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BRAF mutations are know drivers of melanoma development and, recently, were also 

described as players in the Warburg effect, while this reprogramming of energy metabolism has 

been identified as a possible strategy for treating melanoma patients. Therefore, the aim of this 

work was to evaluate the expression and prognostic value of a panel of glycolytic metabolism-

related proteins in a series of melanomas. The immunohistochemical expression of MCT1, 

MCT4, GLUT1, and CAIX was evaluated in 356 patients presenting melanoma and 20 patients 

presenting benign nevi. Samples included 20 benign nevi, 282 primary melanomas, 117 lymph 

node and 54 distant metastases samples. BRAF mutation was observed in 29/92 (31.5%) 

melanoma patients and 17/20 (85%) benign nevi samples. NRAS mutation was observed in 4/36 

(11.1%) melanoma patients and 1/19 (5.3%) benign nevi samples. MCT4 and GLUT1 expression 

was significantly increased in metastatic samples, and MCT1, MCT4 and GLUT1 were 

significantly associated with poor prognostic variables. Importantly, MCT1 and MCT4 were 

associated with shorter overall survival. In conclusion, the present study brings new insights on 

metabolic aspects of melanoma, paving the way for the development of new-targeted therapies. 

Keywords 

Cancer, glycolysis, melanoma, monocarboxylate transporters, Warburg effect 
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INTRODUCTION 

Most solid tumors reprogram their energetic metabolism towards glycolysis, independently from 

oxygen levels, a phenomenon known as the Warburg effect or aerobic glycolysis 
1
. Importantly, 

this metabolic reprogramming was recently identified as one of the hallmarks of cancer 
2
 and has 

been pointed out as a promising target for anti-cancer therapy 
3
. Aerobic glycolysis results in a 

high production of free protons and lactate that must be shuttled to the extracellular milieu 

through many transporters 
4
. The resultant microenvironment selects for cells with enhanced 

metastatic potential and is associated with evasion to immune destruction and resistance to radio- 

and chemotherapy 
5
. In this context, monocarboxylate transporters (MCTs), specifically MCT1 

and MCT4, play an essential role by contributing both for the hyperglycolytic and the acid-

resistant phenotype of cancer cells, by mediating lactate and proton efflux to the extracellular 

milieu 
4
. Accordingly, these transporters have been described as upregulated and associated with 

poor prognosis in many cancer types, with a high potential for exploitation as therapeutic targets 

6
. 

Melanoma is the most aggressive skin cancer, with an increasing incidence in the world 
7
. 

In the last years, melanoma patient’s handling have been changing thanks to an increase in the 

understanding of melanoma molecular heterogeneity 
8
. In particular, studies have identified 

BRAF mutations in these tumors, being these mutations associated with an increase in the 

mortality rate of melanoma patients 
9
 and important for therapeutic decisions thanks to specific 

inhibitors targeting the signaling pathways involved 
10

. Specifically, the V600E BRAF mutation 

is present in 40 to 60% of cutaneous melanoma and accounts for more than 80% of all BRAF 

mutations 
11-13

, while NRAS mutations are found in 15 to 20% of melanomas 
13, 14

. The 
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alterations in the MAP kinase cascade due to mutations have been targeted with clinical 

relevance. Treatment of V600E metastatic melanoma patients with BRAF inhibitors and, more 

recently, in association with MEK inhibitors, increases patient’s survival rates and is approved 

and available for clinical use 
15-18

. 

Interestingly, the V600E BRAF mutation was recently shown to drive the Warburg effect 

19
. In fact, previous studies in both melanoma and thyroid cancer have shown that this mutation 

increases the expression of hypoxia-inducible factor-1α (HIF-1α) 
20, 21

, the major driver of the 

Warburg effect in cancer cells 
22

. Additionally, although mainly studied in the context of tumors 

different than melanoma, mutations in RAS family members, specifically KRAS, were shown to 

be associated with a glycolytic phenotype, with increased glucose uptake and lactate production 

23-26
. Meanwhile, additional studies, both in human samples and in vitro models, have shown that 

melanoma cells exhibit the Warburg effect 
27, 28

 and that the progression to an invasive 

phenotype occurs under a metabolic switch from mitochondrial oxidative phosphorylation to 

glycolytic flux followed by lactate production 
29

. As a result, melanoma cell metabolism has 

been pointed out as a promising strategy for melanoma treatment 
29-31

. 

