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Abstract

We present a neural network technique for the analysis and extrapolation of time-series data called

Neural Decomposition (ND). Units with a sinusoidal activation function are used to perform a

Fourier-like decomposition of training samples into a sum of sinusoids, augmented by units with

nonperiodic activation functions to capture linear trends and other nonperiodic components. We

show how careful weight initialization can be combined with regularization to form a simple model

that generalizes well. Our method generalizes effectively on the Mackey-Glass series, a dataset

of unemployment rates as reported by the U.S. Department of Labor Statistics, a time-series of

monthly international airline passengers, the monthly ozone concentration in downtown Los An-

geles, and an unevenly sampled time-series of oxygen isotope measurements from a cave in north

India. We find that ND outperforms popular time-series forecasting techniques including ARIMA,

SARIMA, SVR with a radial basis function, Gashler and Ashmore’s model, and echo state net-

works.
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Chapter 1

Introduction

The analysis and forecasting of time-series is a challenging problem that continues to be an active

area of research. Predictive techniques have been presented for an array of problems, including

weather [15], traffic flow [24], seizures [12], sales [8], and others [34, 19, 7, 35]. Because research

in this area can be so widely applied, there is great interest in discovering more accurate methods

for time-series forecasting.

One approach for analyzing time-series data is to interpret it as a signal and apply the Fourier

transform to decompose the data into a sum of sinusoids [2]. Unfortunately, despite the well-

established utility of the Fourier transform, it cannot be applied directly to time-series forecasting.

The Fourier transform uses a predetermined set of sinusoid frequencies rather than learning the

frequencies that are actually expressed in the training data. Although the signal produced by the

Fourier transform perfectly reproduces the training samples, it also predicts that the same pattern

of samples will repeat indefinitely. As a result, the Fourier transform is effective at interpolation

but is unable to extrapolate future values. Another limitation of the Fourier transform is that it only

uses periodic components, and thus cannot accurately model the nonperiodic aspects of a signal,

such as a linear trend or nonlinear abnormality.

Another approach is regression and extrapolation using a model such as a neural network.

Regular feedforward neural networks with standard sigmoidal activation functions do not tend

to perform well at this task because they cannot account for periodic components in the training

data. Fourier neural networks have been proposed, in which feedforward neural networks are given

sinusoidal activation functions and are initialized to compute the Fourier transform. Unfortunately,

these models have proven to be difficult to train [15].

Recurrent neural networks, as opposed to feedforward neural networks, have been successfully

applied to time-series prediction [16, 17]. However, these kinds of networks make up a different
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class of forecasting techniques. Recurrent neural networks also have difficulty handling unevenly

sampled time-series. Further discussion about recurrent neural networks and other classes of fore-

casting techniques is provided in Chapter 2.

This thesis claims that effective generalization can be achieved by regression and extrapolation

using a model with two essential properties: (1) it must combine both periodic and nonperiodic

components, and (2) it must be able to tune its components as well as the weights used to combine

them. We present a neural network technique called Neural Decomposition (ND) that demon-

strates this claim. Like the Fourier transform, it decomposes a signal into a sum of constituent

parts. Unlike the Fourier transform, however, ND is able to reconstruct a signal that is useful for

extrapolating beyond the training samples. ND trains the components into which it decomposes

the signal represented by training samples. This enables it to find a simpler set of constituent sig-

nals. In contrast to the fast Fourier transform, ND does not require the number of samples to be

a power of two, nor does it require that samples be measured at regular intervals. Additionally,

ND facilitates the inclusion of nonperiodic components, such as linear or sigmoidal components,

to account for trends and nonlinear irregularities in a signal.

In Chapter 5, we demonstrate that the simple innovations of ND work together to produce

significantly improved generalizing accuracy with several problems. We tested with the chaotic

Mackey-Glass series, a dataset of unemployment rates as reported by the U.S. Department of

Labor Statistics, a time-series of monthly international airline passengers, the monthly ozone con-

centration in downtown Los Angeles, and an unevenly sampled time-series of oxygen isotope

measurements from a cave in north India. We compared against an autoregressive integrated mov-

ing average (ARIMA) model, seasonal ARIMA (SARIMA), support vector regression with a radial

basis function (SVR), a model recently proposed by Gashler and Ashmore [15], and echo state net-

works. In all but one case, ND made better predictions than each of the other prediction techniques

evaluated; in the excepted case, echo state networks performed slightly better than ND.

This paper is outlined as follows. Chapter 2 provides a background and reviews related works.

Chapter 3 gives an intuitive-level overview of ND. Chapter 4 provides finer implementation-level
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details. Chapter 5 shows results that validate our work. Finally, Chapter 6 discusses the contribu-

tions of this paper and future work.
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Figure 2.1: Three broad classes of models for time-series forecasting: (A) prediction using a
sliding window, (B) recurrent models, and (C) regression-based extrapolation.

Chapter 2

Related Work

2.1 Models for Time-Series Prediction

Many works have diligently surveyed the existing literature regarding techniques for forecasting

time-series data [10, 22, 38, 5, 13, 37, 9]. Some popular statistical models include Gaussian process

[4] and hidden Markov models [26].

Autoregressive integrated moving average (ARIMA) models [39, 36] are among the most pop-

ular approaches. The notation for this model is ARIMA(p,d,q), where p is the number of terms in

the autoregressive model, d is the number of differences required to take to make the time-series

stationary, and q is the number of terms in the moving average model. In other words, ARIMA

models compute the dth difference of x(t) as a function of xt−1,xt−2, ...,xt−p and the previous q

error terms.

