
  

CHEMICAL, PHYSICAL AND MORPHOLOGICAL 

CHANGES IN WEATHERED COAL FLY ASH: A CASE 

STUDY OF BRINE IMPACTED WET ASH DUMP 

 

 

By 

 

 

Chuks Paul Eze 

 

 

Department of Chemistry, University of the Western Cape 

 

Supervisor 

Prof. L. F. Petrik 

 

Co-Supervisors 

Dr R. O. Akinyeye and Dr W. M.Gitari 

 

A thesis submitted in fulfilment of the requirements of the degree of Master of 

Science in Chemistry in the Department of Chemistry 

Faculty of Science 

University of the Western Cape 

 

November 2011 

 

 

 

 

 

 



Abstract 
 

ii 

 

Abstract 

Fly ash is the major waste material produced by power plants in the combustion of 

coal to generate electricity. The main constituents of fly ash are Si, Al, Fe and Ca with 

smaller amount of S, Mn, Na, K, and traces of many other elements such as Co, Cd, 

As, Se, Zn, Mo, Pb, B, Cu and Ni. Fly ash is usually disposed either by dry or wet 

disposal methods. These disposal methods have raised major environmental concerns 

due to the potential leaching of chemical species from the ash heap by ingress of 

rainfall and brine used to transport the fly ash to the dam. This study focuses on the 

changes in chemical composition, morphology and mineral phases due to weathering, 

of coal fly ash co-disposed with brine over 20 years at Sasol Secunda ash dump in 

Mpumalanga Province, South Africa. The design and operation of the Secunda ash 

dump presupposes that the ash dump may act as a sink for the salts which originated 

from chemicals used for normal operation in the plants. The majority of these salts 

come from the brines generated during desalination and raw water regeneration. The 

aim of this study is to ascertain if the ash dump could serve as a sustainable salt sink.  

 

Samples were drawn along the depth of two drilled cores (S1 and S3) from the 

weathered Secunda ash dump and analysed in conjunction with the fresh (un-

weathered) Secunda fly ash taken from the fly ash hoppers for comparative analysis. 

Scanning electron microscopy (SEM), X-ray diffractive (XRD) and X-ray 

fluorescence (XRF) spectrometry were employed to obtain a detailed morphological, 

mineralogical and bulk chemical composition of all the samples. Pore water analysis 

was used to determine the pH, EC and moisture content of fly ash samples. A five 

step sequential chemical extraction procedure was used to establish the geochemical 

association of particular elements with various mineral phases. The total acid 

digestion test was also used to determine the total elemental compositions of the 

Secunda fly ash samples. 

 

The SEM results showed that the fly ashes consist of irregular and numerous 

spherically shaped particles. Changes (encrustations, etchings and corrosion) in the 

morphologies of the weathered ash particles were also observed. The XRD results 

revealed quartz, mullite, lime and calcite as the major mineral phases. Other minerals 

identified in very minor quantities in the drilled Secunda ash core that were dried 
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prior to analysis were halite, kaolinite, nitratine, bassanite, microline. and hydrophitte. 

These phases may have formed during sample handling. XRF investigation revealed 

that the major oxides present in the dumped ash samples were SiO2, Al2O3, CaO, 

Fe2O3, MgO, Na2O, TiO2 and the minor elements present were K2O, P2O5, SO3 and 

MnO. The sum of the mean values of the % composition of SiO2, Al2O3, and Fe2O3 

was 70.19 %, and 72.94 % for the two drilled ash core samples (S1 and S3) 

respectively, and 78.67 % for the fresh ash which shows the significant alteration of 

the Si, Al and Fe content in the ash matrix over time. The fly ash is classified as Class 

F using the ASTM C 618 standards. The loss on ignition (LOI) which is an indication 

of unburned carbon or organic content was 4.78 %, 13.45 % and 8.32 % for the fresh 

ash, drilled ash cores S1 and S3 respectively. The high LOI values for the drilled ash 

cores could indicate high hydrocarbon content in the ash dump because of co-disposal 

practises where hydrocarbon waste are included in the brine stream for disposal on the 

ash. While the ash samples from the surface appeared dry, moisture content (MC) 

analysis showed that there is considerable water entrained in the fly ash dump. The 

fresh ash MC was 1.8 % while core S1 ranged from 41.4 – 73.2 %; core S3 ranged 

from 21.7 – 76.4 %. The variations in the MC values can be attributed to uneven flow 

paths due to inconsistent placement conditions or variations in ambient weather 

conditions during placement. The fresh fly ash (n=3) had a pH of 12.38±0.15, EC 

value of 4.98±0.03 mS/cm and TDS value of 2.68±0.03 g/L, the pH of the drilled ash 

core S1 (n=35) was 10.04 ±0.50, the EC value was 1.08±0.14 mS/cm and the TDS 

value was 0.64 ±0.08 g/L. Core S3 (n=66) had pH of 11.04±0.09; EC was 0.99 ±0.03 

and TDS was 0.57 ± 0.01. The changes in pH values can be attributed to the 

dissolution and flushing out from the dump basic alkaline oxides like CaO and MgO 

These variations in pH values shows that the fly ash is acidifying over time and metal 

mobility can be expected under these conditions. The large decrease of EC in the 

drilled ash cores S1 and S3 compared to the fresh ash indicated a major loss of ionic 

species over time in the ash dump. 

 

The sequential extraction scheme revealed that the elements Al, Si, Ca, Mg, Ba, Sr, 

Fe, Mn, Na, K, As, Pb, Cr, Mo, Cu, Ni and Zn are present in Secunda fresh and 

weathered fly ash and are partitioned between the water soluble, exchangeable, 

carbonate, iron and manganese, and residual fractions of the coal fly ash. It also 

 

 

 

 



Abstract 
 

iv 

 

showed that the trace elements As, Pb, Cr, Mo, Cu, Ni and Zn do not show permanent 

association with particular mineral phases as a continuous partitioning between 

different mineral phases was observed in the weathered drilled core. Generally, all the 

elements had the highest concentration in the residual fraction. But it was evident that 

the labile phase (water soluble, exchangeable and carbonate fractions) had fairly high 

concentrations of Si (± 6.5 %), Al (± 6.5 %), Ca (±10 %), Mg (± 5.5 %), Ba (± 7.5 %), 

Sr (± 7.5 %), Na (± 12 %) and K (± 12 %) for the Secunda drilled ash core (S1 and 

S3) and fresh fly ash samples. This indicates that these species can leach easily upon 

water ingress and could pose a danger to the environment. Na and K had the highest 

concentrations leached out in the labile phase in all the ash samples. The amount of 

Na leached out of the drilled Secunda ash core in the labile phase was 13.21 % of 

18584.26 mg/kg in the five geochemical phases of core S1; and 9.59 % of 11600.17 

mg/kg in the five geochemical phases of core S3 while the fresh Secunda fly ash 

leached out 11.28 % of 16306.30 mg/kg of Na in the five geochemical phases.  

 

This study provided significant insight into the pore water chemistry, morphology, 

mineralogy and chemical composition and the elemental distribution pattern of the 

major and trace elements in the Secunda fly ash and weathered drilled Secunda ash 

core S1 and S3. Though results from XRF analysis and the sequential extraction 

scheme shows that Na, K, S, Ca and Mg were slightly captured from the co-disposed 

brine by the Secunda fly ash, these species were however released in the labile phase. 

Hence there was no significant retention of these species in the ash dump. The amount 

of these species retained in the weathered ash were (0.26 % and 0.55 %) for Na, (0.02 

% and 0.34 %) for K, (0.08 % and 0.06 %) for S, (0.94 % and 0.01 %) for Ca and 

(0.37 % and 0.96 %) for Mg in drilled ash cores S1 and S3 respectively. This poor 

retention of Na K, S, Ca and Mg which are major components of Sasol Secunda brine 

in the drilled ash cores S1 and S3 clearly shows the unsustainability of the Secunda 

fly ash dump as a salt sink. 
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  Chapter One 

 

Introduction 

1 Introduction 

 

The chapter introduces coal fly ash; its genesis, composition and properties are briefly 

overviewed in sections 1.1 and 1.2. Details of the area of study, research aims and 

objectives, research questions and approach are also presented in this chapter 

(sections 1.3 to 1.7). The scope and delimitations of this study is also presented in 

section 1.8. The chapter ends with a preview of the subsequent chapters in this thesis 

in section 1.9. 

 

1.1 Coal fly ash 

 

South Africa has an abundant coal reserve which is utilized in generating electricity 

and chemical production. South African Coal, Oil and Gas Corporation (Sasol), which 

is one of Africa‟s major producers of chemicals and liquid fuels, and the Electricity 

Supply Commission (Eskom), South African major power utility company, are 

amongst the biggest consumers of coal in South Africa (Bada and Potgieter-Vermaak, 

2008). The Sasol-Syngas plants are located in Secunda in Mpumalanga province and 

Sasolburg in the Free State province. The Eskom coal fired power plants are located 

in the surrounding area of the coalfields in the northern part of the country (Gauteng, 

Mpumalanga, Limpopo and Free State). The major residue from this combustion 

plants is fly ash. Millions of tons of fly ash are produced each year from the 

combustion of coal to produce steam for the syngas processes in the Sasol plants and 

to generate electricity in the Eskom power plants. The management of this 

combustion waste is of major concern because of the huge amount that is produced 

annually and the environmental issues arising from its disposal. 

 

Coal fly ash is a particulate waste product that results during the combustion of 

pulverised coal to generate electricity. This particulate matter which travels with the 

flue gas must be removed prior to releasing it up the stack and into the atmosphere to 

avoid pollution. The particulate (fly ash) that is removed from the flue gas either by 
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electrostatic precipitators or bag filters is collected in hoppers. This major waste 

material (fly ash) produced from the combustion of coal has been defined as a 

"complex inorganic-organic mixture with distinctive poly-components, mixed and of 

variable composition containing closely linked and finely scattered solid, liquid, and 

gaseous components" (Vassilev and Vasssileva, 2007).  

 

Fly ash is mainly disposed through either dry or wet disposal methods. In dry 

disposal, the fly ash is conditioned with brine and then transported by truck, chute or 

conveyor at the site and disposed by constructing a dry embankment; the ash heap is 

then irrigated with waste water for dust suppression. In wet disposal, the fly ash is 

transported as slurry through pipes and disposed of in impoundments that are called 

ash ponds or dams. The discharge water from the pond is collected and discharged 

into a river or a drain (Sushil et al., 2006). Various environmental risks are associated 

with fly ash disposal; these include air pollution and loss of arable land. Also soil and 

ground water contamination resulting from the leaching and mobilization of toxic 

elements and other non-degradable metals and chemical species from the ash dump. 

The leaching is due to the chemical interaction of the fly ash with air and percolating 

rain water or the water from the ash slurry or that is used for dust suppression 

(Vadapalli et al., 2010; Potgieter-Vermaak et al., 2005). 

 

1.2 Properties and chemical composition of coal fly ash 

 

The properties of fly ash depend on the physical and chemical properties of the coal 

origin, the coal particle size, the combustion process, and the type of ash collector 

used (Adriano et al., 1980). The minerals present in the coal dictates the elemental 

composition of the resultant fly ash. The mineralogy and crystallinity of the ash is also 

dictated by the boiler design and operation (Jankowski et al., 2006; Vassilev and 

Vasssileva, 2007; Sočo and Kalembkiewicz, 2009). 

 

Although the chemical composition of fly ash from various sources varies, it still 

consists of the same basic chemical constituents but in different concentrations. The 

main constituents of fly ash are silica, aluminium, iron and calcium with smaller 

amount of sulphur, magnesium, alkalis, and traces of many other elements such as Co, 
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Cd, As, Se, Zn, Mo, Pb, B, Cu and Ni (Cho et al., 2005). Several studies on the 

mineral phases of fly ash show that it consists mainly of aluminosilicate glass matrix 

in addition to crystalline mullite and quartz as the major mineral phases (Mattigod et 

al., 1990). Elements such as As, Na, Mg, K, Sr, B, Mo may occur as part of the 

crystalline phases within the aluminosilicate glass, or as coatings deposited on the 

surfaces of the individual particles by condensation of elements liberated from the 

coal into the furnace gases during combustion. The majority of the elements in fly ash 

are considered to occur in both inorganic and organic form, and each element has 

prevailing resemblance and link to some minerals and phases in coal. Thus an in depth 

understanding of their phase-mineralogical and chemical composition is required to 

fully understand the different characteristics associated with fly ash utilization and 

disposal (Fatoba, 2008; Gitari et al., 2008; Ward et al., 2009; Vassilev and Vassileva, 

2006).  

 

The weathering of coal fly ash results in the leaching and mobilisation of chemical 

species in the fly ash (Mattigod et al., 1990). The investigation of the mobility of 

potential pollutants (chemical species) due to ash leaching has been the focus of 

several studies in order to understand the factors that determine the mobility of 

chemical species from coal fly ash to the environment. The pattern of mobility of the 

species is important in evaluating the potential impacts of fly ash weathering on the 

environment. The potentially toxic chemical species leached from fly ash can 

contaminate soil, ground and surface water (Praharaj et al., 2002). Thus the study of 

ash leaching is significant in understanding the environmental impacts linked to the 

ash disposal methods and long term ash weathering patterns. The leaching behaviour 

of major and trace elements in fly ash varies with the properties of the ash such as pH 

of its leachate, its composition, the mineral phase association, the methods employed 

in studying the leaching process, and the distribution and form of the trace elements in 

the coal combustion by-products (Bhattacharyya et al., 2007). 

 

1.3 Study Area 

 

The Sasol complex in Secunda, South Africa operated by Sasol Synfuels (Pty) Ltd is 

the world‟s largest commercial coal to liquids (CTL) facility and it utilizes low rank 
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bituminous coal in its gasification and combustion process to produce synthesis gas 

and steam respectively. Sasol utilizes approximately 28 million tons of coal annually 

(70% of the coarse coal feedstock) for its gasification process at Sasol Synfuels in 

Secunda. The remaining (a finer coal fraction- 30%) is used in steam and electric 

power production. A mixture of coarse and fine ash particles is formed as a by-

product of the gasification process and fly ash is the by-product of the combustion 

process (Matjie et al., 2005, Hlatshwayo et al., 2009). The Secunda ash dump core 

samples taken from the wet disposal ash dump which were used in this study are made 

up of 87% fly ash from the combustion of pulverized coal to produce steam and 

electric power and 13% fine ash from the gasification process (Pretorius, pers comm, 

2010). The particle size of the fine ash being dumped ranges between 20 ≤ 50 µm. 

The ash was pumped to the ash dam as slurry of 5:1 water/ash ratio using the highly 

saline stream that was generated from the water treatment processes in the Secunda 

plant. The dump site was created in 1989 and dumping stopped in 2009. The oldest 

layer at the bottom of the Secunda dump is 21 years old as at the time of study (2010) 

and the most recent at the top being 1 year old. 
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Figure 1.3.1: Map of the study area (Secunda) in Mpumalanga province, South Africa. 

(http://www.bookinafrica. Com/travel-to-Secunda/) 

 

Sasol Secunda was selected for this study because the plant employs the wet method 

for its ash disposal; the ash is transported in slurry form using high saline stream 

originating from the water treatment processes in the plant to pump the ash to the 

dump (Nyamhingura, 2009). Thus the saline effluent is co-disposed with the ash. The 

design and operation of this dam presupposes that the ash dump may act as a sink for 

the salts which originated from chemicals used for normal operation in the plants, 

with the majority of these salts coming from the brines generated during desalination 

and raw water regeneration. 

 

This study analysed the chemical composition, morphological changes and the 

mineral phases of the weathered Secunda fly ash with a view to understand the 

changes in the chemical, physical and morphological properties of the ash dump that 

evolved from the weathering process over the years. 
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1.4 Problem statement 

 

In South Africa millions of tons of fly ash are generated annually by coal-fired power 

plants in order to meet the large demand for industrial and domestic energy. In spite 

of the numerous environmental problems related with coal combustion, it will 

continue to be a major source of electrical power generation for many years to come. 

An estimated 36.7 million tons (www.eskom.co.za) of fly ash was produced in 2010 

due to coal combustion in South Africa of which only about 1.8 million tons is 

utilized beneficially annually. The rest is disposed in ash dams or dry disposal sites 

which have led to various environmental issues owing to the leaching of toxic metals, 

and other chemical species from the ash dump by rainfall or groundwater (Gitari et 

al., 2008). The management of this combustion waste is of major concern and requires 

the proper understanding of the weathering characteristics of fly ash, because the huge 

amount that is disposed as waste cannot be separated from nature‟s weathering cycle. 

The weathering of fly ash results in changes in the physical, chemical and 

mineralogical properties of the ash. Some of these changes include the formation of 

secondary minerals (Yeheyis et al., 2009), decrease in the pH and EC values of the 

pore water (Ward et al., 2009, Baba et al., 2008, Gitari et al., 2009, Ugurlu, 2004) and 

reduction of soluble salt content (Brower, 1985) which may have significant effect on 

the leaching and mobilization of the fly ash species (Zevenbergen et al., 1999, 

Yeheyis et al., 2009). The changes in the chemical, physical, morphological properties 

and phase transformation studies are thus vital in predicting the environmental impact 

associated with fly ash disposal techniques and uses. 

 

In the management of this combustion by-product the focus should not only be on the 

prevention of environmental pollution, but also on methods that can be used to 

produce or manufacture value-added products from stored fly ash. In order to achieve 

these objectives, an understanding of the quality and homogeneity of the ash would be 

required so as to achieve optimum utilization and effective disposal methods of fly 

ash. The chemical, physical, morphological properties mineral phase transformations 

of fly ash are the fundamental property that must be thoroughly investigated, because 

the accessibility and mobility of elements occurring in fly ashes depend on the 

physicochemical and mineralogical forms of the elements. Moreover the dangers 
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linked to the disposal of coal fly ash in the natural environmental setting, with regards 

to the mobility and leachability of environmentally harmful species is mainly 

determined by the physicochemical conditions of the fly ash dump; the sum of 

leachable metal content in fly ash; and the distribution or mineralogical fractionation 

of metals (Jegadeesan et al., 2008).  

 

The chemical compositions, leaching behaviour, utilization, and mineralogy analysis 

of South African fly ash have been the focus of numerous recent studies, (Fatoba, 

2008, Gitari et al., 2008; Somerset et al., 2005; and Matjie et al., 2006). Most of these 

studies have been based on fresh ash samples without any relevant attention to the 

changes in the mineralogy and mobility of the major and trace species in the brine 

impacted fly ash that is stored in wet ash dumps over the long term. This study will 

focus on Sasol Secunda fly ash that was co-disposed with brine in order to ascertain 

whether the ash dump could serve as a sustainable salt sink. The purpose of co-

disposing this ash with brine was originally aimed at using the ash as a sustainable salt 

sinking media. Parallel studies on Secunda‟s coal fresh ash will also be carried out for 

comparative purposes. The comparative analysis of the samples of fresh ash with that 

from the weathered drilled Secunda ash cores was to enable determination of the 

extent of the changes in the chemical, physical properties and mineral phase arising 

over time from weathering of the fly ash sample that was co-disposed with brine. 

 

1.5 Aims and objectives of the study 

 

The aims of this study are:- 

  

1) To determine the effects of wet ash handling and of weathering on the 

chemical composition, morphological properties and mineralogical 

composition of coal fly ash  

 

2) To determine the physiochemical forms in which species exists in the fresh 

and weathered coal fly ash  
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3) To evaluate the changes in these properties of the coal fly ash that was co-

disposed with brine after some years of weathering.  

 

 Hence the specific objectives of this research are:-  

 

 To characterize the fly ash samples (freshly sampled and samples from drilled 

ash cores S1 and S3) in order to determine the differences in chemical and 

mineralogical compositions between fresh fly ash and weathered brine 

impacted ash. 

 

 To determine the physiochemical form and mineralogical phase association in 

which the mobile and stable components exist in the fresh fly ash and drilled 

core samples.  

 

 To evaluate the amounts and mobility patterns of major and trace elements in 

the weathered ash core samples compared to fresh ash in order to understand 

the relative distributive weathering patterns of the various elements as a 

function of the depth profile of the cored ash dump. 

 

 To analyse the changes in mineralogy of the weathered ash core samples 

compared to fresh ash in order to determine if the wet ash dump is actually a 

sustainable salt sink. 

 

 To recommend appropriate good operational practices for the proper 

management of the wet ash handling and dumping systems. 

 

1.6 Research Questions 

 

This study intends to provide answer to the following questions; 

 

 What are the major influences causing weathering and changes in the chemical 

composition of coal fly ash co-disposed with brine? 
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 What are the geochemical factors that control the mobilization of the 

constituents of the weathered fly ash? 

 

 Can secondary mineral phases be formed in the weathered ash, are the 

amounts significant and are such secondary mineral phases stable? 

 

 In what physiochemical forms or mineralogical association do the components 

of the ash exist? 

 

 Can the wet disposed fly ash dump act as a sustainable salt sink to capture an 

excess salt load? 

 

1.7 Research Approach 

 

Several experiments involving morphological, spectroscopic and chemical 

characterizations and selective sequential extraction were carried out on the fresh 

Secunda fly ash and drilled ash core (S1 and S3) samples in order to achieve the 

objectives of this research. The research was approached by using the following 

specific techniques: 

 

 Pore water analysis was used to determine the pH, EC and moisture content 

values in pore water along the depth of the two drilled Secunda ash cores S1 

and S3 which had been chosen for investigation and results were compared 

with the fresh ash sample in order to determine the relative effect pH may 

have on readily soluble species. 

 

 X-ray fluorescence (XRF) analysis was used to determine the elemental 

composition of the fresh Secunda fly ash and drilled ash core samples, to 

determine distributive patterns of weathering processes upon elemental 

composition. 

 

 X-ray diffraction (XRD) analysis was used for the study of mineralogical 

phases and mineral composition of the fresh Secunda fly ash and drilled ash 
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core samples, in order to determine the presence and abundance of any 

secondary mineral phases that may form due to mineralogical transformation 

over time. 

 

 Scanning electron microscopy combined with energy dispersive X-ray 

spectrometry (SEM-EDX) was used to present detailed imaging information 

about the morphology and surface texture of individual particles, as well as 

qualitative elemental composition of samples. In order to characterize the 

morphological features in the fresh Secunda fly ash and drilled ash core 

samples. 

 

 A five step sequential chemical extraction procedure modified from the 

proposed method of Tessier et al., (1979) was used in this study to establish 

the geochemical association of particular elements with various mineral 

phases.  

 

 Total acid digestion test was used to determine the total elemental 

compositions of the fresh Secunda fly ash and drilled ash core samples S1 and 

S3, in order to draw comparisons and detect weathering patterns in the drilled 

core samples. 

 

 The inductively coupled plasma - optical emission spectrometer (ICP-OES) 

was used in determining the concentrations of the major elements and trace 

elements in the leachates from the sequential extraction analysis and total acid 

digestion test. 

 

1.8 Scope and delimitation 

 

Extensive studies were done on the chemical composition and leaching behaviour of 

Sasol Secunda fresh fly ash (Fatoba, 2007), and weathered fly ash in a dry ash 

dumping system (Gitari et al., 2009). But, the effect of weathering of coal fly ash co-

disposed with brine at the Sasol Secunda ash dam had not been studied. The 

characterization of the weathered fly ash co-disposed with brine in comparison with 
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fresh fly ash was therefore investigated and sequential extraction experiments were 

conducted on the weathered ash core samples to understand and quantify the 

partitioning and mobility of elements in different mineral phases and determine the 

movement of metal species down the ash dump that had been placed using a wet ash 

handling system. The brine that was disposed at Sasol Secunda power station contains 

hydrocarbons. These organics have the potential to inhibit mineralization in the fly 

ash/brine dump. However, this study did not cover the effects of organics because of 

the large scope of the study.  

 

1.9 Outline of the subsequent chapters 

 

Besides this introductory chapter this thesis also consists of the following chapters: 

 

Chapter 2: Literature review 

 

Chapter two contains the review of different literature focusing on the composition, 

mineralogy, and uses of coal; a review of the chemical and physical properties of coal 

fly ash; types of fly ash, ash/water interaction chemistry and ash disposal techniques. 

The environmental impacts and utilization of fly ash are also overviewed. 

 

Chapter 3: Sampling, experimental and analytical Methods 

 

The outline of sampling, experimental and analytical methods used in this study to 

address the research objectives are presented in chapter 3. A detailed outline of the 

geophysics of the sampling site and how the Secunda fly ash samples were collected, 

stored and analysed are presented in this chapter.    

 

Chapter 4: Characterization and pore water analysis 

 

Chapter 4 presents and discusses the results obtained by applying the methods 

specified in chapter 3. In this chapter the results are presented of SEM/EDX, XRF and 

XRD characterization of the fresh fly ash and drilled cores samples; the results of the 
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pore-water chemistry are presented, discussed and compared to that reported in 

literature and significant findings are highlighted. 

 

Chapter 5: Mobility and partitioning patterns of elements 

 

In this chapter the results obtained from the sequential extraction procedures are 

presented and discussed with a view to understanding and quantifying the liabilty and 

mobility patterns of the chemical species in the Secunda ash dam and geochemical 

association of particular elements is highlighted as a function of the weathering 

process. 

 

Chapter 6: Conclusion 

 

The conclusions reached from the investigation of the effects of co-disposing brine 

with fly ash are presented. The effect of weathering on the mobility of species in the 

fly ash dam is used to inform potential operational guidelines that may be needful in 

the future management of the ash dam and recommendations are made for future 

work. 
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Chapter Two 

 

Literature Review 

2 Introduction 

 

The proper understanding of the chemical composition and structure of minerals in 

coal is necessary in order to comprehend the mineral transformation or agglomerate 

formation during its combustion or long term storage of ash after combustion (Van 

Dyk et al., 2009). Hence this chapter will first present a literature update on coal in 

section 2.1 before delving into the main study on coal fly ash in section 2.2 to 2.12. A 

brief overview of brine, its composition, and disposal is presented in section 2.13. The 

chapter ends with a summary of the major findings from the review of the literature. 

 

2.1 Coal 

 

Coal can be defined as a brown or black carbonaceous sedimentary rock (Snyman, 

1989) that is derived mainly from plant remains that had undergone peatification and 

coalification (Teichmüller, 1989). It occurs naturally in seams or veins in sedimentary 

rocks and the seams thickness vary in different formations (Stranges, 2008). 

 

Coal developed from the gathering and transformation of plant material that 

originated in swamps or other wet environments which decomposed to form layers of 

peat that were buried under layers of sediments over long periods of time. Under this 

increased pressure and ensuing higher temperatures the peat was transformed into coal 

(Daintith, 2004). The presence of certain plant components in coal and the presence of 

organic compounds that have similar structures to compounds that exist in plants 

attest that coal is formed from plants (Schobert, 1989). 

 

Coal is an intricate combination of materials, and the combination can vary 

significantly from one formation or deposit to another. These differences result from 

the different types of vegetation from which the coal originated; the depths of burial, 

the temperatures and pressures at those depths; as well as the length of time the coal 

has been forming in the deposit (Carlsen et al., 1995). The characteristics of the 
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precursor plant, the quantity of inorganic materials and the type, extent of the 

biochemical and geological processes that accounts for coal formation predetermines 

the chemical and physical characteristics of coal (Vassilev and Vassileva, 1997; 

Popovic et al., 2001). 

 

Coal is one of the world's major important and rich energy sources. From its 

introduction as a fuel for heating and cooking, to its use in generating electricity and 

as a chemical feedstock, coal, along with crude oil and natural gas, has remained an 

important source of energy (http://www.chemistryexplained.com/Ce-Co/Coal.html). 

