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ABSTRACT 

Autophagy or cellular self-digestion, a lysosomal degradation pathway that is conserved from 

yeast to human, plays a key role in recycling cellular constituents, including damaged organelles. 

It also plays a pivotal role in the adaptation of cells to a plethora of distinct stressors including 

starvation. Autophagy has been extensively studied in mammals and yeast, but little is known in 

avian species. Thus, the major objective of the present study was to determine the effects of 

leptin on autophagy-related genes in chicken hypothalamus, muscle and liver. Leptin is an 

adipocytokine that is mostly produced by white adipose cells in mammals (as fat storage 

increases), mediating sensing mechanism for fat deposition, signaling the brain via leptin 

receptor-mediated signal transduction to inhibit feed intake and increase energy expenditure. In 

the present study, recombinant chicken leptin (625 pmol, 10 µL) diluted in artificial 

cerebrospinal fluid was injected intracerebroventricularly (ICV) in one week-old Hubbard x 

Cobb 500 chicks (n=10) and feed intake was recorded at 30, 60 and 180 min after injection. At 

the end of the experiment, hypothalamii, muscle, and liver were collected for gene expression 

and protein level analysis. Leptin significantly reduce feed intake after 30 min compared to the 

control group. ICV administration of both chicken and ovine leptin significantly down-regulated 

genes (mRNA and protein levels) in hypothalamic and muscle tissues. In the muscle, leptin 

upregulates the expression of AMPKβ1 and AMPKϒ1, and downregulates the expression of 

mTOR, upstream regulator of  autophagy pathway. Expectedly, there were upregulations of 

leptin receptors, ObR (P<0.05). Our results support a novel link between metabolic control and 

autophagy that warrant further investigations. 

Key Words: Leptin, autophagy, hypothalamus, muscle, liver, gene expression. 
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INTRODUCTION 

Subsequent to the challenge of global food security due to fast growing world population, the 

fast growing birds (broilers) was genetically selected to meet up with increasing demand for high 

quality animal protein. Although genetic selection has made spectacular progress (high growth 

rate, muscle development, low feed conversion ratio[weight gain/feed intake]), there have been a 

number of undesirable changes including metabolic disorders. For instance, broilers do not 

adequately regulate voluntarily feed intake to achieve energy balance. When given ad libitum 

access to feed, broilers exhibit hyperphagia leading to excessive accumulation of fat, making 

these birds prone to obesity [1]. Several other health related problems occur including 

reproductive failure of overweight male and female broiler breeders [2], white striping [3], 

congestive heart conditions, ascites and lameness [4]. Since feed is a major component of the 

total cost (up to 70%) of producing live birds, and because of metabolic disorders related to 

hyperphagia, poultry producers adopt feeding programs including feed restriction in order to 

cope with these problems.  

Autophagy has been described as the self-eating process (occurring during nutrient depletion and 

stressful conditions) that is highly conserved from yeast to humans during which cells degrade 

and recycle their own components (cytosol and organelles) within the lysosomes [5, 6]. The 

word autophagy takes its origin from Greek Word “auto” which means self, and “phagein”, 

meaning to eat. Autophagy, which is a unique morphological feature or process in a dying cell 

was often erroneously presumed to be a preceding pathway to cell death, but in contrast, it has 

now been evidently clarified that, one of its major function is to fight or avert cell death and 

consequently keep it alive even when undergoing stressful and life-threatening conditions. In 

recent years, autophagy has appeared to play critical roles in several cellular functions and 
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physiological processes including reproduction, development [9, 10, 11], immunity [12], 

inflammation [7], neurodegenerative diseases [5, 9, 13], cardiovascular diseases [14, 15], 

metabolic syndrome [5, 9, 11], and energy homeostasis [16]. 

There are three major types of autophagy; micro-, macro-autophagy, and chaperone-mediated 

autophagy [10, 17, 18, 19]. Micro- and macro-authophagy can selectively engulf large structures 

such as mitochondria and endoplasmic reticulum (referred to as mitophagy or reticulophagy, 

respectively [17, 19, 20] or by non-selective mechanisms (e.g. bulk cytoplasm), whereas 

chaperone-mediated autophagy degrades only soluble proteins [17, 18]. Although, the autophagy 

pathway is not completely defined in birds, it has been largely studied in yeast and mammals, 

and has been suggested that it is regulated by genetic, environmental, nutritional, and hormonal 

factors.  

Among several key metabolic hormones that attract scientific attention that may have an effect 

over autophagy is the leptin hormone. Leptin, also called the obese hormone, is the central 

mediator in a negative feedback loop regulation of energy homeostasis. Mammalian adipocytes 

produce and secrete more leptin in the bloodstream as feed intake and fat storage increases [5, 

21] signaling the brain via leptin receptors [16] and in turn, inhibits feed intake in mammals and 

in avian species [21, 23].  

In addition to its role in the regulation of feed intake, leptin has been reported to play several key 

physiological roles including the regulation of energy expenditure, lipid metabolism, 

reproduction, bone metabolism [18]. Recently, leptin has been shown to regulate autophagy in 

mammals. It is not known if leptin has similar effect on autophagy in avian species. Therefore, 

the objective of the present study is to determine the effect of a single intracerebroventricular 
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administration of recombinant chicken and recombinant ovine leptin on the expression of 

autophagy-related genes in broiler chickens.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Autophagy System 

 Autophagy is a highly conserved cellular mechanism that is responsible for the degradation and 

recycling of damaged organelles. The induction of autophagy during nutrient depletion or 

starvation triggers the response of more than 30 autophagy-related genes (Atg) [5]. However, 

how Atg proteins are regulated is not well understood, but it’s clear that all signals reporting on 

availability of carbon and nitrogen sources converge on the mechanistic target of rampamycin 

(mTOR) signaling pathway, and that, Atg proteins are downstream effectors of mTOR pathway 

[23] 

The formation of autphagosome involves three steps, and the first step is initiation, during which 

phagophore (outer mitochondrial membrane, plasma membrane, endoplasmic reticulum 

membrane etc) undergo nucleation [8]. The second step undergoes elongation, cycling, 

expansion and closure, forming an autophagosome [8]. The third and final step is referred to as 

maturation, which involves the advancement of autophagosome into amphiosome, which is an 

acidic and hydrolytic vacuole. It is this hydrolytic vacuole that is ripe for degradation and 

recycling of nutrients [18]. 

Under fed condition (normal nutrient-energy adequate), the nutrient sensor, mTOR is activated, 

which in turn phosphorylates UNC-51 like kinase 1(ULK1) and thereby sequestering the ULK1-

Atg13-FIP200 (focal adhesion kinase family interacting protein of 200 kDa) complex in an 

inactive state at the mTOR complex [23, 20]. In contrast when nutrients are limited (e.g. during 

stress or starvation), the energy sensor, adenosine mono-phospate protein kinase (AMPK) is 

activated. AMPK activation inhibits mTOR activity leading to a reduced ULK1 phosphorylation 

and consequently releases the ULK1-Atg13-FIP200 complex from mTOR to the site of 
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autophagosome formation and induction of autophagy. In the second step of autophagy, Beclin1 

forms a lipid kinase complex with Atg4, Vacoular protein sorting 15 (Vps15), and Vps34 that 

phosphorylates phosphatidylinositol (PI) to form inositol-3-phosphate (PI3P) and is essential for 

induction of autophagy [23]. Accumulation of PI3P in specific sub-domains of the endoplasmic 

reticulum (ER) increases membrane curvature at the site of autophagosome formation.  The 

elongation step involves two ubiquitin-like reactions of the pre-autophagosomal structures.  First, 

the ubiquitin-like protein Atg12 is conjugated to Atg5 by the action of Atg7 and Atg10 after 

which Atg16 multimerizes to form the Atg12-Atg5-Atg16 complex. Next, Atg4 cleaves soluble 

microtubule-associated protein light chain 3-I (LC3-I) to form the membrane-bound LC3-II [ 

