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Abstract Tsunami modeling commonly accepts the shallow water system as governing equations where
the major difficulty is the correct treatment of the nonconservative term due to bathymetry variations. The
finite volume method for solving the shallow water equations with such source terms has received great
attention in the two last decades. The built-in conservation property, the capacity to correctly treat
discontinuities, and the ability to handle complex bathymetry configurations preserving some steady state
configurations (well-balanced scheme) make the method very efficient. Nevertheless, it is still a challenge to
build an efficient numerical scheme, with very few numerical artifacts (e.g., small numerical diffusion, correct
propagation of the discontinuities, accuracy, and robustness), to be used in an operational environment,
and that is able to better capture the dynamics of the wet-dry interface and the physical phenomena that
occur in the inundation area. In the first part of this paper, we present a new second-order finite volume
code. The code is developed for the shallow water equations with a nonconservative term based on the
hydrostatic reconstruction technology to achieve a well-balanced scheme and an adequate dry/wet
interface treatment. A detailed presentation of the numerical method is given. In the second part of the
paper, we highlight the advantages of the new numerical technique. We benchmark the numerical code
against analytical, experimental, and field results to assess the robustness and the accuracy of the numerical
code. Finally, we use the 28 February 1969 North East Atlantic tsunami to check the performance of the
code with real data.

1. Introduction

Tsunamis simulations are within the shallow water equations (SWE) conditions of applicability. Three types
of numerical schemes are used to solve the SWE: the finite difference scheme, the finite volume scheme,
and the finite element scheme.

These solvers tackle the shallow water equations, in Cartesian or spherical coordinates, with additional
source terms to account for the bathymetry variation, the friction, or the turbulence.

The finite difference scheme was the first to simulate tsunami propagation due to its simplicity in the struc-
tured grids context (MOST) [Titov and Gonz�alez, 1997], TUNAMI [Goto et al., 1997; Imamura et al., 2006], or
COMCOT [Liu et al., 1998]. Nevertheless, the finite difference schemes suffer three drawbacks: (1) they are not
entirely conservative (the total mass is not preserved, even if the losses can be under 5%); (2) they are not well-
balanced (the configuration of ocean at rest is not maintained); and, at last, (3) the use of a formulation based
on the primitive variables (height and velocity) to reduce the numerical effects of the bathymetry source term
that provide erroneous results when discontinuities are involved. The nonconservative system using the veloci-
ty as an unknown function would have difficulties modeling breaking waves since only the conservative formu-
lation provides the correct Rankine-Hugoniot conditions. To quote George [2004]: Hou and LeFloch [1994]
proved that if a nonconservative method is used, it converges to the wrong solution if it contains a shock
wave. Use of a naive method can lead to spurious oscillations near a shock wave, computing shocks with the
wrong strength, or propagating shocks with the wrong speed [see also LeVeque, 2002; Toro, 2001].

Moreover, second-order versions create some spurious oscillations in the vicinity of discontinuities and a
large amount of artificial viscosity is added to stabilize the scheme leading to a dramatic reduction of the
accuracy [Zhou et al., 2002; Gallou€et et al., 2003; Nikolos and Delis, 2009].
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Since the nineties, the finite volume method has become a more efficient technique to solve hyperbolic
nonlinear systems for complex modeling in atmospheric sciences and geophysical fluid dynamics [Zhou
et al., 2015] or hydrological models [Salah et al., 2010]. Numerical codes for tsunami simulation using the
finite volume scheme were developed and implemented such as ANUGA [Roberts et al., 2010] and GEO-
CLAW [Berger et al., 2011, and LeVeque et al., 2011], among others. They preserve mass and the use of con-
servative variables guarantees the validity of the shock propagation. GEOCLAW is based on the f-wave
decomposition which integrates the bathymetry jump at the cell’s interface [George and LeVeque, 2006]
while ANUGA uses the Divergence Form for Bed slope source term (tagged DFB) developed in Valiani and
Begnudelli [2006] to take the hydrological jumps into account.

In this study, we introduce and implement a different finite volume technology which enables to deal with
varying bathymetry and provides high-accuracy solutions. The hydrostatic reconstruction method [Audusse
et al., 2004; Berthon and Fouchet, 2012] became a very popular and simple numerical technique for handling
both the topography and the dry/wet interface. One critical aspect of tsunami simulations is the variation of
the bathymetry where the nonconservative term has to be discretized with caution. Indeed, some steady state
solutions have to be preserved at the discrete level leading to the so-called C-property [Berm�udez and
V�azquez, 1994; Berm�udez et al., 1998] and the well-balanced concept [Greenberg and Leroux, 1996; Duran et al.,
2013]. If not preserved, the scheme produces additional nonphysical forces and the solution is not acceptable.
And last, in the on-land tsunami propagation the dry/wet situation is a critical point. Here both the water
height h and the mass flow q 5 hu converge to zero while the velocity u does not vanish. Accurate approxi-
mations where h� Dx (let us say h < Dx=100), Dx being the characteristic length of the cell, turn out to be
difficult since the numerical diffusion becomes the most prominent contribution. It means that the velocity
may be unbounded close to the dry zone (and diverges to infinity in some cases) leading to a too small time
step deriving from the CFL condition. Moreover, the finite volume method is powered with the MUSCL tech-
nique (monotonic upwind conservative schemes [van Leer, 1974] and see the book of LeVeque [2002] for an
overview of the method) to improve the scheme accuracy with a very low additional computational cost.

The aim of this paper is twofold.

1. The presentation of a fully detailed numerical scheme, based on recent methods developed in the math-
ematical community for the shallow water system, including the nonconservative term with a special
attention to the tsunami propagation problem. All the stages of the scheme are presented: the generic
finite volume framework, the MUSCL technique, the C-property leading to the construction of the non-
conservative fluxes, and, at last, the hydrostatic reconstruction to deal with the dry/wet situations.

2. The verification and validation of the numerical code, using synthetic, laboratorial, and field benchmarks.
The synthetic and the experimental benchmarks that we adopt were used by Synolakis et al. [2008] and
Tinti and Tonini [2013], extracted from the Long-Wave Run-Up Models Workshops, editions 1, 2 and 3 [Liu
et al., 1990; Yeh et al., 1996; Synolakis and Bernard, 2006]. This synthetic validation process, including analyti-
cal and laboratorial benchmarks, aims to assess the robustness and the accuracy of the method.

For a complementary code validation, we use an historical tsunami event. The 28 February 1969 event was a
submarine earthquake Ms7.9, with epicenter located on the Horseshoe Abyssal Plain, south-east of the Gor-
ringe bank, approximately the same location as the noticeable 1755 Lisbon earthquake and tsunami. The
earthquake struck western Portugal and Morocco at 02:40:32.5 UTC and a small tsunami was recorded in tide
stations of mainland Portugal, Azores archipelago, Spain, and Morocco [Baptista et al., 1992]. The tsunami
records were analyzed by Baptista et al. [1992]. Later, Heinrich et al. [1994] and Gjevik et al. [1997] presented
numerical simulations of the tsunami propagation along the Portuguese coastline and in the Tagus estuary.

We perform multiple simulations of the 1969 tsunami, considering two different aspects: the open-sea and
the inside of Tagus estuary propagation. The numerical code is able to reproduce the recorded waveforms
for both cases, even with the complex bathymetry and reflective characteristics of the Tagus estuary.

