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The medial frontal cortex (MFC) is
thought to be involved in numerous sen-
sorimotor, cognitive, and affective pro-
cesses. This region is commonly divided
into separate subregions, including the
anterior cingulate cortex, supplementary
motor area (SMA), and the pre-SMA, or-
bitofrontal cortex, and anterior frontal
poles (Amodio and Frith, 2006). The ac-
tivity of the MFC is highly heterogeneous.
Activation of the MFC is reported in
many fMRI studies, and it is associated
with a variety of processes, including ac-
tion monitoring (Bonini et al., 2014), re-
sponse conflict (Gehring and Fencsik,
2001), reward (Taylor et al., 2006), and
decision-making (Kahnt et al., 2011). This
creates uncertainty in the identification of
specific psychological states associated
with patterns of activity in the MFC, re-
ferred as the reverse inference problem.
This long-standing inferential problem
arises because most neuroimaging studies

aim to identify neural characteristics of
specific manipulations, rather than deter-
mining which psychological states a given
pattern of activity implies (Poldrack,
2006). The ability to perform reverse in-
ferences is of upmost relevance for the
fMRI research to establish a diagnostic of
a particular state (i.e., to provide signifi-
cantly greater specificity to neuroimaging
findings), which is crucial for advancing
our understanding of the mind and brain
(Poldrack, 2006).

In a recent publication in The Journal
of Neuroscience, de la Vega et al. (2016)
sought to extend knowledge of the
functional architecture of the MFC by
performing a meta-analysis of �10,000
studies from the Neurosynth platform, a
large-scale database with automated syn-
thesis of neuroimaging data (Yarkoni et
al., 2011). Based on patterns of coactiva-
tion, the authors found that aggregating
MFC voxels into three or nine divisions
yielded the best clustering solutions. The
tripartite organization divided the MFC
in posterior, middle, and anterior zones.
The 9-cluster solution further divided
these zones into dissociable subregions:
the posterior zone was divided into the
supplemental motor area (SMA) and the
pre-SMA; the middle zone, or midcingu-
late cortex, was divided into dorsal/ven-
tral and anterior/posterior subregions;
and the anterior zone was separated into
dorsomedial prefrontal cortex, ventrome-

dial prefrontal cortex (vmPFC), and pre-
genual anterior cingulate cortex. These
zones presented distinct coactivation pat-
terns with the remaining brain structures:
the posterior zone was mainly associated
with motor-related regions; the middle
zone with the anterior thalamus and clus-
ters from the frontoparietal control net-
work; and the anterior zone with clusters
from the Default-Mode Network. Finally,
the authors modeled the topics of each
study in the Neurosynth database and
generated functional preference profiles
by testing which topics from the semantic
context of each study best predicted the
activation of a given region, using a Bayes-
ian classification approach. The activation
of the posterior zone was associated with
motor functioning; the middle zone with
cognitive control, pain, and affect; and the
anterior zone with reward, social process-
ing, and episodic memory.

These results are complemented by the
parcellation of the human cerebral cortex
recently proposed by Glasser et al. (2016).
One of the most prominent differences
concerns the anterior part of the MFC,
particularly the vmPFC, which was di-
vided into more subregions in the Glasser
et al. (2016) study (mainly associated with
Default-Mode Network clusters). These
differences might arise from methodolog-
ical considerations pertaining to the strat-
egy of parcellating the MFC. In the study
from de la Vega et al. (2016), the 9-cluster
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solution was selected due to the stabiliza-
tion of the silhouette coefficient (the min-
imum average distance between cluster
members). However, no point of inflec-
tion was observed, opening the possibility
that the maximum number of clusters
considered (15) might not be enough to
reveal more refined subdivisions of the
MFC. It can be hypothesized that the
vmPFC is composed of subregions that
have distinct roles at rest, but function in
coordination during affective processes,
such as reward or fear. Indeed, when ana-
lyzing the results from de la Vega et al.
(2016, their Fig. 4), it is evident that, al-
though distinct subdivisions of the ante-
rior MFC are indissociably linked to
episodic memory, they are differently as-
sociated with reward. Therefore, it is rea-
sonable to assume that these subdivisions
may work either together or separately,
depending on the functional context. Fur-
thermore, it is also likely that regions with
different properties, such as the ones ex-
plored by Glasser et al. (2016), coexist
across psychological states by making part
of the same circuit. Of note, none of the
studies integrated structural connectivity
for the parcellation of the MFC, which is
thought to influence brain functional pat-
terns (Park and Friston, 2013). Together,
this suggests that the cortical organization
of the MFC is still an open question and
further developments can be expected in
the near future.

