
EPTCS ??, 20??, pp. 53–63, doi:10.4204/EPTCS.??.7

c© J. Espı́rito Santo
This work is licensed under the
Creative Commons Attribution License.

A note on strong normalization in classical natural deduction
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In the context of natural deduction for propositional classical logic, with classicality given by the
inference rulereductio ad absurdum, we investigate the De Morgan translation of disjunction in
terms of negation and conjunction. Once the translation is extended to proofs, it obtains a reduction of
provability to provability in the disjunction-free subsystem. It is natural to ask whether a reduction is
also obtained for, say, strong normalization; that is, whether strong normalization for the disjunction-
free system implies the same property for the full system, and whether such lifting of the property
can be done along the De Morgan translation. Although natural, these questions are neglected by
the literature. We spell out the map of reduction steps induced by the De Morgan translation of
proofs. But we need to “optimize” such a map in order to show that a reduction sequence in the full
system from a proof determines, in a length-preserving way,a reduction sequence in the disjunction-
free system from the De Morgan translation of the proof. In this sense, the above questions have a
positive answer.

1 Introduction

In the context of natural deduction for propositional classical logic, with classicality given by the infer-
ence rulereductio ad absurdum[2], we investigate the De Morgan translation of disjunction in terms of
negation and conjunctionA∨B := ¬(¬A∧¬B). This translation immediately extends to proof-rules, as
recalled in Fig. 1, which obtains a reduction of provabilityto provability in the disjunction-free subsys-
tem.

It is the case that a reduction is also obtained for, say, strong normalization? To be more precise,
is it the case that strong normalization for the disjunction-free system implies the same property for the
full-system, and that such lifting of the property can be done along the De Morgan translation, that is,
through a mapping of reduction sequences? The answer is not clear at all, nevertheless these questions
are neglected by the literature. For instance Stålmarck [4] says “(...) the strong normalization theorem for
the restricted version of first order classical N.D. together with the well-known results on the definability
of the rules for∨ and ∃ in the restricted system does not imply the normalization theorem for the full
system”, and this author moves on to give a direct proof of strong normalization for the full first order
system; but the quoted claim is not supported by technical evidence. On the other hand, a claim in
the opposite direction, namely that the normalization theorem for the full system does follow from the
normalization for the restricted system, may be thought of as the implicit, unproven assumption behind
the approach to classical natural deduction in Prawitz [2],where only the restricted system is studied,
after being considered “adequate”.

In this paper we re-examine these questions, for propositional logic. We spell out the map of reduc-
tion steps induced by the De Morgan translation of proofs, and observe that the map does not readily
lift strong normalization from the disjunction-free system. We need to “optimize” such map in order to
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Figure 1: The de Morgan translation of proofs
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show that a reduction sequence in the full system from a proofdetermines, in a length-preserving way,
a reduction sequence in the disjunction-free system from the De Morgan translation of the proof. In
this sense, strong normalization for the full system does indeed reduce to strong normalization for the
disjunction-free system along the De Morgan translation. As we provide a proof of strong normalization
for the disjunction-free system, this completes a new proofof strong normalization for the full system.

Our natural deduction system is presented as a variant of theλ∆-calculus [3], and we employ typed
λ -terms throughout to code logical derivations. As to reduction rules, in addition to detour conversion
and the commuting conversions pertaining to disjunction, one has conversions related toreductio ad
absurdum inferences- ρ-conversions, as we will call them. We do not adopt the conversions by Prawitz
for the atomization of the conclusion of r.a.a. inferences [2], but rather the conversions of Stålmarck [4]
(which go back to Statman [5]), except that we do not impose any constraint on theρ-conversion for
disjunction, in this way following [3].

The paper is organized as follows. In Section 2 we present ournatural deduction system and its
disjunction-free subsystem. In Section 3 we study the De Morgan translation of proofs, and how it lifts
strong normalization from the disjunction-free subsystemto the full system. In Section 4 we prove strong
normalization of the disjunction-free subsystem.