According to the Eskom report, the South African coal reserve is approximately 53 

billion tons, and coal mining produces an average of 224 million tons of commercial 

coal yearly which accounts for South Africa being classified as the fifth largest coal 

producing country in the world (www.eskom.co.za). 25 % of this is sold 

internationally, while 53 % is used to generate electricity in South Africa, with the 

remainder supplied to various local industries. That Eskom is the 7th largest 

electricity generator in the world and Sasol has the world largest and only commercial 

coal to liquid fuel plant in Secunda South Africa (Mangena, 2009), portrays the 

important role that the coal reserve plays in the South African economy 

(www.eskom.co.za/live/content,php?category_id=121). 

 

2.1.1 Coal Classification 

 

Coal is usually classified according to type, rank and grade, Due to the extensive 

difference in the properties of coal, this system of classification is required to 

differentiate between coals that have similar properties. The difference in type, grade 

and rank are linked to the three stages of coal formation which results from the 

difference in the chemical composition of the coal precursor plant, and differences in 

diagenetic changes and level of metamorphism (Snyman, 1989). The varying amount 

of minerals in a coal deposit may also have a significant effect on its properties and 

classification as well as on the resultant ash after combustion. 

 

The coal type is determined by the nature of the original plant material and its level of 

alteration during the diagenetic stage of coal formation. There are two recognized coal 
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types, woody and sapropelic coal. Woody coals are formed from plants remains; and 

sapropelic coals are derived from algae, spores and finely divided plant materials 

(Daintith, 2004). 

 

Coal rank shows the extent of coalification that has occurred for a particular coal. 

Coal rank is one of the major factors that determine the utilization characteristics of a 

given coal (Bend, 1992). The common ranks of coal are anthracite, bituminous, sub-

bituminous, and lignite. Anthracite is low in volatile matter and mostly consists of 

carbon; bituminous coal contains significant amounts of volatile matter and typically 

exhibit swelling or caking properties when heated. Sub-bituminous is a younger coal 

and contains in addition to the volatile matter, significant amounts of moisture; and 

lignite is the youngest form of coal and is very high in moisture content resulting in a 

much lower heating value than the other types of coal. Since there is a continuous 

increase in carbon content with increasing maturation, and since greater degrees of 

maturation usually require longer times, the rank of a coal provides a qualitative 

indication of its age and carbon content (Schobert, 1989). 

 

Coal grade is defined by the various impurities contained within the deposit, chemical 

composition, ash content, geological origin and age. These impurities include 

sediment and other non-organic matter (Boggs, 1995; Petrik et al., 2005). The mineral 

ash content, which is the amount of inorganic material that remains as residue after 

combustion of the coal is used to determine the grade; the higher the amount of 

inorganic residue, the lower the grade of the coal (Sellakumar and Conn, 1999). 

 

South African coals are usually low grade with about 30 – 35% ash (Snyman and 

Botha, 1993). As a result of its fairly high clay mineral and quartz content (that results 

in high fusion temperatures), which is beneficial if the coal is to be used for steam-

raising purposes, Sasol and Eskom, South Africa‟s major coal consumers, are able to 

utilize these coals to produce steam for use in the production of liquid fuel and 

electricity generation respectively (Snyman and Botha, 1993). 
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2.1.2 Coal Composition and mineralogy 

 

The rock called coal which originates from geological processes is composed of 

carbon, hydrogen, oxygen, silicon, aluminium, nitrogen, sulphur and iron as the major 

elements being greater than 1wt % respectively. The minor (1-0.1wt %) elements are 

calcium, potassium, magnesium, titanium, sodium, and occasionally phosphorus, 

manganese, barium, and strontium. The other recognised (<0.1wt %) elements in coal 

such as Hg, Zr, Zn, Cd, As, Pb, Mn, and Mo are mainly in trace concentrations 

(Vassilev and Vassileva, 1997; Ruch et al., 1998). Coal is an intricate heterogeneous 

mixture of organic matter, with a smaller amount of inorganic matter and fluids which 

occur in pores within and between the solid phases of the organic and inorganic 

matter. The elements found in coal may be present in both the organic and inorganic 

constituent and influences the rank of the coal (van Alphen, 2007); the volatile 

components in coal prior to mining are mainly moisture and methane.  

 

The organic matter comprises mostly of non-crystalline constituents such as 

petrographic ingredients (lithotypes, microlithotype groups, and macerals), the 

lithotypes consist of clarain and vitrain while the microlithotypes are mostly clarite 

and vitrite (Vassilev et al., 1994). A wide range of macerals occur, but three main 

groups of macerals can be distinguished: the vitrinite group, the liptinite (or exinite) 

group, and the inertinite group, based on their general chemical, physical, optical, and 

technological properties (Falcon and Ham, 1988). The organic components are crucial 

in the coal classification (e.g. rank and type), and to its assessment in different 

beneficiations processes because all of the benefits derived from coal are derived 

essentially from the maceral constituents (Ward, 2002). 

 

The inorganic matter in coal comprises different solid, liquid and gaseous phases of 

allothigenic (formed elsewhere than in the rock where it is found) or authigenic 

(formed or generated in the rock where it is found) origin. The inorganic matter can 

be described as having three categories of fundamentally different constituents, i.e. 

dissolved salts and other inorganic substances in the coal‟s pore water; inorganic 

elements integrated within the organic compounds of the coal macerals; and distinct 

inorganic particles representing exact mineral components (Ward, 2002). The mineral 
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matter which forms part of the inorganic matter in coal and consists of different 

mineral species that are generally crystalline belong to the last category (Vassileva 

and Tascón, 2003). A vast variety of minerals are present in coals, with most of them 

occurring only sporadically or in trace amounts. 

 

Studies of various coal literature reveals that the common inorganic minerals found in 

coal are quartz, aluminosilicate and clay minerals, carbonates minerals, disulphide and 

sulphate minerals, and feldspars (Ward, 2002; White and Case, 1990; Vassilev and 

Vassileva, 1996). Quartz (SiO2) has been reported as abundant in all coals. The 

generally reported clay minerals in coal are illite [(OH)4K2(Si6•Al2)Al4O20], kaolinite 

[(OH)8Si4Al4O10], and interstratified illite/smectite. These minerals are the most 

commonly occurring constituent of coal and of the strata associated with the coal 

(Schweinfurth, S., 2002). Disulphide minerals are mainly pyrites (cubic FeS2) and 

marcarsites (orthorhombic FeS2), although sphalerite (ZnS) and galena (PbS) are 

found in significant quantities (Renton, 1986). The sulphate minerals are usually 

gypsum (CaSO4.2H2O), bassanite (CaSO4.) and anhydrite (Renton, 1986). The most 

frequently reported carbonate minerals from the majority of the coals in the world are 

calcite (CaCO3), dolomite (CaCO3•MgCO3), ankerite (2CaCO3•MgCO3•FeCO3) and 

siderite (FeCO3). The occurrence, abundance and source of mineral matter which 

forms part of the inorganic matter in coal (Vassileva and Tascón, 2003), depend on 

the coal rank to a certain level. 

 

There are several elements known to be of high toxicity in coal, most of them present 

in trace amounts (>0.1wt %). The increasing interest in the mode of occurrence and 

distribution of these trace elements in coal arises from environmental concerns in coal 

beneficiations processes and waste products (Gluskoter, 1975). During the coal 

combustion process, trace elements are partitioned between ash and vapour, this 

partitioning depends on the operating conditions, furnace design and the mode of 

occurrence of the trace elements (Martinez-Tarazona and Spears, 1996). Studies on 

occurrence and distribution of trace elements in coal showed that their affinities, 

which differ from one deposit to another have a significant impact on the behaviour of 

these elements during combustion (Querol et al., 1995). 
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2.1.3 Coal Combustion Process 

 

Coal combustion in power plants provides approximately 42 % of the world‟s 

electricity (IEA, 2010) with China, United States of America (USA), India and Russia 

leading in the consumption of coal (www.nationmaster.com). Coal accounts for 79 % 

of total primary energy consumption in China. USA on the other hand generates 49 % 

from coal, while in South Africa, coal accounts for 92 % of its electricity (IEA, 2010). 

Since most use of coal lies with its combustion (Wagner, 2008) to generate electrical 

power, which subsequently leads to the generation of fly ash, it will be appropriate to 

understand the mineral transformations that occur in the coal combustion process 

since it dictates the physical and chemical properties of the fly ash remaining as 

combustion residue (Shirai et al., 2009). 

 

Coal combustion is the generation of thermal energy due to the oxidation of the 

combustible constituents of coal in the presence of heat. An external heat source is 

initially required to start the process but the process is sustained by the continuing 

heat supplied by the highly exothermic oxidation process. During this combustion 

process which is a series of reactions involving oxidation and heat generation process 

the constituents of the coal are thermally altered. The organic matter is devolatilized 

into solid carbon-rich residues known as char or coke; that are also oxidized and 

consumed until it is depleted at elevated temperature (Falcon and Ham, 1986). 

 

 The coal rank and the petrographic composition of the organic constituent are the 

major factors determining the coal reactivity in combustion processes (Sharonova et 

al., (2008). The inorganic species are liberated and transformed into a complex 

mixture of solid, molten, and volatile species. Clay minerals are dehydrated and 

decomposed, while carbonates are calcined and sulphides are oxidized. Sulphates and 

chlorides are formed from the interactions between combustion gases and the alkali 

and alkali earth metals in either the maceral or mineral components. The trace metals 

that are usually volatilized during the combustion are consequently concentrated on 

the surface layer of the fly ash particles (Steenari et al., 1999). 
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These liberated and transformed inorganic species also give rise to slagging and 

fouling deposits, corrosion, pollution, and other problems. Although such problems 

are usually associated with the combustion of coal to produce electrical power, they 

are also common in coal gasification and liquefaction, coke making, and iron 

production (Huffman and Huggins, 1986). Vassileva and Vassilev, (2005), 

summarized the various physico-chemical processes occurring during coal 

combustion as oxidation and combustion of organic matter, transformation of mineral 

and inorganic solid phases, reactions between minerals and phases, and processes in 

solutions and melts. 

 

2.1.4 Uses of Coal 

 

The greatest use of coal lies with coal combustion in producing heat and generating 

electricity. Coal is also an important source of raw materials for manufacturing. Its 

destructive distillation (carbonization) produces hydrocarbon gases and coal tar, from 

which drugs, dyes, plastics, solvents, and numerous other organic chemicals can be 

synthesized. 

 

2.1.4.1 Power Generation 

 

Coal is used in power stations to generate electricity, which plays a very important 

role in human development. It lights houses, buildings, streets, provides domestic and 

industrial heat, and powers most equipment used in homes, offices and machinery in 

factories. The process of converting coal into electricity has multiple steps, Coal is 

first ground to a fine powder in a pulveriser, which increases the surface area and 

allows it to burn more quickly. The pulverized coal is then mixed with hot air and 

blown into the combustion chamber of a boiler where it is burnt at high temperature 

(1400
o
C). The hot gases and heat energy produced converts water – in tubes lining the 

boiler – into steam. The high pressure steam is released into a turbine containing 

thousands of propeller-like blades. The steam pushes these blades causing the turbine 

shaft to rotate at high speed. A generator is mounted at one end of the turbine shaft 

and consists of carefully wound wire coils. Electricity is generated when these are 

rapidly rotated in a strong magnetic field. After passing through the turbine, the steam 
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is condensed and returned to the boiler to be heated once again (World Coal Institute, 

2009) 

 

 

 

Figure 2.1.1: Electricity generation by conventional coal combustion (Kentucky 

Geological survey, KGS, 2006) 

 

2.1.4.2 Production of synthetic gas 

 

Coal liquefaction is the process of converting coal to a liquid fuel (CTL) thereby 

allowing coal to be used as a substitute for oil. This process is particularly appropriate 

to countries that depend greatly on oil imports and that have large domestic reserves 

of coal. Since 1955, South Africa has been producing coal-derived fuels and has the 

only commercial coal to liquids industry in operation today. South African energy 

company Sasol‟s CTL fuels have also being approved for utilization as aviation fuel. 

Currently around 30 % of the country‟s gasoline and diesel needs are produced from 

indigenous coal. The total capacity of the South African CTL operations now stands 

in excess of 160,000 bbl/d (World Coal Institute 2009). There are two different 

methods for converting coal into liquid fuels; direct liquefaction which requires 

creating a chemical reaction at high temperatures and then using hydrogen gas and a 

catalyst to produce a liquid fuel; and indirect liquefaction that gasifies the coal to form 
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a „syngas‟ (a mixture of hydrogen and carbon monoxide). Sasol uses the indirect 

method in the production of synthetic natural gas, and it involves several processes 

(Fischer–Tropsch) to convert the coal into gas. In a gasification process, coal can be 

used to produce synthesis gas („syngas‟) by partial oxidation in the presence of 

oxygen and steam. The syngas is used as an intermediate reagent leading to different 

products (methanol, urea, pure hydrogen, dimethylether) according to the synthesis 

route chosen and above all to synthetic fuels by the Fischer-Tropsch reaction. In this 

case the product obtained is a wax containing a large amount of paraffin-type 

hydrocarbons with an extremely inconsistent number of carbon atoms. This wax has 

to undergo a hydro- cracking process to prepare mainly high quality diesel, and, in 

lesser amounts, liquefied petroleum gas (LPG) and petrol. High quality lubricating 

bases can also be obtained, depending on the method of operation of the 

hydrocracking plant. But this process is very expensive, and the production of 

synthesis gas from coal is highly insatiable in energy terms (Uses of coal: 

www.planete-energies.com/content/coal/uses). 

 

2.1.4.3 Production of iron and steel 

 

Another important beneficiation of coal is in making coke for use in steel blast 

furnaces. Metallurgical coal (coking coal) is a vital ingredient in steel making process. 

The physical process of coking coal causes the coal to soften, liquefy, and then re-

solidify into hard but porous lumps of carbon-rich material called "coke" when heated 

in the absence of air. When cooled, this material is quite strong and is used in the 

production of iron and steel. When iron and steel are made, coke is one of the 

constituents needed to properly heat the furnace (limestone and iron ore are two other 

constituents used). Gaseous by-products from coke ovens are also used. These include 

crude coal tar, light oils, and ammonia. Seventy per cent of steel production comes 

from iron made in blast furnaces using coal and coke (Kentucky Geological Survey, 

(KGS), 2006). 
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2.1.4.4 Coal & Cement 

 

Cement is critical to the construction industry, concrete which is one of the key 

construction materials available today is formed by mixing cement with water, and 

gravel. By varying the mix of cement, sand and aggregate enables concrete to be used 

in a range of applications. The cement industry requires energy to produce cement and 

coal is an important source of the energy needed. Cement is produced from a mixture 

of calcium carbonate (generally in the form of limestone), silica, iron oxide and 

alumina. A high-temperature kiln, often fuelled by coal, heats the raw materials to a 

partial melt at 1450°C, transforming them chemically and physically into a substance 

known as clinker. This grey pebble-like material is made up of special compounds 

that give cement its binding properties. Clinker is mixed with gypsum and ground to a 

fine powder to make cement. Coal is used as an energy source in cement production. 

Large amounts of energy are required to produce cement. Kilns usually burn coal in 

the form of powder and consume around 450 g of coal for about 900 g of cement 

produced. Over 2.7 billion tons of cement was consumed globally in 2007. China's 

cement consumption alone reached over 1.3 billion tons (World Coal Institute, 2009). 

 

2.2 Fly Ash 

 

Coal fly ash is the major component of the waste material produced from the 

combustion of coal in all these processes. It is produced by power plants as a waste 

product from the combustion of pulverised coal to generate electricity and collected 

by the cleaning equipment of flue gas emissions by means of electrostatic 

precipitators, bag houses, or cyclone. Fly ash consists usually of spheres composed of 

crystalline matter and some residual carbon. The basic spherical shape indicates that 

particles were formed under un-crowded free-fall conditions and a relatively sudden 

cooling maintains the spherical shape (Saikia et al., 2006).  

 

Fly ash is generated by coal-fired electric and steam generating plants. Usually, coal is 

pulverized and blown with air into the boiler's combustion chamber where it instantly 

ignites, the combustion generate heat and produces a molten mineral residue. Boiler 

tubes remove heat from the boiler resulting in the cooling the flue gas and hardening 
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of the molten mineral residue to form ash. Bottom ash or slag (which are coarse ash 

particles), fall to the bottom of the combustion chamber, while the lighter fine ash 

particles (fly ash), remain suspended in the flue gas. To prevent the release of fly ash 

into the atmosphere, the fly ash is removed by particulate emission control devices, 

such as electrostatic precipitators or filter fabric baghouses (United States Department 

of Transportation - Federal Highway Administration). 

 

Approximately 80 % of the solid residue from pulverised coal combustion is released 

as fly ash; the properties of fly ash depend on the physical and chemical properties of 

the coal source, the coal particle size, the combustion process, and the type of ash 

collector used. Fly ashes are produced at 1200 - 1700 °C and are generated from the 

various inorganic and organic constituent present in the feed coal. In bulk, fly ash can 

be considered as homogeneous, but on a micro scale, the individual particles vary in 

size, morphology, mineralogy and chemical composition. These variable physical and 

chemical properties of fly ash are attributed to the influence of the coal source, 

particle size, type of combustion process and moisture content (Jankowski et al., 

2006; Vassilev and Vasssileva, 2007; Sočo and Kalembkiewicz, 2009). 

 

Bulk fly ash is an agglomerate mainly of spherical particles, ranging from a micron up 

to tens of microns in diameter. Al and Si are the major elements present in fly ash. 

The fairly high proportions of Al, Si, Fe, S, Ca, Na, and K of the coal mineral matter 

and the high temperature attained during coal combustion in conventional power 

stations (1200-1600°C) account for the characteristic composition and mineralogy of 

fly ash: aluminosilicate glass (amorphous component) and high temperature 

crystalline phases such as mullite (Al6Si2O13), quartz (SiO2) and magnetite (Fe3O4). 

Fly ash particles are deemed to be highly contaminating because their high surface 

area gives rise to the enrichment of potentially toxic elements which condense during 

cooling of combustion gases (Querol et al., 1996). 

 

In South Africa a huge amount of fly ash is generated every year from the use of low 

bituminous coal in the production of cheap electricity. About 36.7 MT of fly ash is 

generated each year in South Africa of which only 5.7% (www.eskom.co.za), is 

utilized in the production of cement and concrete. It has been shown that fly ash can 
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also be used in the neutralization of acid mine drainage, soil amendment and synthesis 

of zeolites (Gitari et al., 2008; Basu et al., 2009; Vadapalli  et al., 2010), but these 

processes are not applied at commercial bulk scale yet.  A large proportion is still 

disposed of, in ponds or dry dumps with little regard to its impacts on the 

environment, in spite of the fact that this material may generate environmental 

problems through the leaching of toxic chemical species present in the ashes 

(Potgeiter-Vermaak et al., 2005; Levandowski and Kalkrenth, 2009). Irrespective of 

the many environmental problems linked to coal combustion  it will continue to be a 

major source of energy for both domestic and industrial use for many years to come 

(Somerset et al.,2005). Worldwide China is currently the largest producer of fly ash 

followed by Russia and the United States (Sushil and Batra, 2006).  

 

2.3 Fly Ash Classification 

 

Fly ash can be classified into two types, class F (low lime) and class C (high lime) 

(ASTM C618), based on their silica, alumina and iron oxide content as shown in 

Table 2.3.1. Class F fly ash is produced by the combustion of anthracite and 

bituminous coal and class F has > 70% total of SiO2
+
, Al2O3

+
, Fe2O3. Class F is 

pozzolanic in nature (hardening when reacted with Ca(OH)2 and water). Class F fly 

ashes usually contain less than 5 % CaO. Combustion of sub bituminous and lignite 

coal typically produces class C fly ash. Class C fly ash has a higher alkali and 

sulphate content than class F. Class C has a sum of SiO2, Al2O3, and Fe2O3 in the 

range of 50 – 70%, and contains a large proportion of CaO (10–35%). Also class C fly 

asg is both cementious (self-hardening when reacted with water) and pozzolanic 

(Basu et al., 2008; Vassilev and Vassileva, 2006). 
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Table 2.3.1 ASTM standards classification of fly ash (ASTM C 618, 1993) 

 

The combustion of high rank bituminous and anthracite coals produces low calcium 

class F fly ashes that have pozzolanic properties. In contrast the combustion of low 

rank lignite and sub-bituminous coals produces high calcium class C fly ashes that are 

self-cementing and pozzolanic (Mattigod et al., 1990). Other chemical and physical 

requirements in this classification include contents of SO3 (≥5.0%), moisture (≥3.0%), 

Na2O (≥1.5% optional), particle size (≥34% ± 5% on average value retained on 45 

µm), and loss on ignition (LOI) (≥6.0% and up to 12% for Class F fly ashes based on 

performance) (Vassilev and Vassileva, 2007).  

 

The classification of fly ashes into four chemical groups with respect to certain 

chemical and physical properties was recommended by the subcommittee of "Fly Ash 

Utilization" at the United Nations. The classifications are based on the SiO2/Al2O3 

ratio, on the granulometry and Blaine specific surface area (SSA) and on the content 

of free CaO of the fly ash. Based on the SiO2/Al2O3 ratio the fly ash are categorised 

as: (1) Group I – silico-aluminate fly ashes with SiO2/Al2O3 ratio ≥2 and CaO <15%; 

(2) Group II – alumino-silicate fly ashes with SiO2/Al2O3 ratio <2, CaO <15%, and 

SO3<3%; (3) Group III – limesulphate fly ashes with CaO >15% and SO3 >3%; and 

(4) Group IV – basic fly ashes with CaO >15% and SO3 <3%. Based on the 

granulometry and Blaine specific surface area (SSA), fly ashes were divided into (1) 

Class F Class C

SiO2 + Al2O3 + Fe2O3, min % 70 50

SO3, max % 5 5

Moisture content, max % 3 3

LOI, max % 6 6

Available alkalis, as Na2O, max % 1.5 1.5
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fine-grained fly ashes (<25% are >75 µm and SSA of >3.0 m
-2

 g
-1

); (2) medium-

grained fly ashes (40– 75% are <75 µm and SSA of 1.5–3.0 m
-2

 g-
1
); (3) coarse-

grained fly ashes (<40% are <75 µm and SSA of <1.5 cm
-2

 g
-1

). According to the 

contents of free CaO, fly ashes were specified into: (1) inactive or very slightly active 

(<3.5%); (2) slightly active (3.5–7%); (3) active (7.0–14.0%); and (4) very active 

(>14%), (Vassilev and Vassileva, 2007). 

 

Roy and Griffin (1982), proposed a system for classifying fly ash based on the 

contents of sialic (SiO2 + Al2O3 + TiO2); Ferric (Fe2O3 + MnO + SO3 + P2O5); and 

calcic (CaO + MgO + Na2O + K2O). This system classifies fly ash into seven 

chemical categories, namely sialic, modic or ferrocalsialic, fersic or ferrosialic, 

calsialic, ferric, fercalsic or ferrocalsic, and calcic types. The modic or ferrocalsialic 

fly ash type has the sialic (SiO2 + Al2O3 + TiO2) component >48 - 88 %; calcic (CaO 

+ MgO + Na2O + K2O) component between 0 - 29 %; and Ferric (Fe2O3 + MnO + 

SO3 + P2O5) component between 0 - <23 %. The sialic fly ashes are generated from 

bituminous coals and, to a lesser extent, sub-bituminous coals, which are highly 

enriched in detrital mineralization. The Sialic fly ash shows maximum values of Si, 

Al, K, Ti, detrital/authigenic index (DAI), glass, quartz, and ettringite. This 

classification system could be used to help determine which utilization and recycling 

method might be best suited for a particular type of fly ash. Modic fly ashes may 

generally correlate with class F fly ashes as they meet the requirement of this group of 

fly ash according to the ASTM classification (Roy and Griffin, 1982). 

 

2.4 Physical properties of fly ash 

 

The morphology, particle size distribution and surface area of the fly ash are covered 

in this section. 

 

2.4.1 Fly Ash Morphology 

 

The morphology of fly ash particle describes the size, shape, or structure and surface 

properties of the particle and is determined by combustion temperature and cooling 

rate in the power plant (Kutchko and Kim, 2006). The study of the fly ash particle 
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morphology is important in understanding the physical properties and leaching 

behaviour in terms of toxicology and environmental studies of the fly ash (Singh, 

2005). 

 

Fisher et al., (1978) used light microscopy to analyse fly ash particle morphology 

which they classified into eleven categories based on opacity, shape and type of 

inclusions. 

 

1) Amorphous, non-opaque 

2) Amorphous, opaque 

3) Amorphous, mixed opaque and non-opaque  

4) Rounded, vesicular, non-opaque 

5) Rounded, vesicular, mixed opaque and non-opaque 

6) Angular, lacy, opaque 

7) Cenosphere (hollow sphere), non-opaque 

8) Plerosphere (sphere filled with other spheres), non-opaque 

9) Nonopaque, solid sphere 

10) Opaque, sphere 

11) Sphere with either surface or internal crystals, non-opaque 

 

These also stated that the relative abundances of the eleven morphological particle 

categories within each size regime seem to rely on particle size. The majority of the 

particles in the finer fractions are spherical, glassy and mostly non-opaque showing 

complete melting of the silicate minerals in the coal particle. The minor opaque 

spheres are usually iron oxide particles like magnetite. Kutchko and Kim, (2006) also 

reported that the fly ash samples were comprised of over 50 % amorphous alumino-

silicate spheres and  a lower quantity of iron-rich spheres. The finest fraction is made 

up of 87 % non-opaque solid spheres and 7.9 % cenospheres whereas the coarsest 

fraction comprises of 26 % non-opaque solid spheres and 41 % cenospheres. Various 

morphological studies show that fly ash consists of a range of spherical and 

irregularly shaped particles of different sizes ranging from <1µm to >200 µm formed 

from the various physical and chemical reactions that occur during the coal 

combustion process. The combustion heat causes the inorganic minerals in coal to 
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fluidise or volatilise or to react with oxygen; which during cooling, may form 

crystalline solids, spherical amorphous particles or condense as coating on particles. 

Agglomerated particles are produced due to high temperature sintering reactions; 

spherical amorphous particles are formed from the fast cooling in the post-combustion 

zone; hollow cenospheres result from the expansion of trapped volatile matter that can 

cause the particle to expand while plerospheres are hollow spheres incorporating fly 

ash spheres (Fisher et al., 1978; Seames 2003; Cho et al., 2005; Kutchko and Kim, 

2006; Saikia et al., 2006). 

 

The surfaces of particles are generally smooth in fly ash that has not weathered 

whereas in weathered fly ash the particle surfaces have features such as encrustations, 

corrosions and etching which may have resulted from leaching or formation of new 

mineral phases as a result of weathering (Praharaj et al., 2002; Yeheyis et al., 2009). 

 

Fly ash colour is highly influenced by the mineral phase and is mostly determined by 

two components. The remaining unburned carbon resulting from incomplete 

combustion of coal is responsible for the grey and black colour; while iron oxide with 

its characteristics colour depending on oxidation state of iron is another important 

component in determining the colour of fly ash. Trivalent iron (i.e. Fe³⁺) is brown, 

red, or yellow, while bivalent iron (i.e. Fe
2+

) is grey or grey with a bluish tinge. 

Magnetite which contains both Fe
3+

 and Fe
2+

 is black and can be brown when finely 

dispersed (Raclavska et al., 2009). 