2. Model and Numerical Scheme

Tsunami modeling involves the shallow water system modified with nonconservative terms such as the
bathymetry effect, the friction, and/or the turbulence. We skip the two last terms since we focus on the
bathymetry term and its numerical treatment. The system writes
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@t h1@xðhuÞ1@yðhvÞ50; (1)

@tðhuÞ1@x hu21
g
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h2
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1@yðhuvÞ52gh@x b; (2)

@tðhvÞ1@xðhuvÞ1@y hv21
g
2

h2
� �

52gh@y b; (3)

where h denotes the water height, (u, v) the fluid velocity vector with components along the x and y axis, b
the bathymetry, and g59:81 m=s2 the gravitational acceleration. Moreover, g 5 h 1 b is the free surface,
and vector W 5 (h, hu, hv) combines the conservative quantities while V 5 (h, u, v, b) corresponds to the
physical variables vector.

2.1. Mesh and Notations
Let Xx5½0; L� with L a positive real number. We define the cells ci•5½xi21=2; xi11=2� with interfaces xi11=25iDx;

xi21=25xi11=22Dx and center xi5
xi21=21xi11=2

2 , i51; � � � ; I, where we have set Dx 5 L=I. In the same way, the cells

c•j5½yj21=2; yj11=2� represent a partition of Xy5½0;H�, H> 0 with interfaces yj11=25jDy; yj21=25yj11=22Dy and

center yj5
yj21=21yj11=2

2 , j51; � � � ; J with Dy 5 H=J.

Domain X5½0; L�3½0;H� is decomposed into nonoverlapping I 3 J cells cij5ci•3c•j; i51; � � � ; I; j51; � � � ; J,
with centroid (xi, yj) and interfaces ei11=2;j5fxi11=2g3c•j , ei21=2;j5fxi21=2g3c•j , ei;j11=25ci•3fyj11=2g;
ei;j21=25ci•3fyj21=2g. For a prescribed final time T, 05t0 < t1 < � � � < tn < � � � < tN5T is a subdivision with
nonconstant time step Dtn5tn112tn that will be adapted to satisfy the CFL condition.

Real number /n
ij represents an approximation of the mean value over cell cij for any function /5h; g; b; u; v

at time tn. We recall that for regular functions over the cell cij (say C2), the point-wise value at (xi, yj) is a
second-order approximation of the mean value. We denote by Wn

ij 5ðhn
ij ; ðhuÞnij ; ðhvÞnij Þ the vector of the con-

servative variables and by V n
ij 5ðhn

ij ; un
ij ; vn

ij ; bn
ij Þ the vector of the physical variables where we have set

un
ij 5
ðhuÞnij

hn
ij
; vn

ij 5
ðhvÞnij

hn
ij
;

when hn
ij > 0, and 0 otherwise. Real numbers /n

i11=2j;L and /n
i11=2j;R represent approximations on the left and

right side of interface ei11=2j while /n
ij11=2;L and /n

ij11=2;R stand for approximations on the lower and upper

side of interface eij11=2 (see Figure 1).

2.2. Nonconservative Problem and Well-Balanced Scheme
Due to the change of topography in space, the nonconservative term 2ghrb is required to preserve some
steady state configurations such as the water at rest, where the velocity is null and g is constant in the wet
area. Indeed, writing the mass flow equation with zero velocity, the steady state assumption yields that the
free surface g is constant and we have

@tðhuÞ1@x hu21
g
2

h2
� �

1@yðhuvÞ5gh@x h

5gh@xðg2bÞ

52gh@x b:

The same property holds for the v component. Consequently, the nonconservative term 2ghrb on the
right-side compensates the hydrostatic pressure variation due to the bathymetry variations and the well-
balanced property has to be mimicked at the discrete level. Discretization of the nonconservative term is
still an important challenge to provide some nice properties such as stability and well-balancedness. For
example, the simple discretization

2gh@x b � 2ghij
bi11;j2bi21;j

2Dx
(4)

is not viable; such an approximation coupled with a classical numerical flux (Rusanov, HLL) will induce non-
physical motions, and after some steps the water moves alone, leading to a wrong simulation.
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Consequently, preserving the water at rest configuration (the C-property) is the minimal requirement that the
numerical scheme has to respect. A scheme is then said to be well-balanced (for the water at rest case) if it
preserves this specific situation. Other types of steady state solution can also be preserved (the so-called mov-
ing water stationary solutions) and there exists a large literature on this subject in the mathematical communi-
ty (we refer to Delestre et al. [2014] for an overview of the up-to-date techniques). Nevertheless, the water at
rest is the main steady state that one has to preserve in the applications involving lakes or oceans.

To highlight the importance of such a property, we prove hereafter why expression (4) is not correct.
Assume that the lake is at rest at time tn, then we have un

ij 5vn
ij 50 while hn

ij 1bn
ij 5gn

ij 5g 2 R. Computing the
next time step for the velocity using the first-order finite volume scheme equipped with a viscous flux such
as the Rusanov or the HLL one [see, e.g., Toro, 2009] leads to

hn11
ij un11

ij 52
gDt
4Dx

ðhn
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2
2ðhn
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2

� �
2

2hn
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bn
i11;j2bn
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52
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4Dx
ðhn
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i21;jÞðhn

i11;j1hn
i21;jÞ2
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2Dx
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2Dx
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ij 2
hn
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5gDt
bn
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2Dx
bn
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bn
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5gDt
bn
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i21;j

4Dx
ð2bn

ij 2bn
i11;j1bn

i21;jÞ:

Clearly, the right-hand side does not vanish except for the particular case of a constant or linear bathymetry
(affine strictly speaking). Hence, hn11

ij un11
ij 6¼ 0. The steady state flow is no longer preserved and such a

scheme leads to an erroneous evaluation of numerical approximations. On the other hand, we can check
that if one employs the following discretization:

2gh@x b � 2g
hn

i11;j1hn
i21;j

2
�

bn
i11;j2bn

i21;j

2Dx
;

we obtain a well-balanced scheme for the water at rest situation since the velocity remains null. A major dif-
ficulty is that the choice of the discretization of the nonconservative term strongly depends on the discreti-
zation of the conservative part and the last choice turns out to be inadequate if, for example, we use the

Figure 1. Notations and grid.
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Roe numerical flux [see, e.g., Toro, 2009]. Therefore, the nonconservative contribution has to be adapted to
a function of the numerical flux used in the conservative term.

2.3. MUSCL Technique
The finite volume method is an excellent framework due to its built-in conservation property but it suffers
of an important numerical diffusion if one uses first-order approximations. The MUSCL technique, initially
developed by van Leer [van Leer, 1974], is a popular method to easily increase the accuracy while preserving
the robustness. It is based on two steps: a local linear reconstruction to achieve the second-order, and a lim-
iting procedure for preventing the solution from generating nonphysical oscillations.

To compute an approximation of the first derivative for any function /5h; g; u; v; b, we define the slopes
for the x and y direction, respectively, with

pn
i11=2jð/Þ5

/n
i11j2/n

ij

Dx
; pn

ij11=2ð/Þ5
/n

ij112/n
ij

Dy
;

and one can achieve a more accurate approximation taking for example (see Figure 2)

/n
i21=2j;R5/n

ij 2
pn

i11=2j1pn
i11=2j

2
Dx
2
;

on the right side of edge ei21=2j , and

/n
i11=2j;L5/n

ij 1
pn

i11=2j1pn
i11=2j

2
Dx
2
;

on the left side of edge ei11=2j . Notice that we have skipped the reference to / for the slopes p for the sake
of simplicity.

