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Abstract

In recent years, the development of novel techniques for genome sequenc-

ing and other high-throughput methods has enabled the identification and

quantification of individual cell components. Genome-scale metabolic mod-

els (GSMMs) have been developed for several organisms, including humans.

Under the framework of constraint-based modeling, these have provided

phenotype prediction methods, useful in fields as metabolic engineering and

biomedical research, spanning tasks as drug discovery, biomarker identifica-

tion and host-pathogen interactions, and targeting diseases such as cancer,

Alzheimer, or diabetes.

However, these methods have been limited, since the human body has a

diversity of cell types and tissues making the development of specific models

an imperative. Methods to provide phenotype simulation with the integration

of omics data and to automatically generate tissue-specific models, based on

generic human metabolic models and a plethora of omics data, have been

proposed. However, their results have not been adequately and critically

evaluated and compared. Moreover, their usage is restricted to users with

computer science skills, since they are not available in user-friendly software

platforms.

In this work, an open-source software framework for the integration of

GSMMs with omics data has been provided. It contains methods for the

processing and integration of data with models, for the reconstruction of

tissue-specific GSMMs and for phenotype simulation using omics data. A

user-friendly graphical interface is provided for non-programming users to be
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able to run these methods, while an open programming interface allows the

community to contribute.

The methods have also been validated and compared in representative case

studies, being studied the effects of data sources and algorithms in the final

results. In particular, glioblastoma has been selected as a more comprehensive

case study, where specific models were generated for a representative cell line

using different approaches. These have been compared and integrated into

a consensus model, which has been further used for analysis and to support

phenotype simulation. The results allow insights into cancer metabolism and

possible routes towards drug discovery.
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Resumo

Nos últimos anos, o desenvolvimento de novas técnicas de sequenciação

genómica e outros métodos experimentais de alto débito têm permitido a

identificação e quantificação de componentes celulares. Um conjunto de

Modelos Metabolicos à Escala Genomica (MMEG) têm sido desenvolvidos

para múltiplos organismos, incluindo os seres humanos. Recorrendo à mo-

delação com base em restrições, estes têm fornecido métodos de predição do

fenótipo, que têm sido úteis na área da engenharia metabolica e investigação

biomédica, abordando tarefas como a descoberta de farmacos, a identificação

de biomarcadores e a interação entre agentes patogénicos e hospedeiros, e

doenças como o cancro, Alzheimer ou diabetes.

Contudo, estes métodos têm a sua aplicação limitada, dado que o corpo

humano é constitúıdo por diversos tecidos e tipos de células, tornando essencial

o desenvolvimento de modelos especificos. Neste contexto, têm surgido

métodos que permitem a simulação do fenótipo com integração de dados

omicos, assim como a reconstrução de modelos espećıficos baseados num

modelo genérico e em conjuntos de dados omicos. Todavia, os seus resultados

não foram ainda comparados e avaliados sistematicamente. Além disso, a sua

utilização está restrita a utilizadores com competências computacionais, uma

vez que não existe nenhuma plataforma de software de fácil utilização.

Neste trabalho, foi desenvolvida uma plataforma de software de acesso

livre, que permite a integração de MMEGs com dados omicos. Esta plataforma

contém métodos para o precessamento e integração dos dados com os modelos,

reconstrução de MMEG para tecidos espećıficos e simulação do fénotipo

ix



utilizando dados omicos. Foi desenvolvida uma interface gráfica que permite

a utilização destes métodos por não programadores. A comunidade pode

ainda contribuir para a sua extensão através da interface disponibilizada.

Os métodos foram validados e comparados com outros estudos, sendo

analisados os efeitos que as fontes de dados e os algoritmos têm nos resultados

finais. Em particular, foi selecionado como caso de estudo mais abrangente

a reconstrução do modelos metabolicos, usando diferentes abordagens, para

uma linha celular do glioblastoma. Posteriormente, estes modelos foram

comparados e integrados num modelo consenso, que foi utilizado para análise

e simulação de fenótipos. Os resultados obtidos permitem aprofundar o

conhecimento do metabolismo do cancro e apontam posśıveis caminhos para

a descoberta de novos fármacos.
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Chapter 1

Introduction

In this brief introduction, the contextualization of this work

and the main objectives to pursue during this thesis are

presented. Also, a general overview of the next chapters is

provided.

1.1 Context and motivation

The mathematical modelling of cells has been traditionally achieved through

the use of dynamic models. However, since these require kinetic information

typically not available, their applicability is limited to small-scale systems

[1]. As an alternative, recent efforts allowed the development of genome-scale

metabolic models for several organisms (including humans). These have

been used to predict cellular metabolism under some simplifying assumptions,

namely considering the cell to be in steady-state, i.e. the concentrations of

all intracellular compounds are assumed to remain constant throughout time.

Together with the known stoichiometry and reversibility of the reactions, this

is used, in a constraint-based framework, to determine the possible values

for the reaction fluxes. Therefore, cellular behaviour can be predicted using

methods such as Flux Balance Analysis (FBA) [2]. Stoichiometric models

1



2 Introduction

and simulation methods have been thoroughly used in Metabolic Engineering

[3], but also in other applications related to biological discovery and data

analysis [4, 5, 6].

Recently, this effort has been extended with the development of four inde-

pendent human metabolic models [7, 8, 9, 10]. These models aim to represent

the metabolism of the most complex multicellular organisms, including a set

of biochemical reactions that may occur in distinct tissues or cell types. Over

the last years, they have already shown to be useful in biomedical applications,

such as in selecting drug targets for hypercholesterolemia [7], in predicting

metabolic markers for inborn errors of metabolism [11], and in the study of

the Warburg effect in cancer cells [12].

Despite the recent advances in the understanding of human metabolism

provided by these models, it is undeniable that the usefulness of these models

depends on the capability to address the phenotype simulation of different

cell types. This challenge was firstly addressed in [13], where the generic

model from [7] is integrated with gene expression and proteomics data to

predict the metabolic behaviour of human tissues, such as the liver or the

kidney. In the following years, several approaches [14, 15] have been proposed

for phenotype simulation with the integration of omics data to improve the

prediction quality. However, these methods only allow to characterize the

normal physiological behaviour of a cell type and can not be used to simulate

the effects of genetic or environmental perturbations, a feature essential for

biomedical research.

Therefore, there is a need for reconstructing tissue-specific metabolic

models that can be used to simulate the phenotype of distinct cell types in

several conditions. In 2010, a model-building algorithm [16] was proposed to

tackle this task, taking as its basis a generic model and heuristically pruning

it to derive a sub-model that is as consistent as possible with available

experimental data. This algorithm was used to construct a model for liver

cell, as a validation case study. A different approach, relying more on manual

curation, has been followed by Gille and co-workers [17] with the same final

result, a liver cell model, but showing more accurate predictions.
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The previous approach has been applied to the reconstruction of the

models of distinct types of human neurons [18], creating models of brain

energy metabolism relevant to the study of Alzheimer’s disease, and also in

studying the metabolic changes and the host-pathogen interactions occurring

during tuberculosis [19].

In spite of these results, the heuristic nature and limited accuracy of the

method from [16], together with the results from [17], show that there is the

need for more consistent methods for the (semi)-automatic reconstruction of

tissue-specific metabolic models, a task that will be targeted in this work.

Additional approaches have been proposed in the following years [9, 20,

21, 22, 23]. However, the comparison of the results is not trivial since each

approach uses specific data types as source data. Furthermore, each method

is evaluated with specific case studies and data sets in their own publications.

In this work, we propose the development of an integrated framework

for the reconstruction of tissue-specific metabolic models and phenotype

simulation integrating omics data. Moreover, a graphical interface will be

provided for the non-programmers users to be able to run these methods. In

the end, we will use this framework to reconstruct a genome-scale metabolic

model for one of the most aggressive brain cancers - the glioblastoma.

1.2 Research aims

In this context, the aim of this work will be to develop and systematically

evaluate methods and computational tools that allow the reconstruction

of genome-scale metabolic models for specific cell types/ tissues and their

application in biomedical research. Moreover, phenotype simulation with

omics integration methods will also be implemented. We will develop an

integrated computational platform that can be used by researchers to build

and validate models using distinct data and use those in different case studies.

As a case study, a glioblastoma metabolic model will be reconstructed using

the methods presented in the developed framework.
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This work will, therefore, encompass the following scientific/ technological

objectives:

• To devise a computational framework, including tools to load and

transform omics data, as well as to integrate them with metabolic

models. The data can be specific knowledge on metabolic systems

collected from literature (manually) or experimental data from relevant

phenotypes – gene expression, proteomics, metabolomics, fluxomics.

Several file formats must be supported, such as the Human Protein

Atlas files, XML files from the Human Metabolome Database and generic

text files (using comma/tab separators).

• To develop computational tools that will allow the reconstruction of

genome-scale metabolic models for specific cell types/ tissues and the

phenotype prediction using omics data to improve the results. These

algorithms will be supported by the infrastructure from the previous

step.

• To implement the methods from the previous steps within the context

of OptFlux [24], a metabolic engineering reference platform developed

within the group.

• To systematically evaluate and compare the previous methods using

different omics data as input, with the purpose of finding the best

combination of method and omics data to be used in other case studies.

• To reconstruct genome-scale metabolic models for cells with the glioblas-

toma phenotype, providing their comparison and analysis aiming to

uncover insights regarding their metabolism and possible drug discovery

efforts.
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1.3 Thesis outline

This manuscript has been structured in seven chapters addressing all of the

previously stated aims.

The thesis begins in the current chapter (Chapter 1) with a general

introduction, together with the statement of the proposed aims and an outline

of the manuscript’s structure.

Chapter 2 presents a thorough report of the state of the art of the set of

subjects involved in this project, namely: metabolic model reconstruction,

constraint based modelling of metabolic systems, phenotype simulation meth-

ods, context-specific model reconstruction approaches and applications of

such methods.

In Chapter 3, the software tools developed during this thesis are ex-

plained in detail. These tools are made available in a powerful, yet accessible

framework, for the community to use and extend.

Chapter 4 presents the evaluation of the phenotype simulation methods

using omics data to improve the predictions.

Chapter 5 presents a critical evaluation of methods for the reconstruction

of tissue-specific metabolic models and the consistency between several omics

data sources.

The reconstruction of the glioblastoma metabolic models is presented in

chapter 6. Here, we detail the reconstruction process, validate and compare

the models with other published ones, and use it to gain insight on cancer

cell metabolism.

Finally, Chapter 7 presents the general conclusions derived from this work

and perspectives for future work.





Chapter 2

State of the Art

This chapter presents the concepts related with systems

biology, constraint-based modeling and omics data. The

reconstruction process of genome-scale metabolic models

is explained. Besides, a summary of the most important

methods for the tissue-specific reconstruction models and

phenotype simulation integrating omics data are presented.

2.1 Systems biology

Nature is composed of several different species that crossed biological evolution

along the years. Each individual is composed of elemental building blocks

of life - the cells [25]. In the last decades, deep knowledge about individual

cellular components and their functions provided by biological research have

clearly shown that most biological processes occur in complex interactions

between cellular constituents, such as proteins, deoxyribonucleic acid (DNA)

and ribonucleic acid (RNA) molecules [26].

In this context, Systems Biology (SB) arises as an interdisciplinary field

of study that tries to explain the complex interactions within biological sys-

tems [27]. The evolution of SB has been supported by the development of

7
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novel techniques for genome sequencing and other high-throughput meth-

ods, that have generated the so called ”omics” data, such as genomics [28],

transcriptomics [29], proteomics [30], metabolomics [31], and fluxomics [32].

The combination of these data and the knowledge of cellular functions

allowed the construction of biological networks or of models capable to simulate

the cell behaviour [33].

Biological networks/models can be broadly categorized into three types

[34] :

1. metabolic: contains all the biochemical reactions that occur in the cell.

These networks describe the consumption/synthesis of metabolites that

are essential for the growth and cell survival;

2. regulatory : aims to represent the regulatory interactions between regu-

latory elements (e.g. transcription factors, promoters) and their target

genes, for instance A→ B means that gene A controls the expression

of gene B;

3. signalling : represents the reactions or ”signalling events” (such as

phosphorylation or ubiquitinations) in a network that regulate how a

cell responds to its environment, through cascades of information flow.

None of these networks are independent and the combination of the differ-

ent levels allows for a deeper understanding of cellular processes. However,

the integration of all these information into models increases their complexity,

while the current modeling capabilities of all these networks prevent their

inference in a genome level [6].

Therefore, in the following the focus will rely on metabolic models that

are the most developed and the ones addressed in this work.
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2.2 Genome-scale metabolic models

Genome-Scale Metabolic Models (GSMMs) are composed by metabolites and

reactions that allow the representation of all biochemical processes of the cell.

The development of GSMMs starts with genome sequencing [35, 36]. Based

on the genome sequence, a functional annotation is performed through the

information present in databases such as GenBank [37], Entrez Gene [38]

and BioCyc [39]. Next, the set of reactions and the gene-protein-reaction

(GPR) associations are collected using information presented in databases

such as KEGG [40], BRENDA [41], UniProt [42, 43], MetaCyc [44] and also

literature.

GPR associations are composed by logical rules, which represent the

relationship between genes, proteins and reactions. This allows to include

information about the transcriptional/ translational level, through the refer-

ence to the enzymes that catalyse the reactions and the genes encoding those

enzymes, into the metabolic models.

Normally, in GSMMs, a GPR association contains only the relationship

between genes and a reaction using the logical operators AND or OR to

represent the dependency of genes of each reaction. For instance, if reaction

r1 has the GPR g1OR(g2ANDg3), this means that the reaction r1 occurs only

when gene g1 or both genes g2 and g3 are expressed. The inclusion of GPRs

within GSMMs is essential to allow the phenotype prediction of the cell under

different genetic conditions, such as gene knockouts and over/underexpression.

Once the draft metabolic model is generated, a set of simulations are

required to validate the model. Based on the results, the model may be

improved or optimized by the addition/ removal of reactions (Figure 2.1).

Over the last decade, the advances in DNA sequencing techniques and the

sequencing costs have decreased allowing to increase the number of organisms

having their genome sequenced [45, 46] and, therefore, the number of GSMMs

being reconstructed [47].

Nowadays, several tools such as Model SEED [48] or Merlin [49] are avail-
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Figure 2.1: Model reconstruction cycle.

able to support a faster genome-scale metabolic models reconstruction. The

Metabolic Models Reconstruction Using Genome-Scale Information (Merlin)

[49], developed in our group, is a freeware tool that supports the reconstruc-

tion process, including the functional genomic annotation of the genome and

subsequent construction of the portfolio of reactions.

Metabolic models have been used to simulate the cell phenotype under

different environmental conditions and genetic changes [50]. These models, to-

gether with strain optimization tools, allow the identification of genetic targets

for increasing yields productivities and robustness in industrial biotechnology

processes [51, 52].

Additionally, over the last years, metabolic models have been used to

understand some phenotypes associated with diseases [22], to find drug targets

[20] and to study the relationship between different organisms [53] and cell

types [18].

2.2.1 Human metabolic models

The human species is one of the most complex organisms since the number

of genes, types and diversity of cells are huge. After the human genome
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sequencing and its annotation [54, 55], efforts have been made in the last

decade to reconstruct human genome-scale metabolic models. Until now, four

human GSMMs has been proposed [7, 8, 9, 10] and have been used to study

human physiology and pathology.

The reconstruction of the first human GSMM was published in 2007 [7],

under the name of Recon 1. This metabolic model accounts for the functions

of 1.905 genes, 2.766 metabolites, and 3.742 metabolic and transport reactions

and was reconstructed based on an extensive collection and evaluation of

genomic and bibliomic data.

The model was validated through the simulation of 288 known metabolic

functions present in different cells and tissue types. All related information is

available in the BIGG database [56] (http://bigg.ucsd.edu/).

A few months later, a new metabolic model was published by Ma et al.

[57], called the Edinburgh Human Metabolic Model (EHMM). This network

was manually reconstructed by integrating genome annotation from different

databases and metabolic reactions information from literature. In the first

step of the reconstruction, the authors mainly collected all information from

the databases KEGG [58], UniProt [43] and HGNC (HUGO Gene Nomen-

clature Committee) [59]. The second step of the reconstruction integrated

information from the Enzymes and Metabolic Pathways database [60]. In 2010,

the compartmentalization of the EHMM was completed [8]. The compartmen-

talization required the association of metabolic reactions to different cellular

organelles and transport reactions that were added to allow the exchange of

metabolites between such organelles.

In 2012, a new metabolic model of human cells, the iHuman1512 [9],

was developed based on the Human Metabolic Reaction (HMR) database.

This database has been constructed from the two previous models, also

incorporating information from KEGG and HumanCyc [61]. During the

construction of this database, metabolites with lacking identifiers to external

databases were left out along with their corresponding reactions.

This database has been expanded through the incorporation of the lipid
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metabolism, which accounts for 59 fatty acids rather than relying on generic

fatty acid metabolites. The inclusion of fatty acids allowed the integration

with lipidomics data and helped in understanding the contribution of lipids

to the development of diseases [62]. The resulting HMR database version 2.0

contains 3,765 genes, 6,007 metabolites (3,160 unique metabolites) and 8,181

reactions, with 74% of the reactions associated to one or more genes.

In 2013, a new model has been proposed by Thiele et al. [10]- Recon

2. The Recon 2 is a community-driven expansion of the previous human

metabolic model Recon 1, with several additions from other sources, such

as the previous model EHMN [8], Hepatonet1 [17], a manually curated and

functional model of hepatocyte metabolism, the acylcarnitine–fatty acid

oxidation module [63], and the small intestinal enterocyte reconstruction [64].

Recon 2 accounts for 1,789 enzyme-encoding genes, 7,440 reactions and 2,626

unique metabolites distributed over eight cellular compartments. Recently,

a new Recon 2 model version was published during 2015 with significant

changes on GPR associations (https://vmh.uni.lu).

Based on the information available, a summary of the different human

metabolic models is presented in following table (Table 2.1).

Table 2.1: Number of reactions, metabolites, genes and compartments present
in the available human metabolic models. Species representing the same
metabolite in different compartments are here considered as different metabo-
lites.

Recon 1 EHMM HMR 2.0 Recon 2.04

Reactions 3, 742 6, 216 8, 181 7, 440
Metabolites 2, 766 6, 522 6, 007 5, 063
Genes 1, 905 2, 693 3, 765 2, 140
Compartments 8 9 8 8

Besides these models, human metabolic information is also available in

Reactome [65, 66] and HumanCyc [61] databases. However, this information

is not organized as a model and, therefore, can not be used to support

phenotypes simulations.
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Human GSMMs have been widely used in studies involving the discovery

of biomarkers [11], generating context-specific metabolic models [14] and

elucidating one of the most important and puzzling hallmarks of cancer, the

Warburg effect [12].

2.3 Constraint-based modeling

Biological networks/models can be analysed using different modeling for-

malisms depending on the question to be answered, the biochemical knowledge

and the availability of experimental data [67]. Mathematically, a metabolic

model can be represented as a matrix (Sm×n) ofm metabolites and n reactions,

Sm×n =




s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · · s2,n
...

...
. . .

...

sm,1 sm,2 · · · sm,n




where each element si,j is the stoichiometric coefficient of the ith metabolite

on the jth reaction.

A detailed quantitative description of the biological processes can be

reached by ordinary differential equations [68]. However, kinetic parameters

are rarely available for large-scale networks.