Although the interest in the metabolic reprogramming of cancer cells is arising in the last 

years 
2
, few studies focus on the metabolic profile of melanoma cells. Additional studies should 

especially evaluate the expression and clinical significance of the metabolism-related proteins, 

especially those that sustain the Warburg effect. Therefore, the aim of this study was to evaluate 

the expression and prognostic value of monocarboxylate transporters isoforms 1 and 4 (MCT1, 

MCT4), glucose transporter 1 (GLUT1) and the pH regulator carbonic anhydrase IX (CAIX), in 
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a series of melanocytic samples including benign nevi, primary tumors and both lymph node and 

distant metastasis. 

RESULTS 

Expression of MCTs, GLUT1 and CAIX in melanocytic samples 

In benign nevi, with the exception of MCT1 expression that was observed in the plasma 

membrane, protein expression was almost exclusively found in the cytoplasm. In opposition, in 

malignant samples, MCT1, MCT4 and GLUT1 expression was almost exclusively found in the 

plasma membrane (Figure 1). CAIX exhibited cytoplasmic expression, alone or in combination 

with plasma membrane expression, however, with plasma membrane predominance. Therefore, 

and in accordance to the activity of the proteins herein studied, from now on, all results shown 

are based on plasma membrane expression. 

Comparison of protein expression among samples from different origins (benign nevi, melanoma 

primary tumors, lymph node metastases and distant metastases) showed a significant difference 

in the overall expression frequency of MCT4, GLUT1 and CAIX (p=0.030, p=0.015 and 

p=0.009 respectively), and no significant difference for MCT1 (Table 1). In the case of MCT4 

and GLUT1, the differences observed were due to a significant increase in the transition from 

primary tumor to lymph-node metastasis, while, for CAIX, a significant increase in the 

expression frequency was observed in both the transition from benign nevi to primary tumor and 

lymph-node metastasis to distant metastases. Additionally, considering protein expression in all 

malignant samples, both MCT1 and MCT4 were significantly co-expressed with GLUT1 and 

CAIX (Table 2). 
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From the 92 patients with results for BRAF mutation status, 29 (31.5%) patients showed 

the V600E mutation in at least one tumor sample (primary tumor, lymph node metastasis or 

distant metastasis), while 17 of the 20 benign nevi (85%) showed the V600E mutation. 

Importantly, MCT1 and GLUT1 were significantly more expressed in BRAF mutated melanoma 

patients [17/28 (60.7%) and 9/29 (31.0%), respectively] than in BRAF wild-type melanoma 

patients [23/61 (37.7%) and 8/63 (12.7%), p=0.043 and p=0.035, respectively]. 

From the 36 patients with results for NRAS mutation status, 4 (11.1%) patients showed 

mutation (Q61H, Q61R, Q61L and G12A) in at least one tumor sample (primary tumor, lymph 

node metastasis or distant metastasis), while 1 of 19 benign nevi (5.3%) showed the Q61R NRAS 

mutation. No significant associations were found between NRAS mutation status and expression 

of the proteins herein analyzed. 

Clinicopathological significance of MCTs, GLUT1 and CAIX 

The clinicopathological significance of MCTs, GLUT1 and CAIX was analyzed 

considering plasma membrane expression in primary tumor samples (Table 3 and Table 4). 

MCT1 expression frequency was significantly associated with higher clinical stage (p<0.001), 

higher pT (p=0.016), higher pN (p=0.004), and higher pM (p=0.012). MCT4 expression 

frequency showed the highest number of significant results, being associated with male gender 

(p=0.045), higher clinical stage (p=0.032), nodular histological type (p=0.029), trunk tumor 

location (p=0.038), higher pT (p=0.002), higher pN (p=0.008), presence of locoregional 

recurrence (p=0.002), higher Breslow’s thickness (p=0.001), and higher number of mitoses/mm
2
 

(p=0.015). GLUT1 frequency of expression was significantly associated with higher pT 
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(p=0.035), higher Breslow’s thickness (p=0.036), and higher number of mitoses/mm
2
 (p=0.049), 

while CAIX showed no significant associations with the clinicopathological data. 

Survival analysis 

The influence of MCTs, GLUT1 and CAIX on overall survival was analyzed considering 

plasma membrane expression in primary tumor samples (Figure 2 and Table 5). Overall survival 

analysis using Kaplan-Meier (Figure 2) showed that MCT1 and MCT4 expression is 

significantly associated with shorter overall survival (p=0.037 and p=0.001, respectively). No 

significant results were observed for GLUT1 and CAIX expression (data not shown). The 

predictive prognostic values of the metabolism-related proteins were analyzed by means of Cox 

proportional hazards regression models (Table 5). Univariate analysis showed similar results to 

the ones obtained with Kaplan-Meier analysis, with significant values for MCT1 and MCT4 

expression. However, when applying multivariate analysis, none of these proteins showed to be a 

stage-independent predictor of overall survival. 