Such a reconstruction will give rise to oscillations in the vicinity of a discontinuity due to the Gibbs phenom-
enon and a nonlinear limiting procedure has to be implemented to preserve the monotonicity in each
direction. The traditional MUSCL approach consists in substituting the original slopes by a limited version
pða;bÞ depending on the left and right unlimited slope (a and b, respectively), such that some stability cri-
terion is fulfilled. Classical limiter operators such as the minmod or the van Leer limiters are involved in
the limiting process [van Leer, 1974]. The van Leer limiter will be used in all the numerical simulations.

Then we define the stabilized reconstructed values on the left and right side of the vertical interfaces with

/n
i11=2j;L5/n

ij 1p pn
i21=2j; pn

i11=2j

� �
Dx=2;

/n
i21=2j;R5/n

ij 2p pn
i21=2j ; pn

i11=2j

� �
Dx=2;

while we set for the horizontal interfaces

/n
ij11=2;L5/n

ij 1p pn
ij21=2; pn

ij11=2

� �
Dy=2;

/n
ij21=2;R5/n

ij 2p pn
ij21=2; pn

ij11=2

� �
Dy=2:

Notice that /n
i11=2j;L and /n

i21=2j;R are (in general) different and that we recover the constant piecewise repre-
sentation when p 5 0 with /n

i11=2j;L5/n
i21=2j;R5/n

i . Therefore, the first-order case is a possible outcome of
the second-order one. In the
following Wn

i11=2j;L stands for
the reconstructed conserva-
tive vector on the left side of
interface ei11=2;j and V n

i11=2j;L

the corresponding vector
using the physical variables.

An important point is that
the reconstruction cannot be
performed with h, g, and b at
the same time for compati-
bility reasons. It has been

Figure 2. Slope and interface value reconstructions for the Ox direction. We skip the second
index j for the sake of clarity.
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shown in Audusse et al. [2004] that a good choice is to first carry out the MUSCL procedure on h and g. Then
we deduce the values for b setting (notice that the approximations of b now depend on time)

bn
i11=2j;L5gn

i11=2j;L2hn
i11=2j;L;

bn
i21=2j;R5gn

i21=2j;R2hn
i21=2j;R:

We evaluate approximations bn
ij11=2;L and bn

ij21=2;R for the horizontal interfaces in the same way.

2.4. Hydrostatic Reconstruction
To design a discretization of the source term that preserves the C-property, we use the hydrostatic recon-
struction proposed by Audusse et al. [2004], which allows to deal with complex flows with the dry/wet situa-
tion. In particular, such a technique preserves the positivity of the water height providing very good
robustness and accuracy.

Consider a generic interface e and denote by bL; hL and bR; hR the bathymetry and water height for the left
and right sides of the interface. We set b�5max ðbL; bRÞ and perform the hydrostatic reconstruction setting
h�L5max ð0; hL2b�1bLÞ; h�R5max ð0; hR2b�1bRÞ. Therefore, h�L and h�R correspond to the water heights
which are really involved in the pressure at the interface e. Figure 3 (left) shows that h�R < hR due to the
step, the middle presents the dry/wet case where h�L5h�R, while the right gives an example of hydrostatic
reconstruction with a piecewise linear bathymetry.

We now adapt the generic principle to a vertical interface ei11=2;j for instance. We then denote by
b�;ni11=2j5max ðbn

i11=2j;L; bn
i11=2j;RÞ, where bn

i11=2j;L and bn
i11=2j;R are approximations of topography on interface

ei11=2;j , and set the new hydrostatic reconstruction variables

h�;ni11=2j;L5max ð0; hn
i11=2j;L2b�;ni11=2j1bn

i11=2j;LÞ;

g�;ni11=2j;L5h�;ni11=2j;L1b�;ni11=2j ;

with hn
i11=2j;L; bn

i11=2j;L approximations of the water height and bathymetry on the left side of interface

ei11=2;j . We proceed in the same way to compute h�;ni11=2j;R and g�;ni11=2j;R. For the sake of consistency, we also

use the notation u�;ni11=2j;L5un
i11=2j;L; v�;ni11=2j;L5vn

i11=2j;L and u�;ni11=2j;R5un
i11=2j;R, v�;ni11=2j;R5vn

i11=2j;R for the velocity.

We apply an identical algorithm for the horizontal interfaces of cell cij to evaluate /�;ni21=2j;R;

/�;ni21=2j;R; /�;nij11=2;L, /�;nij11=2j;R; /�;nij21=2;L; /�;nij21=2j;R for /5h; g; u; v; b. We shall denote by W�;ni21=2;L and V�;ni21=2;L the
conservative and physical vectors after applying the hydrostatic reconstruction.

2.5. Numerical Fluxes and Source Term
The generic explicit finite volume scheme is

Un11
ij 5Un

ij 2
Dt
Dx

�
F n

i11=2j1en
i11=2j;L

2F n
i21=2j2en

i21=2j;R

�

2
Dt
Dy
½F n

ij11=21en
ij11=2;L

2F n
ij21=22en

ij21=2;R�1DtSn
ij ;

(5)

with F n
i21=2j5FðW�;ni21=2j;L;W�;ni21=2j;R; mÞ a numerical flux for the conservative contribution that is cast in the vis-

cous form

Figure 3. The hydrostatic static reconstruction: wet/wet with constant bathymetry (left), dry/wet case (middle), and wet/wet with linear
bathymetry (right).
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FðWL;WR; mÞ5
FðWL; mÞ1FðWR; mÞ

2
2kðWR2WLÞ;

where

FðW; mÞ5

hU � m

huU � m

hvU � m

0
BB@

1
CCA1

gh2

2

0

mx

my

0
BB@

1
CCA

is the physical flux in the normal direction m and k> 0 is the scheme viscosity. In the following, the HLL
numerical flux will be used in all the numerical simulations.

Function en
i21=2j;L5eðhn

i21=2j;L; h�;ni21=2j;LÞ is the nonconservative flux at edge ei21=2j at the left side of the inter-
face. We recall that for a nonflat bottom the nonconservativity yields

en
i21=2j;L1en

i21=2j;R 6¼ 0;

where this quantity represents the momentum variation due to the sharp change of topography at the
interface. Of course, en

i21=2j;L5en
i21=2j;R50 if one has bn

i21=2j;L5bn
i21=2j;R, which corresponds to a local continu-

ous bathymetry. We shall use the following discretization to deal with the discontinuous part of the noncon-
servative term

en
i11=2j;L5

g
2

0

ðhn
i11=2j;LÞ

2
2ðh�;ni11=2j;LÞ

2

0

0
BB@

1
CCA

and similar expressions for the three other nonconservative contributions, namely en
i21=2j;R, en

ij21=2;L , and
en

ij11=2;R, for the three other interfaces.

When dealing with the second-order approximation, the gradient of the bathymetry has to be substituted
by its numerical representation corresponding to the regular part of the nonconservative term. Consequent-
ly, the contribution of the source term over the cell is

Sn
ij 52g

0

hn
i11=2j;L1hn

i21=2j;R

2
3

bn
i11=2j;L2bn

i21=2j;R

Dx

hn
ij11=2;L1hn

ij21=2;R

2
3

bn
ij11=2;L2bn

ij21=2;R

Dy

0
BBBBB@

1
CCCCCA:

Notice that the source term for the cell does not involve the hydrostatic reconstructed variables but the
original ones.