2 Background

We present our logical system as a calculus of theλ∆ family [3]. Types/formulas are given by

A,B,C ::= X | ⊥ |A⊃ B|A∧B|A∨B

We define¬A := A⊃⊥.
Proof terms:

M,N,P,Q ::= x (assumption)
| λxA.M |MN (implication)
| 〈M,N〉 |π1(M) |π2(M) (conjunction)
| in1(M) | in2(N) |case(M,xA.P,yB.Q) (disjunction)
| ∆k¬A.M (reductio ad absurdum)
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Figure 2: Typing/inference rules

Γ,x : A⊢ x : A Ass

Γ,x : A⊢ B

Γ ⊢ λxA.M : A⊃ B
⊃ I Γ ⊢ M : A⊃ B Γ ⊢ N : A

Γ ⊢ MN : B
⊃ E

Γ ⊢ M : A Γ ⊢ N : B
Γ ⊢ 〈M,N〉 : A∧B

∧I
Γ ⊢ M : A∧B
Γ ⊢ π1(M) : A

∧E1
Γ ⊢ M : A∧B
Γ ⊢ π2(M) : B

∧E2

Γ ⊢ M : A
Γ ⊢ in1(M) : A∨B

∨I1
Γ ⊢ N : A

Γ ⊢ in2(N) : A∨B
∨I2

Γ ⊢ M : A∨B Γ,x : A⊢ P : C Γ,y : B⊢ Q : C

Γ ⊢ case(M,xA.P,yB.Q) : C
∨E

Γ,k : ¬A⊢ M :⊥

Γ ⊢ ∆k¬A.M : A
RAA

The type annotation in the bound variable of binders will often be omitted when no confusion arises.
The typing/inference rules are in Fig. 2.Γ denotes a set ofdeclarations x: A such that a variable is

declared at most one time inΓ.
For the purpose of defining some reduction rules and the translation of proof terms, it is convenient

to arrange the syntax of the system in a different way:

(Terms) M,N,P,Q ::= V |E [M] |∆k¬A.M
(Values) V ::= x|λx.M | 〈M,N〉 | in1(M) | in2(N)

(Elim. contexts) E ::= [ ]N |π1([ ]) |π2([ ]) |case([ ],xA.P,yB.Q)

A value V ranges over terms representing assumptions or introduction inferences.E stands for anelim-
ination context, which is a term representing an elimination inference, butwith a “hole” in the position
of the main premiss.E [M] denotes the term resulting from filling the hole ofE with M.

In Fig. 3 one finds the typing rules for contexts. Without surprise [1], these are particular cases of
sequent calculus inference rules. In a sequentΓ|A⊢ E : B, A is the type of the hole ofE andB is the type
of the term obtained by filling the hole ofE with a term of typeA.

The reduction (or proof transformation) rules are given in Fig. 4. They make use of the following
organization of the definition of elimination contexts:E ::= E⊃ |E∧ |E∨, where

E⊃ ::= [ ]N E∧ ::= π1([ ]) |π2([ ]) E∨ ::= case([ ],xA.P,yB.Q)

For eachR∈ {β ,π,ρ1,ρ⊥
1 }, we putR := R⊃∪R∧∪R∨. Then we putρ := ρ1∪ρ⊥

1 ∪ρ2.
An equivalent definition ofπ, ρ1 andρ⊥

1 is

(π) E [case(M,x.P,y.Q)] → case(M,x.E [P],y.E [Q])
(ρ1) E [∆k.M] → ∆k′.[λz.k′(E [z])/k]M
(ρ⊥

1 ) E ⊥[∆k.M] → [λz.E ⊥[z]/k]M
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Figure 3: Typing for contexts

Γ ⊢ N : A
Γ|A⊃ B⊢ [ ]N : B Γ|A1∧A2 ⊢ πi([ ]) : Ai

(i = 1,2)

Γ,x : A⊢ P : C Γ,y : B⊢ Q : C
Γ|A∨B⊢ case([ ],x.P,y.Q) : C

Γ ⊢ M : A Γ|A⊢ E : B

Γ ⊢ E [M] : B

Figure 4: Reduction (or proof transformation) rules

Detour conversion rules:

(β⊃) (λx.M)N → [N/x]M
(β∧) πi(〈M1,M2〉) → Mi (i = 1,2)
(β∨) case(ini(M),x1.P1,x2.P2) → [M/xi ]Pi (i = 1,2)

Commutative conversion rule:

(π©) E©[case(M,x.P,y.Q)] → case(M,x.E©[P],y.E©[Q]) (©=⊃,∧,∨)

Reductio ad absurdumrules:

(ρ©) E©[∆k.M] → ∆k′.[λz.k′(E©[z])/k]M (©=⊃,∧,∨)
(ρ⊥

©) E ⊥
©[∆k.M] → [λz.E ⊥

© [z]/k]M (©=⊃,∧,∨ andE ⊥
© :⊥)

(ρ2) ∆k.kM → M (k /∈ M)

The reduction rules preserve types (subject reduction property). The case ofρ⊃ is given in Fig. 5,
whereW, S and (∗) are applications of weakening, the typing of substitution,and last rule of Fig. 3,
respectively,

SupposeE© in the redex ofρ© has (and the reduction happens at) type⊥: in this case, ifρ© is
applied, the inference∆k′.− in the contractum concludes⊥, with k : ¬ ⊥. We separate rulesρ⊥

© for
this case, which avoid such unnecessary uses of RAA. An alternative would have been to adopt another
reduction rule

(ρ3) ∆k¬⊥.M → [I/k]M (I := λx.x) .

Then,ρ⊥
© would have become a derived rule

E ⊥
©[∆k.M] →ρ©

∆k′.[λz.k′(E ⊥
©[z])/k]M

→ρ3 [λz.I(E ⊥
©[z])/k]M

→∗
β⊃

[λz.E ⊥
©[z]/k]M

(1)

Still, we do not adoptρ3 (in this, we agree with [3]). This is technically convenient, as we point out later.
As we leave outρ3, we might have considered forbidding the formation of∆k.M with k : ¬ ⊥, and

insisted that rulesρ© should only happen at types different from⊥ - the latter seems even necessary to
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Figure 5: Example of type preservation

D1
k : ¬(A⊃ B),Γ ⊢ M :⊥

Γ ⊢ ∆k.M : A⊃ B RAA D2
Γ|A⊃ B⊢ E⊃ : B

Γ ⊢ E⊃[∆k.M] : B
(∗)

↓

∆ ⊢ k′ : ¬B
Ass

∆ ⊢ z : A⊃ B Ass

D2
Γ|A⊃ B⊢ E⊃ : B

∆|A⊃ B⊢ E⊃ : B
W

∆ ⊢ E⊃[z] : B
(∗)

∆ ⊢ k′(E⊃[z]) :⊥

k′ : ¬B,Γ ⊢ λz.k′(E⊃[z]) : ¬(A⊃ B)

D1
k : ¬(A⊃ B),Γ ⊢ M :⊥

k′ : ¬B,k : ¬(A⊃ B),Γ ⊢ M :⊥
W

k′ : ¬B,Γ ⊢ [λz.k′(E⊃[z])/k]M :⊥
S

Γ ⊢ ∆k′.[λz.k′(E⊃[z])/k]M : B
RAA

where∆ := z : A⊃ B,k′ : ¬B,Γ.

guarantee the confluence property. Since we only care about strong normalization, we also refrain from
enforcing such restrictions.

Later, we will consider another reduction relation, generated by the rule

(ρ4) k′(∆k.M)→ [k′/k]M .

This will be just a technical device to help reasoning. This rule does not belong to the system.
If R is a(n union of) reduction rule(s)1, then→R denotesR-reduction, the binary relation inductively

generated by closingR under all contexts. Then→=
R (resp.→+

R, →∗
R) denotes the reflexive (resp. tran-

sitive, reflexive-transitive) closure of→R, whereas the latter’s composition with itselfn− 1 times is
denoted→n

R, as usual.=R is a coarser notion of equality over proof expressions than “syntactic” identity.
The later is denoted by= (sometimes by≡ for emphasis) and coincides withα-equivalence, since we
work modulo the name of bound variables.

Definition 1 (Full, disjunction-free, and small systems).
1. The system defined so far is denotedλ∆: it is a presentation of propositional classical natural

deduction. We also refer to this system as the full system.