Out of all the ARIMA variations that have been proposed, seasonal ARIMA (SARIMA) [3] is

considered to be the state of the art “classical” time-series approach [24]. Notation for SARIMA

is ARIMA(p,d,q)(P,D,Q)[S], where p,d,q are identical to the normal ARIMA model, P,D,Q are

analogous seasonal values, and S is the seasonal parameter. For example, an ARIMA(1,0,1)(0,1,1)[12]

uses an autoregressive model with one term, a moving average model with one term, one seasonal

difference (that is, x′t = xt − xt−12), and a seasonal moving average with one term. This seasonal

variation of ARIMA exploits seasonality in data by correlating xt not only with recent observations
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like xt−1, but also with seasonally recent observations like xt−S. For example, when the data is a

monthly time-series, S = 12 correlates observations made in the same month of different years,

and when the data is a daily time-series, S = 7 correlates observations made on the same day of

different weeks.

In the field of machine learning, three high-level classes of techniques (illustrated in Figure 2.1)

are commonly used to forecast time-series data [15]. Perhaps the most common approach, (A), is

to train a model to directly forecast future samples based on a sliding window of recently collected

samples [13]. This approach is popular because it is simple to implement and can work with

arbitrary supervised learning techniques.

A more sophisticated approach, (B), is to train a recurrent neural network [21, 28]. Several

recurrent models, such as LSTM networks [16, 17], have reported very good results for forecasting

time-series. Echo state networks (ESNs) have performed particularly well at this task [23, 20, 30].

An ESN is a randomly connected, recurrent reservoir network with three primary meta-parameters:

input scaling, spectral radius, and leaking rate [25]. Although they are powerful, these recurrent

models are only able to handle time-series that are sampled at a fixed interval, and thus cannot be

directly applied to unevenly sampled time-series.

Our model falls into the third category of machine learning techniques, (C): regression-based

extrapolation. Models of this type fit a curve to the training data, then use the trained curve to

anticipate future samples. One advantage of this approach over recurrent neural networks is that it

can make continuous predictions, instead of predicting only at regular intervals, and can therefore

be directly applied to irregularly spaced time-series. A popular method in this category is support

vector regression (SVR) [33, 11]. Many models in this category decompose a signal into con-

stituent parts, providing a useful mechanism for analyzing the signal. Our model is more closely

related to a subclass of methods in this category, called Fourier neural networks (see Section 2.3),

due to its use of sinusoidal activation functions. Models in the first two categories, (A) and (B),

have already been well-studied, whereas extrapolation with sinusoidal neural networks remains a

relatively unexplored area.
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2.2 Inverse Discrete Fourier Transform

The discrete Fourier transform (DFT) maps a series of N complex numbers in the time domain to

the frequency domain. The inverse DFT (iDFT) can be applied these new values to map them back

to the time domain. More interestingly, the iDFT can be used as a continuous representation of the

originally discrete input. The transforms are generally written as a sum of N complex exponentials,

which can be rewritten in terms of sines and cosines by Euler’s formula.

The DFT and the iDFT are effectively the same transform with two key differences. First, in

terms of sinusoids, the DFT uses negative multiples of 2π/N as frequencies and the iDFT uses

positive multiples of 2π/N as frequencies. Second, the iDFT contains the normalization term 1/N

applied to each sum.

In general, the iDFT requires all N complex values from the frequency domain to reconstruct

the input series. For real-valued input, however, only the first N/2+1 complex values are necessary

(N/2 frequencies and one bias). The remaining complex numbers are the conjugates of the first

half of the values, so they only contain redundant information. Furthermore, in the real-valued

case, the imaginary component of the iDFT output can be discarded to simplify the equation, as

we do in Equation 2.1. This particular form of the iDFT (reconstructing a series of real samples)

can therefore be written as a real sum of sines and cosines.

The iDFT is as follows. Let Rk and Ik represent the real and imaginary components respectively

of the kth complex number returned by the DFT. Let 2πk/N be the frequency of the kth term. The

first frequency yields the bias, because cos(0) = 1 and sin(0) = 0. The second frequency is a single

wave, the third frequency is two waves, the fourth frequency is three waves, and so on. The cosine

with the kth frequency is scaled by Rk, and the sine with the kth frequency is scaled by Ik. Thus,

the iDFT is sufficiently described as a sum of N/2+ 1 terms, with a sin(t) and a cos(t) in each

term and a complex number from the DFT corresponding to each term:

x(t) =
N/2

∑
k=0

Rk · cos(
2πk
N

t)− Ik · sin(
2πk
N

t) (2.1)

6
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Figure 2.2: The predictive model generated by the iDFT for a toy problem with both periodic and
nonperiodic components. Blue dots represent training samples, red dots represent testing samples,
and the green line represents the iDFT. Two significant problems limit its ability to generalize: (1)
The model repeats, ignoring the linear trend, and (2) The extrapolated predictions misalign with
the phase of the continuing nonlinear trend.

Equation 2.1 is useful as a continuous representation of the real-valued discrete input. Because

it perfectly passes through the input samples, one might naively expect this function to be a good

basis for generalization. In order to choose appropriate frequencies, however, the iDFT assumes

that the underlying function always has a period equal to the size of the samples that represent it,

that is, x(t +N) = x(t) for all t. Typically, in cases where generalization is desirable, the period

of the underlying function is not known. The iDFT cannot effectively model the nonperiodic

components of a signal, nor can it form a simple model for series that are not periodic at N, even

if the series is perfectly periodic.

Figure 2.2 illustrates the problems encountered when using the iDFT for time-series forecast-

ing. Although the model generated by the iDFT perfectly fits the training samples, it only has

periodic components and so is only able to predict that these samples will repeat to infinity, with-

out taking nonperiodicity into account. Our approach mimics the iDFT for modeling periodic data,

but is also able to account for nonperiodic components in a signal (Figure 3.2).

2.3 Fourier Neural Networks

Use of the Fourier transform in neural networks has already been explored in various contexts.

