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In the context of natural deduction for propositional cieaklogic, with classicality given by the
inference rulereductio ad absurdumwe investigate the De Morgan translation of disjunction in
terms of negation and conjunction. Once the translatioxteseled to proofs, it obtains a reduction of
provability to provability in the disjunction-free subsgm. It is natural to ask whether a reduction is
also obtained for, say, strong normalization; that is, Wwlestrong normalization for the disjunction-
free system implies the same property for the full syster,whether such lifting of the property
can be done along the De Morgan translation. Although nhttiv@se questions are neglected by
the literature. We spell out the map of reduction steps ieduay the De Morgan translation of
proofs. But we need to “optimize” such a map in order to shaat ghreduction sequence in the full
system from a proof determines, in a length-preserving wagduction sequence in the disjunction-
free system from the De Morgan translation of the proof. s #ense, the above questions have a
positive answer.

1 Introduction

In the context of natural deduction for propositional cleaklogic, with classicality given by the infer-
ence rulereductio ad absurdurf@], we investigate the De Morgan translation of disjunetio terms of
negation and conjunctioAV B := —~(-AA —B). This translation immediately extends to proof-rules, as
recalled in Fig[L, which obtains a reduction of provabitityprovability in the disjunction-free subsys-
tem.

It is the case that a reduction is also obtained for, sayngtrmrmalization? To be more precise,
is it the case that strong normalization for the disjuncfi@e system implies the same property for the
full-system, and that such lifting of the property can bee@atong the De Morgan translation, that is,
through a mapping of reduction sequences? The answer idaaotat all, nevertheless these questions
are neglected by the literature. For instance Stalmailcsais (...) the strong normalization theorem for
the restricted version of first order classical N.D. togethith the well-known results on the definability
of the rules forv and 3 in the restricted system does not imply the normalizati@orm for the full
systery, and this author moves on to give a direct proof of strongwatdization for the full first order
system; but the quoted claim is not supported by technicialeece. On the other hand, a claim in
the opposite direction, namely that the normalization teeofor the full system does follow from the
normalization for the restricted system, may be thoughtsahe implicit, unproven assumption behind
the approach to classical natural deduction in Prawitz&iere only the restricted system is studied,
after being considerecatiequaté

In this paper we re-examine these questions, for propasitiogic. We spell out the map of reduc-
tion steps induced by the De Morgan translation of proofs, @oserve that the map does not readily
lift strong normalization from the disjunction-free systeWe need to “optimize” such map in order to
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Figure 1: The de Morgan translation of proofs
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show that a reduction sequence in the full system from a pletdrmines, in a length-preserving way,
a reduction sequence in the disjunction-free system franlte Morgan translation of the proof. In

this sense, strong normalization for the full system dodsed reduce to strong normalization for the
disjunction-free system along the De Morgan translatioaw& provide a proof of strong normalization

for the disjunction-free system, this completes a new podstrong normalization for the full system.

Our natural deduction system is presented as a variant dipftealculus [3], and we employ typed
A-terms throughout to code logical derivations. As to reaunctules, in addition to detour conversion
and the commuting conversions pertaining to disjunctiame bas conversions related rieductio ad
absurdum inferencesp-conversions, as we will call them. We do not adopt the caiwas by Prawitz
for the atomization of the conclusion of r.a.a. inferen@jsljut rather the conversions of Stalmarck [4]
(which go back to Statmanl[5]), except that we do not imposecamstraint on thgp-conversion for
disjunction, in this way following[3].

The paper is organized as follows. In Sectidn 2 we presennatural deduction system and its
disjunction-free subsystem. In Sectidn 3 we study the Degslioitranslation of proofs, and how it lifts
strong normalization from the disjunction-free subsysteitie full system. In Sectidd 4 we prove strong
normalization of the disjunction-free subsystem.

2 Background

We present our logical system as a calculus ofikéamily [3]. Types/formulas are given by
AB,C:=X| L|ADB|AAB|AVB
We define-A:=AD 1.