 

2.4.2 Particle Size Distribution and Surface Area 

 

Fly ash consists of a range of spherical and irregular shaped particles of different 

sizes; the alumino-silicate iron-rich spheres spherical particles are usually small in 

size (between 0.1 µm and 100 µm) whereas the irregular shaped particles which 

consist mostly of unburned carbon are larger (<1µm - >200 µm) (Styszko-

Grochowiak et al., 2004; Potgieter-Vermaak et al., 2005; Cho et al., 2005). A number 

of related factors such as the size distribution of the coal particle and the accessory 

minerals, combustion conditions and the particulate emission control devices 

determine the particle size distribution of fly ash (Fisher, 1983). The size and 
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distribution of these particles is the most important characteristic determining its 

reactivity. The smaller particles have greater specific surface area making a larger 

area susceptible to hydrolysis. The particle size distribution is important during 

interaction of fly ash with different solutions because it affects the mobilisation of any 

trace element on the surface (Mattigod et al., 1990; Iyer, 2002; Jankowski et al., 

2006). The particle size distribution also plays a role in the concentrations of some 

elements in fly ash. Fisher et al.,(1977) reported that the concentrations of some 

elements are dependent on particle size while some are independent of particle size. 

The highest size dependence is exhibited by the most volatile elements (Cd, Zn, Se, 

As, Sb, W, Mo, Ga, Pb and V) or their oxides while the least volatile elements such as 

(examples of the elements) do not exhibit significant particle size dependence. 

Extension of vapour-phase condensation to the sub-micrometre regime and 

homogeneous nucleation were attributed to the particle size dependence of the trace 

elements in fly ash. 

 

The size of the particle seems to have an effect on density variations in the fly ash. 

There is an inverse variation of apparent density with particle sizes which may be as a 

result of the higher relative abundance of cenosphere particles and lower relative 

abundance of solid, non-opaque spheres in coarse fractions (Fisher et al., 1978). The 

particle size of a material can be important in understanding the physical and chemical 

properties of fly ash and plays a very important role in the utilization and disposal of 

fly ash. If fly ash is to be considered as a partial replacement for cement a low bulk 

density is required to make it ideal as a lightweight building material (Ural, 2005). 

The particle-size distribution of fly ashes is also a vital factor for their use as 

pozzolans. ASTM 618C requires that 34% of the ash must remain on a 45 mm sieve 

on wet sieving. 

 

2.5 Chemical properties of fly ash 

 

The chemical composition of fly ash, the major, minor and trace elements and their 

partitioning in fly ash is reviewed in this section. The compositions of different South 

African fly ashes are also discussed. 
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2.5.1 Ash Composition 

 

The proportion of major elements in fly ash can be determined with X-ray 

fluorescence spectrometry (XRF), while inductive coupled plasma-optical emission 

spectroscopy (ICP-OES) or inductive coupled plasma-mass spectrometry (ICP-MS) 

can determine the concentration of the minor and trace elements. Chemical 

constituents of fly ash mostly depend on the chemical composition of the coal the 

combustion conditions and removal effectiveness of air pollution control device 

(electrostatic precipitators or bag filters) used (Li et al., 2009; Goodarzi, 2006; 

Vassilev and Vassileva, 2007; Adriano et al., 1980). The knowledge of partitioning of 

elements in fly ash is important because the particle enriched surface almost 

dominates the chemical contents of its core. It is the surface layer that seems to define 

most of the important characteristics such as pH, leaching and mobilization properties 

of the fly ash. As stated earlier the surface area of the fly ash particle increases as its 

size decreases thus the particles have an unusually large surface area that are enriched 

with elements that are volatilized during coal combustion and are condensed at lower 

temperature on the fly ash particles. The partitioning of elements and their surface 

association in fly ash is controlled by the extent of vaporisation during the coal 

combustion process (Choi et al., 2002).  Iyer, (2002) reported the partitioning of these 

elements resulting from volatilization as: 

 

1) Elements in the coal are volatile to a significant extent in the combustion process. 

These include Mn, Ba, V, Co, Cr, Ni, Ln, Ga, Nd, As, Sb, Sn, Br, Zn, Se, Pb, Hg 

and S  

2) Elements that appear to have a smaller fraction that is volatilized during 

combustion. These include Mg, Na, K, Mo, Ce, Rb, Cs and Nb 

3) Elements that are either not volatilized or only show minor trends related to 

geochemistry of mineral matter. These include Si, Fe, Ca, Sr, La, Sm, Eu, Tb, Py, 

Yb, Y, Se, Zr, Ta, Na, Ag, and Zn (Iyer, 2002). 

 

The chemical composition of fly ash comprises major (>1wt %), minor (1–0.1wt %), 

and trace (<0.1wt %) elements (Vassilev and Vassileva, 1996). Fly ashes from the 

four coal ranks (anthracite, bituminous, sub-bituminous, and lignite coals) differ in 

 

 

 

 



Chapter Two: Literature Review 
 

31 

 

chemical composition as a result of the difference in the coal heating values, chemical 

composition, ash content, and geological origin. Though the chemical composition of 

fly ash varies, spectroscopic analysis of fly ashes shows they still consist of the same 

fundamental chemical elements but in different concentrations as shown in table 2 

below. 

 

Table 2.5.1 below, compares the chemical composition range of the major and minor 

elements reported as oxides for bituminous, sub-bituminous, and lignite coal fly 

ashes. Sub-bituminous, and lignite fly ashes have higher CaO and lower LOI (loss on 

ignition) than bituminous fly ash. 

 

Table 2.5.1: Normal range of chemical composition for fly ash produced from 

different coal ranks (expressed as weight %) (http://cementconsultant.org/flyash.pdf) 

 

 

 

Component Bituminous Sub-bituminous Lignite

SiO2 20-60 40-60 15-45

Al2O3 5-35 20-30 10-25

Fe2O3 10-40 4-10 4-15

CaO 1-12 5-30 15-40

MgO 0-5 1-6 3-10

SO3 0-4 0-2 0-10

Na2O 0-4 0-2 0-6

K2O 0-3 0-4 0-4

LOI 0-15 0-3 0-5

 

 

 

 

http://cementconsultant.org/flyash.pdf


Chapter Two: Literature Review 
 

32 

 

Table 2.5.2 present the average trace elements composition in fly ash. The 

concentrations of these elements are higher in the fly ash than the original coal due the 

volatilization and condensation during and following the coal combustion process. A 

high concentration of these trace elements creates environmental problems in the 

utilization and disposal of fly ash. These elements may leach out and contaminate the 

soil, surface and ground water (Sushil, S and Batra, S, 2006).  

 

Table 2.5.2: Average trace elemental composition for fly ash (El-Mogazi et al., 1988). 

 

 

 

Table 2.5.3 compares the chemical compositions of some South African fly ashes, 

Gitari et al., (2008) reported that SiO2, Al2O3, CaO and Fe2O3 were the major oxides 

while MgO, Na2O, K2O, SO3, P2O5 and Cr2O3 were the minor elements. The traces 

elements were Cu, Mo, Ni, Pb, Sr, Zn, Zr, Co, Cr, V and Ba. The variation in 

chemical composition of the fly ashes from the different power stations was observed 

and could be a reflection of the differences in the source of parent coal, the 

combustion processes and the ash handling methods of the power stations. 

 

 

 

 

 

Element Concentration (mg/g) Element Concentration (mg/g)

As 2.3 - 312 Pb 31 - 241

B 10 - 600 Mo 6.6 - 41

Cd 0.2 - 3.9 Ni 1.8 - 15

Cu 45 - 259 Se 1.2 - 17

Cr 43 - 259 Zn 15 - 406
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Table 2.5.3: Chemical composition of some South African coal fly ashes (Gitari et al., 

2008) 

 

 

2.6 Mineralogical properties of fly ash 

 

The origin, types, composition of the various mineral phases that are present in fly ash 

are reviewed and discussed in this section. 

Arnot Matla Tutuka Secunda

Fly Ash Fly Ash Fly Ash Fly Ash

gkg 
-1

SiO2 534 538 561.3 500.6

TiO2 13.4 14.4 16.1 16.3

Al2O3 234 262 243 257.1

Fe2O3 47.2 34 47.2 27.3

MnO 0.6 0.5 0.4 0.5

MgO 26.7 24.8 19.3 24.6

CaO 84.3 85 64.4 86.7

Na2O 3.5 4.9

K2O 4.9 8.6 8.3 7.5

P2O5 3.4 6 3.1 6.2

Cr2O3 0.3 0.3 0.5 0.4

SO3

mgkg
-1

Cu 47.3 57.9 9 7

Mo 5.23 6.56

Ni 93.4 58.2 96.5 83

Pb 56.4 29.1 45 30

Sr 1463.9 2056 1787 3391

Zn 57.3 25.4 37 24

Zr 488.1 536.1 405 476

Co 18.2 10.4 24 13

Cr 179.2 122.7 138.5 121

V 147.4 145.8 86.5 85.5

Ba 928 1559.2 1243 1955
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2.6.1 Fly Ash Mineralogy 

 

The mineral composition of fly ash is usually determined by X-ray diffraction (XRD) 

and depends on the minerals entrained in the coal and its combustion conditions. The 

major minerals groups in coal are aluminosilicates (clays), carbonates (calcite and 

dolomite), sulphides (pyrite), and silica (quartz). While minerals such as quartz may 

remain thermally unaltered during combustion clay minerals may be altered to form 

new minerals or phases (White and Case, 1990). The phase and mineral composition 

of fly ash generally consist of an inorganic component (90 %-99 %), an organic 

component (1 % - 9 %), and a fluid component (<0.5 %) The inorganic component is 

made up of amorphous (non-crystalline) matter (34% - 80%) and crystalline matter 

(17 % - 63 %) The organic component contains char materials while the fluid 

component comprised liquid, gas and gas-liquid inclusions that were associated with 

both inorganic and organic matter (Vassilev and Vassileva, 2005). Amorphous (glass) 

or crystalline structure of the fly ash particles depends on the rate of cooling of the 

fluidized coal minerals in the post combustion area. Rapid cooling of the fluidized 

minerals results in spherical glassy particles whereas crystalline structures are formed 

when the fluidized minerals cool gradually (Kim, 2002). The chemical reactions 

related to fly ash utilisation (cement and concrete or zeolite synthesis) and disposal 

(weathering) can be attributed to the amorphous (glass) components because of its 

large quantity and the disorderly character of the atoms involved. It is also the main 

matrix in the ash for adsorbed trace elements that may be released from the fly ash 

during its leaching process (Ward and French, 2006). 

 

The mineral components in fly ash have natural or technogenic origin and they can be 

classified as original (primary) or newly formed (secondary and tertiary) minerals and 

phases. The primary are original coal minerals or phases that have not undergone 

phase transformations during coal combustion, such as some stable silicates, oxides, 

sulphates, phosphates, carbonates, and others with moderately high decomposition or 

melting temperatures; the secondary are new phases formed during coal combustion, 

i.e. various silicates, oxides, sulphates, carbonates, sulphides, glass, and char; and 

tertiary, which are new minerals or phases formed during fly ash transport and 
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storage, such as portlandite, brucite, gypsum, Fe sulphate, calcite, dolomite, Fe and Al 

hydroxides, and amorphous material (Vassilev and Vassileva, 2005). 

 

Moreno et al., (2005) reported that the major phases present in coal fly ashes from 

several power plants in Europe were aluminosilicate glass, mullite (Al6Si2O13), quartz 

(SiO2), magnetite (Fe3O4), anorthite/albite ((Ca,Na)(Al,Si)4O8), anhydrite (CaSO4), 

ettringite (3CaO Al2O3 3CaSO4 32H2O), opaline (SiO2), hematite (Fe2O3) and lime 

(CaO). Praharaj et al., (2002) reported that quartz, mullite, hematite and magnetite 

were the major phases. Ilmenite and anorthite were observed as likely minor phases in 

coal fly ashes from India. Ward et al., (2009) in their studies of fresh and weathered 

Australian fly ashes reported that the major phases were quartz, mullite, magnetite, 

and hematite together with a large quantity of glass component. Also probable traces 

of gypsum (CaSO4.2H2O) is shown in the fresh fly ash,  Choi et al., (2002) in their 

studies of Korean fly ashes stated that the major phases present were mullite, quartz 

and iron oxide (hematite and  magnetite). Nathan et al.,(1999) summarized the 

mineralogy of South African fly ash identified by XRD and FTIR spectroscopy as  

mullite (Al₆Si₂O₁₃) amorphous Fe-Al silicates, lime (CaO), quartz (SiO₂), Portlandite 

(Ca(OH)₂), anorthite (Ca₂Al₂S₂iO₈), hematite (Fe₂O₃), magnetite (Fe₃O₄) and 

anatase (TiO)₂. From the FTIR results and SEM analysis of single particles, they 

reported that the fly ash consists of an amorphous phase that is rich in Si with some Al 

and Fe, more than one calcium–aluminum silicate amorphous phase and amorphous 

silicate phases and mullite that usually contain some iron. 

 

Mineralogical studies of fly ash sample reported by the various authors above, shows 

that though the major phases are similar, the different minerals indicate the variation 

in the fly ashes and their chemical compositions. The prominent major phases in all 

the studies are glass, mullite, quartz, magnetite and hematite. At high temperatures the 

aluminosilicate clay minerals lose water and melt to form glass which then dissociate 

into amorphous and crystalline aluminosilicate phases (Hurley and Schobert, 1993). 

Quartz is a major crystalline phase in fly ash. It exists as a hard mineral commonly 

found as cell and pore infillings in the organic matter of coal and is usually a primary 

mineral because it is mostly unaltered by the combustion process due to its high 

fusion temperature (Ward, 2009). Mullite is a secondary mineral because it does not 
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exist in coal but is formed from the decomposition of kaolinite an aluminosilicate 

mineral in the coal (Koukouzas et al., 2009, White and Case, 1990). Magnetite and 

hematite are also secondary minerals. They are formed from the oxidation of pyrite 

and other iron bearing minerals in the coal (Hurley and Schobert, 1993).  

 

2.7 Fly Ash Disposal 

 

The inevitable waste from coal combustion is fly ash, after coal combustion in the 

thermal power plants the fly ash generated is usually disposed as waste. Fly ash 

disposal is of major concern globally because of the enormous quantity that is 

generated and the environmental issues arising from the disposal methods that are 

currently employed. Worldwide huge amounts of coal fly ash are generated in order to 

meet up with energy demands and about 70 % of fly ash is disposed as waste (Haynes, 

2009). In 2009, China generated over 375 million tons of coal ash (Greenpeace, 

2010). In 2008, the coal-fuelled electric power industry generated approximately 72.4 

million tons of coal fly ash, in the USA (www.epa.). India is predicted to generate 

about 170 million tonnes per annum by 2012 (Sushil, and Batra, 2006). Currently in 

South Africa, Eskom generated nearly 36.7 million tons of fly ash in 2009 from coal 

combustion, of which only 5.7% was utilised beneficially (www.eskom.co.za) while 

Sasol produced about 4 million tonnes annually (Mahlaba  et al., 2011) 

 

Fly ash is mainly disposed through either dry or wet disposal methods. In dry 

disposal, the fly ash is conveyed by truck, chute or conveyor at the site and disposed 

by building a dry embankment (Bhat, and Lovell, 1996). The ash heap is then 

irrigated with brine for dust suppression. In wet disposal, the fly ash is mixed with 

water and transported as slurry through pipe and disposed in ash ponds or dams where 

over time the water is allowed to drain away. Various environmental risks such as air, 

surface water and groundwater pollution may be linked to disposed coal fly ash. Air 

pollution results from wind-blown ash dust from the ash dump (Dellantonio et al., 

2010). Deposition of the air borne particulate material on surface water or soil may 

lead to the contamination of the surface water or soil. Also interaction with water used 

in the wet disposal method or from the atmosphere may result in the leaching of toxic 

metals which may also contaminate the underlying soil and ultimately the 
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groundwater. The serious problems that arise from both ash disposal methods include 

the need for a large area of land for the construction of the dump or dam which will 

lead to reduction in arable land overtime. Also the construction of new dams and 

dumps to replace the old ones that are filled up is done at a great cost and further loss 

of arable land. Another problem is the vast amounts of water that is needed to turn the 

ash into slurry. 

 

In South Africa coal fly ash is also disposed via the dry and dense slurry (wet) 

disposal methods. For instance Sasol synthetic fuel plant in Secunda uses the wet 

disposal method while Eskom, Tutuka power plant uses the dry disposal method. In 

Sasol Secunda, the ash from the flue gas collection system is accumulated in hoppers 

from where the ash is added to a stirring tank in which waste water (brine) is 

continuously added until a slurry with controlled density is attained. The slurry is then 

pumped through pipes to the ash dam where the ash particles quickly settle out and 

the ash-make up water is either drained away via a penstock to the clear ash effluent 

dam, or permeates through the ash dam and is collected in a toe drain. The ash-make 

up water goes to the clear ash effluent dam, where it mixes with other wastewaters 

and after settling is pumped back for treatment using reverse osmosis (RO) and 

electro dialysis reversal (EDR). The reject waste stream (highly concentrated and salt 

laden) from these treatment processes is again used for hydraulic transport of more 

ash from the hoppers (Pretorius, pers comm, 2010). In Tutuka power station, the fly 

ash from the precipitators is moistened with low amounts (about 16 %) of brine for 

dust suppression during conveyance and is transported to the ash dumps via conveyor 

belts for disposal. At the Tutuka ash dump, the freshly stacked ash is irrigated with 

brine (generated from water treatment plants) for dust suppression (Fatoba, 2008). 

 

2.8 Environmental Effect of Fly Ash 

 

Fly ash particles are diverse, inhomogeneous, have different morphologies and their 

chemical, physical and mineralogical properties depend on the chemical composition 

of the source coal and the combustion process (Mehra et al., 1998). After combustion 

the toxic trace elements in coal are left behind in higher concentrations in the coal fly 

ash (Gitari et al., 2003), thus disposal or storage sites should be monitored for 
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accumulation of the toxics. The environmental impacts associated with coal fly ash 

include the loss of arable land, air pollution, soil and surface and ground water 

contamination. 

  

Air pollution from coal thermal plants results from the emission of toxic gases (such 

as NOx, SOx and CO2) and of fly ash particulates from the flue gas stacks into the 

atmosphere. The gaseous and particulate emissions from the stacks are controlled by 

devices such as scrubbers, mechanical and electrostatic precipitators. Although these 

devices have high efficiency rates, considerable amounts of these toxic gases and fly 

ash may be emitted into the surrounding environments. At the disposal or storage sites 

airborne fly ash particles are practically weightless and are easily dispersible by wind 

and scattered into the atmosphere as secondary dust pollution. The airborne particles 

can fall on surface water systems or soil and may also contaminate them over time. 

The long term storage of ash in ponds under wet conditions and humid climate may 

cause leaching of toxic metals from ash and contaminate the underlying soil and 

ultimately the groundwater system. 

 

2.9 Beneficial Application of Fly Ash 

 

One way of combating problems caused by fly ash is by optimizing the uses of fly ash 

so that it could become a valuable raw material. This can be achieved through 

precisely defining and controlling physical and chemical characteristics of fly ash; so 

that a uniform and reproducible material can be supplied for reuse (Foner et al., 1998). 

Some of the uses of fly ash are as follows: 

 

2.9.1 Cement and Construction Industry 

 

Fly ash is used in the construction industry in the making of cement or concrete 

because of its cementious and pozzolanic properties which improves the workability, 

durability and strength in hardened concrete (Jaturapitakkul et al., 2003). The loss on 

ignition (LOI), which is a measurement of the amount of unburned carbon remaining 

in the fly ash (Styszko-Grochowiak et al., 2004), is one of the most significant 

chemical properties of fly ash, especially as an indicator of suitability for use as a 
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cement replacement in concrete. According to ASTMC618, a loss-on-ignition (LOI) 

greater than 6 % renders fly ash unusable for cement or concrete manufacture, 

because the presence of carbon can influence air entrainment which is  an important 

property of concrete. Surfactants, or air entraining admixtures that are normally used 

in the formulation of concrete, can be adsorbed onto the surfaces of the porous 

residual carbon particles resulting in a reduced resistance of the concrete to freeze and 

thaw (Senneca, 2008). 

 

Fly ashes can certainly be beneficially used in the concrete and construction 

industries. It is used as a partial replacement for Portland cement in concrete 

manufacture (Ahmaruzzaman, 2010) and used as a sand supplement in the 

manufacture of building bricks, blocks and pavers (Manz, 1997). It is also used as a 

replacement for the fine aggregate (sea sand or machine-ground sand) in concretes 

and mortars. In addition it is also used as a constituent of light-weight aerated 

concrete, especially for construction of insulating building blocks. These could 

replace many of the low fines concrete blocks used presently. Furthermore it is used 

as a constituent of “flowable fill” for filling trenches, and surrounding insulation in 

building basements, shelters, foundations etc. (Foner et al., 1999). 

 

2.9.2 Treatment of Acid Mine Drainage (AMD) 

 

Acid mine drainage (AMD) is formed when sulphide minerals, such as pyrite, found 

in association with the coal or overburden come into contact with oxygen and water 

during mining and oxidize. Sulphide minerals undergo further bacterially-catalysed 

oxidation reactions which accelerate acidity generation and increases Fe and sulphate 

concentrations in recipient water bodies. Acid mine drainage is characterized by high 

acidity (pH 2–4), high sulphate concentrations (1–20 gL
-1

) and contains high 

concentration of heavy metals such as Fe, Mn, Al, Cu, Ca, Pb, Mg, Na and Ni (Gitari 

et al., 2008). Acid mine drainage, often at a pH 2 or less, that contains a wide range of 

heavy metals is a major source of ground and surface water pollution near abandoned 

mines (Dutta et al., 2009). Fly ash can be used in the treatment of acid mine drainage 

because it contains relative high concentrations of SiO2, Al2O3 and CaO, which is 

considered as a liming agent to neutralise acid mine drainage. The neutralisation of 
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acid mine drainage is usually attained by the addition of chemicals such as CaO, 

Ca(OH)2, CaCO3, NaOH and Na2CO3. The use of fly ash for acid mine drainage 

neutralisation, involves a process whereby the pH of the acid mine drainage is 

increased from 2–3 up to a neutral pH of 7, or even over pH 10. Fly ash contains 

considerable amounts of total alkalinity in the form of CaO, MgO, K2O and Na2O, 

thus increasing the neutralisation potential of fly ash. Calcium oxide (CaO) is formed 

in fly ash by the oxidation of calcium during coal combustion process in a coal-fired 

power station. Fly ash may therefore be a substitute for limestone or lime treatment in 

the neutralisation of acid mine drainage (Somerset et al., 2005). 

 

2.9.3 Removal of Heavy Metals in Water Treatment 

 

Heavy metals are among the most important pollutants in wastewater, and are 

becoming a severe public health problem due to the toxicity of some heavy metals. 

Removal of heavy metals and metalloids from aqueous solutions is usually carried out 

by a number of processes such as, chemical precipitation, solvent extraction, ion 

exchange, reverse osmosis or adsorption etc. Among these processes, the adsorption 

process may be a simple and effective technique for the removal of heavy metals from 

wastewater. Fly ash has been widely used as a low-cost adsorbent for the removal of 

heavy metal such as Ni, Cr, Pb, As, Cu, Cd and Hg from wastewaters. The major 

chemical composition of fly ash (alumina, silica, ferric oxide, calcium oxide, 

magnesium oxide and carbon), and its physical properties such as porosity, particle 

size distribution and surface, highlights its potential as an adsorbent in waste water 

treatment (Cetin and Pehlivan, 2006). 

 

Heavy metal adsorption on fly ash depends on the initial concentration of the heavy 

metal, contact time and pH. The initial concentration of heavy metal has a strong 

effect on the adsorption capacity of the fly ash. The adsorption capacity of fly ash 

depends on the surface activities, such as specific surface area available for solute 

surface interaction. In a certain pH range, most metal adsorption increased with 

increased pH up to a certain value, and then decreases with further increase in pH 

(Krishnan and Anirudhan, 2003). 
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Fly ash can be regenerated after the adsorption, using suitable reagents. Batabyal et 

al., 1995) reported the regeneration of the used saturated fly ash with 2% aqueous 

H2O2 solution. The regenerated fly ash was dried, cooled and used for further 

adsorption. The adsorption rate and equilibrium time were found to be the same as the 

fresh fly ash particles. 

 

2.9.4 Soil Amendment 

 

Fly ash is also used in agriculture as a soil amendment, in composting and as a source 

of nutrients for plants based on its chemical compositions and physical properties.  

Fly ash contains almost all the necessary plant nutrients i.e., macronutrients including 

P, K, Ca, Mg and S and micronutrients like Fe, Mn, Zn, Cu, Co, B and Mo, except 

organic carbon and nitrogen. It can replace lime, a costly amendment for acid soils; 

agricultural lime application contributes to global warming through emission of CO2 

to the atmosphere. Use of fly-ash instead of lime as soil ameliorant can reduce net 

CO2emission and thereby lower global warming (Basu et al., 2007). According to 

Kishor et al., (2010), the beneficial and harmful effects of fly ash application to soil 

are as follow 

 

Beneficial effects 

 

(1) Improvement in soil texture; (2) reduction in the  bulk density of soil; (3) 

improvement in the water holding capacity of the soil; (4) optimization of the soil pH 

value; (5) increases the soil buffering capacity; (6) improvement in the soil aeration, 

percolation and water retention in the treated zone (due to dominance of silt-size 

particles in fly ash); (7) reduction in crust formation; (8) provision of   micro-nutrients 

like Fe, Zn, Cu, Mo, B etc.; (9) provision of macro-nutrients like K, P, Ca, etc.; (10) 

reduction in the consumption of soil ameliorants (fertilizers, lime); (11) fly ash can 

also be used for insecticidal purposes and (12) decreases the metal mobility and 

availability in soil, due to an increased pH. 

 

Harmful effects  
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(1) High pH results in the reduction in bioavailability of some nutrients (generally 

from 8 to 12); (2) high salinity and (3) high content of phytotoxic elements, especially 

boron. 

 

Fly ash may be suitable for use on agricultural land where food crops are produced, 

although potential trace element enrichment in plants from certain types of fly ash 

may make it more suitable for non-food chain end uses (Punshon et al., 2002). 

  

2.10 Weathering of Fly Ash 

 

The management of disposed or stored fly ash is of major concern due to its potential 

impact on the environment and sustainable management requires the proper 

understanding of the weathering characteristics of fly ash since the fly ash dump is 

continuously exposed to water, air and rainfall. Thus the disposed fly ash cannot be 

separated from nature‟s weathering cycle. Weathering can be described as the 

chemical or physical breakdown or deterioration of rocks, soil and their minerals at or 

close to the surface of the earth. Weathering of coal fly ash normally occurs when the 

fly ash has been exposed to atmospheric elements (air and water) for a long period of 

time (Gitari et al., 2009; Zevenbergen et al., 1999).  

 

The weathering of fly ash results in changes in the physical, chemical and 

mineralogical properties. Some of these changes include the formation of secondary 

minerals (Yeheyis et al., 2009) followed by equally significant changes in physical 

properties; According to Gitari et al., (2009) the presence of water seems to accelerate 

the weathering and transformation of the ash components into new mineral phases. 

McCarthy et al (1997) reported that interaction of landfilled coal ashes with 

permeating surface or ground water, or merely extra moisture included before closure 

of a landfill over a long period of time, may lead to major changes in crystalline and 

amorphous phase groups together with a similar significant changes in physical 

properties. Decrease in the pH and EC values of the pore water (Ward et al., 2009; 

Baba et al., 2008; Gitari et al., 2009; Ugurlu, 2004). Zevenbergen et al., (1999) 

reported that weathering of fly ash may mobilize trace elements as well as reduce the 

high pH of fly ash due to uptake of CO2 from atmosphere. Reduction in the pH value 
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can also be attributed to the dissolution of basic alkaline oxides like CaO and MgO 

(Saikia et al., 2006). Reduction of soluble salt content (Brower, 1985), which may 

have significant effect on the leaching and mobilization of the fly ash species 

(Zevenbergen et al., 1999; Yeheyis et al., 2009).  

 

The changes in the chemical, physical and morphological properties and phase 

transformation studies are vital in predicting the environmental impact associated with 

fly ash disposal techniques and uses. Some common weathering phenomenon of coal 

fly ashes includes hydration, carbonation, pozzolanic reactions, ettringnite formation, 

leaching and mobility of chemical species.  

