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ABSTRACT 

Deterministic models based on most likely forecasts can bring simplicity to the electricity power planning 

but do not explicitly consider uncertainties and risks which are always present on the electricity systems. 

Stochastic models can account for uncertain parameters that are critical to obtain a robust solution, requiring 

however higher modelling and computational effort.  The aim of this work was to propose a methodology 

to identify major uncertainties presented in the electricity system and demonstrate their impact in the long-

term electricity production mix, through scenario analysis. The case of an electricity system with high 

renewable contribution was used to demonstrate how renewables uncertainty can be included in long term 

planning, combining Monte Carlo Simulation with a deterministic optimization model. This case showed 

that the problem of including risk in electricity planning could be explored in short running time even for 

large real systems. The results indicate that high growth demand rate combined with climate uncertainty 

represent major sources of risk for the definition of robust optimal technology mixes for the future. This is 

particularly important for the case of electricity systems with high share of renewables as climate change 

can have a major role on the expected power output.  
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1. INTRODUCTION 

Electricity is an indispensable good for society development and growth of a nation, stimulating 

the economic and technological development of a country [1]. Electricity has special 

characteristics that make it very different from other commodities traded in competitive markets, 

namely the need for instant and continuous generation and consumption, non-storability, high 

variability in demand over a day and season and non-traceability. 

Electricity power systems are large-scale, complex engineering systems requiring short- and long-

term electricity power planning and management decision making.  All these problems have in 

common the need to reach solutions that minimizes the total system cost while meeting electricity 

demand at every time in the planning horizon. However, single cost minimization is no longer an 

acceptable objective and sustainability and resilience concerns are driving electricity systems to 

adapt and evolve, forcing to consider relations within society and environment, technology 

development and political goals [2]. These transformations had increased uncertainties in short- 

and long-term, bringing with it more complexity to the planning process and increasing 

uncertainty in the decision-making process.  

One efficient technique recognized and used worldwide for energy planning is scenario 

generation [3]. Scenarios help to explore what, how and if future pathways are feasible to achieve 

predefined goals. Traditionally, a set of future scenarios is built on assumptions and constraints, 

based on deterministic values to all variables and parameters. Even with a posteriori sensitivity 

analysis, that allows determining which variable(s) influences most electricity power planning, 

uncertainties remain unquantified [4]. However, not properly considering uncertainties when 
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modelling electricity power systems, and particularly the possible correlations between them [5],  

can turn seemingly cost-effective results into obsolete and inadequate options [6]. This is 

precisely the focus of this work, addressing the inclusion of uncertainty on the design of robust 

electricity scenarios. Although different uncertainties in the energy systems can be recognized 

including technical and economic ones [7], for the sake of simplicity this work will mainly address 

uncertainty related to operational parameters, namely demand and generation values in power 

systems, in particular renewable power output. 

The main objective of this work is then to propose a methodology to incorporate risk and 

uncertainty in electricity power planning, supported on deterministic optimization models 

combined with Monte Carlo Simulation of uncertain operational parameters. The application of 

this methodology is deemed to be relevant for the design of generation expansion plans and for 

the evaluation of its robustness under uncertain operational conditions. The contribution of the 

paper is then twofold. Firstly, a methodology to deal with uncertainty in operational parameters 

is presented, particularly well-suited for systems with high renewable share. Secondly, the 

proposed methodology is demonstrated for an electricity system close to the Portuguese as an 

example of a system with high renewable integration and aiming to show the contribution of the 

approach to support robust energy decision making under uncertain future conditions. 

The paper is organized as follows. A review on power systems’ uncertain parameters and its 

inclusion in planning models follows this introduction. Then, the methodology used in this study 

is presented and, subsequently, the results and discussion are detailed. At last, the main 

conclusions of this work are shown. 

 

2. RISK AND UNCERTAINTY IN ELECTRICITY SYSTEMS 

The electricity sector is characterized by a high level of uncertainty and risk, resulting not only 

from its close relationship with an increasingly dynamic policy and regulatory framework but also 

from its high sensitivity to parameters such as climate conditions, economic environment or social 

perception. Important uncertainties and risk factors for electricity systems are presented in Table 

1 proposing and describing 5 main categories and risk sources respectively.     

Economic risk encompasses not only microeconomic aspects of the project, such as the 

uncertainty related to the fuel prices or business taxes, but also macroeconomic parameters, 

namely electricity market regulation and national economic growth [7]. 

Geopolitical risks are particularly relevant in systems depending on the external supply of 

electricity and/or fossil resources (coal, natural gas and oil). Political instability, between and 

within countries, may reproduce severe risks to the security of electricity supply, such as prices 

volatility, disruption of supply chains or degradation of international relationships [8]. 

Sociocultural risks are also permanently present when defining a plan or strategy for the electricity 

system, because local communities can create barriers to their construction or, on the other hand, 

encourage their development, according to their perception about different technologies [9]. The 

issue of social and cultural acceptance as important risk factors for the design of electricity plans 

and projects has motivated different works aiming to analyse the perception of population towards 

different energy options. Some examples include the studies on local communities acceptance of 

wind onshore power plants for Italy [10] and for China [11] or on the public opinion about the 

deployment of wind, solar, hydro and biomass technologies in Portugal [12]. 

