren funnel traps. 

Pan traps were set under Malaise traps in this study with the intent that they double as 

intercept traps.  However, they were generally ineffective at collecting aerial, wood-boring 

groups (Buprestidae, Cerambycidae).  Whether the pan traps would have collected more wood-

boring beetles if they had been placed in exposed areas rather than under Malaise traps is 

unknown, though the paucity of studies using pan traps to collect these taxa may be indicative of 

their effectiveness.  When targeting terrestrial species, pan traps act as pitfall traps (Skvarla et al. 

2014 [Chapter II]).  The pan traps in this study were not sunk into the ground and flush with the 

surface as the pitfall traps were, so their effectiveness at collecting cursorial species may have 

been diminished.   

The color of Lindgren funnel traps was an important factor for some species of 

Buprestidae Carabidae, and Curculionidae, but not Cerambycidae.  The effect of color in 

trapping different taxa is understudied when the aim is to sample biodiversity and studies that 

examine the attraction of color to pest species may not apply to the genus or family more 

generally (e.g., EAB to Agrilus). 

Most taxa exhibited seasonality, with the highest number of species in all families present 

in the spring or early summer, although a minority of species were present only during the 

summer or fall.  When targeting these families, the most effort should be made during the spring 

and early summer with supplemental collections made during mid- to late-summer and fall. 

Finally, none of the accumulation curves for the most effective collection methods per 

family became asymptotic after 85 (green Lindgren funnel), 95 (Malaise trap), or 268 (pitfall 

trap) samples.  Extrapolated rarefaction curves were not estimated to become asymptotic until 
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350 to more than 1000 samples, depending on the trap and target taxon.  This suggested that 

much more effort is needed when collecting beetles as the rarest species are often those that tell 

the most about biodiversity. 
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Appendix I.  Species rarefaction curves. 

 
Figure A1. Buprestidae. See caption at the end of the figures for further explaination.  
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Figure A1 (cont.). Buprestidae. See caption at the end of the figures for further explaination.  
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Figure A1 (cont.). Buprestidae. See caption at the end of the figures for further explaination.  
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Figure A1 (cont.). Buprestidae. See caption at the end of the figures for further explaination.  
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Figure A2. Carabidae. See caption at the end of the figures for further explaination.  
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Figure A2 (cont.). Carabidae. See caption at the end of the figures for further explaination.  
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Figure A2 (cont.). Carabidae. See caption at the end of the figures for further explaination.  
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Figure A2 (cont.). Carabidae. See caption at the end of the figures for further explaination.  
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Figure A3. Cerambycidae. See caption at the end of the figures for further explaination.  
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Figure A3 (cont.). Cerambycidae. See caption at the end of the figures for further explaination.  
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Figure A3 (cont.). Cerambycidae. See caption at the end of the figures for further explaination.  
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Figure A3 (cont.). Cerambycidae. See caption at the end of the figures for further explaination.  
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Figure A4. Curculionoidea. See caption at the end of the figures for further explaination.  
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Figure A4 (cont.). Curculionoidea. See caption at the end of the figures for further explaination.  
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Figure A4 (cont.). Curculionoidea. See caption at the end of the figures for further explaination.  
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Figure A4 (cont.). Curculionoidea. See caption at the end of the figures for further explaination.  254
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Figures A1–A4. Fig. A1. Buprestidae. Fig. A2. Carabidae. Fig. A3. Cerambycidae. Fig. A4. Curculionoidea.  a. Canopy trap, 
upper collector. b. Canopy trap, lower collector. c. Malaise trap. d. Black Lindgren funnel trap. e. Green Lindgren funnel trap. 
f. Purple Lindgren funnel trap. g. Berlese-Tullgren extraction. h. Pitfall trap. i. Blue pan trap. j. Purple pan trap. k. Red pan 
trap. l. White pan trap. m. Yellow pan trap. Colors represent the same trap type throughout figures.  The y-axis is standardized 
within a family but the x-axis is determined by the number of samples, which varies by trap type.
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VI. Sampling terrestrial arthropod diversity: A case study 

 

Abstract. 

There is an increasing need to survey and document terrestrial arthropod assemblages as 

natural environments continue to be altered due to climate change, the introduction of invasive 

species, and habitat fragmentation and destruction.  While the most effective survey methods 

have been studied for a few specific groups of arthropods, such as ants, few studies have 

attempted to determine the most effective methods for surveying the entire terrestrial arthropod 

assemblage at a site.  In order to begin to answer this question, we surveyed a plot in the Boston 

Mountains of Arkansas using 70 traps of 12 trap types and Berlese-Tullgren extraction of leaf 

litter and identified 46,146 specimens representing 533 species from an array of higher taxa.  We 

determined that Malaise and pitfall traps collected the most species and specimens and had the 

lowest similarity of the collection methods tested so were the best traps to deploy in tandem.  We 

also estimated that 600 and 1000 samples were needed before the species accumulation curves 

for Malaise and pitfall traps, respectively, become asymptotic. 

 

Introduction. 

The Interior Highlands, which encompasses the Ouachita Mountains in west central 

Arkansas and eastern Oklahoma and the Ozarks in Missouri, northern Arkansas, and extreme 

southeast Kansas (Fig. 1), is an area of high biodiversity and endemism, with more than 200 

species known only from the region (Allen 1990; Robison and Allen 1995; The Nature 

Conservancy, Ozarks Ecoregional Assessment Team 2003; Pringle and Witsell 2005; Zollner et 

al. 2005; Robison et al. 2008; McAllister et al. 2009;).  However, with a few exceptions (e.g., 
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Araneae, Carabidae, Pselaphinae, Formicidae: Table 1) many terrestrial arthropods have been 

historically understudied.  This is underscored by recent work that has reported many species as 

new to Arkansas (e.g., Chordas et al. 2005; Chordas & Kovarik 2008a,b; Disney et al. 2010; 

Henry et al. 2010; MacGown et al. 2011; Bowles & Sites 2013; Tumlison 2013; Skvarla et al. 

2014a [Chapter X], 2015 [Chapter VIII], in press [Chapter IX], submitted [Chapter IV]) and 

descriptions of new species from the state (Shelley et al. 2003; Cook & Laudermilk 2004; 

Tennessen 2004; Clark & Burke 2010; Hildebrandt & Maddison 2011).  Additionally, 

establishing the composition of the terrestrial arthropod fauna of Arkansas and the Interior 

Highlands more generally is especially imperative in light of the many factors that continue to 

alter natural landscapes, such as global climate change (Thomas et al. 2004); the introduction of 

invasive species such as chestnut blight (Cryphonectria parasitica (Murrill) Barr), hemlock 

woolly adelgid (Adelges tsugae (Annand, 1928)), and emerald ash borer (Agrilus planipennis 

Fairmaire, 1888) that threaten keystone tree species, thereby altering forest composition (Ellison 

et al. 2005); and habitat fragmentation and destruction (Tilman et al. 1994; Brooks et al. 2002).   

Recent efforts by the state of Arkansas, as laid out in the Arkansas Wildlife Action Plan 

(Anderson 2006) and implemented through the state wildlife grant system (Designing A Future 

For Arkansas Wildlife 2015), include an effort to survey, confirm the continued existence and 

known range, and locate additional populations of imperiled arthropods in the state.  The list of 

at-risk arthropods contains a diverse array of terrestrial taxa such as butterflies, beetles, and true 

bugs for which multiple collection methods are needed.  However, while other studies have 

employed a variety of techniques to collect arthropod biodiversity (e.g., Hammond 1990; 

Hammond et al. 1997), compared or discussed different collecting techniques for a target taxon 

(e.g., Formicidae: Agosti & Alonso 2000; Araneae: Duffey 1972 ), or compared trap catch at 
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higher taxonomic levels (i.e., order or family) (e.g., Hosking 1979; Julliet 1963), the authors are 

aware of no study that examined general arthropod biodiversity at the species level collected by a 

numerous techniques in order to determine the most efficient combination of methods that 

collect the widest array of species. 

 
Figure 1. Geographic regions of the Interior Highlands. Modified from Skvarla et al. 
(submitted). 
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Taxon Select references 
Araneae Dorris 1968, 1969, 1985, 1989, 1991; Dorris et al. 1995 
Carabidae Hemenway & Whitcomb 1967; Allen 1973; Allen & Carlton 1988 
Staphylinidae, 
Pselaphinae Carlton & Allen 1989; Carlton & Cox 1990; Carlton 1995 

Formicidae 
Warren & Rouse 1969, 1980; General & Thompson 2007, 2008, 
2009; MacGown et al. 2011  

Table 1. Examples of terrestrial arthropods that are well-sampled within the Interior Highlands. 

 

While it would be nearly impossible to identify the hundreds of thousands to tens of 

millions of specimens collected in an extensive survey of even a small field site, we present here 

the results of a single year study that compared the catch of seventy traps comprising twelve trap 

types and Berlese-Tullgren extraction in an attempt to begin to answer the question of what is the 

most efficient combination of collection techniques for sampling the most arthropod biodiversity. 

 

Materials and Methods. 

The field site where this study was conducted and statistical methods used to analyze data 

were covered in detail by Skvarla et al. (submitted) (=Chapter IV) and in Chapter V, but are 

restated and summarized here for convenience. 

Field site and collecting regime 

A 4 ha plot was established at in the Boston Mountains of Arkansas at Steel Creek along 

the Buffalo National River in Newton County (centered at approximately N 36°02.269’, W 

93°20.434’).  The site was dominated by mature second-growth oak (Quercus) and hickory 

(Carya), with other species such as American beech (Fagus grandifolia) and eastern red cedar 

(Juniperus virginiana) being abundant.   

Five Malaise traps (MegaView Science Co., Ltd., Taichung, Taiwan) and twenty-five pan 

traps (five of each color: blue, purple, red, yellow, white) which were randomly arranged under 
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the Malaise traps (one of each color) so as to also act as intercept traps; four SLAM (Sea, Land, 

and Air Malaise) traps (MegaView Science Co., Ltd., Taichung, Taiwan) with top and bottom 

collectors;  fifteen Lindgren multi-funnel traps (ChemTich International, S.A., Heredia, Costa 

Rica) (five of each color: black, green, purple); and seventeen pitfall trap sets.  Sixteen of the 

seventeen pitfall sets were placed in two transects of sets spaced every five meters centered on 

two Malaise traps, while the final set was placed away from other traps.  Additionally, ten leaf 

litter samples were collected for Berlese extraction when traps were serviced. 

Pitfall traps were made using plastic soup containers based on a modified design 

proposed by Nordlander (1987).  Each pitfall trap set was made by burying a single cup on either 

side of a 30.5 cm x 15.5 cm aluminum fence; trap catch from both cups was combined and 

treated as a single sample. 

Traps were placed non-randomly within the plot in order to maximize the efficiency of 

each trap, although an attempt was made to evenly space similar traps in order to decrease the 

chance of interference between traps.  Malaise traps were placed in perceived flight paths.  

SLAM and Lindgren funnel traps were suspended from the branches of large trees 4–10 meters 

above the ground in the lower canopy. Berlese-Tullgren samples were collected from a variety of 

habitats, including leaf litter, moss, tree holes, and bark from fallen, partially decayed trees.  

Litter was processed with a litter reducer until approximately one gallon of processed litter was 

collected and processed for four to seven days until the litter was dry throughout using modified 

Berlese-Tullgren funnels. 

All traps were set by 13 March 2013, except Lindgren funnels, which were set on 1 April 

2013. Traps were serviced approximately every two weeks (14 days ± 3 days).  The final 

collection of pitfall traps and pan traps occurred on 6 November 2013 and the final collection of 
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Malaise, SLAM, and Lindgren funnel traps occurred on 4 December 2013.  Berlese-Tullgren 

samples from 13 April, 15 May, 28 June and 6 November were not taken or were lost.  Pitfall 

sets were lost on 13 April (one set), 15 May (one set), 28 June (four sets), and 17 July (five sets).  

In total, 1311 samples were collected.   

Propylene glycol (Peak RV & Marine Antifreeze) (Old World Industries, LLC, 

Northbrook, IL) was used as the preservative in all traps as it is non-toxic and generally 

preserves specimens well (Skvarla et al. 2014b [Chapter II]).  Trap catch was sieved in the field 

and stored in Whirl-Pak bags (Nasco, Fort Atkinson, WI) in 90% ethanol until sorting.   

Sample processing and identification 

Samples were coarse-sorted using a Leica MZ16 stereomicroscope illuminated with a 

Leica KL1500 LCD light source and a Wild M38 stereomicroscope illuminated with an Applied 

Scientific Devices Corp. Eco-light 20 fiber optic light source.  After sorting, specimens were 

stored individually or by family in 70% ethanol in 2 mL microtubes.  Hard-bodied specimens 

such as beetles were pinned or pointed as appropriate.   

Specimens were identified with the use of published keys (Table 2) (see Chapter IV for 

references pertaining to Buprestidae, Carabidae, Cerambycidae, and Curculionoidea).  

Pompilidae were identified by Clint Trammel (University of Arkansas).  In some cases, difficult 

to key specimens were photographed through the eye piece of the stereomicroscope using the 

camera on an HTC Droid Incredible 4G LTE cell phone or Samsung Galaxy S5 cell phone; the 

photographs were uploaded to Bugguide (Iowa State University 2015) and identifications were 

proposed by Bugguide members.  Proposed identifications were then double checked using 

published sources and either confirmed or corrected on the website.   
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Class Order Family Genus Reference 
General arthropods identification  Robison & Allen 1995; 

Tripplehorn & Johnson 
2005; SCAN 2014 

Arachnida Araneae   Dorris 1985; Dorris 1989; 
Dorris et al. 1995; Ubick 
2005; Platnick 2014 

Arachnida Araneae Agelenidae  Bennett & Ubick 2005 
Arachnida Araneae Agelenidae Wadotes Muma 1947 
Arachnida Araneae Agelenidae Agelenopsis Whitman et al. 2015 
Arachnida Araneae Amaurobiidae  Leech 1972; Ubick 2005b 
Arachnida Araneae Anyphaenidae  Richman & Ubick 2005a 
Arachnida Araneae Anyphaenidae Anyphaena Platnick 1974 
Arachnida Araneae Araneidae  Levi 2005a 
Arachnida Araneae Araneidae Hypsosinga Levi 1971 
Arachnida Araneae Araneidae Ocrepeira Levi 1976 
Arachnida Araneae Atypidae  Gertsch & Platnick 1980 
Arachnida Araneae Clubionidae  Edwards 1958; Dondale & 

Redner 1982; Richman & 
Ubick 2005b 

Arachnida Araneae Corinnidae  Ubick & Richman 2005 
Arachnida Araneae Corinnidae Castianeria Reiskind 1969 
Arachnida Araneae Cybaeidae  Bennett 2005a 
Arachnida Araneae Cyrtaucheniidae Myrmekiaphila Bond & Platnick 2007 
Arachnida Araneae Cyrtaucheniidae  Bond et al. 2012 
Arachnida Araneae Dictynidae  Bennett 2005b 
Arachnida Araneae Dictynidae Cicurina Chamberlin & Ivie 1940; 

Paquin & Dupérré 2009 
Arachnida Araneae Hahniidae  Opbell & Beatty 1976; 

Bennett 2005c 
Arachnida Araneae Gnaphosidae  Ubick 2005c 
Arachnida Araneae Gnaphosidae Callilepis Platnick 1975 
Arachnida Araneae Gnaphosidae Drassodes Platnick & Shadab 1976a 
Arachnida Araneae Gnaphosidae Gnaphosa Platnick & Shadab 1975a 
Arachnida Araneae Gnaphosidae Haplodrassus Platnick & Shadab 1975b 
Arachnida Araneae Gnaphosidae Micaria Platnick & Shadab 1988 
Arachnida Araneae Gnaphosidae Rachodrassus Platnick & Shadab 1976b 
Arachnida Araneae Gnaphosidae Tivodrassus Platnick & Shadab 1976a 
Arachnida Araneae Gnaphosidae Scopodes Platnick & Shadab 1976b 
Arachnida Araneae Gnaphosidae Sosticus Platnick & Shadab 1976b 

Table 2. Keys used to identify specimens. 
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Class Order Family Genus Reference 
Arachnida Araneae Lycosidae  Gertsch & Wallace 1935; 

Gertsch & Wallace 1936; 
Dondale 2005 

Arachnida Araneae Lycosidae Acantholycosa Vogel 2004 
Arachnida Araneae Lycosidae Allocosa Dondale & Redner 1983a 
Arachnida Araneae Lycosidae Arctosa Dondale & Redner 1983b 
Arachnida Araneae Lycosidae Camptocosa Dondale et al. 2005 
Arachnida Araneae Lycosidae Gladicosa Brady 1986 
Arachnida Araneae Lycosidae Lycosa Wallace 1942 
Arachnida Araneae Lycosidae Pardosa Vogel 2004 
Arachnida Araneae Lycosidae Pirata Wallace & Exline 1978 
Arachnida Araneae Lycosidae Rabidosa Brady & McKinley 1994 
Arachnida Araneae Lycosidae Schizocosa Dondale & Redner 1978 
Arachnida Araneae Lycosidae Tigrosa Brady 2012 
Arachnida Araneae Lycosidae Trochosa Brady 1980 
Arachnida Araneae Mimetidae  Lew & Mott 2005; Harms 

& Dunlop 2009 
Arachnida Araneae Mimetidae Mimetus Mott 1989 
Arachnida Araneae Mysmenidae  Lopardo & Coddington 

2005 
Arachnida Araneae Oxyopidae  Brady 1963 
Arachnida Araneae Philodromidae  Dondale 2005b 
Arachnida Araneae Philodromidae Ebo Sauer & Platnick 1970 
Arachnida Araneae Philodromidae Philodromus Dondale & Redner 1976 
Arachnida Araneae Phrurolithidae  Chamberlin & Gertsch 

1930; Chamberlin & Ivie 
1935; Ivie & Barrows 
1935; Chamberline & Ivie 
1944; Ubick & Richman 
2005 

Arachnida Araneae Phrurolithidae Phruronellus Chamberlin 1921 
Arachnida Araneae Phrurolithidae Scotinella Penniman 1985 
Arachnida Araneae Salticidae  Richman et al. 2005; 

Richman et al. 2012 
Arachnida Araneae Salticidae Habronattus Griswold 1987 
Arachnida Araneae Salticidae Maevia Barnes 1955 
Arachnida Araneae Salticidae Naphrys Richman 1981; Edwards 

2002 
Arachnida Araneae Salticidae Peckhamia Peckham & Peckham 

1909 
Arachnida Araneae Salticidae Pelegrina Maddison 1996 
Arachnida Araneae Salticidae Phidippus Edwards 2004 
Arachnida Araneae Salticidae Synageles Cutler 1987 

Table 2 (cont.). Keys used to identify specimens. 
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Class Order Family Genus Reference 
Arachnida Araneae Salticidae Thiodina Richman & Vetter 2004 
Arachnida Araneae Theridiidae  Levi 2005b 
Arachnida Araneae Theridiidae Argyrodes/ 

Neospintharus 
Exline & Levi 1962 

Arachnida Araneae Theridiidae Crustulina Levi 1957 
Arachnida Araneae Theridiidae Steatoda Levi 1957 
Arachnida Araneae Thomisidae  Gertsch 1939; Dondale & 

Redner 1978; 
Cokendolpher et al. 1979; 
Dondale 2005d 

Arachnida Araneae Thomisidae Coriachne Bowling & Sauer 1975 
Arachnida Araneae Thomisidae Coriachne Gertsch 1953 
Arachnida Araneae Thomisidae Oxyptila Gertsch 1953 
Arachnida Araneae Thomisidae Xysticus Gertsch 1953 
Arachnida Araneae Titanoecidae  Cutler 2005 
Arachnida Araneae Titanoecidae Titanoeca Leech 1972 
Arachnida Araneae Trachelidae  Ubick & Richman 2005 
Arachnida Araneae Trachelidae Meriola Platnick & Shadab 1974 
Arachnida Mesostigmata Ixodidae  Clifford et al. 1961; 

Lancaster 1973 
Arachnida Opiliones Phalangodidae  Clarence & Goodnight 

1942 
Insecta Blattodea Rhinotermitidae Reticulitermes Lim & Forscler 2012 
Insecta Dermaptera   Hoffman 1987 
Insecta Diptera   McAlpine et al. 1981 
Insecta Diptera Anisopodidae Sylvicola Pratt & Pratt 1980 
Insecta Diptera Oestridae Cephenemyia Bennett & Sabrosky 1972; 

Taber & Fleenor 2004; 
Fleenor & Tabor 2007 

Insecta Diptera Oestridae Cuterebra Sabrosky 1986 
Insecta Diptera Scathophagidae  James 1950 
Insecta Diptera Stratiomyiidae  McFadden 1972; Williston 

1885 
Insecta Diptera Stratiomyiidae Ptecticus McFadden 1971 
Insecta Diptera Tabanidae  Carlton & Lancaster 1995 
Insecta Diptera Xylophagidae Rachicerus Webb 1984 
Insecta Hemiptera Caliscelidae  Doering 1939 
Insecta Hemiptera Lygaeidae  Slater & Baranowski 1990 
Insecta Hymenoptera Aulacidae  Smith 1996 

Table 2 (cont.). Keys used to identify specimens. 
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Class Order Family Genus Reference 
Insecta Hymenoptera Formicidae  Ross et al. 1971; 

MacGown 2003; Coovert 
2005; Fisher & Cover 
2007 

Insecta Hymenoptera Formicidae Solenopsis Pacheco 2007 
Insecta Hymenoptera Orussidae  Middlekauff 1983 
Insecta Hymenoptera Siricidae  Schiff et al. 2006 
Insecta Hymenoptera Vespidae  Akre et al. 1980 
Insecta Mecoptera   Thornhill & Johnson 

1974; Cheung et al. 1996; 
Robison et al. 1997 

Insecta Mecoptera   Webb et al. 1975 
Insecta Mecoptera Panorpidae Panorpa Byers 1993; Capinera et 

al. 2004 
Insecta Orthoptera Myrmecophilidae  Capinera et al. 2005; 

MacGown & Hill 2006 
Malacostraca Isopoda   Muchmore 1990 
Myriapoda Diplopoda Polyxenidae Polyxenus Kincaid 1898; Pierce 

1940; Kane 1981; 
Chamberlin 1922 

Table 2 (cont.). Keys used to identify specimens. 