de la Vega et al. (2016) suggest that
the association of SMA with pain pro-
cessing and motor function could re-
flect the importance of this region for
initiating movement in response to
pain. This is in accordance with previ-
ous reports of associations between ac-
tivation in the SMA, motor control, and
painful stimuli (Misra and Coombes,
2015). Despite falling within the same
cluster for the tripartite solution, poste-
rior subdivisions have dissociable struc-
tural links: whereas the SMA projects
directly to motor areas, the pre-SMA
projects to the dorsolateral prefrontal
cortex (Wang et al., 2005). However,
there seems to be no clear functional di-
chotomy or clear structural boundary
between the SMA and pre-SMA subdi-
visions, but rather a continuum that
does not favor a modular organization
(Nachev et al., 2008).

de la Vega et al. (2016) also suggested
that the dorsal clusters from the middle
zone were more associated with cognitive
motor control that requires working mem-
ory, whereas the ventral clusters’ function
would be to incorporate low-level affective

signals into cognitive control. Despite agree-
ing with previous findings reporting an in-
volvement of the mid-cingulate cortex in
pain processing (Vogt, 2016), these results
seem to suggest that dorsal clusters share
functional commonalities with the poste-
rior MFC, whereas anterior subdivisions are
more related with the anterior MFC. Again,
this raises the question of the extent to
which the MFC should be considered as an
agglomerate of functionally distinct sub-
parts and whether the functional division
depends on the functional context. Criti-
cally, de la Vega et al. (2016) suggest that the
anterior zones of the MFC (particularly the
pregenual anterior cingulate cortex and
the vmPFC), in comparison with other
MFC subdivisions, are more associated with
affective processes and decision-making.
This supports the view of Euston et al.
(2012) that the role of the anterior MFC is to
produce adaptive emotional responses
based on inputs from emotion-related
structures and storing the appropriate ac-
tions.

Some methodological points should
be considered. The authors used genera-
tive topic modeling to define a set of top-
ics based on the co-occurrence of key
words across the abstracts of fMRI stud-
ies. de la Vega et al. (2016, their Table 1)
demonstrated some words loaded on
multiple topics (e.g., “cognitive” loaded
on three topics: conflict, inhibition, and
working memory), which may explain
why all the subregions of the middle por-
tion of the MFC were similarly predicted
by inhibition and response conflict (de la
Vega et al., 2016, their Fig. 4). As recog-
nized by the authors, the use of standard-
ized ontologies (e.g., Poldrack et al., 2011)
might constitute an improvement on the
reliability of psychological concepts. Ulti-
mately, this may help to further clarify the
link between individual subregions of the
MFC and their functional correlates.

Despite the valuable efforts of the study
by de la Vega et al. (2016) to address the
reverse inference problem associated with
the MFC, it is important to be aware that
their conclusions were based on forward in-
ferences. Thus, future studies should focus
on predictive models in which psychologi-
cal states are classified based on the pattern
of activation of individual MFC subdivi-
sions, rather than using the psychological
states to predict patterns of MFC activity.
This would allow researchers to properly
tackle reverse inferences (i.e., to infer that
the pattern of MFC activation affects a spe-
cific function).

Recent debates in fMRI research have
focused on the huge rate of false positive

findings (Eklund et al., 2016) and the re-
duced chance of results’ reproducibility
(i.e., statistical power) (Button et al.,
2013). Although scarcely used in fMRI re-
search, the use of planned power analysis
may improve the level of evidence in
this type of study (Mumford, 2012). Not-
withstanding, as de la Vega et al. (2016)
highlight, the meta-analytic approach im-
plemented in their study was exclusively
based on the aggregation of results re-
ported as significant across studies. This is
because the results of most neuroimaging
publications are presented as tables with
the coordinates of significant findings,
which can be particularly problematic be-
cause it is likely that subthreshold, but
consistent, effects across studies will
not be captured when aggregating results
(Gorgolewski et al., 2015). Thus, this work
highlights the importance of sharing full
statistical maps in individual neuroim-
aging studies to allow more refined esti-
mation, through the use of image-based
meta-analysis.

In conclusion, the study by de la Vega
et al. (2016) is an important advancement
in our understanding of the functional ar-
chitecture of the MFC. Furthermore, it
provides a great incentive for the develop-
ment of strategies to solve a common con-
cern in fMRI studies: the reverse inference
problem. From a general perspective, the
use of similar approaches may promote
a more comprehensive understanding of
the link between brain structures and
their functional role, which is of upmost
relevance to illuminate potential thera-
peutic targets in clinical populations.
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