Uncertainties in the energy sector driven by climate change and environmental constraints have 

gained attention in recent years as documented in many works [13]–[16]. A review of the 

vulnerability of the energy sector to climate change was conducted by  Schaeffer et al. [13] 

comprising the contribution of relevant authors within their strategic studies, research workshops, 

development forums and international conferences on the climate and energy subject. This review 

demonstrated overall impacts on each renewable and fossil fuel sources affecting resource 

endowments, energy supply, transmission, distribution and transfers, energy use, infrastructure 

siting and finally, cross-sector impacts. Pilli-Sihvola et al.[14] demonstrated a significant and 

clear relationship between electricity demand and temperature variation. They argue that climate 

warming will lead eventually to a decrease in future electricity costs for Central and North Europe 

due to a decrease in heating needs, in opposition to an increase of the electricity costs in Southern 

Europe in consequence of the increase of cooling needs. In another study, encompassing the 



vulnerability of the Brazilian energy system to climate change, Lucena et al. [16] demonstrated 

its impacts on the hydropower generation and liquid biofuels production, and later, in the wind 

power potential [15]. 

Other studies have emphasised the technical uncertainties related to the large contribution of 

sources of variable output in the power systems, namely wind and solar power. Ludig et al. [17] 

analysed low carbon scenarios for the German electricity considering as uncertainties both the 

long-term electricity demand and the large-scale availability of offshore wind and carbon capture 

and storage (CCS) units. In the work of Pérez-Arriaga [18], the author examines the large scale 

penetration of intermittent renewables technologies in the electricity sector and its impacts on the 

system’s operation and reserves requirements, flexibility and stability conditions, system’s costs 

and market prices. The uncertainty related to the technology learning rate and costs estimates was 

investigated by Levi and Pollitt [19], considering the cases of three important technologies for the 

UK electricity system – nuclear, wind offshore and coal with carbon capture and storage (CCS).    

 

Table 1. Uncertainties and risk sources in electricity systems. 

Categories Description Risks and uncertainties 

Economic Risks arising from the financial 

aspects of the project, the market 

conditions and the economic growth 

of a country. 

Project capital costs 

Commodities prices 

Operational costs 

Interest rates 

External costs 

Geopolitical Risks arising from political decisions 

of one country’s foreign affecting 

another country or region.  

National policies 

International agreements 

Environmental regulation 

Sociocultural  Risks arising from divergences on 

social and cultural characteristics of 

different communities. 

Behavioural change 

Future electricity demand 

Social acceptance 

Environmental Risks related to the influence of the 

environmental conditions on the 

performance of the electricity system. 

Extreme climatic events 

Climate change 

Natural accidents and catastrophes 

Technical Risks related to topological and 

operational conditions of the 

electricity system. 

System’s infrastructure 

Reliability of resources 

Learning rate 

Failures and forced outages 

 
2.1. UNCERTAINTY INCLUSION IN OPTIMIZATON MODELLING 

Deterministic models are not primarily intended to deal with uncertainty but, this may be achieved 

by a simple sensitivity analysis or by extensive simulation. This last option frequently requires 

the use of a technique recognized as Monte Carlo Simulation, widely used for the analysis of 

problems involving many and potentially correlated uncertainties, allowing the assignment of a 

probability for respective output [5]. Monte Carlo is actually a stochastic method that allows the 

representation of uncertain parameters as probability density function (PDF) that may be used as 

inputs for the deterministic models. 

Stochastic models are recognized as the formal approach to deal with uncertainty specifically, 

which had bridged the gap between deterministic models and uncertainty analysis. In stochastic 

models, randomness of uncertain parameters is incorporated into problems formulation and 

retrials calculated in order to better fit the uncertain parameters in space, in the search for the 

optimal solution. Nevertheless, the mathematical formulation of stochastic models is rather 

complex, in theory and practice, and thus, specialized knowledge and time efforts are needed to 

develop a stochastic optimization model for the power system planning [20]. 

The representation of uncertainty in the planning model can be in the form of interval, fuzzy set, 

probability distribution or multiple uncertainties [21]. Represented as an interval, possible values 

for the uncertainty are comprised within minimum and maximum limits, without knowledge of 

the distribution of the uncertain parameter. Fuzzy sets express the uncertainty also within an 

interval, but with a complement of a possibilistic distribution, such as the most likely value that 



the uncertain parameter can assume. Probability distribution expresses the uncertainty as a PDF, 

based on historical data and/or literature review or even experience from the stakeholders or 

decision makers. Multiple uncertainties allow the uncertainty to be represented as a combination 

of two or three previous forms (interval, fuzzy set and probability distribution). 

Kim et al. [22] focused their work on the uncertainties facing the electricity production costs of 

conventional and renewable technologies. They applied Monte Carlo simulation to handle 

uncertainties, such as learning rate of technologies, fuel prices and carbon prices and assuming a 

normal distribution for all the uncertain parameters. Pye et al. [4] explored the uncertainties 

affecting policy goals to the transition of the UK energy systems to meet decarbonisation and 

security goals. The uncertainties tackled were investment costs of power generation technologies, 

building rates, biomass availability and resources prices (fossil fuel and biomass), for which the 

PDF were assumed to be triangular distribution, in view of lack of data. 

Several studies were carried out in order to compare the pros and cons of both deterministic and 

stochastic approaches. Fortes et al. [6] analysed the fragilities of the Portuguese power system 

associated with the development of deterministic long term energy scenarios. A stochastic 

approach was adopted, using fossil energy prices and energy demand as uncertain parameters, 

and the main conclusion of the work was that different drivers result in divergent energy 

scenarios. Loulou et al. [20] analysed alternative climate targets under different cooperation 

regimes by groups of countries, by both deterministic and stochastic optimization models. The 

deterministic approach was found not suitable to produce results with mixes of choices, which 

could only be found by stochastic modelling, although this could be computationally 

cumbersome. Cedeño & Arora [23] made a comparison between deterministic and stochastic 

optimization for the problem of transmission network expansion planning. They emphasized that 

deterministic models can produce higher cost impact in the plan when the demand deviate from 

the assumed fixed scenario, notwithstanding the computational complexity of the stochastic 

approach. 