 

One to five voucher specimens of each species were retained in the Dowling Lab 

Collection at the University of Arkansas while the remaining species were deposited in the 

University of Arkansas Arthropod Museum (UAAM) and several private collections. with the  

Taxa selection 

 Taxa were chosen for identification and inclusion in the statistical analysis for the 

following of reasons:  Formicidae was selected because they are often used in biodiversity 

assessment (Alonso 2000; Underwood & Fisher 2006; Maleque et al. 2009) studies and the lead 

author is familiar with ant identification.  Carabidae, Araneae, and Isopoda were chosen because 

they are bioindicators (Paoletti & Hassall 1999; Buddle et al. 2000; Ranio & Niemelä 2003; 

Oxbrough et al. 2005; Pearce & Venier 2006; Maleque et al. 2009; Avgın & Luff 2009) and 

have a wealth of material such as keys and checklists to aid in the identification of North 
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American species.  Cerambycidae were included because they are diverse and relatively easily 

identified, and are used as bioindicators in forests (Maeto & Makihara 1999; Maeto et al. 2002; 

Makino et al. 2007).  Curculionoidea were included because they are abundant and diverse. 

Buprestidae and Parasitengona were selected because an expert was willing to identify them or 

teach the lead author how to identify them.  Finally, the remaining species (e.g., Merope tuber, 

Polistes spp., Orussus minutus, &c.) were included because they are distinctive and could be 

readily identified to species-level as samples were coarse-sorted.  While this may introduce some 

bias towards large, showy species, an effort was made to include smaller distinctive species (e.g., 

Ixodidae spp., Lygistorrhina sanctaecatharinae, Polyxenus largurus) to counteract this.  

 

Statistical analysis 

Specimen abundance per trap per date was recorded in Microsoft Excel (Microsoft 2013). 

For each family analyzed, the following procedures were performed. 

The effect of trap type on the number of species and specimens was analyzed by 

performing a one-way analysis of variance (ANOVA) test (α = 0.05) in Excel.  Due to uneven 

trapping effort and because some traps were randomly lost due during the study, we compared 

the average number of species and specimens collected per trap type per date. 

If a significant difference was detected, the means were separated using a Tukey-Kramer 

test (α = 0.05) performed in Excel using the Real Statistics Resource Pack add-in (Zaiontz 2015).  

We chose to use ANOVA and Tukey-Kramer rather than their non-parametric equivalents as 

both tests are relatively robust with respect to violations of the normality assumption (Kirk 1995; 

Samuels & Witmer 2003) and easily performed within Excel. 
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EstimateS (Colwell 2013) was used to calculate the following species accumulation 

estimators, with abbreviations used in graphs noted parenthetically, for each trap type using all 

samples collected per trap type: abundance coverage-based estimator of species richness (ACE); 

incidence coverage-based estimator of species richness (ICE); Chao 1 richness estimator 

(Chao1); Chao 2 richness estimator (Chao2); first-order Jackknife richness estimator (Jack1); 

second-order Jackknife richness estimator (Jack2) (see Gotelli & Colwell [2010] for a synopsis 

of each estimator).  Additionally, the sample-based rarefaction curve (S(est)), which is the 

expected number of species in t pooled samples given the reference sample, was also calculated.  

EstimateS was run on default settings except that classic Chao1 and Chao2 estimators were used 

instead of the default bias-corrected Chao1 and Chao2 as suggested by the program.  One 

hundred randomizations of sample order were performed.  As the various estimators generally 

calculated similar trends, we reported only Chao1 estimators in a single graph and included 

graphs of all of the estimators in Appendix I.  Because uneven sampling effort between trap 

types did not allow the number of species collected by each trap type to be directly compared, 

EstimateS was used to extrapolate the number of samples per trap type to 1000 samples, at which 

point the number of estimated species collected per trap type were compared. Samples were 

randomized across traps and dates within a trap type.  Error bars were excluded from 

accumulation and rarefaction graphs in order to enhance clarity. 

Species similarity between trap types and collecting dates were investigated by 

calculating shared species indices using EstimateS.  EstimateS output was organized in Excel 

and final graphs were constructed in Adobe Illustrator (Adobe 2012).  EstimateS calculates a 

number of different shared species estimators; herein we report the Sørensen similarity index, an 

incidence-based (i.e., presence/absence) index, and Chao’s Sørensen similarity index, an 
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abundance-based index (Chao et al. 2005).  These indices indicate the similarity of the compared 

samples, which ranges between 0 and 1 and indicate no to complete similarity.  The statistical 

significance of similarity cannot be determined from these indices; therefore, when discussing 

the estimated similarity, we used the terms low (0–0.24), medium (0.25–0.49), high (0.50–0.74) 

and very high (0.75–1.0). Graphs are color-coded to reflect these categories; dates for which no 

samples of a given trap type were collected are indicated by a dash (-).   

Shared species indices for trap types were calculated based on the total number of 

specimens per species collected per trap type.  Shared species indices for collection dates were 

calculated based on the total specimens collected per species per date.   

 

Results. 

We identified 46,146 specimens representing 533 species; 15 species, 10 of which were 

parasitengone mites, are putatively undescribed, at least 36 are new state records for Arkansas 

(the status of some species could not be confirmed so this is likely an underestimate), and 13 are 

non-native introduced species (Appendix II).  Formicidae represented 60.7% of the specimens 

identified (28,032 specimens) but only represented 13.9% of the species collected (74 species); 

because Formicidae were numerically dominant in the number of specimens collected but only 

represented a small proportion of the species collected, all statistics were performed including 

and excluding Formicidae in the event their inclusion skewed results. Reported results assume 

the inclusion of Formicidae unless otherwise specified. 

Pompilidae were deposited in the C. Trammel collection; Cicurina (Dictynidae) were 

sent to Pierre Paquin; the following specimens were sent to Peter Messer for identification 

confirmation and are deposited in the P. W. Messer collection: Agonum crenulatum (MS 13-
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0529-072, #136215), Agonum ferreum (MS 13-0612-022, #139663), Cicindela rufiventris (MS 

13-0717-001, #134492), Cyclotrachelus incisus (MS 13-0413-023, #139591; MS 13-0413-019, 

#139592; MS 13-0413-006, #139594; MS 13-1008-075, #139596), Cyclotrachelus parasodalis 

(MS 13-0430-019, #131983; MS 13-0529-037, #135057; MS 13-1106-002, #138280), 

Cyclotrachelus torvus (MS 13-0529-066, #135053), Pterostichus punctiventris (MS 13-0401-

018, #135065; MS 13-1023-021, # 136216), Rhadine ozarkensis (MS 13-0925-027, #134547), 

Scaphinotus fissicollis (MS 13-1106-037, #137830), Selenophorus ellipticus (MS 13-0925-005, 

#136223), Selenophorus opalinus (MS 13-0813-034, # 136217), Trichotichus autumnalis (MS 

13-0730-005, #136226), Trichotichnus vulpeculus (MS 13-0911-027, #136218). 

The following issues with identification should be noted: Abacion (Diplopoda: 

Abacionidae) specimens can only be identified to species based on the shape of the male 

gonopods. Two species, A. texense and A. tesselatum, were identified at the field site (a third 

species, A. wilhelminae, is known from Arkansas but was not found at the site and is apparently 

restricted to Rich Mountain in Polk County [Shelley et al. 2003, ]). The majority of males 

(147/150 specimens examined) were identified as A. texense so immature and female Abacion 

were assigned that species.  While it is probable that a small percentage of immature and female 

Abacion represent A. tesselatum and not A. texense, it is unlikely that their inclusion with A. 

texense will alter statistical analysis and excluding all immatures and females would certainly 

reduce statistical power.   

Multiple species of Polyxenus (Diplopoda: Polyxenidae) have been identified from North 

America but the only revision of the genus synonymized them under P. lagurus (Kane 1981).  

Unfortunately, the revision is an unpublished Ph.D. dissertation and not recognized by ICZN.  
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Even so, the characters used to separate the various “species” are dubious and identification of 

the “species” impossible.  I therefore follow Kane (1981). 

Tmarus (Araneae: Thomisidae) is represented by six species in North America, three of 

which may occur in Arkansas: T. floridensis, T. rubromaculatus, and T. angulatus (Gertsch 

1939, Dondale & Redner 1978).  As with many other spiders, only adults are identifiable beyond 

genus as species identification relies on genital morphology.  Tmarus floridensis is known from 

Florida, Georgia, Mississippi, Louisiana, and Texas (Gertsch 1939); while it is may be found in 

southern Arkansas, it is unlikely that it is present in northwestern Arkansas.  Tmarus 

rubromaculatus occurs in the southeastern United States and Ohio, but is uncommonly 

encountered (Gertsch 1939); it has not been recorded from Arkansas but may eventually be 

found.  All adults (n=2) collected in this study were identified as T. angulatus.  Given the low 

number of species possible, all immature Tmarus (n=3) were assigned to T. angulatus for 

statistical analysis. 

Phuruotimpus (Araneae: Phrurolithidae) consists of 16 described species and at least as 

many undescribed species. Two described species and two undescribed morphotypes, one 

represented by females and one by males, were collected.  The two undescribed morphotypes 

were treated as a single species in the statistical analysis – Phrurotimpus sp. 3 – as it is unlikely 

that two undescribed species occur at the site, one of which was represented only by females and 

the other only by males. 

Pitfall and Malaise traps collected the most species (Figs. 2, 3) and specimens (Figs. 4, 5) 

of the targeted taxa.  Twenty five percent of the species (135) were represented by a single 

specimen and 51% percent of the species (274) were represented by five or fewer specimens, 

while  3.3% of the species (18) were represented by more than 500 specimens (Fig. 6). 
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There was a significant (p<0.05) effect of trap type on the number of species collected for 

the twelve trap types (F(12,203) = 4.61, p = 1.60 × 10-18).  The mean number of species collected 

by pitfall (M = 14.91, SD = 5.51) were significantly (p<0.05, Tukey-Kramer) different from all 

other traps except Malaise traps, Malaise traps (M = 12.67, SD = 6.98) were significantly 

different from all other traps except Berlese-Tullgren extraction (M = 8.12, SD = 3.07) and that 

Berlese-Tullgren was not significantly different from all other traps: lower canopy trap (M = 

3.74, SD = 2.20), upper canopy trap (M = 6.40, SD = 5.12), black Lindgren funnel trap (M = 

3.89, SD = 2.24), green Lindgren funnel trap (M = 4.27, SD = 2.89), purple Lindgren funnel trap 

(M = 4.31, SD = 2.81), blue pan trap (M = 6.10, SD = 3.18), purple pan trap (M = 7.69, SD = 

3.87), red pan trap (M = 6.12, SD = 3.41), white pan trap (M = 7.24, SD = 3.70), yellow pan trap 

(M = 6.3, SD = 2.90) (p>0.05, Tukey-Kramer) (Figs. 2a,b). Exclusion of Formicidae did not 

significantly alter the results of the ANOVA or Tukey-Kramer tests, although it did reduce the 

standard deviation slightly across all traps. 
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Figures 2, 3.  Average number of species collected per trap. Fig. 2. Average number of species/trap. Error bars represent standard 
deviation; letters represent mean separation as determined by Tukey-Kramer test. Fig. 3. Average number of species/trap/date.  
Standard deviations are omitted for clairity. a. All taxa including Formicidae. b. All taxa excluding Formicidae. 
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Figures 4,5.  Average number of specimens collected per trap. Fig. 4. Average number of specimens/trap. Error bars represent 
standard deviation; letters represent mean separation as determined by Tukey-Kramer test. Fig. 5. Average number of specimens 
/trap/date.  Standard deviations are omitted for clarity. a. Formicidae included. b. Formicidae excluded. 
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Figure 6. Total number of specimens/species collected across all traps. 
 

There was a significant (p<0.05) effect of trap type on the number of specimens collected 

for the thirteen trap types (F(12,203) = 3.79, p = 1.3 × 10-13).  The mean number of specimens 

collected by pitfall (M = 79.93, SD = 35.40) and Malaise traps (M = 64.46, SD = 92.86) was 

significantly (p<0.05, Tukey-Kramer) different from all other traps except Berlese-Tullgren 

extraction (M = 44.05, SD = 36.92) and that Berlese-Tullgren was not significantly different 

from all other trap types: lower canopy trap (M = 12.01, SD = 9.90), upper canopy trap (M = 

21.54, SD = 28.31), black Lindgren funnel trap (M = 9.07, SD = 12.45), green Lindgren funnel 

trap (M = 6.47, SD = 4.93), purple Lindgren funnel trap (M = 8.13, SD = 6.47), blue pan trap (M 

= 13.84, SD = 7.46), purple pan trap (M = 19.15, SD = 7.95), red pan trap (M = 13.13, SD = 

6.02), white pan trap (M = 19.98, SD = 9.72), yellow pan trap (M = 15.17, SD = 8.61) (p>0.05, 

Tukey-Kramer) (Figs. 4a,b). Exclusion of Formicidae did not significantly alter the results of the 

ANOVA or Tukey-Kramer tests, although it did reduce the standard deviation across all traps, 

most especially in pitfall, Malaise, and Berlese-Tullgren extraction. 
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Species accumulation curves for four of the thirteen trap types (upper and lower canopy 

traps, red pan trap, green Lindgren funnel traps) became asymptotic within the number of 

samples collected during this study (72, 72, 83, and 85) (Figs. 7, A1a–m).  The accumulation 

curves for the majority of the remaining traps were estimated to become asymptotic by 300 

samples, except Malaise, purple pan, and pitfall traps, which were estimated to become 

asymptotic by 600, 600, and 1000 samples, respectively (Fig. 8).  Excluding Formicidae did not 

significantly alter the number of samples required before each trap became asymptotic, though 

did lower the number of species expected. 

When Formicidae were included, pitfall and pan traps all exhibited very high similarity 

with each other.  Aerial traps (upper canopy, Malaise, and Lindgren funnel traps) exhibited high 

to very high similarity with each other but medium to high similarity with pitfall and pan traps, 

except for Malaise traps which exhibited high to very high similarity with pitfall and pan traps.  

Berlese-Tullgren extraction exhibited the lowest similarity with most trap types, except for pitfall 

traps (Fig. 9a). When Formicidae were excluded, the same general patterns appeared to be 

evident though with less similarity between trap types (Fig. 9b). 
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Figure 7. Chao 1 rarefaction curves based on the data. a. Formicidae included. b. Formicidae 
excluded. 
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Figure 8. Estimated rarefaction curves (S(est)) extrapolated to 1000 samples. a. Formicidae 
included. b. Formicidae excluded. 
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Figure 9. Similarity of trap catch as determined by Sørensen and Chao’s Sørensen Indices.  Fig. 
9a. Formicidae included. Fig. 9b. Formicidae excluded.   
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Many species that were collected in large enough numbers to examine phenology 

exhibited season trends in diversity (Figs. A2a–r).  However, when considered in aggregate, the 

average number of species and specimens collected per trap showed less distinct trends.  The 

number of species collected increased in the early spring and decreased in early winter, with 

local peaks in early summer and fall (Fig. 3). The similarity and turnover between collection 

dates varied between traps: for example, collection dates for Malaise traps, depending on the 

method of analysis, generally exhibited very high or high similarity within one or two collection 

periods (approximately 2–4 weeks) (Fig. 10a) while collection dates for pitfall traps exhibited 

very high or high similarity throughout nearly the entire collecting season (Fig. 10b).  Collection 

dates for other traps exhibited a range of similarity between collection dates (Figs. A3a–m).  

When all traps are combined and Formicidae included, dates from late spring through early fall 

exhibit high similarity (Sørensen) or exhibit very high similarity throughout the collection period 

(Chao’s Sørensen) (Fig. 10c).  However, when ants are excluded, samples taken two to three 

collection periods (4–6 weeks) around a given collection date exhibit high to very high 

similarity, but collections beyond that only exhibit medium to high similarity, depending on the 

analysis (Fig. 10d). 
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Figure 10. Sørensen and Chao’s Sørensen Indices comparing similarity of trap catch by date.  Fig. 10a. Malaise traps. Fig. 10b. Pitfall 

traps. Fig. 10c. All traps combined, including Formicidae. Fig. 10d. All traps combined, excluding Formicidae. 280
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Discussion. 

As may be expected, the species sampled by terrestrial collection methods (i.e., pitfall 

traps and Berlese-Tullgren extraction) and aerial traps (i.e., Malaise, canopy, and Lindgren 

funnel traps) generally exhibited high to very high similarity within each group (terrestrial vs 

aerial) but lower similarity between the groups.  They are likely targeting different arthropod 

assemblages and a combination of techniques is required if maximum diversity is to be sampled. 

Pitfall and Malaise traps collected the most species on average; pitfall, Malaise, and 

purple pan traps were estimated to collect the most species after species accumulation curves 

become asymptotic; and pitfall and Malaise traps and Berlese-Tullgren extraction of leaf litter 

collected the most specimens on average.  While this was certainly influenced by the taxa 

included in the analysis, and slightly different results might be obtained if different taxa were 

included, it likely reflected the true performance of the different trap types for two reasons: 1) all 

individuals from a diversity of higher taxa were included, limiting the influence any one taxon 

would have on the results and 2) the inclusion of a number of easily-identified species from an 

even wider range of orders and families introduced additional variation in life-history and 

minimizeed the impact of expert-bias when picking which taxa were included.   

The species collected by pan traps generally exhibited high to very high similarity with 

terrestrial and aerial traps (except green Lindgren funnel traps), probably because they collected 

both flying and crawling insects, although generally underperformed in species and specimen 

collection when compared to Malaise or pitfall traps.  The pan traps in this study, however, were 

not buried flush with the substrate and likely missed many arthropods that would fall into a 

pitfall trap but could not scale the sides of the pan.  One potential solution is to combine pitfall 

and pan traps by using open, colored pitfalls flush with the substrate (Skvarla et al. 2014 
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[Chapter II]; Ernst et al. 2015).  The only study that examined the effect of color in pitfall traps 

found that flying pollinators and carabids were collected in higher numbers in white and yellow 

(except carabids) pitfall traps compared to green and brown pitfalls and that terrestrial taxa, such 

as Isopoda, were not affected by trap color (Buchholz et al. 2010).  Such pitfalls cannot be run 

with rain covers and will be more affected by rainfall than covered traps when run for extended 

periods of time. However, it may be possible to employ a clear rain cover without affecting the 

attractiveness of the trap to flying insects. 

Different species exhibited markedly different phenologies, as should be expected from a 

diverse assemblage of taxa.  Taken collectively, two activity peaks were apparent in the spring 

and fall, with the larger peak occurring in the spring.  The number of specimens collected, 

however, showed less variation overall, although individual traps may collected more or less 

when abundant species are present. 

The species turnover, as reflected in the similarity between collection dates, varied by 

trap; species collected in Malaise and other aerial traps exhibited high or very high similarity 

between collections two to four weeks apart and decreased in similarity thereafter.  Species 

collected by pitfall traps and Berlese-Tullgren extraction exhibited high to very high similarity 

throughout the trapping period.  This suggested that aerial species were present for shorter 

periods of time, possibly because of changing abiotic factors such as precipitation, moisture, and 

temperature in the relatively exposed canopy, and collections targeting this group should either 

be continuous throughout the warm seasons or be made at least during every season.  

Conversely, terrestrial species were present for longer periods and many of the most abundant 

species, especially ants, were present throughout the warm months; this may be because the leaf 

litter on the forest floor experiences less dramatic abiotic fluctuations and protected areas, such 
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as leaf litter next to logs or under rocks, retain moisture.  It may be possible to collect most 

terrestrial diversity in only a few collection periods as long as a relative increase in effort is 

made.  However, it is unlikely that collecting during only one period during the year is sufficient 

to sample most diversity, as many terrestrial species fluctuate in abundance or, depending on the 

group, the percent of the population that are adults and therefore identifiable to species. 

Including data for Formicidae generally did not have a significant impact on the 

statistical analyses, except that including the data increased the standard deviations of the 

average number of species and specimens collected per trap type (Figs. 2, 4).  Additionally, 

including Formicidae caused all collection dates to exhibit high to very high similarity with 

respect to species collected while excluding Formicidae resulted in collection dates within two or 

three collections exhibiting high to very high similarity and dates beyond that exhibiting low to 

medium similarity with respect to the species collected (Figs. 10c, d).  This suggested 

Formicidae did not exhibit much seasonality once they became active and the numerically 

dominant (in terms of specimens) ants overwhelmed other species when they were included in 

the analysis.  It also suggested that caution should be employed when including species that are 

dominant in specimens but not species, as they can affect some analyses. 

Fifty one percent of the species collected were represented by five or fewer specimens 

and 25% were represented by singletons.  The species accumulation curves for most trap types 

did not become asymptotic and extrapolated rarefaction curves predicted 300–600 samples per 

trap type (1000 for pitfall traps), far more than were collected during this study.  This suggested 

that even though the site was relatively small, a great deal more effort would be required to 

sample the majority of species present.   
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Finally, even though fewer than half of the species predicted by the species accumulation 

curves were collected, the survey still produced 15 new species and 36 new state records within 

the taxa identified.  This highlights not only how much work remains to be done in Arkansas but 

also how much is left to discover even in a relatively well-studied area such as North America 

north of Mexico. 
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Appendix I.  Species rarefaction curves. 

 
Figure A1. Species rarefaction curves. See caption at the end of the figures for further explanation. 300
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Figure A1. Species rarefaction curves. See caption at the end of the figures for further explanation. 
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Figures A1a–m. Fig. A1a. Canopy trap, upper collector. Fig. A1b. Canopy trap, lower collector. Fig. A1c. Malaise trap. Fig. A1d. 
Black Lindgren funnel trap. Fig. A1e. Green Lindgren funnel trap. Fig. A1f. Purple Lindgren funnel trap. Fig. A1g. Berlese-
Tullgren extraction. Fig. A1h. Pitfall trap. Fig. A1i. Blue pan trap. Fig. A1j. Purple pan trap. Fig. A1k. Red pan trap. Fig. A1l. 
White pan trap. Fig. A1m. Yellow pan trap. Colors represent the same trap type throughout figures.  The y-axis is standardized 
across graphs but the x-axis is determined by the number of samples, which varies by trap type. 
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Figures A2a–c. Phenology of collected Chelicerata excluding Araneae. Fig. A2a. Parasitengona 

(Acari). Fig. A2b. Ixodidae (Parasitiformes). Fig. A2c. Phalangodidae (Opiliones). 
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Figure A2d. Phenology of collected Gnaphosidae (Araneae). 
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Figure A2e. Phenology of collected Lycosidae (Araneae). 
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Figure A2f. Phenology of collected Salticidae (Araneae). 
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Figure A2g. Phenology of collected Araneae excluding Gnaphosidae, Lycosidae, and Salticidae. 
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Figure A2g (cont.). Phenology of collected Araneae excluding Gnaphosidae, Lycosidae, and 

Salticidae. 
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Figure A2g (cont.). Phenology of collected Araneae excluding Gnaphosidae, Lycosidae, and 

Salticidae. 
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Figure A2h. Phenology of collected Formicidae, abundant species. 
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Figure A2h (cont.). Phenology of collected Formicidae, less abundant species. 
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Figure A2h. Phenology of collected Formicidae, rare species collected on three or fewer 

collection dates and represented by five or fewer specimens per date. 
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Figure A2i. Phenology of collected Pompilidae. 
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Figure A2j. Phenology of select collected Hymenoptera, excluding Formicidae and Pompilidae. 
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Figure A2k. Phenology of select collected Diptera 
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. 
Figure A2l. Phenology of select collected orthopteroids. 
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Figure A2m. Phenology of select collected Blattodea, Dermaptera, Hemiptera, and Mecoptera. 
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Figure A2n–p. Phenology of select collected Myriapoda and Isopoda. Fig. A2n. Chilopoda. Fig. 