If one adopts a first-order scheme, we have bn
i11=2j;L5bn

i21=2j;R5bij . Hence, the source term in the cell van-
ishes and the contributions of the bathymetry variations are computed with the nonconservative flux. How-
ever, if the bathymetry is continuous and one employs a second-order scheme, the nonconservative flux
deriving from the bathymetry discontinuity vanishes, and the change of topography contribution is exclu-
sively computed with the source term in the cell Sij. To sum up, both e and S are computing the nonconser-
vative term, but e captures the sharp bathymetry variation at the interfaces, while S treats the smooth
topography variations inside the cells.

2.6. Boundary Conditions
Edges eI11=2;j are situated on the right boundary of the domain while WI11=2j;L corresponds the recon-
structed conservative vectors on the left side of these edges. One has to build a vector WI11=2j;R for the right
side following the prescription of the boundary condition. In the present study we shall consider two
conditions:

Reflection condition. We set hI11=2j;R5hI11=2j;L; bI11=2j;R5bI11=2j;L , uI11=2j;R52uI11=2j;L, and vI11=2j;R5vI11=2j;L .
Transmission condition. We set hI11=2j;R5hI11=2j;L; bI11=2j;R5bI11=2j;L, uI11=2j;R51uI11=2j;L , and vI11=2j;R5vI11=2j;L.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000603

CLAIN ET AL. FINITE VOLUME HYDROSTATIC RECONSTRUCTION 1697



We proceed in a similar way for sides e1=2;j on the left boundary and perform the same construction for the
upper and the lower boundaries using ei;J11=2 and ei;1=2, respectively. In the latter case, one has to modify
the vertical component of the velocity v instead of u.

Notice that in both cases, the left and right values are equal or opposite, which means that for any function
/5h; hu, one has r/ � n50 at the boundary. Consequently, the gradient vanishes in the outward direction
and the slopes are zero. Linear reconstructions are reduced to constant value functions, but second-order
accuracy is preserved.

2.7. Full Second-Order Finite Volume Scheme
A second-order method in time is required to guarantee a global second-order method for smooth solu-
tions. The usual RK2 (Heun method) is usually employed to be effective and robust. Assuming that we know
all the vectors Wn

ij ; i51; � � � ; I; j51; � � � ; J at time tn, we proceed in two substeps. We first compute a pre-
dicted approximation Wn;1

ij for time tn1Dt applying successively the MUSCL procedure, the hydrostatic
reconstruction, and the finite volume scheme (5). With Wn;1

ij in hand, we proceed in the same way for com-
puting a predicted approximation Wn;2

ij for time tn12Dt. Then the Heun method consists in defining the
corrected numerical solution

Wn11
ij 5

1
2

Wn
ij 1

1
2

Wn;2
ij ;

which provides a second-order approximation in time at tn11. Numerical solution Wn11
ij corresponds to a

full second-order approximation both in space and time as long as we respect the CFL condition for the sta-
bility. In the following, the phrase ‘‘second-order scheme’’ corresponds to a global second-order both in
space and time.

3. Numerical Tests and Validation

Several benchmarks are carried out to perform the verification and validation of the numerical scheme,
through comparisons of the code predictions with analytical solutions, laboratory experiments and field
measurements.

The validation stage guarantees that the numerical method correctly solves the equations where consisten-
cy, accuracy and stability are assessed with representative situations such as bathymetry change, dry/wet
interface, and different boundary conditions.

To this end, three types of benchmark are considered: (1) the synthetic benchmark, where the numerical
solution is compared to an analytical one; (2) the laboratory benchmark involving a confrontation of the
numerical approximation with data deriving from laboratory experiences; and (3) a field benchmark, where
we compare the numerical and the recorded results of a real event, the 1969 event that affected the coasts
of Portugal, Spain, and Morocco.

The benchmarking process used to accomplish the geophysical component is an adaptation of the bench-
mark problems introduced by the Long-Wave Run-Up Models Workshops 1990 (Catalina Island in Califor-
nia), 1996 (Friday Harbor in Washington), and 2004 (Catalina Island) [Liu et al., 1990; Yeh et al., 1996;
Synolakis and Bernard, 2006]. Later, as a product of these workshops, a technical memorandum was com-
piled by the National Oceanic and Atmospheric Administration [Synolakis et al., 2007, 2008] and organized
into four different categories: (1) basic hydrodynamic considerations, including the mass conservation and
convergence; (2) analytical benchmarking, including the single wave on a simple beach problem; (3) labora-
tory benchmarking, including tests for a solitary wave on a simple beach, a solitary wave on a composite
beach, a solitary wave on a conical island, tsunami run-up onto a complex 3-D beach (Monai Valley) and tsu-
nami generation and run-up due to 3-D landslide; and (4) field benchmarking with the Rat Islands and the
Okushiri tsunamis.

In our study, the basic hydrodynamic considerations are assessed to validate the numerical code. Mass con-
servation, convergence and stability are the major issues a code has to address. For nonconservative prob-
lems, the question of the well-balanced (or C-property) is also important, namely, some steady state
situations have to be preserved. The most popular test is the so-called lake at rest configuration where a
constant free surface with varying bathymetry and null velocity at t 5 0 will be maintained for t> 0.
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For the numerical code verification, we perform:

1. Three problems to test the run-up and inundation numerical solutions of the nonlinear shallow water
equations based on Synolakis et al. [2008] and Tinti and Tonini [2013].

2. Three synthetic sanity check benchmarks, namely, tsunami run-up (without and with draw-down) on a
slope plane beach benchmarks [Carrier and Greenspan, 1958; Carrier et al., 2003], and tsunami run-up of a
planar surface oscillating in a paraboloidal basin benchmark [Thacker, 1981].

3. One laboratory benchmark due to the Monai, Okushiri tsunami that was carried out to compare the sim-
ulation with real experimental data in order to assess the validity of both the model and the numerical
method.

4. One field benchmark comparing the recorded data of the 28 February 1969 North East Atlantic tsunami
with the synthetic results of the numerical model.

3.1. Synthetic Benchmarks
Analytical benchmarking is a procedure that is used to identify the dependence of the results on the prob-
lem parameters [Synolakis et al., 2008; Tinti and Tonini, 2013].
3.1.1. Comparisons Between First- and Second-Order Methods
To assess and highlight the advantages of using a second-order method over a first-order one, we consider
two classical analytical one-dimensional steady state benchmarks [see, e.g., Delestre et al., 2014], namely, a
stationary transcritical flow without shock and a stationary transcritical flow involving a shock. The former
case deals with a regular solution, allowing to assess the convergence differences between the first- and
second-order technique, whereas the latter involves a discontinuous solution in order to check the ability to
deal with shocks. In both cases, the ability to preserve the stationarity state with nonnull velocity is also
addressed.