Another technique designed specifically to analyse complex and uncertain systems is the 

Exploratory Modelling and Analysis (EMA), an iterative and question-driven research 

methodology that resources to computational experiments [24]. With this technique, many 

scenarios are designed, allowing the planners to explore the consequences or implications of the 

uncertain assumptions in the overall system being analysed [25]. The final goal is to define a set 

of uncertain scenarios and provide to decision-makers insights of each scenario and trade-offs 

between them. 

This work aims to contribute to the theme of uncertainty on power planning, recognizing that a 

deterministic approach can be too limited specially in systems characterized by high levels of 

renewable energy sources (RES) and as such strongly dependent on the availability of the 

underlying renewable resources. The proposed methodology should provide a contribution to 

tackle these challenges via a simplified stochastic approach able to face major uncertain 

parameters. To the best of the authors’ knowledge, no such simplified approach has been proposed 

and demonstrated in the literature for a case study based on real operating conditions. 

 

3. METHODOLOGY 

A set of parameters considered in electricity systems were selected to the study. The selection 

process was carried out bearing in mind the uncertainties that could affect mostly the long-term 

electricity power planning for a system with characteristics close to the Portuguese one. For this 

purpose, a Wilson matrix [26] was used, a simple qualitative matrix that can attribute a relative 

risk degree to variables, considering the uncertainty level and the impact in the electricity system. 

For each group of uncertain parameters, both qualitative and quantitative analysis was made. 

Qualitative analysis relied on literature while quantitative analysis was supported on real data 

provided from national reports and energy production-related institutions.    

The data to perform the analysis of time variability of renewable sources (wind, solar and hydro) 

were obtained from the electricity production within frames of 15 minutes, since 2007, provided 

from REN – Redes Energéticas Nacionais. For each RES technology, the capacity factor (CF) 

was calculated. Capacity factor expresses the ratio between the actual electricity produced by a 



given power plant and the theoretical maximum achieved if the power plant would operate full 

time. Capacity factor was used due to its dependence on the regime flow [27]. 

The data to perform the analysis of the demand were collected from the results of the most recent 

national reports [28]–[30]. 

Uncertainty analysis was conducted with statistical analysis tools firstly used to adjust the 

behaviour of each variable studied, in each month, into a PDF that better fits its pattern. Then, 

correlations between variables were determined, according to the Pearson correlation coefficient, 

and integrated in the respective PDF of each variable. Thereafter, Monte Carlo Simulation was 

used to simulate combinations of variables in each month, resulting in a PDF for the capacity 

factor of each RES technology for each month. Each PDF represents then a wider range of 

possible combinations of correlated variables and the probability of occurrence of such 

combinations. According to Amer et al. [31], when more than two uncertain parameters are 

involved, the standard approach for scenario generation should be no less than three and no more 

than eight scenarios. Hereupon, five RES scenarios were created selecting five possible 

combinations obtained from Monte Carlo Simulation and also a reference scenario, this last one 

based on the average RES power production in the Portuguese electricity system for the 2008-

2014 period. 

For scenario modelling, [32] model for generation expansion planning was adapted and expanded. 

The model solves the generation expansion planning (GEP) problem for a 20 year’ time horizon 

considering the minimization of the system’ total costs under a set of constraints including total 

CO2 emissions released. CO2 emissions allowances are also included in the cost function as a 

proxy for environmental externalities valuation. Objective function and main assumptions 

included in the model are presented in Annex I. The main results of the model are total costs and 

emissions released by the electricity production system for the entire period analysed, as well as 

a combination of different electricity generation options and their contribution to the electricity 

production. These power scenarios were then fully characterized and are expected to represent 

relevant information for supporting future decisions. 

The proposed methodology is summarized in Figure 1including the four main steps previously 

outlined: (1) Selection of risk and uncertain parameters, supported on a qualitative approach; (2) 

Definition of probability functions and correlation values for the selected parameters, according 

to historical data series and statistical analysis; (3) Generation of combined RES scenarios through 

Monte Carlo simulation and (4) Adoption of a deterministic generation expansion planning model 

for the final outcome of presenting optimal electricity power scenarios.    

 

 

Figure 1 – Methodology applied to the research study. 

 

 



3.1 DESCRIPTION OF THE CASE 

For the simulation, a case close to the Portuguese electricity system was used. The system is 

characterized by a large contribution of hydro, wind and fossil fuel power technologies (coal and 

natural gas). Although the Portuguese system is interconnected with Spain, the model assumes 

here a close (island) system, which can bring advantages to voluntary decision making on 

import/export decisions as discussed in [33].  

In 2014, renewable energy sources (RES) technologies contributed to about 62% of the total 

electricity production. The total installed power reached 17841 MW, of which 5585 from fossil 

fuel thermal power plants, 5270 MW from large hydro and run-of-river power plants, 4541 MW 

from wind power and 2445 MW from other RES power plants [34]. In fact, the integration of 

RES in the power system is the main driving force for Portugal to achieve global goals in respect 

to the reduction of GHG emissions. Figure 2 describes the historical evolution of the installed 

power of non-large hydro RES technologies in Portugal since 2007. Wind onshore is already a 

well-developed technology and, along with large-hydro (dams and run-of-river), has a major role 

in the system. One aspect that deserves particular attention is the substantial integration of solar 

photovoltaic (PV) technology in the electricity matrix since 2007. As for mini-hydro and biomass 

power plants, the installed power of both technologies remained considerably stable during this 

period and in particular since 2010.   

 

 
Figure 2 – Installed power for electricity generation from RES technologies in Portugal since 2007 (data 

obtained from [34]). 

According to the recent strategic plan for the Portugal sustainable future, it is expected to achieve 

31% of renewable production in the final energy consumption until 2020 and 40% until 2030 

[35]. Additional targets include 30-40% reduction in renewable energy prices and 40% reduction 

in GHG emissions until 2030. 