A2o. Diplopoda. Fig. A2p. Isopoda.
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Figure A3. Sørensen and Chao’s Sørensen Indices comparing similarity of trap catch by date. Fig. A3a. Upper canopy trap. Fig. A3b. 

Lower canopy trap. Fig. A3c. Malaise trap.   
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Figure A3 (cont.). Sørensen and Chao’s Sørensen Indices comparing similarity of trap catch by date. Fig. A3d. Black Lindgren 

funnel trap. Fig. A3e. Green Lindgren funnel trap. Fig. A3f. Purple Lindgren funnel trap.   
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Figure A3 (cont.). Sørensen and Chao’s Sørensen Indices comparing similarity of trap catch by date. Fig. A3g. Berlese-Tullgren 

extraction. Dashes indicate dates when no samples were collected Fig. A3h. Pitfall trap. Fig. A3i. Blue pan trap.   
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Figure A3 (cont.). Sørensen and Chao’s Sørensen Indices comparing similarity of trap catch by date. Fig. A3j. Purple pan trap. Fig. 

A3k. Red pan trap. Fig. A3l. White pan trap. Fi. A3m. Yellow pan trap. 
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Chapter VII. First report of gynandromorphism in Temnothorax curvispinosus (Mayr, 
1866) (Hymenoptera: Formicidae). 

Abstract. 

We report for the first time a Temnothorax curvispinosus (Mayr, 1866) ergatandromorph. 

Body. 

Gynandromorphism is when an organism possesses tissue that is genotypically and 

phenotypically male and female (Laugé 1985).  A gynandromorph can have bilateral symmetry, 

in which one side is male and one is female, or be a mosaic, in which case male and female 

tissues are spread in patches across the body and may not be clearly defined (Campos et al 2011).  

While this phenomenon has been reported in vertebrates (Brodkorb 1935; Patten 1993), it is most 

commonly reported from invertebrates, especially insects (Turrisi & Foucart 2008).   

Gynandromorphism has been described from 69 families of insects across 13 orders (Cui 

and Cai 2003).  Within Hymenoptera the condition has been reported from Agaonidae (Pereira et 

al. 2003), Andrenidae (Xu & Cui 2007), Apidae (Wcislo et al. 2004), Braconidae (Whiting & 

Whiting 1927), Chalcididae (Haltead 1988), Colletidae (Wcislo et al. 2004), Diprionidae 

(Martini et al. 1999), Encyrtidae (Zhang & Zhu 2007), Halictidae (Wcislo et al. 2004), 

Ichneumonidae (Tarasco 1996) Megachilidae (Gerber and Akre 1969), Melittidae (Wcislo et al. 

2004), Mutillidae (Turrisi & Foucart 2008), Scelionidae (Huggert 1977), Sphecidae (Schneider 

& Feitz 2003) Tenthredinidae (Peacock 1925), Trichogrammatidae (Beserra et al. 2003), and 

Vespidae (Turrisi & Borsato 2008).   

However, the condition has most often been reported in Formicidae, with 

gynandromorphs described in Acromyrmex octospinosus (Reich) (Wheeler 1937), Anergates 

atratulus (Schenck) (Wheeler 1914), Aphaenogaster picea Wheeler (Wheeler 1903), 

Camponotus (Colobopsis) albocinctus (Ashmead) (Wheeler 1919), Camponotus ligniperdus 



326 
 

(Latreille) (Wheeler 1903) Cardiocondyla batesi Forel (Kugler 1983), Cardiocondyla kagutsuchi 

Terayama (Yoshizawa et al. 2009), Cardiocondyla nigra Forel (Wheeler 1914), Diacamma Mayr 

(Dobata et al. 2012), Formica microgyna Wheeler (Wheeler 1903), Formica rufa Linnaeus 

(Forel 1874; Forbes 1954), Formica sanguinea Latreille (Wheeler 1914), Lasius (Acanthomyops) 

latipes (Walsh) (Wheeler 1919), Monomorium floricola (Jerdon) (Donisthorpe 1929; Campos et 

al. 2011), Monomorium pharaonis (Linnaeus) (Berndt & Kremer 1983), Myrmecia gulosa 

(Fabricius) (Crosland et al. 1988) Myrmica sabuleti Meinert (Scupola 1994), Myrmica 

scabrinodis Nylander (Wheeler 1914), Pheidole dentata Mayr (Jones & Phillips Jr. 1985), 

Pheidole inquiline (Wheeler) (Wheeler 1903), Pheidole morrisi Forel (Yand & Abouheif 2011), 

Pogonomyrmex occidentalis (Cresson) (Taber & Francke 1986), Polyergus rufescens (Forel 

1874; Forbes 1954);  Solenopsis aurea Wheeler (Cokendolpher and Francke 1983), Solenopsis 

fugax (Latreille) (Wheeler 1914), Solenopsis invicta Buren (Hung et al. 1975), Solenopsis 

quinquecuspis (Forel) (Pitts 2002), Stenamma Westwood (Munsee 1994), Temnothorax 

obturator (Wheeler) (Wheeler 1903), Tetramorium guineense (Bernard) (Wheeler 1926), 

Tetramorium simillimum (Smith) (Wheeler 1903) and Vollenhovia emeryi Wheeler (Kubota 

1984; Kinomura and Yamauchi 1994). 

Because a cast system exists in ants, different combinations of male and female tissue can 

occur, for which Campos et al. (2011) proposed the names gynandromorph (queen-male), 

ergatandromorph (worker-male), and dynergatandromorph (soldier-male). “Intercaste” 

individuals, in which different female castes are combined (e.g., queen-worker 

[gynergatandromorph], queen-soldier [ergatogynandromorph], and worker-soldier 

[androergatogynomorph]), also occur, but are not true gynandromorphs because both castes are 

female (Yang & Abouheif 2011). 
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Although found in numerous species as described above, the probability of encountering 

a gynandromorph is very low. Out of the 14,442 ant specimens examined and identified, only a 

single specimen displaying signs of gynandromorphy was collected.  

We report for the first time a Temnothorax curvispinosus ergatandromorph. The 

specimen was collected in a purple pan trap between 15–29 May, 2013 in the Steel Creek 

Wilderness Area of the Buffalo National River in Newton County, Arkansas (36°02.231’ N, 

93°20.461’W) and is deposited in the University of Arkansas Arthropod Museum. 

The specimen exhibits male characteristics on the right side of the head – darker brown 

pigmentation, enlarged eye, ocelli present, reduced mandible, and 12-segmented antennae – and 

pronotum – lighter sclerotization – (Fig. 1a) and female worker characteristics on the left side of 

the head – lighter yellow pigmentation, smaller eye, ocelli absent, larger mandible, and 11-

segmented antennae – and pronotum – heavier, darker sclerotization (Fig. 1b).  The remaining 

thoracic segments, including the prothoracic leg, and abdominal segments are characteristic of a 

female worker (Fig. 1c).  The internal anatomy of the head and prothorax were not examined. 
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Figure 1. A, Head. Male tissue to the left, female worker tissue to the right; B, Head and 
prothorax, dorsum. Male tissue to the left, female worker tissue to the right; C, Profile, dextral. 
Male tissue can be seen on the head and pronotum; the rest of the body is composed of female 
worker tissue.
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VIII.  New records of Orussus minutus Middlekauff, 1983 (Hymenoptera: Orussidae) 

represent a significant western range expansion 

Abstract. 

Background 

Orussus minutus is an uncommonly collected parasitoid sawfly known from the eastern 

United States. 

New information 

We report specimens Orussus minutus Middlekauff, 1983, from Arkansas, Iowa, 

Minnesota, and Manitoba, which represent new state and province records and significantly 

expand the known range of the species west from previous records; provide collection 

information for unpublished specimens housed in the United States National Museum collection, 

which includes new state records for West Virginia and Michigan; and report two specimens 

housed in the Biological Museum at Lund University that represent new state records for 

Connecticut. 

 

Introduction. 

Orussidae have long interested entomologists because of their parasitoid larvae, which 

are unique among non-apocritan Hymenoptera, phylogenetically important position between 

basal Hymenoptera ("Symphyta") and Apocrita, and because they are rarely collected 

(Middlekauff 1983, Pesarini and Turrisi 2003, Vilhelmsen 2003). Middlekauff (1983) provided 

an excellent review of the literature concerning the feeding biology and hosts of orussid larvae. 

Briefly summarized, a number of authors reported orussid larvae develop in wood (Harrington 

1887a, Konow 1902, Gaulle 1906) and associate with beetle and sawfly larvae (Wachtl 1882, 
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Rudow 1909). Harrington (1887b) first hypothesized that orussid larvae may be parasitoids, 

though he considered it more likely they fed on wood. Rohwer (1912) and Burke (1918) 

provided convincing evidence that orussids are parasitoids as they reported Orussus larvae 

pupating in old cerambycid larval galleries and attacking buprestid larvae. Subsequent authors 

investigated oviposition behavior and larval feeding; they found that adult female orussids 

deposit eggs into frassfilled galleries of and directly onto larvae of wood-boring Coleoptera and 

Hymenoptera and that larval orussids feed upon those larvae (Cooper 1953, Rawlings 1957, 

Powell and Turner 1975). Currently, Orussidae are known or suspected to parasitize Buprestidae, 

Cerambycidae, Siricidae, and Xiphydriidae (Table 1). 

 

Host family Reference 
Buprestidae Wachtl 1882, Harrington 1887, Burke 1918, Ahnlund & Ronquist 2001, 

Vilhelmsen & Smith 2002 
Cerambycidae Rowher 1925, Hellrigl 1984 Ahnlund & Ronquist 2001 
Siricidae Gourlay 1951, Rawlings 1957, Vilhelmsen & Smith 2002 
Xiphydriidae Rudow 1909 

Table 1. Known and suspected hosts of Orussidae. 
 

 

Ashmead (1896) published the first phylogenetic hypothesis of Hymenoptera and placed 

Oryssidae (=Orussidae) transitionally between sawflies and other Hymenoptera. Recent 

phylogenetic analyses of morphological characters (Rasnitsyn 1988, Vilhelmsen 1997, 

Vilhelmsen 2000, Vilhelmsen 2001, Ronquist et al. 1999, Schulmeister 2003b), large molecular 

datasets and combined molecular and morphological datasets (Schulmeister 2003b, Heraty et al. 

2011, Sharkey et al. 2011) have corroborated the placement of Orussidae (and Paroryssidae 

when fossil taxa are included) as sister to Apocrita. For relationships within Orussidae, the most 

robust phylogenetic analysis was produced by Vilhelmsen (2003). His analysis recovered most 
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genera as monophyletic, though Vilhelmsen abandoned the use of subfamilies and tribes, as 

“[e]nforcing a strictly cladistics classification at these levels would require recognition of many 

redundant taxa without enhancing the information content”.  

Orussidae are uncommonly collected and rare in collections. For example, despite a 

cumulative 25,000 trapping hours (314 separate 1–2 week collection events) using Malaise traps 

over the last five years by the authors around Arkansas, no additional specimens beyond the 

three reported herein were captured with this trapping method and David Smith (USDA, SEL), 

who has had success collecting orussids in Malaise traps (e.g., Smith 2006, Smith 2008, Barrows 

and Smith 2014), has only collected 33 specimens of O. minutus in 35 years of collecting with an 

average of 15 Malaise traps set per year (David R. Smith, pers. comm. 18 August 2015). 

Additionally, new species continue to be described, even in heavily collected areas such as 

California (e.g., Vilhelmsen 2005, Blank et al. 2010, Vilhelmsen et al. 2014). Several species are 

known only from one or a few localities and specimens and the known ranges of many species 

continue to expand as new specimens are collected (Ahnlund and Ronquist 2001, Vilhelmsen 

and Smith 2002, Pesarini and Turrisi 2003, Pesarini and Turrisi 2006, Choi and Suh 2011).  

Orussus is represented five species in North America north of Mexico: O. occidentalis 

(Cresson, 1879) has been reported from Southern British Columbia east to Ontario, south in the 

western United States to southern California, Nevada, and New Mexico; O. thoracicus 

(Ashmead, 1898) has been reported from Colorado, Washington, Oregon, and California; O. 

sayii (Westwood, 1835) has been reported from Ontario south to Louisiana, west to Indiana; O. 

terminalis (Newman, 1838) has been reported from New England and Ontario west to Iowa and 

Illinois, south to Maryland; and O. minutus (Middlekauff, 1983) has been reported from New 
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York to Georgia west to Illinois (Middlekauff 1983, Vilhelmsen 2003, Blank et al. 2010, 

Vilhelmsen et al. 2013). 

 

Materials and methods. 

Two orussids (1 male, 1 female) were collected along the Buffalo National River in the 

lower collector of an aerial SLAM (sea-land-air-Malaise) trap (MegaView Science Co., Ltd., 

Taichung, Taiwan) and a black multifunnel trap (ChemTica International, S.A., Heredia, Costa 

Rica); a third specimen (1 female) was collected via aerial netting in the Kessler Mountain 

Reserve. Both localities are mixed secondary deciduous forest dominated by oak and hickory 

that were logged approximately 80–100 years ago. Specimens were identified to species using 

published keys (Middlekauff 1983, Vilhelmsen et al. 2014) and have been deposited in the 

University of Arkansas Arthropod Museum.  

Stereomicrographs of the Arkansas specimens were taken with a Cannon EOS 40D 

camera (Tokyo, Japan) attached using a Diagnostic Instruments DD20NLT 2.0X camera mount 

(Sterling Heights, Michigan, USA) to a Nikon SMZ1500 stereomicroscope (Tokyo, Japan). The 

microgrpahs were processed and final plates arranged in Adobe Illustrator (San Jose, California, 

USA).  

DNA of one Arkansas specimen (MS 13-0413-047, #138295) was sequenced for 

comparison with previously characterized Orussus. Genomic DNA was extracted from a single 

mid-leg using the Qiagen DNeasy Tissue kit (Qiagen, Inc., Valencia, California), following 

manufacturer’s instructions. PCR was conducted using the primers LR-J-13017 (5’- 

TTACGCTGTTATCCTAA-3’) and LR-N-13398 (5’- CACCTGTTTAACAAAAACAT-3’) 

(Kambhampati and Smith 1995), which amplify an approximately 415 bp portion of the 16S 
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rRNA region of the mitochondrial genome. Reaction conditions were 94°C for 2 min, followed 

by 40 cycles of 94°C for 45 s, 48°C for 1 min, and 72°C for 1 min, with a final 5 min extension 

step at 72°C. Amplified DNA was purified, concentrated with PES 30k centrifugal filter devices 

(VWR, Radnor, PA) and sent for direct sequencing in both directions (Eurofins MWG Operon, 

Huntsville, Alabama).  

David R. Smith kindly provided label information for specimens housed in the United 

States National Museum; previously unpublished specimens are reported herein. Additional 

unpublished specimens were found by searching the databased collection of Lund University 

Biological Museum (Lund University 2015), BugGuide (Hatfield 2008, Alexander 2011, Liberta 

2014, Zhang 2014), and Flickr (King 2014).  

Published locality data for Figure 3 was compiled from Cooper (1953), Middlekauff 

(1983), Smith (2006), Barrows and Smith (2014).  

Institution abbreviations follow Evenhuis (2015) and are as follows: United States 

National Museum (USNM), University of Arkansas Arthropod Museum (UAAM), Lund 

University, Sweden (MZLU). 

Taxon treatment. 

Ourssus minutus Middlekauff, 1983 

Materials 

a.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Arkansas; county: Newton; locality: Buffalo National River, Steel 
Creek; locationRemarks: 80-100 year old mature second-growth Eastern mixed deciduous forest dominated by oak (Quercus) 
and hickory (Carya); verbatimCoordinates: 36°02.218' N, 93°20.439 W; decimalLatitude: 36.036967; decimalLongitude: -
93.34065; georeferenceProtocol: GPS; samplingProtocol: black Lindgren multifunnel trap; eventDate: 201313-4-13; 
individualCount: 1; lifeStage: adult; catalogNumber: 138295; recordedBy: Michael J Skvarla; identifiedBy: Michael J. Skvarla; 
dateIdentified: 2014; language: en; collectionID: MS 13-0413-047; institutionCode: UAAM; basisOfRecord: PreservedSpecimen 

b.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Arkansas; county: Newton; locality: Buffalo National River, Steel 
Creek; locationRemarks: 80-100 year old mature second-growth Eastern mixed deciduous forest dominated by oak (Quercus) 
and hickory (Carya); verbatimCoordinates: 36°02.314' N, 93°20.425 W; decimalLatitude: 36.038567; decimalLongitude: -
93.34041; georeferenceProtocol: GPS; samplingProtocol: SLAM canopy trap, lower collector; eventDate: 201313-4-13; 
individualCount: 1; lifeStage: adult; catalogNumber: 138296; recordedBy: Michael J Skvarla; identifiedBy: Michael J. Skvarla; 
dateIdentified: 2014; language: en; collectionID: MS 13-0413-060; institutionCode: UAAM; basisOfRecord: PreservedSpecimen 
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c.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Arkansas; county: Washington; locality: Fayetteville, Kessler Mountain 
Reserve, Wino Trail; locationRemarks: 80-100 year old mature second-growth Eastern mixed deciduous forest dominated by 
oak (Quercus) and hickory (Carya); verbatimCoordinates: 36°02'19.45" N, 94°13'01.98" W; decimalLatitude: 36.038611; 
decimalLongitude: -94.216944; georeferenceProtocol: GoogleEarth; samplingProtocol: hand collected with net; eventDate: 
41755.00; individualCount: 1; lifeStage: adult; recordedBy: Amber Tripodi; identifiedBy: Michael J. Skvarla; dateIdentified: 
2014; language: en; institutionCode: UAAM; basisOfRecord:PreservedSpecimen 

d.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Warren; locality: Skyland Estates; locationRemarks: 
4 km NNW of Linden; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 1985-4-20/1985-4-27; 
individualCount: 1; lifeStage: adult; recordedBy: T. P. Nuhn; identifiedBy: David R. Smith; language: en; institutionCode: 
USNM; basisOfRecord: PreservedSpecimen 

e.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Warren; locality: Skyland Estates; locationRemarks: 
4 km NNW of Linden; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 1996-4-27/1996-5-12; 
individualCount: 1; lifeStage: adult; recordedBy: T. P. Nuhn; identifiedBy: David R. Smith; language: en; institutionCode: 
USNM; basisOfRecord: PreservedSpecimen 

f.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; locality: Great Dismal Swamp National Wildlife Refuge; 
georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 1965-4-16/1965-4-17; individualCount: 1; lifeStage: 
adult; recordedBy: P. J. Spangler; identifiedBy: David R. Smith; language: en; institutionCode: USNM; basisOfRecord: 
PreservedSpecimen 

g.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Louisa; locationRemarks: 4 mi south of Cuckoo; 
georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 1989-4-26/1989-5-12; individualCount: 1; lifeStage: 
adult; recordedBy: J. Kloke & D. R. Smith; identifiedBy: David R. Smith; language: en; institutionCode: USNM; basisOfRecord: 
PreservedSpecimen 

h.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Louisa; locationRemarks: 4 mi south of Cuckoo; 
georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 1989-5-27/1989-6-7; individualCount: 1; lifeStage: 
adult; recordedBy: J. Kloke & D. R. Smith; identifiedBy: David R. Smith; language: en; institutionCode: USNM; basisOfRecord: 
PreservedSpecimen 

i.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Louisa; locationRemarks: 4 mi south of Cuckoo; 
georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 1988-3-19/1988-4-11; individualCount: 1; lifeStage: 
adult; recordedBy: J. Kloke & D. R. Smith; identifiedBy: David R. Smith; language: en; institutionCode: USNM; basisOfRecord: 
PreservedSpecimen 

j.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Fairfax; locality: Holmes Run; locationRemarks: ~1/4 
mi NW jct. Gallows Rd & I-495; verbatimCoordinates: 38°50’N, 77°12’W; georeferenceProtocol: label; samplingProtocol: 
Malaise trap; eventDate: 1990-4-22/1990-4-28; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: 
David R. Smith; language: en; institutionCode: USNM; basisOfRecord: PreservedSpecimen 

k.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Fairfax; locality: Holmes Run; locationRemarks: ~1/4 
mi NW jct. Gallows Rd & I-496; verbatimCoordinates: 38°50’N, 77°12’W; georeferenceProtocol: label; samplingProtocol: 
Malaise trap; eventDate: 1990-3-11/1990-30-17; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: 
David R. Smith; language: en; institutionCode: USNM; basisOfRecord: PreservedSpecimen 

l.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Fairfax; locality: Holmes Run; locationRemarks: ~1/4 
mi NW jct. Gallows Rd & I-497; verbatimCoordinates: 38°50’N, 77°12’W; georeferenceProtocol: label; samplingProtocol: 
Malaise trap; eventDate: 2008-4-13/2008-4-19; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: 
David R. Smith; language: en; institutionCode: USNM; basisOfRecord: PreservedSpecimen 

m.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Clarke; locality: University of Virginia Blandy 
Experiment Farm; locationRemarks: 2 mi south of Boyce; verbatimCoordinates: 39°05’N, 78°10’W; georeferenceProtocol: 
label; samplingProtocol: Malaise trap; eventDate: 1992-5-2/1992-5-16; individualCount: 1; lifeStage: adult; recordedBy: D. R. 
Smith; identifiedBy: David R. Smith; language: en; institutionCode: USNM; basisOfRecord: PreservedSpecimen 

n.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
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country: United States; countryCode: US; stateProvince: Virginia; county: Clarke; locality: University of Virginia Blandy 
Experiment Farm; locationRemarks: 2 mi south of Boyce; verbatimCoordinates: 39°05’N, 78°10’W; georeferenceProtocol: 
label; samplingProtocol: Malaise trap; eventDate: 1994-4-16/1994-4-28; individualCount: 2; lifeStage: adult; recordedBy: D. R. 
Smith; identifiedBy: David R. Smith; language: en; institutionCode: USNM; basisOfRecord: PreservedSpecimen 

o.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Clarke; locality: University of Virginia Blandy 
Experiment Farm; locationRemarks: 2 mi south of Boyce; verbatimCoordinates: 39°05’N, 78°10’W; georeferenceProtocol: 
label; samplingProtocol: Malaise trap; eventDate: 1994-4-16/1994-4-28; individualCount: 1; lifeStage: adult; recordedBy: D. R. 
Smith; identifiedBy: David R. Smith; language: en; institutionCode: USNM; basisOfRecord: PreservedSpecimen 