DISCUSSION 

Although recent advances have improved the management of patients with melanoma, 

with, for example, the use of specific inhibitors targeting mutated BRAF, resistance to the agents 

recently approved is a common event 
8, 32

. Importantly, V600E BRAF mutation was shown to 

drive the Warburg effect 
19

, suggesting a relevance of the glycolytic metabolism in melanoma 

and a possible relation with response/resistance to BRAF inhibitors. Therefore, the knowledge on 

the expression and clinicopathological significance of key metabolism-related proteins in 

melanomas may bring new insights for melanoma patients’ handling. 
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In the present study, the immunohistochemical evaluation showed that the expression of 

the metabolism-related proteins in primary melanomas varied from around 10% for GLUT1 to 

around 35% for MCT1, while, in metastases, expression frequencies varied from around 20% for 

GLUT1 to around 45% for MCT1, with similar results amongst lymph node and distant 

metastases (exception for CAIX expression). To the best of our knowledge, only one study 

evaluated the expression of MCT1 and MCT4 in melanomas; however, median score values 

were used instead of expression frequencies, making comparisons difficult to establish 
28

. 

Regarding GLUT1 expression, more studies are available and, although 2 previous studies, with 

small casuistic and no description of melanoma histological type or anatomical site, showed lack 

of GLUT1 expression in primary melanomas 
33, 34

, a more recent study by Koch and 

collaborators showed an important GLUT1 expression in melanomas, with an expression 

frequency of 50% in primary tumors, 5 times the one found in the present study, and an 

expression frequency of 58% in metastases 
35

, 3 times the one found in the present study. These 

higher expression frequencies may be due to the different immunohistochemical classification, as 

only staining intensity was evaluated (with weak results also considered positive) and distinct 

cellular locations were not discriminated 
35

. In the case of CAIX, a previous study showed lack 

of expression in melanomas, which is not in agreement with the findings of the present study 
36

. 

However, once again, the size of the casuistic was small (only 32 malignant melanomas 

analyzed), with no description of melanoma histological types or anatomical site, while the use 

of different protocols during immunohistochemical procedure and different parameters to score 

the positive reactions may also contribute to these discordant results. 

D
ow

nl
oa

de
d 

by
 [

T
ul

an
e 

U
ni

ve
rs

ity
] 

at
 0

6:
21

 2
4 

A
pr

il 
20

16
 



 

 9 

Importantly, MCT4 and GLUT1 expression was significantly increased in the transition 

from primary tumor to lymph-node metastases, suggesting that the hyperglycolytic phenotype, 

determined by increased glucose uptake by GLUT1 and lactate efflux by MCT4, contributes to 

the invasive capacity of cancer cells, as previously suggested by others 
1
. These results are 

partially in agreement with the work of Ho and collaborators, where a significant increase in 

MCT1 expression levels when comparing metastases with thin primary melanomas was 

observed, as well as a significant increase in MCT4 expression levels when comparing primary 

melanomas or metastases with nevi, with no differences between primary melanomas and 

metastases 
28

. In the present study, we did not observe an increase in MCT1 expression 

frequency in metastatic samples; however, Ho and collaborators observed a significant difference 

in primary versus metastatic melanomas when considering only thin primary melanomas. This 

division among primary tumors was not performed in the present study and may explain similar 

results obtained for MCT1 among primary and metastatic melanomas. The different results 

obtained regarding MCT4, may be due to sample size, as Ho and collaborators analyzed MCT4 

expression in 31 primary melanomas, subdivided in thin and thick melanomas, decreasing the 

power of the statistical analysis due to small sample size. Additionally, Koch and collaborators 

showed a significant increase in GLUT1 expression in metastatic samples when compared with 

primary melanoma 
35

, which is in accordance with the present study. As mentioned above, both 

MCT4 and GLUT1 are involved in the Warburg effect; while both these proteins allow the 

continuous flow of the glycolytic pathway by providing, respectively, efflux of intracellular 

lactate and glucose uptake by cancer cells, MCT4 also acts as a pH regulator by promoting 

proton efflux. As a result, the increased expression of these proteins in metastatic samples 
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suggests a metabolic remodeling towards a hyperglycolytic and acid-resistant phenotype in the 

progression to an invasive phenotype, which is in accordance with evidence obtained from 

different approaches 
29

. 

In the case of CAIX, a significant increase was observed in 2 transitions along melanoma 

progression: from benign nevi to primary tumor and from lymph-node metastasis to distant 

metastases. CAIX is a HIF-1α-induced pH regulator that contributes to the acid-mediated cancer 

cell invasive phenotype 
37-40

, and has been associated with poor prognosis in a variety of 

neoplasias 
40

. As mentioned above, only one additional study evaluated the expression of CAIX 

in melanoma samples, showing negative expression for this protein 
36

. In the present study, the 

finding of an increased expression of CAIX along progression to malignancy is in accordance 

with the role of CAIX in mediating cancer cell invasive phenotype. Therefore, additional studies 

evaluating the expression of CAIX in malignant melanomas are warranted to further understand 

the actual contribution of this protein for melanoma progression. 