Despite its advantages to promote the desired sustainable pathway, the integration of RES in the 

electricity system is perhaps one of the main challenges for long-term electricity power planning. 

The challenge is allied to the high level of uncertainty brought by intermittent sources. 

Intermittency comprises two different aspects: limited-controllable variability and partial 

unpredictability [18]. Controllable variability refers to the possibility of adjusting and directing 

the flows, and thus technologies that can store energy are highly controllable, such as large hydro 

with reservoirs. The unpredictability refers to the knowledge of the likelihood (or not) of an event 

to occur, such as a dry or rainy day, for instance. Another risk factor that can increase RES related-

uncertainty is climate change. Global warming will increase evaporation and/or reduce 



precipitation [13], putting at risk the water reserves and decreasing PV cells efficiency, for 

instance. 

Future demand is one major uncertainty facing electricity power planning, since it is naturally 

driven by population growth, gross domestic product and employment, among others, and 

eventually the correlations between them [27]. As for Portugal, the electricity consumption has 

grown considerably since 2000, at a rate of about 2.5% per year until 2010. Afterwards, the 

electricity consumption has seen a decrease until near 1.6% a year, as illustrated is Figure 3. 

 

 
Figure 3 - Evolution of the electricity consumption in Portugal, in TWh for the last 15 years (data 

collected from [28] and [34]). 

 

There is a serious need of supporting long-term electricity planning on the possible outcomes of 

electricity consumption evolution. The described case clearly demonstrates that tendencies of the 

past on electricity consumption hardly can be assumed as representative of the future. Demand 

projection is then an important uncertainty factor to be considered. 

 

4. RESULTS AND DISCUSSION 
4.1. QUALITATIVE ANALYSIS 

The classification of each variable analysed in the Wilson Matrix is presented in Figure 4. Wind 

availability was classified as a “critical scenario driver” in time and space. Also wind power is a 

significant player in the proposed electricity system, with growing perspectives at a global scale. 

Solar availability is also unpredictable in the long term but today, solar power contributes with a 

low percentage to the national electricity production system, and as such it is assumed that it does 

not impact the system as much as wind availability. Solar availability was thus classified as an 

“important scenario driver”. 

 



 
Figure 4 -Variables classification using the Wilson Matrix. 

Water availability was also classified as “important scenario driver”. Water availability has huge 

impact on the proposed electricity power system and contributes to a large extent to the backup 

system and security of supply. Nevertheless, its degree of uncertainty is lesser than for wind or 

solar availability, because although being highly affected by climate conditions, large hydropower 

technologies have reservoirs that can store energy providing some controllability and flexibility 

to the system management.  

Electricity demand was classified as a “critical planning issue” since it plays an obvious role in 

the electricity system, driving the electricity power production and the backup activation. 

However, and even being the historical data not representative of the evolution of the electricity 

demand in the last years, there are several methods and tools designed to provide reliable demand 

projections as reviewed in [37] or recently illustrated in a case study for Spain [38]. 

At last, technology learning rate, biomass availability and fossil fuel prices were assigned in 

“important planning issues”. Technology learning rate has a lower uncertainty degree compared 

with biomass availability, because it is a process with an evolution pattern and relevant only for 

long term power planning. But they both have a medium impact on the electricity power planning: 

biomass availability has a relatively significant role in the electricity production and technology 

learning rate directly affects the investment and fixed costs of the electricity generation options. 

Fossil fuel (coal and natural gas) prices largely depend on the economic and geopolitical 

conditions of the external supplier, as Portugal totally relies of fossil fuels imports. Although 

fossil thermal power plants have still an important role on electricity production, both the 

diversification and RES increase strategies contribute to reduce risk related to the external supply 

of fuels.   

According to Maack et al. [39], the key elements for a good scenario plot are the variables 

positioned in the categories “critical planning issues” and “critical scenario drivers”. 

Nevertheless, the variables positioned in the category “important scenario drivers” are also 

deemed to be important for demonstration of the methodology using the proposed case. Therefore, 

the uncertain parameters selected for this study were renewable sources availability (wind, solar 

and water) and future electricity demand. 

 
4.2. QUANTITATIVE ANALYSIS 

Data collected for the period 2007-2014 (quarter of an hour data) for each of the considered RES 

technologies at each month, were adjusted to the PDF that better fits each time series. After the 

adjustment, a Monte Carlo simulation was run. As an example, the results for January for wind 

(green line), solar (yellow line), minihydro (light blue line) and run-of-river (dark blue line) are 

presented overlaid in Figure 5. 

 



 
Figure 5 – Probability density distribution of the CF of each technology, in January. 

 

Each RES displays a particular behaviour that is different between them and different at each 

month. This behaviour, related to the capacity factor of the respective electricity generation 

technology, could be translated into a PDF. Each PDF has its own statistical parameters 

characterizing the distribution as detailed in Annex II. For example, following Figure 5 an 

adjustment for different PDFs for each technology was tested, concluding that, in January, 

triangular distribution best fits both wind onshore and minihydro technologies, while solar PV 

technology is closer to an exponential distribution and run-of-river technology to an uniform 

distribution.  

Table 2 shows the statistical parameters for each PDF better fitting each technology at each 

month. Wind onshore technology reveals a behaviour along the year that can be expressed as a 

triangular distribution from January to April and a beta distribution the rest of the year, except 

during the months September and October for which a gamma distribution is the best fit. As for 

solar technology, its capacity factor exhibits an exponential distribution during the entire year, 

except in August where the best fitting function is a gamma distribution. Water-based 

technologies, namely minihydro and run-of-river, present miscellaneous distributions, varying 

from triangular, exponential, uniform, beta, gamma, Weibull and Pearson. 