p.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Essex; locationRemarks: 1 mi southeast of 
Dunnsville; verbatimCoordinates: 37°52’N, 76°48’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
1992-4-1/1992-4-16; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

q.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Essex; locationRemarks: 1 mi southeast of 
Dunnsville; verbatimCoordinates: 37°52’N, 76°48’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
1993-5-15/1993-5-28; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen  

r.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Essex; locationRemarks: 1 mi southeast of 
Dunnsville; verbatimCoordinates: 37°52’N, 76°48’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
1994-4-22/1994-5-3; individualCount: 2; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

s.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Essex; locationRemarks: 1 mi southeast of 
Dunnsville; verbatimCoordinates: 37°52’N, 76°48’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
1994-4-22/1994-5-3; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

t.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Essex; locationRemarks: 1 mi southeast of 
Dunnsville; verbatimCoordinates: 37°52’N, 76°48’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
1995-3-23/1995-4-11; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

u.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Essex; locationRemarks: 1 mi southeast of 
Dunnsville; verbatimCoordinates: 37°52’N, 76°48’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
1996-4-12/1996-5-6; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

v.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Essex; locationRemarks: 1 mi southeast of 
Dunnsville; verbatimCoordinates: 37°52’N, 76°48’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
1996-5-7/1996-5-17; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

w.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Essex; locationRemarks: 1 mi southeast of 
Dunnsville; verbatimCoordinates: 37°52’N, 76°48’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
1999-3-6/1999-3-20; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

x.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Essex; locationRemarks: 1 mi southeast of 
Dunnsville; verbatimCoordinates: 37°52’N, 76°48’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
1999-4-3/1999-4-19; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

y.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Essex; locationRemarks: 1 mi southeast of 
Dunnsville; verbatimCoordinates: 37°52’N, 76°48’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
1999-4-3/1999-4-19; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 
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z.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Essex; locationRemarks: 1 mi southeast of 
Dunnsville; verbatimCoordinates: 37°52’N, 76°48’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
1999-5-6/1999-5-20; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

aa.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Virginia; county: Fairfax; locality: Great Falls Park; 
verbatimCoordinates: 38°59.4’N, 77°15.26’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 2007-4-
19/2007-5-2; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

ab.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: West Virginia; county: Hardy; locationRemarks: 3 mi northeast of 
Mathias; verbatimCoordinates: 38°55’N, 78°49’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
2000-5-1/2000-5-15; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

ac.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: West Virginia; county: Hardy; locationRemarks: 3 mi northeast of 
Mathias; verbatimCoordinates: 38°55’N, 78°49’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
2001-4-1/2001-5-14; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

ad.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: West Virginia; county: Hardy; locationRemarks: 3 mi northeast of 
Mathias; verbatimCoordinates: 38°55’N, 78°49’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
2007-5-4/2007-5-21; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

ae.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: West Virginia; county: Hardy; locationRemarks: 3 mi northeast of 
Mathias; verbatimCoordinates: 38°55’N, 78°49’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
2007-5-22/2007-6-7; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

af.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: West Virginia; county: Hardy; locationRemarks: 3 mi northeast of 
Mathias; verbatimCoordinates: 38°55’N, 78°49’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 
2008-5-30/2008-6-17; individualCount: 1; lifeStage: adult; recordedBy: D. R. Smith; identifiedBy: David R. Smith; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

ag.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: West Virginia; county: Tucker; locality: Fernow Experimental Forest; 
verbatimCoordinates: 39°03’N, 79°40’W; georeferenceProtocol: label; samplingProtocol: Malaise trap; eventDate: 1993-4-
30/1993-5-10; individualCount: 1; lifeStage: adult; recordedBy: E. M. Barrows; language: en; institutionCode: USNM; 
basisOfRecord: PreservedSpecimen 

ah.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Maryland; county: Montgomery; locality: Plummers Island; 
georeferenceProtocol: label; samplingProtocol: hand collected with net; eventDate: 1971-4-11; individualCount: 5; lifeStage: 
adult; behavior: specimens taken on trunk of dead, standing, barked samplings, trunk diam. 2"; recordedBy: K. V. Krombein; 
associatedReferences: Smith, D.R. 2008. Hymenoptera (Insecta) of Plummers Island, Maryland: Symphyta and selected 
families of Apocrita. Bulletin of the Biological Society of Washington, 15(1): 160–167; identifiedBy: David R. Smith; language: 
en; institutionCode: USNM; basisOfRecord: PreservedSpecimen 

ai.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Michigan; county: Wayne; locality: Grosse Ile; georeferenceProtocol: 
label; eventDate: 1957-5-25; individualCount: 1; lifeStage: adult; recordedBy: Geo. Steyskal; language: en; institutionCode: 
USNM; basisOfRecord: PreservedSpecimen 

aj.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Michigan; county: Washtenaw; georeferenceProtocol: label; 
eventDate: 1967-6-10; individualCount: 1; lifeStage: adult; recordedBy: R. W. Carlson; language: en; institutionCode: USNM; 
basisOfRecord: PreservedSpecimen 

ak.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Indiana; county: Tippecanoe; locality: West Lafayette; 
georeferenceProtocol: label; samplingProtocol: hand collected; eventDate: 1970-5-5; individualCount: 1; lifeStage: adult; 
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behavior: collected in flight; recordedBy: M. & N. Deyrup; identifiedBy: David R. Smith; language: en; institutionCode: USNM; 
basisOfRecord: PreservedSpecimen 

al.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Indiana; county: Tippecanoe; locality: West Lafayette; 
georeferenceProtocol: label; eventDate: 1981-4-16; individualCount: 1; lifeStage: adult; behavior: collected from branches of 
Acer saccharum; recordedBy: M. & N. Deyrup; associatedReferences: Deyrup, M.A. 1984. A maple wood wasp, Xiphydria 
maculate, and its insect enemies (Hymenoptera: Xiphydriidae). Great Lakes Entomologist, 17: 17–28. [referred to as "Orussus 
sp."]; identifiedBy: David R. Smith; language: en; institutionCode: USNM; basisOfRecord: PreservedSpecimen 

am. scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Indiana; county: Tippecanoe; locality: West Lafayette; 
georeferenceProtocol: label; eventDate: 1981-4-26; individualCount: 1; lifeStage: adult; behavior: collected from branches of 
Acer saccharum; recordedBy: M. & N. Deyrup; associatedReferences: Deyrup, M.A. 1984. A maple wood wasp, Xiphydria 
maculate, and its insect enemies (Hymenoptera: Xiphydriidae). Great Lakes Entomologist, 17: 17–28. [referred to as "Orussus 
sp."]; identifiedBy: David R. Smith; language: en; institutionCode: USNM; basisOfRecord: PreservedSpecimen 

an. scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Cumberland; verbatimCoordinates: 40.22479, -
76.96278; decimalLatitude: 40.22479; decimalLongitude: -76.96278; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2011-5-4; individualCount: 2; lifeStage: adult; recordedBy: Shu Ambree; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

ao.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Cumberland; verbatimCoordinates: 40.22519, -
76.96252; decimalLatitude: 40.22519; decimalLongitude: -76.96252; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2011-5-4; individualCount: 1; lifeStage: adult; recordedBy: Shu Ambree; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

ap.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Northumberland; verbatimCoordinates: 
40.87671, -76.50962; decimalLatitude: 40.87671; decimalLongitude: -76.50962; georeferenceProtocol: label; 
samplingProtocol: Lindgren multifunnel trap; eventDate: 2011-6-1; individualCount: 1; lifeStage: adult; recordedBy: Jay Bagley; 
language: en; institutionCode: USNM; basisOfRecord: PreservedSpecimen  

aq.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum:Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Lehigh; verbatimCoordinates: 40.45855, -
75.473198; decimalLatitude: 40.45855; decimalLongitude: -75.473198; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2012-5-31; individualCount: 1; lifeStage: adult; recordedBy: Sam Louenwirth; language: 
en; institutionCode: USNM; basisOfRecord:PreservedSpecimen 

ar.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Bedford; verbatimCoordinates: 40.04287, -
78.36906; decimalLatitude: 40.04287; decimalLongitude: -78.36906; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2012-5-15; individualCount: 1; lifeStage: adult; recordedBy: Nathan Delp; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

as.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Fulton; verbatimCoordinates: 40.02970, -
77.637133; decimalLatitude: 40.0297; decimalLongitude: -77.637133; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2014-7-8; individualCount: 2; lifeStage: adult; language: en; institutionCode: USNM; 
basisOfRecord: PreservedSpecimen 

at.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Chester; verbatimCoordinates: 40.6765, -
75.71953; decimalLatitude: 40.6765; decimalLongitude: -75.71953; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2012-5-15; individualCount: 2; lifeStage: adult; recordedBy: Thea Stimmler; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

au.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Centre; verbatimCoordinates: 41.030522, -
77.98226; decimalLatitude: 41.030522; decimalLongitude: -77.98226; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2012-5-18; individualCount: 1; lifeStage: adult; recordedBy: Ryan Weston; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

av.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Bradford; verbatimCoordinates: 41.81719, -
76.79818; decimalLatitude: 41.81719; decimalLongitude: -76.79818; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2012-5-31; individualCount: 1; lifeStage: adult; recordedBy: Rick Malak; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen  
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aw. scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Delaware; verbatimCoordinates: 39.85234, -
75.40715; decimalLatitude: 39.85234; decimalLongitude: -75.40715; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2011-4-19; individualCount: 7; lifeStage: adult; recordedBy: Sandra Gardosik; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

ax.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Delaware; verbatimCoordinates: 39.85225, -
75.40751; decimalLatitude: 39.85225; decimalLongitude: -75.40751; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2011-4-19; individualCount: 7; lifeStage: adult; recordedBy: Sandra Gardosik; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

ay.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Delaware; verbatimCoordinates: 39.85206, -
75.40721; decimalLatitude: 39.85206; decimalLongitude: -75.40721; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2011-4-19; individualCount: 4; lifeStage: adult; recordedBy: Sandra Gardosik; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

az.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: York; verbatimCoordinates: 40.0295, -
76.70635; decimalLatitude: 40.0295; decimalLongitude: -76.70635; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2011-4-7; individualCount: 4; lifeStage: adult; recordedBy: Scott Robert; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

ba.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: York; verbatimCoordinates: 40.03012, -
76.70447; decimalLatitude: 40.03012; decimalLongitude: -76.70447; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2011-5-22; individualCount: 2; lifeStage: adult; recordedBy: Scott Robert; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bb.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.93079, -
77.63713; decimalLatitude: 39.93079; decimalLongitude: -77.63713; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2011-5-2; individualCount: 9; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bc.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.93071, -
77.63803; decimalLatitude: 39.93071; decimalLongitude: -77.63803; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2011-5-2; individualCount: 2; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bd.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.93071, -
77.63803; decimalLatitude: 39.93071; decimalLongitude: -77.63803; georeferenceProtocol: label; samplingProtocol: Lindgren 
multifunnel trap; eventDate: 2011-5-1; individualCount: 2; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

be.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.930837, -
77.638226; decimalLatitude: 39.930837; decimalLongitude: -77.638226; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2011-5-2; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bf.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.930785, -
77.637101; decimalLatitude: 39.930785; decimalLongitude: -77.637101; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2011-5-2; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bg.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.930785, -
77.637101; decimalLatitude: 39.930785; decimalLongitude: -77.637101; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2011-8-1; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bh.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.930837, -
77.638226; decimalLatitude: 39.930837; decimalLongitude: -77.638226; georeferenceProtocol: label; samplingProtocol: 
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Lindgren multifunnel trap; eventDate: 2011-5-2; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen  

bi.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.930884, -
77.637928; decimalLatitude: 39.930884; decimalLongitude: -77.637928; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2011-4-28; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen  

bj.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.930884, -
77.637928; decimalLatitude: 39.930884; decimalLongitude: -77.637928; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2011-4-21; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bk.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.930884, -
77.637928; decimalLatitude: 39.930884; decimalLongitude: -77.637928; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2011-5-19; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bl.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.93094, -
77.637133; decimalLatitude: 39.93094; decimalLongitude: -77.637133; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2011-4-1; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bm. scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.93094, -
77.637133; decimalLatitude: 39.93094; decimalLongitude: -77.637133; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2011-4-21; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen  

bn.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.93021, -
77.638025; decimalLatitude: 39.93021; decimalLongitude: -77.638025; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2011-6-1; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bo.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.93021, -
77.638025; decimalLatitude: 39.93021; decimalLongitude: -77.638025; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2011-5-2; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bp.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Pennsylvania; county: Franklin; verbatimCoordinates: 39.93097, -
77.637695; decimalLatitude: 39.93097; decimalLongitude: -77.637695; georeferenceProtocol: label; samplingProtocol: 
Lindgren multifunnel trap; eventDate: 2011-4-21; individualCount: 1; lifeStage: adult; recordedBy: L. Donovall; language: en; 
institutionCode: USNM; basisOfRecord: PreservedSpecimen 

bq.  scientificName: Orussus minutus Middlekauff, 1983; kingdom: Animalia; phylum: Arthropoda; class: Insecta; order: 
Hymenoptera; family: Orussidae; genus: Orussus; specificEpithet: minutus; scientificNameAuthorship: Middlekauff, 1983; 
country: United States; countryCode: US; stateProvince: Connecticut; county: New London; municipality: Groton; 
georeferenceProtocol: label; eventDate: 17695.00; individualCount: 2; lifeStage: adult; recordedBy: Anton Jansson; 
institutionCode: MZLU; basisOfRecord: PreservedSpecimen 
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Distribution. 

New York south to Georgia west to Manitoba, Iowa, and Arkansas. 

Analysis. 

The Arkansas specimens were identified morphologically as Orussus minutus 

Middlekauff, 1983 (Figs 1, 2). The 16S rRNA sequence (GenBank #KM379143) was a 99.5% 

match with an existing O. minutus sequence (EF032174), differing by two base pairs. 

Discussion. 

The Arkansas specimens and those shared as photographs on Bugguide and Flickr 

significantly expand the known range of O. minutus westward (Fig. 3). Morphological 

determination of the Arkansas specimens was confirmed by genetic data and the species is easily 

identified due to its small size and distinct markings, so it is highly unlikely the photographed 

specimens are not O. minutus.  

Many of the USNM specimens were collected by David R. Smith during 35 years of 

Malaise trapping specifically for sawflies. However, most recently collected specimens, 

especially those from Pennsylvania, were found as non-target species during various exotic 

species monitoring programs that utalized Lindgren multifunnel traps (David Smith, pers. 

comm., 28 Aug. 2015). The abundance of these specimens emphasize the utility of examining, or 

at least collecting and sending to the appropriate specialist, non-target species in mass trapping 

surveys, such as was suggested by Skvarla and Holland (2011). Precise figures for the number of 

traps and amount of effort that was involved in the Pennsylvania surveys is unavailable, so we 

are unable to compare the efficiency of Malaise trapping compared to Lindgren funnel trapping; 

however, the number of O. minutus that were collected in Lindgren funnel traps suggests that it 

may be a useful tool for collecting Orussus.   
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Figure 1. Orussus minutus, female. a: Lateral habitus. b: Dorsal habitus. c: Head. d: Ventral 
abdomen. 
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Figure 2. Orussus minutus, male. a: Lateral habitus. b: Dorsal habitus. c: Head. d: Ventral 
abdomen. 
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Figure 3. Known range of Orussus minutus. Solid circles represent collection localities, open 
circles represent state records lacking additional locality data. 
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Given the current records, O. minutus is likely present throughout most of Eastern North 

America. The concentration of specimens from northern Virginia and Pennsylvania reflect 

collecting effort and specimen recoginition rather than true abundance and further collecting in 

the southeastern United States and Canada should produce additional specimens from those 

areas.  

Finally, records found through Bugguide and Flickr join a growing list of discoveries 

made via citizen science and social media websites (e.g., Otto and Hill 2011, Winterton et al. 

2012, Gonella et al. 2015) and help underscore the importance of such resources in descriptive 

biology and natural history. 
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IX. New information about the cypress weevil, Eudociminus mannerheimii (Boheman, 1836) 

(Coleoptera: Curculionidae: Molytinae): redescription, range expansion, new host records, 

and a report as a possible causative agent of tree mortality 

 

Abstract. 

The cypress weevil, Eudociminus mannerheimii (Boheman, 1836), is reported from 

northwest Arkansas (new state record). The suspected host in this area is eastern red cedar 

(Juniperus virginiana L.), which represents a new host record. Additional new host records from 

arborvitae (Thuja L.) in North Carolina are reported. A brief redescription of the adults that 

expands upon the original description and photographs are included. Although cypress weevils 

are not generally considered pestiferous, a case of landscape trees likely killed by this species is 

included. 

Introduction.   

Eudociminus mannerheimii (Boheman, 1836) (Figs. 1–8, 12), commonly called cypress 

weevils, are large native hylobiine weevils (Curculionidae: Molytinae) that breed in stressed bald 

cypress and related trees (Cupressaceae). Although not generally considered a pest, damage to 

small diameter nursery stock and girdling of sprouts and seedlings has been occasionally 

reported (Mayfield 2004; Randall et al. 2005). Aside from checklist and catalogue entries (e.g., 

Hopkins 1904; Blatchley and Leng 1916; Alonso-Zarazaga and Lyal 1999), information about E. 

mannerheimii is limited (Mayfield 2004).  

Cypress weevils range from New York south to Florida and west to Louisiana (O’Brien 

and Wibmer 1982; Peck and Thomas 1998). Recently, it has also been reported from Querétaro 

and Jalisco, Mexico (Jones et al. 2003; Sánchez-Martínez et al. 2010).  
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Recorded hosts include bald cypress (Taxodium distichum (L.) Rich.) (Hopkins 1904; 

Anderson 2002; Bambara 2004), pond cypress (T. ascendens Brongn.), Montezuma cypress (T. 

mucronatum Ten.) (Jones et al. 2003; Sánchez-Martínez et al. 2010), Japanese cedar 

(Cryptomeria (L.f.) D. Don), and Leyland cypress (×Cupressocyparis leylandii A. B. Jacks. and 

Dallim.) (Bambara 2004). Additionally, Baker and Bambara (1999) suggested E. mannerheimii 

may feed on Atlantic white cedar (Chamaecyparis thyoides (L.) Britton, Sterns and Poggenb.) in 

New York, as bald cypress is not native so far north.  

Herein, we discuss the collection of E. mannerheimii outside its known range and present a 

situation in which the beetle was involved in the death of landscape trees. Furthermore, as the 

original description of this species is in Latin, and therefore inaccessible to most modern readers, 

and subsequent redescriptions (e.g., Blatchley and Leng 1916) do not encompass the variation, 

especially in color, seen in the species, we provide a brief updated description of the adults.  

Materials and Methods.   

In Arkansas, adult weevils (Figs. 1–2) were collected at Steel Creek along the Buffalo 

National River (Newton County) by Malaise traps in an eastern red cedar (Juniperus virginiana 

L.) glade and in a purple Lindgren funnel trap in a mixed forest containing eastern red cedar.  

Recent, 2013, specimens from North Carolina (locality data below) were collected as 

larvae (Fig. 7) and pupae (Fig. 8), or reared to adulthood (Figs. 3–5), from a ca. 30 cm x 12 cm 

trunk section of ‘Green Giant’ arborvitae (Thuja plicata x T. standishii). The section was 

received at the Plant Disease and Insect Clinic at North Carolina State University on 30 January 

2013 and isolated in a covered 5-gallon bucket at room temperature. Late instar larvae were 

observed under the bark and the sample was maintained until adults emerged around April 18th, 

2013. 
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Specimens collected in Arkansas have been deposited in the University of Arkansas 

Arthropod Museum (UAAM). Specimens collected in North Carolina have been deposited in the 

North Carolina State University Insect Museum (NCSU). Institutional abbreviations follow 

Evenhuis (2014). 

Taxonomy. 

Eudociminus Leng 1918 

Eudocinus Dejean 1835: 276 [nomen nudum] 

Eudocimus Boheman 1836: 240 [preoccupied by Wagler, 1832 (Aves)] 

Eudocinus Laporte 1840: 335 [lapsus] 

Eudociminus Leng 1918: 210 

 

LSID: urn:lsid:zoobank.org:act:8652B3EE-8CC9-49F0-8930-6D3EF060A0F3 

Type species:  Eudociminus mannerheimii 

 

Eudociminus mannerheimii (Boheman 1836) 

Eudocinus mannerheimii Schönherr Dejean 1835: 276 [nomen nudum] 

Eudocimus mannerheimii Boheman 1836: 241 

Eudociminus mannerheimii Leng 1918 

 

LSID: urn:lsid:zoobank.org:act:51E0D421-BFBC-4BDE-8AE4-C987AD13038F 

 

Description (n=14). Body 10–17 mm long and 3.5–5.5 mm wide. Cuticle dark red to 

black, generally clothed in colored scale-like setae. Dorsum: dark gray to brown, with scale-like 
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setae densely packed. Head: punctate with smooth median line; light tan, orange, or white scales 

dorsolaterally and immediately posterior and ventral to eye, otherwise without setae; rostrum 2/3 

length of pronotum; eyes elongate, reniform. Pronotum: slightly longer than wide and sides 

moderately rounded; disc coarsely punctate with smooth median line; with five lines of variable 

color (light tan, orange, pink, or white): two complete lines dorsolaterally that connect anteriorly 

midway between eyes and posteriorly to spots on sixth elytral intervals; two incomplete lines that 

connect anteriorly to the dorsal apex of the eye and terminate in the anterior third of the 

pronotum; and a median line, which may be indistinct in the middle. Scutellum: triangular and 

light tan to white. Elytra slightly wider than pronotum and parallel-sided, with humeral angle 

distinct; preapical elytral hump present in some specimens (e.g., Fig. 4b); striae deeply 

impressed, intervals flat. Elytra with four dark brown to black spots on fourth intervals, 

sometimes coalescent into stripes, with or without four light tan to white spots; elytral bases 

usually with two to four light tan to white spots on intervals four and six; intervals nine and ten 

with tan to white spots, sometimes coalescent into longer lines. Venter (including legs) generally 

appearing dark, with sparse scale-like setae light tan, orange, pink, or white; legs additionally 

have simple setae. Tibiae with strong hook-like unci. Tarsal claws simple, without teeth. 