2. Byλ−∨
∆ we denote the restriction ofλ∆ obtained by leaving out disjunction. More precisely, in

λ−∨
∆ we omit: type A∨B and its term constructions and typing rules; and the reduction rulesβ∨,

π©, and∆∨. In λ−∨
∆ , β := β⊃ ∪β∧, ρ1 := ρ⊃ ∪ρ∧, andρ⊥

1 := ρ⊥
⊃ ∪ρ⊥

∧ . λ−∨
∆ is also called the

disjunction-free system.

3. The small system, denotedλ−∨∧
∆ , is obtained fromλ−∨

∆ by leaving out conjunction, with implica-
tion and absurdity the logical constants remaining. Inλ−∨∧

∆ , β := β⊃, andρ1 := ρ⊃. Furthermore,
ρ⊥
⊃ is omitted, hence there is noρ⊥ in this system.

1We will often denote (long) unions by juxtaposition,e.g. R1R2R3 instead ofR1∪R2∪R3.
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Figure 6: The de Morgan translation of proof expressions

x� = x
(λx.M)� = λx.M�

〈M,N〉� = 〈M�,N�〉
(ini(M))� = λw.πi(w)M� (i = 1,2)
(E©[M])� = E

�
©[M�] (©=⊃,∧)

(case(M,x.P,y.Q))� =

{

M�〈λx.P�,λy.Q�〉
∆k.M�〈λx.kP�,λy.kQ�〉

(P,Q :⊥)
otherwise

(∆k.M)� = ∆k.M�

([ ]N)� = [ ]N�

(πi([ ]))
� = πi([ ])

The full system will be the source of the De Morgan translation, whose target is the disjunction-free
system. Strong normalization for our particular disjunction-free system is not a result found off the shelf
- it will be proved as a corollary to strong normalization of the small system, the latter being a known
result:

Theorem 1. The small systemλ−∨∧
∆ enjoys strong normalization.

Proof. λ−∨∧
∆ is systemλ⊥,⊃

∆ of [3] minus its reduction rule (4), so Theorem 23 ofop. cit. applies.�

3 Lifting of strong normalization

3.1 The De Morgan translation

We now present the translation into the disjunction-free sub-system. Thede Morgan translationconsists
of the obvious translation of formulas

X� = X
⊥� = ⊥

(A⊃ B)� = A� ⊃ B�

(A∧B)� = A�∧B�

(A∨B)� = ¬(¬A�∧¬B�)

together with a translation of proof expressions given in Fig. 6. The translation is defined homomor-
phically in all cases but those relative to the constructorsrepresenting introduction and elimination of
disjunction; and, for these, the translation corresponds to the transformations recalled in Fig. 1.

Notice that the target system of this translation is classical, therefore the translation is not a nega-
tive/CPS translation.

The case distinction in the definition of(case(M,x.P,y.Q))� means that we can only apply the trans-
lation of proof expressions to typed expressions,M say, and in that caseM� has the same type asM.

Proposition 1 (Soundness). The typing rules of Fig. 7 are derivable.
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Figure 7: Typing for the de Morgan translation

Γ ⊢ M : A
Γ� ⊢ M� : A�

Γ|A⊢ E© : B

Γ�|A� ⊢ E© : B�
©=⊃,∧

The first of the typing rules in Fig. 7 states the logical soundness of the translation: ifA is a theorem
with proof M in the source system, thenA� is a theorem with proofM� in the disjunction-free system.

Lemma 1 (Preservation of substitution). [N�/x]M� = ([N/x]M)�.

Proof. We need inλ∆ the obvious concept[Q/x]E :

[Q/x]([ ]N) = [ ][Q/x]N
[Q/x](πi([ ])) = πi([ ])

[Q/x](case([ ],x1.P1,x2.P2)) = case([ ],x1.[Q/x]P1,x2.[Q/x]P2)

Then the following holds

[Q/x](E [M]) = ([Q/x]E )[[Q/x]M] . (∗)

Now, the lemma’s statement is proved together with[N�/x]E �
© = ([N/x]E©)�, with ©=⊃,∧, by simul-

taneous induction onM andE©. All cases follow by definitions, IHs, and fact(∗). �

Theorem 2(Translation of proof reduction).

1. Let R∈ {β⊃,β∧,ρ⊃,ρ⊥
⊃ ,ρ∧,ρ⊥

∧ ,ρ2} and let R� = R. If M→R N in λ∆, then M� →R� N� in λ−∨
∆ .