After the adjustment of the CFs of each RES technology to a PDF, correlations factors between 

different RES technologies were calculated. Based on all this information, Monte Carlo 

simulations were conducted to obtain combined monthly RES scenarios and probability of 

occurrence. From this, five possible combinations of renewables sources, in each month, were 

used to construct scenarios and compare them with a reference scenario. These scenarios were 

designated as follows: 

 Business-as-usual scenario (BUS), reference scenario considering the average capacity factor 

of each power generator from 2008-2014; 

 Lower central (LC), Central (C) and Upper central (UC), intermediate scenarios presenting 

combinations of CF for RES technologies with moderate resource availability;  

 Pessimist (Pess) and Optimist (Opt), extreme scenarios presenting respectively, very low and 

very high availability of all RES resources. 

The capacity factor range of each technology characterizing each scenario, along a year, is 

illustrated in Figure 6. 

 

 

 

 

 



Table 2 - Probability distribution for each technology, at each month. 

Month Run-of-river Minihydro Wind onshore Solar PV 

Jan 
Min: 0 a) 

Max: 0,94151 

Min: 0 c) 

M. likely: 0,83312 

Max: 0,85915 

Min: 0,0017 c) 

M. likely: 0,0017 

Max: 0,95567 

β: 0,12569 e) 

Feb 
Min: 0 a) 

Max: 0,9516 

Min: 0 c) 

M. likely: 0,83471 

Max: 0,8706 

Min: 0,00049 c) 

M. likely: 0,00049  
Max: 0,9711 

β: 0,1811 e) 

Mar 
Min: 0 a) 

Max: 0,92255 

Min: 0,01053 a) 

Max: 0,87367 

Min: 0,00324 c) 

M. likely: 0,00708 

Max: 0,97915 

β: 0,22597 e) 

Apr 
Min: 0 a) 

Max: 0,94174 

α1: 1,1079 b) 

α2: 1,1394 

Min: 0,0079746 

Max: 0,8745 

Min: 0 c) 

M. likely: 0,01753 

Max: 0,8972 

β: 0,2579 e) 

May 

α1: 1,2247 b) 

α2: 1,7381 

Min: 0 

Max: 0,78098 

α1: 1,8939 b) 

α2: 4,1314 

Min: 0,019238 

Max: 0,89499 

α1: 1,2763 b) 

α2: 4,3072 

Min: 0,00488 

Max: 1 

β: 0,29911 e) 

Jun 

Min: 0 c) 

M. likely: 0,00006 

Max: 0,80895 

α: 2,3397 f) 

β: 0,06408 

α1: 1,6229 b) 

α2: 6,4285 

Min: 0,00208 

Max: 1 

β: 0,32034 e) 

Jul 
α: 1,4138 d) 

β: 0,18339 

α: 1,6548 d) 

β: 0,072582 

α1: 1,6129 b) 

α2: 4,1045 

Min: 0,00308 

Max: 0,81921 

β: 0,35114 e) 

Aug β: 0,12947 e) 
α: 2,0859 d) 

β: 0,050832 

α1: 1,6455 b) 

α2: 4,6423 

Min: 0,00319 

Max: 0,85888 

α: 1,0783 f) 

β: 0,25533 

Sep 

Min: 0 c) 

M. likely: 0,00006 

Max: 0,51603 

α: 0,14375 g) 

β: 0,11081 

α: 1,3673 f) 

β: 0,1375  β: 0,25303 e) 

Oct 

Min: 0 c) 

M. likely: 0,00007 

Max: 0,65713 

µ: 0,14375 h) 

λ: 0,11081 

α: 1,1331 f)  
β: 0,22342 

β: 0,21174 e) 

Nov 

Min: 0,00001 c) 

M. likely: 0,00003 

Max: 0,71142 

Min: 0,00594 c) 

M. likely: 0,00796 

Max: 0,8795 

α1: 1,1956 b) 

α2: 1,8293 

Min: 0,00054 

Max: 0,90866 

β: 0,14938 e) 

Dec 

Min: 0,00003 c) 

M. likely: 0,00003 

Max: 0,9013 

Min: 0,00852 a) 

Max: 0,81908 

α1: 1,0655 b) 

α2: 1,5667 

Min: 0,00037 

Max: 0,89083 

β: 0,11364 e) 

a) uniform distribution, b) beta distribution, c) triangular distribution, d) Weibull distribution, e) exponential 

distribution, f) gamma distribution, g) Pearson distribution, h) inverse Gaussian distribution 

 



 
Figure 6 – Capacity factors range of each RES technology, in each scenario. 

 

The data to perform the analysis of the future electricity demand were collected from the results 

of recent national reports. In the Monitoring Report of the Security of Supply of the National 

Electricity System for the period 2013-2030 [29], the electricity demand evolution was considered 

to grow within an interval of 0.8% - 1.4%, per year. The Development and Investment Plan of the 

Electricity Transmission Grid 2014-2023 [28] introduces some changes to the previous report, 

namely the forecasted evolution of future electricity demand was lowered to an interval of 0.8% 

to 1.1% annually growth rate. On the other hand, the Development and Investment Plan of the 

Electricity Distribution Grid 2015-2019 [30] assumes a bolder prediction of 1.6% annually 

demand growth until 2019. 

The analysis of the uncertainty of future electricity demand was not performed by Monte Carlo 

Simulation, due to the lack of extensive data demand projections. Instead, two growth rates were 

analysed: i) 0.95%, the report’s medium value obtained with the most recent data and ii) 2%, a 

value near the electricity demand growth before 2011. Using these two different growth rates in 

scenario generation it is expected to have a wider view of possible outcomes in different electricity 

systems with high RES share, as illustrated in Figure 7. 

 

 
Figure 7 - Scenario construction for the electricity power system. 