Specimens examined: (14 pinned specimens) 2 males, USA, North Carolina, Phelps 

Lake, ex. cypress bark, 25 October 1928, coll. B. B. Fulton (NCSU)  ● 1 female, USA, North 

Carolina, Bladen Co, White Lake, cypress, 14 March 1953, coll. D. M. Weisman (NCSU) ● 4 

females, 1 male, USA, North Carolina, Wake Co, Holly Springs, reared from Thuja sp., 30 

January 2013, coll. M. A. Bertone (NCSU) ● 1 female, USA, Arkansas, Newton Co, Steel Creek, 

ex Malaise trap set in eastern red cedar glade, 10 July 2010, coll. J. R. Fisher and D. Keeler 

(UAAM) ● 1 female (APGD 10-0618-003, #135701), USA, Arkansas, Newton Co, Steel Creek 
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(36°01’56” N, 93°20’02” W), ex Malaise trap set in eastern red cedar glade, 18 June 2010, col. J. 

R. Fisher and M. J. Skvarla (UAAM) ● 2 males (APGD 10-0618-003, #135702), USA, 

Arkansas, Newton Co, Steel Creek (36°01’56” N, 93°20’02” W), ex Malaise trap set in eastern 

red cedar glade, 18 June 2010, col. J. R. Fisher and M. J. Skvarla (UAAM) ● 1 female (MS 13-

1023-017, #133546), USA, Arkansas, Newton Co, Steel Creek (36°02’19” N, 93°20’27” W), ex. 

purple Lindgren funnel trap, 23 October 2013, col. M. J. Skvarla (UAAM) ● 1 male, “Univ. of 

Ark. Student Coll.”, no other data (UAAM). 
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Figs 1–6. Eudociminus mannerheimii, adults. A–B) dorsal and lateral habitus;  1–6) Locality: 1) 
Steel Creek, Newton Co., Arkansas; 2) “Univ. of Ark. Student Coll.”; 3–4) Phelps Lake, 
North Carolina; 5) Holly Springs, Wake Co., North Carolina; 6) Gainesville, Alachua 
Co., Florida. Photograph by Michael C. Thomas. Used with permission.  Not to scale. 



359 
 

 

Figs. 7–9. Eudociminus mannerheimii, immature stages and landscape damage. 7) Larva; 8) 
Pupa; 9) Landscape damage. “X” indicates the same tree in both photographs. 9A) View 
left showing one undamaged tree and three minimally damaged trees; 9B) View right 
showing three minimally damaged trees and two dead trees. 
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Figs 10–12. Tree damage. 10) exit holes; 11) larval galleries after bark was removed; 12A–B) 
larva in situ. 
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Discussion.   

Specimens collected from Steel Creek along the Buffalo River in the Boston Mountains 

represent the first report of the species from the Interior Highlands of Arkansas and significantly 

expand the range of the species north from previous records in Louisiana. While we did not 

observe oviposition, larval feeding, or adult emergence, we suggest the beetles were breeding in 

eastern red cedar as they were collected in a cedar glade and no other Cupressaceae were present 

at or near the site. All specimens collected were brown with orange scale-like setae, with dark 

brown spots on the fourth elytral interval, and lacking light elytral spots (Figs. 1–2).  

The sole specimen located in the Arthropod Museum at the University of Arkansas lacks 

collection data beyond “Univ. of Ark. Student Coll.” (Fig. 2). While it was most likely collected 

in Arkansas, it cannot be assigned to the state conclusively and therefore does not represent an 

earlier record for the species in the state. It is similar in coloration to the Steel Creek specimens 

except that light elytral spots are present. 

North Carolina specimens (Figs. 3–5) reared from arborvitae were similar in coloration to 

the Arkansas specimens. They also exhibited variation in the extent of light-colored elytral spots 

and presence/absence of a preapical elytral hump, which suggests these characters do not 

represent geographic variation. No dark grey specimens with black elytral stripes and white spots 

(e.g., Fig. 6) were examined. Further investigation is needed to determine if this variation in 

color has any correlation with geography or phylogenetic history. 

The cypress weevil appears to be an occasional primary pest and, more frequently, a 

secondary invader of trees (Baker and Bambara 1999; Bambara 2004). Adult feeding damage to 

young shoots and green twigs (Baker and Bambara 1999; Bambara 2004; Randall et al. 2005) 

may cause aesthetic damage to trees. Tunneling by the larvae in small saplings is known 
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(Mayfield 2004) and likely causes mortality in some plants. Most infestations of this beetle, 

however, occur in stressed, dying or dead trees. In the case of the first record of this beetle in 

arborvitae (Thuja L.), a row of mature trees (Fig. 9) planted outside a school began to decline 

rapidly due to unknown factors. Landscape contractors stated that only some of the plants were 

affected, and adjacent Japanese cedars (Cryptomeria japonica (L.f.) D. Don ) were unaffected. A 

trunk section from one of the dead trees revealed approximately 12 large larvae residing in 

tunnels (Figs. 10–12). The large number of specimens found in such a small portion of the plant, 

and located largely in the vascular tissue just below the bark, suggests the weevil likely 

overwhelmed some of the plants, resulting in rapid death. At this time we do not know why some 

plants were so heavily infested while others were not. 

Specimen records indicate two to three generations of this weevil per year in North 

Carolina. Final instars were abundant in the arborvitae collected in January, signifying initial 

colonization during the previous fall. Adults emerged under laboratory conditions in March, 

similar to the suggested early spring timing of adults as mentioned in the literature (Bambara 

2004; Mayfield 2004). Mid- to late instar larvae were also found in a small arborvitae branch in 

North Carolina during May and probably represented the second generation. Based on the 

specimens described here, adult beetles can be found in the summer (July specimens) and fall 

(October specimens). 
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X. Report on a large collection of Merope tuber Newman, 1838 (Mecoptera: 
Meropeidae) from Arkansas with notes on collection technique, sex ratio, and male 
clasper size 

 

Abstract. 

A large collection of earwigflies, Merope tuber, is reported from Arkansas and flight 

period and sex ratio are discussed.  In contrast to previous studies, earwigflies were caught more 

frequently in pan traps than in Malaise traps and male clasper size was found not to be bimodal. 

Introduction. 

 Merope tuber Newman, 1838, known as earwigflies or forcepflies, are uncommonly 

collected and have fascinated entomologists since their discovery in 1837 (Fig. 1).  This 

fascination was initially due to their presumed rarity – only 16 specimens were collected between 

their discovery and 1904 [1].  Since then, they have continued to receive attention due to their 

previously assumed basal phylogenetic position within Mecoptera; relatively unknown life 

history; undescribed larvae; and odd appearance relative to other Mecoptera (e.g., a flattened 

body, opisthognathus head, and broad wings folded over the abdomen) [2, 3].   

Only two other extant meropeids exist: Austromerope poultoni Killington, 1933 [4] from 

Western Australia and Austromerope brasiliensis Machado et al., 2013 [3] from Brazil.  One 

extinct species, Boreomerope antiqua Novokschonov, 1995 [5], is known from Middle Jurassic 

lacustrine claystone near Kubekovo village in Siberia.  Four extinct species of Thaumatomerope 

(i.e. T. madygenica Rasnitsyn 1974, T. minuta Rasnitsyn 1974, T. oligoneura Rasnitsyn 1974, 

and T. sogdiana Rasnitsyn 1974) were originally assigned to Meropeidae but were later 

reassigned to Thaumatomeropidae [6]. 
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Figure 1. Merope tuber, male. 
 

Collections of M. tuber continue to be infrequent.  Prior to 1954 it was reported only 

from areas in or east of the Appalachian Mountains.  Since then, the known range has been 

extended north to southern Ontario [7, 8, 9], west to Minnesota [10, 11], Iowa [12], Missouri [13, 

14, 15], Arkansas [12, 15, 16], and Kansas [12], and south to Alabama [17], Georgia [16], and 

Florida [18, 19].  Rather than true emigration, this range expansion is best explained by the 

increased use of various passive trapping techniques [13].   Merope tuber have been collected 

using Malaise traps, picric acid traps, European chafer traps, carbon dioxide traps, molasses 

traps, and glue traps [2, 11, 20], with the most effective being Malaise traps [21]. 

 Little is known about the life history of M. tuber.  Adults are nocturnal, attracted to light 

at night, and spend daylight hours under logs and stones [1, 20].  They seem to be associated 

with moist deciduous woodlands near water [20, 22], although are occasionally caught in dry 

grasslands far from any stream or creek [9].  Feeding preferences are unknown, although they 
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may be attracted to carrion [2] similar to another mecopteran, Notiothauma reedi McLachlan, 

1877, which has been reported from vertebrate carrion [23].  Adults stridulate by rubbing the 

jugum of the forewing against the metanotum [24].  The larvae of all meropeids, including M. 

tuber, remain undescribed [25] and their discovery “is certainly the most exciting thing left to be 

done in the study of North American Mecoptera” [13]. 

 The flight period of M. tuber lasts throughout the summer with some variation depending 

on latitude.  They have been reported to occur from June through October in Connecticut [26], 

June through September in Maryland [27], July through September in Ohio [25], May through 

September in Alabama [17], and April through December in Florida [18, 19]. 

 Few studies have reported M. tuber in significant numbers, but in those that do, the sex 

ratio appears to be female biased.  Scarbrough [28] collected 8 males and 18 females (1 male: 

2.25 females) in two Malaise traps over a period of three years.  Maier [26] collected 26 males 

and 43 females (1 male: 1.65 females) in a single Malaise trap over three years.  Barrows and 

Flint [27], in six Malaise traps over the course of seven months, caught no males and 35 females.  

Johnson [25], in a single Malaise trap over two years, caught 61 males and 102 females (1 male: 

1.67 females), the largest number of earwigflies yet reported from a single site.  It is not known 

whether the sex ratio is truly skewed or if sampling bias is the cause. 

Unlike life history, much is known about the morphology of M. tuber, with both internal 

and external anatomy of both sexes being well documented [29, 30, 31, 32].  Males have 

elongated genital styli (= claspers) that are thought to be used in mating as in other Mecoptera, 

either holding the female during copulation, fighting rival males, or both [25].  A bimodal 

distribution in clasper size has been demonstrated for at least one population with differential 

mating strategies being suggested as a possible cause [25].   
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Materials and Methods. 

As part of a more extensive arthropod sampling project, five blocks were established at a 

four ha plot located at Steel Creek along the Buffalo National River in Arkansas (Fig. 2).  In each 

block, five pan traps (one each of blue, red, green, yellow, and white) were randomly arranged 

under a terrestrial Malaise trap (MegaView Science Co. Ltd., Taichung, Taiwan), which was 

placed in perceived flight paths.  In addition, three Lindgren funnel traps (ChemTica 

Internacional, S.A., Heredia, Costa Rica) (one in each color of green, purple, and black) were 

suspended non-randomly from large trees 4-10 meters from the ground in the lower canopy.   

 
Figure 2. Overhead view of the field site at Steel Creek, with approximate limits of the site and 
blocks and acre/hectare scales in yellow. Base image taken from with Google Earth [36]. 
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Four blocks contained a SLAM (Sea, Land, and Air Malaise, MegaView Science Co., 

Ltd., Taichung, Taiwan) trap (with top and bottom collectors counted as separate traps). Three 

blocks contained pitfall trap sets placed every five meters along a transect centered on a Malaise 

trap. Two of these blocks contained eight pitfall trap sets and one block contained a single set.   

Pitfall traps were modified from a design proposed by Nordlander [33], which Lemieux 

and Lindgren [34] demonstrated catches carabids in similar numbers but is more efficient at 

excluding small vertebrate bycatch.  Rather than cutting circular entrances in the sides of pitfall 

traps, we cut three slots, 2 cm tall x 9.3 cm wide, 2 cm under the rim in the sides of plastic soup 

containers leaving three 1.5 cm posts, equidistant apart, resulting in a 28 cm collecting surface.  

Diameter at the base of slots is approximately 10.5 cm and the cups are 10.5 cm deep below 

these slots, resulting in a collecting volume of 2,988 cm3.  This allowed the matching lid to be 

secured to the cup instead of using a separate cover.  A single cup was placed on either side of a 

30.5 cm x 15.5 cm aluminum fence to make a pitfall trap set and the catch from both cups was 

combined and treated as a single sample.   

Propylene glycol (Peak RV & marine antifreeze) (Old World Industries, LLC, 

Northbrook, IL) was used as a preservative in all trap types.  Traps were placed on 13 March 

2013, taken down on 4 December 2013, and collected approximately every two weeks.  Trap 

catch was sieved in the field and stored in whirl-pak bags (Nasco, Fort Atkinson, WI) in 90% 

ethanol until sorting.  After sorting, specimens were stored individually in 2 mL microtubes 

(VWR International, LLC, Randor, PA) in 70% ethanol.  Voucher specimens have been 

submitted to the University of Arkansas Arthropod Museum. 
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 Head width, pronotum width, wing length, and abdomen length were measured for both 

sexes.  The length of the basistylus and dististylus (Fig. 3) were measured on the right side of 

males and combined to measure total clasper length. 

 
Figure 3. Clasper of male Merope tuber with basistylus and dististylus labeled. 
 

Measurements were made in the following manner: photographs of a millimeter ruler and 

dorsal and ventral aspect of each specimen were taken through the eye piece of a Leica MZ 16 

stereomicroscope with the camera on an HTC Droid Incredible 4G LTE; zoom was not adjusted 

between photographs to ensure they were to the same scale.  All photographs were exported onto 

a desktop computer, opened in Image J [35], and measurements were taken by tracing the 

structures. Measurements were recorded in Microsoft Excel (Redmond, WA).   

Shapiro-Wilk goodness-of-fit tests (α = 0.05) were performed in JMP (SAS Institute, 

Cary, NC) to test normality of previously described measurements.  An F-test for significance 

was performed by creating a generalized linear model (GLM) with a Gaussian distribution (α = 

0.05).  Count data were not normally distributed and required transformation.  Because the data 

contained many zeroes, one was added to each count and before a natural log transformation.  
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Because five pan traps were placed with a single Malaise trap, trap type could not be compared 

due to extremely skewed sample sizes.  Instead, Malaise traps were considered a ‘color’ in 

analyses and tested against each pan trap color.  This simultaneously allowed for comparisons 

among variables of equal sample sizes for both trap type and pan color. 

Results and Conclusions. 

All totaled eighty two earwigflies – 24 males and 58 females (1 male: 2.42 females) – 

were collected (Table 1).  This female-biased collection is in line with previous studies [25, 26, 

27, 28].  Earwigflies were first collected in late June, with the largest collection occurring in 

July, followed by low, but consistent, numbers caught until late October (Fig. 4).  The beginning 

and end of the flight period were consistent with other areas at similar latitudes [18, 25, 26, 27].   

 

 
Figure 4. Number of Merope tuber collected across all traps per date. 
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Only a single body measurement, the dististylus, differed significantly from a normal 

distribution, but not in a bimodal manner (Table 2).  These results are in contrast to previous 

studies (e.g., 25), which found a bimodal distribution in the size of male basistyli, dististyli, and 

total clasper length.  As the use of the claspers is unknown the significance of this is also 

unknown.    

Earwigflies were not caught in SLAM traps, Lindgren funnel traps, or pitfall trap sets, 

therefore, these traps were excluded from analyses.  Significantly fewer M. tuber were caught in 

Malaise traps compared to pan traps [t = -2.455, d.f. = 1, p = 0.0145], although pan trap colors 

were not significantly different from each other.  This is the first report of earwigflies being 

collected in pan traps, however, previous studies which reported large collections of M. tuber 

traditionally used Malaise traps alone.  It should be noted that because pan traps were directly 

under Malaise traps, it is unknown whether those pan trap-collected individuals would have been 

captured in the Malaise trap collecting head, had pan traps had not been present. 

Significantly more earwigflies were caught in block 4 [t = 4.307, d.f. = 1, p = 0.00002] 

and 5 [t = 2.479, d.f. = 1, p = 0.0136] than blocks 1, 2, and 3.  This suggests that trap placement 

and microhabitat, even within a relatively small area of a few hectares, are important factors 

when collecting earwigflies.  If earwigflies are specifically targeted, we suggest placing multiple 

traps in an area of known occurrence in order to maximize the microhabitats sampled and 

increase the chance of collecting these enigmatic insects. 
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Trap type Block 
Number of 

females caught 
Number of 

males caught 
Total 

caught 

Malaise trap 1 0 0 0 

Pan trap (purple) 1 1 1 2 

Pan trap (yellow) 1 1 0 1 

Pan trap (blue) 1 0 0 0 

Pan trap (white) 1 1 0 1 

Pan trap (red) 1 0 0 0 

Malaise trap 2 0 1 1 

Pan trap (purple) 2 2 0 2 

Pan trap (yellow) 2 1 0 1 

Pan trap (blue) 2 2 1 3 

Pan trap (white) 2 2 1 3 

Pan trap (red) 2 4 1 5 

Malaise trap 3 0 0 0 

Pan trap (purple) 3 2 0 2 

Pan trap (yellow) 3 0 0 0 

Pan trap (blue) 3 0 1 1 

Pan trap (white) 3 1 0 1 

Pan trap (red) 3 1 1 2 

Malaise trap 4 0 0 0 

Pan trap (purple) 4 5 3 8 

Pan trap (yellow) 4 8 2 10 

Pan trap (blue) 4 7 3 10 

Pan trap (white) 4 2 2 4 

Pan trap (red) 4 2 1 3 

Malaise trap 5 1 0 1 

Pan trap (purple) 5 2 3 5 

Pan trap (yellow) 5 5 1 6 

Pan trap (blue) 5 2 1 3 

Pan trap (white) 5 4 0 4 

Pan trap (red) 5 2 1 3 
Table 1. Total number of Merope tuber collected per trap type per block, with subtotals of trap 
type and block. 
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Trap type Block 
Number of 

females caught 
Number of 

males caught 
Total 

caught 

Trab subtotal   

Malaise trap - 1 1 2 

Pan trap (purple) - 12 7 19 

Pan trap (yellow) - 15 3 18 

Pan trap (blue) - 11 6 17 

Pan trap (white) - 10 3 13 

Pan trap (red) - 9 4 13 

Block subtotal   

- 1 3 1 4 

- 2 11 4 15 

- 3 4 2 6 

- 4 24 11 35 

- 5 16 6 22 

Total - 58 24 82 
Table 1 (Cont.). Total number of Merope tuber collected per trap type per block, with subtotals 
of trap type and block. 
 

Measurement Sex 
Minimum 
(mm) 

Maximum 
(mm) 

Mean 
(mm) 

SD 
(mm) W 

Prob < 
W 

Head width Female 0.8 1.32 1.1 0.12 0.97 0.247 

Pronotum width Female 1.06 1.69 1.41 0.16 0.97 0.196 

Forewing length Female 8.86 13.28 11.66 0.9 0.98 0.337 

Abdomen length Female 4.1 8.96 6.44 1.3 0.97 0.153 

Head width Male 0.77 1.39 1.11 0.15 0.96 0.534 

Pronotum width Male 0.95 1.63 1.31 0.17 0.97 0.756 

Forewing length Male 9.52 13.39 11.82 1.04 0.971 0.695 

Abdomen length Male 4.07 7.61 5.8 0.78 0.95 0.206 

Basistylus length Male 2.21 5.09 4.05 0.77 0.95 0.265 

Dististylus length Male 1.47 2.91 2.34 0.43 0.91 0.036* 
Clasper total 
length Male 3.68 7.97 6.38 1.17 0.94 0.138 

Table 2. Minimum, maximum, and mean measurements of various body parts, and results of 
Shapiro-Wilk goodness-of-it tests on the same.  P < 0.05 is considered significant. 
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XIII. Conclusions 

The Interior Highlands is a biodiversity hotspot, with at least 200 known endemic 

species, more than half of which are arthropods, but the area is under studied compared to other 

regions of high biodiversity and endemism such as the Southern Appalachians (Chapters I, IV).  

Three goals were established for this dissertation in order to begin to rectify the lack of study in 

the Interior Highlands: 1) intensively survey a single site and identify as many terrestrial 

arthropods to species as possible in order to establish a baseline list of taxa against which future 

change can be compared; 2) compare collecting methods used for terrestrial arthropods in order 

to determine the most efficient combination of traps and the minimum number of samples 

needed to collect most species so future surveys in similar environments can maximize the return 

of effort; and 3) report rare and endemic terrestrial arthropods, as well as species that are new to 

Arkansas, in order to better understand the arthropods native to the state. 

An intensive nine month survey was conducted at a 4 hectare plot established at Steel 

Creek, Buffalo National River, in Newton County, Arkansas.  Thirteen collecting methods – 

twelve trap types (three colors of Lindgren funnel trap, five colors of pan trap, Malaise traps, 

canopy traps with upper and lower collectors, and pitfall traps), which were run continuously 

between collections, and Berlese-Tullgren extraction of leaf litter, which was collected when 

traps were serviced – were employed, with a total of 80 samples being collected approximately 

every two weeks.  A total of 1311 samples were taken during the course of 17 sample dates; 49 

samples were lost to rain, animal disturbance, &c. and account for the disparity in the total 

number of samples collected.   

Target bioindicator groups – including Formicidae, Carabidae, Cerambycidae, 

Curculionoidea, and Araneae – and easily identified taxa – including Isopoda, Mecoptera, 
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Phasmida, Vespidae, Ixodidae, Phalangodidae, and select Diplopoda and Orthoptera –  as well as 

taxa that were identified by willing experts (Parasitengona, ‘Symphyta’, Pompilidae) were 

coarse-sorted and identified to species.  This resulted in 47,481 specimens representing 706 

species that were curated and identified, including 18 putatively undescribed species, 56 species 

that represented new state records, 15 non-native species, and three species endemic to the 

Interior Highlands, two of which were previously known only from the original type series 

(Appendix II). 

Four beetle taxa – Buprestidae (375 specimens, 27 species), Carabidae (1970 specimens, 

62 species), Cerambycidae (1885 specimens, 82 species), and Curculionoidea (Anthribidae: 15 

specimens, 4 species; Attelabidae: 19 specimens, 3 species, 3 genera; Brachyceridae: 1 

specimen, 1 species; Brentidae: 6 specimens, 1 species; Curculionidae: 3777 specimens, 71 

species) were analyzed individually.  The phenology of the sampled populations at higher 

(superfamily/family) and species level was examined.  The number of species and specimens 

collected per trap type were compared using ANOVA and, if statistical differences were found, 

further compared using Tukey’s HSD statistics and by estimating the total number of species a 

trap type is expected to collect at the site using extrapolated rarefaction curves.  Extrapolated 

rarefaction curves were also used to determine the minimum number of samples that should be 

collected per trap type before species saturation – that is, the number of samples after which no 

new species are collected – is reached.  Overlap between trap types was compared by 

determining the similarity of species collected between trap types using Sørensen and Chao’s 

Sørensen indices.  The most effective collecting method or methods for each superfamily/family 

was the method or methods that collected the highest number of species and, in the case of two 

methods, exhibited reasonably low similarity. 
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Pitfall and Malaise traps were determined to be the most effective combination of 

collection methods for Carabidae, Curculionoidea, and the combined taxa.  Pitfall traps are 

generally thought to be the best method to collect carabids and are often employed as many 

species are epigeal (e.g., Greenslade 1964; Baars 1979; Waage 1985; Desender &Maelfait 1986; 

Halsall & Wratten 1988; Morrill et al. 1990; Niemelä et al. 1990; Wiedenmann et al. 1992; Work 

et al. 2002; Raworth & Choi 2003; Buchholz et al. 2010). However, Ulyshen et al. (2005) 

reported that canopy traps (top + bottom collector) collect smaller, more aerial carabid species 

more effectively than pitfall traps and should be used in combination with pitfall traps when 

surveying carabid diversity, so it is unsurprising that Malaise traps, which operate similarly to 

canopy traps, were an excellent complement to pitfall traps.   