35]. Both of these two ubiquitin-like systems are required for elongation and closure of the 

phagophore. During maturation and fusion, autophagosomes will first fuse with endosomes then 

with lysosomes. Any mutation or loss of proteins important for formation of multivesicular 

bodies (MVBs) can lead to inhibition of maturation of autophagosomes [10]. Some genes 

involved in this step include Ultraviolet Radiation Resistance-associated Gene (UVRAG), a 

Beclin 1 interacting protein that recruits the fusion machinery on the autophagosomes.  Another 

Beclin 1 interacting protein, Rubicon, also functions in the maturation of autophagosomes where 

it is thought to be a part of a distinct Beclin 1 complex containing hVps34, hVps15, and UVRAG 

that suppresses autophagosome maturation [18]. Working together, these steps complete the 

formation of the autolysosome and its lysis, that releases proteins and amino acids that can be 

used as an energy source during times of low energy availability or increased energy demand 

(stress) for the organism (Figure 1).  
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Figure 1: The Autophagy pathways and its physiological role.                                                  
Both the metabolic and exogenous stress factors are among the crucial factors that do activate the 
induction of autophagy, the process which involves the sequestration of cytoplasmic content. 
During the process of autophagy, both fatty acid and amino acids components of cytoplasm are 
re-synthesized into energy in form of ATP and proteins respectively, to enhance cell survival. 
Also, the removal of harmful proteins and organelles to promote the survival of essential long 
lived cells is orchestrated through the process of autophagy. Apoptosis of cancerous cell is 
sometimes warranted or enhanced by the process of autophagy to inhibit tumorigenesis. This 
figure was adapted from; [43].            

                                                   
            
2.2.0 Leptin system 

 
2.2.1 Leptin genes and proteins 

Friedman and co-workers previously cloned and characterized ob gene (leptin) in rodent and 

humans [25]. The leptin gene consists of three exons with the two coding regions that are 
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separated by two introns. It was assigned to mouse chromosome 6 [26] and human chromosome 

7q31.3 [26]. The name leptin (coined from the Greek word “leptos” meaning lean) contains 146 

amino acids (AA) and a 21 AA signal peptide cleaved during translocation into the microsome. 

The 16-kDa mature leptin circulates in serum both as a free and as a protein-bound entity.  The 

main site of ob gene expression and leptin secretion is mammalian white adipocytes. Its 

expression and secretion occur exclusively within the differentiated adipocytes [11, 26, 27]. 

However, in other organism, leptin is also produced in several cell types including; osteoblasts 

[28], and pituitary [27], brain [11], gastric cells in the walls of the stomach [13], follicular papilla 

cells of hair follicles [11, 26], placenta [27, 29], and skeletal muscle [11]. Additionally, leptin 

expression has been demonstrated in the ovary (granulose and theca cells, corpora lutea, and 

interstitial gland) [29] and in the mammary gland [27]. There is high homology of leptin in 

mammalian species. Furthermore, chicken leptin cDNA has been characterized by this groups, 

but not by others, but still a matter of controversies since 1998.  The chicken leptin, which has 

145 amino acids is expressed not only in adipose tissue, but also in liver [30]. It contains, in 

contrast to mammalian leptin, an unpaired cystein at position 3 after the signal peptide [30]. 

 
2.2.2 Leptin Receptor 

The leptin receptor was first identified in mouse choroids plexus through expression cloning 

techniques and then in human using infant total brain library [31]. It is a single transmembrane-

spanning receptor (Figure 2) and a member of the cytokine receptor superfamily that includes the 

gp130 signal-transducing component of the receptors for interleukin 6 (IL-6), granulocyte colony 

stimulating factor (G-CSF), and leukemia-inhibitory factor (LIF) [25]. The Ob-R extracellular 

domain consists of 816 AA and is followed by a 23-AA transmembrane domain and intracellular 

domain which varies in length from 30 to 303 AA, depending on alternate splicing. The alternate 
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splicing of the Ob-R gene generates multiple variants of leptin receptor mRNA that encode at 

least six Ob-R (Ob-Ra,b,c,d,e & f) isoforms [25,32] . All these isoforms differ in the length of 

their intracellular domains, but they share the same or common extracellular and (excluding ob-

Re) trans-membrane domains [32]. 

Ob-R is primarily expressed in the hypothalamus. It is particularly prominent in areas important 

in regulation of energy balance such as arcuate (ARC) and paraventricular nuclei (PVN) [25, 32]. 

Expression of Ob-R was also detected at lower levels in a large number of peripheral tissues 

including skeletal muscle, heart, adrenals, kidney, adipose tissue, liver, pancreatic β-cells and 

immune cells [27]. The short isoforms are expressed at higher levels in a variety of tissues and 

were elegantly reviewed by Friedman and Halaas [23]. The ubiquitous expression of leptin and 

its related receptors indicates that leptin may have several physiological roles [23].  
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Figure 2: Figure 2 Leptin receptor isoforms. There are at least six different isoforms of the 
leptin receptor, Ob-Ra, b, c, d, e, and f, they all share identical extracellular domains but they 
differ at their intracellular domain. They have transmembrane domains, with the exception of the 
ObRe. The Box 1 and Box 2 motifs that are encoded only by ObRb enable it to activate JAK-
STAT pathway of signal transduction. Also, the C-terminus of Ob-Rb has three conserved 
tyrosine, which include Y985, Y1077, and Y1138. Y1138 functions as a docking site for STAT3. 
The ob-Re lacks intra-membrane domains, and it is the soluble circulating leptin-binding protein.  
This figure was adapted from; [44]. 

2.2.3 Physiological roles of leptin           

It is well established that leptin has potent food intake and body weight reducing effects in 

mammals [30] and this effect is mediated via the activation of Proopiomelanocortin and cocaine- 

and amphetamine-regulated transcript (POMC/CART) and inhibition of Neuropeptide Y and 

Agouti related peptide (NPY/AgRP) neurons [25]. The molecular basis for stimulation of POMC 

gene expression likely involves Janus kinase and signal transducer and activator of transcription 

(JAK-STAT) activation [30, 42], while the phosphoinositol 3-kinase (PI3K) pathway may play a 

specific role in the repression of NPY and AgRP gene expression by leptin [25, 31]. Leptin has 

been reported to interact also with other hypothalamic peptides including orexin, Melanocortin 
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receptor (MCR), Corticotropin releasing hormone (CRH), Glucagon-like peptide-1(GLP-1), 

ghrelin, Cholecytokinin (CCK), bombesin to regulate feeding behavior [5]. Leptin also increases 

energy expenditure [15], induces lipolysis, reduces lipogenesis [23, 32,], regulates reproduction, 

immunity, and bone mass [23, 32, 33]. 

 

2.4 Leptin signaling pathways 

The biological effect of leptin is primarily mediated through its receptors [16, 32]. The longest 

intracellular domain of ob-Rb upon its ligand binding, activates the protein tyrosine kinase that 

belongs to the Janus kinase (JAK) family [32, 33]. When activated, JAKs phosphorylate signal 

transducers and activators of transcription (STAT), and the phosphorylated STAT proteins 

translocate to the nucleus where they regulate the expression of target genes [32], (figure 3). 