 

Hydration reactions of coal fly ash: Fly ash usually contains unhydrated lime (CaO) 

and anhydrite (CaSO4). During weathering of fly ash the lime reacts to form 

portlandite, calcium hydroxide. (Ca(OH)2), and anhydrite that quickly react to form 

calcium sulphate hemi-hydrate (CaSO4·1/2H2O) and subsequently gypsum (Brouwers 

and Van Eijk) 

 

((CaSO4·2H2O), also called calcium sulphate dihydrate. 

 

CaO + H2O Ca(OH)2 (Portlandite or Hydrated Lime) 

 

CaSO4+ 1/2H2O CaSO4·1/2H2O (Calcium Sulphate Hemi-hydrate) 

 

CaSO4·1/2H2O+ 3/2H2O  CaSO4·2H2O (Gypsum or Calcium Sulphate 

Di-hydrate)           

 

Carbonation reactions of coal fly ash: Calcite (calcium carbonate, CaCO3) is formed 

by carbonation of the lime (CaO) via reaction with the carbon dioxide (CO2) in 

ambient air and by hydrated lime reacting with the carbonate alkalinity equilibria 

system in the water in the content of the fly ash (Beeghly et al, 1995). 

 

CaO + CO2   CaCO3 
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Ca(OH)2 + CO3
2-

   CaCO3 + 2 OH
-
 

 

Pozzolanic Reactions of coal fly ash: Pozzolanic reactions between lime (CaO) and 

the fly ash components (aluminum oxide, silica dioxide, and iron oxide) also consume 

free moisture and cause the fly ash to harden and gain strength. These reactions occur 

in a high pH environment and are common when Portland cement or lime is mixed 

with Class F coal fly ash (Beeghly et al, 1995). Calcium silicate hydrate, calcium 

aluminate hydrates, and calcium aluminiumferro hydrates are formed. These reactions 

form glassy or non-crystalline (amorphous) phases characteristic of hydrated portland 

cement.  

 

Silica dioxide: 

SiO2 + Ca(OH)2 + H2O  CaO-SiO2-H2O    

      calcium silicate hydrate 

Alumina: 

A12O3+ Ca(OH)2 + 2H2O    CaO-Al2O3-Ca(OH)2-H2O  

     alumina: calcium aluminaiehydrates 

Iron oxide: 

Fe2O3+A12O3+Ca(OH)2+ H2O  Ca(OH)2- Al2O3-Fe2O3-H2O  

      calcium aliunino-ferro hydrates 

 

The changes in the pH can be attributed to the dissolution of basic alkaline oxides like 

CaO and MgO since the final pH value of ash is generally dependent on the relative 

contents and dissolutions of alkaline contributing oxides present in the waste (Saikia 

et al., 2006). 

 

2.11 Leaching Process of Fly Ash 

 

Fly ash is an intricate mixture of various minerals that are linked to high amounts of 

toxic elements which may be leached during disposal or utilisation in different 

environmental conditions. Leaching can be described as the loss of soluble substances 

by the action of a percolating liquid. When fly ash comes into contact with an aqueous 

media some components will dissolve to a greater or lesser degree and become 
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mobile, the outcome of this interaction is known as the leachate (Zandi and Russell, 

2007).The main aqueous media in contact with disposed fly ashes are the infiltrating 

rainwater, the slurry water used to transport the fly ash from the plant to the dump, 

and the waste water used for dust control in the ash dump (Nyamhingura, 2009).  

 

Though fly ashes vary in terms of physical and chemical characteristics, they usually 

consist of aluminosilicate glassy particles with surfaces that are enriched with trace 

elements such as As, B, Ca, Cr, Mg and Sr as a result of condensation reactions 

during combustion. Elements such as K, Pb and many of the other trace elements are 

distributed throughout the particle and are not preferentially concentrated (Zandi and 

Russell, 2007). The surface associated fraction might dominate the leachate chemistry 

during the early stage of fly ash disposal in contact with water. However, as leaching 

progresses, further weathering of the aluminosilicate glass matrix would release the 

elements incorporated within the glass particle (Choi et al., 2002). The major 

chemical processes involved in fly ash leaching are: constituent solubility; metal 

complexation; sorption; dissolution of primary solids and precipitation of secondary 

solids; redox, sorption and hydrolysis reactions (Zandi and Russell, 2007; Jankowski 

et al., 2006). 

 

The leaching behaviour of the trace elements in coal fly ash depends on the properties 

of the fly ash samples and the types and concentrations of constituents in the system 

with which they may interact. An understanding of the chemical behaviour of the coal 

fly ash elements in water, and their interactions with other components in the system 

is required to evaluate the impacts of environmental conditions on the release of trace 

elements (Bhattacharyya et al., 2007; Praharaj et al., 2002). According to Jones (1995) 

coal fly ash leaching test are generally carried out for the following reasons: 

 

1) To assess compliance with regulatory standards for coal fly ash disposal. 

2) To ascertain the highest amount of contaminants that can be leached from coal fly 

ash. 

3) To evaluate the possible concentration of solutes in the supernatant of a wet 

disposal system. 
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4) To determine the concentration versus time profile for solutes extracted from coal 

fly ash. 

5) To assess the effect of the leaching chemical condition on the leaching of elements 

from coal fly ash. 

6) To acquire thermodynamic and kinetic parameters for input into predictive 

computer models.  

 

Leaching tests usually entail the contacting of the waste material with a liquid to 

establish which constituent will be leached by the liquid and released to the 

environment. 

 

Generally leaching tests can be categorized as extraction leaching tests and dynamic 

leaching tests. Extraction or batch leaching tests involves combining a specific 

amount of the solid material and the extraction liquid (leachant) for a given period of 

time. The leachate which is the product of the combination is then filtered and the 

supernatant is stored for further analysis. While dynamic or column tests entail 

continuous flowing of the leachant across the solid material. In batch leaching test the 

contact time (test period) is deemed long enough to achieve chemical equilibrium. 

The liquid to solid ratios employed in the test provide an accelerated leaching relative 

to the real leaching ensuing from disposed fly ash coming in contact with an aqueous 

media. Batch leaching tests when compared to column leaching tests are easier, more 

repeatable and have relatively low cost (Zandi and Russell, 2007; Steenari et al., 

1999).  

 

The leaching behaviour of major and trace elements in fly ash varies with the 

properties of the fly ash such as temperature, pH, composition, mineralogy 

morphology, particle size distribution and the methods employed in studying the 

leaching process; also the phases with which these elements are associated with and 

distribution in the fly ash can influence their leachability (Baba et al., 2007; Saikia et 

al., 2006; Jankowski et al., 2006; Wang et al., 1999). According to Gitari et al., (2009) 

neutralization and chemical weathering has been identified as the main leaching 

processes of coal fly ash. The rate of dissolution and leaching of species from fly ash 

is influenced by the pH of the leachate which depends on the composition of the coal 
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fly ash. The pH values of solutions developed during the leaching process appear to 

be related to the acidity or alkalinity of the original fly ashes which in turn depends on 

the CaO or MgO content of the ash. Baba et al., (2007) reported that the effects of pH 

on leachability has been studied and documented but the effect of temperature has not 

yet been fully studied, though pH and temperature have a great influence on the 

seepage of heavy metal into water resources. They studied the transfer of heavy 

metals from fresh (unweathered) fly ash to water with standard experimental methods 

at different pH and temperature conditions and found that metals leaches from coal fly 

ash at concentrations inversely proportional to the leachate pH and temperatures. 

They concluded that the metal leaching (As, Cd, Co, total Cr, Cr 
6+

, Cu, Ni, Pb, Se 

and Zn) increases with decreasing pH. Temperatures beyond 30 °C stabilize element 

concentrations of Cd, Cr, Pb, As and Cr (VI) irrespective of the pH of the system. 

 

The leaching behaviour of coal fly ash is also influenced by its mineralogical 

compositions because the liberation of species from solid wastes in aqueous solutions 

depends on the mineral forms of the species present in the solid state (Jankowski et 

al., 2006). In coal fly ash the leachability of toxic species usually depends on their 

speciation and the type of the host phases. The morphology of the coal fly ash 

particles has an effect on its leachability. The occurrence of a non-porous 

uninterrupted outer surface and a dense particle interior can limit heavy metal 

leachability from the combustion residues. Particle size distributions in conjunction 

with specific surface area of the material also provide information on potential 

interactions between the material and the aqueous solutions (Saikia et al., 2006). 

 

Example of some leaching tests are the DIN-S4 (German leach test), acid 

neutralization capacity test (ANC), toxicity characteristic leaching protocol (TCLP), 

serial batch leaching procedure (SBLP), synthetic groundwater leaching procedure 

(SGLP), mine water leaching procedure (MWLP), 3TIER integrated framework 

leaching protocol (3TIER) (Fatoba, 2008, Kim and Hesbach, 2009). 
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2.12 Mobility of Species in Fly Ash 

 

The mobility of potential pollutants (chemical species) due to ash leaching has been 

the focus of broad research as understanding the factors that determine environmental 

mobility of species from coal fly ash is important in evaluating the potential impacts 

of fly ash on the environment and developing novel methods to control the species 

leaching from fly ash. Apart from Si, Al and Fe, fly ash may also be rich in potentially 

mobile major elements such as Ca, Mg, Na and K, and in minor elements, such as P 

and B. A number of metals and metalloids (such as Cd, As, Se, Pb, Ni, Cu, Cr, Co, 

Mo, Be) present as carbonates, oxides, hydroxides and sulphates, may also occur in 

trace concentrations (Gómez et al. 2007). The elements that are adsorbed on the 

particle surfaces are much more easily mobilized into solution during fly ash-water 

interaction. The leachability of these elements is closely related to the phases with 

which they are associated, as well as to the pH and other aspects of the leaching 

environment (Jankowski et al., 2006) 

 

A significant factor in the mobility of particular elements in emplaced ashes is the pH 

developed within the relevant ash-water system. Fly ash, especially ash with an 

alkaline pH, also has a relatively strong buffering capacity, and tends to retain its 

natural pH value to a significant extent even if placed in a contrasting pH environment 

(Jankowski et al., 2006). Fly ash varies from acidic to alkaline depending on the 

chemical composition of the source coal, those with high proportions of Ca and Mg, 

for example, in relation to those of absorbed sulphates ions, may develop a very 

alkaline pH (11-12) on contact with water; while the ones that do not have significant 

concentrations of Ca and Mg in relation to the sulphate content, characteristically 

develop acid pH values (about 4-5) (Ward et al., 2009). Studies have shown that the 

mobility of many species in fly ash also varies with the ash disposal method and that 

the difference in species mobility is largely attributed to the changes in the pH of the 

ash water system. Analysis of leachate water from ash ponds reveals that alkalinity 

and acidity controlled the extractability of elements like As, B, Be, Cd, Cr, Cu, F, Mo, 

Se, V and Zn. Aqueous extracts of an acidic fly ash contained concentrations of Cd, 

Co, Cu, Mn, Ni, Zn, As, B, Be, Cd, F, Mo, Se and V (Ward et al., 2009; R.Iyer, 

2002).  
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The mobility of trace elements from coal fly ashes also depends on the element 

concentration and mode of occurrence, studies have shown (Alborés et al., 2000; 

Kalembkiewicz et al., 2008) that mobility and biological availability of trace metals in 

solid waste materials like coal fly ash depend not only on their total concentration but 

also on the physicochemical forms in which they occur. It is now widely recognized 

that the toxicity and the mobility of these pollutants depend strongly on their specific 

chemical forms and on their binding state (Gleyzes et al., 2002). Hence, identification 

of the main binding states and phase associations of trace elements in solid waste 

samples helps in understanding geochemical processes in order to evaluate the 

remobilization potential and the risks induced (Gleyzes et al., 2002).  

 

Several studies have acknowledged that the mobilization of various elements in coal 

fly ash are controlled by factors such as precipitation/dissolution, complex formation, 

adsorption/desorption and redox reactions (Matigod et al., 1990). Leaching tests are 

used to explain the mobility of certain elements in soils, industrial wastes and other 

materials, as well as in ionic speciation (Querol et al., 1996). Speciation which 

provides information about the chemical association form of a certain metal is often 

needed in the modelling and prediction of dissolution processes. For this reason it is 

important to evaluate the speciation of particulate metals, speciation refers to the 

partitioning of metal among the various mineral forms in which they may exist. 

 

Chemical speciation can be defined as the process of determining and recognizing 

specific chemical species or binding forms; it allows discerning the availability and 

mobility of metals in solid waste samples in order to understand their chemical 

behaviour and fate. Thus, some useful environmental guidelines for handling potential 

toxic hazards can be developed (Huang et al., 2007). Chemical speciation is of interest 

in environmental analytical chemistry because the behaviour of trace elements in 

natural systems depends on the forms, as well as the amounts, which are present 

(Kalembkiewicz et al., 2008). 

 

In this study, the environmental mobility of chemical species in the Secunda coal fly 

ash co-disposed with brine shall be investigated by means of sequential extraction. 

Chemical extraction techniques such as sequential extraction have been employed to 

 

 

 

 



Chapter Two: Literature Review 
 

50 

 

determine the geochemical association of metals in fly ash and also provide a 

reasonable estimate of metal availability under environmentally relevant conditions. 

These particulate materials are subjected to sequential extraction so metal mobility 

can be characterised (Jegadasaan et al., 2008; Karlfeldt and Steenari. 2007). 

 

2.12.1 Sequential Extraction 

 

Sequential extraction is an analytical method that sequentially chemically leaches 

metals from soil, sludge or sediments. It is a process widely used to fractionate 

chemical species in solids materials into several groups of different leachability which 

is usually applied in determining the distribution of metals in different phases. It has 

been recently applied to solid waste like municipal solid waste incinerator (MWSI) 

bottom ash and fly ash (Bruder-Hubscher et al., 2007; Wan et al 2006) and coal fly 

ash (Jegadasaan et al., 2008). Sequential extraction results can give detailed 

information about origin, mode of occurrence, bioavailability, potential 

mobilizability, and transport of the metals in natural environments (Tessier et al., 

1979). It is therefore widely used as a tool for the study of source and fate of metals in 

many solid materials such as soil, sludge, sediment and solid waste (Shiowatana et al., 

2001). Sequential extraction procedures involve subjecting a given solid sample (soil, 

sediment, sludge, bottom ash or fly ash) to a sequence of increasingly strong leachant 

reagents possessing different chemical properties (acidity, redox potential, or 

complexing properties) under specified conditions (Nirel and Morel, 1990; Tokalioglu 

et al., 2005). Several sequential extraction methods were developed during the „70s 

and „80s,  the idea behind their development was that the consecutive use of selective 

reagents (single or mixtures), could stepwise release the metals associated with a 

specific bottom fractions, like carbonates, oxyhydroxides, sulphides, organic material 

or those present in a very labile (exchangeable-adsorbed) or non-labile (crystalline) 

form. Usually, extraction liquids that are suitable to dissolve specific mineral phases 

are selected (Baeyens et al., 2003). 

 

The limitations associated with sequential extraction procedures include non-

selectivity of the extractants, re-adsorption among phases during the extraction, 

extraction being highly affected by the operating conditions and difficulty of 
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comparing results from different methods (Gleyzes et al., 2002). Sample collection, 

preparation and storage can also lead to changes in chemical speciation and thus cause 

misinterpretation of results. The disturbance of equilibrium conditions, particularly 

during sample collection can be a major source of error. Thus these procedures are 

said to be operational and do not provide a true picture of the forms of trace metals. 

Being operationally defined procedures, sequential extractions unavoidably give 

results that  depend on the extraction factors such as type, concentration, and pH of 

each reagent, sample weight to extractant volume ratios, extraction times and 

temperatures, methods of shaking and phase separation, etc. (Shiowatana et al., 2000). 

 

The sequential extraction procedures adapted by Tessier et al., (1979) and the 

Community Bureau of Reference (BCR) are the most commonly used procedures 

(Shiowatana et al., 2001). The procedure developed by Tessier et al., (1979) assumes 

that the chemical behaviour of a certain element is related to five fractions namely 

exchangeable, carbonate, Fe/Mn sulphide and the residual fractions. The 

exchangeable fraction relates to the form of metals that can be released by simply 

changing the ionic strength of the medium. The metal content bound to carbonates is 

sensitive to changes in pH and can become mobilised when pH is decreased. The 

metal fraction bound to Fe–Mn oxides and organic matter can be mobilised with 

increasing reducing or oxidising conditions in the environment. The metal fractions 

associated with the residual fraction (e.g. silicate) are not expected to be released in 

solution over a reasonable time span under the conditions normally encountered in 

nature (Tessier et al., 1979). The BCR three-step sequential extraction procedure was 

developed by the Standards, Measurements and Testing Programme (formerly BCR) 

of the European Commission. The procedure was modified by a group of European 

experts in order to create an accepted protocol that could be used and the results easily 

reproduced. The BCR consists or the following three steps namely extraction A, 

exchangeable and weak-acid soluble fraction; extraction B, reducible fraction; 

extraction C, oxidisable fraction, the residue from extraction C is digested with aqua 

regia (extraction D) (Gleyzes et al., 2002). 
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2.13 Brine 

 

Brines are saline effluents that are a direct consequence of the drive to recover water 

through desalination process. They are defined as waters saturated or nearly saturated 

with salt and are commonly considered to be those waters more concentrated in 

dissolved materials than sea water (35 g of dissolved constituents per kg of sea water) 

(Muriithi, 2009).). Brine can contain salt concentration more than five times greater 

than the salt content of average sea water. At 15.5 ºC (60 ºF) saturated brine is 26.4 % 

salt by weight, at 0 ºC (32 ºF) brine can only hold 23.3 % salt (McCaffrey et al., 

1987).  

 

Desalination is the term used to describe the process of removal of salts from water. 

This process uses saline feed water, usually obtained from the ocean or ground water 

or that can originate due to human activities to produce two streams of water, fresh 

water and waste water (saline effluents) also known as brine (Abdul-Wahab and Al-

Weshahi, 2009). This waste water (saline effluent) from the desalination process 

contains high concentrations of salts and residues of chemicals that were used in the 

purification process together with the by-products resulting from the process 

(Mohamed et al., 2005). Desalination can be achieved by using a number of 

techniques such as membrane technologies (reverse osmosis (RO), nanofiltration 

(NF), ultrafiltration, and microfiltration); distillation processes (thermal technologies 

such as multi-stage flush (MSF) and vapour compression (VC)); and chemical 

approaches (ion exchange) (Younos and Tulou, 2005). 

 

Brines contain various cations and anions depending on their origins, and generally 

contain Ca, Mg, Na, K, Br, Fe, SiO2, Cl
-
, NH3, CO3

2-
, NO3, SO4, Fl

-
, trace elements 

and have a pH of approximately 7.5. Some brines may also contain heavy metals and 

even organic contaminants (Nyamhingura, 2009). According to Mooketsi et al., 

(2007), Sasol Synfuels brines consist of the following components: Na (2% - 4.4 %), 

Cl (5 %), SO4 (5 %), Ca (0.12 %), K (0.38 %), Mg (0.059 %), ions and trace elements 

such as Fe, Mn, Cr, V, Ti, P, Si and Al. Nyamhingura, (2009) in his study of brines 

from two different power plant (Eskom, Tutuka and Sasol, Secunda), confirmed that 

brine composition and concentration is highly variable at South African power 
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utilities and processes such as reverse osmosis, contact with ash and CO2 ingress can 

have an impact upon the overall brine quality and concentration. 

 

The Sasol synthetic fuel plant in Secunda is situated in the interior of South Africa in 

water sensitive catchment areas, where the re-use and recycling of water are 

compulsory (Menghistu, 2010). Hence it was decided in the 1980‟s to design it as a 

zero effluent discharge complex (Muntingh et al., 2009). Large quantities of water are 

utilized in producing steam for gasification; process heating; electricity generation 

and for general process cooling. Both Reverse Osmosis (RO) and Electro-Dialysis 

Reversal (EDR) are the water treatment process utilized at the plant (Nyamhingura, 

2009). Although the re-use and recycling of the water significantly cuts down the 

volumes of effluent, still huge amounts of saline/salty effluents (brine) remains that 

have to be disposed. The brines (saline/salty effluents) evolve from the desalination, 

demineralization and evaporation processes that are employed for optimum 

utilization, upgrading and re-use of the various industrial effluents (Mooketsi et al., 

2007). 

 

Brines generated in industrial applications such as power generation are pollutants 

which must be disposed of safely in a manner that protects the environment and 

abides by the principles of sustainable development. Although much progress into 

desalination techniques has been made over the past decade at Sasol synthetic fuel 

plant in Secunda, concentrated saline effluents still present a major challenge in 

finding sustainable treatment and disposal methods (Muntingh et al., 2009).  

 

2.13.1 Brine Disposal 

 

Brine is deemed a waste by-product of the desalination processes that cannot be 

reprocessed and that must be disposed safely. In coastal regions, disposal of brine 

water can be accomplished by discharging into the neighbouring body of seawater. In 

land areas brine from desalination plants is disposed into a surface impoundment 

(unlined pits). The selection of a suitable brine disposal method is influenced by 

several factors such as: amount of concentrate; constituents of concentrate; physical or 

geographical location of the discharge point of the concentrate; availability of 
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receiving site; permissibility of the option; public acceptance; capital and operating 

costs; ability for the facility to be expanded; and economics of the recovered product 

(Mickley et al., 1993). The impacts of its disposal on the environment are usually 

underestimated, irrespective of the high concentrations of its constituents. A good 

example is the pollution of ground water resources that may arise from the improper 

surface disposal of brine (Wahab and Al-Weshahi, 2009). 

 

Brine management methods currently used in desalination plants include: deep 

injection wells; irrigation systems; evaporation ponds; freeze crystallization; salt 

recovery/harvesting systems (or salt harvesting); direct discharge of the brine at the 

coastline; discharging the brines by a long pipe far into the sea; discharging the brines 

via the outlet of the power station‟s cooling water; direct discharge to waste water 

treatment plants; power generation (methods of energy recovery); aquaculture; and 

value adding (on-site hypochlorite generation) (Wahab and Al-Weshahi, 2009). 

 

2.13.2 Brine Disposal at Sasol, Secunda 

 

Brine handling and disposal is a difficult and complex challenge. Currently in the 

Sasol plant in Secunda, the bulk of the brine is co-disposed with the ash residue in the 

ash dam (Muntingh et al., 2009). The brine and the ash are mixed to form pumpable 

slurry (with 20 % solids) which is pumped into ash dams. The ash settles in the dam 

and the brine percolates into clear effluent dams where the salty water is recycled. The 

cementing properties (pozzolanic properties) of the ash are assumed to enable the salts 

in the brine to be encapsulated and bound in the ash preventing rapid leaching of the 

salts, a practice that has not yet been proven to be sustainable. According to 

Menghistu, (2010), pozzolanic reactions are not possible within the wet ash dams 

because wet ash dams are normally saturated with water so that carbon dioxide cannot 

permeate through, and carbon dioxide is vital for pozzololanic reactions to occur. The 

wet ash dams only have a few millimetre thick layers of pozzolanic material on its 

surface which is formed from atmospheric carbon dioxide. Hence the co-disposal of 

coal fly ash and brine may have adverse effects on the environment due to the 

accumulation of salts within the ash system and its subsequent leaching. 
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2.14 Conclusion 

 

Coal is one of the world's major important and rich energy sources and is mostly 

combusted to generate electrical power, which subsequently leads to the production of 

fly ash, a particulate waste product that result during the combustion of pulverised 

coal. The bulk of the fly ash produced globally is disposed as waste and only a minor 

fraction are beneficially reused. Various environmental risks are associated with fly 

ash disposal, these include air pollution, loss of arable land and surface and ground 

water contamination due to the leaching and mobilization of non-degradable toxic 

metals, and other chemical species from the ash dump by rainfall or groundwater. The 

management of this combustion waste is of major concern and requires the proper 

understanding of the weathering characteristics of fly ash because the huge amount 

that is disposed as waste cannot be separated from nature‟s weathering cycle. The 

weathering of fly ash results in changes in the physical, chemical and mineralogical 

properties. Some of these changes may include the formation of secondary minerals, 

decrease in the pH and EC values of the pore water and leaching of soluble salt 

content. This may have significant effects on the leaching and mobilization of the fly 

ash species. Thus evaluating changes in the chemical, physical and morphological 

properties and phase transformation studies of fly ash during long term storage are 

vital in predicting the environmental impact associated with fly ash disposal 

techniques and uses. 

 

Several methods including X-ray Fluorescence (XRF) analysis, X-ray Diffraction 

(XRD) analysis, Scanning Electron Microscope and Energy Dispersive X-ray 

spectrometry (SEM-EDS), have been used to determine and characterize, the 

morphology, chemical and mineralogical composition and phases of the fresh and 

weathered fly ash. Also sequential chemical extraction has been used to understand, 

evaluate and determine the various mineral phases with which the elements were 

associated. These studies were usually based on fly ash samples that were stored or 

disposed using different methods. But no study has tried comparing the fresh fly ash 

to that of a wet ash dam that was co-disposed with brine a saline effluent in order to 

understand the effect of the co-disposed brine on the physical and chemical properties 
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of the fly ash over time; the effect of the co-disposed brine on the weathering of the 

fly ash and the sustainability of the fly ash and brine co-disposal dump as a salt sink.    

 

 The main focus of this study is therefore to determine if the fly ash dump is a 

sustainable salt sink when brine is co-disposed upon it. This aim shall be achieved 

through study of the effects of weathering on the chemical, morphological properties 

and mineralogical composition coal fly ash that was co-disposed with brine. This 

sequential extraction scheme will be employed as it has been shown to provide 

understanding of the elemental partitioning in both the fresh and weathered fly ash. 

This will play a vital role in predicting the environmental impact associated with fly 

ash disposal techniques and beneficiations and in determining the sustainability of the 

ash dam as a salt sink. 
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Chapter Three 

 

Materials and Methods 

 

3 Introduction 

 

The previous chapter reviewed the literature concerning coal and fly ash with a 

specific focus on weathering. This chapter describes the sampling methods used in 

this study in section 3.1. The experimental methodology and analytical methods used 

in this study are presented in sections 3.2 and 3.3 respectively. 

 

3.1 Sampling of Fly ash from Secunda Ash Dam 

 

The fresh fly ash and weathered fly ash Samples used in this study were collected 

from the Sasol-Syngas plants located in Secunda in Mpumalanga province of South 

Africa. The fresh Secunda fly ash sample that was used in this study was collected 

directly from the hoppers at SASOL (Secunda) in South Africa. The fly ash samples 

were kept in plastic containers which were tightly closed to prevent ingress of air, and 

stored at room temperature for subsequent analysis. The weathered Secunda fly ash 

were obtained from the fine ash dam according to the following procedure 

 

3.1.1  Procedure 

 

A combination of air flush coring and standard percussion drilling was used to drill 

the cores from the ash dump. An initial starter hole was drilled (215 mm diameter) 

using air percussion drilling through the overburden to the top of the ash. The air flush 

coring technique was then used to drill to the bottom of the ash dump. Standard air 

percussion of 165 mm diameter was used to drill into the underlying bedrock. Large 

diameter vertical boreholes were drilled in the ash dump to extract samples from 

different depths for evaluation. The drilling technique produced 165 mm diameter 

cores from which approximately 100-200 gram of fly ash sample was taken from the 

core inside the air flush core barrel at 1.5 meter sampling intervals. A sample of ash 

was extracted from the core and secured in zip-lock plastic bags and degassed for 
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preservation before analysis. The drilled holes were completed with small concrete 

rings with shallow (30cm) sanitary seals, and equipped with special tall standing 

lockable caps. All the completed drilled holes were clearly numbered according to the 

existing numbering system at the site. During the coring process of S1, the drilling 

stopped at 22.5 meters due to an unknown obstruction in the dump that prevented the 

auger from proceeding further. S3 coring stopped at 31.5 meters.  