2. Let R= ρ⊥
∨ and let R� = ρ⊥

⊃ . If M →R N in λ∆, then M� →R� N� in λ−∨
∆ .

3. Let R= β∨ (resp. R= π⊃, R= π∧) and let R� = βρ2 (resp. R� = β⊃ρ⊃, R� = β⊃ρ∧). If M →R N
in λ∆, then M� →+

R� N� in λ−∨
∆ .

4. Let R∈ {π∨,ρ∨} and R� = ρ⊥
⊃ . If M →R N in λ∆ then M� →R� N′ in λ−∨

∆ , for some N′ such that
N� →ρ4 N′.

Proof. By induction onM →R N. First we see the base cases.
Caseβ⊃. Let LHS:= (λx.M)N → [N/x]M =: RHS.

LHS� = (λx.M�)N� (by def.)
→β⊃

[N�/x]M�

= ([N/x]M)� (by Lemma 1)
= RHS�

Caseρ©. Let LHS:= E©[∆k.M]→ ∆k′[λz.k′(E©[z])/k]M =: RHS, with ©=⊃,∧.

LHS� = E
�
©[∆k.M�] (by def.)

→ρ©
∆k′.[λz.k′(E �

©[z])/k]M�

= ∆k′.[(λz.k′(E©[z]))�/k]M� (by def.)
= ∆k′.([(λz.k′(E©[z]))/k]M)� (by Lemma 1)
= RHS� (by def.)
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The other base cases ofR in statement 1 are equally straightforward.
Caseρ⊥

∨ . LetLHS:= case(∆k.M,x.P,y.Q)→ [λz.case(z,x.P,y.Q)/k]M =: RHS. LetN := 〈λx.P�,λy.Q�〉.
Then:

LHS� = (∆k.M�)N (by def.)
→ρ⊥

⊃
[λz.zN/k]M�

= [(λz.case(z,x.P,y.Q))�/k]M� (by def.)
= RHS� (by Lemma 1)

Caseβ∨. Let LHS:= case(ini(M),x1.P1,x2.P2)→ [M/xi ]Pi =: RHS.

LHS� = ∆k.(λw.πi(w)M�)〈λx1.kP�
1 ,λx2.kP�

2 〉 (by def.)
→3

β ∆k.k([M�/xi ]P
�
i )

→ρ2 [M�/xi ]P
�
i

= ([M/xi ]Pi)
� (by Lemma 1)

= RHS�

Caseπ©. Let LHS:= E©[case(M,x.P,y.P)]→ case(M,x.E©[P],y.E©[Q]) =: RHS, with ©=⊃,∧.

LHS� = E
�
©[∆k.M�〈λx.kP�,λy.kQ�〉] (by def.)

→ρ©
∆k′[λz.k′(E �

©[z])/k](M�〈λx.kP�,λy.kQ�〉)

= ∆k′.M�〈λx.(λz.k′(E �
©[z]))P�,λy.(λz.k′(E �

©[z]))Q�〉

→2
β⊃

∆k′.M�〈λx.k′(E �
©[P�]),λy.k′(E �

©[Q�])〉

= RHS� (by def.)

Caseρ∨. Let LHS := case(∆k.M,x.P,y.Q) → ∆k′[λz.k′case(z,x.P,y.Q)/k]M =: RHS. Let N :=
〈λx.k′P�,λy.k′Q�〉. Then:

LHS� = ∆k′.(∆k.M�)N (by def.)
→ρ⊥

⊃
∆k′.[λz.zN/k]M�

On the other hand:

RHS� = ∆k′.([λz.k′case(z,x.P,y.Q)/k]M)� (by def.)
= ∆k′.[(λz.k′case(z,x.P,y.Q))�/k]M� (by Lemma 1)
= ∆k′.[λz.k′(∆k.z〈λx.kP�,λy.kQ�〉)/k]M� (by def.)
→ρ4 ∆k′.[λz.[k′/k]z〈λx.kP�,λy.kQ�〉/k]M�

= ∆k′.[λz.zN/k]M�

Caseπ∨ is proved by a similar argument.
As to inductive cases, it suffices to say that all the relations that hold betweenM� andN�, namely

• · →R ·

• · →+
R ·

• ∃N(· →R N∧ ·→ρ4 N)

are congruences (i.e. compatible with the syntactic formation operations). So all the inductive cases
follow routinely by induction hypothesis.�
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3.2 Optimization

Statement 4 of Theorem 2 is an obstacle for the ready lifting of strong normalization. We now overcome
this obstacle.