Also, the Ob-Rb receptor is able to undergo signal transduction through mitogen activated 

protein kinase (MAPK) pathway [32]. The short isoforms of leptin receptor (ob-Ra, ob-Rc, ob-

Rd, and ob-Rf) are unable to activate JAK-STAT pathway, they may cause signal transduction 

through other mechanism such as MAPK pathway and phosphatidylinositol 3-kinase (Pl3K) 

pathways [32, 33]. These short isoforms of leptin receptors are expressed in many peripheral 

tissues. pathways [32, 33]. These short isoforms of leptin receptors are expressed in many 

peripheral tissues. The ob-Re lacks intra-membrane domains, and is the soluble circulating 

leptin-binding protein. 
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Figure 3: The Leptin, JAK-STAT, and ERK Pathways 
Here, it is clear that all the pathways are induced and dependent on JAK2 signaling pathway. 
When activated, JAKs phosphorylate STAT, then the phosphorylated STAT proteins translocate 
to the nucleus where they regulate the expression of target genes. It is also shown that the 
activation of ObRb enhances the phosphorylation of  Tyr 985 by Jak2 forming the units that can 
further phosphorylate SHP-2. The phosphorylated SHP-2 can then modulate GRB-2 which 
eventually activates the ERK. The activated ERK then facilitates the transcription of egr-1 and c-
fos This figure was adapted from; [42]. 
 

2.2.5 Interaction of leptin and autophagy in the regulation of energy homeostasis 

In vitro treatment with recombinant leptin inhibited autophagy in human CD4(+)CD25(-) 

conventional (T conv) T cells and this effect was mediated via mTOR activation [14,21]. 

However, leptin knockdown attenuated hypoxic-preconditioning induced autophagy in bone 

marrow derived mesenchymal stem cells [14, 34], indicating that the effect of leptin on 

autophagy might be tissue and cell-specific. Enteral leptin administration has also been shown to 
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inhibit intestinal autophagy in piglets [14, 35]. In heart, however, leptin promoted 

autophagosome formation as evidenced by increased LC3-II, beclin 1 and Atg5 expression [13, 

14]. Malik and co-workers reported in 2011 [36], that peripheral administration of recombinant 

leptin induced autophagy in peripheral tissues including skeletal muscle, liver and heart. 

Moreover, leptin stimulated autophagy in cultured human and mouse cell lines and this effect 

was likely mediated through the activation of AMPK and inhibition of mTOR [11, 14, 16]. More 

so, in 2012, three recent studies have implicated Central nervous system (CNS) autophagy in the 

regulation of energy homeostasis. Conditional specific depletion of Atg7 in POMC neurons 

resulted in higher body weight, hyperphagia, impaired glucose tolerance, increased adiposity and 

leptin resistance [37]. Moreover, deficient Atg7 in hypothalamic POMC neurons impaired leptin 

induced signal transducer and activator of transcription 3, STAT3 activation. In line with these 

data, Malhotra and coworkers [38], recently showed that upon high-fat diet consumption, mice 

lacking Atg12 in POMC positive neurons exhibit accelerated weight gain, adiposity and glucose 

intolerance which is associated with increased food intake and decreased leptin sensitivity. Mice 

lacking Atg5 in POMC neurons do not exhibit these phenotypes observed in Atg7 and Atg12 

deficient mice [35]. These results indicated that autophagy-related genes might exert different 

physiological function based on tissue or cell type. Furthermore, it has been proposed that 

autophagosome-mediated form of secretion in POMC neurons controls energy homeostasis by 

regulating alpha-melanocortin stimulating hormone (α-MSH) production [12]. Kaushik and his 

group [39] also demonstrated a role for autophagy in hypothalamic agouti-related peptide 

(AgRP) neurons in the regulation of food intake and energy balance. Activation of hypothalamic 

mTOR has been shown to regulate feeding behavior and energy homeostasis [14, 27, 36] and 

mTOR pathway has been shown to downregulate leptin and upregulate autophagy [14, 27, 40]. 
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Leptin, mTOR and autophagy have all been reported to be regulated by starvation and nutritional 

state [40]. 

 

2.3 OBJECTIVES 

Since leptin is anorexigenic in both mammalian and avian species, we hypothesized that leptin 

may regulate autophagy in a tissue-specific manner in broiler. Therefore, the aim of the present 

study is to determine the effect of  a single central administration of recombinant chicken and 

recombinant ovine leptin on the expression of autophagy-related gene in three metabolic 

important tissues; (i) brain (main site for regulation of feed intake), (ii) muscle (main site for 

thermogenesis), and (iii) liver (main site for lipogenesis). 

Our lab has recently characterized autophagy-related genes in chickens and quail and showed a 

genotype and gender dependent expression [41]. Additionally, autophagy pathway exhibited 

differential expression between a stress-sensitive and stress resistant quail lines suggesting its 

potential role in stress response in avian species [41]. The molecular mechanism-based 

understanding of leptin-autophagy interaction will provide new insights in chicken response to 

stress and will likely contribute to a framework whereby new effective nutritional and/ or genetic 

strategies could be developed. 
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CHAPTER 3 

 3.1 MATERIALS AND METHODS 
 
In Vivo Study 

The studies were approved by the University of Arkansas Institutional Animal Care and Use 

Committee (Protocol #13039). 

3.1.1 Animal, diet, Leptin treatment and experimental design  

This work was performed in collaboration with Dr. Mark Cline (Virginia Tech) and Dr. Ohkubo 

(Ibaraki University, Japan). One week-old Hubbard x Cobb 500 chicks were assigned into three 

body weight matched groups and subjected to two treatments. One group was 

intracerebroventricularly (ICV) injected with recombinant Chicken Leptin and another group 

with recombinant Ovine Leptin (625 pmol, 10 µL) diluted in artificial cerebrospinal fluid 

(CSF)(n=10). The control group (n=10) received ICV injection of CSF. Feed intake was 

recorded at 30, 60, and 180 min after injection. At the end of the experiment, the birds were 

euthanized, the samples (hypothalamus, muscle and liver) were collected, snap frozen in liquid 

nitrogen and kept at -80C until use. 

 

3.1.2 In vitro Study 

The quail myoblast (Qm7), Chicken embryo liver cells (Celi), Human brain cells (SHSY5Y), and 

Chinese Hamster Ovary cells (CHO) were cultured in appropriate media. At 80-90% confluence, 

the complete medium was removed in each case, and replaced with serum deprived media 

overnight (fasting). Thereafter, QM7 cells and Celi were treated separately with recombinant 

chicken leptin and ovine leptin for 24 hr, each treatment having 2 replicates. The untreated cells 

were used as control. However, The cultured human brain cells (SHSY5Y) and CHO cells were 
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also treated with recombinant chicken leptin and ovine leptin, but on time dependent manner, at 

time variation of:  0, 0.25, 0.5, 1, 4, and 24hrs, respectively.  

   

3.1.3 RNA Extraction 

Total RNA was isolated from broilers tissues (hypothalamus and muscle) and avian cell lines 

using Trizol (Life technologies, Catshed, CA) according to manufacturer’s recommendation. 

Briefly, 1 mL of Trizol was added to 1.5ml tube that already contained the beads (Next Advance) 

and tissue samples , then chloroform was added, and then centrifuged (12000 rpm , 15min,  40 C ) 

, and the upper phase was carefully removed, then isopropanol was added and then centrifuged 

(12000 rpm, 10min, 40 C ), and then DEPC-EtOH was added to supernatant collected, and then 

centrifuged (9500 rpm, 5 min,  40 C ) to get the RNA pellet. The RNA was suspended in 

appropriate volume of DEPC-H2O. The RNA quantity and integrity were determined at 260/280 

using Synergy HT multi-mode microplate reader (BioTek) and by electrophoresis. 