A channel with length L is discretized in space using a one-dimensional uniform mesh of I cells. Time step
Dt is controlled by a CFL coefficient that we take equal to CFL 5 0.40, i.e.,

Dt5CFL
Dx
k
;

with k the maximum eigenvalue coefficient juj1
ffiffiffiffiffiffi
gh

p
over all the states. Both flows have an upstream

boundary located at x 5 0 and the downstream one at x 5 L. The analytic equation governing such flows is
given in Delestre et al. [2014] together with a wide set of analytic solutions for other 1-D and 2-D configura-
tions. The configurations used in these two tests follow closely the corresponding benchmarks presented in
the Delestre et al. compilation.
3.1.1.1. Regular Case
Since we are dealing with a smooth solution for both the free surface and the momentum, for the conver-
gence studies we define the L1- and L1-errors for a bounded L1 function / as

L12error :

XI

i51
j/N

i 2/ex
i j

I

and

L12error : max
i51;...;I

j/N
i 2/ex

i j;

where ð/ex
i Þi51;...;I and ð/N

i Þi51;...;I are, respectively, the exact and the approximated cell mean values at the
final time tN5tfinal.

Notice that hu 5 q0 is a constant since the solution does not depend on time and we carry out the simula-
tions taking L516 m; q051:53 m2=s, while the bathymetry (bump) is given by

bðxÞ5
0:220:05ðx26Þ2 ; 4 m < x < 8 m;

0 ; otherwise:

(

Under these conditions the flow is subcritical upstream with a Froude number close to 0.5 at x 5 0 m and
supercritical downstream with a Froude number around 1.9 at x 5 L. The regime transition occurs at the top
of the bathymetry bump x 5 6 m. Given the transcritical nature of the flow, the Dirichlet condition hu 5 q0 is
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prescribed for x 5 0 m and trans-
mission conditions are consid-
ered for the outflow side.
Computations are carried out, for
different meshes, until the final
time tfinal58 s with the first- and
the second-order versions of the
code. The initial configuration
corresponds to the exact solution
of the shallow water system
obtained numerically. Under
these conditions, for t 5 8 s the
L1- and L1-errors for both h and
hu are several orders of magni-
tude higher than the correspond-
ing variations of these variables
between consecutive models,
meaning that, in practice, a
steady state regime has been
reached.

The exact solution for both the
free surface and the momen-
tum is presented in Figures 4
and 5 where we plot the
approximations for the free sur-

face and the mass flow obtained using the two schemes being compared for the 40 cells mesh (290 time
steps). For the sake of clarity the curves are plotted in the restricted interval ½3 m; 9 m�. Errors for different
mesh sizes and convergence rates for the free surface and the mass flow are provided in Tables 1 and 2,
respectively.

The simulation results presented
in Figures 4 and 5 show that the
second-order method provides a
better qualitative approximation
than the first-order one and a
remarkable capacity to preserve
the stationary momentum near
the bump. The errors presented
in Tables 1 and 2 highlight
and clearly point out the error
decreases that the second-order
scheme can achieve. This is par-
ticularly noticeable for the L1-
error which is an indicator of the
quality of the overall approxima-
tion with respect to the exact
solution: L1-errors are much lower
in the second-order case and the
order of convergence stays close
to the optimal order (i.e., 2). The
main reason preventing even bet-
ter performance of the second-
order scheme has to do with the
fact that the first derivative of the

Figure 4. Free surface for the transcritical case without shock for x 2 ½3 m; 9 m�. The exact
solution and bathymetry are presented together with the numerical solution obtained for
a 40 cells mesh using the first- and second-order methods.

Figure 5. Momentum for the transcritical case without shock for x 2 ½3 m; 9 m�. The exact
solution is shown together with the numerical solution obtained for a 40 cells mesh using
the first- and second-order methods.
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bathymetry is not continuous at the beginning of the bump nor at its end. This leads to an order of convergence
in the L1-norm limited to 1 for both methods.
3.1.1.2. Discontinuous Case
We turn now to the transcritical case with shock. In this case we take L 5 10 m and the bathymetry is essen-
tially the one used in the regular case, but shifted upstream

bðxÞ5
0:220:05ðx25Þ2 ; 3 m < x < 7 m;

0 ; otherwise:

(

We set hu5q050:18 m2=s and gðLÞ50:332 m leading to a flow that is subcritical upstream, becomes super-
critical at the top of the bump, remaining in this regime until a shock occurs before the end of the bump.
From there on, the flow regime is subcritical again. Under these conditions one can show that the shock is
located around x 5 6.65 m. On the other hand, at x 5 0 m the Froude number is approximately 0.2, being
2.7 just before the shock and 0.4 right afterward, reaching 0.3 downstream. Given the fact that the flow is
subcritical both at x 5 0 m and x 5 L, we adopt the boundary conditions: huð0Þ5q0 and gðLÞ50:332 m. The
simulations are carried out until the final time tfinal520 s to guarantee that the numerical solution has
reached a steady state at the end of the simulation. As in the previous test case, the initial condition corre-
sponds to the steady state exact solution.

Given the lack of smoothness of the solution, convergence analysis is not performed but we focus on the
scheme capacity to capture the location and shape of the shock, as well as its ability to preserve the steady
state. The exact solution for both the free surface and the mass flow is depicted in Figures 6 and 7, together
with the corresponding numerical results obtained using the first- and second-order schemes for a 50 cells
mesh (780 time steps). The curves are plotted in the interval ½2 m; 8 m� for the sake of clarity. The approxi-
mation obtained with the second-order method is qualitatively closer to the exact solution, exhibiting a
sharper shock and a momentum profile that is closer to the constant mass flow. The first-order method
presents a higher diffusion profile where the shock capture is clearly less accomplished. Furthermore, we
observe a severe deviation of hu with respect to the default constant mass flow value near the shock (and
the bumps end) as well as in the vicinity of the beginning of the bump.

To highlight the importance of the limiting procedure, we also consider a simulation using the second-
order reconstruction without the limiting procedure. Figure 8 presents the numerical results obtained for
the free surface using the second-order method with and without limiter (‘‘nl’’ for nonlimited) with a 100
cells mesh. In the nonlimited case, the free surface close to the shock discontinuity is quite inconsistent and

Table 1. Free Surface L1 and L1-Errors (m) and Convergence Rates for the Transcritical Case Without Shock for the First- and
Second-Order Methods

Nb of Cells

First-Order Method Second-Order Method

err1 Order err1 Order err1 Order err1 Order

80 3.68e-3 1.69e-2 1.38e-3 1.12e-2
160 1.86e-3 1.1 8.62e-3 1.0 3.98e-4 1.8 6.22e-3 0.9
320 9.33e-4 1.0 4.36e-3 1.0 5.79e-5 2.8 1.97e-3 1.7
640 4.67e-4 1.0 2.20e-3 1.0 1.73e-5 1.7 9.89e-4 1.0
1280 2.33e-4 1.0 1.10e-3 1.0 4.89e-6 1.8 4.96e-4 1.0

Table 2. Momentum L1 and L1-Errors (m2=s) and Convergence Rates for the Transcritical Case Without Shock for the First- and
Second-Order Methods

Nb of Cells

First-Order Method Second-Order Method

err1 Order err1 Order err1 Order err1 Order

80 2.89e-3 2.70e-2 6.74e-4 6.30e-3
160 1.42e-3 1.0 1.42e-2 0.9 2.13e-4 1.7 3.16e-3 1.0
320 6.98e-4 1.0 7.27e-3 1.0 5.15e-5 2.0 1.56e-3 1.0
640 3.43e-4 1.0 3.68e-3 1.0 1.48e-5 1.8 7.94e-4 1.0
1280 1.70e-4 1.0 1.85e-3 1.0 4.20e-6 1.8 4.02e-4 1.0
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shows nonphysical oscillations,
underlining the fundamental role
of the limiting procedure when
the solution is not smooth.
3.1.2. Tsunami Run-Up Onto a
Sloping Plane Beach
The uniformly sloping beach
benchmark consists of the com-
parison between the numerical
solution obtained for the travel-
ing and subsequent run-up of a
leading depression N-wave (ini-
tial profile) across a 1/10 slope
beach with the solution obtained
by the analytical integral formula
given in Carrier and Greenspan
[1958] and Carrier et al. [2003]. In
Figure 9 we depict the initial
wave profile (see, e.g., Carrier and
Greenspan [1958] for a complete
description of the problem
geometry). The goal of the
benchmark, as described in Syno-
lakis et al. [2008], is to compute
the numerical approximations of
the free surface and velocity at

time t5160 s; t5175 s and t 5 220 s, and to compare them with the exact solution. We plot in Figure 10
the free surface using the first-order (left) and the second-order method (right) for the three times while
Figure 11 displays the velocity. We qualitatively observe the convergence of the approximation as Dx decreases

and report that the second-
order clearly provides the best
solution.