 
4.3. GENERATION EXPANSION PLANNING 

The main indicators for each scenario in 2035 are presented in  

Table 3, including the average cost of electricity production, the average CO2 emissions, the total 

RES share to the electricity system and the overproduction level (excess production). The values 

for cost and CO2 emissions were obtained directly from the planning model described in Annex 

  

  



I, representing the average cost and average CO2 emissions for the entire planning period. RES 

share was computed as the ratio between total RES power output and total demand in the last year 

of the planning period. Excess production was computed as the difference between total electricity 

production and total demand also in the last year of the planning period. 

Through a first analysis to results, one remark generalized in all indicators is that the BUS scenario 

can be positioned between Pessimist and Lower central scenarios. For example, the cost of 

electricity for BUS scenario is close to the equivalent in the Lower central scenario, while the 

value of CO2 emissions is between Pessimist and Lower central scenarios.  

Following the scenario order from Pessimist to Optimist a consistent decrease in the cost of 

electricity production as well as in CO2 emissions can be seen. Total RES contribution to the 

electricity system in 2035, as well as the excess production, have not such an evident relation 

between scenarios. In fact, a higher RES share does not mean more productivity, if there is 

overproduction.  

Table 3 shows that an increase in electricity demand can lead to an increase in RES share but can 

also result on higher excess production for the system. Overproduction comes mainly from wind, 

solar PV and run-of-river power output as storage other than pumping hydro was not considered 

in the model. This excess production, is particularly evident in pessimistic scenarios due to the 

required higher installed power. Costs decreasing for more optimistic scenarios is due to higher 

values in the capacity factors of RES, resulting in higher RES  power output and consequently in 

significant fuel savings. The same goes for CO2 emissions decreasing, as electricity production 

by fossil fuels is gradually substituted by RES, significant savings in CO2 emissions could be 

achieved. 

 
Table 3 - Main indicators for scenario comparison. 

1Average value for the planning period; 2Last year of the planning period. 

Considering now the increase in the electricity demand from 0.95% to 2% annual growth, a 

natural increase in the electricity costs can be observed, resulting from the need of installing 

additional power plants to match the higher demand, as illustrated in Figures Figure 8 and 9. 

Taking BUS as an example, with a most likely growth demand of 0.95% the additional installed 

power until the last year would be near 1750 MW but with a growth demand of 2% the required 

additional power would be about 3700 MW. 

FiguresFigure 8 and 9 present the proposed new installed capacity for each technology in the 

system in the last year of the planning period, aiming to analyse the robustness of the BUS 

scenarios traditionally used on the optimization approach. 

In Figure 8, it is shown that total new installed power in BUS, apart from the Pessimist scenario, 

is very similar to all the others. This may indicate that, with a moderate electricity demand growth 

of 0.95% in the next 20 years, this electricity system could be prepared to meet the demand at all 

time, but with a slight excess production in most extreme scenarios. For most scenarios, 

favourable conditions of wind, sun and/or hydro would lead to a more efficient electricity system, 

 INDICATORS 
Cost of electricity 

production (€/MWh)1 

CO2 emissions 

(ton/MWh)1 

RES share in total 

demand (%)2   

Excess  

Production (%)2 

R
E

S
 S

C
E

N
A

R
IO

S
 

Demand growth 0,95% 2% 0,95% 2% 0,95% 2% 0,95% 2% 

BUS 7,1 7,6 0,126 0,144 64,0 73,2 2 11 

Pessimist 10,8 12,7 0,153 0,149 75,4 72,8 13 11 

Lower central 6,5 7,0 0,110 0,140 64,4 68,7 0 7 

Central 5,5 6,3 0,090 0,127 66,0 69,9 0 9 

Upper central 4,0 5,1 0,057 0,097 76,7 62,0 0 0 

Optimistic 2,4 3,1 0,023 0,045 88,8 83,5 4 0 



with lower production costs and no excess production. All scenarios present investments on 

combined cycle gas turbine (CCGT) and hydro power plants, demonstrating the importance of 

these technologies for a robust system. As for biomass, it tends to have an important role for less 

optimistic scenarios, which can be attributed to the higher predictability and storage capacity of 

this resource when compared to other renewables. Further tests on the model assumptions (e.g. 

for higher RES share) show a similar trend, still demonstrating the importance of these 

technologies across scenarios. For BUS and Pessimist to Central scenarios, investments on 

biomass power plants are also required, while for Optimist scenario, a small contribution of solar 

power units can also be suitable. 

Comparing Figure 8 and 9, it is demonstrated that an increase from 0.95% to 2% in the electricity 

demand would lead to additional investments but mostly on the same technological options, with 

the exception of new investments on wind onshore power plants for BUS scenario. Under the 2% 

demand growth rate, the total new installed power in BUS is considerably higher than for the 

other scenarios, with the exception of the Pessimistic one. All scenarios exhibit new installed 

power on CCGT power units along with additional hydro power units. New biomass is present in 

all scenarios with the exception of the Optimistic one. This last one, shows evidence of a large 

contribution of solar PV for the total new installed capacity taking advantage of the assumed high 

CF values for this technology.  

 

 
Figure 8 – New installed power from each technology until 2035, for 0.95% annual demand growth. 

 
Figure 9 – New installed power from each technology until 2035, for 2% annual demand growth. 

 



According to the results, the BUS scenario seems to be less robust for high demand growth 

perspectives, meaning that the optimal mix of new technologies to add to the system would 

strongly depends on the RES availability assumptions which in turn are largely affected by the 

climate conditions. For most of the considered RES scenarios a higher demand growth rate would 

be compensated not only by new RES power plants but also by new CCGT. This means that high 

demand growth rate will tend to result in higher costs and higher CO2 emissions. Also, a high 

demand growth rate does not necessarily lead to a reduction of excess electricity production but 

in some cases can even increase it. 