 

3.1.4 Reverse Transcription and real time Quantitative PCR (qPCR)  

1 ul of otal RNA, 15 ul of ultra pure water (Eup H2O) and 4ul of cDNA SuperMix (5X) [Quanta] 

(Biosciences) were added into 0.5 tubes in order to make cDNA. The cDNA were then subjected 

to qPCR using Sybergreen and Chicken Atg specific primers (see Table1) [41]. The qPCR was 

run using Applied Biosystems 7500 machine (Life Technologies). The relative expressions of 

target genes were determined by the 2–ΔΔCt method [1].  
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Table1: The Real-Time quantitative PCR Primers’ sequences. This figure is adapted from; [2] 

 

3.1.5 Western Blotting.  

Tissues (hypothalamus and muscle) were homogenized in lysis buffer [10 mM Tris base (pH 

7.4), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 0.5% Nonidet P-40],  

  phosphatase inhibitors [5ul NaF, 5ul NavO3, 5ul PMSF(200Mm)] and Protease Inhibitors [ 1 ul 

Leupeptin, 1 ul Aprotinin, 1ul Pepstain ] (Roche)]. Protein concentrations were determined using 

a Bradford assay kit (Bio-Rad) with BSA as a standard. Proteins (35-100 μg) were run on Bis-

Tris gels (Invitrogen) and then transferred to Immun-Blot PVDF membranes (Bio-Rad). The 

transferred membranes were thereafter blocked for 1 h at room temperature and incubated at 4 

°C overnight with antibodies against Atg3, 5, 7, 12, Phospho STAT3, T-STAT3, Phospho and 

Total STAT6, Beclin1, Phospho and Total mTOR, Raptor, p-AMPKalpha1, LAMP2, Rab7, ObR 

(all from Cell Signaling Technology; 1:1,000). Protein loading was assessed using an anti-B-
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Actin (1:1,000; Cell Signaling) or anti-GAPDH antibody (1:1,000; Santa Cruz). The secondary 

antibodies were used (Anti-rabbit [Cell Signaling] and Anti-Goat [Santa Cruz] 1:5,000) for 1 h at 

room temperature.  Finally, the signal was visualized by enhanced chemiluminescence (ECL 

plus) and captured by FluorChem Multi Fluor System (Protein Simple). Image Acquisition and 

Analysis were performed by Alpha View software (Protein Simple).  

 

3.1.6 Immunofluorescence  

Immunofluorescence was performed as previously described (Dridi et al, 2012 [3]. Briefly, QM7 

and CHO cells were shown to about 70% confluence in chamber slides (LabTek). After 

treatment, as mentioned above, cells were fixed in methanol for 10 min at −20 °C. Cells were 

blocked with Protein Block Serum-Free (Dako) and incubated with LC3B (for QM7), Total-

STAT3 and ObR (CHO cells) (1:200; Cell Signaling Technology) overnight at 4 °C and 

visualized with Alexa Fluor 488-conjugated secondary antibodies. After DAPI counterstaining 

slides were coverslipped in Vectashield (Vector Laboratories). Images were obtained using the 

Leica SP-5 or Zeiss Axio Observer Z1 microscopes. 

 

3.1.7 Statistical analysis  

Data were analyzed by Student’s  t-test, using Graph Pad Prism software.  Significance was set at 

P<0.05. Data are expressed as mean ± SEM. 
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3.2 RESULTS 

3.2.1 Intracerebroventricular administration of recombinant leptin inhibits feed intake in 

young broiler chicks 

 As shown in Figure 4A, ICV administration of recombinant chicken leptin significantly inhibits 

feed intake in young broiler chicks 30 minutes after the injection. Feed intake remained 

numerically lower in leptin treated group compared to placebo-treated groups after 1 and 3h, but 

the difference was not statistically significant. The same effect was observed with recombinant 

ovine leptin (Fig 4B) 

 

  

A.                                                                            B.                                    

 

Figure 4: Recombinant leptin inhibits feed intake in young broiler chicks. (A) Chicken leptin, (B) 
Ovine leptin. Data are mean ± SEM (n=10). ⃰ p<0.05 
 

 3.2.2 ICV leptin administration upregulates the hypothalamic leptin receptors gene expression 

in broiler chicks  

As shown in Figure 5 A and B, ICV administration of recombinant chicken or ovine leptin 

significantly upregulates the expression of hypothalamic leptin receptor in young broiler chicks 

(p<0.05).   
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A.                                                                     B.  

 

 

Figure 5: Intracerebroventricular injection of recombinant Chicken leptin (A) or Ovine 
leptin (B) upregulates leptin receptor (Ob-R) genes expression in the hypothalamus of 
young broilers chicks. Data are mean ± SEM (n=10). ⃰ p<0.05. 

 

3.2.3 ICV administration of recombinant leptin downregulates autophagy related genes in 

broiler chicks’ hypothalamus 

The result shown in Fig 6 A shows that recobinant chicken leptin downregulates most of the 

autophagy related genes (Atg), including Atg3, 2b, 12, 13, Lamb2, and Rab7 (p<0.05). Ovine 

leptin had the same effect on broiler chick hypothalamus (Figure 6B). 
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A.                                                                         C.  

.   

       B.                                                                          D. 

 

Figure .6: Recombinant leptin downregulates autophagy related genes and proteins in 
broiler chicks’s hypothalamus tissues. Chicken leptin (A & C). Data are mean ± SEM 
(n=10). ⃰ p<0.05. Ovine leptin (B & D).    
 
Also, the results for protein analysis show that chicken leptin and ovine leptin administrations 

down-regulated LC3B and ATG3 proteins respectively in chicken hypothalamus tissues (Fig 6 C 

& D)   

  

3.2.4 ICV administration of recombinant leptin alters autophagy related genes in broiler 

chicks’ skeletal muscle tissue 

As shown in Figure 7, the ICV administration of recombinant Ovine leptin downregulated Atg3, 

4a, 7, 9, 10, 12, 13,14 and  beclin1(p<0.05). Interestingly, there was upregulation of leptin 
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receptor (ObR). 

 

Figure 7:  Recombinant Ovine leptin down regulates autophagy related genes in chicken muscle. 
Data are mean ± SEM (n=10). ⃰ p<0.05  
 

3.2.5 Leptin treatment regulates Autophagy related genes in quail myoblast (Qm7 cells)  

 The results as shown in figure 8A and B reveal that the recombinant chicken and ovine leptin 

downregulated the expression of autophagy related genes in QM7 compared to untreated cells. In 

addition, leptin treatment alters the expression of AMPK (energy sensor) and mTOR (nutrient 

sensor).  

Interestingly, STAT3 was down-regulated in both treatments compared to control, the regulation 

of which was statistically significant (p<0.05) in ovine leptin treatment. Similarly, there was 

downregulation of STAT6 in both treatments, but this was statistically (p<0.05) significant in 

chicken leptin treatment(p<0.05).  
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    A.                                                                   C.  

 

B.                                                                                D. 

 

Figure 8: Recombinant Chicken leptin and Ovine leptin regulated autophagy related genes and 
proteins in quail myoblast (Qm7cells) respectively. Chicken leptin (A), Ovine leptin (B). Data 
are mean ± SEM (n=4). ⃰ p<0.05. Western blot (C) and, Immunofluorescence (D) 
 

The results of protein analysis as shown in figure 2.8C shows that Atg3, 5, Beclin, LC3A and 

Phospho-AMPKalpha1 proteins(energy sensor) were more induced in both treatment group 
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compared to control.  However, there was reduction in ULK1 protein level in both treatment 

groups compared to control.  