The term Fourier neural network has been used to refer to neural networks that use a Fourier-like
7



neuron [31], that use the Fourier transform of some data as input [27], or that use the Fourier

transform of some data as weights [15]. Our work is not technically a Fourier neural network, but

of these three types, our approach most closely resembles the third.

Silvescu provided a model for a Fourier-like activation function for neurons in neural networks

[31]. His model utilizes every unit to form DFT-like output for its inputs. He notes that by using

gradient descent to train sinusoid frequencies, the network is able to learn “exact frequency infor-

mation” as opposed to the “statistical information” provided by the DFT. Our approach also trains

the frequencies of neurons with a sinusoidal activation function.

Gashler and Ashmore presented a technique that used the fast Fourier transform (FFT) to ap-

proximate the DFT, then used the obtained values to initialize the sinusoid weights of a neural

network that mixed sinusoidal, linear, and softplus activation functions [15]. Because this initial-

ization used sinusoid units to model nonperiodic components of the data, their model was designed

to heavily regularize sinusoid weights so that as the network was trained, it gave preference to

weights associated with nonperiodic units and shifted the weights from the sinusoid units to the

linear and softplus units. Use of the FFT required their input size to be a power of two, and their

trained models were slightly out of phase with their validation data. However, they were able to

generalize well for certain problems. Our approach is similar, except that we do not use the Fourier

transform to initialize any weights (further discussion on why we do not use the Fourier transform

can be found in Section 3.4).
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Chapter 3

High Level Approach

In this chapter, we describe Neural Decomposition (ND), a neural network technique for the anal-

ysis and extrapolation of time-series data. This chapter focuses on an intuitive-level overview of

our method; implementation details can be found in Chapter 4.

3.1 Algorithm Description

We use an iDFT-like model with two simple but important innovations. First, we allow sinusoid

frequencies to be trained. Second, we augment the sinusoids with a nonperiodic function to model

nonperiodic components. The iDFT-like use of sinusoids allows our model to fit to periodic data,

the ability to train the frequencies allows our model to learn the true period of a signal, and the

augmentation function enables our model to forecast time-series that are made up of both periodic

and nonperiodic components.

Our model is defined as follows. Let each ak represent an amplitude, each wk represent a

frequency, and each φk represent a phase shift. Let g(t) be an augmentation function that represents

the nonperiodic components of the signal.

x(t) =
N

∑
k=1

(
ak · sin(wkt +φk)

)
+g(t) (3.1)

Note that the lower index of the sum has changed from k = 0 in the iDFT to k = 1 in our model.

This is because ND can account for bias in the augmentation function g(t), so the 0 frequency is

not necessary. Therefore, only N sinusoids are required rather than N +2.

If the phase shifts are set so that sin(t +φ) is transformed into cos(t) and −sin(t), the frequen-

cies are set to the appropriate multiples of 2π, the amplitudes are set to the output values of the

DFT, and g(t) is set to a constant (the bias), then ND is identical to the iDFT. However, by choos-
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ing a g(t) better suited to generalization and by learning the amplitudes and tuning the frequencies

using backpropagation, our method is more effective at generalization than the iDFT. g(t) may be

as simple as a linear equation or as complex as a combination of linear and nonlinear equations. A

discussion on the selection of g(t) can be found in Chapter 4.

We use a feedforward artificial neural network with a single hidden layer to compute our func-

tion (see Figure 3.1). The hidden layer is composed of N units with a sinusoid activation function

and an arbitrary number of units with other activation functions to calculate g(t). The output layer

is a single linear unit, so that the neural network outputs a linear combination of the units in the

hidden layer.

We initialize the frequencies and phase shifts in the same way as the inverse DFT as described

above. Rather than use the actual values provided by the DFT as sinusoid amplitudes, however, we

initialize them to small random values (see Section 3.4 for a discussion on why). Weights in the

hidden layer associated with g(t) are initialized to approximate identity, and weights in the output

layer associated with g(t) are randomly perturbed from zero.

We train our model using stochastic gradient descent with backpropagation. This training

process allows our model to learn better frequencies and phase shifts so that the sinusoid units

more accurately represent the periodic components of the time-series. Because frequencies and

10



phase shifts are allowed to change, our model can learn the true period of the underlying function

rather than assuming the period is N. Training also tunes the weights of the augmentation function.

ND uses regularization throughout the training process to distribute weights in a manner con-

sistent with our goal of generalization. In particular, we use L1 regularization on the output layer

of the network to promote sparsity by driving nonessential weights to zero. Thus, ND produces a

simpler model by using the fewest number of units that still fit the training data well.

By pre-initializing the frequencies and phase shifts to mimic the inverse DFT and setting all

other parameters to small values, we reduce time-series prediction to a simple regression problem.

Artificial neural networks are particularly well-suited to this kind of problem, and using stochastic

gradient descent with backpropagation to train it should yield a precise and accurate model.

The neural network model and training approach we use is similar to those used by Gashler

and Ashmore in a previous work on time-series analysis [15]. Our work builds on theirs and con-

tributes a number of improvements, both theoretically and practically. First, we do not initialize the

weights of the network using the Fourier transform. This proved to be problematic in their work

as it used periodic components to model linear and other nonperiodic parts of the training data. By

starting with weights near zero and learning weights for both periodic and nonperiodic units simul-

taneously, our model does not have to unlearn extraneous weights. Second, their model required

heavy regularization that favored using linear units rather than the initialized sinusoid units. Our

training process makes no assumptions about which units are more important and instead allows

gradient descent to determine which components are necessary to model the data. Third, their

training process required a small learning rate (on the order of 10−7) and their network was one

layer deeper than ours. As a result, their frequencies were never tuned, their results were generally

out of phase with the testing data, and their training times were very long. Because our method fa-

cilitates the training of each frequency and allows a larger learning rate (10−3 in our experiments),

our method yields a function that is more precisely in phase with the testing data in a much shorter

amount of time. Thus, our method has simplified the complexity of the model’s training algorithm,

minimized its training time, and improved its overall effectiveness at time-series prediction. The
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superiority of our method is demonstrated in Chapter 5 and visualized in Figure 5.1.