The analysis of the metabolic models can be simplified considering the

steady-state assumption, i.e., the metabolites concentration remains constant

over time [69]. Considering this assumption, it is possible to obtain flux

distributions for the vector v, solving the system equations

S.v = 0 (2.1)

where S is the matrix of stoichiometric coefficients, for a set of m metabolites

and a set of n reactions, and v is the vector of n reaction rates (fluxes).

Additionally, the maximum and the minimum flux values can be imposed
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for each reaction to define the thermodynamic feasibility (directionality) and

flux capacity [70], as follows:

0 ≤ vi ≤ vmaxi , ∀i ∈ Nirreversible (2.2)

vmini ≤ vi ≤ vmaxi , ∀i ∈ Nreversible (2.3)

where vi is the flux carried over reaction i, Nirreversible and Nreversible are the

sets composed of all reversible and irreversible reactions, respectively, and

vmini and vmaxi are the lower and upper bounds for the flux over reaction i.

Some flux distributions are impossible to occur in vivo. Therefore, ad-

ditional constraints should be added to represent the cells environmental

conditions, for instance, the nutrient uptake rates. Constraint-Based Mod-

elling (CBM) [71] determines possible flux distributions which are optimal to

a specific criteria that satisfies the previously defined constraints (Figure 2.2).

For instance, to find the flux distributions that correspond to the maximum

growth rate of an organism.

Figure 2.2: Constraint-based modeling.

One of the most widely used CBM approaches is Flux Balance Analysis

(FBA) [2, 72], which can be represented as:

max/min Z

s.t. : S.v = 0

vi,min < vi < vi,max

(2.4)

where Z = cTv is the objective function (a linear combination of fluxes, where
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c is a vector of weights indicating how much each reaction contributes to the

objective function). Usually the Z = vbiomass when the objective function is

the maximization of growth rate.

The assumption of maximal growth is acceptable under wild-type condi-

tions. However, sometimes the organism is subjected to genetic perturbations,

such as gene deletions. To deal with mutant strains, Segrè and coworkers

introduced the Minimization Of Metabolic Adjustment (MOMA) method [73].

This method minimizes the sum of the squared differences between the wild

type (typically calculated with FBA or given as a reference flux distribution)

and the mutant flux distributions, thus defining a quadratic objective function,

which translates into a quadratic programming (QP) problem.

With a similar approach, the Regulatory On/Off Minimization (ROOM)

[74] algorithm tries to minimize the number of significantly changed fluxes,

relative to the original flux distribution. This approach requires the intro-

duction of binary variables in the objective function, thus converting the LP

problem into a MILP one.

Both methods try to minimize the flux distribution difference between the

wild type and the mutant cell based on the assumption that the organism

will try to adjust its behaviour with the minimum possible effort.

2.4 Omics information

The abundance of biological information generated by high-throughput studies

has enabled the identification and quantification of the individual components

(genes, proteins and metabolites) of biological systems. These data are globally

known as ’omics’ data, and include genomics, transcriptomics, proteomics and

metabolomics, just to name the most popular. The challenge of using omics

data lies on the difficulty to integrate all these data. Nevertheless, when this

is possible, such data allows a better understanding of the cell as a whole.

An overview of some techniques and main sources of information in each
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’omic’ field, is summarized in Table 2.2.

Table 2.2: Techniques and main sources of information for each omic platform.

Field Techniques Databases

Genomics Microarray GEO
RNA-sequencing ArrayExpress

GeneNote
TCGA

Proteomics Mass Spectrometry HPA
Gel-based protein separation HPRD

Metabolomics Gas Chromatography–Mass Spec-
trometry

HMDB

Nuclear Magnetic Resonance

Overall, different types of omics data allow a better understanding of

many complex biological processes occurring in the cells and can be used in

the reconstruction process of metabolic models.

2.4.1 Transcriptomics

Transcriptomics are, certainly, the most widely available type of omics data.

Using DNA microarrays or other techniques, such as RNA-sequencing, allows

the quantification of the expression levels of genes inside cells in different

conditions [75, 76].

One of the most well-know databases for gene expression data is the Gene

Expression Omnibus (GEO) [77]. This is a public repository that archives

and distributes microarray, next-generation sequencing and other forms of

high-throughput functional genomic data. In addition, a set of computer

web-applications are available to query and download the gene expression

patterns stored in GEO (http://www.ncbi.nlm.nih.gov/geo/).

The ArrayExpress Archive [78] is another repository which contains func-

tional genomics experiments, including gene expression, where it is possible

to query and download data in standard formats.
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Using tools such as R/Bioconductor [79, 80] (e.g. the limma package) on

data from the previously mentioned databases, it is possible to understand

which genes are differentially expressed between different cell types or pheno-

types, for instance normal vs cancer cells. However, this relative expression

is unable to provide answers to the questions: “ Which are the genes that

are expressed in different phenotypes and what are their absolute levels of

expression?”.

The Gene Expression Barcode (GEB) [81] provides absolute measurements

for most annotated genes, organized by tissue types, including diseased tis-

sues. Considering standardized values obtained from GEO and ArrayExpress

repositories, it is possible to convert these expression values to silenced and

expressed genes applying a threshold. Moreover, it is possible to convert data

from a single microarray into expressed/unexpressed values for each gene.

2.4.2 Proteomics

mRNA molecules are not always translated into proteins [82], and therefore

amount of protein produced depends on the gene expression and the current

state of the cell. Thus, the knowledge about the amounts of proteins in the

cell, provided by proteomics data [83], is of foremost relevance. These data

can confirm the presence of proteins and quantify the amount of proteins

within a cell.

The Human Protein Atlas (HPA) [84] is a database with millions of

high-resolution images showing the spatial distribution of protein expression

profiles in normal tissues, cancer and cell lines for human cells.

Also, the Human Protein Reference Database (HPRD) [85] database

represents and integrates information for each protein in the human proteome.

All published data available in this database has been manually extracted from

the literature, interpreted and analyzed. Nowadays, this database accounts

for more than 30.000 protein entries.
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2.4.3 Metabolomics

Another source of information is provided by metabolomics data which allows

the identification and quantification of the small molecules present in the

cells, tissues, organs and biological fluids using techniques such as Nuclear

Magnetic Resonance (NMR) spectroscopy and Gas Chromatography-Mass

Spectrometry (GC-MS) [86]. Those metabolites contribute for the design of

metabolic pathways and the understanding of the interaction of proteins with

environmental cell factors (e.g. drug exposure).

The Human Metabolome Database (HMDB) [87] contains spectroscopic,

quantitative, analytic and molecular-scale information about human metabo-

lites, their associated enzymes or transporters, their abundance and disease-

related properties.

2.4.4 Others sources

There are other repositories of information, specialized in specific diseases such

as cancer (“The Cancer Genome Atlas”) and diabetes (“Diabetes Genome

Anatomy Project”). The Cancer Genome Atlas (TCGA) [88] is a collaborative

effort between many organizations to map the genomic changes that occur

in major types and subtypes of cancer. Besides, the data that have been

generated by TCGA’s network are available in the TCGA Data Portal [89],

that provides a platform for searching, downloading, and analyzing data

that contains clinical information, genomic characterization data and high-

throughput sequencing analysis of the tumor genomes.

2.5 Simulation methods

Several diseases such as cancer, diabetes, hypertension and heart diseases

can be related with the abnormal metabolism of cells [90, 12]. Furthermore,

human metabolism is complex and involves a large number of reactions that
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are highly interconnected by common metabolites [91]. Since the function of

each tissue is so different, it is also expected that the metabolism of each cell

type will also be distinct. However, the lack of information on tissue-specific

metabolite exchanges is still a limitation to employ CBM methods [13].

Over the last decade, some approaches have been developed to integrate

omics data to improve the phenotype prediction. In this section, the most

relevant simulation methods it will be presented that give the flux distribution

that better represent the data used as input.

2.5.1 iMAT

The reconstruction of tissue-specific metabolic models and the usage of omics

data to improve the phenotype predictions is not new. Indeed, in 2008, Shlomi

et al [13] developed the first approach called Integrative Metabolic Analysis

Tool (iMAT), to predict the metabolic activity in ten human tissues: brain,

heart, kidney, liver, lung, pancreas, prostate, spleen, skeletal muscle and

thymus.

This approach integrates information of gene and protein expression

with the existing human metabolic network model - Recon 1. The gene

expression information was retrieved from the GeneNote (Gene Normal Tissue

Expression) [92] database, while the Human Protein Reference Database

(HPRD) was used as a source for proteomics data [13].

The post-transcriptional regulation is not reflected in the gene and protein

expression data, so this method treats the expression levels of enzymes as cues

for the probability that their associated reactions have metabolic flux. The

highly, lowly and moderately expressed genes values are converted to 1, -1

and 0, respectively, through the gene-protein rules, replacing the logical ’and’

and ’or’ operators with ’max’ and ’min’ expressions. This transformation

resulted in two subsets of reactions in the model: RH (highly expressed) and

RL (lowly expressed).

The reconstruction of a context-specific metabolic network is done by
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solving an optimization problem, using a Mixed Integer Linear Programming

(MILP) formulation, to find a steady-state metabolic flux distribution that

satisfies the stoichiometric and thermodynamic constraints embedded in the

model, the number of flux-carrying reactions associated with highly expressed

enzymes is maximized and the number of flux-carrying reactions associated

with lowly expressed genes is minimized.

The complete formulation is presented below:

max
(∑

i∈RH

(y+i + y−i ) +
∑

i∈RL

y+i

)

s.t S.v = 0

vmin ≤ vi ≤ vmax

vi + y+i (vmin i − ǫ) ≥ vmin i i ∈ RH

vi + y−i (vmax i + ǫ) ≤ vmax i i ∈ RH

vmin i(1− y+i ) ≤ vi ≤ vmax i(1− y+i ) i ∈ RL

y+i , y
−

i ∈ [0, 1]

(2.5)

where v is the flux vector and S is a stoichiometric matrix, vmin and vmax are

lower and upper bounds of the fluxes, respectively, the boolean variables y+

and y− represent whether the reaction is active (in either direction) and the

ǫ value represent the minimum value that flux must have to for the reaction

is considered active.

This method relies on enzyme-expression data to infer tissue-specific

metabolic fluxes, thus it is not necessary to define an objective function

(biomass equation) and metabolites exchanged by the tissue with biofluids,

which indeed are unavailable for human tissues.

In [13], the validation of the predicted tissue-specific metabolic behaviour

uses biological information from Human Metabolome Database (HMDB) and

Braunschweig Enzyme Database (BRENDA). The metabolite exchanges that

depend on membrane transporters were validated based on data on tissue

specificity of transporters, obtained from the Human Membrane Transporter
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Database and from the Transport Classification Database.

The predicted tissue-specific metabolic behaviour was compared to various

data sources of genes, reactions and metabolites of each tissue type. For

the ten tissues, the predicted results were significantly correlated with data

sets, with the precision and recall varying between 0.36-0.7 and 0.37-0.55 [13],

respectively. The accuracy reflects the overlap between the predicted tissue-

associations of genes, reactions and metabolites and known tissue-associations

derived from various data sources.

2.5.2 GIMME

Also in 2008, another research group developed a new algorithm to gen-

erate context-specific metabolic models, the Gene Inactivity Moderated by

Metabolism and Expression (GIMME) [14].

This method uses gene expression combined with objective functions to

create functional metabolic models. However, as expression data is known

to be noisy, the results may vary depending on the methods used to convert

the fluorescence intensity to semi-quantitative readings of mRNA molecule

counts [93].

The GIMME algorithm takes three inputs: i) a set of gene expression data;

ii) the template genome-scale metabolic model; iii) one or more Required

Metabolic Functionalities (RMF) that the cell is known to perform.

Through the gene-protein-reaction rules, the algorithm uses the gene

expression data to determine which reactions are inactive or active in the

tissue. Reactions that correspond to expression levels below a specified

threshold, chosen by the user, are tentatively declared inactive unless they

are required for a desired functionality, according to a predefined objective

function. During this process, an inconsistency score (IS) is calculated and

represents the disagreement between the gene expression data and the flux

distribution for an objective function. The optimization problem tries to
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minimize the IS to produce a flux distribution with the minimal differences

to the expression data.

Therefore, the algorithm produces the flux distribution through a two-step

procedure:

1. Run a FBA for each RMF to find the maximum possible flux. The

RMFs represent metabolic tasks essential to the cell and the final result

must satisfy, such as the growth or the production of a target metabolite.

2. Solve the following linear programming problem:

min
∑

ci.|vi|

S.v = 0

ai < vi < bi

where ci =

{
cutoff − xi, cutoff > xi

0, otherwise

(2.6)

where xi is the normalized gene expression data mapped to each reaction

through the genes association present in the model; cutoff is the value

chosen by the user; S is the stoichiometric matrix; v is the flux vector;

ai and bi are the lower and upper bounds for each reaction. If a reaction

is one of the RMFs, the upper bound is set to the value found in step 1

(maximal value) and the lower bound to a fraction of its maximal value;

otherwise, the reaction is constrained with the bounds present in the

metabolic model.

The algorithm was used to describe the functional genome-scale metabolic

models for skeletal muscle cells in different conditions. The results obtained

for the human models were less interesting than expected, due the lack of

available data for a substantial number of human metabolic reactions [14].
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2.5.3 E-flux

The E-flux [15] method predicts the metabolic capacity based on expression

data. This method extends FBA [72] by incorporating gene expression data

into the metabolic flux constraints present in the formulation.

This approach starts by changing the reaction bounds present in the

metabolic model to integrate information from expression data. In short, if

the expression for a particular enzyme-coding gene is low, the upper bounds

of the reactions associated with this gene, will be replaced by a small value.

On the other hand, if expression is high, the new bounds will be similar to

the original ones. Once the constraint transformations are defined, FBA is

applied to determine a corresponding metabolic state or optimal metabolic

capacity.

E-Flux involves solving the following optimization problem:

max cTv

S.v = 0

ai ≤ vi ≤ bi

(2.7)

where v is a flux vector representing a reaction, S is the stoichiometric matrix,

c is a vector of weights indicating how much each reaction (v) contributes

to the objective function, and ai and bi are the lower and upper bounds of

reaction i.

In the original publication [15], this method was used to predict the impact

of drugs and environmental conditions on mycolic acid biosynthesis capacity

in Mycobacterium tuberculosis.
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2.6 Tissue-specific reconstruction methods

Recent studies have demonstrated that the metabolic profiles of tumor cells

most likely depend on genotype and the tissue of origin, and this has implica-

tions regarding the design of therapies targeting tumor metabolism [94].

Understanding the human metabolism of different cell types and the

interactions between them may lead us to determine efficient diagnosis and

treatment of these diseases. Thus, it becomes essential to develop metabolic

networks for distinct cell types/tissues.

During the last decade, some approaches have been developed to allow the

understanding of cell types metabolism. Shortly, these methods use a generic

human metabolic model as template, such Recon 1, and integrate omics data

from a tissue or context specific. As a result, some of them return a new

tissue-specific metabolic model, while others give also the flux distribution

that better represent the data used as input. In this section, the most relevant

methods will be presented.

2.6.1 MBA

A first approach has been proposed in 2010, named Model-Building Algorithm

(MBA) [16]. This algorithm reconstructs a tissue-specific metabolic model

from a generic model by integrating a variety of tissue-specific molecular data

sources (literature-based knowledge, transcriptomic, proteomic, metabolomic

and phenotypic data).

The first step of this algorithm is to infer, from the tissue-specific data,

two sets of reactions denoted as the core reactions (CH) and reactions that

have a moderate probability to be carried out in the specific tissue (CM).

This division is made according to the accuracy level of the input data. In

general, the CH set includes human-curated tissue-specific pathways and the

CM set includes reactions certified by molecular data.
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The aim of this method is to find the most parsimonious tissue-specific

consistent model, which includes all the tissue-specific high-probability reac-

tions (CH), a maximal number of moderate probability reactions (CM ) and a

set of additional reactions from the generic model that are required for gap

filling, using a greedy heuristic search that is based on iteratively pruning

reactions from the generic model (Figure 2.3). The full set of steps in this

method is shown in Algorithm 1.

 

Figure 2.3: The diagram illustrates the function of the model-building algo-
rithm (MBA). The algorithm is given tissue-specific reactions sets (CH and
CM) as input and reconstructs a tissue model containing all of the CH reac-
tions, as many as possible CM reactions, and a minimal set of other generic
model reactions that are required for obtaining overall model consistency.

To validate this approach a new metabolic model of liver was built from

the generic model Recon 1 [7]. The essential core, CH , was extracted from

literature-based curation, consisting in 37 intact metabolic pathways involving

779 reactions and 873 metabolites.The CM consisted of a set of 304 reactions,

and 484 metabolites and it was assembled from tissue-specific data sources,

including metabolomics, transcriptomics, proteomics, and phenotypic data of
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Algorithm 1 MBA algorithm pseudo code

function generateModel(RG, CH , CM)
RP ← RG

RS ← RP\(CH ∪ CM)
P ← randomPermutation(RS)
for (r ∈ P ) do

inactiveR← CheckModel(RP , r)
eH ← inactiveR ∩ CH

eM ← inactiveR ∩ CM

eX ← inactiveR\(CH ∪ CH)
if (|eH | == 0 AND |eM | < δ ∗ |eX |) then

RP ← RP\(eM ∪ eX)
end if

end for
return RP

end function

the liver. As a result of applying the algorithm, the liver metabolic model

consists of 1,827 reactions and 1,360 metabolites.

2.6.2 INIT and tINIT

The Integrative Network Inference for Tissues (INIT) algorithm was proposed

in 2012 by Jens Nielsen’s team [9]. The algorithm uses cell type specific

information from HPA as the main source of evidence for assessing the presence

or absence of metabolic enzymes in each of the human cell types. Moreover,

other data sources as tissue specific gene expression and metabolomics data

from HMDB are also used.

This algorithm requires a connected template human metabolic model as

input, so the first step was to provide a reliable and up to date genome-scale

model template. So, the Human Metabolic Reaction (HMR) database was

built with the elements of previously generic genome-scale human metabolic

models (Recon1, EHMM, HumanCyc), as well as with information from

KEGG database.



2.6 Tissue-specific reconstruction methods 27

The protein evidence levels retrieved from HPA or gene expression lev-

els from GEO datasets are converted to reaction scores through the GPR

associations present in the template model. The algorithm was formulated

as a MILP and tries to maximize the sum of scores for reactions that can

carry flux. According to the HMDB, the production of metabolites, known to

be present in the cell type, will be imposed by the formulation to ensure its

synthesis in the final model. Another detail in this formulation is the fact that

the steady-state conditions are not imposed allowing a small accumulation

of internal metabolites. This avoids the removal of reactions with dead end

metabolites.

The INIT formulation and can be specified as:

max

(
∑

i∈R

wiyi +
∑

j∈M

xj

)

S.v = b

|vi| ≤ 1000yi

|vi|+ 1000(1− yi) ≥ ε

vi ≥ 0 i ∈ irreversible

bj ≤ 1000xi

bj + 1000(1− xi) ≥ ε

bj ≥ 0

xj = 1 j ∈ present

yi, xj ∈ 0, 1

(2.8)

where S is the stoichiometric matrix, v the vector of reaction rates, b a vector

of net accumulation or consumption rates for each internal metabolite, R

represents the reactions and M the metabolites. The parameter ε is an

arbitrarily small positive number and yi, xj correspond the active or inactive

state of a reaction and a metabolite respectively. The value of wi can be 20,

15, 10 or −8 to represent the high, medium, low and absent evidence levels

for proteins in the HPA. If the evidence comes from gene expression levels,



28 State of the Art

wi is calculated as follows:

wi = 5 log

(
Signali,j
Averagei

)
(2.9)

The signal of gene i in tissue j is divided by the average signal across all the

tissues.