Proof terms:

M,N,PQ = x (assumption)
| AXAM(M (implication)
| (M.N)| T ( )| R(M) (conjunction)
| ing(M)]in2(N)|case(M,x*.P,y2.Q) (disjunction)
‘ A

M (reductio ad absurduin
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Figure 2: Typing/inference rules

F,x:AI—x:AASS
x:AFB _, TEM:ADB FEN:A o
r’-AxXAM:ADB r-MN:B
[FM:A FFN:B [-M:AAB F-M:AAB
remNy A N TEmmy:A B Py B B2
FEM:A FEN:A
FEimM):AVB 'Y TrinaN):Ave V12

r’-M:AvB Ix:AFP:C Ty:BFQ:C
[+ case(M,xA.P,y2.Q):C

Mk:-A-M:L
F-AKAM:A

RAA

The type annotation in the bound variable of binders wiknfbe omitted when no confusion arises.
The typing/inference rules are in FId. P.denotes a set afeclarations x A such that a variable is
declared at most one time in
For the purpose of defining some reduction rules and thelatamns of proof terms, it is convenient
to arrange the syntax of the system in a different way:

(Terms) M,N,P.Q := V|&[M]|AKAM
(Values) V = xX|[AXM[(M,N)[in1(M)|ina(N)
(Elim. contexts) & = [IN|m([])|m®([])|case([],x*.P,yE.Q)

A value Vranges over terms representing assumptions or introdguiiferences#’ stands for arelim-
ination contextwhich is a term representing an elimination inference wath a “hole” in the position
of the main premiss&’[M] denotes the term resulting from filling the hole®fwith M.

In Fig.[3 one finds the typing rules for contexts. Without sise [1], these are particular cases of
sequent calculus inference rules. In a seqUéAt- & : B, Ais the type of the hole of” andB is the type
of the term obtained by filling the hole &f with a term of typeA.

The reduction (or proof transformation) rules are givenig B. They make use of the following
organization of the definition of elimination contexts:::= &5 | &\ | &/, where

Eso=[N &S x=m()|m(]) & = case([],¥*PyE.Q)

For eachRe {B,m,p1,pi }, we putR:= R UR, URy. Then we pup := p1 U pj- U po.
An equivalent definition oft, p; andpj- is

(m) &case(M,x.Py.Q)] — case(M,x.&[P],y.&[Q])
(p1) EDkM] — AK.[AzK(&[Z)/KM
(p1) EAkM] —  [Az&L[Z /KM
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Figure 3: Typing for contexts

FEN:A 0
FASBF[N:B  TJAAAF m([]) A

=12

Nx:AFP:C T,y:BFQ:C
AV B case(]],xPy.Q):C

FEM:A TIAF&:B
r-&M]:B

Figure 4: Reduction (or proof transformation) rules

Detour conversion rules:

(B>) (AXM)N —  [N/XM
(Br) n((M,M2)) — M (i=12)
(B\/) case(ini(M) X1. Pl,Xz Pz) — [M/X|]P| (I = l, 2)

Commutative conversion rule:

(My) éplcase(M,xPY.Q)] — case(M,xép[PLy.ép[Q))  (O=D,A,V)
Reductio ad absurdumiles:

(P0) olMkM] — AK.AZK(E[2)/KM (O=D,A.V)
(p5) é5[BkM] —  [Az&4[Z/KM (O =>,A,vandéy 1)
(p2)  DOkkM — M (k¢ M)

The reduction rules preserve types (subject reductiongotpp The case op- is given in Fig.[5,
whereW, S and (x) are applications of weakening, the typing of substitutiand last rule of Fig[13,
respectively,

Supposes, in the redex ofo~ has (and the reduction happens at) typein this case, ifo is
applied, the inferencék’.— in the contractum concludes, with k: — L. We separate rulepé for
this case, which avoid such unnecessary uses of RAA. Amalige would have been to adopt another
reduction rule

(p3)  OAKM = [I/KM (1 :=AXX) .