3.2 Comparison to iDFT

Neural Decomposition has a number of benefits over the iDFT for time-series prediction. One

is that, unlike the FFT-approximated iDFT, ND does not require the number of samples to be a

power of two. In order to use the FFT on any input size that is not a power of two, the input

must be padded with zeros (or some other arbitrary placeholder) to make it a power of two in size.

Although this is acceptable in some applications, it sabotages generalization by training a model

to reconstruct these arbitrary values. The removal of a power of two restriction maximizes the

amount of information that ND is able to effectively utilize.

Additionally, our approach does not make the generally false assumption that the input is peri-

odic at N. The iDFT predicts that the input series will repeat itself indefinitely and cannot handle

fractional periods. ND uses flexible frequencies that enable it to learn the actual period of the

underlying function, even if the input series contains a fractional part of a signal’s periodic com-

ponents. Our method effectively harnesses the information provided by the entire input series,

including the fractional part. The iDFT, however, is not able to use this extra information. In fact,

the fractional part introduces unnecessary complexity into the model generated by the iDFT.

A third advantage ND has over the iDFT is that ND does not require samples taken at regular

intervals. Although many real-world datasets are sampled regularly, there are a number of applica-

tions that are not. Any time-series data obtained from a mobile device, for example, may contain

irregular samples due to power consumption or loss of signal [1].

The iDFT can be used to model time-series as a sum of sinusoids, which is ideal for periodic

data. To model any nonperiodic components of a time-series, however, the iDFT has to use several

sinusoid units, resulting in an unnecessarily complicated function representing the closed form

of the series. ND is able to account for nonperiodic components of a signal using nonperiodic

functions, resulting in a simpler model.

The most important benefit of our approach is that it is able to generalize. The iDFT yields
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Figure 3.2: A comparison of Neural Decomposition with two algorithmic variations showing the
importance of certain algorithm details. The data used here is the same data used in Figure 2.2. The
full ND model, shown in green, fits very closely to the data that was withheld during training. The
cyan curve shows predictions made when the basis functions, including sinusoidal frequencies,
were frozen during training. Note that the predictions are out-of-phase, indicating that training
these components is essential for effective generalization. The orange curve shows predictions
made without including any nonperiodic components among the basis functions, that is, setting the
augmentation function g(t) = 0. Although the predictions exhibit the correct phase, they fail to fit
with the nonperiodic trend. This shows the importance of using heterogeneous basis functions.

a model that perfectly fits the input samples, but it generalizes poorly for nonperiodic data, or

for data that is periodic at a point other than at N. Because it has flexible frequencies and can

model nonperiodic components, ND can generalize for both periodic and nonperiodic time-series,

regardless of where the periodicity is.

3.3 Toy Problem for Justification

Figure 3.2 demonstrates that flexible frequencies and an appropriate choice for g(t) are essential

for effective generalization. We compare three ND models using the equation x(t) = sin(4.25πt)+

sin(8.5πt)+5t to generate time-series data. This is a sufficiently interesting toy problem because
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it is composed of periodic and nonperiodic functions and its period is not exactly N (otherwise,

the frequencies would have been multiples of 2π). We generate 128 values for 0≤ t < 1.0 as input

and 256 values for 1.0 ≤ t < 3.0 as a validation set. Powers of two are not required, but we used

powers of two in order to compare our approach with using the inverse DFT (approximated by the

inverse FFT).

One of the compared ND models freezes the frequencies so that the model is unable to adjust

them. Although it is able to find the linear trend in the signal, it is unable to learn the true period

of the data and, as a result, makes predictions that are out of phase with the actual signal. This

demonstrates that the ability to adjust the constituent parts of the output signal is necessary for

effective generalization.

Another of the compared ND models has flexible frequencies, but uses no augmentation func-

tion (that is, g(t) = 0). This model can learn the periodic components of the signal, but not its

nonperiodic trend. It tunes the frequencies of the sinusoid units to more accurately reflect the input

samples, so that it is more in phase than the second model. However, because it cannot explain the

nonperiodic trend of the signal, it also uses more sinusoid units than the true underlying function

requires, resulting in predictions that are not perfectly in phase. This model shows the necessity of

an appropriate augmentation function for handling nonperiodicity.

The final ND model compared in Figure 3.2 is ND with flexible frequencies and augmentation

function g(t) = wt +b. As expected, it learns both the true period and the nonperiodic trend of the

signal. We therefore conclude that an appropriate augmentation function and the ability to tune

components are essential in order for ND to generalize well.

3.4 Toy Problem Analysis

In Figure 3.3, we plot the weights over time of our g(t) = wt + b model being trained on the toy

problem. Weights in Figure 3.3(a) are the frequencies of a few of the sinusoids in the model,

initialized based on the iDFT, but tuned over time to learn more appropriate frequencies for the

input samples, and weights in Figure 3.3(b) are their corresponding amplitudes. The training pro-
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Figure 3.3: (Left) Frequencies of the basis functions of Neural Decomposition over time. (Right)
Basis weights (amplitudes) over time on the same problem. Note that ND first tunes the frequen-
cies (Left), then finishes adjusting the corresponding amplitudes for those sinusoids (Right) (wA
corresponds to φA and wB corresponds to φB). In most cases, the amplitudes are driven to zero
to form a sparse representation. After the amplitudes reach zero, the frequencies are no longer
modified.

cess tunes frequencies wA and wB to more accurately reflect the period of the underlying function

and adjusts the corresponding amplitudes φA and φB so that only the sinusoids associated with

these amplitudes are used in the trained model and all other amplitudes are driven to zero. This

demonstrates that ND tunes frequencies it needs and learns amplitudes as we hypothesized. It is

also worth noting that after the first 2500 training epochs, no further adjustments are made to the

weights. This suggests that ND is robust against overfitting, at least in some cases, as the “extra”

training epochs did not result in a worse prediction.