A couple of years later, a new version of INIT algorithm was proposed.

The Task-driven Integrative Network Inference for Tissues (tINIT) [20], which

reconstructs tissue-specific metabolic models based on protein evidence from

HPA and a set of metabolic tasks that the final context-specific model must

perform. These tasks are used to test the production or uptake of external

metabolites, but also the activation of pathways that occur in a specific

tissue. During the tasks validation in the template model, a set of required

reactions will be found and constraints to ensure the flux through these

reactions are added to the formulation. Another two improvements from the

previous version are the addition of constraints to guarantee that irreversible

reactions operate in one direction only and the possibility of choice whether

net production of all metabolites should be allowed.

2.6.3 mCADRE

Also in 2012, a new method was developed namedMetabolic Context specificity

Assessed by Deterministic Reaction Evaluation (mCADRE) [21]. This method

is able to infer a tissue-specific network based on gene expression data, network

topology and reaction confidence levels.

Based on the expression score, the reactions of the global model, used

as template, are ranked and separated in two sets: core and non-core. All

reactions with expression-based scores higher than a threshold value are

included in the core set, while the remaining reactions make the non-core set.

In this method, the expression scores do not represent the expression

levels, but rather the frequency of expressed states over several transcript
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profiles. Hence, it is necessary to initially binarize the expression data. Thus,

it is possible to use data retrieved from the Gene Expression Barcode (GEB)

project that already contains binary information on which genes are present

or not in a specific tissue/ cell type.

Reactions from the non-core set are ranked according to the expression

scores, connectivity-based scores and confidence level-based scores. Then,

sequentially, each reaction is removed and the consistency of the model is

tested. The elimination only occurs if the reaction does not prevent the

production of a key-metabolite, i.e. metabolites that have evidence to be

produced in the context-specific model reconstruction, and the core consistency

is preserved. The algorithm is provided below as Algorithm 2.

Algorithm 2 mCADRE algorithm pseudo code

function generateModel((RG, treshold))
RP ← RG

RC ← score(RP ) > treshold
coreActiveG← flux(r)! = 0, r ∈ RC

RNC ← RP\RC

for (r ∈ order(RNC)) do
inactiveR← CheckModel(RP , r)
s1 = |inactiveR ∩RC |
s2 = |inactiveR ∩RNC |
if (r 6∈ withExpressionV alues AND

s1\s2 <= RACIO AND
checkModelFunction(Rp\inactiveR)) then

RP ← RP\inactiveR
else

if (|s1| == 0 AND
checkModelFunction(Rp\inactiveR)) then

RP ← RP\inactiveR
end if

end if
end for
return RP

end function

Comparing with the MBA algorithm, mCADRE presents some improve-
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ments: allows the definition of key metabolites; some reactions of core set

can be removed from the final model; and, it is only necessary to run the

algorithm once, since the order of pruning the reactions is not random.

2.6.4 FASTCORE and FASTCOMICS

Also similar to MBA, the FASTCORE [22], proposed in 2014, is a generic

algorithm for context-specific metabolic models reconstruction that takes as

input a core set of reactions and a generic metabolic model.

Firstly, it converts the initial model to a consistency model, i.e. only

reactions that can carry flux in at least one feasible flux distribution are

preserved. This can be done by using existing approaches such as Flux

Variability Analysis (FVA) or a new one proposed in the work of Vlassis and

co-workers [22] for fast consistency check (FASTCC) of a network. Next, it

searches for a subnetwork from the generic model that contains all reactions

present in the core set and a minimal set of additional reactions, necessary to

guarantee the consistency of the final model.

Some advantages of this algorithm are that it can be applied to integrate

different kinds of ”omics” data through the core set compilation by the user,

and there is no need to define parameters except the flux threshold ǫ, which

is used to guarantee the required minimum flux.

Although the MBA and FASTCORE objectives are the same, that is ,

to find a minimal consistent model with all core reactions, the strategy is

significantly different. While MBA starts with all reactions and iteratively

prunes reactions from the generic model, FASTCORE iteratively expands the

active set A, starting with A = ∅.

The algorithm maintains a set, J ⊆ C, that is initialized with the irre-

versible reactions in C, and a ”penalty” set P = (N\C)\A that contains

all non-core reactions that have not been added to the set A. While not all

reactions from the core set are in the final model, the algorithm appends

the result of a function called findSparseMode to the set A. This function
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returns the set of reactions from the non-core set that maximizes the number

of reactions active from the set J . Formally, the algorithm can be described

as shown in Algorithm 3.

Algorithm 3 FASTCORE algorithm pseudo code

Let N the set of all reaction in the model, C the core set reaction and I
the set of irreversible reactions;
function FASTCORE(N,C)

J ← C ∩ I
flipped← False, singleton← False
A← findSparseMode(J, P, singleton)
J ← C\A
while J 6= ∅ do

P ← P\A
A← A ∪ findSparseMode(J, P, singleton)
if J ∩ A 6= ∅ then

J ← J\A, flipped← False
else

if flipped then flipped← False, singleton← True
else

flipped← True
if singleton then J̃ ← firstElement(J)
else

J̃ ← J
end if
for r ∈ J̃\I do

flip the sign in stoichiometric matrix
and swap the bounds of reaction r

end for
end if

end if
end while

end function

Based on FASTCORE, a new method has been proposed, also in 2014,

termed FASTCOMICS [95]. This method uses microarray expression data

to infer the core reactions used in the original method. Microarrays are the

most popular of the ’omics’ data sources, however the association with the

gene expression levels and active reactions is not trivial [82].
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FASTCOMICS is performed in two steps: generate the core set of reactions

based in transcriptomic data and reconstruct the context-specific metabolic

model using the FASTCORE algorithm. The first step of the FASTCOMICS

workflow is the discretization of microarray expression levels to build the core

set of reactions. The continuous expression values are converted to estimated

values of expressed (ones) and no-expressed(zeros) using the GEB algortithm

[96]. GEB uses the knowledge of abundantly publicly available microarray

data sets and the intensity distribution of each probe set, to classify the genes

as expressed or non-expressed (see Figure 2.4).

Figure 2.4: Conversion of gene expression levels to reaction scores. In the first
step, the gene expression values are converted to expressed / not expressed
status through the gene expression barcode method. Next, using the GPR
associations present in the model the score of each reaction is calculated.

The second step of the workflow, is the reconstruction of the context-

specific model through the FASTCORE algorithm and can be depicted in

Figure 2.5.

This workflow allows the definition of media constraints and forces the

biomass reaction to carry flux to find the required set of reactions that allow

the production of biomass.

This new set of reactions is then appended to the core set from the previous

step. Finally, a new run of FASTCORE, where all reactions from the core set

are forced to carry flux, is performed to find the context-specific model.

When comparing these two methods with other competing algorithms for

building of context-specific models like mCADRE [21], tINIT [9] or the MBA

[16], FASTCORE and FASTCOMICS reveal a higher performance. Depending
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Figure 2.5: FASTCOMICS workflow: first, the method runs to find the
required reactions to biomass production; next, an additional set of reactions
are joined and a second run is performed to build the final model.

on the generic model size, FASTCORE can generate the reconstruction of

context-specific GSMMs in a few minutes, whereas other algorithms would

take hours or days [22].

2.6.5 PRIME

Recently, the Personalized Reconstruction of Metabolic models (PRIME) [23]

method has been published, which utilizes both molecular and phenotypic

data to reconstruct context-specific GSMMs.

Similar to E-flux, the PRIME method tries to adjust the reaction bounds

according to the genes expression levels received as input. Nevertheless, some

differences have been introduced in this method, namely:

• the bounds of relevant reactions related with the genes that affect the

central cellular phenotype are changed;

• additional phenotypic data (growth rate) are used to establish the

relation between the gene expression levels and the flux rates and to

modify the bounds accordingly;

• modifies the flux bounds within a pre-defined range to avoid the differ-

ences between simulation and experimental growth rate.
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Similarly to other methods, PRIME takes as input a generic metabolic

model, ’omics’ and experimental data used to obtain the final model. In

this case, gene expression levels (transcriptomic data) and measurements of

growth rates are used.

The method workflow can be described in two steps:

1. find the set of genes that significantly correlate with the phenotype

(growth rate);

2. the upper bounds of reactions identified in (1) are modified according

to the expression levels.

However, PRIME has some limitations since it is based on the assumption

that all cells try to maximize their proliferation and depends on measurements

of a specific phenotype that in most cases are not available [23].

In this study [23], the authors have built more than 280 models for normal

and cancer cell-lines, utilizing them to predict drug targets that inhibit the

proliferation of cancer cells, but not the normal cells.

2.7 Conclusion

Several methods have been proposed to improve prediction of the phenotype

using omics data and to reconstruct metabolic models for a specific tissue or

context. The development of these methods has become possible thanks to

the increasing amount of high-throughput data available in the last decades.

Here, the main algorithms were presented, however, most of them are not

publicly implemented or their use is difficult for non-programmers. Thus, it is

crucial to develop an integrated framework to make these methods available

to all researchers.
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Development of Software Tools

This chapter describes the implementation options during

the development of the framework for the methods detailed

in the previous chapter. The development was made over

existing software that will be described here. The new de-

velopments regarding this work will be presented next, being

provided both a description of the implemented functionality

and the implementation technical details.

3.1 Introduction

In the last years, the increasing amount of high-throughput data available

allowed the surge of phenotype prediction methods, resorting to the integration

of transcriptomic and proteomic data [97], which can improve the accuracy

of metabolic model predictions. Generically, these methods can be divided

into two categories: the first encompassing methods where reaction fluxes

are considered on/off based on a cutoff expression level (including iMAT

and GIMME), and the second where the regulation of fluxes is based on

relative gene or protein expression (E-flux method). These methods have

been detailed in section 2.5.

35
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Furthermore, several tissue-specific metabolic model reconstruction meth-

ods have been proposed to deepen knowledge on specific contexts. These

methods, already detailed in section 2.6, also use trancriptomics and pro-

teomics as the main sources of input data.

However, until now, the usage of these methods has been limited to

developers or experienced bioinformaticians, since a platform that provides a

user friendly interface to perform such tasks is not available. Thus, in the

course of this work, a framework with the most relevant methods was developed

and integrated with an user-friendly open source software, OptFlux [24], a

reference tool that provides numerous tools for constraint-based modeling

tasks and metabolic engineering applications.

The developed framework is composed by an application programming

interface (API) for developers, who can use the provided library to extend

the available methods, and a graphical user interface (GUI), integrated into

OptFlux in the form of novel plug-ins, which encapsulates the developed tools

for non programming users.

The API layer provides three main features: loading and integrating

omics data with the metabolic model; simulating the metabolic phenotype

and reconstructing tissue-specific metabolic models methods using omics as

the main input (Figure 3.1). Some of the implemented methods also use

metabolic tasks to evaluate the reaction deletion effect over the reconstruction

process. Thus, it was also required to develop methods to import and validate

metabolic tasks.

This open-source API framework is available in SourceForge repository

(https://sourceforge.net/p/optflux/) within a project called mewomics-

integration. Users with computational skills are able to use the provided

library or contribute to its extension with new methods.
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Figure 3.1: Functional Modules developed in the Omics framework.

3.2 Metabolic Engineering Workbench

In this section, we describe the existing core libraries, which provided the

basis for the development of the libraries performed in this work.

The Metabolic Engineering Workbench (MEW) is a software framework

that supports in silico metabolic engineering tasks. This framework includes

nine libraries: mewcore, regulatorycore, biocomponents, biologicalnet-

score, guituilities, biovisualizercore, availablemodelsapi, solvers

and utilities, being the most relevant for this work discussed in detail in

the present section.

The framework is fully implemented in Java, an object-oriented program-

ming, platform independent and portable language. The execution of all

Linear Programming (LP) and Mixed-Integer Linear Programming (MILP)

optimization procedures uses GNU Linear Programming Kit (GLPK) [98].

Moreover, LibSBML [99] is used to handle files in the Systems Biology Markup

Language (SBML) [100] format. The main libraries and their classes are

detailed over the next subsections.

The main capabilities of the MEW framework can be grouped into four

distinct functional areas, as shown in Figure 3.2.
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Figure 3.2: Functional Modules present in the Metabolic Engineering Work-
bench framework.

3.2.1 The BioComponents library

The BioComponents library provides classes for reading and writing metabolic

models in several formats, such as SBML, Metatool [101], BioOpt/BioMet

[102], flat-files and a generic table format (coma/tab separated values).

Each of these file types can be read through the correspondent class from

package container.io.readers. Those classes implement the IContainer-

Builder interface, which guarantees the implementation of methods to retrieve

all necessary information to build an instance of the class Container. The

diagram of classes, including the main classes involved in the reading process

is depicted in Figure 3.3.

The Container class implements a constructor that takes an instance of

an implementation of IContainerBuilder as argument, which is used to pop-

ulate the instance object. The main class, Container, holds all information

related with the metabolic models: reactions, metabolites, genes, pathways

and additional information that can be used to integrate the entities from the

models with external databases, such as the Kyoto Encyclopedia of Genes and

Genomes database (KEGG) or the Chemical Entities of Biological Interest

database(ChEBI).

The information present in the class Container involves several other

classes used to store all the information, as:

• CompartmentCI: contains information about a cellular compartment,
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Figure 3.3: Main classes involved in the metabolic models reading process.
Each reader class implements the interface IContainerBuilder.

as the name, identifier and the list of metabolites.

• ReactionCI: contains information on a metabolic reaction, besides the

basic information (identifier, name, type, etc.), gene rules and proteins

rules are stored based on the GPR associations present in the model.

The products and reactants are stored in a map where the metabolite

identifier is the key and the stoichiometric coefficient is stored on an

instance of StoichiometryValueCI.

• MetaboliteCI: contains information about a metabolite, such as iden-

tifier, name, formula, etc. and a list of reaction identifiers where the

metabolite is a reactant or product.

• GeneCI: contains information about a gene, as the identifier, name and

the list of reactions that contain this gene in their GPR associations.

• ReactionConstraintsCI: class to store the lower and upper bounds

for a reaction flux.

The external information related with metabolites and reactions are saved

as a map of maps, with the structure Map <String, Map <String, String
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Figure 3.4: The Container class and its components used to store the
metabolic model information.

>>.The key of the external map is the information type and the key of the

internal map is composed of reaction or metabolite identifiers. For instance, for

saving information related with KEGG identifiers associated with metabolites,

the external info has the following structure:

["KEGG"--> [metaH2O –>C00001 ,

metaATP –>C00002,

... ,

metaala–>C19779]

]

The Container is the main class for the entire framework, since the

metabolic model it represents is the common base in all operations and

methods. This library also implements writing methods to save the content

of a Container in several formats, such as SBML, Metatool or CSV.
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3.2.2 The MEWCore library

MEWCore, as the name suggests, is the core library in the MEW framework. It

is responsible for the formulation of phenotype prediction methods, the strain

optimization procedures, the model simplification methods, the conversion

of model formats and for identifying critical genes/reactions. This library is

composed by several packages, which are detailed next.

The Model package

This package contains data structures to support all the information regarding

stoichiometric metabolic models. A stoichiometric model is composed by

metabolite and reaction sets and a matrix with the relation among these

entities through the stoichiometric coefficients present in each reaction. The

information related to pathways and GPR associations, when available, is

also integrated in the model data structure.

The SteadyStateModel is the main class used to store the stoichiometric

model information. This class aggregates information provided by other

classes, namely :

• IStoichiometricMatrix: this interface contains the abstract meth-

ods to manipulate the stoichiometric matrix .The class ColtSparse-

StoichiometricMatrix is usually used as an implementation of this

interface. This class contains the stoichiometric matrix, where each ele-

ment ai,j represents the coefficient of ith metabolite on the jth reaction;

• Reaction: contains information about a reaction, including its name,

identifier, reversibility and flux bounds;

• Metabolite: contains information about a metabolite, including its

identifier, name, compartment as the main fields;

• Compartment: contains information related with the compartment,

such as name, identifier and the set of metabolite identifiers present in

that compartment;
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• Pathway: contains the metabolites and reactions sets present in a

specific pathway.

This class also allows the definition of basic model properties, such as the

name, model version and the biomass reaction (a particular reaction used to

represent cellular growth).

The SteadyStateGeneReactionModel class is an extension of Steady-

StateModel, where the information about genes, proteins and the GPR

associations is stored. The information present in both SteadyStateGene-

ReactionModel and Container classes is the same, but organized in a differ-

ent structure. The overall class diagram is depicted in Figure 3.5

Figure 3.5: Class diagram representing the structure of the classes used to
store the information of steady state metabolic models.

The data structure for the definition of environmental conditions, Environ-

mentalConditions class, is also contained in this package. It contains the

information about metabolite uptakes and reaction constraints used in the

phenotype prediction methods and in the strain optimization tasks. The

EnvironmentalConditions class contains an identifier that characterizes its

specific instance and a mapping data structure where the key, a reaction
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identifier, is mapped to a ReactionConstraint object, which contains the

lower and upper bounds of the reaction.

The Simulation package

The Simulation package contains the formulations for the phenotype simula-

tion methods. These methods allow the simulation of wild-type and mutant

strains using environmental conditions or gene/reaction knockouts.

In the current version, formulations such as the Flux Variance Analy-

sis (FVA)[103], Flux Balance Analysis (FBA)[2, 72], parsimonious enzyme

usage FBA (pFBA), Minimization of Metabolic Adjustment (MOMA)[73],

Regulatory on/off minimization of metabolic flux changes (ROOM)[74] and

Minimization of Metabolites Balance (MiMBl)[104] are implemented in this

package. Each one of these methods interacts with the Solver package (de-

scribed in Section 3.2.3) to solve the underlying linear or integer programming

problem.

One of the most important classes, the SteadyStateSimulationControl-

Center, is responsible for controlling and aggregating all features mentioned

above. The Figure 3.6 shows the main classes that interact with the Steady-

StateSimulationControlCenter.

The SteadyStateSimulationControlCenter receives the configuration

mapping object as an input. The configuration class contains properties, such

as the environmental conditions, the objective function used in the simulation

methods, the solver specification, the metabolic model, the simulation method,

among others. Moreover, the SteadyStateSimulationControlCenter has

also a static variable called factory, which holds the association between the

method name and the formulation class.

The formulation problem is instantiated in execution time, through the

SimulationMethodsFactory class. Using the factory method pattern in

the creation of the formulation problems avoids the replication of code and

simplifies the process of adding new simulation methods to the framework.
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Figure 3.6: Class diagram of the main classes involved in the phenotype
simulation on the MEW framework.

The interface ISteadyStateSimulationMethod defines the functions that

must be implemented by any formulation method. The interface IConvex-

SteadyStateSimulationMethod, an extension of the previous one, contains

the additional functions to support the persistent mode on the Solvers library.

The formulation classes are an extension of the abstract class Abstract-

SSBasicSimulation, which implements the interfaces referenced above, con-

taining the generic methods to interact with the Solvers library. When the

formulation problem contains a reference flux distribution, the Abstract-

SSReferenceSimulation should be used as the abstract class. Moreover, all

the classes must implement a method called simulation responsible to run

the formulation problem

At the end, the result of the simulate method present in SteadyStateSimu-

lationControlCenter, returns an instance of SimulationSteadyStateRe-

sult, which contains the flux distribution that represents the final phenotype

of the solution.
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The Figure 3.7 depicts the main steps in phenotype simulation using the

MEW classes.

Figure 3.7: The API layer highlighting the MewCore, BioComponents and
Solvers packages of the MEW framework for phenotype simulation.