Weevils are a diverse group of beetles and no one method can be employed that 

adequately samples their diversity.  The most effective combination of traps should target both 

aerial and terrestrial species and both pitfall (Raffa & Hunt 1988; Levesque & Levesque 1994; 

Hanula 1990) and Malaise traps (Dutcher et al. 1986; Anderson 2008; Ohsawa 2008; 

Hespenheide 2009) have been used to survey weevils.  That pitfall and Malaise traps are the 

most effective combination of terrestrial and aerial traps is unsurprising given they were the most 

effective combination of traps when collecting all taxa.  It may also be that weevils, with their 

diverse habits, are good indicators of terrestrial arthropod biodiversity, though a more definitive 

statement cannot be made based on the data presented herein. 

Malaise traps were the most effective method for collecting Cerambycidae as all other 

aerial trap types (canopy, all colors of Lindgren funnel) exhibited high similarity with Malaise 

traps.  If Lindgren funnel traps are to be used, it is useful to note that one species, Xylotrechus 

colonus, of the nine analyzed was collected in significantly higher numbers in one trap color 
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(black). Only a handful of studies examining color attraction in Cerambycidae have been 

published; some found increased attraction to red (Shipman 2011), purple (Skvarla and Holland 

2011), and yellow (Sakalian et al. 1993, Imrei et al. 2014) at the family level or within individual 

species, though others found no effect of color (Macias-Samano n.d.).  It is likely that color 

attraction is species-specific and tied to biological traits, such as nectivory.  The response to 

unbaited Lindgren funnel traps regardless of color suggests that many cerambycids may be 

attracted to the vertical silhouette of the trap.  A comprehensive study with multiple colors and 

multiple trap types is needed before this issue is settled. 

The combination of Malaise or canopy trap and green Lindgren funnel traps was most 

effective for Buprestidae.  Malaise and canopy traps exhibited very high similarity with each 

other but much lower similarity with Lindgren funnel traps.  Malaise and canopy traps collected 

large species (e.g., Chrysobothris, Dicerca) in much higher abundance than other trap types 

while Lindgren funnels collected smaller species (e.g., Agrilus, Taphrocerus) in higher 

abundance that other trap types.   

Trap color is an important component of Lindgren funnel traps when targeting buprestids.  

Green and purple Lindgren funnel traps exhibited only medium similarity in the species collected 

and differentially peaked in the number of species and specimens collected.  Six of seven species 

analyzed were collected in significantly higher numbers by specific colored traps: four were 

caught in higher numbers by green traps, one by purple traps, and one by black traps. Other 

studies have examined the role of color in attraction and trapping of Buprestidae but most have 

either focused at the family level or on economically important species (e.g., emerald ash borer, 

Agrilus planipennis).  However, two studies (i.e., Petrice et al. 2013, Peatrice & Haack 2015) 

found that, while there was no difference in the attraction of emerald ash borer to green or purple 
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traps, other Agrilus species demonstrated significant preference for green or green and purple 

traps. It is probable then that green and purple Lindgren traps differentially attract Agrilus 

species and that the bulk of studies that have examined color preference in emerald ash borer, 

which have focused primarily on purple traps, may not be applicable to other Agrilus or 

buprestids in general. 

A combined “all taxa” analysis was performed using the same statistics that were used to 

analyze beetle data.  It should be noted that a number of species were excluded from the all taxa 

analyses for a variety of reasons: 1) only one or a few specimens of a species were examined and 

identified, so the data did not accurately reflect the total abundance of the species.  For example, 

the first specimen of Lygistorrhina sancthecatharinae (Diptera) was found and identified after 

more than half of the samples were sorted. It was examined because it is a rare and interesting fly 

that is new to Arkansas, but the species presence or absence in previously sorted samples could 

not be determined; 2) the collecting methods employed preferentially damaged certain 

specimens, resulting in biased collections. Lepidoptera is an excellent example of this as the wet 

collection jars frequently resulted in poor specimens that lacked wing scales, especially among 

smaller species; 3) specimens were identified after the analyses were completed.  These are 

included in the final list of arthropods collected at Steel Creek for completeness but were not 

available when the analyses were conducted.  After excluding species based on these criteria, 

46,146 specimens representing 533 species were included in the all taxa analyses. 

Terrestrial collection methods (i.e., pitfall traps and Berlese-Tullgren extraction) and 

aerial traps (i.e., Malaise, canopy, and Lindgren funnel traps) generally exhibited high to very 

high similarity within each group but lower similarity between the groups.  They are likely 
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targeting different arthropod assemblages and a combination of techniques is required if 

maximum diversity is to be sampled. 

Pitfall and Malaise traps collected the most species on average, with pitfall, Malaise, and 

purple pan traps estimated to collect the most species after species accumulation curves become 

asymptotic.  While this is certainly influenced by the taxa included in the analysis, and slightly 

different results would be obtained if different taxa were included, it likely reflects the true 

performance of the different trap types because: 1) all individuals from a diversity of higher taxa 

were included, limiting the influence any one taxon would have on the results and 2) the 

inclusion of a number of easily-identified species from an even wider range of orders and 

families introduces additional variation in life-history and minimizes the impact of expert-bias 

when picking which taxa are included.   

Pan traps generally exhibited high similarity with terrestrial and aerial traps (except green 

Lindgren funnel traps), probably because they collect both flying and crawling insects, though 

generally underperformed in the number of species collected when compared to Malaise or 

pitfall traps.  The pan traps in this study, however, were placed under Malaise traps and were not 

buried flush with the substrate.  It is possible that many flying insects did not see the pan traps 

because of their placement under the Malaise traps and they likely missed many arthropods that 

would fall into a pitfall trap but could not scale the sides of the pan.  One potential solution is to 

combine pitfall and pan traps by using open, colored pitfalls flush with the substrate (Skvarla et 

al. 2014; Ernst et al. 2015).  The only study that compared the effect of color in pitfall traps 

found that flying pollinators and carabids were collected in higher numbers in white and yellow 

(except carabids) pitfall traps compared to green and brown pitfalls and that terrestrial taxa, such 

as Isopoda, were not affected by trap color (Buchholz et al. 2010).  However, such pitfalls cannot 



386 
 

be run with rain covers and will be more affected by rainfall than covered traps when run for 

extended periods of time, though it may be possible to employ a clear rain cover without 

affecting the attractiveness of the trap to flying insects. 

51% of the species analyzed were represented by five or fewer specimens and 25% were 

represented by singletons.  The species accumulation curves for most trap types did not become 

asymptotic and extrapolated rarefaction curves predicted 300–600 samples are required per trap 

type (1000+ for pitfall traps), far more than were collected during this study, before species 

accumulation is saturated.  This suggests that even though the site was relatively small, a great 

deal more effort is required before the majority of species are sampled.   

However, even though fewer than half of the species predicted by the species 

accumulation curves were collected, the survey still produced 18 new species and 56 new state 

records within the identified taxa.   

Finally, one specimen and three species collected during the survey that represent rarely 

collected mutations or taxa were examined in detail.   

A single specimen of Temnothorax curvispinosus (Formicidae) exhibiting 

gynandromorphism was collected and represented the first time this anomaly was seen in the 

species; additionally, it was the only gynandromorph collected out of more than 28,000 ants 

examined during the study and demonstrates the potential rarity of the condition among able-

bodied, foraging workers. 

One and two specimens of Eudociminus mannerheimii (Curculionidae) and Orussus 

minutus (Orussidae) were collected and represent major range extensions for the species.  

Eudociminus mannerheimii has been previously recorded only from coastal states from New 

York south to Florida, west to Louisiana and Mexico, so the specimens (four additional 
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specimens were collected a few hundred yards from the Steel Creek survey site) represent the 

northwestern-most, inland records for the species.  Additionally, we hypothesized the larval host 

plant in Arkansas to be eastern red cedar (Juniperus virginiana) as it is the only representative of 

Cupressaceae, the only family the beetles are known to colonize, at the collection site.  Orussus 

minutus was previously known from as far west as Indiana and Georgia, so the Arkansas 

specimens represent a significant western range extension.  Prior to publication, only 

approximately 30 specimens of O. minutus were known; by incorporating locality and collection 

data from specimens housed in the United States National Collection, we nearly tripled the 

number of published specimens and showed that both Malaise and black funnel traps can be used 

to collect the species. 

Ninety one specimens of Merope tuber (Meropeidae) were collected at Steel Creek, the 

second largest collection of the species recorded.  The species has generally been considered to 

be rare and is often found incidentally as bycatch in Malaise traps.  Eighty seven specimens were 

collected in pan traps during the survey – the first time the species had been collected with that 

method.  The high proportion of specimens collected in pan traps suggests that pan traps or pan 

traps combined with intercept traps may be a more effective alternative than Malaise and other 

trap types which have been used to collect it in the past.  Additionally, we discussed the 

phenology of the specimens collected and tested a previously proposed hypothesis that male 

exhibit a bimodal distribution of large and small claspers; we found that the claspers in the 

population sampled at Steel Creek did not exhibit a bimodal distribution and instead were 

normally distributed. 

The number of new species, new state records, and highlighted specimen and species 

illustrate the fact that not only does much work remain to be done in Arkansas, which is under 
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studied compared to similar areas, but also how much is left to discover even in a well-worked 

region such as North America north of Mexico. 
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XIV. Appendix I.  Statistical Analyses Workflow. 

 
Figure A2a. Workflow for statistical analyses conducted in Chapters V and VI.  Different colors represent different programs or 
websites.
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XV. Appendix II. Arthropod species collected at Steel Creek 

The following list includes all arthropod species identified from Steel Creek, including 

those species included in Chapter IV–XI and species that were excluded from analyses because 

1) every specimen of the species was not identified (e.g., a few Encyrtidae were sorted and sent 

to John Noyes for identification at the Natural History Museum in London, but many specimens 

were left unsorted in trap residue); 2) the collection methods were obviously biased or were poor 

at collecting/preserving the specimens (e.g., Lepidoptera); or 3) the identifications were made 

after the final analyses were completed but before this dissertation was submitted (e.g., 

“Symphyta”, Heteroptera).  Species indicated as new state records here may have been reported 

preciously in publications that have resulted from this work (e.g., Orussus minutus in Chapter 

VIII, Eudociminus mannerheimii in Chapter IX).  Additionally, the number of new state records 

reported here likely underrepresents the true number of new records as no attempt was made to 

establish previous occurrences of some species (e.g., Cerambycidae, Encyrtidae, “Symphyta”). 
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Class Order Family Genus Species 
Arachnida Acariformes Calyptostomatidae Calyptostoma Calyptosoma 
Arachnida Acariformes Cunaxidae Parabonzia Parabonzia 

bdelliformis 

Arachnida Acariformes Erythraeidae Abrolophus sp. 1† 
Arachnida Acariformes Erythraeidae Caeculisoma sp. 1† 
Arachnida Acariformes Erythraeidae Callidosoma sp. 1† 
Arachnida Acariformes Erythraeidae Erythraeus sp. 1† 
Arachnida Acariformes Erythraeidae Leptus plate Leptus† 
Arachnida Acariformes Erythraeidae Leptus red Leptus† 
Arachnida Acariformes Erythraeidae Leptus spotted Leptus† 
Arachnida Acariformes Erythraeidae Paraphanolophus sp. 1† 
Arachnida Acariformes Microtrombidiidae Willmannella sp. 1† 
Arachnida Acariformes Podothrombidiidae Podothrombidium sp. 1† 
Arachnida Acariformes Trombidiidae Trombidium Trombidium, 

yellow-shouldered†

Arachnida Araneae Agelenidae Agelenopsis Agelenopsis 
kastoni 

Arachnida Araneae Agelenidae Agelenopsis Agelenopsis naevia
Arachnida Araneae Agelenidae Agelenopsis Agelenopsis 

pennsylvanica 

Arachnida Araneae Agelenidae Wadotes sp. 1 
Arachnida Araneae Anyphaenidae Anyphaena Anyphaena celer 
Arachnida Araneae Araneidae  Araneus Araneus partitus 
Arachnida Araneae Araneidae  Araniella Araniella 

displicata 
Arachnida Araneae Araneidae  Eustala Eustala anastera 
Arachnida Araneae Araneidae  Hypsosinga Hypsosinga rubens 
Arachnida Araneae Araneidae  Mangora Mangora placida 
Arachnida Araneae Araneidae  Neoscona Neoscona 

crucifera 
Arachnida Araneae Araneidae  Ocrepeira   
Arachnida Araneae Atypidae Sphodros Sphodros niger 
Arachnida Araneae Clubionidae Elaver Elaver excepta 
Arachnida Araneae Corinnidae Castianeira Castianeira 

amoena 
Arachnida Araneae Corinnidae Castianeira Castianeira 

cingulata 
Table A3. Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Class Order Family Genus Species 
Arachnida Araneae Corinnidae Castianeira Castianeira crocata 
Arachnida Araneae Corinnidae Castianeira Castianeira descripta 

Arachnida Araneae Corinnidae Castianeira Castianeira 
longipalpa 

Arachnida Araneae Corinnidae Castianeira Castianeira trilineata 

Arachnida Araneae Ctenidae Ctenus Ctenus exlineae 
Arachnida Araneae Ctenizidae Ummidia sp. 1 (small) † 
Arachnida Araneae Dictynidae Cicurina   
Arachnida Araneae Euctenizidae Myrmekiaphila Myrmekiaphila 

comstocki 

Arachnida Araneae Gnaphosidae Callilepis Callilepis imbecilla 
Arachnida Araneae Gnaphosidae Cesonia Cesonia bilineata 
Arachnida Araneae Gnaphosidae Drassyllus Drassyllus aprilinus 
Arachnida Araneae Gnaphosidae Drassyllus Drassyllus covensis 
Arachnida Araneae Gnaphosidae Drassyllus Drassyllus dixinus 
Arachnida Araneae Gnaphosidae Drassyllus Drassyllus novus 
Arachnida Araneae Gnaphosidae Drassyllus Drassyllus rufulus 
Arachnida Araneae Gnaphosidae Gnaphosa Gnaphosa fontinalis 

Arachnida Araneae Gnaphosidae Haplodrassus Haplodrassus signifer 

Arachnida Araneae Gnaphosidae Herpyllus Herpyllus 
ecclesiasticus 

Arachnida Araneae Gnaphosidae Litopyllus Litopyllus temporarius 

Arachnida Araneae Gnaphosidae Micaria Micaria longipes 
Arachnida Araneae Gnaphosidae Nodocion Nodocion floridanus 

Arachnida Araneae Gnaphosidae Sergiolus Sergiolus capulatus 
Arachnida Araneae Gnaphosidae Sergiolus Sergiolus 

tennesseensis 

Arachnida Araneae Gnaphosidae Sosticus Sosticus insularis 
Arachnida Araneae Gnaphosidae Talanites Talanites echinus 
Arachnida Araneae Gnaphosidae Zelotes Zelotes duplex 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Class Order Family Genus Species 
Arachnida Araneae Hahniidae Neoantistea Neoantistea agilis 
Arachnida Araneae Lycosidae Arctosa Arctosa virgo 
Arachnida Araneae Lycosidae Gladicosa Gladicosa gulosa 
Arachnida Araneae Lycosidae Gladicosa Gladicosa pulchra 
Arachnida Araneae Lycosidae Pirata sp. 1 
Arachnida Araneae Lycosidae Rabidosa Rabidosa punctulata 

Arachnida Araneae Lycosidae Rabidosa Rabidosa rabida 
Arachnida Araneae Lycosidae Schizocosa Schizocosa bilineata 

Arachnida Araneae Lycosidae Schizocosa Schizocosa duplex 
Arachnida Araneae Lycosidae Schizocosa Schizocosa ocreata 
Arachnida Araneae Lycosidae Schizocosa Schizocosa saltatrix 
Arachnida Araneae Lycosidae Tigrosa Tigrosa georgicola 
Arachnida Araneae Lycosidae Trochosa Trochosa ruricola 
Arachnida Araneae Lycosidae Varacosa Varacosa avara 
Arachnida Araneae Lycosidae Varacosa Varacosa shenandoa 

Arachnida Araneae Mimetidae Mimetus Mimetus puritanus 
Arachnida Araneae Oxyopidae Oxyopes  Oxyopes aglossus 
Arachnida Araneae Oxyopidae Oxyopes  Oxyopes salticus 
Arachnida Araneae Philodromidae Ebo Ebo latithorax 
Arachnida Araneae Philodromidae Philodromus Philodromus minutus 

Arachnida Araneae Philodromidae Philodromu Philodromus praelustrus

Arachnida Araneae Phrurolithidae Phrurotimpus Phrurotimpus alarius 

Arachnida Araneae Phrurolithidae Phrurotimpus Phrurotimpus borealis 

Arachnida Araneae Phrurolithidae Phrurotimpus Phrurotimpus sp. 3† 
Arachnida Araneae Phrurolithidae Scotinella Scotinella redempta 
Arachnida Araneae Phrurolithidae Scotinella Scotinella sp 2 
Arachnida Araneae Pisauridae Dolomedes Dolomedes tenebrosus 

Arachnida Araneae Pisauridae Pisaurina Pisaurina mira 
Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Class Order Family Genus Species 
Arachnida Araneae Salticidae sp. 1 male   
Arachnida Araneae Salticidae Chinattus Chinattus parvulus 
Arachnida Araneae Salticidae Eris Eris militaris 
Arachnida Araneae Salticidae Habronattus Habronattus orbus 
Arachnida Araneae Salticidae Maevia Maevia inclemens 
Arachnida Araneae Salticidae Naphyrs Naphrys pulex 
Arachnida Araneae Salticidae Paraphidippus  Paraphidippus  

aurantius 

Arachnida Araneae Salticidae Peckhamia   
Arachnida Araneae Salticidae Pelegrina Pelegrina galathea 
Arachnida Araneae Salticidae Pelegrina Pelegrina proterva 
Arachnida Araneae Salticidae Phidippus Phidippus carolinensis 

Arachnida Araneae Salticidae Phidippus Phidippus clarus 
Arachnida Araneae Salticidae Phidippus Phidippus whitmani 
Arachnida Araneae Salticidae Talvera  Talvera minuta 
Arachnida Araneae Salticidae Thiodina sylvana Thiodina sylvana 
Arachnida Araneae Salticidae Zygoballus  Zygoballus rufipes 
Arachnida Araneae Segestriidae Ariadna Ariadna bicolor 
Arachnida Araneae Tetragnathidae Leucauge Leucauge ventusa 
Arachnida Araneae Theridiidae Asagena Asagena americana 
Arachnida Araneae Theridiidae Crustulina Crustulina altera 
Arachnida Araneae Theridiidae Latrodectus Latrodectus mactans 

Arachnida Araneae Theridiidae Neospintharus   
Arachnida Araneae Theridosomatidae Theridiosoma Theridiosoma 

gemmosum 

Arachnida Araneae Thomisidae Bassaniana Bassaniana versicolor 

Arachnida Araneae Thomisidae Misumena Misumena vatia 
Arachnida Araneae Thomisidae Ozyptila  Ozyptila monroensis 

Arachnida Araneae Thomisidae Tmarus Tmarus angulatus 
Arachnida Araneae Thomisidae Xysticus Xysticus elegans 
Arachnida Araneae Thomisidae Xysticus Xysticus ferox 
Arachnida Araneae Thomisidae Xysticus Xysticus fraternus 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Arachnida Araneae Thomisidae Xysticus Xysticus funestis 
Arachnida Araneae Thomisidae Xysticus Xysticus pellax 
Arachnida Araneae Titanoecidae Titanoeca Titanoeca brunnea 
Arachnida Araneae Trachelidae Meriola Meriola decepta 
Arachnida Opiliones Phalangodidae Crosbyella   
Arachnida Opiliones Phalangodidae Wespus Wespus 

arkansasensis 
Arachnida Parasitiformes Ixodidae Amblyomma Amblyomma 

americanum 

Arachnida Parasitiformes Ixodidae Dermacentor Dermacentor 
variabilis  

Arachnida Parasitiformes Ixodidae Ixodes Ixodes scapularis 
Chilopoda Scolopendromorpha Plutoniumidae Theatops Theatops 

spinicaudatus 

Diplopoda Callipodida Abacionidae Abacion Abacion texense 
Diplopoda Callipodida Abacionidae Abacion Abacion tesselatum 
Diplopoda Platydesmida Andrognathidae Brachycybe Brachycybe lecontei 
Diplopoda Polydesmida Euryuridae Auturus Auturus evides 
Diplopoda Polydesmida Sphaeriodesmidae Desmonus Desmonus pudicus 
Diplopoda Polydesmida Xystodesmidae Apheloria Apheloria 

virginiensis reducta 

Diplopoda Polydesmida Xystodesmidae Nannaria Nannaria 
davidcauseyi 

Diplopoda Polyxenida Polyxenidae Polyxenus Polyxenus 
largurus‡? 