Interestingly, both MCT1 and GLUT1 expression frequency was associated with BRAF 

mutation, in accordance with the observation that mutated BRAF drives the Warburg effect 
19

. In 

the case of GLUT1, this association may be a result of HIF-1α stabilization by mutated BRAF 
20, 

21
, as GLUT1 is induced by HIF-1α activity as a transcription factor 

41
, while the same 

mechanism is not able to explain MCT1 association, as this MCT isoform is not a direct target of 

HIF-1α 
42

. In fact, since MCT4 and CAIX are also targets of HIF-1α 
38, 42

, one would expect that 

these proteins would also be associated with BRAF mutation; however, regulation of these 

proteins is complex, with some mechanisms still to be described. 
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The metabolic reprograming of cancer cells, besides contributing to cancer cell growth 

under intermittent hypoxia, is involved in cancer cell aggressiveness and therapeutic resistance, 

and, consequently, patients’ poor prognosis 
43

. In this context, lactate emerges as an important 

player, through modulation of the tumor microenvironment 
5
. As a result, MCTs may be 

associated with cancer patients’ poor prognosis 
6
. In melanoma, no previous study evaluated the 

clinicopathological significance of MCTs; however, an in vitro study showed that inhibition of 

MCTs, in particular MCT1, may be an effective therapeutic approach for malignant melanomas 

44
. In the present study, both MCT isoforms, but to a higher extent MCT4, were significantly 

associated with different variables of poor prognosis, including overall survival. This is in 

accordance with the biological role of MCTs and tumor microenvironment modulation by 

lactate. However, it is important to mention that, although MCTs were significantly associated 

with overall survival in Kaplan-Meier and univariate Cox regression analysis, multivariate 

analysis showed that none of these proteins have a stage-independent prognostic value. 

Nevertheless, these results suggest that MCTs are promising druggable targets for melanoma 

treatment. Importantly, a Phase I clinical trial using a MCT1 specific inhibitor in patients with 

advanced prostate cancer, gastric cancer or diffuse large B cell lymphoma is currently recruiting 

participants (CRUKD/12/004). GLUT1 detains an important role in cancer metabolic 

reprogramming, as the high glycolytic flow requires high glucose uptake rates, mostly provided 

by this glucose transporter in cancer cells 
45

. In accordance, in vitro suppression of GLUT1 in 

melanomas cells reduced proliferation, apoptosis suppression, and migration, while in vivo 

suppression of GLUT1 reduced metastases formation 
35

. Information regarding the prognostic 

value of GLUT1 using melanoma tissues is lacking; however, in the present study, we observed 
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that GLUT1, at a lesser extent than MCTs, was associated with poor prognostic variables, in 

agreement with the role of this protein in the metabolic shift. Finally, CAIX does not appear to 

have a significant role in the prognosis of melanomas. 

In conclusion, the present study brings new insights on the metabolic alterations of 

melanoma in the progression to a metastatic phenotype, showing an increased expression of 

MCT4 and GLUT1 in melanoma metastases. Also, we show a clinicopathological value of 

MCT1, MCT4 and GLUT1 in melanoma. Since studies in this field are limited for melanomas, 

these results contribute to the characterization of melanoma molecular heterogeneity, paving the 

way for new options in the development of targeted therapies. 

PATIENTS AND METHODS 

Melanoma patient characteristics 

The present series included 356 melanoma patients, treated from 1999 to 2012 at the 

Barretos Cancer Hospital, Barretos, SP, Brazil. Clinicopathological features included age at 

diagnosis (mean (SD): 58.3 (16.3) years), gender, clinical stage, Clark’s level, Breslow’s 

thickness (mean (SD): 4.1 (4.4) mm), histological subtype, anatomical site, number of mitoses 

per mm
2
, ulceration, peritumoral lymphocyte infiltration, intratumoral lymphocyte infiltration, 

tumor regression, pT, pN, pM, locoregional recurrence and overall survival. The main 

demographics and clinical data are demonstrated in Table 6. Patients were mainly treated with 

surgery (stages 0-III). Non-operable stage III/IV or recurrent disease was treated with cytotoxic 

chemotherapy (first line dacarbazine and second line carboplatin plus paclitaxel regiments). 

Bulky stage III operated tumors received adjuvant radiation at the physician description. 