The Simplification package

The Simplification package contains methods for model reduction and so-

lution simplification. The model reduction is an essential step used in the

optimization and simulation procedures to reduce search space by removing

reactions which cannot carry flux. This could be crucial to save memory and

improve performance when GSMMs are used for different tasks.

3.2.3 The Solvers library

The Solvers library provides several generic components (variables, constraints

and objectives) that can be combined to formulate any of the methods pre-

viously mentioned in the Simulation package from the MEWCore library.

Furthermore, the connection to open source and commercial solvers/opti-

mizers, including GLPK1, CLP2 and CPLEX3, is also provided through the

implemented classes such as GPLPKSolver, CLPLPSolver and CPLEXSolver.

1http://www.gnu.org/software/gplpk/gplpk.html
2https://projects.coin-or.org/Clp
3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Recently, this library has been extended to support a persistent mode which

allows keeping the problem formulation over several simulations, changing

only specific variables, constraints or objective functions as needed.

3.3 OptFlux framework

OptFlux [24] is a software framework to support in silico constraint-based

modeling approaches, mainly for metabolic engineering tasks, which aims to

be the reference platform for this community. The methods, algorithms and

features implemented on the MEW framework can be used by users without

any computer science skills through this user-friendly software tool.

OptFlux is a modular user friendly software based on a plug-in architecture

built on top of AIBench [105], which facilitates the addition of new features

by software developers. The main window of the application, shown in Figure

3.8, can be divided in three areas: the clipboard, the data viewing panels and

a logging area.

All objects created inside the application are associated to a global entity

named Project, which is always connected to a metabolic model. The user

can have multiple projects in the clipboard, however the input data to any

operation always belongs to the same project, as well as the corresponding

results.

The OptFlux framework is composed by several plug-ins, being the most

important:

• Core: responsible for creating the project, loading the metabolic mod-

els and creating the data types and views to manipulate the model

information, such as reactions, genes, metabolites, etc..

• Model Repository: adds a new model reader, which adds a repository

of validated models by OptFlux’s team.
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Figure 3.8: The OptFlux main window is segmented in three areas: 1 - the
clipboard, where the operations and results are showed; 2- the view area,
where objecta are visualized; 3- log window or memory monitor, depending
on the selected tab.

• Simulation: allows the user to perform phenotype simulation of ”wild-

type” and mutant strains, predicting the effects of knockout reactions

or genes or of over/under expression of genes or reactions.

• Optimization: includes single objective and multi-objective optimiza-

tion methods based on Evolutionary Algorithms and other optimization

approaches.

• Visualization: allows the user to visualize the model (or select path-

ways) in a graphical manner, also enabling users to import and export

layouts. Moreover, this plug-in allows the overlap of simulation results

with the model graphs [106].
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3.3.1 The AIBench framework

AIBench [105] is a software development framework, based on Model-View-

Controller (MVC) design pattern, that provides a powerful programming

model allowing the fast development of applications. The AIBench eases

the connection, execution and integration of operations with well defined

inputs/outputs. It facilitates the development of a wide range of applications

based on generic input-process-output cycles, where the framework acts as

the glue between each task.

The MVC design pattern divides a given software application into three

interconnected parts: model, controller and views. The idea is to make a clear

division between the objects that represent the problem (model) which are

controlled by operations, and the visualization of objects (views) that are the

GUI elements. Figure 3.9 depicts the MVC components and the interactions

between them.

Figure 3.9: A typical collaboration of the MVC components.

In the AIBench framework, these three types of well defined objects are

called: operations, data types and views.
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3.3.2 Data types

In Optflux, the data types are objects that hold relevant data to the ap-

plication, such as the models, simulation and optimization results, and are

usually an extension of the AbstractOptFluxDataType. Each plug-in has its

own datatypes normally present in the <<plug-in package>>.datatypes

package.

The datatypes classes within OptFlux, besides the object information,

also have a reference to the project to which the data belongs. Furthermore,

these classes are used to encapsulate the data structures present in the MEW

framework.

Considering that the metabolic model information in the MEW framework

is represented by an implementation of IModel, such as SteadySteateModel,

and the genes, reactions and metabolites by the classes Gene, Reaction

and Metabolite respectively, there are data types to encapsulate these data

structures. So, the classes SteadyStateModelBox, GeneBox, ReactionsBox

and MetaboliteBox are data types to encapsulates the MEW classes Steady-

SteateModel, Gene, Reaction and Metabolite.

3.3.3 Views

The views enable the output representation of information, being the way to

present the data types on appropriate GUIs (the same data types can have

more than one view to visualize their content). The association between data

types and the view used to show the information is made on the plugin.xml

file, available for each plug-in.

The Figure 3.10 presents several views for the model information datatypes.
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Figure 3.10: Views of the metabolic model information in the Opt-
Flux GUI: 1- MetabolicModelView, 2 - MetabolitesExternalView, 3-
textttReactionsInternalView and 4 -MatrixView, to visualize the content
of datatypes SteadyStateModelBox, MetabolitesBox, ReactionsBox and
StoichiometricMatrixBox, respectively.

3.3.4 Operations

The operations accept inputs in the form of objects from specific data types,

execute commands and generate new objects or update existing ones, from well

defined data types. The operations classes present in each plug-in are, in fact,

wrappers to execute the algorithms and procedures from the MEW library.

As an example, the operation NewProjectWizardOperation is responsible to

create a new project, with the correspondent metabolic model data types.

Based on the input files, the correct reader present in the MEWCore package

is called and an instance of the Container class is obtained. Next, the
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Container is converted to the ModelBox data type and inserted into the

clipboard. Moreover, some procedures, such as the biomass reaction definition

or the removal of external metabolites present in the model, can be done in

this operation.

Considering the “wild-type” phenotype simulation as another operation

example, the Figure 3.11 presents the main MVC components and their

interactions.

Figure 3.11: Scenario for an user interaction with the Simulation plug-
in. The three main MVC components are depicted: the user interacts
with the WildTypeSimulationGUI (a view) which invokes the WildType-

SimulationOperation (controller). The controller generates the Steady-

StateSimulationResultBox (model) which in turn updates the views.

3.4 Omics data integration

The methods for phenotype simulation and for reconstruction of tissue-specific

metabolic models require data as input that can be obtained from omics data,

such as transcriptomics, metabolomics, proteomics and/or fluxomics. Thus,

as a first step it was required the development of methods to import and

transform omics data, as well as to integrate them with the metabolic model.

The information loaded from omics data is stored on OmicsContainer

instances. This class contains the data characterization, saved as a Condition
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object (a map of < property, value >), a map with score values associated

with entities (genes, reaction or metabolites) and external information that

can be used to integrate the omics data with the metabolic model.

The reading and integration processes of omics is depicted in Figure 3.12

and encompass four main steps:

1. Loading: import the data from the original files to an OmicsContainer

object.

2. Data Filtering: allows the data filtering and identifiers format conver-

sion. This step is optional. The data filtering allows the data selection

by using regular expressions over fields of omics data. This can be used

to reduce the total amount of imported data and the time consumed.

The identifiers conversion is required when the nomenclature used in

the omics data and the model is not the same. In this case, it is neces-

sary to have an auxiliary external map ( < idmodel, idomics >) with the

conversion between nomenclatures.

3. Data Integration: the integration of omics data and the metabolic

model is done using associations between omics data fields and model

fields/associations. Usually, the association is done by the entities

identifiers. However, other properties from external information present

in the OmicsContainer or the entity name can be used. In the end,

an instance of the IOmicsDataMap class is obtained, where numerical

values associated with entities present in the model are stored (score

values).

4. Data Transformation: this step allows the application of functions

over the score values, such as logarithm transformation, conversion from

gene to reaction scores through the GPR associations present in the

metabolic model and scale the values to a specific range.
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Figure 3.12: Illustration of the data loading and integration processes.The
four main steps are: 1- to load original data to an OmicsContainer object; 2
- to apply transformation methods to reduce the total amount of data and/or
to convert the format of omics identifiers; 3 - to integrate the omics data with
the metabolic model; 4 - methods to transform the score values present in
the OmicsDataMap object.

3.4.1 Data loading

Different omics data sources can be loaded and used in the Omics framework.

At the moment, readers to specific file formats, such as metabolites data

files from HMDB and protein expression levels from HPA are supported.

Additionally, data present in CSV files can also be loaded through a generic

and flexible reader, named CSVOmicsReader. Using the generic CSV reader,

the user must specify the column indexes of the identifier and of the numer-

ical values. The other fields are imported as external information to the

OmicsContainer object.

The implemented Java classes from the Omics framework to load data

files to an OmicsContainer object are in omicsintegration.io package and

implement the interface IOmicsReader (Figure 3.13).

In the data reading process it is expected that the values associated with

each entity (metabolite, gene our reaction) are numerical. Otherwise, the

user must provide an additional mapping structure Map < String,Double >

to convert each discrete level to a numerical value. At the end, an instance of
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Figure 3.13: Classes involved in reading omics data. Only the main meth-
ods and variables are shown in the diagram. All readers implement the
IOmicsReader interface and its main method, load. As a result, is created
an instance of the OmicsConatiner class is created with the omics data in-
formation.

the class OmicsContainer is created.

The OmicsContainer class contains the essential information from the

omics data, mainly:

• condition: contains the information related to the description of the

condition/sample, such as the tissue name, the cell type, stage of disease

or any other properties used to characterize the data;

• type: identifies the omic data type: transcriptomics, fluxomics,

metabolomics or proteomics;

• values: a map with the structure Map < String,Double >, where the

key is the entity identifier and the value represents the gene/protein

expression level, the concentration of a metabolite, the reaction flux or

the presence/absent of the entity;

• extrainfo: a map with external information which can be used in the

integration with the metabolic model. For instance, when the identifiers

from the model and omics data do not follow the same nomenclature,
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it is necessary to have other fields, such as KEGG or ChEBI identifiers,

for metabolomics data, to allow the connection between the model and

omics data entities.

3.4.2 Integration with the metabolic model

The integration of omics data with the metabolic model has the objective of

setting the identifiers from OmicsContainer with the nomenclature used in

the metabolic model for the same entities (gene, reaction or metabolite).

This process takes as input an OmicsContainer object and converts it into

one of the following classes: GeneDataMap, ReactionDataMap, Metabolite-

DataMap. These classes implement the interface IOmicsDataMap and represent

transcriptomics, fluxomics and metabolomics data, respectively. Furthermore,

after the integration, only the identifiers present in the metabolic model are

retained in the omics data structure. Figure 3.14 shows the class diagram

with the main classes employed in the integration process.

Figure 3.14: Class diagram of main classes used in the integration of omics
data with the metabolic model.

Each omics data type has it own integrator class which is responsible for

implementing the convert method from the interface IOmicsIntegrator.
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The integration can be made through different information fields, such as

the identifier, the name or from external information data structures. Thus, if

the model integration field, modelIdField, contains the value ”ID” or ”NAME”,

the integration is made using the identifier or entity name from the metabolic

model, otherwise it is assumed that the field is present in the extra information

structure from the Container object. Similarly, the omics integration field,

omicIdField, specifies the used field from the OmicsContainer.

During the integration, it is possible to reach more than one value from

omics data for the same entity on the metabolic model. This happens, for

instance, if omics data identifiers come from transcript sequences instead of

genes, because several transcripts can be associated with the same gene. In

this case, the maximum value from the transcripts is assumed to be the score

value associated to the corresponding gene present in the metabolic model.

Another special case occurs when the same omics data entry (< id, value >)

is associated with more than one identifier in the model. Here, the omics

value is replicated for all matching entities from the metabolic model.

3.4.3 Transformation methods

There are two categories of omics transformation methods in the devel-

oped framework. The first contains methods over OmicsContainer ob-

jects to allow filtering data by using regular expressions over omics data

fields and to convert the identifiers to a new format based on a given map

with entries in the form: [oldid− > newid]. These two methods are imple-

mented in the omicsintegration.transform package under the class names:

TransformOmicsFilter and TransformOmicsKeys. All the transformation

classes applied to OmicsContainer objects must implement the interface

ITransformOmics.

The other contains transformations over the OmicsDataMap objects to

allow the values scaling or the conversion of gene to reaction scores under the

GPR associations. In the last method, the operators AND/OR present in the

GPR associations are, usually, replaced by the functions Minimum/Maximum.
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Thus, if a reaction is regulated by the gene rule ”gene1 and gene2” the reaction

score value will be the lower score among these genes. However, it is possible

to specify different functions to be applied in the transformation process.

The class FactoryTransformDataMap is responsible, in run time, to create

a transformation class instance based on the transformation type selected by

the user.

Figure 3.15: Diagram of classes implementing the transformation methods
available in the framework.

Following this class structure, it is easy to develop new transformation

methods, only being required the implementation of an interface method in

the ITransformDataMap class and the registration of the new transformation

class in the factory FactoryTransformDataMap.

3.5 Simulation methods

The simulation methods allow the phenotype prediction (flux values for the

reactions), using omics data to improve the results over traditional constraint-

based methods. The objective is to find a flux distribution, where an objective

function is defined considering the omics data as a guide for the distribution.

The three methods discussed in chapter 2, mainly the E-Flux, IMAT and

GIMME , are available in the omicsintegration.omicssimulation package

from the Omics framework.

The class diagram of the implemented algorithms and the connection to

the MEW classes are shown on Figure 3.16.
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Figure 3.16: Class diagram of simulation methods with omics integration.

All these methods are made available through the Omics plug-in discussed

in the following section 3.7. To simplify the instantiation of the methods,

a factory class was implemented, named FactoryOmicsSimulationMethods.

This class is responsible for returning the instance of the simulation class

according to the method chosen by the user in run time. This is used to avoid

the replication of code and to simplify the addition of new methods to the

framework.

In the implementation of these methods, we separate the omics data

processing from the algorithm. This means that all the algorithms accept as

input a ReactionDataMap as omics data source. The transformation from

gene to reaction scores is done using the methods presented in the previous

section. This separation in two layers allows to use several omics data sources

for each algorithm.

Each class implementing a simulation method is an extension of the class

AbstractSSBasicSimulation<T extends LPProblem>, which is responsible

for creating the simulation problem that will run in the solver.

The configuration to run each method is stored in a specific class: EFlux-

Configuration, IMATConfiguration and GIMMEConfiguration. All these

classes are extensions of the class GenericOmicsConfiguration, which con-

tains the basic information required to run phenotype simulation with omics
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data integration. In detail, this class has the metabolic model, the omics

data and the generic configuration properties, such as the solver type and the

environmental conditions to use in the phenotype prediction. Additionally,

the configuration class of each method has specific properties used by the

algorithm. The hierarchical structure of these classes is shown in Figure 3.17.

Figure 3.17: Class diagram for the configuration classes used in the phenotype
simulation methods of the Omics framework.

The constructor of each simulation method takes as input an instance of

the corresponding configuration class, since all the required information is

there.

3.5.1 iMAT

The IMATConfiguration class holds the configuration to run a phenotype

simulation using the iMAT algorithm, mainly up and down regulated reactions

sets used and the parameter ǫ value (with 1.0 by default).
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The iMAT algorithm is implemented in the class IMAT, where the extension

of the basic problem created by AbstractSSBasicSimulation is done. Here,

the methods createVariables, createConstrains and createObjective-

Function, are overridden to create the additional variables and constraints

for the iMAT formulation and to define the objective function.

3.5.2 GIMME

The GIMMEConfiguration class supports two different ways to get the limits

of reactions associated with the Required Metabolic Functionalities (RMFs)

in the GIMME algorithm:

1. by using a set of RMFs to constrain the reaction of each RMF to a

percentage of the maximum possible flux calculated by FBA. In this

case, the reaction limits for each RMF are calculated inside the GIMME

algorithm through the runRMFs function. The lower and upper bounds

are populated by a percentage of the maximum flux value obtained by

FBA and the flux value itself, respectively.

2. using a ReactionDataMap, which contains the maximum flux reaction

associated with the RMFs. The reaction lower bound is calculated

as a product of the maximum flux and the configuration property

RMF Percentage.

The GIMME algorithm class, GIMME, overrides the method createVaria-

bles where the constraints of RMFs associated reactions are changed to the

lower and upper bounds obtained by one of the previous described ways.

3.5.3 E-Flux

The E-Flux method is an extension of the FBA formulation being only re-

quired the update of the reaction constraints. These reactions constraints,
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given as argument to the method, are obtained by transforming the tran-

scpriptomic data ( scores associated to genes) to reaction scores through the

GPR associations.

In the class EFlux, the reaction scores received as input are normalized by

dividing each reaction score by the maximum of all scores. This normalization

converts all scores to values between 0 and 1. Next, the reaction constraints

are updated to set the lower and upper bounds to the normalized score.

Reactions without associated score in the input data will be constrained with

the upper bound of 1 and lower bound of -1, or 0 if the reaction is irreversible.

The external exchange reactions have the lower and uppers bounds as -1

and 1, respectively. However, when a reaction is only for uptake/secretion

the upper bound/lower is changed to 0.

3.6 Tissue-specific reconstruction methods

Besides phenotype prediction methods with omics data integration, the

framework also has methods to reconstruct tissue-specific metabolic models.

In summary, these methods use a generic model as template and evidences

provided by omics data and literature to reconstruct a context-specific model,

and were explored in detail in chapter 2, section 2.6.

In the framework, four methods were implemented: MBA, mCADRE,

tINIT and FASTCORE. Similarly to the simulation method’s classes, the

constructor receives a configuration object which contains all parameters and

data used by the algorithm. These four configuration classes were implemented

as an extension of GenericOmicsConfiguration.

Again, the layer of omics data processing is independent of the method

itself. Actually, all the methods expect a ReactionDataMap instance as main

input in the configuration object. Therefore, the processing of omics data and

conversion to a ReactionDataMap object is done using the methods presented

in section 3.4. This layer division allows us to use different omics data types
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with each implemented method.

Each one of the methods was implemented in a class, named from the

method’s name. These classes are an extension of the AbstractReconstruc-

tionAlgorithm which implements the interface ISpecificModelReconstruc-

tion. The hierarchical diagram of classes is depicted in Figure 3.18.

The result of the reconstruction process is an instance of the class

SpecificModelResult returned by the generateSpecificModel method

present in each class that implements a specific algorithm.

Figure 3.18: Class diagram of reconstruction of tissue-specific methods.

The assumptions taken during the implementation of reconstruction meth-

ods on this framework will be detailed in the next subsections.

3.6.1 tINIT

The tINIT method has two main steps: first, find out the set of essential

reactions to perform the metabolic tasks passed as input; second, simulate

the formulation problem described in section 2.6, which is implemented in

the tINIT class, where the reactions found in previous steps are constrained

to have flux.
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To perform the first step, additional methods were developed to load

metabolic tasks and find the reactions that can not be removed from the

model to be able to perform such tasks. The metabolic tasks can be loaded

by the TasksReader class from a CSV file with the following structure:

COM;ID;DESCRIPTION;SHOULD_FAIL;IN;IN_LB;IN_UB;OUT;OUT_LB;OUT_UB;EQU;EQU_LB;EQU_UB;OBJ_REAC

;id1; description;;M_A_e,M_B_c,M_C_e;-1000,-1000,-1000;0,0,0;M_Z_e;0;1000;;;;M_X_e

In the task above, the metabolic task id1, must produce the metabolite

M X, when the drains are open for the excretion of M Z and allowing uptake

of M A and M C. Moreover, it is assumed that metabolite M B can be

produced by the cell in the cytosol compartment.