 

3.1.2 Storage of Samples 

 

The fly ash samples extracted from the drilled Secunda cores S1 and S3 and hoppers 

were stored in sealed plastic containers that were labelled accordingly, in a dark cool 

cupboard far away from any heat source, direct sunlight and fluctuating temperatures.  

 

3.1.3 Storage of Leachates for Analysis 

 

After pore water analysis, total acid digestion and sequential extraction of drilled core 

samples as described in section 3.2.3, 3.2.4 and 3.2.5 were carried out in the 

laboratory. The samples from the extracts of the fly ashes were taken after being 

filtered through a 0.45 μm cellouse nitrate membrane filter paper. The samples for 

anion analysis were kept in the refrigerator at 4 °C while the samples for cation 

analysis were acidified with concentrated HNO3 before storage in the refrigerator at 4 

°C. The samples were analysed for anions using ion chromatography (IC) and for 

cations using inductively coupled plasma - optical emission spectrometer (ICP-OES). 

 

3.2 Methodology 

 

The experimental procedures used in this study to extract species from the fly ash 

samples are moisture content determination; pore-water chemistry; total acid digestion 

and sequential extraction. The list of reagents used is given in Table 3.1 

 

List of reagents used 

Table 3.1 below presents the name, source, catalogue number and purity of the 

reagents that were used in this study. 
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Table 3.2.1: List of reagents used 

 

 

3.2.1 Preparation of reagents 

 

The preparation of the chemical used in the sequential extraction tests are described 

below 

 

1 M Ammonium acetate (NH4AC) 

 

77.09 g of ammonium acetate was weighed into a 1 L volumetric flask. Ultrapure 

water was added to dissolve the salt. After the complete dissolution of the salt, the 

solution was made up to the1L mark with ultrapure water and mixed. 

 

1 M Acetic acid (CH3COOH) 

 

57.47 cm3 of acetic acid was measured into a 1 L volumetric flask containing 

ultrapure water. More ultrapure water was added and the diluted acid was shaken and 

made up to the 1 L mark with ultrapure water and mixed. 

 

0.025 M Nitric acid (HNO3) 

 

2.1 cm3 of concentrated HNO3 was accurately measured and added into a 1 L 

volumetric flask containing ultrapure water. More ultrapure water was added to the 

diluted HNO3 and the diluted acid was shaken and made up to the 1 L mark with 

ultrapure water and mixed. 

 

Reagent Name Source Catalogue No. % Purity

HClO4 Perchloric acid Merck 100519 60

HF Hydrofluoric acid Merck 100334 48

HNO3 Nitric acid Merck 100443 65

CH3COONH4 Ammonium Acetate Merck 101116 98

NH2OHCl Hydroxylamine Hydrochloride Merck 104611 99

HCl Hydrochloric acid Merck 101514 32

H2BO3 Boric acid Merck 100162 99.5
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0.25 M Hydroxylamine hydrochloride (NH2OHCl)  

 

17.37 g hydroxylamine hydrochloride (NH2OHCl) was weighed into 1 L volumetric 

flask. Ultrapure water was added to dissolve the salt. After the complete dissolution of 

the salt, the solution was made up to I L mark with ultrapure water and mixed. 

 

3.2.2 Moisture Content Determination 

 

Moisture content is the quantity of water contained in a material such as soils, sewage, 

sludge and rocks, expressed in percentage by weight of water in the mass.  

 The moisture content influences the physical properties of a material such as weight, 

density, electrical conductivity and more. Two methods are usually employed in the 

determination of the moisture content. These are the thermo-gravimetric method and 

the loss on drying technique. The loss on drying technique was employed in this 

study. This was carried out by drying pre-weighed samples of the fresh ash as well as 

pre-weighed samples taken at 1.5 m intervals down the drilled Secunda ash columns 

S1 and S3 at 105 ºC for 24 hours. The sample was then allowed to cool down and 

weighed again. The percentage moisture content was then calculated from the 

difference in weight of the sample (www.deldot.gov/information/). Moisture content 

was calculated as follows:  

 

 

 

3.2.3 Pore-Water Chemistry 

 

The pore water chemistry of the ash samples was done to determine the amount of 

cations and anions that are soluble after fly ash had been interacted with neutral water. 

The alkalinity or acidity of the fly ash was also obtained from this experiment. For the 

determination, a 1:10 ratio of core: water was used. 10 grams of each of the Secunda 

ash core S1 and S3 samples that had been taken at 1.5 m intervals down the profile of 

the ash dump were used. Samples were weighed and each put in a polyethylene flask 

and suspended in 100 mL of ultra-pure water. The mixture was then agitated 

thoroughly for 30 min and allowed to settle for 15 min. The pH and electrical 

 

 

 

 



Chapter Three: Materials and Methods 
 

61 

 

conductivity (EC) and total dissolved solids (TDS) of the supernatant were recorded 

with a Hanna HI 991301 pH meter with portable pH/EC/TDS/Temperature probe. The 

pH meter was calibrated before use with a buffer solution of pH 4.0 and 7.0. The 

filtrate was set aside for analysis of anions using ion chromatography. Triplicate 

analysis was carried out in each case. The solution was filtered through a 45 μm 

membrane filter paper. There after the supernatant was collected and analysed for 

anions (SO4
2-

 and Cl
-
) present using a Dionex ICS-16000 ion chromatograph (IC) 

with an Ion Pac AS14A column and AG14-4 mm guard column. 

 

3.2.4 Total Acid Digestion 

 

The digestant for total acid digestion of the solid ash samples selected included 

HClO4: HF: HNO3 mixed in the ratio of 3:3:1. The digested solutions are similar to 

those used in a previous study by the authors Smeda and Zyrnicki, (2002) and Mester 

et al., (1999). Perchloric acid (HClO4) is commonly used as oxidants for the digestion. 

In general, perchloric acid has high strength of oxidation.  

 

0.5 g of the drilled ash Secunda core S1 and S3 samples taken at a depth interval of 1 

m was weighed into a Teflon cup. 7 mL of combined acid (HClO4: HF: HNO3) mixed 

in the ratio of 3:3:1 respectively was added. The Parr bomb the Teflon cup was sealed 

and heated to 180 °C for 3 hours in an oven. It was removed from the oven and 

allowed to cool down. The sample was allowed to cool after which 35 mL of H3BO3 

was added in order to neutralize the excess HF and made up to 100 mL with ultra-

pure water (ELGA Pure lab UHQ). The solution obtained was analysed for major and 

trace species with ICP-OES.  The procedure was triplicated for each sample.  

 

3.2.5 Sequential Extraction Procedure 

 

Sequential extraction is an analytical method that sequentially chemically leaches 

elements out of the various mineralogical fractions present in soil, sludge or 

sediments. It has been recently applied to solid waste such as municipal solid waste 

incinerator (MWSI) bottom ash and fly ash and coal fly ash (Bruder-Hubscher et al, 

2002). Sequential extraction results can give detailed information about origin, mode 
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of occurrence, bioavailability, potential mobilizability, and transport of the metals in 

natural environments. It is therefore widely used as a tool for the study of the source 

and fate of elements in many solid materials such as soil, sludge, sediment and solid 

waste. Sequential extraction procedures involve subjecting a given solid sample to a 

sequence of increasingly strong reagents possessing different chemical properties 

(acidity, redox potential, or complexing properties) under specified conditions. These 

extractions are intended to replicate the different possible natural and anthropogenic 

modifications of environmental conditions. The five-step sequential extraction applied 

in this study is described below. The extraction method was a modified form of the 

method proposed by Tessier et al, (1979), (steps 2, 3, 4 and 5). The modification 

consisted of a water soluble extraction step which was added in this study. First, a 

water soluble fraction extraction was executed followed by exchangeable fraction 

extraction, carbonate fraction extraction, iron manganese fraction extraction and 

residual fraction extraction. The metals extracted were analysed for using inductively 

coupled plasma - optical emission spectrometer (ICP-OES).  The detailed procedures 

are as follows: 

 

Step 1: Water soluble fractions 

 

1 g of the ash samples taken directly from the ash core samples at various intervals in 

the ash horizon was weighed into 50 mL centrifuge tubes and 45 mL of ultra-pure 

water (H2O) was added. The samples were then shaken at room temperature for 1 

hour with a mechanical shaker. The procedure was repeated to give triplicate samples. 

The solution was allowed to settle down for 1 hour. The mixture was centrifuged at 

6000 rpm for 20 minutes and the supernatant filtered through a 42 µm pore 

nucleopore membrane. The remaining solid portion was carefully decanted into a 100 

mL plastic clear bottle to reduce weight loss. 42 mL of filtered supernatant was 

recovered. 10 mL of the supernatant solution was measured into a standard volumetric 

flask and made up to 100 mL with ultra-pure water (ELGA Pure lab UHQ).  The 

solution obtained was set aside for analysis of major and trace species with ICP-MS. 

The solid residue remaining after the extraction was quantitatively recovered and kept 

in a refrigerated condition for the next extraction method. 
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Step 2: Exchangeable fractions (Extraction at pH 7) 

 

45 mL of the 1M ammonium acetate buffer solution at pH 7 was added to the solid 

residue recovered from the water soluble fraction. The solution was shaken for 1 hour 

at room temperature, and then allowed to settle for 1 hour. The mixture was then 

centrifuged at 6000 rpm for 20 minutes and filtered through a 42 µm pore nucleopore 

membrane. The solid portion was decanted into a 100 mL plastic clear bottle 

quantitatively to avoid weight loss. 44 mL of filtered supernatant was recovered. 10 

mL of the supernatant solution was measured into a standard volumetric flask and 

made up to 100 mL with ultra-pure water (ELGA Pure lab UHQ). The solution 

obtained was set aside for analysis of major and trace species with ICP-OES. The 

residue recovered from this step was kept in a refrigerated condition to avoid 

contamination.  

 

Step 3: Carbonate fractions (Extraction at pH 5) 

 

45 mL of 1M ammonium acetate buffer solution at pH 5 was added to the 0.97 g of 

solid residue recovered from step 2. The solution was shaken for 1 hour at room 

temperature. The solution was allowed to settle for 1 hour, and then centrifuged at 

6000 rpm for 20 minutes and then filtered through a 42 µm pore nucleopore 

membrane. The solid portion was quantitatively decanted into 100 mL plastic clear 

bottle to avoid weight loss. 45 mL of supernatant was recovered. 10 mL of the 

supernatant solution was measured into a standard volumetric flask and make up to 

100 mL with deionised water (ultra-pure water generated with ELGA Pure lab UHQ 

instrument). The solution obtained was set aside for analysis major and trace species 

with ICP-OES. The residue recovered from this step was kept in a refrigerated 

condition.  

 

Step 4: Fe and Mn fractions 

 

45 mL of hydroxylamine hydrochloride (0.25M) in nitric acid (0.025 M) solution was 

added to the 0.94 g of solid residue recovered from step 3. The solution was shaken 

for 1 hour at room temperature. The solution was allowed to settle down for 1 hour, 
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centrifuged at 6000 rpm for 20 minutes and then filtered through a 42 µm nucleopore 

membrane. The solid portion was quantitatively decanted into a 100 mL plastic clear 

bottle carefully to avoid weight loss. 44 mL of filtered supernatant were recovered. 10 

mL of the supernatant solution was measured into a standard volumetric flask and 

made up to 100 mL with ultra-pure water (ELGA Pure lab UHQ). The solution 

obtained was set aside for analysis of major and trace species with ICP-OES. The 

solid residue recovered from this extraction step was kept in a refrigerated condition 

 

Step 5: Residual fractions 

 

The solid residue recovered from step 4 was rinsed with ultra-pure water and 

quantitatively transferred to a crucible, oven dried at 105 ºC and weighed. 0.90 g of 

dried sample was carefully transferred into the Teflon cup of a Parr bomb. 14 mL of 

the combined acid (HClO4: HF: HNO3) mixed in the ratio of 3:3:1 respectively was 

added and the Teflon cup placed in a Parr bomb, sealed and heated to 180 °C for 3 

hours in an oven. It was removed from the oven and allowed to cool down. After 

cooling, the solution was diluted with 40 mL of 1% HCl and then filtered through a 42 

µm pore nucleopore membrane. 10 mL of the solution was measured into standard 

volumetric flask and made up to 100 mL with ultra-pure water (ELGA Pure lab 

UHQ). The solution obtained was set aside for analysis of major and trace species 

with ICP-OES. Dry weight concentration of the analytes for this residual fraction was 

calculated using the dilution factor and the weight of the solid residue used in the 

digestion. 

 

3.3 Analytical Methods 

 

The analytical techniques used in this study was the measurement of pH, Electrical 

Conductivity (EC), the Total Dissolved Solids (TDS), XRF, XRD, SEM/EDX, IC and 

ICP – OES. 
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3.3.1 pH Measurement 

 

The pH of a solution is a measure of the hydrogen ion [H+] concentration in the 

solution which defines the acidity or alkalinity of the solution. pH analysis is one of 

the most common analytical tests carried out on any liquid sample including water 

and wastewater. It is measured on a continuous scale from 0 - 14. The scale is 

logarithmic. The pH value of a given solution is a measure of the activity of the 

hydrogen ion (H
+
) in that solution. pH measurement involves comparing the potential 

of solutions with unknown hydrogen ion [H
+
] to a known reference potential (Berndt, 

H, 1991). This is done when the indicating electrode, which is sensitive to the 

hydrogen ion, develops a potential directly related to the hydrogen concentration in 

the solution, and the reference electrode provides a stable potential against which the 

indicating electrode can be compared. The pH meter converts the potential (voltage) 

ratio between a reference half-cell and an indicating half-cell to pH values. In acidic 

or alkaline solutions, the voltage on the outer membrane surface changes 

proportionally to changes in [H
+
]. The pH meter detects the change in potential and 

determines [H
+
] of the unknown sample (Fatoba, 2007). 

 

Procedure 

 

The pH of all the samples in this sample in this study was measured, using a Hanna 

991 301 pH meter with portable pH/EC/TDS/Temperature probe. The pH meter was 

calibrated before use with buffer solutions of pH 4.0 and 7.0. The measurements were 

done at room temperature.   

 

3.3.2 Electrical Conductivity 

 

Electrical conductivity (EC) is related to the concentration of ionized substances in a 

water sample, and is a measure of the ability of a water sample to convey an electrical 

current (www.rrcap.unep.org). Conductivity is used to measure the total concentration 

of inorganic substances in water which depends on the presence, mobility and valence 

of the species in solution. Conductivity is measured by a probe that applies voltage 

between two electrodes, spaced a known distance apart, and records the decrease in 
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voltage. This decrease reflects the resistance of the water, which is then converted to 

conductivity. Thus, conductivity is the inverse of resistance and is measured as the 

amount of conductance over a certain distance. EC is normally measured in mScm-1 

or µScm-1or in μmohmscm-1 (1mScm-1 = 1000 μmohmscm-1). 

 

Procedure 

 

The electrical conductivity (EC) measurements of the samples were measured, using a 

Hanna 991 301 pH meter with portable pH/EC/TDS/Temperature probe. The pH 

meter was calibrated beforehand and the measurements were done at room 

temperature.  

 

3.3.3 Total Dissolved Solids 

 

The measurement of total dissolved solids (TDS)  is an expression of the combined 

content of all inorganic and organic substances contained in a liquid which are present 

in a molecular, ionized or micro-granular (colloidal) suspended form (Fatoba, 2007). 

Electrical conductivity of water is directly related to the concentration of dissolved 

ionized solids in the water. Ions from the dissolved solids in water create the ability 

for that water to conduct an electrical current, which can be measured using a 

conventional conductivity meter (Theimer et al., 1994). A TDS meter is based on the 

electrical conductivity (EC) of water. Pure H2O has virtually zero conductivity. 

Conductivity is usually about 100 times the total cations or anions expressed as 

equivalents. TDS is calculated by converting the EC by a factor of 0.5 to 1.0 times the 

EC, depending upon the levels. Typically, the higher the level of EC, the higher the 

conversion factor to determine the TDS. While a TDS meter is based on conductivity, 

TDS and conductivity are not the same thing. 

 

Procedure 

 

The total dissolved solids (TDS) of the samples in this study were measured by using 

a Hanna 991 301 pH meter with portable pH/EC/TDS/Temperature probe. The pH 
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meter was calibrated beforehand and the measurements were done at room 

temperature. 

 

3.3.4 Bulk Chemical Composition Analysis (XRF) 

 

X-ray Fluorescence (XRF) spectroscopy is generally used for the qualitative and 

quantitative elemental analysis of solid environmental, geological, biological, 

industrial and other samples. XRF is a better multi-element analytical technique when 

compared to other techniques such as, Inductively Coupled Plasma Spectroscopy 

(ICPS) which requires dissolution procedures that are generally time consuming and 

can induce losses of some volatile elements (As, Pb, Se, Sb and Zn); and Neutron 

Activation Analysis (NAA) which is expensive and not widely available. XRF has the 

advantage of being non-destructive, fast and cost-effective. It also afford a reasonably 

uniform detection limit across a large portion of the periodic table and is applicable to 

a wide range of concentrations, from a 100% to few parts per million. Its 

disadvantages are that analyses are normally limited to elements heavier than fluorine 

and that a large amount of sample is required for analysis due to the sample 

preparation method (Brown and Milton, 2005).  

 

Procedure 

 

The bulk chemical compositions of the drilled Secunda ash core S1 and S3 samples 

were determined with X-ray fluorescence spectrometry (XRF) A PW1480 x-ray 

fluorescence spectrometer using a Rhodium Tube as the x-ray source was used. The 

samples for XRF analysis were taken at intervals of 1.5 m along the depth of the 

drilled cores S1 and S3 from Sasol-Synfuels-Secunda. The core ash samples were 

oven-dried at 100 °C for 12 hours to determine the adsorbed water prior to analysis, 

and milled to a uniform size grained powder. The powder samples were then mixed 

with a binder (ratio of 1: 9 in grams of at a ratio of 2: 9 (2 g binder and 9 g sample). 

The powder mixture was then pelletized at a pressure 15 Kbars. Loss on ignition 

(LOI) experiment was performed prior to major element analysis and for accuracy of 

the analytical results. Elements reported as mass % oxides were converted to mass % 

of the elements using element conversion software downloaded at 
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www.marscigrp.org/elconv.html. The technique reports concentration as % oxides for 

major elements and ppm (mg/kg) for minor and trace elements.  

 

3.3.5 Mineralogical analysis (XRD) 

 

X-ray diffraction (XRD) is an analytical technique which uses the diffraction pattern 

produced by bombarding a single crystal with X-rays to determine the phase identity 

and crystal structure. The diffraction pattern is recorded and then analyzed or "solved" 

to reveal the nature of the crystal (Wicks et al., 1995). This technique is widely used 

in chemistry and biochemistry to determine the structures of an immense variety of 

molecules, including inorganic compounds, DNA, and proteins. When single crystals 

are not available, related techniques such as powder diffraction or thin film x-ray 

diffraction coupled with lattice refinement alogrithms such as Rietveld refinement 

may be used to extract similar, though less complete, information about the nature of 

the crystal. The atomic spacing in the crystal lattice can be determined using Bragg's 

law (nλ=2dsinθ) (Scrivener et al. 2004). The electrons that surround the atoms, rather 

than the atomic nuclei themselves, are the entities that physically interact with the 

incoming X-ray photons. If the angles of incidence (θ) and the wavelenght (λ) are 

known, the spacing d of the reflecting atomic planes can be determined using the 

above equation. The lattice spacing is characteristic of the mineral, thus, the X-ray 

diffraction method can be used for the identification of minerals and for the analysis 

of mixtures of minerals.  

 

Procedure  

 

The mineralogical identity and phase purity of the fly ash samples were determined by 

XRD. A D8 ADVANCE from BRUKER AXS instrument equipped with a pw3830 

X-ray generator operated at 40 kV and 40 mA was used. The ash samples were oven-

dried at 105°C for 12 hours to remove the adsorbed water. The samples were pressed 

into rectangular aluminium sample holders using an alcohol wiped spatula and then 

clipped into the instrument sample holder. The representative samples for different 

depths and ages were step-scanned from 12 to 80 º 2 ϴ scale at intervals of 0.02 º and 

counted for 0.5 seconds per step.  
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3.3.6 Morphological Analysis (SEM) 

 

The scanning electron microscope (SEM) is a type of electron microscope capable of 

producing high-resolution images of a sample surface. The SEM uses a focused beam 

of high-energy electrons to generate a variety of signals at the surface of solid 

specimens. The signals that are derived from electron-sample interactions reveal 

information about the sample (Thomas and Gai, 2004). Due to the manner in which 

the image is created, SEM images have a characteristic three-dimensional appearance 

and are useful for judging the surface structure and morphology (texture), chemical 

composition, and crystalline structure and orientation of materials making up the 

sample of the sample. The SEM is routinely used to generate high-resolution images 

of shapes of objects and to show spatial variations in chemical compositions. It is also 

widely used to identify phases based on qualitative chemical analysis and/or 

crystalline structure. Precise measurement of very small features and objects down to 

50 nm in size is also accomplished using the SEM. Specimen preparation includes 

drying the sample in the oven at 100 °C and making it conductive, if it is not already. 

Photographs are taken at a very slow rate of scan in order to capture greater 

resolution. SEM is typically used to examine the external structure of objects that are 

as varied as biological specimens, rocks, metals, ceramics and almost anything that 

can be observed in a dissecting light microscope 

(http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html). 

 

Scanning electron microscopy examines structure by bombarding the specimen with a 

scanning beam of electrons and then collecting slow moving secondary electrons that 

the specimen generates (Thomas and Gai, 2004). These are collected, amplified, and 

displayed on a cathode ray tube. The electron beam and the cathode ray tube scan 

synchronously so that an image of the surface of the specimen is formed.  

 

Detection of secondary electrons 

 

The most common imaging mode monitors low energy (<50 eV) secondary electrons. 

Due to their low energy, these electrons originate within a few nanometers from the 

surface. The electrons are detected by a scintillator-photomultiplier device and the 
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resulting signal is rendered into a two-dimensional intensity distribution that can be 

viewed and saved as a digital image. This process relies on a raster-scanned primary 

beam. The brightness of the signal depends on the number of secondary electrons 

reaching the detector. If the beam enters the sample perpendicular to the surface, then 

the activated region is uniform about the axis of the beam and a certain number of 

electrons escape from within the sample. As the angle of incidence increases, the 

"escape" distance of one side of the beam will decrease, and more secondary electrons 

will be emitted. Thus steep surfaces and edges tend to be brighter than flat surfaces, 

which results in images with a well-defined, three-dimensional appearance. Using this 

technique, resolutions less than 1 nm are possible. 

 

Procedure 

 

The scanning electron microscope / electron dispersive x-ray spectroscopy (SEM / 

EDX) analysis was carried out with an Nova Nano SEM 230, equipped with an 

Oxford X- max detector and Inca software was used for the elemental analysis by 

EDS. The fly ash samples were oven-dried at 105 °C for 12 hours in preparation for 

the analysis. The dried samples were sprinkled on special glue mixed with carbon 

graphite. Each sample was then mounted into specimen holders and the morphology 

(texture) and chemistry of the samples were analysed from backscattered electron as 

well as secondary electron images. 

 

3.3.7 Ion Chromatography (IC) 

 

Ion chromatography is a form of liquid chromatography that uses ion-exchange resins 

to separate atomic or molecular ions based on their interaction with the resin. Its 

greatest utility is for analysis of anions for which there are no other rapid analytical 

methods. It is used for water chemistry analysis. Ion chromatographs are able to 

measure concentrations of major anions, such as fluoride, chloride, nitrate, nitrite, and 

sulphate, as well as major cations such as lithium, sodium, ammonium, potassium, 

calcium, and magnesium in the parts-per-billion (ppb) range depending on column 

condition. Concentrations of organic acids can also be measured through ion 

chromatography. Most ion-exchange separations are done with pumps and metal 
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columns. The column packings for ion chromatography consist of ion-exchange 

functional groups bonded to inert polymeric particles. For cation separation the 

cation-exchange resin is usually a sulfonic or carboxylic acid, and for anion separation 

the anion-exchange resin is usually a quaternary ammonium group. 

 

Ion chromatography, measures concentrations of ionic species by separating them 

based on their interaction with a resin. Ionic species separate differently depending on 

species type and size (www.lycos.com/info/ion.html). Sample solutions pass through 

a pressurized chromatographic column where ions are absorbed by column 

constituents. As an ion extraction liquid, known as eluent, runs through the column, 

the absorbed ions begin separating from the column. The retention time of different 

species determines the ionic concentrations in the sample. Total concentration of ions 

in solution can be detected qualitatively by measuring the conductivity of the solution. 

 

 In ion chromatography, the mobile phase contains ions that create a background 

conductivity, making it difficult to measure the conductivity due only to the analyte 

ions as they exit the column. This problem can be greatly reduced by selectively 

removing the mobile phase ions after the analytical column and before the detector. 

This is done by converting the mobile phase ions to a neutral form or removing them 

with an eluent suppressor, which consists of an ion-exchange column or membrane 

(www.files.chem.vt.edu/chem-ed/sep/lc/ion-chro.html). For cation analysis, the 

mobile phase is often HCl or HNO3, which can be neutralized by an eluent suppressor 

that supplies OH-. The Cl- or NO3- is either retained or removed by the suppressor 

column or membrane. The same principle holds for anion analysis. The mobile phase 

is often NaOH or NaHCO3, and the eluent suppressor supplies H+ to neutralize the 

anion and retain or remove the Na+. 

 

Some typical applications of ion chromatography include drinking water analysis for 

pollution and other constituents; determination of water chemistries in aquatic 

ecosystems; determination of sugar and salt content in foods; Isolation of select 

proteins (www.lycos.com/info/ion.html). 
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Procedure 

 

The leachates of the fly ashes were filtered through a 0.45 μm membrane filter to 

remove suspended solids and then diluted with de-mineralized water to obtain EC 

values of between 50 and 100 μS/cm. SO4
2-

, Cl
-
, NO3

-
 and PO4

3-
 were analysed in the 

leachates using a DionexICS-16000 ion chromatograph with an Ion Pac AS14A 

column and AG14-4 mm guard column. 

 

3.3.8 Inductively Coupled Plasma - Optical emission spectrometry (ICP-OES) 

 

The inductively coupled plasma - optical emission spectrometer (ICP-OES) is used to 

determine concentrations of a wide range of elements in solution. ICP - OES is one of 

the most widely used analytical techniques for measuring concentrations of major, 

minor and trace elements. It is a robust analytical method capable of providing 

analyses for a wide range of elements in a diversity of sample matrices. ICP-OES 

makes use of the fact that the atoms of elements can take up energy from an 

inductively coupled plasma, are thereby excited, and fall back into their ground state 

again emitting a characteristic radiation (Meynen et al. 2009). The identification of 

this radiation permits the qualitative analysis of a sample. A quantitative 

determination takes place on the basis of the proportionality of radiation intensity and 

element concentration in calibration and analysis samples. In ICP-OES analysis, the 

liquid sample is introduced into the inductively generated argon plasma through a 

nebulizer system and excited. The spectrum emitted is transferred into a spectrometer 

where it is decomposed into the individual wavelengths and evaluated. The intensities 

of the spectral lines are measured by CID semiconductor detectors. Calibration is 

effected with multi-element solutions mixed from standard solutions. 