Diplopoda Spirobolida Spirobolidae Narceus Narceus americanus 
complex 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Blattodea Rhinotermitidae Reticulitermes Reticulitermes flavipes 
Insecta Blattodea Rhinotermitidae Reticulitermes Reticulitermes hageni 
Insecta Coleoptera Anthribidae Euparius  Euparius marmoreus 
Insecta Coleoptera Anthribidae Eurymycter Eurymycter fasciatus 
Insecta Coleoptera Anthribidae Ormiscus sp 1 
Insecta Coleoptera Anthribidae Toxonotus Toxonotus cornutus 
Insecta Coleoptera Attelabidae Eugnamptus Eugnamptus angustatus 
Insecta Coleoptera Attelabidae Synolabus Synolabus bipustulatus 
Insecta Coleoptera Attelabidae Temnocerus Temnocerus aeratus 
Insecta Coleoptera Brachyceridae Notiodes Notiodes limatulus 
Insecta Coleoptera Brentidae Arrhenodes Arrhenodes minutus 
Insecta Coleoptera Buprestidae Acmaeodera Acmaeodera tubulus 
Insecta Coleoptera Buprestidae Acmaeodera Acmaeodera pulchella 
Insecta Coleoptera Buprestidae Actenodes Actenodes acornis§ 
Insecta Coleoptera Buprestidae Agrilus Agrilus arcuatus complex 
Insecta Coleoptera Buprestidae Agrilus Agrilus bilineatus 
Insecta Coleoptera Buprestidae Agrilus Agrilus cephalicus§ 
Insecta Coleoptera Buprestidae Agrilus Agrilus defectus 
Insecta Coleoptera Buprestidae Agrilus Agrilus fallax 
Insecta Coleoptera Buprestidae Agrilus Agrilus geminatus 
Insecta Coleoptera Buprestidae Agrilus Agrilus lecontei 
Insecta Coleoptera Buprestidae Agrilus Agrilus masculinus 
Insecta Coleoptera Buprestidae Agrilus Agrilus ohioensis§ 
Insecta Coleoptera Buprestidae Agrilus Agrilus olentangyi 
Insecta Coleoptera Buprestidae Agrilus Agrilus obsoletoguttatus 
Insecta Coleoptera Buprestidae Agrilus Agrilus paracelti§ 
Insecta Coleoptera Buprestidae Anthaxia  Anthaxia viridifrons 

Insecta Coleoptera Buprestidae Brachys Brachys aerosus 
Insecta Coleoptera Buprestidae Chrysobothris Chrysobothris adelpha 
Insecta Coleoptera Buprestidae Chrysobothris Chrysobothris femorata complex 
Insecta Coleoptera Buprestidae Chrysobothris Chrysobothris sexsignata 
Insecta Coleoptera Buprestidae Dicerca Dicerca divaricata 
Insecta Coleoptera Buprestidae Dicerca Dicerca lurida 
Insecta Coleoptera Buprestidae Dicerca Dicerca obscura 
Insecta Coleoptera Buprestidae Dicerca Dicerca spreta 
Insecta Coleoptera Buprestidae Ptosima Ptosima gibbicollis 
Insecta Coleoptera Buprestidae Taphrocerus Taphocerus gracilis 
Insecta Coleoptera Buprestidae Taphrocerus Taphrocerus nicolayi§ 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Coleoptera Carabidae Agonoleptus Agonoleptus conjunctus 
Insecta Coleoptera Carabidae Agonum Agonum striatopunctatum  
Insecta Coleoptera Carabidae Agonum Agonum punctiforme§ 
Insecta Coleoptera Carabidae Amara Amara aenea‡ 
Insecta Coleoptera Carabidae Amara Amara cupreolata 
Insecta Coleoptera Carabidae Amara Amara musculis 
Insecta Coleoptera Carabidae Anisodactylus Anisodactylus rusticus 
Insecta Coleoptera Carabidae Apenes Apenes sinuata 
Insecta Coleoptera Carabidae Badister Badister notatus 
Insecta Coleoptera Carabidae Bembidion Bembidion affine 
Insecta Coleoptera Carabidae Bembidion Bembidion rapidum 
Insecta Coleoptera Carabidae Brachinus Brachinus americanus 
Insecta Coleoptera Carabidae Calathus Calathus opaculus 
Insecta Coleoptera Carabidae Calleida Calleida viridipennis 
Insecta Coleoptera Carabidae Carabus Carabus sylvosus 
Insecta Coleoptera Carabidae Chlaenius Chlaenius platyderus 
Insecta Coleoptera Carabidae Chlaenius Chlaenius tomentosus 
Insecta Coleoptera Carabidae Cicindela Cicindela rufiventris 
Insecta Coleoptera Carabidae Cicindela Cicindela sexguttata 
Insecta Coleoptera Carabidae Clinidium Clinidium sculptile 
Insecta Coleoptera Carabidae Clivina Clivina pallida 
Insecta Coleoptera Carabidae Cyclotrachelus Cyclotrachelus incisus 
Insecta Coleoptera Carabidae Cyclotrachelus Cylotrachelus parasodalis 
Insecta Coleoptera Carabidae Cymindis Cymindis americana 
Insecta Coleoptera Carabidae Cymindis Cymindis limbata 
Insecta Coleoptera Carabidae Cymindis Cymindis platycollis 
Insecta Coleoptera Carabidae Dicaelus Dicaelus ambiguus 
Insecta Coleoptera Carabidae Dicaelus Dicaelus elongatus 
Insecta Coleoptera Carabidae Dicaelus Dicaelus sculptilis 
Insecta Coleoptera Carabidae Dromius Dromius piceus 
Insecta Coleoptera Carabidae Elaphropus Elaphropus granarius 
Insecta Coleoptera Carabidae Galerita Galerita bicolor 
Insecta Coleoptera Carabidae Galerita Galerita janus 
Insecta Coleoptera Carabidae Harpalus Harpalus faunus 
Insecta Coleoptera Carabidae Harpalus Harpalus katiae 
Insecta Coleoptera Carabidae Harpalus Harpalus pensylvanicus 
Insecta Coleoptera Carabidae Lebia Lebia analis 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Coleoptera Carabidae Lebia Lebia marginicollis 
Insecta Coleoptera Carabidae Lebia Lebia viridis 
Insecta Coleoptera Carabidae Lophoglossus Lophoglossus haldemanni 
Insecta Coleoptera Carabidae Mioptachys  Mioptachys flavicauda 
Insecta Coleoptera Carabidae Notiophilus Notiophilus novemstriatus 
Insecta Coleoptera Carabidae Platynus Platynus decentis 
Insecta Coleoptera Carabidae Platynus Platynus paramarginatus 
Insecta Coleoptera Carabidae Plochionus Plochionus timidus 
Insecta Coleoptera Carabidae Pterostichus Pterostichus permundus 
Insecta Coleoptera Carabidae Pterostichus Pterostichus punctiventris 
Insecta Coleoptera Carabidae Rhadine Rhadine ozarkensis 
Insecta Coleoptera Carabidae Scaphinotus Scaphinotus unicolor 
Insecta Coleoptera Carabidae Scaphinotus Scaphinotus fissicollis 
Insecta Coleoptera Carabidae Scaphinotus Scaphinotus infletus 
Insecta Coleoptera Carabidae Selenophorus  Selenophorus ellipticus 
Insecta Coleoptera Carabidae Selenophorus  Selenophorus gagatinus 
Insecta Coleoptera Carabidae Selenophorus  Selenophorus opalinus 
Insecta Coleoptera Carabidae Stenolophus  Stenolophus ochropezus 
Insecta Coleoptera Carabidae Synuchus Synuchus impunctatus§ 
Insecta Coleoptera Carabidae Tachyta Tachyta parvicornis 
Insecta Coleoptera Carabidae Tachys Tachys columbiensis 
Insecta Coleoptera Carabidae Tachys Tachys oblitus 
Insecta Coleoptera Carabidae Trichotichnus Trichotichnus autumnalis 
Insecta Coleoptera Carabidae Trichotichnus Trichotichnus fulgens 
Insecta Coleoptera Carabidae Trichotichnus Trichotichnus vulpeculus 
Insecta Coleoptera Cerambycidae Aegormorphus Aegormorphus modestus 
Insecta Coleoptera Cerambycidae Aegormorphus Aegormorphus 

quadrigibbus 

Insecta Coleoptera Cerambycidae Anelaphus Anelaphus parallelus 
Insecta Coleoptera Cerambycidae Anelaphus Anelaphus pumilus 
Insecta Coleoptera Cerambycidae Astyleiopus Astyleiopus variegatus 
Insecta Coleoptera Cerambycidae Astylidius Astylidius parvus 
Insecta Coleoptera Cerambycidae Astylopsis Astylopsis macula 
Insecta Coleoptera Cerambycidae Astylopsis Astylopsis sexguttata 
Insecta Coleoptera Cerambycidae Bellamira Bellamira scalaris 
Insecta Coleoptera Cerambycidae Brachyleptura Brachyleptura champlaini 
Insecta Coleoptera Cerambycidae Callimoxys Callimoxys sanguinicollis 
Insecta Coleoptera Cerambycidae Centrodera Centrodera sublineata 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Coleoptera Cerambycidae Clytoleptus Clytoleptus albofasciatus 
Insecta Coleoptera Cerambycidae Cyrtinus Cyrtinus pygmaeus 
Insecta Coleoptera Cerambycidae Cyrtophorus Cyrtophorus verrucosus 
Insecta Coleoptera Cerambycidae Dorcaschema Dorcaschema alternatum 
Insecta Coleoptera Cerambycidae Dorcaschema Dorcaschema cinereum 
Insecta Coleoptera Cerambycidae Dorcaschema Dorcaschema nigrum 
Insecta Coleoptera Cerambycidae Dorcaschema Dorcaschema wildii 
Insecta Coleoptera Cerambycidae Eburia  Eburia quadrigeminata 
Insecta Coleoptera Cerambycidae Ecyrus Ecyrus dasycerus 
Insecta Coleoptera Cerambycidae Elytrimitatrix Elytrimitatrix undata 
Insecta Coleoptera Cerambycidae Elaphidion Elaphidion mucronatum 
Insecta Coleoptera Cerambycidae Enaphalodes Enaphalodes rufulus 
Insecta Coleoptera Cerambycidae Euderces Euderces reichei 
Insecta Coleoptera Cerambycidae Euderces Euderces picipes 
Insecta Coleoptera Cerambycidae Euderces Euderces pini 
Insecta Coleoptera Cerambycidae Eupogonius Eupogonius pauper 
Insecta Coleoptera Cerambycidae Gaurotes Gaurotes cyanipennis 
Insecta Coleoptera Cerambycidae Graphisurus  Graphisurus despectus 
Insecta Coleoptera Cerambycidae Graphisurus  Graphisurus fasciatus 
Insecta Coleoptera Cerambycidae Heterachthes Heterachthes 

quadrimaculatus 
Insecta Coleoptera Cerambycidae Hyperplatys Hyperplatys maculata 
Insecta Coleoptera Cerambycidae Knulliana Knulliana cincta 
Insecta Coleoptera Cerambycidae Leptostylus Leptostylus transversus 
Insecta Coleoptera Cerambycidae Leptura Leptura emarginata 
Insecta Coleoptera Cerambycidae Lepturges Lepturges angulatus 
Insecta Coleoptera Cerambycidae Lepturges Lepturges confluens 
Insecta Coleoptera Cerambycidae Micranoplium Micranoplium unicolor 
Insecta Coleoptera Cerambycidae Molorchus Molorchus bimaculatus 
Insecta Coleoptera Cerambycidae Monochamus Monochamus titillator 
Insecta Coleoptera Cerambycidae Neoclytus Neoclytus acuminatus 
Insecta Coleoptera Cerambycidae Neoclytus Neoclytus caprea 
Insecta Coleoptera Cerambycidae Neoclytus Neoclytus horridus 
Insecta Coleoptera Cerambycidae Neoclytus Neoclytus jouteli 
Insecta Coleoptera Cerambycidae Neoclytus Neoclytus mucronatus 
Insecta Coleoptera Cerambycidae Neoclytus Neoclytus scutellaris 
Insecta Coleoptera Cerambycidae Necydalis Necydalis mellita 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Coleoptera Cerambycidae Oberea Oberea ulmicola 
Insecta Coleoptera Cerambycidae Obrium Obrium maculatum 
Insecta Coleoptera Cerambycidae Onicideres Onicideres cingulata 
Insecta Coleoptera Cerambycidae Orthosoma Orthosoma brunneum 
Insecta Coleoptera Cerambycidae Parelaphidion Parelaphidion aspersum 
Insecta Coleoptera Cerambycidae Phymatodes Phymatodes amoenus 
Insecta Coleoptera Cerambycidae Phymatodes Phymatodes testaceus 
Insecta Coleoptera Cerambycidae Phymatodes Phymatodes varius 
Insecta Coleoptera Cerambycidae Physocnemum Physocnemum brevilineum 
Insecta Coleoptera Cerambycidae Prionus Prionus imbricornis 
Insecta Coleoptera Cerambycidae Purpuricenus Purpuricenus humeralis 
Insecta Coleoptera Cerambycidae Purpuricenus Purpuricenus paraxillaris 
Insecta Coleoptera Cerambycidae Saperda Saperda discoidea 
Insecta Coleoptera Cerambycidae Saperda Saperda imitans 
Insecta Coleoptera Cerambycidae Saperda Saperda lateralis 
Insecta Coleoptera Cerambycidae Saperda Saperda tridentata 
Insecta Coleoptera Cerambycidae Sarosesthes Sarosesthes fulminans 
Insecta Coleoptera Cerambycidae Stenocorus Stenocorus  cinnamopterus 
Insecta Coleoptera Cerambycidae Stenosphenus Stenosphenus notatus 
Insecta Coleoptera Cerambycidae Sternidius Sternidius alpha 
Insecta Coleoptera Cerambycidae Strangalepta Strangalepta abbreviata 
Insecta Coleoptera Cerambycidae Strangalia Strangalia bicolor 
Insecta Coleoptera Cerambycidae Strangalia Strangalia luteicornis 
Insecta Coleoptera Cerambycidae Strophiona Strophiona nitens 
Insecta Coleoptera Cerambycidae Tilloclytus Tilloclytus geminatus 
Insecta Coleoptera Cerambycidae Trachysida Trachysida mutabilis 
Insecta Coleoptera Cerambycidae Trigonarthris Trigonarthris minnesotana 
Insecta Coleoptera Cerambycidae Trigonarthris Trigonarthris proxima 
Insecta Coleoptera Cerambycidae Typocerus Typocerus lugubris 
Insecta Coleoptera Cerambycidae Typocerus Typocerus velutinus 
Insecta Coleoptera Cerambycidae Typocerus Typocerus zebra 
Insecta Coleoptera Cerambycidae Urgleptes Urgleptes querci 
Insecta Coleoptera Cerambycidae Urgleptes Urgleptes signatus 
Insecta Coleoptera Cerambycidae Xylotrechus Xylotrechus colonus 
Insecta Coleoptera Cleridae Enoclerus Enoclerus ichneumoneus 
Insecta Coleoptera Cleridae Enoclerus Enoclerus nigripes 
Insecta Coleoptera Coccinellidae Coccinella  Coccinella septempunctata 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Coleoptera Curculionidae Acalles Acalles carinatus 
Insecta Coleoptera Curculionidae Acalles Acalles clavatus§ 
Insecta Coleoptera Curculionidae Acalles Acalles minutissimus§ 
Insecta Coleoptera Curculionidae Acoptus Acoptus suturalis§ 
Insecta Coleoptera Curculionidae Anthonomus Anthonomus juniperinus§ 
Insecta Coleoptera Curculionidae Anthonomus Anthonomus nigrinus 
Insecta Coleoptera Curculionidae Anthonomus Anthonomus rufipennis 
Insecta Coleoptera Curculionidae Anthonomus Anthonomus suturalis 
Insecta Coleoptera Curculionidae Aphanommata Aphanommata tenuis 
Insecta Coleoptera Curculionidae Apteromechus Apteromechus ferratus 
Insecta Coleoptera Curculionidae Anametis Anametis granulata§ 
Insecta Coleoptera Curculionidae Auleutes Auleutes nebulosus complex 
Insecta Coleoptera Curculionidae Buchananius Buchananius sulcatus 
Insecta Coleoptera Curculionidae Canistes Canistes schusteri 
Insecta Coleoptera Curculionidae Caulophilus Caulophilus dubius 
Insecta Coleoptera Curculionidae Cercopeus Cercopeus chrysorrhoeus 
Insecta Coleoptera Curculionidae Chalcodermus Chalcodermus inaequicollis 
Insecta Coleoptera Curculionidae Conotrachelus Conotrachelus affinis 
Insecta Coleoptera Curculionidae Conotrachelus Conotrachelus anaglypticus 
Insecta Coleoptera Curculionidae Conotrachelus Conotrachelus aratus 
Insecta Coleoptera Curculionidae Conotrachelus Conotrachelus carinifer 
Insecta Coleoptera Curculionidae Conotrachelus Conotrachelus elegans 
Insecta Coleoptera Curculionidae Conotrachelus Conotrachelus naso 
Insecta Coleoptera Curculionidae Conotrachelus Conotrachelus posticatus 
Insecta Coleoptera Curculionidae Cophes Cophes fallax 
Insecta Coleoptera Curculionidae Cophes Cophes obtentus 
Insecta Coleoptera Curculionidae Cossonus Cossonus impressifrons 
Insecta Coleoptera Curculionidae Craponius Craponius inaequalis 
Insecta Coleoptera Curculionidae Cryptorhynchus Cryptorhynchus fuscatus 
Insecta Coleoptera Curculionidae Cryptorhynchus Cryptorhynchus tristis 
Insecta Coleoptera Curculionidae Curculio Curculio othorhynchus 
Insecta Coleoptera Curculionidae Cyrtepistomus  Cyrtepistomus castaneus‡ 
Insecta Coleoptera Curculionidae Dichoxenus Dichoxenus setiger 
Insecta Coleoptera Curculionidae Dietzella Dietzella zimmermanni 
Insecta Coleoptera Curculionidae Dryophthorus Dryophthorus americanus 
Insecta Coleoptera Curculionidae Epacalles Epacalles inflatus 
Insecta Coleoptera Curculionidae Eubulus Eubulus bisignatus 
Insecta Coleoptera Curculionidae Eubulus Eubulus obliquefasciatus 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Coleoptera Curculionidae Eudociminus Eudociminus 

mannerheimii§  
Insecta Coleoptera Curculionidae Eurhoptus Eurhoptus sp. 1† 
Insecta Coleoptera Curculionidae Eurhoptus Eurhoptus pyriformis 
Insecta Coleoptera Curculionidae Geraeus Geraeus penicillus 
Insecta Coleoptera Curculionidae Hypera  Hypera compta‡ 
Insecta Coleoptera Curculionidae Hypera  Hypera meles‡ 
Insecta Coleoptera Curculionidae Hypera  Hypera postica 
Insecta Coleoptera Curculionidae Idiostethus Idiostethus subcalvus§ 
Insecta Coleoptera Curculionidae Laemosaccus Laemosaccus nephele 

group 
Insecta Coleoptera Curculionidae Leichrops Lechriops oculatus 
Insecta Coleoptera Curculionidae Lymantes Lymantes sandersoni 
Insecta Coleoptera Curculionidae Madarellus Madarellus undulatus§ 
Insecta Coleoptera Curculionidae Magdalis Magdalis armicollis§ 
Insecta Coleoptera Curculionidae Magdalis Magdalis barbita§ 
Insecta Coleoptera Curculionidae Mecinus Mecinus pascuorum§ 
Insecta Coleoptera Curculionidae Myrmex Myrmex chevrolatii§ 
Insecta Coleoptera Curculionidae Myrmex Myrmex myrmex§ 
Insecta Coleoptera Curculionidae Nicentrus Nicentrus lecontei§ 
Insecta Coleoptera Curculionidae Oopterinus Oopterinus perforatus 
Insecta Coleoptera Curculionidae Otiorhynchus Otiorhynchus 

rugosostriatus‡§ 
Insecta Coleoptera Curculionidae Pandeleteius  Pandeleteius hilaris 
Insecta Coleoptera Curculionidae Piazorhinus Piazorhinus pictus§ 
Insecta Coleoptera Curculionidae Phyllotrox Phyllotrox ferrugineus§ 
Insecta Coleoptera Curculionidae Plocamus Plocamus hispidulus§ 
Insecta Coleoptera Curculionidae Pseudobaris Pseudobaris nigrina§ 
Insecta Coleoptera Curculionidae Pseudopentarthrum Pseudopentarthrum 

simplex§ 
Insecta Coleoptera Curculionidae Rhinoncus  Rhinoncus  pericarpius§ 
Insecta Coleoptera Curculionidae Sitona Sitona lineatus‡§ 
Insecta Coleoptera Curculionidae Stenoscelis Stenoscelis brevis§ 
Insecta Coleoptera Curculionidae Tachyerges Tachyerges niger 
Insecta Coleoptera Curculionidae Tomolips Tomolips quercicola§ 
Insecta Coleoptera Curculionidae Tychius Tychius picirostris 
Insecta Coleoptera Curculionidae Tyloderma Tyloderma foveolatum 
Insecta Coleoptera Elateridae Alaus Alaus oculatus 
Insecta Coleoptera Endomychidae Phymaphora Phymaphora pulchella 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Coleoptera Meloidae Lytta Lytta aenea 
Insecta Coleoptera Nitidulidae Glischrochilus Glischrochilus fasciatus  
Insecta Coleoptera Salpingidae Salpingus Salpingus viridiaeneus 
Insecta Coleoptera Scarabaeidae Copris Copris fricator 
Insecta Coleoptera Scarabaeidae Cotinus Cotinus nitida 
Insecta Coleoptera Scarabaeidae Onthophagus Onthophagus orpheus 
Insecta Coleoptera Silphidae Necrophila Necrophila americana 
Insecta Coleoptera Tenebrionidae Polypleurus Polypleurus perforatus 
Insecta Dermaptera Forficulidae Forficula Forficula auricularia 
Insecta Diptera Anisopodidae Sylvicola Sylvicola fenestralis 
Insecta Diptera Bombyliidae Bombylius Bombylius (bald-backed) † 

Insecta Diptera Drosophilidae Drosophila Drosophila suzukii‡ 
Insecta Diptera Drosophilidae Zaprionus Zaprionus indianus‡ 
Insecta Diptera Limoniidae Cladura Cladura flavoferruginea 
Insecta Diptera Lygistorrhinidae Lygistorrhina Lygistorrhina 

sancthecatharinae§ 

Insecta Diptera Mydidae Mydas Mydas clavatus 
Insecta Diptera Osetridae Cephenemyia  Cephenemyia  sp nov.? † 
Insecta Diptera Osetridae Cuterebra Cuterebra emasculator 
Insecta Diptera Osetridae Cuterebra Cuterebra f. fontinella 
Insecta Diptera Ptychopteridae Bittacomorpha Bittacomorpha clavipes 
Insecta Diptera Scathophagidae Scathophaga Scathophaga furcata 
Insecta Diptera Scathophagidae Scathophaga Scathophaga stercoraria 
Insecta Diptera Stratiomyidae Cephalochrysa Cephalochrysa nigricornis§