For low demand growth perspectives, the BUS scenario is close to most of the other scenarios in 

what concerns the new installed power mix, apart from the pessimistic scenario. This can be 

explained by the low needs for new installed power, as the already existing power plants would 

be able to cover most of the demand requirements. This would mean that under the perspective 

of low demand growth rate, the cost and CO2 emissions would still be largely influenced by 

climate conditions but the optimal technology mix is less sensitive to these assumptions. 

It is also interesting to notice that scenarios with high RES share are frequently associated to 

excess electricity production, demonstrating that the efficient management of RES in the 

electricity system requires the inclusion of other options incorporating for example electricity 

storage or interconnection capacity. Although Portugal is already interconnected with Spain in 

the Iberian electricity market, for the sake of simplicity, the possibility of market trading was not 

considered in these simulations. The possibility of the expansion of the test problem to include 

other technologies, distributed storage and interconnection market strategies can provide further 

insights to generation expansion planning minimizing the impact of uncertainty on the design of 

future power plans. 

Under deterministic conditions the generation expansion planning problem relies on average 

historical conditions in order to find an expansion plan that minimizes the generation cost for 

fixed expected demand. However, the results demonstrate that this BAU scenario may not be 

optimal under different operating conditions and formulating this problem relying on a 

probabilistic interpretation of RES parameters can bring additional confidence to decision 

making.  The objective of the presentation was not to be exhaustive on the description of the 

scenarios, but rather to show a strategy to design possible scenarios based on the statistical 

characteristics of relevant parameters in a way to improve the performance of decision makers. 

In fact, when working with generation expansion planning a “deep uncertainty” problem arises, 

as defined by [40] giving rise to a multiplicity of probabilistic well suited scenarios. Developing 

robust methods are then required to identify and investigate potential strategies and plans for 

future scenarios with “deep uncertainty” [41], and also to identify the vulnerabilities of those 

strategies and the tradeoffs between them. These scenarios can then be considered for the design 

of adaptive policies as described for example in Hamarat et al. [42], exploring what policies can 

hold across different uncertainties [25] and turning decisions more robust and creating the basis 

for resilient energy systems. 

In what concerns specifically to the proposed methodology for electricity power planning, it was 

shown that it can provide a low-time consuming, relatively simple and multi-method 

methodology to cope with the complexity of incorporating uncertainty and risk analysis in power 

planning and decision making processes. This methodology exhibits flexibility to be adapted to 

the analysis of diverse uncertain parameters and risk sources, guided by other objectives than the 

ones studied in this research. It is also worth mentioning that the proposed methodology enables 

the planner or decision maker to explore and assign probability distributions for future scenarios, 

as well as to determine the possible range of the inputs or outputs of the problem to be analysed. 
 

5. CONCLUSIONS AND FURTHER RESEARCH 

Deterministic models are well-recognized in the electricity power planning field and are presented 

as a good strategy to develop long-term scenarios. However, these models frequently rely on 

assumptions of the future behaviour based on fixed parameters and historical data, as if the future 

is well known in advance. To deal with uncertain parameters, deterministic models can use 

sensitivity analysis, and so, they are viewed as a useful simple approximation of reality, that is 

easier to build and interpret than stochastic models. On the other hand, stochastic models, instead 



of using deterministic values, identify uncertain parameters and assign to them probability 

distributions mapping their possible occurrences, turning into more reliable scenarios but 

requiring additional resources and higher computational efforts. 

This work intended to analyse several uncertain parameters that could affect electricity systems 

and that should be included in electricity power planning. For this, a methodology combining risk 

evaluation of the model parameters, Monte Carlo simulation and generation expansion planning 

with a cost optimization model was proposed and demonstrated for a system close to the 

Portuguese one. The parameters i) availability of renewable energy sources and ii) future 

electricity demand were selected as critical uncertain factors, using a Wilson matrix, and then, a 

qualitative and quantitative analysis of these parameters was made. For the qualitative analysis, 

several national reports and literature was used, while quantitative analysis was carried with state 

of the art software for selecting best fit PDF functions for each parameters, perform correlation 

analysis and generate scenarios. Quantitative analysis had enabled the creation of several possible 

combinations of uncertain parameters that were used to differentiate scenarios. Six RES scenarios 

were analysed: a business-as-usual scenario (BUS), two extreme scenarios and three intermediate 

scenarios. These were then modelled in a GEP cost optimization model and resulted in optimal 

power scenarios for a 20 years planning period.   

The results of this work indicate that the considered case is largely influenced by RES availability 

assumptions, in particular under high growth electricity demand hypothesis. Ensuring a low 

growth of electricity demand seems to be not only an important strategy to reach economic and 

environmental objectives but also to mitigate risk associated with the variability of RES resources.  

The results also demonstrate that costs, CO2 emissions and fossil fuel importations ratios are 

clearly related to the assumed capacity factor of RES technologies, specially wind and solar-

based. This is particularly important for the case of the electricity systems with high share of RES 

as climate change can have a major role on the expected RES power output. Capacity factors of 

these technologies are highly correlated to the regime flows of wind and sun and the choice of the 

location to implant the power unit is then crucial for the electricity system economics. Also, 

energy policies promoting technological development and targeting higher efficiency of RES 

power units can be well suited to tackle climate change impacts increasing the resilience of power 

systems.  

The methodology proposed was presented and tested in order to provide an alternative to the high 

complex and time consuming stochastic optimization modelling and operation. The analysis of 

the proposed electricity system showed that a set of power scenarios can be obtained in short 

running times (just over 2 minutes), supported on previous Monte Carlo simulation of the relevant 

parameters of the model. The [43] model was demonstrated to be strategic useful for scenario 

design, combined with uncertainty analysis, but put in evidence also the importance of the 

assumed data for the design of a robust plan for the future. 