This file can be constructed based on metabolite or reaction entities. The

entity references present in the file must be one of the following: identifiers,

names or any other field present in the external information from the template

model object, Container. However, the match between model entities and

tasks must be perfect, otherwise an exception will be thrown during the

reading process, telling that the metabolite/reaction does not exist in the

metabolic model.

The simulation of each metabolic model is done by the CheckTasks class.

First, the model is reduced to contain only the reactions that can carry flux.

Next, the drains present in the metabolic task are constrained to the values

present there, while the others are closed by setting the lower and upper

bounds to 0. Furthermore, for the internal metabolites, which are assumed to

have production, new artificial drains will be inserted in the model to uptake

such metabolites. In the previous example, a new drain to uptake M B c

will be added to the model.

Finally, an FBA with the maximization of the target metabolite, M X e,

is performed considering the changed model and the constraints imposed

to the drains reaction. Based on the result, we simulate the knockout of

each reaction that can carry, using FBA, to verify if the knockout reaction is

essential or not to satisfy the task. In the end, the set of essential reactions
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to satisfy the metabolic task is returned.

This set of reactions is afterwards used by the tINIT algorithm by adding

new constraints to the reconstruction problem, which guarantees that these

reactions must have a positive flux in the final result.

3.6.2 MBA

The MBA algorithm receives two reaction sets as input (CH and CM). Once

again, this information is given to the algorithm under a MBAConfiguration

instance. Ideally, the final tissue-specific model is built from a significant

number of models obtained by running several times the MBA algorithm.

Thus, after the construction of each model through the generateSpecific-

Model function present in the MBAAlgorithm class, the final model is created

through the static function getFinalModel. This function takes as input the

template metabolic model, the core reactions set and the path of all files with

the reaction identifiers of the tissue-specific models. At the end, a set with

the reaction identifiers present in the final consensus model are returned.

3.6.3 mCADRE

The mCADREConfiguration class contains the reaction scores, the confidence

levels and a set of metabolic tasks. These tasks contain the set of metabolites

that should be produced during the pruning process. This production is

checked on function checkModelFunction on the mCADRE class.

When the algorithm tries to remove a set of reactions from the model, the

production of essential metabolites is tested by adding a fake drain to the

model and a simulation is performed to check if the drain has flux excretion.

This simulation is done through the MinMax formulation problem, where the

objective function is the maximization of a constant value and the new drain

is constrained to carry a flux larger than 10−4. If the problem has a feasible

solution, then it is possible to have metabolite production in the model after
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the removal of a set of reactions. Alternatively, this step could be done using

the FBA with the maximization of the metabolite excretion, however this

would be time consuming.

3.6.4 FASTCORE

The FASTCORE algorithm was implemented using 3 main classes:

• FastCoreAlgorithm: this is the main class of the method and imple-

ments the algorithm presented in the Section 2.6.4;

• MaxNumberReactions: implements the LP formulation to find the

larger set of reactions from a given set with a positive flux rate;

• MinimizesFluxPenaltySet: implements the LP formulation to find

the smaller set of reactions with flux from the penalty set, when a given

set of reactions must have flux.

These two last classes implement the formulation problems, named LP7 and

LP10, respectively in the original paper [22]. Moreover, these classes are

an extension of the AbstractSSBasicSimulation<T extends LPProblem>

class from the MEW framework.

3.6.5 Running tissue-specific model reconstruction

In order to easily use the framework by non-programmers, a class to launch

the tissue-specific metabolic model reconstruction methods was implemented,

named GenerateModels. This class allows to run each method for different

omics data such as : HPA, GEB and two sets of reactions (core and moderate).

The configuration of all inputs required to build the tissue-specific models is

done through a text file where the following fields must be populated:

• ModelSBMLFile: path to the SBML template metabolic model;
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• BiomassReaction: biomass reaction identifier (null if no biomass

reaction exists on the model);

• HPAFile: path to a CSV data file with HPA protein expression levels.

This file must have two columns, the first with the gene identifiers and

the other with the expression levels;

• CHFile and CMFile: path to files with the core and moderate reac-

tion sets;

• BarcodeFile: file with the gene identifiers and the probability to be

active or not in the tissue. These data can be obtained from the GEB

website and must be converted to a map with the entities in the form

[GeneId− > score] using, for instance, the Bioconductor annotation

package;

• ConfLevelScores, TaskFile: information used in the tINIT method.

The task file must have the structure presented above (section 3.6.1),

where the header must have the same order and name fields;

• CellLine: identification of tissue , cell or context;

• convertGeneIdsFile: file to convert gene identifiers from omics data

to model format;

• ResultsPath: path where the final metabolic models will be stored;

• Method: one of the methods available in the framework. The field

must have the value “tINIT” , “mCADRE”, “MBA” or “FASTCORE”;

• OmicData: one of these omics data types: “HPA”, “Barcod”, “Sets”;

• CutOff1 and CutOff2: values to build the core and moderate sets.

The core set will be composed with reactions with a score higher than

CutOff1 and the moderate set encompasses the reactions with score

values between the two cut offs.
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• tINITCuttOff: values to use in the tINIT algorithm to create the five

expression levels.

Using this class to reconstruct the tissue-specific model there are some

rules that are assumed by the GenerateModel class, such as:

• The HPA expression levels, “High”, “Medium”, “Low” and “Not de-

tected” are always converted to the integer values 20, 15, 10 and −8,

respectively;

• The key metabolites used on mCADRE method are the same as pub-

lished in the original paper [21] as metabolites that should be produced

in all tissues cells.

3.7 Omics plug-in

The need to develop the software tools for regular users led us to design and

implement new plug-ins, to support the developments present in the previous

sections, within OptFlux, thus making the most of pre-existing tools. Thus,

two new plug-ins were created, the Omics and the OmicsSimulation plug-ins.

3.7.1 Implementation

The Omics plug-in was developed to support all the methods presented in

section 3.4 which include the reading, integration and the transformation

of omics data processes. Following the MVC design pattern, several new

components were created, from which the most relevant will be detailed.

The ImportOmicsWizard class and its related classes from the import-

omicswizard package, provide a set of dialogs for the ImportOmicsWizard-

Operation, which allows the user to load the omics data from data files and

perform some transformations over the original data, such as the conversion
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of entity identifiers and discrete levels to numerical values and the integration

with the metabolic model.

The addition of new readers is easily implemented. The new reader must

be an extension of the AbstractOmicsReader and implement the following

two methods:

• needsConfiguration: this function must return true if the reader

requires a specific configuration panel;

• getConfigurationPanel: returns the class which extends Abstract-

WizardConfigurationPanel and contains the specific configuration

panel.

After the reading process completes, the results are placed in the OptFlux

clipboard under the corresponding omics type folder (Gene, Reaction or

Metabolite). Moreover, the result can be an instance of one of the following

data types: GeneBox, MetaboliteBox or ReactionBox. All these classes are

an extension of the OmicsBox datatype, and its content can be visualized

through the OmicsView.

The omics data objects available in the clipboard can be used to ap-

ply a transformation over the score values or convert the gene scores to

reaction scores through the menu option Transform omics. Next, the GUI

TransformOmicsDataGUI is presented and the user can select the configura-

tion parameters required for the transformation. After the transformation

operation, TransformDataMapOperation, a new data object will be added to

the clipboard.

3.7.2 Functionalities

The steps to load a CSV file are shown in Figure 3.19. The step 2 only

appears when the data is imported from a generic CSV file.
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Figure 3.19: Dialogs to load and integrate omics data with the metabolic
model. 1- select the data source and set experiment properties such as tissue
and cell type. 2 - choose the identifier and values columns, other fields can be
imported as external information. 3 - convert the expression level to numeric
values; 4 - choose the fields that will be used to do the integration between
omics data and metabolic model. An additional conversion of identifiers can
also be set as an external file.

The view depicted in Figure 3.20 presents the experimental conditions to

help in data characterization and the score values associated to each entity

identifier, in this case the gene identifier.

3.8 Omics simulation plug-in

The simulation plug-in was developed to support the phenotype simulation

methods presented in Section 3.5.
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Figure 3.20: Omics data View.

3.8.1 Implementation

The configuration panel contains the parameters used in the configuration of

each algorithm. In iMAT, for instance, the user must set the ReactionOmics-

Box that will be used as input data, the lower and upper bounds used to build

the up and down regulated reaction sets. The reactions with score values

lower than the lower bound specified by user in the configuration panel, will

be considered down regulated by the algorithm. On the other hand, reaction

with scores higher than the upper bound will be considered upregulated.

The E-Flux does not require any additional information. Thus, it is not

necessary any configuration panel for this method.

The GIMME configuration panel, GIMMEConfigurationPanel, accepts

two ways to limit the RMF’s flux reactions: a list of reactions scores, a

ReactionOmicsBox datatype, where each score represents the maximum flux

for a reaction, or a list of metabolic tasks used to calculate the maximum flux

for the objective function, a reaction, of each metabolic task.

Additional fields are required to run this method, such as:

• Percentage: this value is used to constrain the RMF’s objective in

the formulation. These reactions which represent the RMFs must have
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a flux higher than a percentage of the maximum possible flux.

• Cutoff: is a threshold value set by the user above which a reaction is

considered to be present.

3.8.2 Functionalities

The OmicsSimulationGUI provides a dialog for the OmicsSimulationOpera-

tion, which allows the user to configure and launch a strain simulation with

omics integration procedure. This dialog is depicted in Figure 3.21.

Figure 3.21: Screenshot of the simulation methods configuration dialog.

This GUI allows setting up and configuring several optimization parame-

ters:

• Select Project: select the metabolic model associated to the project

to perform the simulation;

• Select Environmental Conditions: the list of available environmen-

tal conditions for this project.

• Select Omics Data: select the instance of ReactionOmisBox datatype

used as input. Only this data type is available, because all the available

methods use ReactionDataMap object as input;
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• Select Simulation Method the method used to perform the simula-

tion;

• Configuration Panel: this panel depends of the selected method.

Each method has it own panel with the required configuration fields

(IMATConfigurationPanel, IGIMMEConfigurationPanel, EFluxConfi-

gurationPanel). All these classes are an extension of the abstract class

AbstractOmicsSimulationConfigurationPanel.

3.9 Conclusion

This work proposes an integrated framework to use omics information in

phenotype predictions and to reconstruct tissue-specific metabolic models.

The development is segmented in two layers allowing both users with compu-

tational skills and regular users to use the methods implemented during this

thesis. Moreover, the addition of new features and new methods can be done

easily by programmers using the provided API.

The addition of two new plug-ins to integrate omics data with models

and phenotype prediction in the open-source OptFlux platform makes it an

attractive resource to an ever increasing community.

The described software was developed in the Java programming language,

and is available as an open source packages (mewomicsintegration and

optflux-omicsintegration) in sourceforge.net/p/optflux/. Moreover,

a docker container is available in the repository https://hub.docker.com/r/

saracorreia/tsmm U251 which allows the reconstruction of tissue-specific

metabolic models for the U-251 cells line (further described in Chapter 6).

Future work contemplates the development of a new plug-in to support a

graphical user interface for the tissue-specific reconstruction methods.



Chapter 4

Evaluating Phenotype

Simulation Methods

In this chapter, a validation of the phenotype simulation

methods implemented in this work was performed, using

omics datasets from a previous study. The three imple-

mented methods: E-Flux, GIMME and iMAT were used to

perform phenotype prediction and their flux distributions

were compared with the experimental data provided in this

study.

4.1 Introduction

The nicotinamide adenine dinucleotide (NADH) and the adenosine triphos-

phate (ATP) cofactors play an important role in metabolism. NAD is involved

in redox reactions, carrying electrons from one reaction to another and the

ATP is the source of energy to several biological processes that occur in the

cell [107]. These cofactors, NADH and ATP, are highly connected in the

metabolic networks of most microorganisms [108]. Thus, it is expectable that

small changes in their concentration causes significant modifications in several

73
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parts of the metabolism.

In 2010, Holm et al. [109] studied the impact of these two cofactors in

the Escherichia coli metabolism regulation. More specifically, the authors

wanted to understand aspects of metabolism that are controlled by the levels

of NADH or ATP present in the cell. In the study [109], they compared the

phenotype of the wild-type strain and two mutants: NOX (overexpression

of NADH oxidase) and ATPase (overexpression of soluble F1-ATPase). The

analysis was done based on the quantification of the metabolic fluxes in central

carbon metabolism and the genome-wide transcription for the three E. coli

strains.

4.2 Methods

As a case study, this dataset was used to evaluate the implemented phenotype

simulation methods: E-flux, GIMME and iMAT. The dataset is composed

by transcriptomic and 13C-flux data for the three E .coli strains. The tran-

scriptomic data can be obtained from the NCBI Gene Expression Omnibus

using the accession number GSE20374 and metabolic flux measurements are

available in the supplemental material of the publication [109].

The implemented simulation methods were applied using the genome-scale

metabolic model iAF1260 [110] to predict the phenotype and considering

the gene expression data as input . In all simulations, the glucose uptake

constraint present in the original model was overridden with the experimental

value for each strain present in the dataset. Thus, for the simulation of

each E .coli strain, the limit of the glucose uptake present in Table 4.1 was

considered:

Table 4.1: The glucose uptake rate constraint for each E. coli strain.

Wild type NOX ATPase

Glucose 9.2 11.7 15.6



4.2 Methods 75

4.2.1 Pre-processing the fluxomics data

Following a suggestion from [111], the experimental data values were adjusted

to the feasible flux distributions obtained with the metabolic model, with

the smallest Euclidean distance to the original values. This modification

is desirable because some of the experimental values do not lie within the

solution space, being the error propagated to the methods evaluation. Table

4.2 contains the original flux values measured by 13C-labeling and the value

after the adjustment, used in this case study for methods evaluation purposes.

Table 4.2: Original measured values and the adjusted values obtained by the
closer feasible flux distribution using the metabolic model iAF1260.

Original Adjusted
Reaction WT NOX ATPase WT NOX ATPase

Ec biomass 0.67 0.63 0.58 0.47 0.49 0.39
FUM 1.6 4.8 4.3 1.67 4.84 4.36
G6PDH2r 4.4 4.9 5.1 4.40 4.90 5.10
GAPD 15.3 20.4 28.3 15.31 20.41 28.31
GLCptspp 9.2 11.7 15.6 9.20 11.70 15.60
GND 4.4 4.9 5.1 4.40 4.90 5.10
ICDHyr 2.5 5.6 5.1 2.43 5.56 5.04
ME1 0 0.2 0 0 0.16 0
PGK −15.3 −20.4 −28.3 −15.31 −20.41 −28.31
PGL 4.4 4.9 5.1 4.40 4.90 5.10
PPC 4 4 6.5 4.07 4.04 6.56
PPCK 2 1.8 4.8 1.93 1.76 4.74
RPE 2.4 2.8 3 2.39 2.80 2.99
RPI −2 −2.1 −2.1 −1.99 −2.08 −2.09
TALA 1.3 1.5 1.6 1.30 1.51 1.61
TKT1 1.3 1.5 1.6 1.30 1.51 1.61
TKT2 1.1 1.3 1.4 1.09 1.29 1.39
TPI 7.1 9.6 13.5 7.06 9.52 13.43
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4.2.2 E-Flux

The implementation of E-flux, described in section 2.5.3, is basically an

extension of the FBA problem, where the fluxes are constrained based on

trascriptomic data. The score value of each reaction is calculated based on

the GPR association, where the OR / AND operators are converted to Max /

Plus functions as described in the original publication [15]. These scores are

then normalized causing each reaction, rj, to be constrained with an upper

bound bj, between 0 to 1, and a lower bound equal to −bi or 0, when the

reaction is irreversible. Furthermore, all uptake reactions are constrained to

a lower bound of −1. The resulting flux distribution is adimensional. Thus,

to compare it with the original flux distribution, the values were scaled by

the experimental measured glucose uptake rates.

4.2.3 GIMME

The GIMME method, detailed in section 2.5.2, besides the transcriptomic

data, receives three parameters as argument:

1. the gene expression cutoff, which was set to the 25th percentile of the

gene expression values;

2. the metabolic function that represent the Required Metabolic Function-

ality - in this case, the maximization of biomass production;

3. the required fraction of the objective value, which was set to 90% of

the maximum growth rate.

For each strain, according to the description in section 2.5.2, a FBA was

performed to find the maximum possible flux rate of the biomass equation.

Next, the algorithm was run with a constraint over this reaction flux which

must be at least 90% of the maximum flux.
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4.2.4 iMAT

The iMAT (section 2.5.1) implementation also takes three parameters as input:

the low and high expression thresholds used to calculate the up and down

regulated reactions, and a threshold which was set to 1, as in the original

publication [13]. The two expression thresholds were set to the 25th and 75th

percentiles of the experimental flux data. The reactions with score lower than

the 25th percentile were considered downregulated, while scores higher than

the 75th percentile belong to upregulated reactions.

The Table 4.3 presents the threshold values used in each strain phenotype

prediction by GIMME and iMAT methods.

Table 4.3: The 25th and 75th percentiles of the experimental flux data from
each strain used as thresholds by GIMME and iMAT methods.

Strain 25th percentile 75th percentile

Wild type 8.12 11.41
NOX 8.95 11.27
ATPase 8.58 11.25

4.3 Results

The phenotype prediction, using the implemented methods, was done for

the three E. coli strains using the transcriptomic data available from [109].

The GIMME and iMAT methods were previously available in the COBRA

Toolbox. Moreover, this dataset was already used to compare and evaluate

the results of several methods in Machado et al. [111].

Here, the prediction capability of each implemented method in our frame-

work is compared with the experimental data [109] and the previous work

[111] with the same datasets.

Figure 4.1 shows the secretion flux rates for the two available external

experimental measurements in the dataset.
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Figure 4.1: Predicted and measured flux rates for acetate secretion and growth
for the three E. coli strains using the methods E-Flux, GIMME and iMAT.

The secretion of acetate is reached in all phenotype predictions. However,

none of the algorithms are able to show the decreasing flux rate between the

wild type and the NOX strain, as shown in the Figure 4.1 A). Regarding the

growth rate prediction, E-flux and GIMME are capable to predict cellular

growth. However, once again, the small decreasing flux rates in the ATPase

strain are not shown by the predicted values.

These results are significantly different from those presented in [111],

where the phenotype prediction for the two mutants (NOX and ATPase) were

analyzed. In their study, none of the methods presented secretion rates for

acetate and only the E-Flux is able to predict growth.
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4.3.1 Prediction error

In order to evaluate the prediction capability of the methods, the flux dis-

tributions obtained using transcriptomic data from three E. coli strains are

compared against the adjusted experimental measured fluxes.

Figure 4.2 shows the distribution of the normalized prediction error for

each method across the three strains (wild-type, NOX and ATPase). The flux

distribution errors were compared with the error obtained using the pFBA

(parsimonious version of FBA) method for the phenotype predictions.

Figure 4.2: Prediction error for the simulation methods. Distribution of
normalized prediction error for the methods E-Flux, GIMME, IMAT, pFBA.

The normalized prediction error was calculated for each simulation, com-

paring its results with the adjusted experimental values. The estimation error

is given by the equation:

error =
‖vexp − vsim‖

‖vexp‖
(4.1)

where vexp is the vector of adjusted flux values and vsim is the vector of

predicted values.
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Similarly as concluded in [111], the three methods have a lower predictive

capability, when compared with the pFBA. However, in our results the iMAT

present a significant improvement, comparing with the results obtained in

[111] are considered.

Next, to better understand how the distribution error varies accross the

measured flux reactions, a heatmap of the differences between the predicted

and measured fluxes is presented in Figure 4.3.

Figure 4.3: Difference between predicted and measured fluxes for all evaluated
methods across all E. coli strains.