Lemma 2 (Commutation of reduction steps). In λ∆:

1. Let R be a reduction rule different fromρ2. If M →ρ4 N1 and M→R N2, then there is N3 such that
N1 →R N3 and N2 →

∗
ρ4

N3.

2. If M →ρ4 N1 and M→ρ2 N2, then there is N3 such that: (i) N1 →ρ2 N3 or N1 = N3; and (ii)
N2 →

∗
ρ4

N3.

Proof. There is only one case where aρ4-redex overlaps non-trivially with anotherR-redex, which is
whenR= ρ2 andM = k′(∆k.kM), with k /∈ M. In this case, takeN3 = k′M. �

If s is a reduction sequence, let|s| denote its length, that is the number of reduction steps ins.

Theorem 3 (Translation of reduction sequences). If s is a reduction sequence inλ∆ from M to N, then
there is N′ such that:

1. There is a reduction sequence s′ in λ−∨
∆ from M� to N′, and|s′| ≥ |s|−m, where m is the number

of ρ2-reduction steps in s.

2. N� →∗
ρ4

N′.

Proof. By induction on|s|. The base case|s|= 0 is trivial, just takeN′ = N�. The inductive case follows
from this diagram (where double-headed arrows denote→∗):

M ✲ P ✲✲ N

Item 4 of Theorem 2 IH N�

❄

P�

❄

✲✲ N′′

ρ4

❄
❄

Lemma 2

M�

❄

✲✲ P′

ρ4

❄

✲✲ N′

ρ4

❄
❄

If any other item of Theorem 2 applies instead, thenM� →+ P�, and Lemma 2 is not needed.�

This theorem says that a reduction sequence in the full system from a proofM determines, essentially
in a length-preserving way, a reduction sequence in the disjunction-free system from the De Morgan
translationM� of the proof.

Corollary 1 (Lifting of strong normalization). If the disjunction-free system enjoys strong normalization,
so does the full system.



62 A note on strong normalization in classical natural deduction

Proof. Suppose there is an infinite reduction sequence from typableM in the full systemλ∆. Thanks
to Proposition 1,(·)� preserves typability, soM� is typable. We prove that, for anyn, there is inλ−∨

∆ a
reduction sequences′ from M� of lengthn. The existence of an infinite reduction sequence fromM� then
follows by König’s Lemma. Letn be given. Then, there is an initial segments of the infinite reduction
sequence fromM such that|s|−m≥ n, wherem is the number ofρ2-reduction steps ins. That suchs
exists follows from termination ofρ2-reduction. From the previous theorem, there is inλ−∨

∆ a reduction
sequences′ from M� such that|s′| ≥ |s|−m. �

This is the positive answer to the main question raised in this paper.

4 Strong normalization

We confirm that the target of the De Morgan translation is a system enjoying strong normalization.
Since we want to lift strong normalization fromλ−∨∧

∆ (Theorem 1), we have to translateλ−∨
∆ into

λ−∨∧
∆ , i.e., we have to get rid of conjunction. Following [3], we use the map(·)† of formulas induced by

(A∧B)† = ¬(A† ⊃ ¬B†) .

The map of proofs is defined by

〈M,N〉† = λ f . f M†N†

πi(M)† = ∆k.M†(λx1x2.kxi)
πi(M)† = M†(λx1x2.xi) (M : A1∧A2, Ai =⊥)

with the remaining cases defined homomorphicaly. It turns out that the study of this map follows the
same patterns as that of(·)�. We will be very brief now.

Theorem 4(Translation of proof reduction). Let S:= λ−∨∧
∆ +ρ⊥

⊃ .

1. Let R be a reduction rule ofλ−∨
∆ different fromρ∧. If M →R N in λ−∨

∆ , then M† →+ N† in S.

2. If M →ρ∧ N in λ−∨
∆ then M† →ρ⊥

⊃
N′ in S, for some N′ such that N† →ρ4 N′.