To quantify the impact of the
second-order method, we report
in Table 3 the error between
the free surface minimum at
t 5 175 s and the exact mini-
mum (equal to 221.34) to deter-
mine the convergence orders.
As expected, the second-order
scheme provides the smallest
errors and the convergence rate
is around 1.6, whereas the first-
order method provides the worst
approximation to the exact solu-
tion. Note that the dry-wet inter-
face is not well collocated since
its position depends on whether
a cell is wet or dry. We identify
this issue as the major problem
for obtaining an accurate solution
and it is the main limiting factor
of the numerical scheme. Effec-
tive second-order error cannot

Figure 6. Free surface for the transcritical case with shock for x 2 ½2 m; 8 m�. The exact
solution and bathymetry are presented together with the numerical solution obtained for
a 50 cells mesh using the first- and second-order methods.

Figure 7. Momentum for the transcritical case with shock for x 2 ½2 m; 8 m�. The exact
solution is shown together with the numerical solution obtained for a 50 cells mesh using
the first- and second-order methods.
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be achieved due to this important
restriction and a better location of
the dry/wet interface inside the
cell is a crucial challenge.
3.1.3. Shoreline Position and
Velocity
In this benchmark, the position
and the velocity of the shoreline
are compared with the ones
given by semianalytical solu-
tions of the nonlinear shallow
water equations for an uniform
sloping beach as given by Carri-
er et al. [2003].

To this end, we carry out the
computation of the numerical
solution obtained with the first-
and the second-order method
and compare them with the
results of Carrier et al. [2003] for
the run-up and run-down of a
leading depression N-wave (typ-
ically caused by a seismic fault
dislocation by subduction earth-
quake) on a plane beach with

slope a 5 1=200. The initial condition assumes zero velocity everywhere and an initial vertical departure of
the free surface with respect to the constant still water level gswl such that

g0ðxÞ2gswl5al 2ae2kðx2x1Þ2=l2
2ae2kðx2x2Þ2=l2

� �
;

where x stands for the horizontal coordinate, which is zero at the quiescent position of the shoreline
and points shoreward [see, e.g., Carrier and Greenspan, 1958], l 5 75 km as suggested in Carrier et al. [2003],

yielding al5375 m, and

a50:01; k53:5;
x152117178:5 m;
x25275000 m:

The initial wave profile is
depicted in Figure 12. The sim-
ulation is performed for differ-
ent uniform meshes covering a
300 km domain until the final
time tfinal55000 s. In the simu-
lations the water cutoff level
to enforce cell drying is equal
to 1024 independently of the
mesh size.

Table 4 presents, for different
meshes, the run-up and run-
down extreme positions, as well
as the maximum inshore and
offshore velocities, obtained
with the second-order method,
which we compare with the

Figure 8. Free surface for the transcritical case with shock for x 2 ½2 m; 8 m�. Comparison
between the numerical results obtained with the second-order method and a version of
this method without limiter (nl) for a 100 cells mesh.

Figure 9. Initial free surface for the leading depression N-wave (run-up onto a sloping
plane beach benchmark). The quiescent position of the shoreline and beach correspond,
respectively, to x 5 0 and x< 0).
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exact values. We also indicate the corresponding time at which these events occur. Figure 13 depicts the
shoreline position xs as a function of time for the finest mesh for both the first- and the second-order meth-
ods. For the second-order method we observe, in the case of the finest mesh, good agreement for both the
run-up and run-down extreme values, with an error smaller than 1.5 and 0.7%, respectively. The inshore
maximum velocity is particularly well reproduced. The maximum offshore velocity, which occurs near the
end of the run-down, is less accomplished, the overestimation pointing again to the need of a more accu-
rate location of the dry/wet interface. The values of time at which these extreme events take place are in

Figure 10. Free surface at t 5 160 s (top), t 5 175 s (middle), and t 5 220 s (bottom) for the run-up on linear ramp. The left figure corresponds to the first-order scheme and the right fig-
ure to the second-order scheme.
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good agreement with the exact
results presented in Carrier et al.
[2003, Figures 12c and 14]. The first-
order method clearly fails to repro-
duce the run-down, even for a rather
fine mesh, for both the position (see
13) and the velocity (not shown),

Figure 11. Water velocity at t 5 160 s (top), t 5 175 s (middle), and t 5 220 s (bottom) for the run-up on linear ramp. The left figure corresponds to the first-order scheme and the right
figure to the second-order scheme.

Table 3. Errors and Convergence Rates for the Free Surface Minimum (m) at Time
t 5 175 s

Dx(m)
Error

First-Order Order
Error

Second-Order Order

50 7.30 4.00
20 3.22 0.9 0.98 1.5
10 1.25 1.3 0.31 1.7
5 0.58 1.1 0.10 1.6
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highlighting the limitations of
the method.
3.1.4. Tsunami Run-Up of a
Planar Surface Oscillating in a
Paraboloidal Basin
We now tackle a benchmark
deriving from an analytical solu-
tion proposed by Thacker [1981]
for a parabolic basin. This
benchmark has been used by
Tinti and Tonini [2013] to check
the numerical schemes.

The computational domain is
an ellipse of semiaxes L and
l while the bathymetry is a
paraboloid of equation [see
Brodtkorb et al., 2012, Figure 7,
p. 11]

bðx; yÞ5b0 12
x2

L2
2

y2

l2

� �
:

The initial free surface is a
sloped plane following the hori-
zontal axis. Due to the gravity
force, the free surface is a plane
that oscillates along the time

around the perpendicular axis while the velocity component v remains null.

The exact solution has an analytical expression given by

gðx; y; tÞ52A
b0

L
cos ðxtÞ x

L
2

A
2L

cos ðxtÞ
� �

;

for the free surface and

uðx; y; tÞ5Ax sin ðxtÞ; vðx; y; tÞ50; x5

ffiffiffiffiffiffiffiffiffiffi
2gb0

L2

r

for the velocity, where A is a free parameter that we shall set with the initial conditions. In numerical simula-
tions we use L54700 m; l51300 m; b05201:42 m, and A 5 235m, leading to x51:3368 1022 s21 and
T 5 470 s.

By construction, g is a constant value at time t 5 T=4 and t 5 3T=4. Then, an easy way to check the code is
assessing the flatness defaults by computing the difference between the maximum and the minimum

Figure 12. Initial vertical departure of the free surface with respect to the constant still
water level for the leading depression N-wave (run-up/draw-down benchmark). The quies-
cent position of the shoreline corresponds to x 5 0 and the beach to negative values of x).