Looking to the prediction errors for a specific strain, it is visible that

the GIMME and pFBA methods have similar error distributions across the

presented reactions. Moreover, considering the wild type strain, the E-Flux
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method has a better prediction for reactions where other methods fail, such

as: ACONTa, CS, and AKGDH.

4.3.2 Central carbon metabolism

The experimental measured fluxes belong to the central carbon metabolism

of E. coli. In order to analyse the flux distribution over these reactions and

compare it to the predicted flux distributions, Figure 4.4 presents the main

reactions involved and the flux distributions for the wild type strain.

Analysing these flux distributions, it is visible that some reactions carry

flux in the opposite direction when compared with the measured fluxes, such

as the R PGI reaction for the iMAT flux distribution and the R TKT1 and

the R TKT2 reactions in the E-flux.

The conversion of PEP to Pyruvate is essentially done through the R -

GLCptspp, instead of the emphR PYK reaction. Moreover, the E-Flux distri-

bution has an alternative pathway, not seen in this image, to convert Pyruvate

into acetyl-CoA, since the reaction R CS from the TCA cycle has flux.

Finally, the flux rates associated with the reaction R ACKr confirm the

acetate production in the predictions.

4.4 Conclusion

In this chapter, a validation of the implemented simulation methods was

performed, comparing our results with previous published work [111]. The

two studies use the same E. coli metabolic model and transcriptomics data to

perform phenotype prediction, using E-Flux, GIMME and iMAT as simulation

methods. Next, the 13C flux measurements from [109] were used to evaluate

the capability prediction of such methods .

In general, our results are similar with the published results. In both

cases, the phenotype predictions using pFBA have a lower prediction error
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associated. This can be explained by the low number of measured reactions,

only 36 of the 2382 present in the metabolic model iAF1260.

The main difference between the two studies is found in the secretion of

acetate. In [111], none of the predicted flux distributions have secretion of

acetate, but in our results the acetate production occurs. This difference might

be explained since the methods allow different flux distributions achieving

optimal values for the objective function.
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Figure 4.4: Metabolic flux distribution in the central carbon metabolism of E.
coli wild type strain, of experimental data (black), and using the simulation
methods: E-Flux (red), GIMME (green) and iMAT(blue).





Chapter 5

Evaluating Tissue-Specific

Model Reconstruction

Algorithms and Data Sources

This chapter presents the comparison and analysis of the

consistency between several omics data sources. More-

over, four published approaches were used to reconstruct

hepatocytes metabolic models using different omics data.

These models were compared and validated through a list

of metabolic tasks, which hepatocytes cell must perform.

Finally, based on the results, a method to build a consensus

final model is proposed to generate our final hepatocytes

metabolic model.

5.1 Introduction

In chapter 2, we presented methods for integrating genome-scale metabolic

models with omics data, which can be separated in two categories. The

first one encompasses all the methods that use these data to improve the

85
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prediction of metabolic flux distributions, such as iMAT, GIMME and E-

Flux. These methods have been already critically evaluated and compared

in published work by Machado et al [111] and in the previous chapter. The

other category covers the context-specific reconstruction methods which use

generic metabolic models and omics data as input. Here, we include methods

such as MBA [16], mCADRE [21], tINIT [20] and FASTCORE [22].

Recently, two categories of approaches have been proposed to test model

building algorithms [112]. The first encompasses tests for assessing the

algorithms robustness against noise, while the second covers the comparison

of a set of functionalities that models are able to perform, using published

data as reference. However, these tests were done using a single omics data

type as input, which does not allow the analyses of the effects of input data

in final models behaviour. Moreover, important methods such as tINIT,

mCADRE and MBA were not considered in validation process.

Thus, the impact of using different omics datasets on the final results of

those algorithms is a question that remains to be answered.

5.2 Methods

The human liver is one of the most important organs in the regulation of

the human metabolism, being responsible for numerous functions, as the

production of bile, removal of toxic substances, decomposition of red cells and

chemical regulation of the plasma [113]. The liver consists in different types of

cells: parenchymal cells (hepatocytes and bile duct cells) and nonparenchymal

cells. Disorders in the metabolism of distinct cell types cause a number

of diseases, like hepatitis, nonalcoholic fatty liver disease or hepatocellular

carcinoma (HCC) [114]. HCC strikes about half a million humans in the

world and it is the most usual form of primary cancer [115].

The analysis of the differences at a molecular level of healthy and disease

states, made possible by the enhanced high throughput technologies and
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decreasing costs of obtaining different omics data, can help to clarify the

functional mechanisms of liver cells and related diseases [116].

About 78% of the liver tissue is formed by hepatocyte cells that are the

principal site of the metabolic conversions underlying the diverse physiological

functions of the liver [117]. To have a better understanding of how hepatocyte

cells work, different algorithms have been applied to reconstruct tissue specific

metabolic models for this cell type [16, 21]. Also, Gille et al. built a manually

curated GSMM for hepatocytes, the HepatoNet1 [17].

Here, hepatocytes metabolic models were reconstructed using different

omics data sources and different algorithms, to evaluate the effects that each

of those variables have in the resulting tissue-specific metabolic models and

their behavior.

5.2.1 Generic human metabolic models

At the time of this work, three generic genome-scale human metabolic mod-

els and a reaction database used to reconstruct tissue-specific models were

available [7, 8, 10, 62].

An analysis of the most used generic human metabolic models [7, 10, 62]

in the reconstruction of tissue-specific models was performed to highlight

the main differences between them. This was done using an integration

system developed in our research group by Liu et al. (unpublished). The

reaction and metabolites are unified in a Neo4j graph database [118], where

information present in the models such as KEGG and ChEBI identifiers,

chemical formulas and names are used to integrate metabolites into clusters.

The integration of reactions was done using these clusters and assuming that

reactions from different models are the same if they have the same metabolites

(i.e. metabolites joined in the same clusters) as reagents and products.

During the integration process, the presence of protons in the reactions was

ignored. So, if two reactions from a model differ only in the presence/absence
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of protons they will be considered the same reaction. This assumption is only

made for the overlap analysis of generic metabolic models.

In the present analysis, the drain reactions were not considered. Therefore,

the metabolic models Recon 1, Recon 2 and HMR 2.0 have 3.207, 6.462 and

6.896 unique reactions, respectively.

The overlap between models is shown in Figure 5.1. As expected, the

Recon 2 has almost all reactions present in Recon 1, its previous version.

Figure 5.1: Number of integrated reactions across the three main generic
human metabolic models - Recon 1, Recon 2 and HMR 2.0.

Being the HMR2.0 constructed by integrating the elements of stoichiomet-

ric networks of human metabolism, namely Recon1, the Edinburgh Human

Metabolic Model and the KEGG database [62], it was expected a better

consensus between the two analysed models (Recon 1 and HMR2.0).

Next, the analysis of which pathways are associated with the non integrated

reactions was done using the subsystem information present in the models

(loaded from their SBML files). The differences between Recon1 and Recon2

are essentially related with fatty acid synthesis and oxidation pathways (248

reactions) and transport reactions between compartments (544 reactions).
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The comparison between Recon 2 and HMR2.0 is more difficult to make, since

the pathway identifiers are different and in some cases a single pathway in

one model is split in more than one pathway in the other. Moreover, 967

non integrated reactions from HMR2.0 do not have information about their

subsystem. Nevertheless, the reactions not integrated between the two models

belong essentially to the pathways: Glycerolipid metabolism, Formation and

hydrolysis of cholesterol esters, Glycerophospholipid metabolism, Carnitine

shuttle, Sphingolipid metabolism, Leukotriene metabolism, Phenylalanine,

tyrosine and tryptophan biosynthesis.

The difficulty of model integration and the poor overlap between them

was already discussed in 2011 by Stobbe et al. [119]. The standardization of

metabolite names and identifiers and the manual curation are still required

to improve and develop an unified and biologically accurate metabolic model.

5.2.2 Reference metabolic model

In 2010, a genome-scale metabolic network of human hepatocytes was pre-

sented by Gille et al, the HepatoNet1 [17]. This network enables the ap-

plication of constraint-based modeling techniques to discriminate allowable

metabolic states in hepatocytes in different environmental conditions. The

initial list of reactions to consider to establish a stoichiometric model of

human hepatocyte metabolism was obtained from the two existing global

reconstructions of the human metabolic network - Recon 1 and EHMN, and

from the KEGG database. Moreover, databases like BRENDA, Reactome

and UniProtKB were used for validation proposes [17].

The resulting metabolic network satisfies 442 different metabolic objectives,

related to known metabolic liver functions, and guarantees that impossible

tasks are not achievable within the network. Furthermore, the final metabolic

model comprises 777 metabolites in six intracellular and two extracellular

compartments and 2.539 reactions, including 1.466 transport reactions.
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5.2.3 Input data sources

All the context-specific reconstruction methods used take as input a generic

metabolic model and information from omics data. The omics data used for

the reconstruction of the hepatocytes metabolic models were obtained from

proteomics and transcriptomics. Manually curated sets of reactions used in

[16], to reconstruct the hepatocytes metabolic model, were considered.

Proteomics data were retrieved from the Human Protein Atlas (HPA) [84],

which contains the profiles of human proteins in all major human healthy and

cancer cells. The information was collected for the liver tissue (hepatocytes)

from HPA version 12 and Ensembl [120] version 73.37. After a conversion

from Ensembl gene identifiers to gene symbols, duplicated genes with different

evidence levels were removed. Table 5.1 presents the list of removed genes

during this process.

Table 5.1: Gene symbols with different evidence levels in Human Protein
Atlas.

Ensembl ID Expression Level Gene Symbol

ENSG00000169894 Medium MUC3A
ENSG00000228273 High MUC3A
ENSG00000115540 Low MOB4
ENSG00000270757 Medium MOB4
ENSG00000123444 Not detected KBTBD4
ENSG00000231880 High KBTBD4
ENSG00000080200 Not detected CRYBG3
ENSG00000233280 High CRYBG3
ENSG00000243649 Low CFB
ENSG00000244255 Medium CFB
ENSG00000181464 Medium CDRT1
ENSG00000241322 High CDRT1
ENSG00000169894 Medium MUC3A

Transcriptomics data were collected from the Gene Expression Barcode

(GEB) [96] (HGU133plus2 (Human) cells v3). The conversion to gene expres-

sion levels was done considering the average level of probe sets for each gene.

The mapping between probe sets and gene symbols was performed using
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the library “hgu133plus2.db” [121] from Bioconductor [122]. Bioconductor

provides tools for the analysis of high-throughput genomic data, using the R

statistical programming language. In the version 3.2, Bioconductor contains

1104 software packages, 257 experiment data packages, and 917 annotation

packages.

The context-specific reconstruction methods, chosen for this work, use

different formats of input data. Specifically, MBA uses two sets of reactions,

where each reaction has High or Moderate probability to be in the final model,

while mCADRE and FASTCORE expect only one set of reactions as input.

In the tINIT method, each reaction from the generic metabolic model must

have a score value of 20, 15, 10, −8 representing the High, Moderate, Low

or Not detected evidence of protein expression levels respectively. A default

value of −2 is used for reactions without information in input data. The

Table 5.2 summarizes the input data type supported by each algorithm.

Table 5.2: Required and optional input data for each algorithm.

Required Optional

MBA Two reaction sets
(high and moderate
probability)

tINIT Reaction scores Set of required reac-
tions calculated based
on a set of metabolic
tasks. Set of metabo-
lites that final model
must produce

mCADRE One reaction set (core) Set of metabolites that
must be produced in
the final model

FASTCORE One reaction set (core)

These input data diversity leads to the requirement of data transformation,

in order to allow its use in different methods. The continuous data from GEB

was classified as High, Moderate and Low, if the gene expression evidence on

that tissue is greater than 0.9, between 0.5 and 0.9, and between 0.1 and 0.5,
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respectively. The genes with expression evidence below 0.1 were considered

not expressed in hepatocytes. The core reaction sets used in mCADRE

and FASTCORE methods were built considering the union of “High” and

“Moderate” gene evidences from HPA, or gene expression evidence greater

than or equal to 0.5 from GEB, through the GPR association present in the

template model.

The Table 5.3 summarizes the assumptions used to create the input data

sets for each algorithm.

Table 5.3: The table summarizes the assumptions and thresholds used to
create the sets used as input by the algorithms.

Algorithm input CH, CM HPA GEB

MBA
CH CH High [0.9, 1.0]
CM CM Moderate [0.5, 0.9[

tINIT

High CH High [0.9, 1.0]
Moderate CM Moderate [0.5, 0.9[
Low Low [0.1, 0.5[
Not detecetd Not detected [0.0, 0.1[

mCADRE core CH ∪ CM High ∪ Moderate [0.5, 1.0]
FASTCORE core CH ∪ CM High ∪ Moderate [0.5, 1.0]

Applying these transformation rules is possible to adapt different input

data sources, such as HPA, GEB and CH and CM sets, for all methods.

5.2.4 Reconstruction workflow

A framework with the four tissue-specific metabolic models reconstruction

methods was implemented as described in chapter 2. All the algorithms in

this framework were adjusted to receive a reaction scores map as main input.

Nevertheless, some methods such as mCADRE and tINIT, still allow the use

of a set of metabolites which must be produced in the final model.

Therefore, the algorithms are made independent from the omics data

source, and the separation of these two layers allows to use different data
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sources combined with each algorithm for the generation of tissue-specific

metabolic models.

Generically, the hepatocytes metabolic models reconstruction process had

four main steps:

1. First, it was necessary to collect the data from HPA and GEB reposi-

tories. The Ensembl gene identifiers present in HPA information were

converted to gene symbols to allow the integration with the template

metabolic model - Recon 1. A similar transformation was required to

convert the GEB information, where the original expression level is

associated with probe sets. The reaction sets CH and CM from [16] are

already at the reaction scores level, so the current and next steps were

not required.

2. Based on the data from previous step, it was required to convert the gene

scores to reaction scores. This was performed through GPR associations

present in the template model by the substitution of AND/OR operators

by the Min/Max functions. If one of the gene scores is unknown, its

value was ignored in the GPR association.

3. Next, the final core reaction sets were built based on the assumptions

described in Table 5.3. In this step, some additional configurations

were required depending on the selected algorithm. tINIT, for instance,

receives a set of metabolic tasks as input to obtain the required reactions

to perform those tasks. The metabolic tasks, that should occur in all

cell types, were retrieved from [20]. A set of metabolites can be defined

in mCADRE and tINIT algorithms, ensuring the production of those by

the resulting models. These configurations and algorithm parameters

were set with default values from the original publications [20, 21].

4. Finally, the algorithm was run to reconstruct a hepatocytes metabolic

model. The final MBA models were constructed based on 50 interme-

diate metabolic models. According to [16], a larger number would be
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desirable, but the time needed to generate each model prevented larger

numbers of replications.

The workflow described above can be depicted in Figure 5.2.

Figure 5.2: The hepatocytes models reconstruction workflow encompasses
four main steps: 1- transformation of input data identifiers to model notation;
2 - conversion of gene scores to reaction score through the GPR associations,
by substitution of the operators And/Or by the functions Min/Max; 3- con-
figuration of the algorithms properties and data filtering based on thresholds;
4 - run the algorithm.

This pipeline was applied considering Recon 1 human metabolic model as

template. At the end, 12 hepatocytes metabolic models were reconstructed

based on the combination of four methods (MBA, mCADRE, tINIT, FAST-

CORE) and three data sources (CH and CM reaction sets, HPA and GEB).

5.2.5 Model validation

The quality of the metabolic models was further validated using the metabolic

functions that are known to occur in hepatocytes taken from HepatoNet1 [17].

This set includes a total of 433 functional tasks divided in two categories: 310

network tasks and 123 physiological tasks.
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Each task is composed by two sets of metabolites, that can be uptaken

and excreted by the model and an objective function which represents the

target metabolite to be produced. All reactions connected to the extracellular

environment, also called drains, not present in the task should be closed, i. e.

constrained not to allow any flux.

Internal metabolites are accepted in the metabolic task definition. In

this case, artificial reactions are added to the model to allow the uptake

or excretion of those metabolites. In the task validation process, it is as-

sumed that all internal metabolites involved, when present in the model,

can be consumed/produced. This assumption can be done without affecting

the final validation result because the model is consistent, i.e, all reactions

are able to carry flux, which implies that all present metabolites can be

produced/consumed.

A FVA for each reaction is performed to find reactions where the maximum

and minimum possible flux is equal to 0. Afterwards, these reactions will

be removed from the original model. This simplification of the model is

done before the validation process starts. Moreover, tasks with metabolites

not present in the model are tested without the uptake/excretion of these

metabolites. However, tasks will not be validated if the objective metabolite

is not present in the model.

Figure 5.3 shows the main model modifications by the integration of a

metabolic task.

5.2.6 Consensus model reconstruction

The final hepatocytes consensus model was reconstructed based on the 12

metabolic models obtained by the process described above. The main idea is

to build a model starting with the common reactions present in most of the

models and append a set of reactions to the final model so, it will be able to

perform all the metabolic tasks. The final reconstruction consisted on three

main steps:
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Figure 5.3: A) Consistent metabolic model, where all the reactions are able
to carry flux. B) Metabolic task to simulate the production of metabolite m8,
allowing the uptake of M1e andM2e and assuming that m6 is produced in
the model. C) Modifications to the system: close all drains not present in the
metabolic task and insert artificial drains for the internal metabolite. The red
lines represent the flux distribution after maximizing the objective function.

1. Build 12 partial−models, hereafter designed as pModels, where the ith

model contains the reactions present in at least i hepatocytes models,

where i ∈ {1, 2, ...12}. Therefore, pModel1 contains the union of all

reactions from the 12 models, while pModel12 contains only the reactions

present in the intersection of all models. Additionally, the template

model Recon 1 is considered as pModel0.

2. Run the validation tasks process for each pModel and choose a value of

n, where pModeln is the smallest model with an acceptable number of

valid tasks. .

3. Next, it is necessary to calculate the reactions and valid task sets that
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differ between 2 neighbouring models (i.e. models with indexes i and

i+ 1). As a result, two lists are created, the lost reactions set (LRS)

and the lost metabolic tasks set (LMT). Each lost metabolic tasks set,

LMTi represents the set of tasks satisfied by pModeli, when compared

with pModeli+1. Similarly, each LRS set, LRSi, represents the reactions

present in pModeli and not in pModeli+1.

4. Finally, run Algorithm 4 to generate the final model. The algorithm

starts with pModeli, and taking into consideration the LRSi and LMTi,

finds the reactions of LRSi that are not required to perform the tasks

in LMTi. These reactions compose the toDeli set. At the end of each

iteration, the reactions that do not have an influence in the loss of

metabolic tasks performance, between two partial models (toDeli), are

appended to the LRSi−1 in the next iteration. The process ends with

the processing of pModel0, in this case the full Recon 1 model.

Figure 5.4 shows the steps in the reconstruction of the consensus final

model algorithm.

5.3 Results

The hepatocytes metabolic models were generated using Recon 1 the as

template model and the GEB, HPA and the CH and CM sets from [16] as

input data, by the four methods considered in this study: MBA, tINIT,

mCADRE and FASTCORE.