Then,pé would have become a derived rule

ESBKM] —p, AKL[A z.lf(@% [2) /KM
—ps [AZI(E5[2) /KM 1)
=5 [Azé5(Z4/KM
Still, we do not adopps (in this, we agree witH [3]). This is technically conveniea we point out later.

As we leave oujps, we might have considered forbidding the formatiomMafM with k: = L, and
insisted that rulep should only happen at types different fram- the latter seems even necessary to
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Figure 5: Example of type preservation

D
k:-(ADB),TEFM:L
( ). RAA Z3
rMN-AkM:ADB I'\ADBI—@%.B()
*
[+ & [AkM]: B
1
Do
FADBF& :B
- ASs -
A A-z:ADB A|ADBI—£D.B()
- *
A-K:-B " A-&5Z B 7
AFK(&5]Z) L k:=(ADB),lFM:L W
K:-B,Fr'-AzK(&5[Z): ~(ADB) K:-B,k:-(ADB),lFM:L s

K:=-B,+[AzK(&5[Z)/KM : L
M- AK. [AzK (&5]Z)/KM : B

RAA
whereA:=z: AD>B,K :—-B,T.

guarantee the confluence property. Since we only care abvongsormalization, we also refrain from
enforcing such restrictions.
Later, we will consider another reduction relation, getesidy the rule

(p)  K(AkM) — [K /KM .

This will be just a technical device to help reasoning. This does not belong to the system.

If Ris a(n union of) reduction rule&)then—m denotesR-reduction the binary relation inductively
generated by closin® under all contexts. Thersg (resp. —%, —) denotes the reflexive (resp. tran-
sitive, reflexive-transitive) closure ofrgr, whereas the latter's composition with itself- 1 times is
denoted—}{, as usual=g is a coarser notion of equality over proof expressions tisgntactic” identity.
The later is denoted by (sometimes by= for emphasis) and coincides with-equivalence, since we
work modulo the name of bound variables.

Definition 1 (Full, disjunction-free, and small systems)

1. The system defined so far is denobgd it is a presentation of propositional classical natural
deduction. We also refer to this system as the full system.

2. By}\A*v we denote the restriction ofy obtained by leaving out disjunction. More precisely, in
Ay Y we omit: type A/ B and its term constructions and typing rules; and the reiductules 3,
Ty, andAy. In ALY, B:=B5UBy, pri=p5Ups, andpi- := p3 Upi. A, is also called the
disjunction-free system.

3. The small system, denotag ", is obtained fromA, ' by leaving out conjunction, with implica-
tion and absurdity the logical constants remaining)@w, B :=B-, andp; := p-. Furthermore,
p2 is omitted, hence there is m* in this system.

1we will often denote (long) unions by juxtapositieg. RRyRs instead ofR; URy UR3.
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Figure 6: The de Morgan translation of proof expressions

x¢

= X
AxM)* = AxM¢
(M,N)* = (M*N*)
(M) = Awr(w)M* (i=12)
(EnM))* cf‘[M“] . (O=2,7)
_J M¥AxP*Ay.QY) (PQ:L)
(case(M,xPy.Q))* = {Ak.M’<)\X.kP‘,)\y.kQ’> otherwise
(AkM)* = AkM*
(IN)* [IN¢
(1 ([]))* ([-])

The full system will be the source of the De Morgan transtativhose target is the disjunction-free
system. Strong normalization for our particular disjuoictiree system is not a result found off the shelf
- it will be proved as a corollary to strong normalization bétsmall system, the latter being a known
result:

Theorem 1. The small system, ' enjoys strong normalization.

Proof. A, " is systern)\ALD of [3] minus its reduction rule (4), so Theorem 23ay. cit. applies.ll

3 Lifting of strong normalization

3.1 The De Morgan translation

We now present the translation into the disjunction-frde-system. Thele Morgan translatiorconsists
of the obvious translation of formulas

Xt = X

1 = 1
(A>B)* = A*>B*
(AAB)* = A*/B*
(AVB)* = —(-A*A-B%)

together with a translation of proof expressions given ig.[Bi. The translation is defined homomor-
phically in all cases but those relative to the constructeesenting introduction and elimination of
disjunction; and, for these, the translation correspoadké transformations recalled in Fig. 1.