Gashler and Ashmore utilized the FFT to initialize the sinusoid amplitudes so that the neural

network immediately resembled the iDFT [15]. Using the DFT in this way yields an unnecessarily

complex model in which nearly every sinusoid unit has a nonzero amplitude, either because it uses
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Figure 3.4: Frequency domain representations of the toy problem (amplitude vs frequency). (Left)
Frequencies used by the iDFT. (Right) Frequencies used by ND.

periodic functions to model the nonperiodic signal or because it has fixed frequencies and so uses a

range of frequencies to model the actual frequencies in the signal [31]. Consequently, the training

process required heavy regularization of the sinusoid amplitudes in order to shift the weight to the

simpler units (see Section 2.3). Training from this initial point often fell into local optima, as such

a model was not always able to unlearn superfluous sinusoid amplitudes.

Figure 3.4 demonstrates why using amplitudes provided by the Fourier transform is a poor

initialization point. The actual underlying function only requires two sinusoid units (found by

ND), but the Fourier transform uses every sinusoid unit available to model the linear trend in the

toy problem. Instead of tuning two amplitudes, a model initialized with the Fourier transform has

to tune every amplitude and is therefore far more likely to fall into local optima.

ND, by contrast, does not use the FFT. Sinusoid amplitudes (the weights feeding into the output

layer) and all output-layer weights associated with g(t) are initialized to small random values.

This allows the neural network to learn the periodic and nonperiodic components of the signal
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Figure 3.5: Neural Decomposition on the Mackey-Glass series. Although it does not capture all
the high-frequency fluctuations in the data, our model predicts the location and height of each peak
and valley in the series with a high degree of accuracy.

simultaneously. Without the hindrance of having to unlearn part of the DFT, the training process

is better able to find near-optimal values for these weights. Figure 3.4 shows a comparison of our

trained model with the frequencies used by the iDFT, omitting the linear component learned by

ND.

3.5 Mackey-Glass Series for Justification

In addition to the toy problem, we applied ND to the Mackey-Glass series as a proof-of-concept.

This series is known to be chaotic rather than periodic, so it is an interesting test for our approach

that decomposes the signal as a combination of sinusoids. Results with this data are shown in

Figure 3.5. The blue points on the left represent the training sequence, and the red points on the

right half represent the testing sequence. All testing samples were withheld from the model, and

are only shown here to illustrate the effectiveness of the model in anticipating future samples. The

green curve represents the predictions of the trained model. Although it does not capture all the
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high-frequency fluctuations in the Mackey-Glass series, it clearly exhibits shapes similar to those

in the test set. Interestingly, neither the shapes in the test data nor those exhibited within the model

are strictly repeating. This occurs because the frequencies of the sinusoidal basis functions that

ND uses to represent its model may be tuned to have frequencies with no small common multiple,

thus creating a signal that does not repeat for a very long time. Most notably, our model predicts

the location and height of each peak and valley in the series with a high degree of accuracy. This

demonstrates that ND can be effective for predicting chaotic series.
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Chapter 4

Implementation Details

In this chapter, we provide a more detailed explanation of our approach. A high level description of

Neural Decomposition can be found in Chapter 3. For convenience, an implementation of Neural

Decomposition is included in the Waffles machine learning toolkit [14].

4.1 Topology

We use a feedforward artificial neural network as the basis of our model. For an input of size N,

the neural network is initialized with two layers: 1→ m and m→ 1, where m = N + |g(t)| and

|g(t)| denotes the number of nodes required by g(t). The first N nodes in the hidden layer have

the sinusoid activation function, sin(t), and the rest of the nodes in the hidden layer have other

activation functions to compute g(t).

The augmentation function g(t) can be made up of any number of nodes with one or more

activation functions. For example, it could be made up of linear units for learning trends and

sigmoidal units to fit nonperiodic, nonlinear irregularities. Gashler and Ashmore have suggested

that softplus units may yield better generalizing predictions compared to standard sigmoidal units

[15]. In our experiments, we used a combination of linear, softplus, and sigmoidal nodes for g(t).

The network tended to only use a single linear node, which may suggest that the primary benefit

of the augmentation function is that it can model linear trends in the data. Softplus and sigmoidal

units tended to be used very little or not at all by the network in the problems we tested, but

intuitively it seems that nonlinear activation functions could be useful in some cases.
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4.2 Weight Initialization

The weights of the neural network are initialized as follows. Let each of the N sinusoid nodes in

the hidden layer, indexed as k for 0≤ k < N/2, have a weight wk and bias φk. Let each wk represent

a frequency and be initialized to 2πbk/2c. Let each φk represent a phase shift. For each even value

of k, let φk be set to π/2 to transform sin(t +φk) to cos(t). For each odd value of k, let φk be set

to π to transform sin(t + φk) to −sin(t). A careful comparison of these initialized weights with

Equation 2.1 shows that these are identical to the frequencies and phase shifts used by the iDFT,

except for a missing 1/N term in each frequency, which is absorbed in the input preprocessing step

(see Section 4.3).

All weights feeding into the output unit are set to small random values. At the beginning of

training, therefore, the model will predict something like a flat line centered at zero. As training

progresses, the neural network will learn how to combine the hidden layer units to fit the training

data.