Three main questions were answered: Are omics data consistent across

different data sources? What is the overlap of the resulting metabolic models

obtained using different methods and different data sources? How do the

obtained models behave in functional terms regarding metabolic tasks?
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Algorithm 4 Reconstruct the final model based on pseudo-models.

function buildFinalModel(pModels, n, LMT , LRS)
toDel = {}
for i ∈ {n, n− 1, .., 0} do

finalModel = pModeli
reacsi = LRS[i]
tasksi = LMT [i]
for (r ∈ reacsi ∪ toDel) do

allV alidWithKO = isAllV alid(finalModel, tasksi, r)
if (allV alidWithKO) then

finalModel = finalModel\r
toDel = toDel ∪ r

end if
end for

end for
return finalModel

end function

function isAllValid((finalModel, tasksi, r))
Test if all tasks present in tasksi are satisfied by the finalModel when

the reaction r is removed.
end function
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Figure 5.4: A) Build the lost reaction set (LRS) and the lost metabolic
tasks set (LMT) between each par of partial models. B) For each pModeil
the process find the reaction from LRSi that can be removed from pModelI
without affect the metabolic tasks present in (LMTi) production. The set of
reactions that can be removed will be added to LRS set in the next iteration.

5.3.1 Omics data consistency

The HPA (version 12) has evidence information related with 16324 genes

in hepatocytes. The reliability of the data is also scored as “supportive”

or “uncertain”, depending on similarity in immunostaining patterns and

consistency with protein/gene characterization data [84]. On the other hand,

the GEB transcriptome (HGU133plus2 cells v3) has information for 20149

genes, of which 5772 have evidence of being expressed in hepatocytes [96].

Together, these two data sources have information for 21921 genes, but

only 14552 are present in both (Figure 5.5A). Moreover, the number of genes

with evidence of being expressed in the tissue in both sources is only of
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3549, around 24% of all shared genes (Figure 5.5B). These numbers decrease

significantly if using only HPA information marked as “supportive”. In this

scenario, only 3868 genes are present also in GEB and only 1294 of them have

expression evidence.

Figure 5.5: A) Number of genes present in Gene Expression Barcode and Hu-
man Protein Atlas. In HPA, the number of genes with reliability “supportive”
and “uncertain” are shown. B) Number of genes with evidence level “Low”,
“Moderate” or “High” in HPA and gene expression evidence higher than 0 in
Gene Expression Barcode.

Next, evidence levels frequencies (High, Moderate, Low) were calculated

across the GEB and HPA, as shown in Figure 5.6 using the thresholds of

Table 5.3.

Only a small number of genes have similar evidence levels in both data

sources. Furthermore, a significant number of genes have contradictory levels

of evidence - genes with expression evidence in one data source and not

expressed in the other.

Regarding the HPA data, only the information scored as ”supportive” was

considered in this work. Despite the number of genes present in HPA and

GEB repositories was higher, only the genes present in the template metabolic

model are useful in the hepatocytes models reconstruction. The Figure 5.7

shows the overlap between the data sources and the genes present in Recon 1.

From the genes present in the Recon 1 model with information in GEB

and HPA (supportive), there are 15% of genes with “High’” or “Moderate”
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Figure 5.6: A) Distribution of genes from Gene Expression Barcode project
and Human Protein Atlas across the evidence levels - “High”, “Moderate”
and “Low”. The ranges [0.9, 1], [0.5, 0.9[ and [0.1, 0.5[ were used to classify the
data into “Low”, “Moderate” and “High” levels. B) Genes with no evidence
to be present in hepatocytes from GEB, but with evidence in the HPA. C)
Genes with no evidence to be present in hepatocytes from HPA, but with
evidence in GEB.

Figure 5.7: Number of metabolic genes present in the human metabolic
models Recon 1 with evidence in HPA(suportive), GEB, both and none of
the omic data types.

evidence in one of the sources and not expressed in the other. This number

increases to 22% if we also consider “Low” evidence level.
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As mentioned before, in the developed framework, all methods receive

reaction scores calculated based on omics data. Thus, it was necessary to

convert the gene expression evidence levels from GEB and HPA to reaction

scores through the GPR associations. After this, the transformation impact

of omics discrepancies in the values of reaction scores was analysed and those

were compared to the manually curated set CH from Jerby et al. [16].

In Figure 5.8 A, the poor overlap of the reaction scores calculated based

on different sources can be observed. Considering all data sources and Recon

1 as generic model, 1903 reactions show some evidences that support their

inclusion in the hepatocytes metabolic model, but only 386 are supported by

all sources. The numbers are further dramatically reduced if we consider only

moderate or high levels of evidence (Figure 5.8 B-C).

Figure 5.8: Overlap of reaction evidence levels for the three input data sources
(CH and CM , GEB and HPA) A) Reactions with evidence that support their
inclusion in the hepatocytes metabolic model. B) Number of reactions that
have a high level of evidence of expression for each data source. C) Number
of reactions that have a moderate evidence of expression for each data source.

5.3.2 Hepatocytes metabolic models

The resulting metabolic models have between 1178 and 2139 reactions. Table

5.4 presents the size of each model reconstructed in this study.
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Table 5.4: Number of reactions for all hepatocytes metabolic models.

CH and CM HPA GEB

MBA 1748 1246 1577
tINIT 1750 11837 2139
mCADRE 1760 1178 1511
FASTCORE 1817 1220 1542

The Figure 5.9 shows the relations between the 12 metabolic models

generated through hierarchical clustering considering the Euclidean distance

as measure. This was done using the hclust function on the R software.

The models obtained using the CH and CM sets as input data group

together. Regarding the remaining, the mCADRE and MBA resulting models

group according to their data (HPA and GEB), while the models created by

tINIT cluster together (Figure 5.9). Overall, the data used as input seems to

be the most relevant factor in the final result.

Figure 5.9: Results from hierarchical clustering of the resulting 12 models for
each human generic metabolic model.

A more detailed comparison between the models reconstructed using the

same algorithm or the same data source is available in Figure 5.10, A and B
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respectively. Considering the models generated by the same algorithm, it is

observed that MBA has a smaller overlap (only 930 reactions) compared to

the other methods. This could be explained by the fewer number of metabolic

models generated for the reconstruction of the final consensus model.

Figure 5.10: Hepatocytes metabolic models reaction intersection considering:
(A) the same algorithm; (B) the same omics data source.

A lower number of reactions does not mean that the algorithm or data

source have poor overlap. So, the correlation of model size and the number

of reactions present in all models is presented in Table 5.5 to simplify the

analysis of the models overlap.

The values presented above show that the same input data under different

algorithms produces metabolic models with lower variance than using the

same algorithm for different omics data type. Furthermore, the mean of

reactions that belong to all models of the same algorithm is around 66%,

and around 78% when the models are grouped by data source. Again, the
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Table 5.5: Percentage of number of reactions of each model that are present
in the intersection of models with the same omics data as input or algorithm.

Algorithm Input Data ∩ Omics ∩ Methods

MBA Sets 90% 53%
HPA 73% 59%
GEB 82% 75%

tINIT Sets 90% 74%
HPA 50% 71%
GEB 60% 61%

mCADRE Sets 89% 55%
HPA 77% 81%
GEB 85% 64%

FASTCORE Sets 86% 55%
HPA 75% 82%
GEB 84% 65%

variability of the final results seems to be dominated by the data source factor.

5.3.3 Models validation

A set of metabolic tasks known to occur in hepatocytes cells was previously

presented by Gille et al. [17]. Some of these tasks are impossible to satisfy

with Recon 1 as template metabolic model, because they use metabolites

which are not present in the model. Thus, these tasks and disease related

tasks will not be considered in the validation process.

The generic Recon 1 human metabolic model is able to satisfy 281 of the

remaining 363 metabolic functions tested. This set of 281 metabolic tasks was

validated in each hepatocyte metabolic model to analyse the quality of the

generated models. The Table 5.6 presents the model size and the percentage

of tasks that remains successful in the tissue-specific model when compared

with the generic metabolic model.

Here, it is clear that FASTCORE is able to produce consistent models

independent of the input data. tINIT also has a significant percentage of

valid tasks when the data source is HPA. However, generically the number of
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Table 5.6: Percentage of liver metabolic functions that each metabolic model
performs when compared with the template model - Recon 1.

CH and CM HPA GEB

MBA 14% 8% 22%
tINIT 5% 70% 29%
mCADRE 3% 24% 24%
FASTCORE 54% 47% 67%

satisfied metabolic tasks is very low compared with the performance of the

template metabolic model - Recon 1.

5.3.4 Final consensus model

The reconstruction process based on the combination of all models was done

to achieve the final consensus hepatocytes metabolic model. The number

reactions and the number of valid tasks satisfied by each of the partial models

can be observed in Figure 5.11.

The pModel1 contains all the reactions present in at least one of the 12

metabolic models. Furthermore, this partial-model is capable to satisfy all

the metabolic tasks as the Recon 1. As can be seen in the Figure 5.11 the

number of valid tasks decreasing between pModel6 and pModel7 is significant.

So, pModel6 was considered the starting point of the strategy of building the

final model based on the models combination.

At the end, a metabolic model with 1.859 reactions was obtained. This

model satisfies all the 281 metabolic tasks also satisfied by the template model

Recon 1 but keeping only 50% of the reactions.

Finally, Figure 5.12 presents the relation between the models size and

the number of satisfied tasks for all reconstructed models, including our

hepatocytes final consensus model.
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Figure 5.11: Each pModeli obtained by the 12 hepatocytes models combina-
tions, where the index i represents the minimum number of models required
for reactions to be present. Blue bars represent the number of reactions, and
orange bars the number of tasks satisfied by the partial-models.

Figure 5.12: Correlation between tasks and models size.
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5.4 Conclusion

In this chapter, a critical evaluation of the most important methods for the

reconstruction of tissue-specific metabolic models was presented. Moreover,

the consistency of information across important omics data sources was

analysed and these data were used to verify the impact of such differences in

the final metabolic models generated by each method.

The results show that metabolic models obtained depend more on the

data sources used as inputs, than on the algorithm used for the reconstruc-

tion. To validate the accuracy of the obtained metabolic models, a set of

metabolic functions that should be performed in hepatocytes was tested for

each metabolic model. Generically, the number of satisfied liver metabolic

functions was surprisingly low with exception of the models generated by

FASTCORE and tINIT when HPA data was used as input .

This shows that methods for the reconstruction of tissue-specific metabolic

models, based on a single omics data source, are not enough to generate high

quality metabolic models. Here, it was also presented a strategy to build a

final metabolic model using the combination of generated models through

different algorithms and data sources. This process shows that with a similar

number of reactions, it is possible to achieve a final model capable of satisfying

all possible metabolic tasks. However, this strategy depends on metabolic

functions knowledge which remains unknown for the most tissues / cell-types.

Methods to combine several omics data sources to rank the reactions

for the reconstruction process could be a solution to improve the results of

these methods. Indeed, this study emphasizes the need for the development

of reliable methods for omics data integration, which seem to be required

to support the reconstruction of complex models of human cells, but also

reinforce the need to be able to incorporate known phenotypical data available

from literature or human experts.



Chapter 6

Glioblastoma Model

Reconstruction and Analysis

In this chapter, the reconstruction process of the U-251 cell

line (a human cell line derived from a malignant glioblas-

toma tumor) metabolic model is described. The framework,

described in previous chapters, together with the Recon 1

human metabolic model used as template model, and data

retrieved from Human Protein Atlas and Gene Expression

Barcode, were used to achieve the final model. Moreover,

analyses were performed to validate the final model and com-

pare the resulting model with other models already available

for this cell line.

6.1 Cancer and glioblastoma

6.1.1 Hallmarks of cancer

Cancer is a collection of diseases characterized by unregulated cell growth

and the invasion of other tissues/organs in the body [123]. Cancer cells

109
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present a huge number of genetic changes that contribute to the abnormal cell

behaviour, specially in how they grow and divide when compared to normal

cells. The mutations occurring in the genome can originate two major types

of mutated genes that contribute to the development of cancer: oncogenes,

allowing cells to grow and survive when they should not, and tumor suppressor

genes with recessive loss of function [124]. In 2000, Hanahan and Weinberg

[125] defined six hallmarks of cancer which comprise biological capabilities

acquired during the development of cancer, described below:

• Sustaining proliferative signaling: normal cells control the growth

and division cycle through growth-promoting signals, which contribute

for the normal tissue architecture and function. In cancer cells, these

signals are deregulated leading to unregulated growth.

• Evading growth suppressors: normally, cells respond to inhibitory

signals to maintain homeostasis. In cancer, the acquired mutations

interfere with the response to growth inhibitory signals.

• Resisting cell death: normal cells are eliminated by apoptosis (pro-

grammed cell death) when they suffer different types of DNA damage.

Cancer cells have a variety of strategies to limit or circumvent apoptosis,

being the loss of TP53 tumor suppressor function one of the most well

known.

• Enabling replicative immortality: the number of cell divisions is

finite and controlled by the shortening of chromosomal ends, telomeres,

that occurs during DNA replication. Cancer cells maintain the length

of telomeres, which allows the unlimited replication of the cells.

• Inducing angiogenesis: cells depend on blood vessels to supply oxy-

gen and nutrients. In normal cells, the vascular architecture remains

mainly constant in adults. However, the formation of new vessels is

essential for tumor growth and survival.

• Activating invasion and metastasis: mutations in genes involved

in the cell-cell and cell-extracelular adhesion allow the movement of
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cancer cells to other parts of the body. This is a major cause of cancer

death, since the disease is not in a specific organ, but spread over the

whole body.

Recently, the authors added two emerging hallmarks of cancer to the

previous list [126]. The first is the reprogramming of energy metabolism

by cancer cells, while the second is the capacity of cancer cells to avoid the

attack and elimination by immune cells. Additionally, two new enabling

characteristics were also added by the authors: the genome instability and

mutations, and the tumour-promoting inflammation. Both characteristics

contribute for the acquisition of hallmark capabilities by cells.

Under aerobic conditions, normal human cells process glucose on mitochon-

drial oxidative phosphorylation to generate the energy required by cellular

processes. When oxygen is limited, cells can redirect the pyruvate generated

by glycolysis to produce lactate, instead of the oxidative phosphorylation.

Cancer cells tend to convert glucose to lactate even when oxygen is present.

This anomalous characteristic of cancer cell energy metabolism was observed

by Otto Warburg [127], and the phenomenon is known as the Warburg Effect

[128] (Figure 6.1).

6.1.2 Glioblastoma

Glioblastoma (GBM), also known as astrocytoma grade IV, is the most

common and aggressive type of brain cancer in adults [129]. Based on

their clinical and biological characteristics, GBMs can be divided into two

categories [130]. Primary GBMs are the most common, being characterized

by the amplification and mutations in the EGFR gene and the deletion of

the PTEN and CDKN2A genes [131]. The protein encoded by the EGFR

gene is a receptor for members of the epidermal growth factor family, which

leads to cell proliferation. The PTEN and the CDKN2A genes are known to

be important tumor suppressor genes [132, 133]. Secondary GBMs, contrary

to the previous category, affect younger patients who had been affected
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Figure 6.1: Schematic representation of oxidative phosphorylation, anaerobic
glycolysis, and aerobic glycolysis, also known as the Warburg effect. In the
presence of oxygen, normal cells metabolize glucose via oxidative phosphoryla-
tion. When oxygen is limited, cells redirect the pyruvate to lactate production.
Cancers cells tend to convert most of glucose to lactate even in the presence
of oxygen (aerobic glycolysis). Figure adapted from [128].

by a lower grade astrocytoma before. These GBMs are characterized by

mutations in the TP53 gene and overexpression of PDGFR [131]. Several

studies have identified alterations in the IDH1/2 genes (encode the cytosolic

and mitochondrial isoforms of NADP+-dependent isocitrate dehydrogenases),

that are also observed in secondary GBMs [129, 134, 135, 136].

These molecular abnormalities are present in both categories, but with

different frequencies. As an example, the frequency of TP53 mutation in

secondary GBM is more than 65%, but only 28% in primary GBM [137].

6.2 Phenotype simulation

The methods implemented in the developed framework for phenotype simula-

tion (GIMME, iMAT and E-Flux), described in sections 2.5 and 3.5, were

used to perform phenotype prediction of glioblastoma cells, under different
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conditions, using the Recon 1 as metabolic model and the transcriptomic

data retrieved from [138]. These data set were also available in GEO with the

accession identifier GSM803632. The biomass equation used in the simulations

was taken from the Recon 2 metabolic model.

The biomass flux rate obtained using the FBA simulation method was

of 0.084 mmol/gDW/hr, using the RPMI-1640 medium as described in

[139]. The phenotype simulations given by GIMME and iMAT also took

into consideration this medium. The E-Flux algorithm formulation assumes

the value -1 as the lower bound for all uptake fluxes, so the medium is not

considered in the phenotype simulation.

In chapter 4, it was observed that the phenotype predictions using pFBA

have a lower prediction error associated, when compared with the other

simulation methods. Similarly to this previous study, we compare the flux

exchange rates obtained by different methods with the experimental values

taken from [140]. This data set contains the measurements, obtained using

mass spectrometry, of consumption and release profiles of 219 metabolites

from the medium across the NCI-60 cancer cell lines. From all measured

metabolites, only 36 were considered in this analysis, since these have an

exchange reaction associated in the Recon 1 metabolic model. All values from

the simulation results were normalized by the glucose uptake.

The normalized prediction errors for each method are presented in Table

6.1. Once again, the estimation error was calculated using the equation:

error =
‖vexp − vsim‖

‖vexp‖
(6.1)

where vexp is the vector of measured flux values and vsim is the vector of

predicted values.

In chapter 4, and also in Machado et al. [111], the pFBA method achieves

better results when compared with the other simulation methods. However,

this is not observed in this case. Here, the GIMME and iMAT methods

have a better prediction capability when compared with pFBA. So, it seems
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Table 6.1: The normalized prediction errors, associated to the simulation
methods pFBA, GIMME, E-Flux and iMAT, for glioblastoma phenotype
prediction using the Recon 1 as a metabolic model.

pFBA E-Flux GIMME iMAT

Error 0.9152 1.0004 0.7484 0.7598

that transcriptomic data can play an important role in the improvement of

phenotype predictions of metabolic models, at least in some cases.

6.3 Tissue-specific model reconstruction

Recon1 was used as the template model to the glioblastoma metabolic model

reconstruction. The main reasons for this choice are related to the size of the

model, being the time consummed to generate the tissue-specific models much

lower than using other metabolic models as Recon 2, and the possibility to eas-

ily compare the resulting model with already published glioblastoma metabolic

models [21, 23]. The input data used by the reconstruction algorithms present

in our framework were retrieved from HPA and GEB databases. We used

these two data sources in combination with four reconstruction methods to

achieve the final U-251 metabolic model.

6.3.1 Omics data sources

The reconstruction of the U-251 metabolic model starts with the collection of

information from omics databases. HPA and GEB have transcriptomics and

proteomics evidences for this cell line.

The Recon 1 metabolic model, used as template in the reconstruction of

tissue-specific models, has 1905 genes. The HPA and GEB databases have

information for 1335 and 1293 genes from the Recon1. The Figure 6.2-A shows

that most of the genes are present in both databases. However, if we take

into account the expression evidence levels, the number of genes and reactions
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with the same evidence level is surprisingly low (Figure 6.2-B,C). The gene

expression levels present in the omics data sources were converted to reaction

evidence levels through the gene-protein-reactions(GPR) rules present in the

metabolic model. During the conversion, the operators AND/OR present in

the GPRs are substituted by the MIN/MAX functions, respectively.

Figure 6.2: Genes with expression evidence for U-251 cell line in Human
Protein Atlas (HPA) and Gene Expression Barcode (GEB). The red numbers
represent the number of reactions with evidence to be active (using the
Gene-Protein-Reaction rules present in the model) and the black numbers
the number of genes. A) Intersection of genes present in both data sources
and in the Recon 1 metabolic model. B, C) Recon 1 genes and reactions with
high (B) and moderate(C) evidence to be expressed in the U-251 cell line.