 

In ICP-OES, the sample is subjected to temperatures high enough to cause not only 

dissociation into atoms but to cause significant amounts of collisional excitation (and 

ionization) of the sample atoms to take place. Once the atoms or ions are in their 

excited states, they can decay to lower states through thermal or radiative (emission) 

energy transition. In OES, the intensity of the light emitted at specific wavelengths is 

measured and used to determine the concentrations of the elements of interest. 
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Procedure 

 

All the aqueous samples taken in this study were filtered through a 0.45 μm 

membrane filter to remove suspended solids and then diluted with de-mineralized 

water to obtain EC values of between 50 and 100 μScm-1. Major, minor and trace 

elements were analysed using ICP-OES (Varian Liberty II). 
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Chapter Four 

 

Characterisation and Pore Water Analysis 

 

4 Introduction 

 

The results of the pore water chemistry, morphological, chemical and mineralogical 

composition of the Secunda fresh fly ash taken from the hoppers and samples taken 

from the drilled cores S1 and S3 of the 20 years old Secunda brine impacted fly ash 

dump are presented and discussed this chapter. Section 4.1 presents and discusses the 

chemical composition of the fresh fly ash and the core samples while the results of the 

morphological analysis (SEM-EDS data) are presented and discussed in section 4.2. 

The mineralogical composition of the fresh fly ash and the drilled core samples are 

presented and discussed in section 4.3. The pore water chemistry of the fresh fly ash 

and drilled core samples is presented and discussed in section 4.4. This chapter ends 

with a summary of the comparative bulk chemistry and mineralogy of the fresh fly 

ash and the drilled cores S1 and S3 from Sasol Synfuels-Secunda ash dam in section 

4.5. The sequential extraction results will be presented and discussed in chapter five. 

 

4.1 Sampling of Fly ash from Secunda Ash Dam 

 

The Secunda fly ash used in this study was made up of 87% fly ash from the 

combustion of pulverised coal to produce steam and electric power and 13% fine ash 

from the gasification process. The size of the fine ash ranges between 20 ≤50 µm.  

The fine ash was pumped as slurry of 5:1 water/ash ratio using the high saline stream 

that was generated from the water treatment processes in the plant. The dump site was 

created in 1989 and dumping stopped in 2009. The oldest layer at the bottom was 21 

years old at the time of sampling (2010) and the youngest at the top was 1 year old. 

The geophysics electrical resistivity survey profile (Figure 4.1.1), shows the position 

of the two cores drilled at the fly ash dump. S1 was drilled at 960 m (Latitude 

26.560411, longitude 29.119348), and S3 was at 600 m (Latitude 26.557826, 

longitude 29.118943). During the coring process of S1, the drilling stopped at 22.5 

meters due to an unknown obstruction in the dump that prevented the auger from 
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proceeding further, while S3 coring stopped at 31.5 meters. The fly ash samples that 

were taken from the core were collected at 1.5 meter intervals. 

 

 

 

Figure 4.1.1: Resistivity mapping of Secunda ash dump showing sites for cores S1 

and S3. 

 

4.2 pH, EC, TDS and moisture profile 

 

Figures 4.2.1 to 4.2.8 show the pH, EC (Electrical Conductivity), TDS (total dissolved 

solid) profiles and MC (moisture content) of the extracted pore water of the two 

drilled cores (S1 and S3) as a function of depth. 

 

4.2.1 pH 

 

Figures 4.2.1 to 4.2.2 show the pH profile of the extracted pore water of the fresh fly 

ash and two drilled cores (S1 and S3) as a function of depth. 
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Figure 4.2.1: pH profile of Secunda fresh fly ash and weathered drilled core S1 

[number of determinations for fresh ash and S1 are 3 and 30 respectively] 

 

 

 

Figure 4.2.2: pH profile of Secunda fresh fly ash and weathered drilled core S3 

[number of determinations for fresh ash and S3 are 3 and 44 respectively] 

 

The pH analysis (Figure 4.2.1 and 4.2.2) shows that the fresh Secunda fly ash sample 

had a pH value of 12.38. For the drilled Secunda ash core sample from core S1, the 
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pH values ranged from 9.33 at the surface to 11.32 at 16.5 m depth and 9.52 at 22.5 m 

depth (Figure 4.2.1). In the drilled ash core sample S3, the pH values were between 

9.32 at 3 m depth and 11.27 at 22.5 m depth, 9.64 at depth 27 m and from 11.02 at 

28.5 m to 10.36 m at 31.5 m (Figure 4.2.2). The pH values show that the fresh 

Secunda fly ash and drilled ash core samples are alkaline. However the pH analysis of 

the drilled ash cores shows significant decrease in pH from 12.38 in fresh ash 

compared to a range of 9.33–11.32 in S1 and 9.32–11.27 in S3 showing weathering 

and inconsistency or inhomogeneity in the ash dump. 

 

The change in pH values in the drilled Secunda ash core samples is attributed to the 

transformation or loss of CaO and MgO over time resulting from the interactions of 

the ash and brine as well as with the atmospheric CO2 and percolating rain water, The 

changes in pH values can be attributed to the dissolution and flushing out from the 

dump basic alkaline oxides like CaO and MgO since the final pH value of ash is 

generally dependent on the relative contents and dissolutions of alkaline materials 

present in the waste (Saikia et al., 2006).  

 

The variations in the pH values along the depth of the ash cores indicate that there are 

different weathering zones within the dump. This fluctuation of pH is expected to 

have an effect on the mobility of the chemical species in the fly ash. For drilled ash 

core S1, the pH values of the pore water indicates that there are three weathering 

zones along the depth. These zones are from surface to 9m having a pH trend of 9.33–

9.73 being the zone of greatest weathering; 10 to 16.5 m having a pH trend of 9.67–

11.32; and 18 to 22.5 m with a pH trend of 9.98–9.52 For drilled ash core S3 the 

weathering zones are Surface to 4.5 m having a pH trend of 9.71-9.57; 6 to 9 m 

having a pH trend of 9.59-9.40; 10.5 to 12 m having a pH trend of 9.53-9.58; 13.5 to 

16.5 m having a pH trend of 10.00-9.67, 18 to 22.5 m having a pH trend of 10.11-

11.27; and 23.5 to 31.5 m with a pH trend of 9.70-10.36. These variations in pH 

values shows that the fly ash is acidifying over time and metal mobility can be 

expected under these conditions. 

 

4.2.2 EC (Electrical Conductivity) 
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Figures 4.2.3 to 4.2.4 present The EC profile of the extracted pore water of the fresh 

fly ash and two drilled ash cores (S1 and S3) as a function of depth. 

 

 

 

Figure 4.2.3: EC profile of Secunda fresh fly ash and weathered drilled ash core S1 [number 

of determinations for fresh ash and S1 are 3 and 30 respectively] 

 

 

 

Figure 4.2.4: EC profile of Secunda fresh fly ash and weathered drilled ash core S3 

[number of determinations for fresh ash and S3 are 3 and 44 respectively] 
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The EC (Electrical Conductivity) value (Figure 4.2.3 and 4.2.4) of the fresh Secunda 

fly ash sample was observed to be 4.92 mS/cm (milli Siemens per centimetre). For the 

drilled Secunda ash core S1, the EC values were between 0.83 mS/cm at the surface 

and 22.5 m, and 1.28 mS/cm at 7.5 m (Figure 4.2.3) while for the drilled Secunda ash 

core S3, the EC values range from 0.32-1.08 mS/cm with the minimum value at 31.5 

m depth and maximum EC at 6 m depth (Figure 4.2.4). High values of EC indicate the 

release of more ionisable species from the ash into the pore water of the ash at those 

depths while lower values imply that lesser amount of ions are present, indicating 

mobilisation into other chemical forms or depletion over time to the ground water 

through leaching. 

 

4.2.3 TDS (total dissolved solid) 

 

Figures 4.2.5 to 4.2.6 show The TDS profile of the extracted pore water of the fresh 

fly ash and two drilled ash cores (S1 and S3) as a function of depth. 

 

 

 

Figure 4.2.5: TDS profile of Secunda fresh fly ash and weathered drilled ash core S1 

[number of determinations for fresh ash and S1 are 3 and 30 respectively] 
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Figure 4.2.6: TDS profile of Secunda fresh fly ash and weathered drilled ash core S3 

[number of determinations for fresh ash and S3 are 3and 44 respectively] 

 

A TDS (total dissolved solid) value (Figure 4.2.5 and 4.2.6) of 2.68 g/L i.e. parts per 

thousand (ppt) was observed for the fresh Secunda fly ash sample. The drilled 

Secunda ash core S1 had TDS values ranging from 0.49 ppt at 22.5 m to 0.76 ppt at 

7.5 m (Figure 4.2.5) and for drilled Secunda ash core S3 the TDS values were 

between 0.19–0.68 parts per thousand (ppt) with the minimum at 31.5 depth and the 

maximum TDS at depth of 6 m (Figure 4.2.6). These values were indicative of the 

relative release and entrapment of various elements during weathering. The TDS 

values essentially follow the same trend as that observed for the EC. The EC and TDS 

of the drilled Secunda ash cores show a large decrease in value when compared to the 

values of the Secunda fresh fly ash. This indicates the extent of leaching and poor salt 

sink capacity of the fly ash dam because the EC and TDS values would have been 

considerably higher in the drilled cores if the fly ash dam was holding salts. Usually 

ionic species from salts are responsible for high EC and TDS readings. 
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4.2.4 MC (Moisture content) 

 

Figures 4.2.3 to 4.2.4 present The MC of the extracted pore water of the fresh fly ash 

and two drilled ash cores (S1 and S3) as a function of depth. 

 

 

 

Figure 4.2.7: Moisture content profile of Secunda fresh fly ash and drilled ash core S1 

[number of determinations for fresh ash and S1 are 3 and 30 respectively] 
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Figure 4.2.8: Moisture content profile of Secunda fresh fly ash and drilled ash core S3 

[number of determinations for fresh ash and S3 are 3and 44 respectively] 

 

While the moisture content (MC) of the fresh Secunda fly ash (Figure 4.2.7 and 4.2.8) 

was 1.8%, the drilled Secunda ash core samples had MC of 41.4-73.2% for S1 and 

21.7-76.2% for S3. The high moisture content of the weathered Secunda core results 

from the wet disposal method used in Sasol, Secunda plant. Though the surface of the 

ash dam has dried out, the drilled ash cores show that on the interior of the dump the 

ash is still in a paste, with higher moisture values at lower depth due to hydraulic 

seepage of water from rain water or the slurry water used to place the ash and 

gravitational forces or during the drilling process before the samples were collected. 

Like the pH and EC values the trend in the moisture content values of the weathered 

drilled Secunda core at different depths were also different and can be attributed to 

uneven flow paths due to inconsistent placement conditions or variations in ambient 

weather conditions during placement.  
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4.3 Morphological analysis 

 

The scanning electron micrographs (SEM) showing the surface morphology of the 

fresh and weathered fly ashes from Secunda power stations are shown in Figure 4.3.1. 

and 4.3.2 

 

 

Figure 4.3.1: SEM micrographs of Secunda ash.  A= Fresh ash, B = S1 (Surface), C = 

S3 (Surface) 
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Figure 4.3.2: SEM micrographs of Secunda weathered ash.  D = S1 (7.5 m), E = S3 

(7.5 m), F = S1 (22.5 m) and G = S3 (31.5 m) 

 

SEM micrographs of the fresh Secunda fly ash (Figure 4.3.1 A) and the drilled 

Secunda ash core samples (Figure 4.3.1 B and C and Figure 4.3.2 D to G) show that 

the fly ashes consist of irregular and spherically shaped particles. Many agglomerated 

particles were observed in both the fresh ash sample and drilled Secunda core 

samples, (Fig 4.3.1 (A and B)). The outer surfaces of the fresh Secunda ash particles 

(Fig. 4.3.1 A) are smooth while the surfaces of the particles from the drilled core 

samples (Fig. 4.3.1 B to G) appear to be etched and corroded (Fig. 4.3.1 E and G), 

encrusted (Fig. 4.3.1 D). Figure 4.3.1 C shows a fractured fly ash sphere showing 

vesicular interior. According to Seames (2003), these smooth outer surfaces of the 
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fresh ash particles are assumed to be mainly aluminosilicate structures. The change 

(encrustations, etchings and corrosion) of the surface morphology of ash spheres of 

samples from the drilled Secunda ash cores could be as a result of leaching (Praharaj 

et al., 2002), or the formation of secondary mineral phases in the fly ash (Yeheyis et 

al., 2009). The spherical shapes and the agglomeration observed in the fresh fly ash 

sample could be attributed to high temperature and the conditions during the coal 

combustion process (Kutchko and Kim, 2006). The spherical shape of fresh ash is an 

indication that the particles were formed under un-crowded free fall conditions and a 

relatively sudden cooling, which helps to maintain the spherical shape; while the 

agglomerated nature of some particles is an indication that the particles were 

produced due to high temperature sintering reactions (Saikia et al., 2006). The 

occurrence of irregular shapes in the fly ash samples could be the consequence of 

fragmentation mechanisms relating to particle inflation, cracking, and cenosphere 

fracture within the coal particles or through the formation and shedding of partially 

melted attachment or mineral inclusions during char combustion (Seames, 2003). 

 

The elemental composition of the samples, based on EDS analysis (wt. %) of the fresh 

Secunda fly ash and drilled Secunda ash core samples are presented in Table 4.4 and 

4.5. The methodology is specified in section 3.36. The major advantage of EDS 

analysis is for the qualitative verification of the elements that are present and their 

relative abundance in the fresh ash and drilled core samples. EDS analysis is not an 

appropriate technique for the quantitative determination of the chemical compositions 

of the fresh fly ash and drilled cores samples due to the large variations in the 

elemental compositions of the analysed spots (Fatoba, 2008). Thus XRF was 

performed to confirm the quantitative composition and results are presented in section 

4.4. 
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Table 4.3.1: SEM-EDS elemental analysis (wt. %) of the fresh Secunda ash and 

drilled Secunda ash core (S1) samples [number of determinations for fresh ash and S1 

are 2 and 12 respectively] 

 

 

 

Table 4.3.2: SEM-EDS elemental analysis (wt. %) of the fresh Secunda ash and 

drilled Secunda ash cores (S3) samples [number of determinations for fresh ash and 

S1 are 2 and 12 respectively] 

 

 

 

Generally the predominant elements are Si, Al and Ca in all the samples, while Mg 

and S were also detected in all the samples but in lower quantities, the accumulation 

of S, in drilled Secunda core S3 at depth of 31.5 m may be as a result of the formation 

of secondary mineral phases. Na and Fe were not detected in the fresh Secunda ash 

sample but Na was detected in all Secunda ash core S1 and S3 samples at 7.5 m and 

Element Fresh Ash  S1 - 0 m S1 - 7.5 m S1 - 22.5 m

Na ND 0.48 0.31 0.32

Mg 0.57 0.61 0.49 0.26

Al 8.3 6.1 6.56 6.95

Si 11.01 8.49 9.72 7.02

S 0.32 0.38 0.34 0.3

K 0.39 0.26 0.43 0.24

Ca 2.1 1.43 2.64 1.37

Ti 0.53 0.6 0.39 ND

Fe ND 0.67 ND 0.47

Element Fresh Ash S3 - 0 m S3 - 7.5 m S3 - 31.5 m

Na ND ND 2.55 0.61

Mg 0.57 0.36 0.56 0.68

Al 8.3 3 8.51 6.71

Si 11.01 3.22 16.87 9.21

S 0.32 0.2 0.4 1.21

K 0.39 ND 1.77 0.78

Ca 2.1 1 2.27 0.62

Ti 0.53 0.44 ND 15.04

Fe ND ND 0.45 1.21
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31.5 m, while Fe was only detected in samples S1 at 0 m and 22.5 m and in samples 

S3 at 7.5 m and 31.5 m.   The content of Al was observed to be associated with Si, i.e. 

where Si was detected in low quantity, Al also followed the trend. From the variations 

in the composition of Si in the fresh fly ash and weathered drilled cores it can be 

easily observed that this technique is merely qualitative. 

 

4.4 Chemical composition and classification of Secunda fresh fly ash and 

drilled cores samples (S1and S3) from XRF analysis 

 

XRF analysis was used to quantitatively determine the chemical composition of the 

Secunda fresh fly ash and drilled core. The methodology is specified in section 3.3.4. 

All analysis was done in triplicate. The results of the chemical composition (XRF 

data) of the fresh Secunda fly ash and the Secunda core S1 and S3 samples are 

presented in this section. 

 

4.4.1 Chemical composition (XRF analysis) 

 

Figures 4.4.1 to 4.4.4 present the chemical compositions of the Secunda fresh fly ash 

and the two drilled ash core (S1 and S3) samples based on XRF analysis. The 

compositions of the major and minor elements are reported as weight percentage (wt. 

%) while the trace elements are reported in parts per million (ppm). The 

concentrations of the major, minor and trace elements in the fresh Secunda ash 

samples are compared to the mean value [number of determinations for fresh ash, S1 

and S3 are 3, 30 and 44 respectively] of their concentrations in the two drilled 

Secunda ash cores S1 and S3.   
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Figure 4.4.1: Chemical composition of the major elements in the fresh Secunda fly 

ash and drilled ash cores (S1and S3) samples [number of determinations for fresh ash, 

S1 and S3 are 3, 30 and 44 respectively] 

 

 

 

Figure 4.4.2 : Chemical composition (wt. %) of the minor elements in the fresh 

Secunda fly ash and drilled cores (S1and S3) samples [number of determinations for 

fresh ash, S1 and S3 are 3, 30 and 44 respectively] 
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Figure 4.4.3: Chemical composition (ppm) of Sr, Ba, Zr and Th in the fresh Secunda 

fly ash and drilled ash cores (S1and S3) samples [number of determinations for fresh 

ash, S1 and S3 are 3, 30 and 44 respectively] 

 

 

 

Figure 4.4.4: Chemical composition (ppm) of As, Ce, Co, Nb, Pb, Rb, V and Y in the 

fresh Secunda  fly ash and drilled ash cores (S1and S3) samples [number of 

determinations for fresh ash, S1 and S3 are 3, 30 and 44 respectively] 
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The chemical composition (Figures 4.4.1.1 to 4.4.1.4) shows that the fresh Secunda 

fly ash sample contains some major oxides such as SiO2 (50.91 %), Al2O3 (25.49 %), 

CaO (8.95 %), Fe2O3 (2.27%), MgO (1.87 %), Na2O (2.21 %), TiO2 (1.87 %), K2O 

(0.95 %), P2O5 (0.71 %), SO3 (0.03 %) and MnO (0.05 %). The concentration of the 

trace elements in the fresh Secunda ash sample were found to be (Sr (4160 ppm), Ba 

(2749 ppm), Th (1922 ppm), Zr (664 ppm), Y (156 ppm), Ce (117 ppm), Nb (109 

ppm), As (61 ppm), Co (32 ppm), Ni (23 ppm), Pb (28 ppm), Rb (16 ppm) and V (15 

ppm. 

 

For the drilled Secunda ash core sample, S1 the concentrations of the major oxides 

are; SiO2 (43.46 %), Al2O3 (23.05 %), CaO (8.01 %), Fe2O3 (3.67 %), MgO (2.44 %), 

Na2O (2.47 %), TiO2 (1.70 %), K2O (0.97 %), P2O5 (0.67%),  SO3 (0.11 %) and MnO 

(0.07 %) while the concentrations of the trace elements were found to be Sr (4456 

ppm), Ba (2682 ppm), Th (2075 ppm), Zr (667 ppm), Y (166 ppm), Ce (184 ppm), Nb 

(126 ppm), As 91 ppm), Co (33 ppm), Ni (29 ppm), Pb, (37 ppm), V (77 ppm) and Rb 

(16 ppm). The chemical composition of the drilled Secunda ash core S3 showed that 

the concentrations of the major oxides were; SiO2 (46.61%), Al2O3 (22.43%), CaO 

(8.94%), Fe2O3 (3.90%), MgO (2.83 %), Na2O (2.76%), TiO2 (1.90%), K2O (1.29%), 

P2O5 (0.77%), SO3 (0.09%) and MnO (0.08%). The concentrations of the trace 

elements in core S3 were found to be;  Sr (4864 ppm), Ba (3014 ppm), Th (2283 

ppm), Zr (720 ppm), Y (171 ppm), Ce (202 ppm), Nb (141 ppm), As (89 ppm), Co 

(34 ppm), Ni (32 ppm), Pb (34 ppm),V (71 ppm) and Rb (25 ppm). 

 

In comparison, the concentrations of Si and Al (reported as oxides) in the fresh 

Secunda fly ash were observed to be higher than their concentrations in the drilled 

Secunda ash cores (S1 and S3) (Fig 4.4.1). The decrease (7.45 % and 4.30 % in core 

S1 and S3 respectively) in the concentrations of Si in the core samples could be 

attributed to the weathering process which may have led to dissolution of the ash 

matrix and the release of Si from the core samples over time. According to 

Zevenbergen et al., (1999), leaching of Si and Al increases with weathering. The case 

was different for elements such as Mn, Fe, Na, Mg and S where the concentrations of 

these elements in the Secunda core samples were slightly higher than in the fresh 

Secunda fly ash (Figures 4.4.1.1 and 4.4.1.2). The slight overall increase in the 
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concentrations of Na (0.26 % in core S1 and 0.55 % in core S3); Mg (0.37 % in core 

S1 and 0.96 % in core S3) and S (0.08 % in core S1 and 0.06 % in core S3) in the 

drilled Secunda ash core sample compared to the fresh Secunda fly ash could be as a 

result of its contact with brine, while the increase in the concentration of Fe (1.40 % 

in core S1 and 1.63 % in core S3) could be attributed to the disposal of the spent Fe-

catalyst on the ash dump where the drilled core samples were collected (Pretorius, 

2010). According to the study carried out by Nyamhingura, (2009) on the 

characterization and speciation of brine from Secunda power stations, elements such 

as Na, Cl, Ca, K and Mg were found in the brine in high concentrations. Therefore, 

the slight overall increase in the concentrations of these species in the drilled core 

samples could be attributed to the fly ash and brine interaction at the dump. Although 

considering the high volumes of brine disposed over 20 years of operation one would 

have expected higher salt content than what was found. 

 

The loss on ignition (LOI) which is an indication of unburned carbon or organic 

content was 4.78 %, 13.45 % and 8.32 % for the fresh ash, drilled ash cores S1 and S3 

respectively. The high LOI values for the drilled ash cores could indicate high 

hydrocarbon content in the ash dump because of co-disposal practises where 

hydrocarbon waste included in the brine stream for disposal on the ash. 

 

Figure 4.4.1.3 shows increase in the amount of Sr (296 ppm and 704 ppm in core S1 

and S3 respectively), Ba (263 ppm in core S3), Zr (56 ppm in core S3) and Th (153 

ppm and 361 ppm in core S1 and S3 respectively) in both the Secunda fresh and 

weathered drilled core S1 and S3 when compared to the other trace elements such as 

As, Ce, Co, Nb, Ni, Pb, Rb, V, and Y. The higher concentrations of these elements 

may be due to their composition in the source coal that was combusted. Also these 

elements could have being enriched due to the dissolving away of the soluble 

components leaving these elements behind as a result of the decrease in pH of the ash. 

In the case of the trace elements such as As, Ce, Co, Cu, Nb, Ni, Pb, Rb, V and Y 

their concentrations in the drilled core samples were observed to be higher than in the 

fresh fly ash sample (Figures 4.4.3 and 4.4.4). Dudas, (1981) reported a decrease in 

the concentrations of trace elements in weathered fly ash (not brine impacted) when 

compared with the fresh fly ash. Thus the increase in the concentrations of As, Ce, 
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Nb, Ni, Pb, Rb, V, and Y in the drilled core samples could be attributed to the contact 

of the ash with brine because these trace elements are also present in brine being used 

for ash transport (Nyamhingura, 2009). 

 

4.4.2 Enrichment and depletion of major and trace elements 

 

The results showing the enrichment/depletion factors of the major and trace elements 

in the fresh ash and drilled core samples are presented and discussed in this sub-

section. The enrichment/depletion factors were determined in order to understand the 

changes in the chemical compositions of the drilled core samples as a function of the 

depth at the dump. 