Palliative radiation was indicated for central nervous system metastasis and symptomatic bone 
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metastasis. No patient received adjuvant or target/immune therapy. 

Human samples 

Formalin-fixed paraffin-embedded (FFPE) melanoma samples (282 primary tumors, 117 

lymph node metastases and 54 distant metastases; sample type distribution among patients is 

shown in Supplementary Table 1) as well as 20 benign nevi samples were retrieved from the files 

of the Pathology Department of Barretos Cancer Hospital. The Barretos Cancer Hospital’s Ethics 

Committee approved the present study (548/2011). 

BRAF and NRAS mutations 

DNA was obtained from FFPE tissue sections, as previously described 
46

. Briefly, serially 

10 μm thick unstained sections of paraffin blocks were sectioned and one H&E section was first 

evaluated by a pathologist to confirm the diagnosis and used for identification and selection of 

the areas of interest, which were macrodissected into a microfuge tube using a sterile needle (BD 

PrecisionGlide, BD, #305165). The macrodissected tissue was deparaffinized by a serial wash 

with xylol and ethanol (100%-70%-50%). DNA was extracted using Qiagen’s QIAamp® DNA 

Micro Kit (Qiagen, #56304) following manufacturer’s instructions and quantified by 

NanoDrop® 2000 (Thermo Scientific). 

The analysis of BRAF V600E mutation was performed by PCR followed by direct Sanger 

sequencing, as previously described 
47, 48

. PCR primers were as follows: 5'-

AGTGGATTCGCGGGCACAGA-3' (forward) and 5'-CAGCGCTGCCTGAAACTC-3' 

(reverse). PCR cycling conditions were as follows: initial denaturation at 96°C for 15 minutes, 

followed by 40 cycles of 96°C denaturation for 45 seconds, annealing temperature at 55.5°C for 

45 seconds and 72°C elongation for 45 seconds, and 72°C final elongation for 10 minutes, in a 
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Verity PCR machine (Applied Biosystems). 

The analysis of hotspot mutations of NRAS (codon 12/13 and 61) was performed by PCR 

followed by direct Sanger sequencing, as previously described 
47, 48

. The specific primers 

designed to include the regions of interest were as follows: 5'-ATGACTGAGTACAAACTGGT-

3' (forward) and 5'-CTCTATGGTGGGATCATATT-3' (reverse) for codon 12/13, and 5'-

TCTTACAGAAAACAAGTGGT-3' (forward) and 5'-GTAGAGGTTAATATCCGCAA-3' 

(reverse) for codon 61. The PCR cycling conditions were as follows: initial denaturation at 95°C 

for 15 minutes, followed by 40 cycles of 95°C denaturation for 45 seconds, annealing at 56.5°C 

for 45 seconds and 72°C elongation for 45 seconds, and 72°C final elongation for 10 minutes, in 

a Verity PCR machine (Applied Biosystems). 

Amplification of PCR products was confirmed by gel electrophoresis. PCR products were 

purified using ExoSAP-IT (USB Corporation, #78200) and sequencing PCR was performed 

using a Big Dye terminator v3.1 cycle sequencing ready reaction kit (Applied Biosystems, 

#4337456) and the ABI PRISM 3500 xL Genetic Analyzer (Applied Biosystems). All mutated 

cases were confirmed with a second independent PCR followed by sequencing. 

Immunohistochemistry 

For immunohistochemical analysis, samples were organized into tissue microarrays 

(TMA) containing cores of 1.0 mm diameter. Each case was represented in TMAs by three cores 

and control samples (placenta and liver) were also included for TMA orientation. MCT1 

immunohistochemistry was performed according to the avidin-biotin-peroxidase complex 

method (R.T.U. VECTASTAIN Elite ABC Kit (Universal), Vector Laboratories, #PK-7200), as 

previously described 
49

. Immunohistochemistry for MCT4, GLUT1, and CAIX was performed 
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according to the streptavidin-biotin-peroxidase complex principle (Ultravision Detection System 

Anti-polyvalent, HRP, Thermo Scientific, #TP-125-HL), as previously described 
50-52

. 

Specificity of the antibodies was previously validated by siRNA followed by Western-blot 
53, 54

. 

Negative controls were performed by the use of appropriate serum controls for the primary 

antibodies (Dako, #N1698 and #N1699). Colon carcinoma tissue was used as positive control for 

MCT1 and MCT4, head and neck squamous cell carcinoma was used for GLUT1, and normal 

stomach was used for CAIX. Tissue sections were counterstained with hematoxylin and 

permanently mounted. Please refer to Supplementary Table 2 for detailed information on each 

antibody used. 