The lower overlap in the high and moderate sets of reactions considering the

cutoffs of ”High”/ 0.9 and ”Medium”/ 0.5 from data retrieved from HPA/GEB

can have a significant impact in the resulting models, independently of the

used algorithm.

The reconstruction of the tissue-specific metabolic models was done con-

sidering the cutoffs already present in Table 5.3 on chapter 5.

6.3.2 U-251 metabolic models

Following the same approach used on chapter 5, eight U-251 cell line metabolic

models were created. Each model was reconstructed using one of the available

algorithms in your framework ( FASTCORE, MBA, mCADRE and tINIT)
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and an omics data source (HPA and GEB). The size of each model is presented

on Table 6.2.

Table 6.2: Number of reaction of each U-251 metabolic model.

Algorithm Data Source Reactions

MBA HPA 1563
GEB 1752

mCADRE HPA 1170
GEB 1110

tINIT HPA 2048
GEB 1146

FASTCORE HPA 1219
GEB 1137

Figure 6.3 shows the overlap of the resulting models from the different

methods, when each of the omics data source was considered.

Figure 6.3: Reactions overlap of U-251 metabolic models grouped by data
source (HPA and GEB).

Comparing the U-251 models, reconstructed with the same data source,

tINIT and MBA algorithms produce models with a higher number of exclusive
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reactions, i.e., reactions present in a single model. The number of reactions

shared by all models for each data source is similar, 913 and 804 for HPA and

GEB data sources, respectively. However, the intersection of these two sets is

only of 577 reactions.

Figure 6.4 presents the intersection of these same models, but considering

the algorithm instead of the data source as categories.

Figure 6.4: Reactions overlap of U-251 metabolic models grouped by algo-
rithms (MBA, FASTCORE, mCADRE and tINIT).

Considering the models generated by the same algorithm, it is observed

that MBA has the highest overlap when compared to the other methods.

However, with exception of tINIT HPA metabolic model, the MBA models

have a significant increase in the number of reactions, when compared with

other models. The mCADRE and FASTCORE models have a similar number

of reactions and the models generated by HPA and GEB are also of similar

size. In order to explore the similarity of the models, the Figure 6.5 depicts
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the hierarchical clustering of the U-251 metabolic models.

Figure 6.5 presents the intersection of these same models, but considering

the algorithm, instead of the data source as a discriminant factor.

Figure 6.5: Hierarchical clustering of U-251 metabolic models.

The mCADRE and FASTCORE models are grouped first by data source,

and then by the algorithm used in the reconstruction process. The MBA

models depend more on the algorithm than on the data source used to build

the U-251 models. The models reconstructed by tINIT belong to different

branches of the tree, showing that the data source used as input can have a

huge influence on the result.

One of the hallmarks of cancer is the capability that cancer cells have

to proliferate. To address this issue, FBA simulations were done to test

the biomass production of each model. The biomass equation was collected

from the Recon 2 metabolic model and the RPMI-1640 medium [139] has

been considered in all simulations. As a result, none of the models was able

to produce biomass. So, we tested how many biomass precursors could be

produced in each metabolic model, by adding additional reactions to excrete
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each biomass precursor and simulating the maximization of these reactions.

Table 6.3 presents the number of biomass precursors produced by each of the

U-251 metabolic models.

Table 6.3: Number of biomass precursors produced by each of the U-251
metabolic models. The biomass equation was obtained from Recon 2 metabolic
model which contains 38 precursors metabolites.

Algorithm Data Source Nr. of Precursors % of Precursors

MBA HPA 26 68%
GEB 25 68%

mCADRE HPA 5 13%
GEB 12 32%

tINIT HPA 31 82%
GEB 17 45%

FASTCORE HPA 19 50%
GEB 16 42%

The U-251 model generated by the tINIT algorithm using HPA data has

the highest number of biomass precursors satisfied. This is expectable since

this model has approximately 500 more reactions than the remaining models.

Given these results, the reconstruction of a single, unified and global U-251

metabolic model is required. The final metabolic model must be able to carry

flux on the biomass reaction, to allow to simulate the proliferation of cells,

predicting growth rate.

6.3.3 Consensus model

The final U-251 metabolic model was built considering all previously recon-

structed models by different methods and data sources. The process, already

detailed in section 5.2.6, starts with the reconstruction of the partial models

(pModeli i ∈ 1, ..8). Each partial model (pModeli) contains the reactions

present in at least i U-251 metabolic models. Thus, the pModel5 for instance

contains all reactions present in five or more models from the set of eight

models.
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Here, the tasks are defined by the production of biomass precursors. So,

we checked how many biomass precursors each partial model was able to

produce. Figure 6.6 depicts the number of reactions and the number of

biomass precursors produced by each pModel.

Figure 6.6: Number of reactions (green bars) and number of biomass precursors
that can be produced (orange bars) by the pModels. The pModel8 was ignored
since the previous pModel does not produce any of the biomass precursors.

As can be observed in the picture, the highest decrease on the number of

produced biomass precursors occurs between pModel4 and pModel5. Thus,

the process of reconstructing the final consensus model starts with pModel4

as the initial model. In each iteration, the algorithm takes as input a partial

model (pModeli) and tries to remove the maximum number of reactions

that were lost between pModeli and pModeli+1, maintaining the biomass

precursors produced by pModeli and not by pModeli+1. In this case, the lost

reaction set (LRS) and the lost biomass precursors set (LBS) are composed

by the difference between the two partial models pModel4 and pModel5. At

the end of each iteration, the reactions that do not have an influence in the

loss of biomass precursors between two partial model (toDeli), are appended
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to the LRS in the next iteration. The process ends with the processing of

pModel0, in this case the full Recon 1 model. Figure 6.7 shows the steps in

the reconstruction of the consensus final model.

Figure 6.7: A) Build the lost reaction set (LRS) and the lost biomass precursors
set (LBS) between each par of partial models. B) For each pModei the process
find the reaction from LRSi that can be removed from pModelI without affect
the biomass precursors (LBSi) production. The set of reactions that can be
removed will be added to LRS set in the next iteration.

The final consensus model obtained is composed of 922 genes, 1.376

metabolites and 1.457 reactions. This model is able to simulate the biomass

production, through FBA, using the RPMI-1640 medium [139]. The flux

rate for biomass equation is around 0.0291 mmol/gDW/hr. Although the

lower biomass flux rate, when compared with the original model Recon 1

(0.084 mmol/gDW/hr), this process is able to achieve a final consensus model

based in all previous models capable to simulate the biomass production.
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6.4 Critical genes

The validation of metabolic models is a hard task when fluxomics data are

not available. So, some tests were done to check if the consensus metabolic

model has a better phenotype prediction capability than the global model

Recon 1.

As a first validation, we calculated the predicted critical genes of both

models. We considered critical genes as the genes that inhibit growth when

they are removed from the model. We obtained these gene sets through FBA

simulations, when each gene present in the model was knocked out, i.e. the

reactions associated through GPRs to this gene were constrained to have

no flux. At the end, the final consensus model of the U-251 cell line has 89

critical genes, of which 80 are also critical genes in Recon 1. Thus, nine genes

are only critical on the U-251 metabolic model - G6PT2, SLC5A7, NME2,

NME1, SLC6A14, PTDSS1, SLC16A10, CDS1, CTPS. Remarkably, most

of these genes have been associated to cancer cell growth in several research

studies. The function and the relevance of these genes on glioblastoma cancer

cells are detailed next:

• The G6PT2 gene regulates the Glucose-6P transport from cytoplasm

to the lumen of the endoplasmic reticulum. Studies demonstrate that

intracellular signalling and invasive phenotype of brain tumor cells could

be regulated by this gene [141]. Moreover, silencing the G6PT gene in

U-87 brain tumor-derived glioma cells induce necrosis and late apoptosis

[142]. Thus, control of the G6PT expression can lead to the development

of new strategies to prevent cancer development in glial cells.

• The SLC5A7 gene encodes a high-affinity choline transporter. Choline

is used for the synthesis of essential lipid components of cell membranes

[143]. A higher choline concentration in the cells has been related with

cell proliferation and malignant progression of cancer [144, 145] being

the abnormal choline metabolism considered, by Glunde et al., as a new

hallmark of cancer [146]. Kumar et al. [147] demonstrate that using
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specific choline kinase inhibitors may be a promising new strategy for

treatment of brain tumors.

• The SLC6A14 gene encodes the protein called sodium- and chloride-

dependent neutral and basic amino acid transporter B(0+) which can

transport all essential amino acids, as well as glutamine, arginine, and

asparagine [148]. Cancer cells, to support their rapid cell growth,

induce the over-expression of this gene. This phenomenon has been

observed in cervical cancer, colorectal cancer and breast cancer cell lines

[149, 150, 151]. The SLC6A14 deletion was studied in mouse models of

breast cancer by Badu et al. [152]. The study demonstrated that the

development and progression of breast cancer were markedly decreased

in vitro and in vivo when SLC6A14 is deleted.

• The CDS1 is a protein coding gene which regulates the amount of

phosphatidylinositol available for signaling by catalyzing the conversion

of phosphatidic acid to CDP-diacylglycerol. CDP-diacylglycerol is an

important precursor for the synthesis of phosphatidylinositol (PtdIns),

phosphatidylglycerol, and cardiolipin [153, 154]. The cardiolipin com-

pound is one of the biomass precursors present in Recon 2 biomass

equation. Thus, its production is essential.

• ThePTDSS1 gene encodes phosphatidylserine synthase 1 (PSS1) which

is involved in the production of phosphatidylserine. This gene is involved

in a patent related to the development of a molecular-based method of

cancer diagnosis and prognosis. Together with five others genes, the

PTDSS1 has a higher expression in tumor samples when compared with

control samples [155].

• The CTPS gene encodes an enzyme responsible for the conversion

of UTP (uridine triphosphate) to CTP (cytidine triphospate). The

development of methods and pharmaceutical compositions to inhibit

the lymphocyte proliferation through the CPTS1 inhibitors has been

protected by a patent [156].
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• The NME2 / NME1 genes were identified as potential tumor suppres-

sors, which reduce the tumor progression and proliferation [157]. Thus,

it was unexpected that these genes were essential for the metabolic

model. To understand this result, we did a deep analysis of the reactions

where these genes are involved. The two genes regulate the activation of

nucleoside-diphosphate kinase reactions in the nucleus. These reactions

are responsible to produce essential metabolites present in biomass

equation, namely Deoxyguanosine triphosphate (dGTP), Deoxycytidine

triphosphate (dCTP), Deoxyadenosine triphosphate (dATP) and De-

oxythymidine triphosphate (dTTP). These metabolites are used in cells

for DNA synthesis.

6.5 The Warburg effect

The phenomenon known as “Warburg effect” consists in the capability that

cancer cells have to generate the energy needed for cellular processes through

aerobic glycolysis instead of the oxidative phosphorylation, as normal cells do

[158]. The aerobic glycolysis is an inefficient way to achieve ATP production (2

ATP molecules per one glucose molecule), when compared with the oxidative

phosphorylation (32 ATP molecules per one molecule of glucose), leading to

lactate secretion [159].

In 2011, Shlomi et al. [12] argued that the Warburg effect is a conse-

quence of the metabolic adaptation of cancer cells to increase biomass. They

developed a new simulation method based on FBA which accounts for the

enzyme solvent capability as a constraint. In the study, it was clear that

the three phases (optimal, intermediate and low yield metabolism) observed

experimentally during oncogenic progression can be observed in the in silico

simulations.

Using the same approach, we tested if our model was able to simulate

the lactate secretion even in the presence of oxygen. Therefore, we used

our U-251 consensus model with the RPMI1640 medium as before, with
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different amounts of glucose uptake between 0 and the uptake value needed to

reach the maximal growth rate (0.14 mmol/gDW/h). The molecular weights

and turnover numbers used for the Recon 1 metabolic model reactions were

obtained from the original publication [12].

Using the FBA with solvent capacity constraints, the biomass yield de-

creases at high growth rates, as shown in Figure 6.8.

Figure 6.8: Predicted maximal growth yield of U-251 cell line (per unit of
glucose uptake) for a range of predicted growth rates obtained by simulation
of an extension of FBA which considers enzyme solvent capacity of the cells
[12].

Considering the lactate secretion and the oxygen consumption fluxes for

the range of growth rates, it is visible that the lactate production occurs even

in the presence of oxygen (Figure 6.9).

In the figure, three different phases in the growth yield are clear:

(i) Optimal yield - characterized by the absence of lactate production.
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Figure 6.9: Predicted lactate secretion flux (red line) and oxygen uptake
flux (green line) for a range of growth rates. Growth rates were obtained by
varying the glucose uptake rate limit from 0.0 to 0.14 mmol/gDWh/h. The
maximal growth rate is obtained when the glucose uptake is around of 0.1347
mmol/gDWh/h. Flux values were normalized by the glucose uptake rate.

Even with a small decrease of oxygen uptake the growth yield remains

constant.

(ii) Small decreasing in yield - in this phase, the growth yield has a small

decrease when compared with the previous phase. Moreover, the lactate

production has a significant increase and oxygen also increases, reaching

higher values when compared with the oxygen consumption values from

the previous phase.

(iii) Low yield - characterized by a sharp decrease in oxygen consumption,

lactate production fluxes and also growth yield. The method with

solvent capacity constraints used in the simulation could be the reason

for the decreasing of these fluxes (since the objective is the biomass

production all reactions that are not essential to biomass production

will decrease to minimum levels).
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As a conclusion, the present model (consensus U-251 model) with the

incorporation of solvent capacity constraints lead to refined predictions of

cancer metabolic phenotypes, such as the Warburg effect.

6.6 Other tissue-specific metabolic models

Glioblastoma GSMMs were already reconstructed in previous studies [23, 21].

In this section, the overlap and a functional analysis between our model

and the previous models, also generated considering Recon 1 as a template,

are presented. The glioblastoma tumor cells and U-251 cell line GSMMs

reconstructed by mCADRE and PRIME algorithms respectively, were used

to perform the comparison with our consensus model. The overlap between

all glioblastoma metabolic models is provided in Figure 6.10.

Figure 6.10: Overlap of metabolic models. The PRIME and mCADRE models
are available in the methods publication articles. The consensus model is our
model, reconstructed during this study.
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Analyzing the model obtained by PRIME, we verified that the Recon

1 template model used by the algorithm is not the original model, but an

extended version which has 46 extra reactions. These reactions are essentially

for excretion of cytosol metabolites which can lead to significant differences

in the phenotype simulation results. The models PRIME, mCADRE and

Consensus are composed by 1952, 1131 and 1457 reactions respectively.

Next, we performed the phenotype prediction using the simulation methods

present in our framework (pFBA, iMAT, GIMME and E-Flux). Transcrip-

tomics data published by Gholami et al. [138] were used as input in the

simulation methods (the same data used in section 6.2). Experimental flux

values publised by Jain et al. [140] (also used in section 6.2) were used to

compare with the flux exchange rates obtained by different methods and the

normalized prediction errors were calculated using the equation 6.1.

In this study, the glioblastoma tumor cells metabolic model obtained by

the mCADRE reconstruction method was not considered, because this model

is not able to grow when simulated using the Recon2 biomass equation, even

with the removal of the metabolites present in the biomass equation and not

in the model.

The normalized prediction errors are given in Table 6.4.

Table 6.4: The normalized prediction errors, associated with the simulation
methods pFBA, GIMME, E-Flux and iMAT, for U-251 model reconstructed
by PRIME and consensus U-251 model.

pFBA E-Flux GIMME iMAT

Consensus 1.2866 0.7427 0.7639 0.7102
PRIME 0.7849 2.9739 0.7481 0.7461

Most of the method and model combinations have a normalized error

around 0.7. The best combination, reaching a lower prediction error was

obtained with the consensus U-251 metabolic model developed during this

study using the iMAT simulation method.
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6.7 Conclusion

In this chapter, the reconstruction process of our gliobastoma metabolic model

was presented. Several methods and data sources were used to reconstruct

metabolic models for the U-251 cell line (derived from a malignant glioblas-

toma tumor). The final model here presented was constructed based on all

these models and taking the biomass production, retrieved from Recon 2

human metabolic model, as a requirement.

Taking this model as reference, we calculated the list of essential genes for

the cell growth, and validated their function in published data. Most of the

genes have been associated with tumor growth inhibition in the literature.

Our glioblastoma metabolic model has also the capability to predict

the Warburg effect when the model is simulated by an extension of FBA,

which accounts for the enzyme solvent capability as a constraint. Moreover,

this model presents better results than other published model [23] when it

is simulated with transcriptomic data, and the predicted flux distribution

has a lower error comparing with experimental measurements for external

metabolites.

Based on these results, our automatically generated glioblastoma metabolic

model could represent a good starting point to achieve a curated metabolic

model with good phenotype predictions.





Chapter 7

Conclusions and Future Work

In the final chapter of this thesis, the main conclusions of

this work are presented. Some topics for future work are

put forward.

7.1 General conclusions

The work developed along this thesis had as main goal the development of

a framework for the reconstruction and analysis of tissue-specific metabolic

models. Additionally, three of the most used phenotype prediction methods,

published in recent years were also implemented, as well as a set of methods

that allow loading and integrating omics data with the genome-scale metabolic

models.

The clear division between the two layers, omics data processing and

simulation/reconstruction methods, in the framework allows to use different

omics data sources with the implemented methods. Moreover, the developed

plug-ins in the open-source OptFlux platform make it an attractive resource

to an ever increasing ME community.

The initial evaluation of the phenotype simulation methods implemented

in the framework confirmed the results from [111]. In both case studies, the

131
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pFBA method has a lower prediction error than the iMAT, GIMME and

E-Flux methods, taking into account 36 experimental measured fluxes.

Next, the critical evaluation of the methods for the reconstruction of

tissue-specific models showed that the omics data sources used in the building

process have more impact in the final result than the method itself. This

emphasizes the need for the development of reliable methods to integrate and

compile information from different data sources.

Furthermore, the results reveal that, for a specific case of hepatocytes cells,

none of the methods was capable of originating a tissue-specific model which

satisfies all the metabolic tasks performed by the template model and related

with the liver function. So, a strategy to build a consensus final metabolic

model using the combination of generated models through different algorithms

and data sources was developed to improve the prediction capability of the

final model. However, this strategy depends on metabolic functions knowledge

which remains unknown for most tissues / cell-types.

Finally, we reconstruct a metabolic model for U-251 cell line , targeting

the understanding of metabolic alterations related glioblastoma, one of the

most aggressive tumors in humans. The final model was reconstructed based

on metabolic models obtained using different methods and data sources. This

model achieves better results when compared with other models for the same

phenotype. The automatic reconstruction of a consensus model shows that

is a good starting point to achieve a curated metabolic model with good

phenotype predictions.

In summary, the developed framework helps in the reconstruction of

tissue-specific metabolic models and allows the usage of phenotype prediction

methods by common users through plug-ins in OptFlux. Additionally, the

development of new methods by programmers can be easily done by extending

the current framework.
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7.2 Topics for future work

The framework and related plug-ins developed during this thesis provided a

valuable contribution for the systems biology community. Nevertheless, some

topics can be explored in future work:

• Development of new methods for the reconstruction of tissue-specific

models based on meta-heuristics from the field of Evolutionary Compu-

tation, since these allow the competition of hypothetical models and

the definition of flexible objective functions.

• From a software development perspective, an ongoing objective is the

development of a new plug-in to support the methods for the tissue-

specific reconstruction methods. At the moment only programmers, or

at least users with a good working knowledge of command-line tools, are

able to use the framework to reconstruction of tissue-specific metabolic

models.
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