 

To calculate the enrichment/depletion factors, the XRF analysis data of the drilled 

cores (S1 and S3) samples was normalized with that of the fresh fly ash. The 

enrichment/depletion factor was calculated using equation 4.1 and the values below 

1.0 represent relative depletion and values above 1.0 represent relative enrichment 

(Table 4.4.1 and 4.4.2). The actual concentration of each fly ash sample‟s elemental 

makeup is given in Appendix 1 and 2, and should be kept in mind when reading Table 

4.4.1 and 4.4.2 

 

…….4.1 
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Table 4.4.1: The enrichment/depletion of the major and trace elements in Secunda core S1 based on XRF analysis 

 

 

 

Fresh Ash 0m 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 16.5m 18m 19m 21m 22.5m

Major

Si 1.00 0.92 0.98 0.94 0.94 0.92 0.91 0.91 0.84 0.88 0.85 0.86 0.68 0.81 0.73 0.65

Al 1.00 0.95 0.99 1.00 1.00 0.98 0.97 0.98 0.88 0.92 0.89 0.92 0.74 0.86 0.79 0.69

Fe 1.00 1.98 1.64 1.02 1.27 1.31 1.74 1.42 1.30 1.89 2.90 1.89 1.59 1.33 1.49 1.44

Mn 1.00 1.21 0.99 1.06 1.31 1.28 1.42 1.42 1.29 1.46 1.59 1.43 1.21 1.16 1.14 1.09

Mg 1.00 1.41 1.24 0.25 1.42 1.54 1.41 1.41 1.28 1.42 1.38 1.36 0.98 1.22 1.14 0.95

Ca 1.00 0.69 0.76 0.86 0.92 0.96 0.98 0.96 0.95 0.97 1.10 1.02 0.81 0.84 0.82 0.77

K 1.00 0.95 0.79 1.12 1.01 1.05 0.99 1.03 1.02 1.00 1.04 1.11 1.01 1.14 1.01 0.96

Na 1.00 1.09 1.05 1.14 1.15 1.22 1.16 1.20 1.12 1.18 1.14 1.12 1.06 1.11 1.04 0.99

Ti 1.00 0.98 0.87 1.02 1.02 1.05 0.98 1.00 0.98 1.00 0.56 1.00 0.86 0.95 0.86 0.81

P 1.00 0.76 0.73 1.15 1.07 1.09 1.03 1.04 0.96 0.97 0.93 1.01 0.80 0.97 0.89 0.77

S 1.00 1.84 3.24 4.42 4.43 4.95 4.85 4.27 4.41 4.79 4.65 4.40 4.42 3.99 4.30 4.32

LOI 1.00 1.06 0.76 0.84 0.71 0.79 0.85 0.90 1.65 1.08 0.97 1.12 3.16 2.01 2.72 3.66

Trace

As 1.00 1.21 0.80 1.08 0.98 1.16 1.06 1.18 1.50 1.24 1.23 1.34 2.60 1.73 2.16 3.03

Ba 1.00 0.76 0.77 1.11 1.04 1.09 0.94 0.97 1.01 0.98 0.93 0.99 0.98 1.05 1.02 1.00

Ce 1.00 0.97 0.89 0.99 0.89 1.09 0.83 0.90 1.12 1.10 1.01 1.13 1.37 1.07 1.07 1.19

Co 1.00 0.82 1.10 0.98 1.10 1.18 0.63 1.23 0.92 0.88 1.13 0.96 1.08 0.82 1.01 1.56

Nb 1.00 0.95 0.96 1.36 1.10 1.28 0.98 1.07 1.31 1.23 0.97 1.04 1.22 1.32 1.26 1.31

Ni 1.00 1.03 1.18 1.10 1.22 1.27 1.27 1.20 1.22 1.54 1.43 1.28 1.35 1.36 1.34 1.24

Pb 1.00 1.04 1.52 1.35 1.62 1.72 1.46 1.54 1.35 1.38 1.10 1.18 1.04 1.24 1.23 0.95

Rb 1.00 1.93 2.02 0.29 0.81 0.32 1.91 0.96 0.29 0.53 2.26 1.30 0.77 0.81 0.27 0.77

Sr 1.00 0.81 0.85 1.14 1.09 1.10 1.04 1.07 1.12 1.07 1.02 1.12 1.14 1.17 1.13 1.19

V 1.00 6.22 6.90 6.06 5.53 4.38 4.58 5.40 4.93 4.60 2.66 3.59 4.65 7.37 4.99 4.65

Y 1.00 0.97 0.98 1.11 1.08 1.11 1.05 1.06 1.11 1.08 0.96 1.06 1.07 1.11 1.08 1.08

Zr 1.00 0.90 0.88 1.02 1.03 1.01 1.01 1.01 1.07 1.04 0.97 1.03 1.02 1.03 1.03 1.00

Th 1.00 0.79 0.85 1.16 1.10 1.11 1.04 1.07 1.13 1.08 1.02 1.13 1.16 1.20 1.15 1.20
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Table 4.4.2: The enrichment/depletion of the major and trace elements in Secunda core S3 based on XRF analysis 

 

Fresh Ash 0m 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 15m 16.5m 18m 19.5m 21m 22.5m 24m 25.5m 27m 28.5m 30m 31.5m

Major

Si 1.00 0.91 0.93 0.93 0.93 0.89 0.89 0.90 0.94 0.98 0.81 0.90 0.90 0.94 0.94 0.95 0.80 0.92 0.92 0.88 0.88 0.86 1.16

Al 1.00 0.92 1.01 0.97 1.00 0.96 0.93 0.81 0.87 0.83 0.84 0.93 0.84 0.88 0.90 0.88 0.91 0.83 1.00 0.84 0.79 0.96 0.47

Fe 1.00 1.40 1.20 1.37 1.26 1.54 2.19 1.89 1.39 1.49 4.58 2.24 1.85 1.46 1.40 1.29 2.42 1.09 0.96 1.28 1.28 1.16 3.00

Mn 1.00 1.36 1.16 1.36 1.16 1.16 1.16 1.55 1.16 1.16 1.94 1.16 1.55 1.16 1.55 1.55 1.74 1.55 1.16 1.55 1.74 1.55 2.32

Mg 1.00 1.77 1.48 1.36 1.39 1.38 1.37 1.48 1.56 1.60 1.37 1.30 1.47 1.55 1.50 1.55 1.46 1.66 1.46 1.70 1.77 1.51 1.55

Ca 1.00 0.94 0.90 0.91 0.83 0.99 0.96 1.11 1.00 0.95 1.03 0.87 0.98 0.97 1.04 1.07 1.16 1.11 0.96 1.10 1.26 1.09 0.75

K 1.00 1.20 1.15 1.28 1.31 1.30 1.21 1.36 1.41 1.46 1.03 1.21 1.30 1.33 1.32 1.27 0.95 1.16 1.03 1.05 0.92 1.00 4.63

Na 1.00 1.07 1.11 1.16 1.16 1.26 1.18 1.36 1.29 1.31 1.14 1.08 1.20 1.30 1.23 1.27 1.27 1.37 1.16 1.41 1.43 1.24 1.44

Ti 1.00 1.07 1.03 1.07 0.98 1.07 0.98 1.18 1.15 1.17 0.95 0.98 1.06 1.11 1.11 1.17 1.01 1.19 1.04 1.15 1.19 1.04 0.85

P 1.00 1.17 1.06 1.00 1.04 1.10 1.01 1.14 1.15 1.17 0.94 1.00 1.06 1.18 1.07 1.14 1.13 1.18 1.13 1.25 1.34 1.20 0.51

S 1.00 1.67 4.00 3.00 3.00 3.33 4.00 3.67 3.33 3.33 3.00 2.67 3.00 3.00 3.00 3.00 3.33 3.33 2.67 3.67 3.00 3.33 1.33

LOI 1.00 1.89 1.44 1.53 1.62 1.72 1.83 1.89 1.61 1.41 1.83 1.90 2.16 1.63 1.48 1.42 1.59 2.28 1.94 2.16 2.15 2.12 0.67

Trace

As 1.00 1.56 1.32 1.25 0.99 1.51 1.18 1.70 1.50 1.30 1.82 1.31 1.29 1.37 1.28 1.34 1.26 1.77 1.41 1.41 1.50 1.27 2.49

Ba 1.00 1.14 1.13 1.02 1.12 1.15 1.02 1.16 1.17 1.13 0.97 0.98 1.09 1.18 1.06 1.13 1.11 1.13 1.21 1.21 1.26 1.14 0.61

Ce 1.00 1.07 0.90 1.06 0.92 0.99 0.95 1.40 1.19 1.28 1.40 1.23 1.13 1.15 1.12 1.26 0.94 1.27 1.21 1.31 1.23 1.28 0.80

Co 1.00 1.15 0.74 1.01 1.16 1.02 0.73 1.19 0.85 1.27 0.82 1.60 1.18 1.07 0.99 0.82 0.57 0.97 1.08 1.32 1.13 0.87 1.53

Nb 1.00 1.34 1.32 1.29 1.27 1.32 1.03 1.45 1.47 1.35 1.04 1.20 1.23 1.44 1.21 1.36 1.44 1.46 1.55 1.51 1.49 1.40 0.25

Ni 1.00 1.21 1.06 1.26 1.30 1.24 1.29 1.33 1.40 1.47 1.33 1.01 1.26 1.37 1.27 1.32 1.33 1.71 1.44 1.57 1.59 1.40 2.63

Pb 1.00 1.17 0.85 1.21 1.49 1.49 1.22 1.60 1.21 1.23 0.86 1.29 1.32 1.23 0.90 1.26 1.17 1.15 1.10 1.48 1.09 1.14 1.68

Rb 1.00 0.73 ND 1.43 1.48 0.83 1.13 1.07 1.18 1.85 2.06 0.58 1.59 1.36 1.84 0.70 0.14 ND 0.11 ND ND ND 8.41

Sr 1.00 1.15 1.15 1.10 1.08 1.21 1.05 1.31 1.26 1.15 1.17 1.13 1.21 1.25 1.17 1.16 1.20 1.38 1.34 1.35 1.34 1.31 0.22

V 1.00 3.18 4.79 7.49 4.92 7.73 3.82 5.98 4.63 5.39 3.56 4.07 3.98 8.10 4.20 2.75 5.67 3.90 6.75 4.64 3.58 3.20 1.97

Y 1.00 1.11 1.11 1.05 1.01 1.10 1.04 1.19 1.17 1.12 0.96 1.08 1.13 1.18 1.13 1.14 1.12 1.21 1.24 1.31 1.30 1.19 0.25

Zr 1.00 1.09 1.07 1.06 0.97 1.06 1.04 1.17 1.12 1.10 1.08 1.04 1.13 1.14 1.13 1.16 1.11 1.12 1.21 1.23 1.25 1.16 0.40

Th 1.00 1.16 1.17 1.11 1.09 1.23 1.06 1.35 1.29 1.17 1.17 1.13 1.22 1.28 1.19 1.18 1.23 1.41 1.38 1.39 1.38 1.35 0.18
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The enrichment/depletion factors are expected to show the patterns of mobility or 

retardation of the species as a result of dissolution of the ash matrix and soluble salts 

contained in the ash. The discussion is presented for the weathered drilled cores S1 

and S3. 

 

In the drilled cores samples S1 and S3, the concentrations of elements such as Si and 

Al, were depleted relative to fresh Secunda fly ash. The trends of Si and Al are similar 

in both drilled cores. Although the concentration of Al remained unchanged at depths 

of 3 m and 4.5 m in core S1 and 1.5 m, 4.5 m and 25.5 m for core S3. Al and Si were 

consistently depleted down the core.  This depletion in Si and Al indicates that these 

species are continuously leached from the ash as a result of weathering. As stated in 

section 4.4.1 the leaching of Si and Al from fly ash increased with weathering. Since 

Al and Si form the major matrix of the ash, the weathering will release other 

components locked in the ash matrix.  

 

The concentration of Fe, Mn, Na, K, Mg and SO4 were observed to be somewhat 

enriched consistently in both drilled ash cores. The enrichment of Fe (1.40 % in core 

S1 and 1.63 % in core S3) may be a result of the spent Fe catalysts that were also 

disposed in the fly ash dump (Pretorius, 2010), while the slight enrichment in 

concentrations of S may be as a result of the fly ash interactions with the co-disposed 

brine that has a substantial concentration of SO4
2-

 (Mooketsi et al., 2007), According 

to Gitari et al. (2009) usually Na, K and Mg are highly leached from fresh fly ash. 

Hence the slight enrichment or accumulation of these species noted in the weathered 

drilled core samples may have resulted from the co-disposed brine that contained 

substantial concentrations of these elements (Mooketsi et al., 2007; Nyamhingura 

2009). Though a high enrichment value of Na would be expected due to the large 

amount of salt laden brine disposed on the dump over 20 years it is noteworthy that 

Na2O levels never increased above an enrichment factor of 1.22 – 1.43 showing that 

the dump is not holding or encapsulating Na to any significant extent. This shows that 

the salt holding capacity of the ash dump is very low which has a major implication 

for using it as a salt sink. 
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The trend of Ca concentration in drilled Secunda core S1 was observed to be different 

from the trend in drilled core S3. In drilled core S1, Ca was depleted at most of the 

depths but enriched only at depths of 13.5 m and 16, 5 m. The depletions in the 

concentrations of CaO could be due to the leaching and weathering as a result of 

interaction with infiltrating pore-waters due to co-disposal of brine with the fly ash 

(Lee and Spears, 1997). In drilled core S3, depletion in the concentration of Ca was 

observed to be consistent from surface to 7.5 m, 12 m to 18 m, 22.5 m and 31.5 m 

while the concentration of CaO was enriched at other depths. The geophysics (Figure 

3.1.1) also indicated a fault line (crack) in the dump at the position of core S3hence 

the enrichment in concentrations of Ca may have resulted due to the accumulation of 

brine in preferential leaching pathways or the formation of secondary mineral phases 

in the fault. These results highlight the inhomogeneity of the ash dump. 

 

The concentrations of the trace elements in the drilled core sample from Secunda ash 

core S1 were observed to have similar trends to the samples taken from drilled core 

S3. In both drilled Secunda ash core samples, the concentrations of Pb, V, Zn, Cr, Ni 

and Co were observed to be enriched somewhat within the entire cores. These trace 

elements are also present in Sasol brine (Mooketsi et al., 2007; Nyamhingura 2009). 

Hence this enrichment of the trace elements in the drilled core samples could be due 

to the capturing of these species form the co-disposed brine.  

 

The LOI of the two drilled cores samples (S1and S3) was observed to be enriched in 

the weathered ash when compared to the LOI of the fresh ash. The enrichment in LOI 

could probably be due to changes in burner conditions over time resulting in more or 

less carbon or to the structural incorporation of H2O into secondary mineral phases 

formed in the disposal of the fly ash (Yeheyis et al., 2009). 

 

The inhomogeneous enrichment and depletion observed along the entire length of the 

two drilled cores could be explained by the processes occurring in the dam which 

involves the dissolution, precipitation and flushing of the soluble salts bearing these 

elements as a result of rain water infiltration and brine percolation that was co-

disposed with the coal fly ashes. From the enrichment and depletion tables (Tables 4.6 

and 4.7), no significant enrichment or accumulation of any particular element was 
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observed down the two drilled Secunda core S1and S3 compared to the fresh Secunda 

ash. 

4.4.3 Fly ash classification 

 

Table 4.8 presents the mean chemical composition (XRF data of the major and minor 

elements) of the fresh fly ash sample and the drilled cores (S1 and S3) samples at 

different depths, which was used for the classification of the fly ash used in this study. 

 

Table 4.4.3: Mean chemical composition (wt. %) of the drilled core (S1 and S3) at 

different depths and the fresh fly ash samples 

 

 

 

The sum of the mean values of SiO2, Al2O3 and Fe2O3 was 78.67 %, 70.19 % and 

72.94 % for the fresh fly ash, core S1 and S3 respectively (Table 4.3).  Thus the fresh 

fly ash and drilled cores (S1 and S3) can be classified as Class F. According to the 

American Society for Testing and Materials (ASTM C 618-92a), fly ash can be 

classified as class F or C based on the sum of the oxides of aluminium, silicon and 

iron in the fly ash. Class F fly ash are characterised by (i) the sum of SiO2, Al2O3, 

Fe2O3 >70 %, (ii) SO3<5 %, (iii) moisture content <3% and (iv) loss on ignition (LOI) 

<6 %. (v) CaO<20 %. The fresh fly ash contained 8.95 % CaO while cores S1 and S3 

contained 8.01 % and 8.95 % CaO respectively. These values of CaO are in the mid-

range among Class F fly ashes that usually have low calcium content (Vassilev and 

Vassileva, 2007).  

 

Apart from the ASTM classification which showed that the fly ash is class F, the fresh 

fly ash and drilled cores can be classified as silico-aluminate ash based on the 

SiO2/Al2O3 ratio. The fresh fly ash and drilled cores (S1 and S3) samples have 
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SiO2/Al2O3 ratios of 2.0, 1.88 and 2.5 respectively (Table 4.3). According to the 

United Nations subcommittee of Fly Ash Utilization, fly ash is classified as silico-

aluminate fly ash when the SiO2/Al2O3 ratio is ≥ 2 and CaO content is < 15 % 

(Vassilev and Vassileva, 2007). 

 

Roy and Griffin (1982), proposed a taxonomic system for classifying fly ash into 

seven chemical categories based on the sialic (SiO2 + Al2O3 + TiO2), ferric (Fe2O3 + 

MnO + SO3 + P2O5) and calcic (CaO + MgO + Na2O + K2O) contents of the fly ash. 

The ternary plot of the Secunda drilled core (S1 and S3) samples based on XRF data 

are presented in Figures 4.4.5 and 4.4.6. This plot also shows the classification of 

drilled core samples (S1 and S3) based on the contents of sialic, ferric and calcic 

contents from the XRF data. 

 

 

 

Figure 4.4.5: Ternary plot of Secunda core S1 samples based on the XRF analysis 
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Figure 4.4.6: Ternary plot of Secunda core S3 samples based on the XRF analysis 

 

It was observed from the ternary plot that some samples extracted from the drilled 

core S1 and S3 (Figure 4.4.5 and 4.4.6) show some sialic nature but most samples fell 

into the ferrocalsialic category. The ferrocalsialic fly ash type has the sialic (SiO2 + 

Al2O3 + TiO2) component >48-88%; Calcic (CaO + MgO + Na2O + K2O) component 

between 0-29%; and ferric (Fe2O3 + MnO + SO3 + P2O5) component between 0 - 

<23% (Roy and Griffin, 1982). Modic fly ashes may generally correlate with class F 

fly ashes as they meet the requirement of this group of fly ash according to the ASTM 

classification. This classification system could be used to help determine which 

utilization and recycling method might be best suited for a particular type of fly ash. 

 

Based on the XRF analysis (Fig 4.4.1) it is postulated that the ferrocalsialic category 

in the drilled cores samples S1 and S3 could be due to disposal of spent Fe containing 

catalysts upon this region of the Secunda dump. This result again shows the 

inhomogeneity of the Secunda dump, which may be exacerbated by co-disposal 
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practices, where metal containing spent catalyst waste, may be mixed with ash during 

dumping, which is reported by Secunda site personnel. 

 

4.5 Mineralogical analysis 

 

Figures 4.5.1 and 4.5.2 show the XRD patterns of the fresh ash and drilled core 

samples S1 and S3 respectively. XRD was applied to identify the mineralogical 

phases present in the fresh Secunda fly ash and any changes taking place over time in 

the drilled Secunda core samples at different depths. 
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Figure 4.5.1: XRD patterns of Secunda fresh and weathered fine coal ash core S1 at different depths: surface, 7.5 m, 16.5 m and 22.5 m 
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Figure 4.5.2: XRD patterns of Secunda fresh and weathered fine coal ash core S3 at different depths: surface, 7.5 m, 16.5 m, 22.5 m and 31.5 m 
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The XRD results (Fig4.5.1 and 4.5.2) revealed that the major crystalline mineral 

phases for the Secunda fresh fly ash samples were quartz (SiO2) and mullite 

(Al6Si2O13). Lime (CaO) was also identified but was present in low amounts as can be 

seen from the relatively minor peaks when compared to those of quartz and mullite. 

According to Singh and Kolay (2002) quartz and mullite are the major crystalline 

constituents of class F fly ashes. Quartz is a hard mineral commonly found as cell and 

pore infillings in the organic matter of coal and is regarded as a primary mineral. It is 

basically considered as non-reactive in combustion processes due to its high fusion 

temperature (Ward, 2002). Mullite is a secondary mineral that is assumed to be 

formed during the thermal decomposition of kaolinite, an aluminosilicate mineral in 

the coal (Koukouzas et al., 2009, White and Case, 1990). Lime, which is also a 

secondary mineral may have resulted from the decomposition of calcite or dolomite, 

which are the most important and common calcium-bearing minerals in coal.  

 

For the two drilled Secunda cores (S1and S3), core S1 showed quartz and mullite as 

the major crystalline mineral phases from the surface down to the depth of 16.5 m. 

Lime and calcite (CaCO3) were also identified but as minor peaks, calcite is a 

secondary mineral formed by contact of lime (CaO) contained in the ash with 

ingressed CO2 (Vassilev and Vasssileva, 1996). At a depth of 22.5 m, apart from 

quartz and mullite, minor phases of kaolinite (Al2(Si2O5)(OH)4) and nitratine (NaNO3) 

were also identified. Nitratine is a tertiary mineral that may have resulted from the 

interaction of brine with the fly ash or may be due to the drying process in the sample 

preparation prior to analysis. The kaolinite in the weathered ash sample (core S1) at 

the bottom of the dump (depth 22.5m) may have been derived from the erosion of the 

rock and soil surrounding the ash dam. It could also have resulted from the alteration 

of the glass phase or weathering of the ash in the dump (Ward et al., 2009). 

 

Core S3 had quartz and mullite as the major crystalline mineral phases and calcite as 

the minor phase at the surface (0 m) of the ash dump. Core S3 presents a unique 

transformation in mineralogy down the depth of the Secunda dump.  At depths of 7.5 

m, 16.5 m and 25.5 m, the major crystalline mineral phases were quartz and mullite 

with calcite, halite (NaCl) and bassanite (CaSO4.2H2O) showing up as minor phases. 

At depth 31.5 m, quartz was the major phase. Other minerals also tentatively 
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identified at this depth in minor quantities were calcite, microline (KAlSi3O8) and 

hydrophitte (CaCl2).  

 

Halite, bassanite, nitratine, hydrophitte, microline and albite low are considered as 

transient mineral that may also have formed from the interaction of brine with the fly 

ash. This is based on the chemical composition of these mineral phases which can be 

associated with the chemical compositions of the co-disposed brine. Also these 

transient mineral could have formed at the point of analysis due to the drying process 

used prior to XRD analysis. Pore-water analysis (EC and TDS) in section 4.2 revealed 

the high presence of ionic species from salts in the pore-water of Secunda fly ash 

samples. Alai et al., (2004) in their study of brine containing Na, Cl, NO3, K, SO4, Ca, 

Mg, CO2(aq), F, and Si predicted that halite, bassanite and nitratine  may form during 

brine evolution in complex aqueous systems at elevated temperatures.  

 

The XRD spectra of the Secunda fly ash samples extracted at different depths of the 

two drilled cores (S1 and S3) were inconsistent in terms of secondary mineral phases 

although the major mineral components in all cases were quartz, calcite and mullite 

regardless of the sampling depth. The quartz peaks of the drilled core samples are 

quite prominent and have a tendency to obscure other less abundant or less crystalline 

mineral phases. This as well as the fact that samples cannot be analysed in situ was 

the major limitation of XRD analysis. The XRD patterns agree with the results of the 

XRF showing high percentages of the oxides of Si, Al and Ca which were the major 

components of the mineral phases observed in the XRD. The three phases detected 

namely: quartz, mullite and calcite correspond to the significant levels of Si, Al and 

Ca respectively in the ash (Figure 4.4.1) while lower levels of Fe and Mg (Figure 

4.4.2) could account for the non-detection of any mineral phases such as hematite 

(Fe2O3) and enstatite (Mg2Si2O6) that are typically associated with these species 

(Nathan et al., 1999). The geophysics profile of the profile ash dam (Figure 4.1.1) 

similarly provides clues to explaining the observed mineralogy. Contact with rocks 

prevented coring to deeper depths in cores S1 and S3. Furthermore, the geophysics of 

core S3 also showed indication of a fault (crack) at a depth of 16.5 m which coincided 

with the point where the new mineral phases were found. This may indicate a 

preferred flow pathway for the brine, resulting in a region with highly salt saturated 
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conditions promoting the precipitation of the salts detected either in situ in the dump 

or during sampling handling. 

 

4.6 Summary of comparative bulk chemistry and mineralogy of weathered fine 

coal ash cores S1 and S3 from Sasol Synfuels-Secunda ash dam 

 

The investigation provided significant insight into the mineralogy, morphology, 

chemical composition and pore water chemistry of the fly ash co-disposed with brine 

in Secunda. Based on the concentrations of the elements determined by the XRF 

analysis for the fresh fly ash and drilled core samples, the major oxides identified 

were SiO2, Al2O3, CaO, Fe2O3, MgO, Na2O and TiO2, minor elements were K, P, S 

and Mn and trace elements in the samples were As, Ba, Ce, Co, Cu, Nb, Ni, Pb, Rb, 

Sr, U, V, Y, Zr and Th. Sr (4465 ppm and 4864 ppm in core S1 and S3 respectively), 

Ba (2682 ppm and 3014 ppm in core S1 and S3 respectively) and Th (2075 ppm and 

2283 ppm in core S1 and S3 respectively) recorded the highest levels among the trace 

elements in the ash dump cores while Rb and Ni recorded the lowest levels. 

 

The fresh Secunda fly ash and drilled core samples from Secunda were further shown 

to be class F and silico-aluminate fly ash showing sialic and modic or ferrocalsialic 

chemical properties. The XRF analysis further indicated how the species were 

enriched and (or) depleted along the depths of the drilled core samples when 

compared to the fresh ash samples showing considerable mobility and inconsistency/ 

inhomogeneity of the ash dump. 

 

The bulk mineral analysis by XRF also agreed with the XRD result which shows that 

the prominent mineral phases corresponded to the elements of oxides (Si and Al) with 

highest percentages in the samples. While quartz and mullite mineral phases were 

very prominent in the weathered Secunda drilled core samples, transient minerals 

such as lime, calcite, halite, bassanite, and kaolinite were much less abundant. The 

morphological changes (encrustations, etchings and corrosion) observed in the 

morphologies  (by SEM) of the weathered ash particles from the drilled Secunda cores 

may thus be attributed to the formation of small amounts of transient secondary 
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mineral phases due to leaching/reprecipitation  processes that may have occurred as a 

result of weathering.  

 

The pH profile of the drilled cores showed that the Secunda dump had become 

considerably less alkaline over time than the fresh Secunda ash indicating that 

acidification processes accompany the weathering of the ash in the Secunda wet 

disposed ash dams over time. The pH analysis showed a significant decrease in pH 

from 12.38 in fresh ash to a range of 9 – 11 in the wet disposed ash. The trend of 

acidification in the weathered ash is attributable to the chemical interactions of the ash 

and brine used to transport the ash as well as with the atmospheric CO2 and 

percolating rain water. Also the variations in the pH values along the depth indicate 

that there are different weathering zones within the dump. This is attributed to varying 

placement conditions during disposal and preferential flow pathways causing different 

rates and zones of weathering in the ash dump, which has as result a change of pH; 

which in turn impacts on the mobility of the chemical species in the fly ash. The very 

high moisture content of the cores obtained from the ash dams formed by the wet ash 

handling system is of concern due to the dissolution and potential leaching of toxic 

species from the ash dump. 

 

The shortcoming of the bulk chemical analysis is that the behaviour of various 

elements in the environment (toxicity, distribution and bioavailability) cannot be 

dependably predicted on the basis of their total concentration. However, it is 

necessary to stress that the assessment of the bulk concentration still provided vital 

information. It should be the first step in the evaluation of the environmental and 

biological risk associated with this material; on the basis of this information it can be 

decided if more information on the species availability should be acquired during the 

sequential fractionation studies, which results and discussions are to follow in the next 

chapter.  

 

The most noteworthy aspect of the Secunda drilled core mineralogical and chemical 

sample analysis thus far is that Na containing secondary mineral phases in the 

Secunda ash drilled cores were not very evident and such as were observed, were of 

low abundance. Moreover, Na2O content in Secunda ash drilled cores was low and 

 

 

 

 



Chapter Four: Characterisation and Pore Water Analysis 

 

107 

 

 

ranged between only 2.2 and 3 mass % throughout the profiles of the various cores 

examined compared to the fresh ash that had 2.21 wt. % Na2O thus no accumulation 

of Na is evident which should be the case if the ash acted as a salt sink. Thus it is not 

evident from the mineralogy or chemistry of the ash cores sampled that Secunda ash 

could act as a long term sustainable salt sink especially considering the volume of 

salts conveyed in the brine slurry. 
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Chapter Five 

 

Mobility and Partitioning Patterns of Elements 

 

5 Introduction 

 

This chapter presents and discusses the results obtained from the total acid digestion test, the 

analysis of the anions obtained from the pore water chemistry and sequential extraction tests 

performed on the fresh Secunda fly ash samples and weathered drilled ash core samples, S1 

and S3. These experiments were carried out in order to understand the mobility and 

partitioning patterns of the major, minor and trace elements in the Secunda ash samples 

resulting from the brine-ash interaction and weathering. In section 5.1 the results of the total 

metal content obtained from the total acid digestion test is presented and discussed.  In section 

5.2 the anionic species (SO4
2-

 and Cl
-
) are presented and discussed. Section 5.3 presents and 

discusses the partitioning patterns of the major and trace elements in the water soluble 

fraction, exchangeable fraction, carbonate fraction, Fe/Mn fraction and residual fraction. 

Section 5.4 presents and discusses the assessment of data quality for total metal concentration 

for the major and trace elements (mass balance). This chapter ends with a summary of the 

mobility and partitioning patterns of the major and trace elements in the Secunda fresh fly ash 

and weathered drilled core S1 and S3.  

 

5.1 Total metal content 

 

The total acid digestion experiment was carried out as reported in section 3.2.3 to determine 

the total metal content of the unleached fresh Secunda fly ash and drilled ash cores S1 and S3. 

The total elemental composition of the Secunda fly ashes was determined for comparative 

study. The digestates obtained were analysed using the ICP-OES (see section 3.3.8). The 

results of the total metal content analysis of the Secunda fresh fly ash and drilled Secunda core 

(S1 and S3) samples are shown in Figure 5.1.1 to 5.1.4 and Appendix 3and 4. Due to 

inhomogeneity of the ash dump, the mean value [number of determinations for fresh ash, S1 

and S3 are 3, 30 and 44 respectively] of the concentration of the elements along the depth of 

the drilled Secunda ash core S1 and S3 are compared to the concentration of the Secunda fresh 
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fly ash. The discussion of the trends observed for major (Si, Al, Ca, Fe, Na, Mg, and K), 

minor (Sr, Ba and Mn) and trace (As, Pb, Cr, Mo, Cu, Ni, and Zn) elements follows after the 

presentation of the figures. 