Future work should include the validation of the proposed methodology, comparing the results 

with those obtained with stochastic optimization models. Also, other uncertainties and scenarios 

should be investigated in order to increase knowledge of overall risks presented in the electricity 

system and study possible measures to manage them. In particular, climate change projections 

and their impact on the operating performance of RES technologies are important aspects to be 

taken into account in future planning models. Finally, the model can be expanded to include not 

only other technologies for electricity generation but also distributed storage options or/and 

interconnection capacity that can have a critical role on the management of high RES systems.  
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ANNEX I 

 

The optimization model used in this work assumes a cost minimization approach, with the 

following objective function:  
 

∑ ∑ [(𝐼𝑐𝑛  
𝑗(1 + 𝑗)𝑙𝑡𝑛

(1 + 𝑗)𝑙𝑡𝑛 − 1
+ 𝐶𝐹𝑂𝑀𝑛) 𝐼𝑝𝑛𝑡(1 + 𝑗)−𝑡]

𝑛∈𝑁𝑡∈𝑇

+ ∑ ∑ ∑[(𝐶𝑉𝑂𝑀𝑖 + 𝐹𝑖 + 𝐶𝑝𝑖 + 𝐸𝐶 × 𝐶𝑂2𝑖
)𝑃𝑖,𝑚,𝑡∆𝑚(1 + 𝑗)−𝑡]

𝑖∈𝐼𝑚∈𝑀𝑡∈𝑇

 

 

where: 

 T is a set of the time period (in years) considered in the model 

 N is a set of the new power plants to be included in the system 

 M is the set of months per year of planning 

 I is the set of all power plants 

 Icn is the n new power plant investment cost (€/MW) 

  j is the annual discount rate 

 ltn is the n new power plant lifetime (years) 

 CFOMn is the Operation and Management (O&M) fixed cost of the n type of power plant 

(€/MW) 

 Ipn,t is the installed power of plant n in year t (MW) 

 CVOMi is the variable O&M costs for each i type of power plant (€/MWh) 

 Cpi is the cost of pumping for each i type of power plant (€/MWh) 

 Fi is the fuel cost for each I type of power plant (€/MWh) 

 EC is the CO2 emission allowance cost (€/ton) 

 CO2i is the CO2 emission factor of type i power plant (ton/MWh) 

 Pi,m,t is the power output from power plant i in month m of year t (MW) 

 Δm is the number of hours for month m. 

 

The assumptions included in the optimization model follows: 

- Information about economic and technical aspects of each power unit is presented in 

Table 4. All costs related issues were collected from [44] which provides a relatively 

recent survey of current and future cost estimates in the electricity sector, covering 

renewable and non-renewable generation. All costs are assumed to remain constant for 

the next 20 years and so, the technology learning effect and the variations in fuel prices 

are not considered. 

- CO2 emission factors were calculated from the ratio between annual emissions release by 

each thermal power plant and its respective annual electricity production. CO2 emissions 

from biomass were considered to be negligible. 

- The assumed potential for RES until 2030 were obtained from a project designated New 

Energy Technologies – Roadmap Portugal 2050 [44]. 

- CO2 emissions allowances are assumed to remain unchanged at 25€/ton CO2, as well as 

the discount rate, which was set at 8% [45]. 

- The reserve margin used in this study was defined to be 5% [46]. The reserve margin 

constraint is included in the model to ensure the reliability of the system and allows to 

consider the diversification of energy sources.  

- The minimum share of RES in the annual power production is assumed to be 62%, a 

value close the one obtained in 2014 for the Portuguese system.  



The model includes also set of constraints from physical processes, demand requirements, 

capacity limitations and legal/policy impositions as described in [32]. 

Table 4 – Technical and economic characteristics of each power plant. Sources: [32] and [43]. 

Power plant 
Investment 

cost (€) 

FO&M 

costs 

(€/MWh) 

VO&M 

costs 

(€/MW) 

Pumping 

costs 

(€/MWh) 

Fuel 

costs 

(€/MWh) 

CO2 

emission 

factor 

(t/MWh) 

Lifetime 

(years) 

Potential 

until 2035 

(MW) 

Coal 1800000 60000 6 - 8,4 0,844 40 - 

CCGT 800000 20000 4 - 21,6 0,369 30 - 

Large hydro 3000000 20000 - - - - 50 

4595 
Large hydro 

w/ pumping 
2000000 20000 - 1,5 - - 50 

Run-of-river 3000000 60000 - - - - 50 

Wind 

onshore 
1300000 35000 - - - - 25 2650 

Wind 

offshore 
3000000 80000 - - - - 20 4000 

Solar PV 1560000 25000 - - - - 25 9035 

Minihydro 3000000 60000 - - - - 40 400 

Biomass 2500000 100000 - - - - 30 1042 

 

 

ANNEX II 

 

Table 5 – Parameters of each PDF. Source [47]. 

Probability Function Parameters Mean value 

Beta - shape parameters α1 and α2 

- minimum value 

- maximum value 

𝑚𝑖𝑛 +
𝛼1

𝛼1 + 𝛼2

(𝑚𝑎𝑥 − 𝑚𝑖𝑛) 

Exponential - β value Β 

Gamma - shape parameters α 

- scale parameter β 

β.α 

Inverse Gaussian - mean parameter µ 

- shape parameter λ 

µ 

Pearson - shape parameters α 

- scale parameter β 

𝛽

𝛼 − 1
 

Triangular - minimum value 

- most likely value 

- maximum value 

𝑚𝑖𝑛 + 𝑚. 𝑙𝑖𝑘𝑒𝑙𝑦 + 𝑚𝑎𝑥

3
 

Uniform - minimum value 

- maximum value 

𝑚𝑖𝑛 + 𝑚𝑎𝑥

2
 

Weibull - shape parameters α 

- scale parameter β 
𝛽Ӷ (1 +

1

𝛼
) 

where Ӷ is the Gamma function. 

 