  

3.2.6 Autophagy related gene expression in fasted Qm7 cells. 

 In other to verify and validate beyond any doubt on the effect of both chicken leptin and ovine 

leptin on autophagy in chicken, the real time qPCR was carried out to examine the expression of 

few autophagy related genes, aiming to see if fasting (treated with medium that lacks bovine 

serum) alone will induce autophagy, particularly in the same manner as leptin treatment). The 

results (Figure 9) obtained showed that there was no significant effect (p>0.05) 

 

Figure 9: Gene expression of Autophagy related genes in fasted Qm7 cells. Data are mean ± 
SEM (n=4). ⃰ p<0.05   
 
                           
3.2.7 Recombinant leptin administration regulates Autophagy related gene expressions in 

CELi cells  

As shown in figure 10A and C, chicken leptin administration downregulated the expression of 

Atg3, 7, 9, 10, 12, 13, 14, 16L, Beclin1, AMPK-gama1, mTOR, LC3A and STAT6.. However, 

Atg2B, AMPK-beta1, LC3B, STAT1, STAT3, and STAT5 were upregulated by chicken leptin 
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administration. Also, ovine leptin administration downregulated Atg2B, Atg3, Atg7, 9, 10, 12, 

13, 14, 16L, Beclin1, AMPK-beta1, AMPKgama1, and mTOR.  But interestingly, LC3A, LC3A, 

STAT1, STAT3, STAT5, and STAT6 were upregulated by ovine leptin administration. Also, the 

results shown in Figure 11 (B&D) show that regulation of Atg12, 13, 14, AMPKgama1, LC3B 

and STAT3 by Ovine leptin treatment were statistically significant(p<0.05).      
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            A.                                                          B. 

 

 

C.                                                                              D.      

                                                               

Figure 10: Leptin administration regulates Autophagy related genes expressions in CELi cells. 
Data are mean ± SEM (n=4). ⃰ p<0.05. 
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3.2.8 Leptin treatments alter Atg protein in SHSY5Y 

Figure 11 (A&B) shows that the regulation of LC3A by Ovine leptin treatment on SHSY5Y cells 

seems to be time dependent, whereas, the regulation of Beclin1 was not dependent on time 

course. 

 

A. 

 

B. 

 

Figure 11: Leptin treatments alter Atg protein in SHSY5Y. (A&B Ovine leptin) 

 

3.2.9 Leptin administration alters Autophagy related proteins in transfected CHO Cells  

Figure 12A and B show the successful transfection of CHO cells with STAT3 and chicken leptin 

receptor (cObR). The results shown in Figure 12C and D clearly show that autophagy was 

induced in transfected CHO cells. The induction of LC3A and B as shown in Figure 12D were 

time dependent. 
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A.                                                                    C. 

 

 B.                                                                           D.  

                                            

Figure 12: Recombinant leptin administration induced autophagy related proteins intransfected 
CHO cells  
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3.3 DISCUSSION 

The goal of this study was to determine the effect of recombinant chicken and ovine leptin on 

autophagy pathway in chicken. The aim of the study was to examine the potency or 

physiological activity of chicken leptin and its receptor and the mechanism by which leptin 

transduces its signals in broiler chicks. Treatment with chicken leptin and ovine leptin (both 

having the same potency) [4] will enable us to carry out such investigation of the effects of 

recombinant chicken leptin on autophagy in chicken. In the chicken leptin treated Qm7 cells, the 

downregulation of most Atg genes, and upregulation of AMPKbeta1&2 (energy sensors) were 

similar to the report by Russell in et al [5].   From this data, it appears that leptin treatment had 

reduced nutrient utilization, but such reduction in nutrient utilization seems to have negative 

effect on autophagy induction in Qm7 cell lines. The downregulation of STAT6 and STAT3 in 

chicken and ovine leptin group were indicative of potency of leptin to downregulate autophagy 

in chicken which is similar to previous report by Beltowski [6], and also, this result is in support 

of experiment by Villanueva and Myers [7], who published that Leptin produces various 

biological responses via activation of JAK/STAT pathway. 

 It is noteworthy that mTOR genes were downregulated in Qm7 cells that were treated with both 

chicken leptin and ovine leptin, as well in the fasted Qm7 cells. This result reflected here that 

leptin induced autophagy in Qm7 cells through the downregulation of  mTOR. 

  Contrastingly to the result from leptin treated Qm7 cells, the result from those Qm7 cells that 

were fasted alone, (but no further treatment with leptin), indicated that there was no significant 

difference. The upregulation of AMPK-β1 gene as well as induction of phospo-AMPK-α1 

protein are clear evidences that nutrient utilization was reduced by chicken leptin treatment, still 

supporting the fact that chicken leptin potentially reduces nutrient utilization in Qm7 cells.  
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However, ULK1, one of the autophagy initiator, was downregulated in both treatments groups 

compared to control. These findings provide a strong proof about the potency of  leptin to 

regulate autophagy as previously reported by Malik SA et al in 2011, which claimed that 

recombinant human leptin induced autophagy in HeLa cells [8]. This result also is very similar to 

the report from Malik et al 2011 who stated that LC3 is one of the molecular marker for 

monitoring the autophagic flux. 

 Interestingly, from the in vivo experiment with one week old broiler chicks that were injected 

with chicken and ovine leptin, there were remarkable effects of both chicken and ovine leptin on 

feed intake of the chicks. There was reduction in feed intake , (which is similar to previous report 

by Cassy S. et al, 2004 ) [9],  after 0.5,1 and 3 hours of intra-cerebroventricular  injection of 

leptin, howbeit, the reduction in feed intake was statistically significant after 30 minutes of 

treatment (injection), these may suggest that leptin reduces feed intake in time specific manner . 

More so, the result obtained from the real time to determine the mRNA level of lepin receptors 

on the hypothalamus of those broilers injected with chicken leptin and those with ovine leptin, 

these results showed that both chicken leptin and ovine leptin receptors were upregulated, this is 

a clear proof of  bio-potency of chicken leptin and its receptor . 

However, having confirmed the physiologic effect (reduced feed intake) of leptin on broiler 

chicks, we further proceeded to examine the physiological changes at molecular level on the 

chicken hypothalamus (tissues), and the results from real time PCR to examine leptin role on 

autophagy in chicken hypothalamus showed that most autophagy related genes (Atg) were 

downregulated in the hypothalamus. Also, this result also indicated that both chicken leptin and 

ovine leptin have the same affinity for chicken leptin receptor (cObR), and this is similar to 

previous report by Dridi S et al, 2000 [4]. The result from western blot performed on 
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hypothalamus tissues from chicken leptin treatments indicated that LC3B (which is a molecular 

marker for autophagy) was downregulated compared to control group. In the same trend, Atg3 

protein (one of the principal Atg genes/proteins) was downregulated in ovine leptin treated group 

compared to control. These both consolidate those results from real time quantitative PCR from 

in vitro and in vivo studies, and the results obviously is different from the previous report from 

Malik SA et al 2011, who reported that intraperitoneal leptin injections in mice upregulated 

autophagy in several peripheral tissues (muscle, heart and liver) [8]. The differences in this 

results compared to those reported by Malik SA , 2011, could be due to evolutionary differences 

between mammals and avian species. 

Furthermore, examining the effect of Ovine leptin on autophagy in chicken muscle (Figure 7) 

reveals that most of the Atg genes were down-regulated in the same trend as in In vitro studies      

and chicken hypothalamus. The time specific downstream of LC3A/I and upstream of LC3B/II 

(i.e, as LC3I was decreasing, LC3II was increasing) as seen in transfected CHO cells (fig 12 D) 

which clearly reveals the mechanism through which recombinant chicken leptin probably 

regulate autophagy in avians species, is obviously similar to the report of Tamotsu Yoshimorim, 

et al, 2010 who reported that conversion of LC3 1 to LC3 2 is one of the principal method to 

monitor autophagic flux [10]. 