Weights in the hidden layer associated with the augmentation function are initialized to ap-

proximate the identity function. For example, in g(t) = wt + b, w is randomly perturbed from 1

and b is randomly perturbed near 0. Because the output layer will learn how to use each unit in the

hidden layer, it is important that each unit be initialized in this way.

4.3 Input Preprocessing

Before training begins, we preprocess the input data to facilitate learning and prevent the model

from falling into a local optimum. First, we normalize the time associated with each sample so that

the training data lies between 0 (inclusive) and 1 (exclusive) on the time axis. If there is no explicit

time, equally spaced values between 0 and 1 are assigned to each sample in order. Predicted data

points will have a time value greater than or equal to 1 by this new scale. Second, we normalize

the values of each input sample so that all training data is between 0 and 10 on the y axis.

This preprocessing step serves two purposes. First, it absorbs the 1/N term in the frequencies
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by transforming t into t/N, which is why we were able to omit the 1/N term from our frequencies in

the weight initialization step. Second, and more importantly, it ensures that the data is appropriately

scaled so that the neural network can learn efficiently. If the data is scaled too large on either axis,

training will be slow and susceptible to local optima. If the data is scaled too small, on the other

hand, the learning rate of the machine will cause training to diverge and only use linear units and

low frequency sinusoids.

In some cases, it is appropriate to pass the input data through a filter. For example, financial

time-series data is commonly passed through a logarithmic filter before being presented for train-

ing, and outputs from the model can then be exponentiated to obtain predictions. We use this input

preprocessing method in two of our experiments where we observe an underlying exponential

growth in the training data.

4.4 Regularization

Regularization is essential to the training process. Prior to each sample presentation, we apply

regularization on the output layer of the neural network. Even though we do not initialize sinusoid

amplitudes using the DFT, the network is quickly able to learn how to use the initialized frequencies

to perfectly fit the input samples. Without regularizing the output layer, training halts as soon

as the model fits the input samples, because the measurable error is near zero. By relaxing the

learned weights, regularization allows our model to redistribute its weight over time. We find that

regularization amount is especially important; too much prevented our model from learning, but

too little caused our model to fall into local optima. In our experiments, setting the regularization

term to 10−2 avoided both of these potential pitfalls.

Another important function of regularization in ND is to promote sparsity in the network, so

that the redistribution of weight produces as simple a model as the input samples allow. We use

L1 regularization for this reason. Usually, the trained model does not require all N sinusoid nodes

in order to generalize well, and this type of regularization enables the network to automatically

discard unnecessary nodes by driving their amplitudes to zero. L2 regularization is not an accept-
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able substitute in this case, as it would distribute the weights evenly throughout the network and

could, like the DFT, try to use several sinusoid nodes to model what would more appropriately be

modeled by a single node with a nonperiodic activation function.

It is worth noting that we only apply regularization to the output layer of the neural network.

Any regularization that might occur in the hidden layer would adjust sinusoid frequencies before

the output layer could learn sinusoid amplitudes. By allowing weights in the hidden layer to change

without regularization, the network has the capacity to adjust frequencies but is not required to do

so.

Backpropagation with stochastic gradient descent tunes the weights of the network and accom-

plishes the redistribution of weights that regularization makes possible. In our experiments, we use

a learning rate of 10−3.
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Chapter 5

Validation

In this chapter, we report results that validate the effectiveness of Neural Decomposition. In each

of these experiments, we used an ND model with an augmentation function made up of ten linear

units, ten softplus units, and ten sigmoidal units. It is worth noting that g(t) is under no constraint

to consist only of these units; it could include other activation functions or only contain a single

linear node to capture trend information. We use a regularization term of 10−2 and a learning rate

of 10−3 in every experiment to demonstrate the robustness of our approach; we did not tune these

meta-parameters for each experiment.

In our experiments, we compare ND with ARIMA, SARIMA, SVR, Gashler and Ashmore’s

model [15], and ESN. We used the R language implementation for ARIMA, SARIMA, and SVR

[29]. For the ARIMA models, we used a variation of the auto.arima method that performs a grid-

search to find the best parameters. For SVR, we used the tune.svm method, which also performs

a grid-search. We used Lukoševičius’ implementation of ESN [25] and implemented a grid-search

to find the best parameters. Although these methods select the best models based on the amount

of error calculated using the training samples, the grid-search is a very slow process. Gashler

and Ashmore’s model did not require a grid-search for parameters because it has a default set of

parameters that are automatically tuned during the training process. With ND, no problem-specific

parameter tuning was performed.

In each figure, the blue points in the shaded region represent training samples and the red points

represent withheld testing samples. The curves on the graph represent the predictions made by the

three models that made the most accurate predictions (only two models are shown in the fourth

experiment because only two models could be applied to an irregularly sampled time-series). The

actual error for each model’s prediction is reported for all experiments and all models in Table 5.1

and Table 5.2.
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Figure 5.1: A comparison of the three best predictive models on the monthly unemployment rate
in the US. Blue points represent the 258 training samples from January 1948 to June 1969 and
red points represent the 96 testing samples from July 1969 to December 1977. SARIMA, shown
in magenta, correctly predicted a rise in unemployment, but underestimated its magnitude, and
did not predict the shape of the data well. ESN, shown in cyan, predicted a reasonable mean,
but did not capture the dynamics of the data. Only ND, shown in green, successfully predicted
both the depth and approximate shape of the surge in unemployment, followed by another surge in
unemployment that followed.

In our first experiment, we demonstrated the effectiveness of ND on real-world data com-

pared to widely used techniques in time-series analysis and forecasting. We trained our model

on the unemployment rate from 1948 to 1969 as reported by the U.S. Bureau of Labor Statistics,

and predicted the unemployment rate from 1969 to 1977. These results are shown in Figure 5.1.