Table 4. Comparison Between Numerical (Second-Order) and Exact Extreme Values for the Run-Up and Run-Down (m), Inshore Velocity,
and Offshore Velocity (m/s), for the Leading Depression N-Wavea

Nb of Cells Max. Run-Up Max. Run-Down Max. Inshore Vel. Max. Offshore Vel.

24,000 4,325 21,788 10.55 215.62
(t 5 2,963) (t 5 3,732) (t 5 2,554) (t 5 3,652)

37,500 4,320 21,784 10.29 215.25
(t 5 2,966) (t 5 3,730) (t 5 2,540) (t 5 3,646)

56,250 4,311 21,776 10.09 214.98
(t 5 2,960) (t 5 3,725) (t 5 2,521) (t 5 3,644)

84,375 4,313 21,774 9.92 214.76
(t 5 2,984) (t 5 3,725) (t 5 2,504) (t 5 3,643)

Exact solution 4,373 21,763 9.91 213.71

aThe values of time (s) corresponding to these extreme values are also presented.
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values of g at t 5 3T=4. We carry
out three simulations using
meshes M15250375; M255003

150, and M3510003300. In
Table 5 we report the deviation
with respect to the flatness
default Df.

Figure 14 displays the free sur-
face of the basin at time t 5 3T=4
corresponding to the flat situa-
tion where the exact solution is
given by g 5 0. We then visualize
the two-dimensional errors distri-
bution where the maximum and
minimum are given in the cap-
tion. We obtain an almost con-
stant zero-surface with respect to
the characteristic length of the
basin and no spurious oscilla-
tions are reported. The values in
Table 5 correspond to the L1-
norm of the error of the numeri-
cal approximation with respect
to the exact solution. The free-

surface error is of order O(h) when using the first-order scheme while we recover full second-order with the
MUSCL technique. Moreover, the MUSCL method does not produce any spurious oscillations and the free-
surface flatness is almost preserved.

3.2. Laboratory Benchmark: Monai
The laboratory benchmark is an 1/400 scale laboratory experiment of the extreme Monai run-up which
occurred as a consequence of the 1993 Okushiri tsunami (village of Monai in Okushiri Island, 1993 [Matsuya-
ma and Tanaka, 2001]). Laboratory measurements were performed in a tank 205 m long, 6 m deep, and 3:4
m wide and three Points of Interest (PoI’s) were considered, simulating virtual tide gauges. These PoI’s are
located at: (1) tide gauge 1: 4:521 m; 1:196 m; (2) tide gauge 2: 4:521 m; 1:696 m; and (3) tide gauge 3:
4:521 m; 2:196 m.

We carry out two simulations using the first-order and the second-order version of the code, the results
being displayed, respectively, in the top and bottom rows of Figure 15. The elevations correspond to time
t 5 14 s (left) and t 5 16 s (right). The second-order method provides qualitative better approximations with
a sharper front and a larger dry zone which result from a less diffusive scheme. For instance, in the right
bottom picture, the waves structure close to the cliff is steeper while the corresponding discontinuities
appear smoother in the right upper picture.

To better quantify the error between the laboratory data and the numerical approximations, we compare
the water height measurement at the three locations and draw the associated numerical curves in Figure
16. We observe the good correspondence until 50 s. From then on, the shallow water model is not repre-
sentative enough due to the lack of dispersive terms. The second-order scheme provides a better approxi-
mation, in particular smaller structures (local variations) are captured, whereas they do not appear when

the first-order scheme is used.

3.3. Field Benchmark: 28 February 1969
Tsunami
The 28 February 1969 submarine earthquake
had a magnitude Ms 5 7.9, and its epicenter
located on the Horseshoe fault (HSF), 36.018N
and 10.578W (see Figure 17). Its source was

Table 5. Flatness Defaults (m) at Time t 5 175 s for Different Meshes
and Scheme Orders

Mesh Df: First-Order Df: Second-Order

Dx5250 m;Dy575 m 0.82 0.072
Dx5500 m;Dy5150 m 0.44 0.021
Dx51000 m;Dy5300 m 0.21 0.006

Figure 13. Numerical results obtained with the first- and second-order methods using the
finest mesh for the temporal variation of the shoreline position xs for the leading depres-
sion N-wave. The dotted horizontal lines represent the exact extreme values.
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interpreted as a thrust fault with
a small strike slip component
[Fukao, 1973]. The earthquake
generated a small tsunami that
affected the coasts of Portugal,
Spain, and Morocco [Heinrich
et al., 1994; Gjevik et al., 1997].
The tsunami was recorded by
several tide gauges, including
the Cascais, Pedrouços, Terreiro
do Paço, Cabo Ruivo and Lagos,
in Portugal, and Casablanca, in
Morocco. Figure 17 shows the
epicenter of the 1969 earth-

quake and the location of several tide gauges where records are available, while Table 6 presents the tide
gauges coordinates.

All tide records were digitized, linearly interpolated and detided to isolate the tsunami signal. To remove
the tide we used a polynomial fitting of degree 9. The simulations were carried out for Mean Sea Level con-
ditions. The bathymetric grid has a uniform spacing of 200 m, and was generated from the General Bathy-
metric Chart of the Oceans (GEBCO, http://www.gebco.net/).

To prescribe the initial conditions of the tsunami generation, we assume the earthquake rupture to be
instantaneous and the water incompressible, so that the initial sea surface displacement mimics the coseis-
mic deformation of the sea bottom. We adopt the fault plane parameter suggested by Fukao [1973]. The

Figure 14. Free surface of the paraboloid basin at time t 5 3T=4 corresponding to the
exact solution g 5 0 m. The free surface is situated between 20.003 m (blue) and 0.003 m
(red) while the intermediate zero-level surface is yellow.

Figure 15. Comparison of the first- (top) and second-order (bottom) schemes at time t 5 14 s (left) and t 5 16 s (right).
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strike angle is 558, the dip angle is 528, and considering a seismic moment of M056:1020 Nm, the dimen-
sions of the fault plane are fixed as 80 km long by 50 km wide [Heinrich et al., 1994]. To compute the coseis-
mic deformation, we use the half-space elastic approach [Okada, 1985] implemented in Mirone suite [Luis,
2007].

The initial sea surface displacement is shown in Figure 18. The maximum vertical displacement is 1.65 m.

We carry out numerical simulations with the first- and the second-order method. Zero-velocity is assumed
at the initial time. The initial time of the simulation, t 5 0 s, is the time of the earthquake. We run the simula-
tion until a final time of 180 min. Transmission conditions are prescribed on the whole boundary to make
the waves freely flow out of the domain without spurious oscillations.

The comparison between the synthetic results and the recorded data focus on four aspects: (1) amplitude
of the first wave; (2) arrival time of the tsunami first wave; (3) frequency of the first waves; and (4) first wave
polarity.
3.3.1. Wave Amplitude
Figure 19 displays the comparison of the water elevation at the different locations with respect to the time,
while Table 7 provides the maximum water height values for the recorded and simulated waves.

The main difficulty to fit the simulation with the recorded data is the grid size, which prevents representing
structures smaller than 200 m and an accurate location of the sensors. We perform the simulations using

Figure 16. Comparison of laboratory and numerical data for three tide gauges located at points (4.521, 1.196) (tide gage 1), 4.521, 1.696 (tide gage 2), and 4.521, 2.196 (tide gage 3).