And more excitingly, the energy sensors AMPKβ1 & ϒ1 genes were upregulated. The 

upregulation of these isoforms of AMPK were indicative of the nutrient depletion.  ObR was also 

upregulated in chicken skeletal muscle, this also is an evidence of the biopotency of chicken 

leptin whose administration activates synthesis of its Receptor.  

In the same manner, the downregulation of Atg13, Beclin1, and AMPKbeta1 as well as 

upregulation of LC3B, and STAT3 in CELI cells that are treated with chicken further 
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strengthened evidences that validate the potency of chicken leptin in autophagy induction in 

chicken. Also, the time dependent regulation of LC3A protein was observed in the result of 

analysis of Autophagy related protein in SHSY5Y cells. Emphatically, the results obtained from 

this study clearly reveal the equipotency of both chicken and ovine leptin in signal transduction, 

and also, it is clearly shown that leptin receptor equally recognizes both.  

In summary, recombinant chicken leptin reduced nutrient utilization in Qm7, CHO cells, 

SHSY5Y, and CELi cells, and reduced feed intake in the in vivo experiment performed on 

broilers chicks, and this was evidenced by the activation of some isoforms of AMPK genes and 

also induction of phospho-AMPKα1 protein. The downregulation of LC3A genes in CELi and in 

CHO cells treated with recombinant Chicken and Ovine leptin respectively and that of LC3B 

protein in the broiler chicks hypothalamus were sufficient evidences that chicken leptin 

downregulates autophagy in avian species. The upregulation of STAT1 and STAT5 in chicken 

muscle, and STAT3 in CELI leptin treatment further shed light on the suggestive pathway 

whereby leptin transduces its signal to regulate autophagy in chicken [11]. However, the 

pathway by which leptin precisely induced autophagy in chicken warrant further investigation.  

In conclusion, since chicken leptin downregulated most of the Atg genes and proteins in In vivo 

and In vitro studies, it is probably the fact that exogenous administration of recombinant Chicken 

leptin  is not adequately efficient  in upregulating autophagy in avian species, the reason which 

may be partly due to evolutionary differences of avian species compared to mammalian, or other 

animal species, or due to the phylogenetic changes that resulted from the genetic selection of the 

current breeds of domestic birds. However, since few Autophagy related genes and proteins were 

shown to be upregulated, the recombinant chicken leptin may be used as the molecular marker 

for regulation of autophagy in chicken.    
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4. CONCLUSION 

The results from both In vitro and In vivo studies demonstrated that Recombinant chicken leptin 

administration obviously reduced nutrient utilization and feed intake respectively (as evidenced 

by upregulation of the energy sensors AMPKβ1 & ϒ1 genes) , and subsequently downregulated 

autophagy related genes and proteins in avian species. The valid proof to these findings were 

demonstrated by the downregulations of LC3A genes in CELi and in CHO cells treated with 

recombinant Chicken and Ovine leptin respectively, as well as the downregulation of LC3B 

protein in the broiler chicks’ hypothalamus. The difference observed in the result for this study 

on avian species when compared to those previously reported in the mammalians, regarding 

leptin’s role on autophagy could be due to phylogenetic and evolutionary variations which were 

thought to be attributed to genetic selection of the current breeds of domestic birds. However, 

since some few autophagy related genes were also upregulated, the use of Recombinant chicken 

leptin as molecular marker for induction of autophagy in chickens could prove significant for 

further study that may contribute to a framework whereby new effective nutritional and/ or 

genetic strategies could be developed for poultry industries. 
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Abstract 

Autophagy or cellular self-digestion, a lysosomal degradation pathway that is conserved from 

yeast to human, plays a key role in recycling cellular constituents, including damaged organelles. 

It also plays a pivotal role in the adaptation of cells to a plethora of distinct stressors including 

starvation. Leptin is an adipocytokine that is mostly produced by white adipose cells in mammals 

and functions as a hormonal sensing mechanism to inhibit feed intake and increase energy 

expenditure. In this review, we will describe the autophagy and leptin systems and summarized 

recent advances regarding their interactions in the regulation of energy homeostasis. 

Key words: Leptin, autophagy, food intake, energy homeostasis, molecular mechanisms. 
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Introduction 

The hormone Leptin, also called obese hormone, is the central mediator in a negative feedback 

loop regulation of energy homeostasis. Mammalian adipocytes produce and secrete more leptin 

in bloodstream as fat storage increases [1] signalling the brain via leptin receptors [2-5] and 

modulating the feeding-related (an)orexgenic hypothalamic neuropeptide system to suppress 

appetite and increase energy expenditure [3-4]. Leptin gene and its related receptors are 

expressed in a wide range of tissues indicating various potential physiological functions. Leptin 

has been reported to play a key role in reproduction [6], immunity [5], bone mass [7], blood 

pressure [4], hematopoiesis [4], and lipid metabolism [3, 4].  

Hyperphagy, morbid obesity and diabetes were observed in rodents that were deficient in leptin 

(ob/ob mouse), or that lack certain isoform of leptin receptor (db/db mouse and fa/fa rat) [2, 4, 8, 

9]. Interestingly a dysfunctional autophagic activity has been observed in these obese models, 

suggesting a potential interaction between leptin and autophagy. 

Autophagy is a highly conserved cellular mechanism that is responsible for the degradation and 

recycling of damaged organelles. It is also considered as an alternative to apoptosis in 

programmed cell death. In recent years though autophagy has appeared to play critical roles in 

several cellular functions and physiological processes including reproduction, development [10] 

immunity [11], inflammation [11] neurodegenerative diseases [12], cardiovascular diseases [5], 

metabolic syndrome [13, 14], and energy homeostasis [15]. 

There are three major types of autophagy; micro-, macro-autophagy, and chaperone-mediated 

autophagy [16-18]. Micro- and macro-authophagy can selectively engulf large structures such as 

mitochondria and endoplasmic reticulum (referred to as mitophagy or reticulophagy, respectively 

[17, 18] or by non-selective mechanisms (e.g. bulk cytoplasm), whereas chaperone-mediated 
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autophagy degrades only soluble proteins [18]. Micro-autophagy refers to the sequestration of 

cytosolic components directly by lysosomes through invaginations in their limiting membrane. 

However, macro-autophagy that we will address in the present review refers to the sequestration 

of material within an autophagosome, a unique double membrane cytosolic vesicle. 

Autophagosomes fuse with late endosomes and lysosomes, promoting the delivery of organelles, 

aggregated proteins and cytoplasm to the luminal acidic degradative milieu that enables their 

breakdown into constituent molecular building blocks that can be recycled by the cell [19]. 

In recent years, interaction between leptin and autophagy has been a focus of research interest. 

After a brief description of leptin and autophagy systems, we will review here studies on the 

biological interaction between leptin and autophagy in the regulation of energy homeostasis. 
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Leptin system 

The ob (leptin) gene has been previously cloned and characterized in rodent and human by 

Friedman and co-workers [20]. It consists of three exons with the two coding regions separated 

by two introns. It was assigned to mouse chromosome 6 [21] and human chromosome 7q31.3 

[21]. The ob product, leptin (derived from the Greek word “leptos” meaning lean) contains 167 

amino acids (AA) and a 21 AA signal peptide cleaved during translocation into the microsome. 

The 16-kDa mature leptin circulates in serum both as a free and as a protein-bound entity.  

Mammalian white adipose tissue is the main site of ob gene expression and leptin secretion. 