Notice that the target system of this translation is cladsiherefore the translation is not a nega-
tive/CPS translation.

The case distinction in the definition afase(M,x.P,y.Q))* means that we can only apply the trans-
lation of proof expressions to typed expressidfissay, and in that cadd ® has the same type 3.

Proposition 1 (Soundness)The typing rules of Fid.l7 are derivable.
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Figure 7: Typing for the de Morgan translation

FFM:A MAF&5:B
F-M*:AY A& BY

O=D,A

The first of the typing rules in Fif] 7 states the logical somess of the translation: A is a theorem
with proof M in the source system, theék? is a theorem with proof1* in the disjunction-free system.

Lemma 1 (Preservation of substitution|N* /xM* = ([N/x]M)*.
Proof. We need im, the obvious concedQ/x|&:
[Q/X([N) = [][Q/XN

Q/X(m([-]) = 7([])
[Q/X](Case([_],Xl.Pl,Xg.Pg)) = case([_],Xl.[Q/X]Pl,Xg.[Q/X]Pz)

Then the following holds

[Q/X(£M]) = (IQ/X&)[[Q/XM] . (%)

Now, the lemma’s statement is proved together \}@mh/x]ég = (IN/Xé0)*, with O =D, A, by simul-
taneous induction ol andé&p,. All cases follow by definitions, IHs, and fatt). B

Theorem 2(Translation of proof reduction)
1. LetRe {B5,Bn. P>, P2, Pr,P1, P2} and let R = R. If M —g N in Ay, then MY —e N*in A, Y.
2. LetR=p; and let R = p3. IfM —g N in A, then M* —pe N*in ALY,
3. Let R=f, (resp. R=1,, R=m,) and let R = Bp, (resp. R = B-p-, R* = B-p,). IfM =g N
in Ap, then M* — 5  N®in A, .
4. LetRe {m,,p,} and R = p3. If M —r N in Ay then M* —ge N"in A, Y, for some Nsuch that
N —,, N
Proof. By induction onM —g N. First we see the base cases.
Casef35. LetLHS:= (AXxM)N — [N/x]M =: RHS
LHS* = (AxM*)N* (by def)
—p,  [N*/xM*
([N/xM)*  (by Lemmdl)
= RHY

Casep. Let LHS:= & [AkM] — AK'[AzK (6 [Z]) /KM =: RHS with O =D, A.

LHS* = &¥akMY) (by def.)
—p, AK.AZK(E3[2)/KM®
= AK.[(AzK(Ep[2))*/KM*  (by def.)
]

)
= AK.([(AzK(n[2))/KM)*  (by Lemmdl)
= RHQ (by def.)
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The other base casesRin statement 1 are equally straightforward.
Casep; . LetLHS:= case(Ak-M,x.P,y.Q) — [Azcase(z,x.P,y.Q) /KM =:RHS LetN:= (Ax.P* Ay.Q*).
Then:

LHS* = (AkM*)N (by def.)
o [AzZN/KM*
= [(Azcase(zxPy.Q))*/KM* (by def.)
= RHQ (by Lemmdl)
Casep,. Let LHS:= case(inj(M),X1.P1,%2.P2) — [M/X]R =: RHS
LHS* =  AkAwrm(w)M®)(Ax kP Axo.kP)  (by def.)
—% Akk([M*/x]RY)
—p M¥/x]R?
= (M/x]R)* (by Lemmd1)
= RHY

Caserr,. LetLHS:= &[case(M,x.P,y.P)] — case(M,x.6[P],y.6[Q]) =: RHS with O =D, A.

LHS* = &3[akM*(AxkP* AykQ?)] (by def.)
—p, AKAZK(38[2) /K (M*(AxKP* AyKQ?))