Proof. By induction onM →R N. �

Why do we temporarily need reduction ruleρ⊥
⊃ in the target of(·)†? Not only because the rule

exists in the source calculusλ−∨
∆ , but also because it is needed to mapρ∧ andρ⊥

∧ , in the same way as it
happened before with(·)� and rulesρ∨ andρ⊥

∨ (recall items 2 and 4 of Theorem 2).
Before, we have used Lemma 2 to obtain Theorem 3 from Theorem 2. Exactly in the same way, we

use Lemma 2 to obtain from Theorem 4 the following: ifs is a reduction sequence fromM in λ−∨
∆ , then

there is a reduction sequences′ in λ−∨∧
∆ +ρ⊥

⊃ from M† with length|s′| ≥ |s|−m, wherem is the number
of ρ2-reduction steps ins. Now, ρ⊥

⊃ becomes a derived rule, if we accept (temporarily) ruleρ3 (recall
(1)). Hence, we can rephrase the result just obtained:

Theorem 5(Translation of reduction sequences). Let S:= λ−∨∧
∆ +ρ3. If s is a reduction sequence from

M in λ−∨
∆ , then there is a reduction sequence s′ in S from M† with length|s′| ≥ |s|−m, where m is the

number ofρ2-reduction steps in s.

Rule ρ3 makes a timely appearance, now that the commutation argument of Lemma 2 is no longer
needed. If the rule were present from the beginning, the commutation ofρ3 andρ4 would fail, and the
on-going strategy would be wrong.
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Corollary 2 (Lifting of strong normalization). If λ−∨∧
∆ +ρ3 enjoys strong normalization, so doesλ−∨

∆ .
Proof. From the previous theorem, termination ofρ2-reduction, and preservation of typability by(·)† . �

Since strong normalization ofλ−∨∧
∆ (Theorem 1) does not comprehendρ3, the last task is to get rid

of this rule. This is done by postponement.
Lemma 3 (Postponement). In λ−∨∧

∆ +ρ3, let κ be the rule kN→ N at type⊥.
1. If M →ρ3 P→R Q, then there is P′ such that M→R′ P′ →∗

ρ3
Q, where R′ = R, except in the case

R= β⊃, of the particular form IN→ N at type⊥, for which R′ may be R orκ .

2. If M →κ P→R Q, then there is P′ such that M→R P′ →∗
κ Q

Proof. The exception mentioned in item 1 occurs whenM = ∆k¬⊥.M′ andP= [I/k]M′, with Q resulting
from the reduction of someIN created by substitution[I/k] . Let M′′ be the result of applying inM′, to
the relevant occurrence ofk, the rulekN→ N. PutP′ = ∆k.M′′. �

Corollary 3 (Lifting of strong normalization). If λ−∨∧
∆ enjoys strong normalization, so doesλ−∨∧

∆ +ρ3.
Proof. Suppose there is an infinite reduction sequence fromM in λ−∨∧

∆ +ρ3. We prove that, for anyn,
there is inλ−∨∧

∆ a reduction sequences′ from M of lengthn. Let n be given. Letι be the ruleIN → N at
type⊥. There is an initial segmentsof the infinite reduction sequence fromM such that|s|−m− i ≥ n,
wherem is the number ofρ3-reduction steps ins and i is the number ofι-reduction steps ins. That
suchsexists follows from termination of(ρ3∪ ι)-reduction. By applying postponement ofρ3 (item 1 of
Lemma 3) tos, one obtains a reduction sequences′ from M, without ρ3-steps, of length|s|−m, where
someι-steps are converted intoκ-steps. The number of steps ins′ which are notκ-steps is a number
n′ ≥ |s|−m− i. By postponement ofκ (item 2 of Lemma 3) applied tos, we get a reduction sequences′′

from M, withoutκ-steps, of lengthn′. This is a reduction inλ−∨∧
∆ with length≥ n. �

Theorem 6. The disjunction-free systemλ−∨
∆ enjoys strong normalization.

Proof. From Corollaries 2 and 3 and Theorem 1.�

Theorem 7. The full systemλ∆ enjoys strong normalization.
Proof. From Corollary 1 and Theorem 6.�
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