Immunohistochemical evaluation 

Protein expression was scored semi-quantitatively for plasma membrane expression in cancer 

cells as follows: 0: no immunoreactive cells; 1: <5% of immunoreactive cells; 2: 5-50% of 

immunoreactive cells; and 3: >50% of immunoreactive cells. Also, intensity of staining was 

scored semi-qualitatively as follows: 0: negative; 1: weak; 2: intermediate; and 3: strong. Figure 

3 shows photomicrographs representative of staining intensity scores 1-3. The final score was 

defined as the sum of both parameters (extension and intensity), and grouped as negative (score 0 

and 2) and positive (score 3-6), as previously described 
49

. Two independent observers 

performed the immunohistochemical evaluation blindly and discordant results were discussed in 

a double-head microscope to determine the final score. 

Statistical analysis 

Data were stored and analyzed using the IBM SPSS Statistics software (version 21, IBM 

Company). All comparisons were examined for statistical significance using Pearson’s chi-
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square (χ
2
) test and Fisher’s exact test (when n<5). Overall survival was defined as the time from 

the date of primary diagnosis to death related to melanoma or last follow-up and overall survival 

curves were estimated by the method of Kaplan-Meier and data compared using the log-rank 

test. Stage 0 (melanoma in situ) cases were excluded from survival analysis. Predictive factors of 

prognosis were identified using Cox proportional hazards regression models, which were used to 

estimate hazard ratios (HR) and 95% confidence intervals in univariate and multivariate analysis. 

For multivariate analysis, variables that reached a p value <0.1 at univariate analysis were 

included. The threshold for significant p values was established as p<0.05. 

List of abbreviations 

Carbonic anhydrase IX (CAIX); glucose transporter 1 (GLUT1); hypoxia inducible factor 1 

alpha (HIF-1α); monocarboxylate transporter (MCTs); tissue microarray (TMA). 
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Table 1. Expression frequencies of MCT1, MCT4, GLUT1 and CAIX in benign nevi, melanoma 

primary tumors, lymph node metastases and distant metastases. Only plasma membrane 

expression was considered.  

 MCT1 MCT4 GLUT1 CAIX 

 

n 

Positive(%

) 

p n 

Positive(%

) 

p n 

Positive(%

) 

p n 

Positive(%

) 

p 

   

0.44

2 

 

 0.019 

 

 0.007 

 

 0.009 

Benign 

nevi 

20 8 (40.0)  

20 

1 (5.0)  
19 

0 (0.0)  
20 

0 (0.0)  

Primary 

tumor 

22

1 

80 (36.2)  

23

3 

36 (15.5)  

23

2 

24 (10.3)  

22

7 

60 (26.4)  

Lymph 

node 

metastases 

10

9 

49 (45.0)  

11

1 29 (26.1)  

11

1 24 (21.6)  

11

0 25 (22.7)  

Distant 

metastase

s 

53 23 (43.4)  

53 

14 (26.4)  

54 

10 (18.5)  

53 

20 (37.7)  

Benign 20 8 (40.0) 0.735 20 1 (5.0) 0.20 19 0 (0.0) 0.14 20 0 (0.0) 0.00
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nevi 4 0 8 

Primary 

tumor 

22

1 

80 (36.2)  

23

3 

36 (15.5)  

23

2 

24 (10.3)  

22

7 

60 (26.4)  

Primary 

tumor 

22

1 

80 (36.2) 0.125 

23

3 

36 (15.5) 

0.01

8 

23

2 

24 (10.3) 

0.00

5 

22

7 

60 (26.4) 

0.46

3 

Lymph 

node 

metastase

s 

10

9 

49 (45.0)  

11

1 

29 (26.1)  

11

1 

24 (21.6)  

11

0 

25 (22.7)  

Lymph 

node 

metastase

s 

10

9 

49 (45.0) 0.851 

11

1 

29 (26.1) 

0.96

9 

11

1 

24 (21.6) 

0.64

4 

11

0 

25 (22.7) 

0.04

5 

Distant 

metastase

s 

53 23 (43.4)  

53 

14 (26.4)  

54 

10 (18.5)  

53 

20 (37.7)  
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Table 2. Co-expression of MCT1 and MCT4 with GLUT1 and CAIX, in melanoma samples 

(primary tumors, lymph node metastases and distant metastases). Only plasma membrane 

expression was considered. 

 MCT1  MCT4 

 

n Positive(%) p n 

 Positive 

(%) 

p 

GLUT1    <0.001   <0.001 

Negative 315 110 (34.9)  329 49 (14.9)  

Positive 58 41 (70.7)  57 30 (52.6)  

CAIX    0.008   0.003 

Negative 272 99 (36.4)  279 47 (16.8)  

Positive 103 53 (51.5)  104 32 (30.8)  
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Table 3. Association of MCT1, MCT4, GLUT1 and CAIX plasma membrane expression with 

the clinicopathological parameters (categorical variables) in melanomas. Only expression in 

primary tumors was considered.  