= AK.M*Ax(AzK(£3[2)P*,Ay.(AzK (£3(2)Q%)

=% AK.M*AXK (E3[PY),Av.K (631Q*))

— RHY (by def.)

Casep,. Let LHS:= case(Ak.M,x.Py.Q) — AK'[AzK'case(zx.Py.Q)/kIM =: RHS Let N :=
(AXKP* Ay.KQ*). Then:

LHS* = AK.(AKM®)N (by def.)
o AK.[AZZN/KM*
On the other hand:

RHY = AK.([AzKcase(zx.Py.Q)/KM)* (by def.)

AK .[(AzK case(zx.P,y.Q))* /KIM* (by Lemmd1)
—  AK.AZK(Bk.zZ(AxKP* Ay.KQ¥))/KIM*  (by def.)

—0, OK.AZ[K /KZ(AxKP* Ay.kQ*) /KIM¢

= AK.[AzzN/KM*¢

Caserr, is proved by a similar argument.
As to inductive cases, it suffices to say that all the relatitvat hold betweeM* andN*, namely

[ %R
o %g
e IN(- =rNA- =, N)

are congruences (i.e. compatible with the syntactic foionabperations). So all the inductive cases
follow routinely by induction hypothesidl
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3.2 Optimization
Statement 4 of Theorel 2 is an obstacle for the ready liftirgjrong normalization. We now overcome
this obstacle.
Lemma 2 (Commutation of reduction stepsh Aa:
1. Let R be a reduction rule different fropa. If M —, N; and M—g Ny, then there is Nsuch that
N; —r N3 and N —)2;4 Ns.
2. If M —p, N and M — 5, Np, then there is & such that: (i) N —p, N3 or Ny = N3; and (ii)
N2 _>734 N3.
Proof. There is only one case wherepgredex overlaps non-trivially with anoth&-redex, which is
whenR = p, andM = K'(Ak.kM), with k ¢ M. In this case, takdl; = KM. &

If sis a reduction sequence, lst denote its length, that is the number of reduction stess in

Theorem 3 (Translation of reduction sequenced#)s is a reduction sequence i from M to N, then
there is N such that:

1. There is a reduction sequencersA, ' from M* to N', and|s/| > |s| — m, where m is the number
of po-reduction steps in s.

2. N* -5 N
Proof. By induction on|s|. The base casg| = O'is trivial, just takeN’ = N*. The inductive case follows
from this diagram (where double-headed arrows denetg

M - - N
ltem 4 of Theoreni? N¢
P4
pt N”
Pa ¥ Pa
M‘ > P/ . N/

If any other item of Theorefl 2 applies instead, théh—+ P*, and Lemma&1R is not needel.

This theorem says that a reduction sequence in the fullisystan a proofM determines, essentially
in a length-preserving way, a reduction sequence in themigpn-free system from the De Morgan
translationM* of the proof.

Corollary 1 (Lifting of strong normalization) If the disjunction-free system enjoys strong normalizgtio
so does the full system.
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Proof. Suppose there is an infinite reduction sequence from typdhile the full systemAa. Thanks
to Propositiori1L{-)* preserves typability, sM* is typable. We prove that, for any there is iNM, Va
reduction sequencfrom M* of lengthn. The existence of an infinite reduction sequence fidfrthen
follows by Konig's Lemma. Leh be given. Then, there is an initial segmerf the infinite reduction
sequence fronM such thats|— m > n, wherem is the number op,-reduction steps is. That suchs
exists follows from termination gb,-reduction. From the previous theorem, there iﬁA'*rY a reduction
sequence from M* such thats| > |s|—m. B

This is the positive answer to the main question raised sghper.

4 Strong normalization

We confirm that the target of the De Morgan translation is &esg®njoying strong normalization.
Since we want to lift strong normalization froy ¥ (Theoren{]L), we have to translaig ' into
)\A*VA, i.e., we have to get rid of conjunction. Followirig [3], weeusie mag(-)T of formulas induced by

(AAB)T == (AT 5 =BT .
The map of proofs is defined by

(M,N)T = Af.fMTNT
nM)T = AKMT(Axyxo.kx)
mM)T = M'(Axxa.x) (M:AL ARy, A=L)

with the remaining cases defined homomorphicaly. It turrtstioat the study of this map follows the
same patterns as that G§*. We will be very brief now.