Insecta Diptera Stratiomyidae Gowdeyana  Gowdeyana punctifera§ 
Insecta Diptera Stratiomyidae Ptecticus Ptecticus trivattus 
Insecta Diptera Stratiomyidae Sargus Sargus decorus§ 
Insecta Diptera Tipulidae Ctenophora Ctenophora dorsalis 
Insecta Diptera Ulidiidae Callopistromyia Callopistromyia annulipes 
Insecta Diptera Ulidiidae Idana Idana marginata 
Insecta Diptera Xylophagidae Rachicerus Rachicerus obscuripennis§ 
Insecta Dermaptera Anisolabidida Euborellia Euborellia annulipes‡ 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
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Insecta Hemiptera Alydidae Alydus Alydus eurinus 
Insecta Hemiptera Alydidae Megalotomus Megalotomus 

quinquespinosus 

Insecta Hemiptera Aradidae Aradus Aradus acutus 
Insecta Hemiptera Aradidae Aradus Aradus approximatus§ 
Insecta Hemiptera Aradidae Aradus Aradus crenatus 
Insecta Hemiptera Aradidae Aradus Aradus duzeei§ 
Insecta Hemiptera Aradidae Aradus Aradus ornatus§ 
Insecta Hemiptera Aradidae Aradus Aradus similis 
Insecta Hemiptera Aradidae Mezira Mezira sayi 
Insecta Hemiptera Aradidae Neuroctenus Neuroctenus elongatus§ 
Insecta Hemiptera Aradidae Neuroctenus Neuroctenus pseudonymus§ 
Insecta Hemiptera Aradidae Notapictinus Notapictinus aurivilli§ 
Insecta Hemiptera Caliscelidae Bruchomorpha Bruchomorpha oculata 
Insecta Hemiptera Coreidae Acanthocephala Acanthocephala terminalis 
Insecta Hemiptera Coreidae Leptoglossus Leptoglossus oppositus 
Insecta Hemiptera Cydnidae Amnestus Amnestus basidentatus 
Insecta Hemiptera Cydnidae Melanaethus Melanaethus subpunctatus 
Insecta Hemiptera Cydnidae Pangaeus Pangaeus bilineatus 
Insecta Hemiptera Cydnidae Sehirus Sehirus cinctus§ 
Insecta Hemiptera Gerridae Gerris Gerris argenticollis 
Insecta Hemiptera Gerridae Gerris Gerris marginatus 
Insecta Hemiptera Lygaeidae Nysius Nysius raphanus§ 
Insecta Hemiptera Miridae Prepops Prepops insitivus§ 
Insecta Hemiptera Pachygronthidae Oedancala Oedancala dorsalis 
Insecta Hemiptera Pachygronthidae Phlegyas Phlegyas abbreviatus 
Insecta Hemiptera Pentatomidae Banasa Banasa euchlora 
Insecta Hemiptera Pentatomidae Brochymena Brochymena arborea 
Insecta Hemiptera Pentatomidae Chinavia Chinavia hilaris 
Insecta Hemiptera Pentatomidae Coenus Coenus delius 
Insecta Hemiptera Pentatomidae Euschistus Euschistus servus 
Insecta Hemiptera Pentatomidae Euschistus Euschistus tristigmus 
Insecta Hemiptera Pentatomidae Menecles Menecles insertus 
Insecta Hemiptera Pentatomidae Mormidea Mormidea lugens 
Insecta Hemiptera Pentatomidae Podisus Podisus maculiventris 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Class Order Family Genus Species 

Insecta Hemiptera Reduviidae Arilus Arilus cristatus 

Insecta Hemiptera Reduviidae Barce 
Insecta Hemiptera Reduviidae Melanolestes Melanolestes picipes 
Insecta Hemiptera Reduviidae Oncocephalus Oncocephalus geniculatus 
Insecta Hemiptera Reduviidae Pselliopus  Pselliopus barberi 
Insecta Hemiptera Reduviidae Rhiginia Rhiginia cruciata 
Insecta Hemiptera Reduviidae Rocconota Rocconota annulicornis 
Insecta Hemiptera Reduviidae Sinea Sinea diadema 
Insecta Hemiptera Reduviidae Sinea Sinea spinipes 
Insecta Hemiptera Reduviidae Stenopoda Stenopoda spinulosa 
Insecta Hemiptera Reduviidae Zelus Zelus tetracanthus§ 
Insecta Hemiptera Rhyparochromidae Antillocoris Antillocoris pilosulus 
Insecta Hemiptera Rhyparochromidae Cryphula Cryphula trimaculata 
Insecta Hemiptera Rhyparochromidae Kolenetrus Kolenetrus plenus§ 
Insecta Hemiptera Rhyparochromidae Myodocha Myodocha serripes 
Insecta Hemiptera Rhyparochromidae Ozophora Ozophora picturata 
Insecta Hemiptera Rhyparochromidae Xestocoris Xestocoris nitens 
Insecta Hemiptera Scutelleridae Stethaulax Stethaulax marmorata 
Insecta Hemiptera Thyreocoridae Corimelaena Corimelaena pulicaria 
Insecta Hemiptera Thyreocoridae Galgupha Galgupha loboprostethia 
Insecta Hemiptera Tingidae Acalypta Acalypta susana 
Insecta Hymenoptera Apidae Apis Apis mellifera 
Insecta Hymenoptera Argidae Arge Arge humeralis 
Insecta Hymenoptera Argidae Arge Arge macleayi 
Insecta Hymenoptera Argidae Sterictiphota Sterictiphota serotina 
Insecta Hymenoptera Aulacidae Pristaulacus Pristaulacus rufitarsis§ 
Insecta Hymenoptera Chrysididae Amisega Amisega bella§ 
Insecta Hymenoptera Chrysididae Amisega Amisega kahlii§ 
Insecta Hymenoptera Chrysididae Trichrysis Trichrysis areolata§ 
Insecta Hymenoptera Cimbididae Abia Abia americana 
Insecta Hymenoptera Diprionidae Monoctenus Monoctenus fulvus 
Insecta Hymenoptera Embolemidae Embolemus Embolemus nearcticus 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Hymenoptera Encyrtidae Chrysoplatycerus Chrysoplatycerus ferrisi 
Insecta Hymenoptera Encyrtidae Chrysoplatycerus Chrysoplatycerus spendens 
Insecta Hymenoptera Encyrtidae Forcipestricis Forcipestricis gaseaui 
Insecta Hymenoptera Encyrtidae Metaphycus Metaphycus, nr matteolus† 
Insecta Hymenoptera Encyrtidae Ooencyrtus Ooencyrtus anasae 
Insecta Hymenoptera Encyrtidae Ooencyrtus Ooencyrtus sp nov† 
Insecta Hymenoptera Encyrtidae Syrphophagus  Syrphophagus aphidivorus 
Insecta Hymenoptera Formicidae Aphaenogaster Aphaenogaster carolinensis 
Insecta Hymenoptera Formicidae Aphaenogaster Aphaenogaster fulva 
Insecta Hymenoptera Formicidae Aphaenogaster Aphaenogaster lamellidens 
Insecta Hymenoptera Formicidae Aphaenogaster Aphaenogaster mariae 
Insecta Hymenoptera Formicidae Aphaenogaster Aphaenogaster 

tennesseensis 

Insecta Hymenoptera Formicidae Aphaenogaster Aphaenogaster treatae 
Insecta Hymenoptera Formicidae Brachymyrmex Brachymyrmex sp. 04† 
Insecta Hymenoptera Formicidae Brachymyrmex Brachymyrmex depilis 
Insecta Hymenoptera Formicidae Camponotus Camponotus americanus 
Insecta Hymenoptera Formicidae Camponotus Camponotus caryae 
Insecta Hymenoptera Formicidae Camponotus Camponotus castaneus 
Insecta Hymenoptera Formicidae Camponotus Camponotus chromaiodes 
Insecta Hymenoptera Formicidae Camponotus Camponotus decipiens 
Insecta Hymenoptera Formicidae Camponotus Camponotus impressus 
Insecta Hymenoptera Formicidae Camponotus Camponotus 

mississippiensis 

Insecta Hymenoptera Formicidae Camponotus Camponotus nearcticus 
Insecta Hymenoptera Formicidae Camponotus Camponotus 

pennsylvanicus 

Insecta Hymenoptera Formicidae Camponotus Camponotus subbarbatus 
Insecta Hymenoptera Formicidae Camponotus Camponotus snellingi 
Insecta Hymenoptera Formicidae Crematogaster Crematogaster ashmeadi 
Insecta Hymenoptera Formicidae Crematogaster Crematogaster cerasi 
Insecta Hymenoptera Formicidae Crematogaster Crematogaster lineolata 
Insecta Hymenoptera Formicidae Crematogaster Crematogaster minutissima 
Insecta Hymenoptera Formicidae Crematogaster Crematogaster pilosa 
Insecta Hymenoptera Formicidae Crematogaster Crematogaster vermiculata 
Insecta Hymenoptera Formicidae Discothyrea  Discothyrea testacea 
Insecta Hymenoptera Formicidae Formica Formica pallidefulva 
Insecta Hymenoptera Formicidae Formica Formica subsericea 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Hymenoptera Formicidae Hypoponera Hypoponera opaciceps 
Insecta Hymenoptera Formicidae Hypoponera Hypoponera opacior 
Insecta Hymenoptera Formicidae Lasius Lasius alienus 
Insecta Hymenoptera Formicidae Lasius Lasius interjectus 
Insecta Hymenoptera Formicidae Monomorium Monomorium minimum 
Insecta Hymenoptera Formicidae Myrmica Myrmica pinetorum 
Insecta Hymenoptera Formicidae Myrmecina Myrmecina americana 
Insecta Hymenoptera Formicidae Neivamyrmex Neivamyrmex opacithorax 
Insecta Hymenoptera Formicidae Nylanderia Nylanderia fasionensis 
Insecta Hymenoptera Formicidae Nylanderia Nylanderia parvula 
Insecta Hymenoptera Formicidae Nylanderia Nylanderia terricola 
Insecta Hymenoptera Formicidae Nylanderia Nylanderia trageri 
Insecta Hymenoptera Formicidae Pheidole Pheidole tetra 
Insecta Hymenoptera Formicidae Ponera Ponera exotica 
Insecta Hymenoptera Formicidae Ponera Ponera pennsylvanica 
Insecta Hymenoptera Formicidae Proceratium Proceratium crassicorne 
Insecta Hymenoptera Formicidae Prenolepis Prenolepis imparis 
Insecta Hymenoptera Formicidae Proceratium Proceratium pergandei 
Insecta Hymenoptera Formicidae Proceratium Proceratium silaceum 
Insecta Hymenoptera Formicidae Solenopsis Solenopsis carolinensis 
Insecta Hymenoptera Formicidae Solenopsis Solenopsis picta 
Insecta Hymenoptera Formicidae Solenopsis Solenopsis xyloni 
Insecta Hymenoptera Formicidae Stenamma Stenamma impar 
Insecta Hymenoptera Formicidae Stenamma Stenamma schmittii 
Insecta Hymenoptera Formicidae Stigmatomma Stigmatomma pallipes 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys angulata 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys creightoni 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys dietrichi 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys laevinasis 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys louisianae 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys metazytes 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys missouriensis 
Insecta Hymenoptera Formicidae Strumigenys Styrumigenys ohioensis 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys ornata 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys nevermanni 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys pergandei 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys pilinasis 
Insecta Hymenoptera Formicidae Strumigenys Strumigenys rostrata 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Hymenoptera Formicidae Tapinoma Tapinoma sessile 
Insecta Hymenoptera Formicidae Temnothorax Temnothorax ambiguus 
Insecta Hymenoptera Formicidae Temnothorax Temnothorax americanus 
Insecta Hymenoptera Formicidae Temnothorax Temnothorax curvispinosus 
Insecta Hymenoptera Formicidae Temnothorax Temnothorax pergandei 
Insecta Hymenoptera Formicidae Temnothorax Temnothorax schaumii 
Insecta Hymenoptera Formicidae Temnothorax Temnothorax texanus 
Insecta Hymenoptera Formicidae Trachymyrmex Trachymyrmex  

septentrionalis 

Insecta Hymenoptera Ichneumonidae Charops Charops annulipes 
Insecta Hymenoptera Ichneumonidae Enicospilus Enicospilus americanus 
Insecta Hymenoptera Ichneumonidae Megarhyssa Megarhyssa macrurus 
Insecta Hymenoptera Mymarommatidae    
Insecta Hymenoptera Orussidae Orussus Orussus minutus§ 
Insecta Hymenoptera Orussidae Orussus Orussus terminalis§ 
Insecta Hymenoptera Pamphiliidae Onycholyda Onycholyda luteicornis 
Insecta Hymenoptera Pamphiliidae Pamphilius Pamphilius ocreatus 
Insecta Hymenoptera Pamphiliidae Pamphilius Pamphilius periscum 
Insecta Hymenoptera Pamphiliidae Pamphilius Pamphilius rileyi 
Insecta Hymenoptera Pergidae Acordulecera Acordulecera dorsalis 
Insecta Hymenoptera Pergidae Acordulecera Acordulecera mellina 
Insecta Hymenoptera Pergidae Acordulecera Acordulecera pellucida 
Insecta Hymenoptera Pompilidae Ageniella Ageniella cupida 
Insecta Hymenoptera Pompilidae Ageniella Ageniella partita 
Insecta Hymenoptera Pompilidae Agenioideus  Agenioideus birkmanni  
Insecta Hymenoptera Pompilidae Allaporus Allaporus pulchellus 
Insecta Hymenoptera Pompilidae Ammosphex Ammosphex michigenensis 

michigenensis 

Insecta Hymenoptera Pompilidae Anoplius Anoplius marginatus 
Insecta Hymenoptera Pompilidae Aporus Aporus niger 
Insecta Hymenoptera Pompilidae Aporinellus   
Insecta Hymenoptera Pompilidae Arachnospila   
Insecta Hymenoptera Pompilidae Astata   
Insecta Hymenoptera Pompilidae Auplopus Auplopus architectus 

architectus 

Insecta Hymenoptera Pompilidae Auplopus Auplopus mellipes mellipes 
Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
 
 



412 
 

Class Order Family Genus Species 
Insecta Hymenoptera Pompilidae Auplopus Auplopus nigrellus or 

caerulescens 

Insecta Hymenoptera Pompilidae Cryptocheilus  Cryptocheilus attenatum 
Insecta Hymenoptera Pompilidae Dipogon Dipogon sayi sayi 
Insecta Hymenoptera Pompilidae Dipogon  Dipogon papago 

anomalus 
Insecta Hymenoptera Pompilidae Priocnemis Priocnemis hestia 
Insecta Hymenoptera Pompilidae Priocnemis Priocnemis minorata 
Insecta Hymenoptera Pompilidae Priocnesis Priocnessis nebulosus 
Insecta Hymenoptera Pompilidae Psorthaspis   
Insecta Hymenoptera Pompilidae Tachypompilus Tachypompilus 

ferrugineus ferrugineus 

Insecta Hymenoptera Rhopalosomatidae Rhopalosoma Rhopalosoma nearcticum 
Insecta Hymenoptera Scoliidae Scolia Scolia bicincta 
Insecta Hymenoptera Siricidae Tremex Tremex columba 
Insecta Hymenoptera Sphecidae Eremnophila Eremnophila aureonotata 
Insecta Hymenoptera Stephanidae Megischus Megischus bicolor 
Insecta Hymenoptera Tenthredinidae Caliroa Caliroa quercuscoccineae 
Insecta Hymenoptera Tenthredinidae Craterocercus Craterocercus obtusus 
Insecta Hymenoptera Tenthredinidae Dolerus Dolerus neoagcistus 
Insecta Hymenoptera Tenthredinidae Empria Empria coryli 
Insecta Hymenoptera Tenthredinidae Empria Empria maculata 
Insecta Hymenoptera Tenthredinidae Eupareophora Eupareophora parca 
Insecta Hymenoptera Tenthredinidae Hoplocampa Hoplocampa marlatti 
Insecta Hymenoptera Tenthredinidae Macrophya Macrophya cassandra 
Insecta Hymenoptera Tenthredinidae Macrophya Macrophya formosa 
Insecta Hymenoptera Tenthredinidae Macrophya Macrophya macgillivrayi  
Insecta Hymenoptera Tenthredinidae Macrophya Macrophya pulchella 
Insecta Hymenoptera Tenthredinidae Monophadnoides Monophadnoides 

conspiculatus 

Insecta Hymenoptera Tenthredinidae Monophadnoides Monophadnoides pauper 
Insecta Hymenoptera Tenthredinidae Monophadnoides Monophadnoides rubi 
Insecta Hymenoptera Tenthredinidae Monophadnus Monophadnus bakeri 
Insecta Hymenoptera Tenthredinidae Nefusa Nefusa ambigua 
Insecta Hymenoptera Tenthredinidae Nematus Nematus abbotii 
Insecta Hymenoptera Tenthredinidae Nematus Nematus tibialis 
Insecta Hymenoptera Tenthredinidae Neopareophora Neopareophora litura 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Hymenoptera Tenthredinidae Pachynematus Pachynematus corniger 
Insecta Hymenoptera Tenthredinidae Paracharactus Paracharactus rudis 
Insecta Hymenoptera Tenthredinidae Periclista Periclista marginicollis 
Insecta Hymenoptera Tenthredinidae Pristiphora Pristiphora banski 
Insecta Hymenoptera Tenthredinidae Pristiphora Pristiphora chlorea 
Insecta Hymenoptera Tenthredinidae Strongylogaster Strongylogaster impressata 
Insecta Hymenoptera Tenthredinidae Strongylogaster Strongylogaster remota 
Insecta Hymenoptera Tenthredinidae Taxonus Taxonus eipcera 
Insecta Hymenoptera Tenthredinidae Thrinax Thrinax albidopictus 
Insecta Hymenoptera Tenthredinidae Thrinax Thrinax multicinctus 
Insecta Hymenoptera Tenthredinidae Zaschizonyx Zaschizonyx montana 
Insecta Hymenoptera Vespidae Dolcihovespula Dolcihovespula maculata 
Insecta Hymenoptera Vespidae Euodynerus Euodynerus schwarzi 
Insecta Hymenoptera Vespidae Polistes Polistes fuscatus 
Insecta Hymenoptera Vespidae Polistes Polistes metricus 
Insecta Hymenoptera Vespidae Vespa Vespa crabo‡ 
Insecta Hymenoptera Vespidae Vespula Vespula maculifrons 
Insecta Hymenoptera Xyelidae Xyela Xyela pini 
Insecta Hymenoptera Xiphydriidae Xyphydria Xyphydria tibialis 
Insecta Lepidoptera Drepanidae Euthyatira Euthyatira pudens 
Insecta Lepidoptera Erebidae Apantesis Apantesis nais 
Insecta Lepidoptera Erebidae Apantesis Apantesis vittta 
Insecta Lepidoptera Erebidae Catocala Catocala dejecta 
Insecta Lepidoptera Erebidae Catocala Catocala epione 
Insecta Lepidoptera Erebidae Catocala Catocala insolabilis 
Insecta Lepidoptera Erebidae Catocala Catocala nebulosa 
Insecta Lepidoptera Erebidae Hypsoropha Hypsoropha monilis 
Insecta Lepidoptera Erebidae Euparthenos Euparthenos nubilis 
Insecta Lepidoptera Erebidae Grammia Grammia anna 
Insecta Lepidoptera Erebidae Lycomorpha  Lycomorpha pholus 
Insecta Lepidoptera Erebidae Phoberia Phoberia atomeris 
Insecta Lepidoptera Erebidae Zale Zale lunata 
Insecta Lepidoptera Geometridae Epimecis Epimecis hortaria 
Insecta Lepidoptera Geometridae Eutrapela Eutrapela clemataria 
Insecta Lepidoptera Hesperiidae Atalopedes Atalopedes campestris 
Insecta Lepidoptera Hesperiidae Poanes Poanes hobomok 
Insecta Lepidoptera Hesperiidae Poanes Poanes zabulon 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Insecta Lepidoptera Lasiocampidae Malacosoma Malacosoma americana 
Insecta Lepidoptera Lasiocampidae Malacosoma Malacosoma distria 
Insecta Lepidoptera Lycaenidae Calycopis Calycopis cecrops 
Insecta Lepidoptera Lycaenidae Feniseca Feniseca tarquinius 
Insecta Lepidoptera Lycaenidae Satyrium Satyrium favonius 
Insecta Lepidoptera Noctuidae Amphipyra Amphipyra pyramidoides 
Insecta Lepidoptera Noctuidae Eupsilia   
Insecta Lepidoptera Noctuidae Eupsilia Eupsilia vinulenta 
Insecta Lepidoptera Noctuidae Morrisonia Morrisonia confusa 
Insecta Lepidoptera Noctuidae Psychomorpha Psychomorpha epimenis 
Insecta Lepidoptera Noctuidae Sericaglaea Sericaglaea signata 
Insecta Lepidoptera Nymphalidae Asterocampa Asterocampa clyton 
Insecta Lepidoptera Nymphalidae Cercyonis Cercyonis pegala 
Insecta Lepidoptera Nymphalidae Chlosyne Chlosyne nycteis 
Insecta Lepidoptera Nymphalidae Lethe Lethe anthedon 
Insecta Lepidoptera Nymphalidae Megisto Megisto cymela 
Insecta Lepidoptera Nymphalidae Nymphalis Nymphalis antiopa 
Insecta Lepidoptera Nymphalidae Speyeria  Speyeria cybele 
Insecta Lepidoptera Papilionidae Eurytides Eurytides marcellus 
Insecta Lepidoptera Papilionidae Papilo Papilo glaucus 
Insecta Lepidoptera Papilionidae Papilo Papilo troilus 
Insecta Lepidoptera Pieridae Anthocharis Anthocharis midea 
Insecta Lepidoptera Sphingidae Amphion Amphion floridensis 
Insecta Lepidoptera Sphingidae Hemaris Hemaris thysbe 
Insecta Lepidoptera Zygaenidae Pyromorpha  Pyromorpha dimidiata  
Insecta Mecoptera Bittacidae Bittacus Bittacus pilicornis 
Insecta Mecoptera Meropeidae Merope Merope tuber 
Insecta Mecoptera Panorpidae Panorpa Panorpa braueri 
Insecta Mecoptera Panorpidae Panorpa Panorpa choctaw 
Insecta Orthoptera Acrididae Arphia Arphia sulphurea 
Insecta Orthoptera Acrididae Arphia Arphia xanthoptera  
Insecta Orthoptera Acrididae Boopedon Boopedon gracile 
Insecta Orthoptera Acrididae Chortophaga Chortophaga viridifasciata 
Insecta Orthoptera Acrididae Syrbula Syrbula admirabilis  
Insecta Orthoptera Gryllidae Hapithus Hapithus agitator 
Insecta Orthoptera Gryllidae Orocharis Orocharis saltator 
Insecta Orthoptera Gryllidae Velarifictorus Velarifictorus micado‡§ 
Insecta Orthoptera Myrmecophilidae Myrmecophilius Myrmecophilius pergandei 
Insecta Phasmida Diapheromeridae Diapheromera Diapheromera femorata 

Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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Malacostraca Isopoda Armadillidiidae Armadillidium Armadillidium nasatum‡ 
Malacostraca Isopoda Armadillidiidae Armadillidium Armadillidium vulgare‡ 
Malacostraca Isopoda Trichoniscidae Haplophthalmus Haplophthalmus 

danicus‡ 
Table A3 (cont.). Species identified from Steel Creek during this dissertation.  
† - putative new species, ‡ - introduced, non-native species, § - new state record 
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