 MCT1 MCT4 GLUT1 CAIX 

n 

Positive 

(%) 

p n 

Positive 

(%) 

p n 

Positive 

(%) 

p n 

Positive 

(%) 

p 

Gender 

  0.516 
  0.045   0.42

5 

 

 0.506 

Male 102 

34 

(33.3) 
 

109 22 

(20.2) 

 108 13 

(12.0) 

 106 31 

(29.2) 

 

Female 109 

41 

(37.6) 
 

114 12 

(10.5) 

 114 10 (8.8)  111 28 

(25.2) 

 

Clinical stage 

  <0.001 

  0.032   0.80

3 

 

 0.495 

0 + I + II 110 

26 

(23.6) 

 
121 12 (9.9)  121 14 

(11.6) 

 117 29 

(24.8) 

 

III + IV 86 

42 

(48.8) 

 
88 18 

(20.5) 

 86 9 (10.5)  86 25 

(29.1) 
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Clark’s level 

  0.868 
  0.181   0.90

5 
  0.157 

I + II + III 48 16 (33.3)  54 5 (9.3)  50 6 (12.0)  51 18 (35.3)  

IV + V 124 43 (34.7)  130 22 (16.9)  132 15 (11.4)  129 32 (24.8)  

Histological 

subtype 

  0.561 
  0.029   0.43

4 
  0.440 

Acral 

lentiginous 
27 10 (37.0)  

33 1 (3.0)  36 4 (11.1)  

31 6 (19.4)  

Nodular 74 27 (36.5)  73 16 (21.9)  73 10 (13.7)  74 22 (29.7)  

Superficial 

spreading 
47 13 (27.7)  

52 6 (11.5)  48 3 (6.3)  

50 11 (22.0)  

Anatomical 

site 

  0.757 
  0.038   0.83

4 

 

 0.372 

Limbs 106 34 (32.1)  113 12 (10.6)  113 11 (9.7)  109 30 (27.5)  

Trunk 49 20 (40.8)  52 14 (26.9)  51 6 (11.8)  53 18 (34.0)  

Head and 

neck 
48 17 (35.4)  

50 7 (14.0)  50 6 (12.0)  48 

11 (22.9)  
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Mucosa 5 2 (40.0)  5 0 (0.0)  5 0 (0.0)  4 0 (0.0)  

Ulceration 

  0.143 
  0.598   0.27

3 

 

 0.396 

Absent 51 14 (27.5)  58 8 (13.8)  55 5 (9.1)  55 18 (32.7)  

Present 88 35 (39.8)  88 15 (17.0)  91 14 (15.4)  88 23 (26.1)  

Peritumoral 

lymphocyte 

infiltration 

  0.731   0.293   

0.06

3 
  0.486 

Absent 22 8 (36.4)  22 1 (4.5)  23 0 (0.0)  23 8 (34.8)  

Present 74 24 (32.4)  79 13 (16.5)  76 11 (14.5)  77 21 (27.3)  

Intratumoral 

lymphocyte 

infiltration 

  0.138   0.054   

0.18

5 
  0.448 

Absent 38 17 (44.7)  41 2 (4.9)  42 2 (4.8)  38 11 (28.9)  

Present 60 18 (30.0)  62 11 (17.7)  58 8 (13.8)  63 14 (22.2)  

Tumor 

regression 

  0.709 
  0.417   1.00

0 

 

 1.000 
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No 96 35 (36.5)  103 13 (12.6)  101 12 (11.9)  99 23 (23.2)  

Yes 8 2 (25.0)  9 2 (22.2)  8 1 (12.5)  9 2 (22.2)  

pT 

  0.016 

  0.002   0.03

5 

 

 0.546 

1 + 2 57 13 (22.8)  63 2 (3.2)  61 3 (4.9)  60  17 (28.3)  

3 + 4 116 48 (41.4)  122 24 (19.7)  121 19 (15.7)  120 29 (24.2)  

pN 

  0.004 

  0.008   0.64

1 

 

 0.481 

0 + 1 146 43 (29.5)  158 17 (10.8)  158 16 (10.1)  153 39 (25.5)  

2 + 3 48 25 (52.1)  50 13 (26.0)  48 6 (12.5)  49 15 (30.6)  

pM 

  0.012 

  0.162   0.75

0 

 

 0.402 

0 169 53 (31.4)  183 24 (13.1)  181 19 (10.5)  177 46 (26.0)  

1 31 17 (54.8)  30 7 (23.3)  30 4 (13.3)  30 10 (33.3)  

Locoregional 

recurrence 

  0.313 
  0.002   0.17

0 

 

 0.083 

No 155 52 (33.5)  164 19 (11.6)  164 14 (8.5)  158 38 (24.1)  
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Yes 43 18 (41.9)  46 14 (30.4)  45 7 (15.6)  46 17 (37.0)  

 

WT: wild-type. 
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Table 4. Association of MCT1, MCT4, GLUT1 and CAIX plasma membrane expression with 

the clinicopathological parameters (quantitative variables) in melanomas. Only expression in 

primary tumors was considered. 