Theorem 4(Translation of proof reduction)Let S:= A, /" + p2.
1. LetR be a reduction rule of, ¥ different fromp,. If M =g N inA, Y, then M —* NTin S.
2. IfM —p, NinA, " then M — . N'in S, for some Nsuch that N —, N'.
o]
Proof. By induction onM —gr N. &

Why do we temporarily need reduction ryie; in the target of(-)'? Not only because the rule
exists in the source calculug v, but also because it is needed to npapandp;-, in the same way as it
happened before with)* and ruleso, andp:- (recall items 2 and 4 of Theorelm 2).

Before, we have used Lemrih 2 to obtain Thedrém 3 from TheQrex&xtly in the same way, we
use Lemmal2 to obtain from Theoréiin 4 the followings i§ a reduction sequence frokhin A, ", then
there is a reduction sequengén A, " + p= from MT with length|s'| > |s| — m, wheremis the number
of po-reduction steps is. Now, p~ becomes a derived rule, if we accept (temporarily) pgerecall
(@). Hence, we can rephrase the result just obtained:

Theorem 5(Translation of reduction sequencegket S:= )\A’VA + ps. If s is a reduction sequence from
M in A, then there is a reduction sequendarsS from M with length|s| > |s| — m, where m is the
number ofp,-reduction steps in s.

Rule p3 makes a timely appearance, now that the commutation argunhéemmal2 is no longer
needed. If the rule were present from the beginning, the catation of p; and p4 would fail, and the
on-going strategy would be wrong.
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Corollary 2 (Lifting of strong normalization) If A, /" + ps enjoys strong normalization, so do&g .
Proof. From the previous theorem, terminationgfreduction, and preservation of typability by' . B

Since strong normalization de*VA (Theorentll) does not comprehepgl the last task is to get rid
of this rule. This is done by postponement.
Lemma 3 (Postponement)in )\A’VA + p3, let k be the rule kN— N at type L.
1. If M —p, P—r Q, then there is Psuch that M—g P’ —ps Q, Where R= R, except in the case
R= -, of the particular form IN— N at type_L, for which R may be R oK.

2. If M = P—rQ, then there is Psuch that M—g P' —% Q
Proof. The exception mentioned in item 1 occurs widr= Ak™+.M’ andP = [I /k]M’, with Q resulting
from the reduction of somEN created by substitutiofi /k]_. Let M” be the result of applying iM’, to
the relevant occurrence &f the rulekN — N. PutP’ = Ak.M”. B

Corollary 3 (Lifting of strong normalization) If )\A*VA enjoys strong normalization, so dOA!§VA =+ ps.
Proof. Suppose there is an infinite reduction sequence fin A, " + ps. We prove that, for anp,
there is inA, ¥ a reduction sequena®from M of lengthn. Letn be given. Let be the ruldN — N at
type L. There is an initial segmestof the infinite reduction sequence frdvh such thais| —m—i > n,
wherem is the number ofps-reduction steps irs andi is the number of -reduction steps is. That
suchs exists follows from termination ofps U1 )-reduction. By applying postponement@f (item 1 of
Lemma[3) tos, one obtains a reduction sequergcérom M, without ps-steps, of lengths| — m, where
somei-steps are converted into-steps. The number of stepsshwhich are notk-steps is a number
n > |s|—m—i. By postponement of (item 2 of Lemma1) applied tg we get a reduction sequense
from M, without k-steps, of lengti’. This is a reduction ik, " with length> n. B

Theorem 6. The disjunction-free systei} ¥ enjoys strong normalization.
Proof. From Corollarie§2 and 3 and Theor&milL.

Theorem 7. The full systema enjoys strong normalization.
Proof. From Corollanf1 and Theorein @
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