Figure 17. Location of Gorringe Bank. The epicenter of the 1969 earthquake near the Horseshoe fault is represented by a yellow star. The location of the tide gauge stations in Casablan-
ca, Lagos, Cascais, and Tagus estuary are represented by triangles (left). Zoom of the Cascais and Tagus estuary tide stations location (right).
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five virtual sensors as Points of Interest, each one
situated in the neighbor cell of the real sensor
localization, ensuring in this way that the synthet-
ic waveforms are representative of the area. We
focus on the three first tsunami waves since local
geographical configurations produce new reflec-
tion waves that are later superposed on the wave-
form, and therefore are not well reproduced by
the numerical simulations.

1. The Cascais PoI numerical waveform shows an
amplitude about 11 and 29 cm larger than the observed waveform (46.7 cm), respectively, for the lower-
and the higher-order method. Such differences may derive from the large diffusivity inherent to the
first-order scheme which dramatically reduces the accuracy (a third of the water height). Since the gravi-
tational wave is compressed and focused as the tsunami enters shallower water close to the coast, the
high diffusion scheme is not able to correctly reproduce the energy concentration and provides errone-
ous estimates of the tsunami impact. The second-order scheme is, at least, accurate enough to give a rel-
evant waveshape when it reaches the coast.

2. The Pedrouços tide gauge simulation shows, for the first-order scheme, an amplitude 10 cm smaller than
the recorded one. In contrast, for the second-order scheme we observe an overestimation of about 6 cm.

3. The Terreiro do Paço comparison shows that the first wave peak amplitude is 19 and 43 cm, respectively,
for the first- and the second-order methods. The recorded waveform shows an amplitude of 42 cm.

4. In Lagos, we achieve a good agreement between the amplitude of the recorded waveform and the simu-
lation results. The first-order simulation presents a difference of 7 mm and the second-order one 8.4 cm.

5. The Casablanca second-order simulation, used mainly to analyze the polarity, shows differences of about 28 cm.

As a pattern, we observe that the first-order simulation results typically provide lower amplitude than the
corresponding second-order results.
3.3.2. Tsunami Travel Time
Figure 19 displays the comparison of the tsunami arrival time. Table 8 provides the time for the recorded
and simulated travel times.

Tsunami travel times are gener-
ally well reproduced by the sim-
ulations, taking into account the
tsunami propagation between
the PoI and the real tide gauge.

1. The Cascais tide gauge
recorded the peak of the first
wave about 36 min after the
earthquake while the first-
and the second-order simula-
tions present the arrival of the
first wave 39 and 41 min after
the earthquake, respectively.

2. The Pedrouços travel time is
66 min while the numerical
simulations give travel times
of 51 min, for both, first- and
second-order.

3. The Terreiro do Paço observed
travel time is 72.6 min while
the simulation gives a travel
time of 63 min for the first-
order and 66 min for the
second-order.

Table 6. PoI’s Used in the 28 February 1969 Event With the
Respective Location

Location

Station Latitude (8N) Longitude (8W)

Cascais 38.693 9.411
Pedrouços 38.690 9.259
Terreiro do Paço 38.704 9.136
Lagos 37.066 8.667
Casablanca 33.610 7.386

Figure 18. Initial deformation generated for the 1969 earthquake and location of the sim-
ulation PoI’s in Portugal.
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4. In Lagos PoI, the recorded travel time is 40.7 min while it is about 35 and 32 min, respectively, for the
first- and the second-order scheme.

5. In Casablanca, the arrival time is not coherent with the recorded waveform (48 min in the recorded
waveform and 32 min in the synthetic result obtained using the second-order simulation). This situation
was already noted in previous studies [see, e.g., Guesmia et al., 1998].

In most cases, the numerical simulation provides earlier arrival times than the ones obtained from the
recorded data. This is consistent with the bathymetric resolution and the very shallow area where the sen-
sors are located, with a depth shallower than 2–4 m. The situation is particularly important for the tide
gauges located on the shallow margins of the Tagus river. Nevertheless, the second-order simulations
reproduce better the recorded waveforms, as expected.

3.3.3. Period
Tsunami propagation results into a series
of waves due to the reflections and the
refraction with the coast leading to a
complex waveform constituted of the
superposition of several frequencies.
Nevertheless, one can observe that the
lower frequency content is almost con-
stant (at least for the three first periods)
in all tide gauges, and mainly a function

Figure 19. Tsunami waves amplitude for the Cascais, Pedrouços, Terreiro do Paço, Lagos, and Casablanca tide gauges. Comparison of the first- and second-order numerical simulation
with the tide gauge waveform.

Table 7. Amplitude: Comparison Between the Recorded Waveform and the
Synthetic Results Obtained From First- and Second-Order Simulations

Station
Recorded

(m)
First-

Order (m)
Second-

Order (m)

Cascais 0.467 0.577 0.759
Pedrouços 0.433 0.334 0.493
Terreiro do Paço 0.417 0.192 0.436
Lagos 0.429 0.436 0.513
Casablanca 0.212 0.476
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of the tsunami source size. To do a
quantitative comparison we estimate
the largest period by the delay between
the first and the second peak and from
the average of the three peaks for both
observed and synthetic waveforms (see
Figure 19).

1. The Cascais observed waveform is
probably affected by the proximity

with marine structures, resulting in three main superposed frequencies. It is possible to identify the high
and low frequencies and perform the comparison with the simulated waveforms.

2. Pedrouços recorded waveform also shows a complex frequency content (see Figure 19). The numerical
code reproduces fairly the lowest frequency.

3. In Terreiro do Paço, the period is better reproduced by the second-order simulation.
4. In Lagos, the recorded waveform has higher frequencies than all simulated waveforms.
5. In Casablanca, both observed and simulated periods are similar.

4. Conclusions

From the numerical point of view, the finite volume technique coupling the hydrostatic reconstruction and
the second-order scheme MUSCL technique provides an efficient code with mass conservation and pre-
serves an ocean at rest. Shocks are well represented and the MUSCL technique reduces the numerical diffu-
sion and increases the accuracy without generating nonphysical oscillations. The code was submitted to
three different types of benchmark to assess the accuracy, the robustness and the C-property. The bench-
marks were performed with the first- and second-order schemes for the run-up, run-down and inundation
numerical solutions of the nonlinear shallow water equations. Comparisons between the numerical and the
real waveforms showed a very good agreement.

The model was tested with a realistic case, the propagation of the small tsunami generated by the 1969 tsu-
namigenic earthquake (Ms7.9) in the Tagus estuary. In spite of the complex bathymetry, the numerical code
had a favorable performance and the comparison between numerical and recorded waveforms showed
good agreement. As expected, the second-order scheme generates waveforms with a better approximation
to the real waveforms recorded by the considered tide stations.

The main conclusions of this paper are:

1. The finite volume method is adequate for the numerical solution of the shallow water equations.
2. The implemented techniques increase the performance of the method.
3. Mathematical and geophysical benchmarks (analytical solutions, laboratory experiments and field meas-

urements) validate the numerical code capability to simulate tsunami propagation, run-up and run-down
with accuracy and robustness.

Future developments will include the introduction of a more recent limiting technique, namely the MOOD
method, in place of the MUSCL method [Figueiredo and Clain, 2015], which provides effective second-order
of accuracy and preserves some essential properties such as the positivity of the water height.
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