 Breslow’s thickness 

(mm) 

Number of 

mitoses/mm
2
 

 

n 

Mean 

rank 

p n 

Mean 

rank 

p  

MCT1    0.085   0.579 

Negative 117 84.71  69 54.20  

Positive 61 98.70  41 57.68  

MCT4   0.001   0.015 

Negative 165 90.95  101 55.99  

Positive 26 128.06  16 78.03  

GLUT1    0.036   0.049 

Negative 167 91.97  103 56.33  

Positive 22 117.98  13 75.73  

CAIX    0.195   0.786 
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Negative 135 96.64  84 57.00  

Positive 51 85.18  30 58.90  
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Table 5. Prognostic factors for overall survival in melanomas. Only expression in primary 

tumors was considered for MCT1, MCT4, GLUT1 and CAIX variables. 

 Overall survival 

Variable Univariate analysis Multivariate analysis 

 HR 95% CI p HR 95% CI p 

Gender (male) 1.601 1.199 – 2.137 0.001 1.386 0.867 – 2.215 0.173 

Age 
*
 1.004 0.994 – 1.013 0.449    

Clinical stage (III-IV) 3.654 2.655 – 5.029 <0.001 4.559 2.716 – 7.754 <0.001 

Breslow’s thickness 
*
 1.098 1.067 – 1.129 <0.001 1.053 1.009 – 1.098 0.018 

Clark (IV-V) 1.805 1.231 – 2.646 0.002 1.034 0.572 – 1.868 0.911 

MCT1 (+) 1.508 1.021 – 2.226 0.039 0.864 0.530 – 1.407 0.557 

MCT4 (+) 2.049 1.308 – 3.210 0.002 1.441 0.839 – 2.475 0.185 

GLUT1 (+) 1.212 0.678 – 2.168 0.516    

CAIX (+) 1.178 0.768 – 1.909 0.269    

*
Quantitative variables. 
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Table 6. Main demographics, clinical and histological characteristics of melanoma patients. 

Variable  n % 

Gender    

Female 182 51.1 

Male 174 48.9 

Skin color    

White 313 87.9 

Other 38 10.7 

N/A 5 1.4 

Anatomical site   

Lower limbs 120 343.7 

Trunk 93 26.1 

Head and neck 69 19.4 

Upper limbs 40 11.2 

Mucosae 5 1.6 

Unknown 6 1.7 
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N/A 23 6.3 

Clinical stage   

0 12 3.4 

I 62 17.4 

II 111 31.2 

III 98 27.5 

IV 58 16.3 

X 15 4.2 

Histological subtype   

Nodular 113 31.7 

Superficial spreading 87 24.4 

Acral lentiginous 43 12.1 

Mucosae 9 2.5 

Lentigo maligna 7 2.0 

Not classified 15 4.2 

N/A 82 23.1 
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Ulceration    

Absent 85 23.9 

Present 130 36.5 

N/A 141 39.6 

Mitoses/mm
2
    

0 9 2.5 

1 36 10.1 

>1 126 35.4 

N/A 185 52.0 

 

N/A – not available. 
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Figure 1. Immunohistochemical expression of MCT1 (A), MCT4 (B), GLUT1 (C) and 

CAIX (D) in melanoma. All the proteins were more importantly found in the plasma membrane 

of cells. (A) Stage IIC primary tumor; (B) Stage IIB primary tumor; (C) Distant metastasis; (D) 

Stage IV primary tumor. 
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Figure 2. Overall survival curves of melanoma’s patients. The results are stratified according 

to protein immunohistochemical expression, using Kaplan Meier’s method. Only significant 

results are shown. Continuous line refers to negative expression while interrupted line refers to 

positive expression. (A) Plasma membrane expression of MCT1; (B) Plasma membrane 

expression of MCT4. 
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Figure 3. Photomicrographs representative of weak (A), moderate (B) and strong (C) 

scores. MCT1 immunohistochemical staining in melanoma samples is shown. 

D
ow

nl
oa

de
d 

by
 [

T
ul

an
e 

U
ni

ve
rs

ity
] 

at
 0

6:
21

 2
4 

A
pr

il 
20

16
 