Expression and secretion occur exclusively within the differentiated adipocytes [1, 22]. Leptin, 

however, is also produced in several cell types in other organs. In fact, it is produced by gastric 

cells in the walls of the stomach [23], in follicular papilla cells of hair follicles [1], in osteoblasts 

[7], in the placenta [6], in skeletal muscle [1], in the brain [1], and in the pituitary [22]. 

Additionally, leptin has been localized in the ovary (granulosa and theca cells, corpora lutea, and 

interstitial gland) [6] and in the mammary gland [22]. Intriguingly, leptin has been shown to 

particularly be expressed in the liver of several non-mammalian oviparous species such as 

chicken [24, 25], dunlin [26], thin-billed prions [24], fishes [26], amphibians [26] and reptiles 

[23]. 

Leptin exerts its function through its receptor Ob-R which is first identified in mouse choroids 

plexus by expression cloning techniques and then in human using infant total brain library [8]. It 

is a single transmembrane-spanning receptor and a member of the cytokine receptor superfamily 

that includes the gp130 signal-transducing component of the receptors for interleukin 6 (IL-6), 

granulocyte colony stimulating factor (G-CSF), and leukemia-inhibitory factor (LIF) [13]. The 

Ob-R extracellular domain consists of 816 AA and is followed by a 23-AA transmembrane 
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domain and intracellular domain which varies in length from 30 to 303 AA, depending on 

alternative splicing. The alternate splicing of the Ob-R gene generates multiple variants of leptin 

receptor mRNA that encode at least six Ob-R (Ob-Ra,b,c,d,e & f) isoforms [4, 5]. 

Ob-R is primarily expressed in the hypothalamus. It is particularly prominent in areas important 

in regulation of energy balance such as arcuate (ARC) and paraventricular (PVN) [4, 5]. 

Expression of Ob-R was also detected at lower levels in a large number of peripheral tissues 

including skeletal muscle, heart, adrenals, kidney, adipose tissue, liver, pancreatic β-cells and 

immune cells [22]. The short isoforms are expressed at higher levels in a variety of tissues and 

were elegantly reviewed by Friedman and Halaas [27]. The ubiquitous expression of leptin and 

its related receptors indicates that leptin may have several physiological roles.  

It is well established that leptin has potent food intake and body weight reducing effects in 

mammals [1, 5] and this effect is mediated via the activation of POMC/CART and inhibition of 

NPY/AgRP neurons [5]. The molecular basis for stimulation of POMC gene expression likely 

involves Janus kinase and signal transducer and activator of transcription (JAK-STAT) 

activation [5, 8], while the phosphoinositol 3-kinase (PI3K) pathway may play a specific role in 

the repression of NPY and AgRP gene expression by leptin [5, 8]. Leptin has been reported to 

interact also with other hypothalamic peptides including orexin, melanocortin receptors (MCR), 

corticotropin releasing factor (CRF), glucagon-like peptide (GLP-1), ghrelin, cholecystokinin 

(CCK), and bombesin to regulate feeding behavior [1, 27]. Leptin also increases energy 

expenditure [2, 25, 27], induces lipolysis, reduces lipogenesis [27], regulates reproduction [6], 

immunity [22], and bone mass [7]. 
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Figure 1: Potential model of leptin-autophagy interaction in the regulation of energy 
homeostasis. 
 Leptin is secreted from adipocytes, binds to the extracellular domain of its Ob-Rb receptor 
dimmer and activates the JAK2 tyrosine kinase and STAT3. In ARC neurons that coexpress Ob-
Rb and POMC/CART, leptin increases POMC production via STAT3, which 17 generates an 
anorectic signal via α-MSH and MCR3/4. In ARC neurons that co-express Ob-Rb and 
NPY/AgRP, leptin inhibits AgRP production partly through STAT3 pathway, which disinhibits 
melanocortin signaling. Additionally, leptin can act through IRS-PI3K pathway. Leptin can alter 
autophagy directly via JAK-STAT, AMPK-mTOR or via other downstream signaling cascades 
that are not known yet. Whether autophagy alters the leptin expression in peripheral tissues 
directly or indirectly is unknown and warrant further investigations. AgRP, agouti-related 
peptide; AMPK, AMP-activated protein kinase; ARC, arcuate nucleus; JAK2, janus kinase 2; 
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mTOR, mechanistic target of rapamycin; Ob gene, obese gene; OB-R, leptin receptor; POMC, 
pro-opiomelanocortin 
 

Autophagy system   

Autophay has been described as a highly conserved self-eating process during which cells 

degrade and recycle their own components (cytosol and organelles) within the lysosomes [28]. 

The word autophagy was coined from Greek Word “auto” which means self, and “phagein”, 

meaning to eat. Autophagy, which is a unique morphological feature or process in a dyeing cell 

was often erroneously presumed to be a preceding pathway to cell death, but on the contrast, it 

has now been evidently and clearly clarified that, one of its major function is to fight the cell 

death and consequently keep it alive even when undergoing stressful and life-threatening 

conditions [29] 

Autophagy is induced upon nutrient depletion or starvation, thereby leading to the response of 

more than 30 autophagy-related genes (Atg) [30]. However, how Atg proteins are regulated is 

still under investigation, but it’s clear that all signals reporting on availability of carbon and 

nitrogen sources converge on the mTOR signaling pathway, and that, Atg proteins are 

downstream effectors of mTOR pathway [30, 31]  

There are three steps involved in formation of autphagosome, and the first is initiation, during 

which phagophore (outer mitochondrial membrane, plasma membrane, endoplasmic reticulum 

membrane, etc) undergo nucleation [19]. The second step undergoes elongation, cycling, 

expansion and closure, forming autophagosome [19]. The third and final step is referred to as 

maturation, which involves the advancement of autophagosome into amphiosome (fusion of 

autophagosome and endosome), which is acidic and hydrolytic vacuole. It is this hydrolytic 

vacoule that is ripe for degradation and recycling of nutrients [19]. 
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Under fed (normal nutrient-energy) state, the nutrient sensor mechanistic target of rapamycin 

(mTOR) is activated and in turn phosphorylates ULK1 and thereby sequestering the ULK1-

Atg13-FIP200 complex in an inactive state at the mTOR complex [32]. In contrast when 

nutrients are limited (e.g. during stress or starvation), the energy sensor AMPK is activated. 

AMPK activation inhibits mTOR activity leading to a reduced ULK1 phosphorylation and 

consequently releases the ULK1-Atg13-FIP200 complex from mTOR to the site of 

autophagosome formation and induction of autophagy. In the second step of autophagy, Beclin1 

forms a lipid kinase complex with Vps15, Vps34 and Atg14 that phosphorylates 

phosphatidylinositol (PI) to form inositol-3-phosphate (PI3P) and is essential for induction of 

autophagy [33]. Accumulation of PI3P in specific sub-domains of the ER increases membrane 

curvature at the site of autophagosome formation. The elongation step involves two ubiquitin-

like reactions of the pre-autophagosomal structures. First, the ubiquitin-like protein Atg12 is 

conjugated to Atg5 by the action of Atg7 and Atg10 after which Atg16 multimerizes to form the 

Atg12-Atg5-Atg16 complex. Next, Atg4 cleaves soluble microtubule-associated protein light 

chain 3-I (LC3-I) to form the membrane-bound LC3-II [34]. Both of these two ubiquitin-like 

systems are required for elongation and closure of the phagophore. During maturation and 

fusion, autophagosomes will first fuse with endosomes then with lysosomes. Any mutation or 

loss of proteins important for formation of multivesicular bodies (MVBs) can lead to inhibition 

of maturation of autophagosomes [28]. Some genes involved in this step include UVRAG, a 

Beclin 1 interacting protein that recruits the fusion machinery on the autophagosomes. Another 

Beclin 1 interacting protein, Rubicon, also functions in the maturation of autophagosomes where 

it is thought to be a part of a distinct Beclin 1 complex containing Vps34, Vps15, and UVRAG 

that suppresses autophagosome maturation [35]. Working together, these steps complete the 



 

48 
 

formation of the autolysosome and its lysis, that releases proteins and amino acids that can be 

used as an energy source during times of low energy availability or increased energy demand 

(stress) for the organism (Fig. 2). 