Blue points on the left represent the 258 training samples from January 1948 to June 1969, and

red points on the right represent the 96 testing samples from July 1969 to December 1977. The

three curves represent predictions made by ND (green), ESN (cyan), and SARIMA (magenta);

ARIMA, SVR, and Gashler and Ashmore’s model yielded poorer predictions and are therefore

omitted from the figure. Grid-search found ARIMA(3,1,2) and ARIMA(1,1,2)(1,0,1)[12] for the
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ARIMA and SARIMA models, respectively. ARIMA, not shown, did not predict the significant

rise in unemployment. SARIMA, shown in magenta, did correctly predict a rise in unemployment,

but underestimated its magnitude, and did not predict the shape of the data well. SVR, not shown,

correctly predicted that unemployment would rise, then fall again. However, it also underestimated

its magnitude. Gashler and Ashmore’s model, not shown, predicted the rise and fall in unemploy-

ment, but underestimated its magnitude and the model’s predictions significantly diverge from the

subsequent testing samples. It is also worth noting that Gashler and Ashmore’s model took about

200 seconds to train compared to ND, which took about 30 seconds to train. ESN, shown in cyan,

predicted a reasonable mean value for the general increase in unemployment, but failed to capture

the dynamics of the actual data. Results with Neural Decomposition (ND) are shown in green. ND

successfully predicted both the depth and approximate shape of the surge in unemployment. Fur-

thermore, it correctly anticipated another surge in unemployment that followed. ND did a visibly

better job of predicting the nonlinear trend much farther into the future.

Our second experiment demonstrates the versatility of Neural Decomposition by applying to

another real-world dataset: monthly totals of international airline passengers as reported by Chat-

field [6]. We use the first six years of data (72 samples) from January 1949 to December 1954 as

training data, and the remaining six years of data (72 samples) from January 1955 to December

1960 as testing data. The training data is preprocessed through a log(x) filter and the outputs are

exponentiated to obtain the final predictions. As in the first experiment, we compare our model

with ARIMA, SARIMA, SVR, the model proposed by Gashler and Ashmore, and ESN. The pre-

dictions of the three most accurate models (ND, ESN, and SARIMA) are shown in Figure 5.2;

ARIMA, SVR, and Gashler and Ashmore’s model yielded poorer predictions and are therefore

omitted from the figure. SVR, not shown, predicts a flat line after the first few time steps and

generalizes the worst out of the four predictive models. The ARIMA model found by grid-search

was ARIMA(2,1,3). ARIMA, not shown, was able to learn the trend, but failed to capture any of

the dynamics of the signal. Grid-search found ARIMA(1,0,0)(1,1,0)[12] for the SARIMA model.

Both SARIMA (shown in magenta) and ND (shown in green) are able to accurately predict the

25



19
50

19
51

19
52

19
53

19
54

19
56

19
57

19
58

19
59

19
60

19
61

100

150

200

250

300

350

400

450

500

550

600

Year

19
49

19
55

ND

SARIMA

Training Samples Testing Samples

ESN

A
irl

in
e 

Pa
ss

en
ge

rs

Figure 5.2: A comparison of the three best predictive models on monthly totals of international
airline passengers from January 1949 to December 1960 [6]. Blue points represent the 72 training
samples from January 1949 to December 1954 and red points represent the 72 testing samples from
January 1955 to December 1960. SARIMA, shown in magenta, learns the trend and general shape
of the data. ESN, shown in cyan, predicts a mean but does not capture the dynamics of the actual
data. ND, shown in green, learns the trend, shape, and growth better than the other compared
models.

shape of the future signal, but ND performs better. Unlike SARIMA, ND learns that the periodic

component gets bigger over time. Gashler and Ashmore’s model makes meaningful predictions

for a few time steps, but appears to diverge after the first predicted season. ESN, shown in cyan,

performs similarly to the ARIMA model, only predicting the trend and failing to capture seasonal

variations.

The third experiment uses the monthly ozone concentration in downtown Los Angeles as re-

ported by Hipel [18]. Nine years of monthly ozone concentrations (152 samples) from January

1955 to December 1963 are used as training samples, and the remaining three years and eight

months (44 samples) from January 1964 to August 1967 are used as testing samples. The training

data, as in the second experiment, is preprocessed through a log(x) filter and output is exponenti-
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Figure 5.3: A comparison of the three best predictive models on monthly ozone concentration in
downtown Los Angeles from January 1955 to August 1967 [18]. Blue points represent the 152
training samples from January 1955 to December 1963 and red points represent the 44 testing
samples from January 1964 to August 1967. The compared models include SARIMA, ESN, and
ND. All three of these models perform well on this problem. ESN’s prediction, shown in cyan, has
a smaller error than ND’s prediction. ND’s prediction, shown in green, has a smaller error than
SARIMA’s prediction (shown in magenta). ARIMA, SVR, and Gashler and Ashmore’s model all
performed poorly on this problem; rather than include them in this graph, their errors have been
reported in Table 5.1 and Table 5.2.

ated to obtain the final predictions. Figure 5.3 compares the SARIMA, ESN, and ND models on

this problem; ARIMA, SVR, and Gashler and Ashmore’s model yielded poorer predictions and

are therefore omitted from the figure. The ARIMA and SARIMA models found by grid-search

were ARIMA(2,1,2) and ARIMA(1,1,1)(1,0,1)[12], respectively. ARIMA and SVR resulted in

flat-line predictions with a high amount of error, and Gashler and Ashmore’s model diverged in

training and yielded unstable predictions. SARIMA (shown in magenta), ESN (shown in cyan),

and ND (shown in green), on the other hand, all forecast future samples well. ESN yielded the

most accurate predictions, and ND yielded the second most accurate predictions.

Our fourth experiment demonstrates that ND can be used on irregularly sampled time-series.
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Figure 5.4: A comparison of two predictive models on a series of oxygen isotope readings in
speleothems in India from 1489 AD to 1839 AD [32]. Blue points represent the 250 training
samples from July 1489 to April 1744 and red points represent the 132 testing samples from August
1744 to December 1839. Because this time-series is irregularly sampled (the time step between
samples is not constant), only SVR and ND could be applied to it. SVR, shown in orange, does not
perform well, but predicts a steep drop in value that does not occur in the testing data, followed by
a flat line. ND, shown in green, performs well, capturing the general shape of the testing samples.

We use a series of oxygen isotope readings in speleothems in a cave in India from 1489 AD to 1839

AD as reported by Sinha et. al [32]. Because the time intervals between adjacent samples is not

constant (the interval is about 1.5 years on average, but fluctuates between 0.5 and 2.0 years), only

ND and SVR models can be applied. ARIMA, SARIMA, Gashler and Ashmore’s model, and ESN

cannot be applied to irregular time-series because they assume a constant time interval between

adjacent samples; these four models are therefore not included in this experiment. Figure 5.4

shows the predictions of ND and SVR. Blue points on the left represent the 250 training samples

from July 1489 to April 1744, and red points on the right represent the 132 testing samples from

August 1744 to December 1839. SVR, shown in orange, predicts a steep drop in value that does

not exist in the testing data. ND, shown in green, accurately predicts the general shape of the
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Table 5.1: Mean absolute percent error (MAPE) on the validation problems for ARIMA, SARIMA,
SVR, Gashler and Ashmore, ESN, and ND. Best result (smallest error) for each problem is shown
in bold.

Model Labor Airline Ozone Speleothem
ARIMA 39.42% 12.34% 39.50% N/A
SARIMA 29.69% 13.33% 22.71% N/A
SVR 25.14% 47.04% 49.53% 8.50%
Gashler/Ashmore 34.38% 19.89% 77.19% N/A
ESN 15.73% 12.05% 16.15% N/A
ND 10.89% 9.52% 21.59% 1.89%

testing data.

Table 5.1 presents an empirical evaluation of each model for the four real-world experiments.

We use the mean absolute percent error (MAPE) as our error metric for comparisons [24]. MAPE

for a set of predictions is defined by the following function, where xt is the actual signal value (i.e.

it is an element of the set of testing samples) and x(t) is the predicted value:

MAPE =
1
n

n

∑
t=1

∣∣∣∣xt− x(t)
xt

∣∣∣∣ (5.1)

Using MAPE, we compare Neural Decomposition to ARIMA, SARIMA, SVR with a radial

basis function, Gashler and Ashmore’s model, and ESN. We found that on the unemployment

rate problem (Figure 5.1), our approach yielded a model with a MAPE of 10.89%, a 14.15%

improvement over the second best model, SVR, which had a MAPE of 25.14%. On the airline

problem (Figure 5.2), our approach performed significantly better than other approaches. On the

ozone problem (Figure 5.3), ESN was the best model, but ND and SARIMA also performed well.

Table 5.2 presents the same data using the root mean square error (RMSE) metric.
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Table 5.2: Root mean square error (RMSE) on the validation problems for ARIMA, SARIMA,
SVR, Gashler and Ashmore, ESN, and ND. Best result (smallest error) for each problem is shown
in bold.

Model Labor Airline Ozone Speleothem
ARIMA 2.97 75.32 1.33 N/A
SARIMA 2.41 67.54 1.06 N/A
SVR 2.18 209.57 1.83 1.078
Gashler/Ashmore 2.81 94.47 3.71 N/A
ESN 1.09 63.50 0.705 N/A
ND 1.09 45.03 0.99 0.214

30



Chapter 6

Conclusion

In this thesis, we presented Neural Decomposition, a neural network technique for time-series

forecasting. Our method decomposes a set of training samples into a sum of sinusoids, inspired by

the Fourier transform, augmented with additional components to enable our model to generalize

and extrapolate beyond the input set. Each component of the resulting signal is trained, so that it

can find a simpler set of constituent signals. ND uses careful initialization, input preprocessing,

and regularization to facilitate the training process. A toy problem was presented to demonstrate

the necessity of each component of ND. We applied ND to the Mackey-Glass series and was found

to generalize well. Finally, we showed results that demonstrate that our approach is superior to

popular techniques ARIMA, SARIMA, SVR, Gashler and Ashmore’s model, and ESN for some

time-series, including the US unemployment rate, monthly airline passengers, monthly ozone con-

centration in Los Angeles, and an unevenly sampled time-series of oxygen isotope measurements

from a cave in north India. We predict that ND will similarly outperform these and other techniques

on a number of other problems.

This work makes the following contributions to the current knowledge:

• It empirically shows why the Fourier transform provides a poor initialization point for gen-

eralization and how neural network weights must be tuned to properly decompose a signal

into its constituent parts.

• It demonstrates the necessity of an augmentation function in Fourier and Fourier-like neural

networks and shows that components must be adjustable during the training process, observ-

ing the relationships between weight initialization, input preprocessing, and regularization

in this context.

• It unifies these insights to describe a method for time-series forecasting and demonstrates
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that this method is effective at generalizing for some real-world datasets.

There are three primary areas of future work. First, a study is needed on selecting the augmen-

tation function. Our work only used a linear augmentation function, but intuitively it seems that a

more complex set of units would be able to fit a broader spectrum of time-series. Second, ND must

be compared to other time-series models such as echo state networks and LSTM networks. We

compared ND to a few widely used models, but a comparison to other neural network approaches

remains to be done. Third, ND should be applied to new problems. The preliminary findings on

the datasets in this thesis show that ND can generalize well for some problems, but the breadth of

applications for ND not yet known. Some interesting areas to explore are traffic flow [24], sales

[8], financial [34], and economic [22].
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