 

 

 

Figure 2: Steps of autophagosome formation  
 Autophagosome formation can be initiated via mTOR inhibition or AMPK activation during 
starvation or nutrient limitation. This results in the activation of ULK1 which in turn 
phosphorylates Atg13, Atg101 and FIP200. When autophagy is activated, Beclin 1 is liberated 
from Bcl-2 and is associated with Vps34, Vps15 and Atg14. ULK1 phosphorylates also 
AMBRA, a component of the PI3K CIII complex enabling it to relocate from the cytoskeleton to 
the isolation membrane. The activation of Vps34 generates PI3P which catalyzes the first of two 
types of ubiquitination-like reactions that regulates membrane elongation. Firstly, Atg5 and 
Atg12 are conjugated to each other in the presence of Atg7 and Atg10. Attachment of the Atg5-
Atg12-Atg16L1 complex on the isolation membrane induces the second complex to covalently 
conjugate PE to LC3 which facilitates in turn the closure of the isolation membrane. The 
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complex Atg9-Atg2-atg18 cycles between endosomes, the Golgi and the phagophore possibly 
carrying lipid components for membrane expansion. LC3-II is formed by LC3 conjugation to its 
lipid target PE and Atg4 removes LC3-II from the outer surface of newly formed 
autophagosome, and LC3 on the inner surface is degraded when the autophagosome fuses with 
lysosomes. Atg, autophagy-related genes; LC3, microtubuleassociated protein light chain; PE, 
phosphatidylethanolamine; PI3K, phosphatidylinositol 3 kinase; PIP3, phosphatidylinositol 3-
phosphate; ULK1, UNC51-like kinase 1. The figure was produced by the Pathway Studio 
software from Ariadne/Elsevier and is used by permission of the Rat Genome Database 
[47] 
 
 

Interaction between Leptin and autophagy in the regulation of energy homeostasis 

Since both leptin and autophagy are dysfunctional in obese models and both are implicated in the 

regulation of lipid metabolism, increasing studies investigating the leptin-autophagy interaction 

have received considerable attention over the last few years. Activation of hypothalamic mTOR 

has been shown to regulate feeding behavior and energy homeostasis [2, 25] and mTOR pathway 

has been shown to be a downstream effector of leptin and upstream regulator of autophagy [36]. 

Leptin, mTOR and autophagy are all regulated by starvation and nutritional state [36]. In 

addition, appetite, energy expenditure and metabolism are tightly regulated by the central 

nervous system (CNS) particularly the POMC and AgRP neurons in the hypothalamic arcuate 

nucleus. These neurons act as major negative (anorexigenic) and positive (orexigenic) regulators 

of feed intake.  

In 2012, three recent studies have implicated CNS autophagy in the regulation of energy 

homeostasis. Conditional specific depletion of Atg7 in POMC neurons resulted in higher body 

weight, hyperphagia, impaired glucose tolerance, increased adiposity and leptin resistance [37]. 

Moreover, deficient Atg7 in hypothalamic POMC neurons impaired leptin-induced signal 

transducer and activation of transcription 3 activation. In line with these data, Malhotra and co-

workers [38], recently showed that upon high-fat diet consumption mice lacking Atg12 in 

POMC-positive neurons exhibit accelerated weight gain, adiposity and glucose intolerance 
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which is associated with increased food intake and decreased leptin sensitivity. Interestingly, 

mice lacking Atg5 in POMC neurons do not exhibit these phenotypes observed in Atg7 and 

Atg12 deficient mice [38]. These results indicated that autophagy-related genes might exert 

different physiological function depending on tissue or cell type. Kaushik et al. [39] proposed 

that autophagosome-mediated form of secretion in POMC neurons controls energy homeostasis 

by regulating α-MSH production. The same group demonstrated a role for autophagy in 

hypothalamic agouti-related peptide (AgRP) neurons in the regulation of food intake and energy 

balance [40]. They showed that starvation-induced hypothalamic autophagy mobilizes neuron-

intrinsic lipids to generate endogenous free fatty acids which in turn regulate AgRP levels. 

Depletion of Atg7 in hypothalamic AgRP neurons promotes neuronal lipid accumulation, 

reduced AgRP levels, feed intake and adiposity [40]. 

Plasma leptin levels have been reported to be altered in Zmpste24-null mice, which show 

accelerated aging and exhibit an extensive basal activation of autophagy [41]. Mice with specific 

deletion of Atg7 in adipocytes exhibited markedly decreased plasma concentration of leptin [42]. 

In vitro treatment with recombinant leptin inhibited autophagy in human CD4(+)CD25(-) 

conventional (T conv) T cells and this effect was mediated via mTOR activation [43]. However, 

leptin knockdown attenuated hypoxic-preconditioning- induced autophagy in bone marrow-

derived mesenchymal stem cells [44] indicating that the effect of leptin on autophagy might be 

tissue- and cell-specific. Enteral leptin administration has also been shown to inhibit intestinal 

autophagy in piglets [28]. In heart, however, leptin promoted autophagosome formation as 

evidenced by increased LC3-II, beclin 1 and Atg5 expression [45]. Malik and co-workers 

reported that peripheral administration of recombinant leptin induced autophagy in peripheral 

tissues including skeletal muscle, liver and heart [2]. Moreover, leptin stimulated autophagy in 
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cultured human and mouse cell lines and this effect was likely mediated through the activation of 

AMPK and inhibition of mTOR.  

Together these elegant studies suggest that the interaction between the two masters; leptin-

autophagy underscore a novel link that plays a crucial role in the regulation of energy balance 

and many other cellular processes (Fig. 3). 
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                                            4.2 APPENDIX 2 

      
                                                                                                         Office of Research Compliance  
 

MEMORANDUM 
TO: Sami Dridi 
FROM: CraigN. Coon, Chairman 
Institutional Animal Care 
And Use Committee 
DATE: May 8, 2013 
SUBJECT: IACUC Protocol APPROVAL 
                   Expiration date: June 30, 2016 
The Institutional Animal Care and Use Committee (IACUC) has APPROVED Protocol #13039- 
"Regulation of energy homeostasis and fat metabolism in avian species". You may begin this 
study immediately. 
The IACUC encourages you to make sure that you are also in compliance with other UAF 
committees such as Biosafety, Toxic Substances and/or Radiation Safety if your project has 
components that fall under their purview. 
In granting its approval, the IACUC has approved only the protocol provided. Should there be any 
changes to the protocol during the research, please notify the IACUC in writing [via the Modification 
Request form] prior to initiating the changes. If the study period is expected to extend beyond 06-
30-2016 you must submit a new protocol. By policy the IACUC cannot approve a study for more 
than 3years at a time. 
The IACUC appreciates your cooperation in complying with University and Federal guidelines for 
research involving animal subjects. 
cnc/car 
cc: Animal Welfare Veterinarian 
Administration Building 210 • l University ol Arkansas • Faretteville, AR 72701-1201. 479-575-4572 
fax: 479-575-3846 • http://vpreJ.uark.edu/199.  
The University of Arkansas is an equal opportunity/ affirmative action institution 
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