 

 

 

Figure 5.1.1: Total concentrations (ICP) of major elements (mg/kg) in Secunda fresh fly ash 

[number of determinations for fresh ash, S1 and S3 are 3, 30 and 44 respectively] 
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Figure 5.1.2: Total concentrations (ICP) of major elements (mg/kg) in Secunda weathered 

drilled core S1 [number of determinations for fresh ash, S1 and S3 are 3, 30 and 44 

respectively] 

 

 

 

Figure 5.1.3: Total concentrations (ICP) of minor elements (mg/kg) in Secunda weathered 

drilled core S3 [number of determinations for fresh ash, S1 and S3 are 3, 30 and 44 

respectively] 
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Figure 5.1.4: Total concentrations (ICP) of trace elements (mg/kg) in Secunda weathered 

drilled core S3 [number of determinations for fresh ash, S1 and S3 are 3, 30 and 44 

respectively] 

 

Figure 5.1.1 to 5.1.4 presents the mean values of the total concentrations of major, minor and 

trace elements in the Secunda fresh fly ash and drilled core samples for cores S1 and S3 

determined by the total acid digestion test. The results reveal that the concentrations of the 

major and minor elements in the Secunda fresh fly ash were Si 230180.67 mg/kg, Al 

134015.28 mg/kg, Ca 64096.73 mg/kg, Fe 15874.44 mg/kg (, Na 16543.31 mg/kg, Mg 

8757.25 mg/kg, K 7986.73 mg/kg, Sr 3961.97 mg/kg, Ba 2603.39 mg/kg and Mn 429.58 

mg/kg (Refer to figures 5.1.1 to 5.1.4). The total concentrations of the trace elements (As, Pb, 

Zn, Ni, Mo, Cu and Cr) were found to be 60.20 mg/kg, 26.99 mg/kg, and 25.77 mg/kg, 22.03 

mg/kg 17.53 mg/kg, 9.97 mg/kg, and 11.27 mg/kg respectively (Figure 5.1.4). 

 

For the drilled Secunda core sample, S1 the mean total concentrations as a function of depth 

for the major and minor elements were; Si 244662.66 mg/kg, Al 62811.89 mg/kg, Ca 

75656.13 mg/kg, Fe 25791.06 mg/kg, Na 18817.10 mg/kg, Mg 9199.83 mg/kg, K 9726.40 

mg/kg, Sr  4153.33, Ba 2489.94 mg/kg and Mn 592.18 mg/kg(figures 5.1.1 to 5.1.3),  while 

the concentrations of the trace elements were found to be As 83.13 mg/kg, Pb 31.96 mg/kg, Zn 

32.57 mg/kg, Ni 25.35 mg/kg,  Mo 17.34 mg/kg, Cu 10.01 mg/kg,  and Cr 7.80 mg/kg, (Figure 
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5.1.4). The chemical composition of the drilled core S3 showed that the concentrations of the 

major oxides were; Si 264434.57 mg/kg, Al 118566.14 mg/kg, Ca 52210.04 mg/kg, Fe 

29328.18 mg/kg, Na 11797.49 mg/kg, Mg 10968.79 mg/kg. Minor elements were K 4473.60 

mg/kg, Sr 9051.05 mg/kg, Ba 5788.89 mg/kg and Mn 606.41 mg/kg. The concentrations of 

the trace elements in core S3 were found to be; As 87.67 mg/kg, Pb 30.77 mg/kg, Zn 28.57 

mg/kg, Ni  27.22 mg/kg , Mo 14.49 mg/kg, Cu 9.57 mg/kg,  and Cr 8.80 mg/kg . 

 

The total concentrations of the major and trace elements in the Secunda fresh fly ash and 

weathered drilled cores S1 and S3 as determined by ICP show that the concentrations of the 

major elements (Si, Al and Ca) and minor elements (Fe, Na, Mg, Sr, Ba and Mn) were high in 

all the Secunda fly ash samples. The concentrations of these elements accounted for 99.96 % 

of the total elemental components analysed in the fresh Secunda fly ash; 99.95 % and 99.96 % 

in drilled Secunda ash cores S1 and S3 respectively. The concentrations of the trace elements 

(As, Pb, Zn, Ni, Mo, Cu and ), accounted for 0.04 % of the total elemental components 

analysed in the fresh Secunda fly ash and drilled ash core S3 and 0.05 % of drilled Secunda 

ash core S1. The variations in the total elemental compositions of Sr and Br in the two drilled 

cores S1 and S3 shows the inhomogeneity between different sections of the Secunda ash dump 

(Figure 5.1.3). The concentrations recorded in the total acid digestion analysis of the fly ashes 

were found to be similar to what was observed in the XRF analysis given in section 4.4.1. The 

observed significant depletion in the total concentrations of Al and Ca is similar to the trend 

observed in the XRF analysis. The high concentrations recorded for Si and Al indicates the 

aluminosilicate property of the fly ashes. Even though the results of the chemical compositions 

of the fresh fly ashes and the core ash samples revealed that Si and Al were leached out during 

the disposal at the ash dumps (section 4.4.1), the comparison of Si and Al concentration in the 

total metal content analysis showed that proportionally more Si and Al is present in the core 

ash samples than in the fresh fly ash. Due to the loss of other leachable elements such as Ca, 

Mg, Na, K, and S. The higher concentrations of Ca, Na, and Mg in the drilled ash cores than in 

the fresh fly ash may have resulted from the interaction of the fly ash and the co-disposed 

brine which has been reported to be rich in these species (Nyamhingura, 2009). Also the 

increase in concentration of the trace elements such as As, Pb, Zn, Ni, Mo, Cu and Cr in the 

drilled Secunda ash core samples compared to the Secunda fresh fly ash may also be attributed 

to brine interaction or weathering. 
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5.2 Anionic Species (sulphate and chloride) 

 

The pore water chemistry experiment was carried out as reported in section 3.2.2 to determine 

the anion content (SO4
2-

 and Cl
-
) of the Secunda fresh fly ash and weathered drilled cores S1 

and S3. The supernatants obtained after leaching the Secunda ash core S1 and S3 samples 

were analysed using the using a Dionex ICS-16000 ion chromatograph (IC) (see section 

3.3.7). Figures 5.2.1 and appendix 3 and 4 show the distribution of readily soluble anionic 

species down the ash cores as revealed by ion chromatography (IC) analysis in samples from 

drilled Secunda ash cores S1 (0-22.5 m) and S3 (0-31.5 m) in comparison with fresh fly ash 

collected from Secunda power station. A detailed discussion is given after presentation of the 

figure. 
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Figure 5.2.1 Distribution of sulphate and chloride ions in the Secunda fresh fly ash and drilled cores S1 and S3 [number of determinations for 

fresh ash, S1 and S3 are 3, 30 and 44 respectively] 
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Figures 5.2.1: The concentration of sulphate in the fresh fly ash was 13.64 mg/kg, while the 

drilled core samples showed high accumulation of sulphate in the range of 59.40 - 359.87 

mg/kg and 27.98 - 594.13 mg/kg in core S1 and S3 respectively. There was a significant 

enrichment in the concentration of sulphate ions in the weathered drilled cores S1 and S3 

when compared to the fresh fly ash.  Also the sulphate concentrations were significantly 

increased at some depths and lower at other depths showing significant inhomogeneity. The 

concentration of chloride in the Secunda fresh fly ash was 4.05 mg /kg while drilled core 

samples had chloride concentration in the range of 7.62 - 34.34 mg/kg and 2.56 - 51.32 mg/kg 

in core S1 and S3 respectively. There was slight enrichment in the concentration of the 

chloride ions in the weathered ash compared to the fresh fly ash. In the two weathered drilled 

ash cores S1 and S3 there was no significant change in the concentration trend of the chloride 

ions along the depth of the dam which shows that there was little retention or accumulation of 

chloride ions in the ash dam showing this anion‟s conservative nature. The enrichment of 

sulphate anions in the weathered drilled core samples compared to the Secunda fresh fly ash 

may have resulted from the interaction of Secunda brine that is rich in sulphates and chlorides 

(Mooketsi et al., 2007; Nyamhingura, 2009) with the co-disposed fly ash.  

 

 The anion analysis of the Secunda fresh ash and weathered drilled core samples show that 

although the co-disposal of the fly ash with brine leads to the enrichment of sulphate ions in 

the weathered fly ash. The pore water analysis also showed that although higher amounts of 

sulphate was present in samples from the drilled Secunda ash cores (S1 and S3) than in the 

fresh Secunda fly ash, the sulphate was very soluble, leaching out rapidly when the pore water 

was extracted. The lack of consistent enrichment of chloride ions along the depth of the dump 

and rapid dissolution of the sulphate upon contact with water indicates the unsustainability of 

the Secunda fly ash dam as a sustainable salt sink. 

 

5.3 Phase association and distribution patterns of the major and trace elements 

 

This section presents and discusses the results obtained from the sequential extraction tests 

performed on the Secunda fresh fly ash sample and the weathered fly ash drilled core samples 

S1 (0 - 22.5 m) and S3 (0 - 31.5 m) and fresh fly. The sequential extraction tests were carried 

out as reported in section 3.2.4.in order to determine the distribution patterns of the elements 

in the five geochemical phases of the Secunda fresh fly ash and weathered fly ash co-disposed 
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with brine from drilled Secunda ash cores S1 and S3. The leachates obtained were analysed 

using the ICP-OES (see section 3.3.8). As in the case of the total metal content, the mean 

value [number of determinations for fresh ash, S1 and S3 are 3, 30 and 44 respectively] of the 

concentration of the elements along the depth of the drilled Secunda ash core S1 and S3 are 

compared to the concentration of the Secunda fresh fly ash due to the inhomogeneity of the 

ash dump. Due to possible sample loss during the sequential extraction experiments the 

calculated amount of each element extracted (%) is based on the total sum of the 

concentrations of the element in the water soluble fraction, the exchangeable fraction, the 

carbonate fraction, the Fe and Mn fraction and the residual fraction.  

 

5.3.1 Silicon  

 

The proportions of the total Si extracted from the Secunda fresh fly ash and drilled core 

samples (cores S1 and S3) in the water soluble, exchangeable, carbonate, Fe and Mn, and 

residual fractions are presented in Figure 5.3.1 and appendix 7 to 16. 
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Figure 5.3.1: Distribution patterns of Si in the five geochemical phases of the fresh fly ash and 

weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 3, 30 

and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

From Figure 5.3.1, it is observed that the residual fraction, Fe and Mn fraction and the 

carbonate fraction had the largest proportion of Si extracted from the fresh Secunda fly ash 

and weathered drilled core S1 and S3.  In the residual fraction, the concentration of Si released 

from the fresh fly ash was 206815.56 mg/kg (87.77 %); 207963.26 mg/kg (86.81 %) from core 

S1 and 224769.39 mg/kg (86.92 %) from core S3. The residual fraction which involved total 

acid digestion dissolved the ash matrix completely leading to the high concentrations of Si 

observed. The species in the residual fraction are contained in the insoluble matrix of the fly 

ash which cannot be easily released except in extreme conditions (Warren and Dudas 1984; 

Gitari et al., 2009). 

 

Apart from the bulk Si content extracted from the residual fraction, the Fe and Mn fraction and 

the carbonate fraction also contained significant amounts of Si.  In the Fe and Mn fraction the 

concentration of Si in the fresh fly ash was 13545.9 mg/kg (6.08 %) while the mean 

concentrations of Si extracted in the two drilled cores were 14294.68 mg/kg (5.97 %) for S1 
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and 20124.81 mg/kg (7.78 %) for S3.  For the carbonate fraction the concentration of Si 

extracted in the fresh fly ash was 12439.00 mg/kg (5.58 %,) and the extracted mean 

concentrations in the two drilled cores were 13767.95 mg/kg (5.75 %) for core S1 and 

12598.09 mg/kg (4.87 %) for core S3. The observed high concentration of Si extracted from 

the Fe and Mn fraction and the carbonate fraction may be attributed to the dissolution of the 

aluminosilicate matrix of fly ash due to the low pH of the leachant used in the extractions of 

these fractions (pH 2 and 5 for the Fe and Mn fraction and carbonate fraction respectively). 

This indicates that Si is pH sensitive and can be mobilised as pH decreases over time in the 

ash dump. Since very large amount of fly ash are dumped, the ± 5 % of Si released pose a 

significant problem since this is a major component of the fly ash matrix and its release would 

cause the release of other, more toxic components in the Si matrix. 

 

The water soluble and exchangeable fraction of the fresh Secunda fly ash and drilled ash core 

S1 and S3 reported low concentration of Si released. In the exchangeable fraction the 

concentration of Si released was 47.85 mg/kg (0.02 %,) and the mean concentrations of Si 

extracted from the weathered drilled cores were 1162.19 mg/kg (0.49 %) for core S1 and 

963.38 mg/kg (0.37 %) for core S3. In the water soluble fraction the concentration of Si 

released was 1217.26 mg/kg (0.55 %) in the fresh fly ash while the mean of the total 

concentrations of Si extracted in the water soluble fraction from the weathered drilled cores S1 

and S3 were 2366.73 mg/kg (0.99 %) and 123.23 mg/kg (0.99 %) respectively. These low 

concentrations of Si in exchangeable fraction and the water soluble fraction show that Si is not 

very mobile in these fractions and may not be quickly leached from the fly ash.  

 

The differences in the concentrations of the Si released from the two drilled cores sample in 

the five fractions highlights the inhomogeneity of the ash dam. Si in fly ash are contained in 

the aluminosilicates and silicates minerals which also contain other elements such as Al, Ca, 

Mg, Na, K and other trace elements (Tiruta-Barna et al., 2006). The concentration of Si in the 

respective fractions was governed by the dissolution of the aluminosilicate fraction of the fly 

ash which forms the ash matrix. The dissolution of aluminosilicate minerals in fly ash is pH 

dependent and seems to occur significantly at low pH conditions (Roy and Griffin, 1984; 

Zevenbergen et al., 1999). This extraction study indicate that most of the Si content is locked 

up in the fly ash in the residual fraction (aluminosilicate) and Fe and Mn fraction which cannot 

be easily dissolved except at extreme conditions such as very low pH, a situation that is 
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unlikely to occur naturally in the ash dam. Although in the drilled ash cores, S1 and S3, it was 

evident that residual and iron and manganese had the bulk concentration of Si,  a proportion of 

Si was also released from the carbonate, exchangeable and water soluble fractions which could 

indicate the dissolution of the aluminosilicate ash matrix over time due to changes in pH. 

About 5-6 % of the fly ash matrix is thus soluble. The release of Si at lower pH as a result of 

the dissolution of the aluminosilicate matrix will also result in the release of other toxic 

elements that are locked in the matrix. 

 

5.3.2 Aluminium  

 

Figure 5.3.2 and appendix 7 to 16 presents the proportions of the total Al extracted from the 

fresh Secunda fly ash and drilled Secunda ash core samples (cores S1 and S3) in the water 

soluble, exchangeable, carbonate, Fe and Mn, and residual fractions. 

  

 

 

Figure 5.3.2: Distribution patterns of Al in the five geochemical phases of the fresh fly ash and 

weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 3, 30 

and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 
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Al, as in the case of Si had the major proportion associated with the residual fraction, Fe and 

Mn fraction and the carbonate fraction of the fresh Secunda fly ash and drilled ash cores S1 

and S3. From Figure 5.3.2, in the residual fraction the concentration of Al extracted in the 

fresh fly ash was 107158.44 mg/kg (85.88 %) while the mean concentration of Al extracted in 

the two drilled cores was 53390.11 mg/kg (86.51 %) for S1 and 100781.22 mg/kg (85.92 %) 

for S3 The residual fraction which involved total acid digestion seemed to dissolve the ash 

matrix completely leading to the high concentrations of Al observed. 

 

In the Fe and Mn fraction the concentration of Al released in the fresh fly ash was 8328.45 

mg/kg (6.28 %,). The mean concentrations of Al extracted for the two drilled cores were 

4738.68 mg/kg (7.68 %) for S1 and 10222.55 mg/kg (8.72 %) for S3. The carbonate fraction 

had 9860.47 mg/kg (7.43 %) of Al released from the fresh fly ash while the mean 

concentrations of Al extracted for the two cores were 2805.06 mg/kg (4.55 %)  in core S1 and 

6017.18 mg/kg (5.13 %) in core S3. As explained in the case of Si in section 5.3.1, the 

observed high concentration of Al extracted from these fractions may due to the low pH of the 

leachant used in the extractions of these fractions. Extraction of the carbonate fraction was 

carried out at a pH of 5 while the extraction of the Fe/Mn fraction was carried out at pH 2.   

 

Again as in Si the the proportion of Al extracted in the exchangeable fraction  and water 

soluble fractions of the fresh fly ash and weathered drilled cores S1 and S3 are low. The 

exchangeable fraction had 46.20 mg/kg (0.03 %); 398.87 mg/kg (0.65 %) and 240.5 mg/kg 

(0.02 %) of Al released from the fresh fly ash, core S1 and core S3 respectively. In the water 

soluble fraction the concentration of Al extracted from the fresh fly ash was 495.52 mg/kg 

(0.37 %) while the mean values of the total concentration of Al extracted from the weathered 

drilled cores S1 and S3 were 384.28 mg/kg (0.62 %) and 240.47 mg/kg (0.21 %) respectively 

(Figure 5.3.2).  

 

The differences in the concentrations of the Al released from the two drilled cores sample also 

highlights the inhomogeneity of the ash dam. The fly ash pH value influenced the leaching 

pattern of Al in fly ash where it exists in both amorphous and crystalline form. Several studies 

have reported  that the release of Al is controlled by amorphous Al(OH)3 for pH ranging 

between 6 and 9, and by gibbsite (Al(OH)3) for pH greater than 9 (Fruchter et al., 1990; Roy 

and Griffin, 1984; and Garavaglia and Caramuscio, 1994).  This extraction study show that Al, 
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like Si, is locked up in the fly ash matrix as a phase (aluminosilicate) which cannot be easily 

dissolved except at extreme conditions such as very low pH. However since Al is a major 

component of the ash matrix and 4-5 % can be released from the carbonate fraction, pH 

decrease could cause simultaneous release of other more toxic components from the ash 

matrix. 

 

5.3.3 Calcium  

 

Figure 5.3.3 and appendix 7 to 16 presents the proportions of the total Ca extracted in the five 

geochemical phases from the Secunda fresh fly ash and drilled core samples (cores S1 and 

S3). 

 

 

 

Figure 5.3.3: Distribution patterns of Ca in the five geochemical phases of the fresh fly ash 

and weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 

3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

From figure 5.3.3, it can be seen that the proportion of the total Ca released in the Secunda 

fresh fly ash and drilled ash core S1 and S3 were predominant in the residual fraction, the 

carbonate fraction and the Fe and Mn fraction. In the residual fraction the fresh fly ash had a 
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Ca concentration of 54324.33 mg/kg (86.82 %) and the mean concentrations of Ca contained 

in residual fraction of the two drilled cores were 64307.71 mg/kg (87.51 %) for S1 and 

44378.54 mg/kg (85.87 %) for S3. The residual fraction had the highest proportion of the total 

Ca associated with it.  

 

Figure 5.3.3 also shows that the concentration of Ca extracted in the carbonate fraction was 

3927.94 mg/kg (6.26 %) for the fresh fly ash and the mean concentrations of Ca extracted in 

the two drilled cores were 2454.56 mg/kg (2.94 %) and 3282.17 mg/kg (6.35 %) for Core S1 

and S3 respectively. In the Fe and Mn fraction the concentration of Ca released in the fresh fly 

ash was 2152.95 mg/kg (3.43 %) and the mean concentrations of Ca extracted from the two 

drilled cores were 3903.73.19 mg/kg (5.08 %) for S1 and 2015.15 mg/kg (3.90 %) for S3.  The 

observed high percentage of Ca associated with carbonate fraction can be attributed to the 

presence of the calcite mineral in the stored fly ash (Johnson et al., 1995; Iwashita et al., 

2005). The fresh fly ash and the weathered fly ash from the two drilled cores S1 and S3 

showed the presence of this mineral in the XRD analysis (figure 4.5.1 and 4.5.2 in section 

4.5).  

 

The exchangeable fraction and water soluble fraction also had significant proportions of Ca 

released from the fresh Secunda fly ash and drilled ash core S1 and S3. In the water soluble 

fraction, the total mean concentrations of Ca extracted from the drilled core S1 and S3 were 

1621.19 mg/kg (1.94 %) and 972.03 mg/kg (1.88 %) respectively. The concentration of Ca 

released in the fresh fly ash was 792.11 mg/kg (1.26 %). In the exchangeable fraction the 

concentration of Ca released in the fresh fly ash was 1399.64 mg/kg |(2.23 %) while the 

extracted mean concentration in the two drilled cores were 1993.36 mg/kg (2.53 %) in core S1 

and 1032.20 mg/kg (2.00 %) in core S3. Again there is a significant difference in the mean 

concentration values of the two drilled ash cores due to the inhomogeneity of the ash dump. A 

larger amount of the exchangeable fraction of Ca in the fresh fly ash and both drilled cores (S1 

and S3) was released into the solution than that observed in the water soluble fraction. The 

slightly higher amounts of Ca extracted in the water soluble fraction from the weathered 

drilled cores (0.68 % in core S1 and 0.62 % in core S3) than the fresh Secunda fly ash show 

some enrichment of Ca in the weathered ash cores possibly due to remineralisation processes 

as a result of CO2 interaction, infiltrating water, co-disposed brine and air.  
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This extraction study showed that the slightly higher concentration of Ca in the Secunda 

weathered drilled core samples may have resulted from secondary mineralisation due to 

weathering or the interaction with the co-disposed brine that is rich in calcium (Mooketsi et 

al., 2007; Nyamhingura, 2009). The high proportion of the total Ca released in the water 

soluble, exchangeable and carbonate fraction indicate that Ca is however highly mobile in 

these phases and is likely to leach out of the ash dump. 

 

5.3.4 Iron 

 

The proportions of the total Fe extracted from the Secunda fresh fly ash and drilled core 

samples (cores S1 and S3) in the water soluble, exchangeable, carbonate, Fe and Mn, and 

residual fractions are presented in Figure 5.3.4 and appendix 7 to 16. 

 

 

 

Figure 5.3.4: Distribution patterns of Fe in the five geochemical phases of the fresh fly ash and 

weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 3, 30 

and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

 

 

 

 

 



Chapter Five: Mobility and Partitioning of Elements 
 

124 

 

 

Figure 5.3.4, shows that the proportion of the total Fe is predominant in the residual fraction 

and the Fe and Mn fraction of the fresh Secunda fly ash and drilled ash core S1 and S3. In the 

residual fraction the concentrations of Fe extracted were 13493.27 mg/kg (85.73 %); 21922.40 

mg/kg (86.53 %) and 24928.95 mg/kg (87.29 %) for the fresh fly ash, drilled ash cores S1 and 

S3 respectively. The concentrations of Fe extracted from the Fe and Mn fraction was 1996.23 

mg/kg (12.68 %) in the fresh ash while the mean concentrations of Fe extracted from the two 

drilled cores were 3194.25 mg/kg (12.61 %) for drilled ash core S1 and 3527.43 mg/kg (12.35 

%) for S3. The large amount of Fe released in the residual fraction and the Fe and Mn fraction 

may be attributed to dissolution of the iron bearing mineral phases in the fly ash or could have 

also resulted from the dissolution of the aluminosilicate matrix due to the low pH of the 

leachant used in the extractions of these fractions. 

 

The proportions of total Fe extracted in the water soluble fraction, exchangeable fraction and 

carbonate fraction of the fresh Secunda fly ash and drilled ash core S1 and S3 were observed 

to be low. In water soluble fraction, Fe concentration in the fresh fly ash was 5.61 mg/kg (0.04 

%) while in the drilled ash cores S1 and S3 the mean values of the concentration of Fe 

extracted were 20.56 mg/kg (0.08 %) and 22.99 mg/kg (0.08 %) respectively. The 

concentration of Fe extracted in the exchangeable fraction of the fresh fly ash was 53.79 

mg/kg (0.34 %) and the extracted mean concentration in the two drilled cores S1 and S3 were 

80.14 mg/kg (0.32 %) and 17.77 mg/kg (0.06 %) respectively. In the carbonate fraction the 

concentration of Fe in the fresh fly ash was 189.70 mg/kg (1.21 %) while the mean 

concentration of Fe extracted from the two drilled cores were 116.25 mg/kg (0.46 %) for S1 

and 62.44 mg/kg (0.22 %) for S3.  

 

The small proportion of Fe extracted from the water soluble, exchangeable and carbonate 

fraction may be due to the occurrence of Fe in fly ash as an insoluble oxide, either hematite or 

magnetite (Kim et al,. 2003). The amount of Fe released from the fresh fly ash and weathered 

drilled core samples in the water soluble, exchangeable and carbonate fractions is very low 

(0.04-1.21%) when compared to the very high amount in the relatively immobile Fe and Mn 

fraction (12.35-12.68 %). This shows that Fe in the Secunda fresh fly ash and weathered 

drilled cores are locked up in mineral phases that are not easily dissolved under natural 

conditions and are therefore not likely to leach out of the ash dump. 
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5.3.5 Sodium  

 

Figure 5.3.5 and appendix 7 to 16 presents the proportions of the total Na extracted in the five 

geochemical phases from the Secunda fresh fly ash and drilled core samples (cores S1 and 

S3). 

 

 

 

Figure 5.3.5: Distribution patterns of Na in the five geochemical phases of the fresh fly ash 

and weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 

3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

Figure 5.3.5: The mineral phase association of Na in the Secunda fresh fly ash and weathered 

drilled Secunda ash core samples showed its predominance in the water soluble and residual 

fractions. In the residual fraction, the concentration of Na was 13569.38 mg/kg while the mean 

concentration of Na contained in the two drilled cores was 15994.54 mg/kg for S1 and 

10027.86 mg/kg for S3. The amount of Na extracted from residual fraction accounts for 86.24 

%; 86.06 % and 86.45 % of the mean value of the amount of Na extracted from the fresh ash 

and weathered drilled cores S1 and S3 respectively. As stated earlier the species in the residual 
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fraction are contained in the matrix of the fly ash which cannot be easily released except in 

extreme conditions (Warren and Dudas 1984; Gitari et al., 2009).  

 

The concentration of Na released in the water soluble fraction of the fresh Secunda fly ash and 

weathered drilled ash core S1 and S3 were 1618.30 mg/kg in the fresh fly ash; 1283.36 mg/kg 

in core S1 and 511.83 mg/kg core S3. This concentration values represents 9.92 %, of the total 

Na content in the fresh fly ash and 6.91 % and 4.41 % of in the weathered drilled core S1 and 

S3 respectively. Na is usually associated with the highly soluble phase of the fly ash particles 

(Choi et al., 2002). Thus the release of Na from samples collected at various depths in the two 

drilled ash core probably resulted from the dissolution of the soluble salts such as halite. XRD 

results (Section 4.5) showed the presence of halite in some of the weathered ash samples. This 

high proportion of the total Na found in the water soluble fraction shows that Na is mobile in 

this fraction and may be easily leached out of the fly ash. Therefore, the proportion of Na 

released in the water soluble fraction is of importance in order to study its mobility in the brine 

co-disposed fly ash over time. The species that exist in association with the water soluble 

fraction and exchangeable fraction are the most labile species as they can be easily leached 

and readily reach the environment when fly ash is infiltrated by rain water (Yuan, 2009). The 

release of Na in the water soluble fraction showed that any Na captured from the brine during 

the interaction of brine with fly ash could be rapidly leached out of the dump when in contact 

with infiltrating water. Thus it is highly unlikely that the ash dump is a sustainable salt sink 

irrespective of the co-disposal method used. 

 

A significant proportion of the total Na was also found in the exchangeable fraction while the 

carbonate fraction and the Fe and Mn fraction had negligible difference in the concentration of 

Na released from both fractions. In the exchangeable fraction the concentration of Na released 

was 14.43 mg/kg in the fresh fly ash while the concentration of Na released in the drilled ash 

core S1 and S3 were 938.83 mg/kg and 155.77 mg/kg were respectively. The amount of Na 

extracted from the exchangeable fraction accounts for 0.09 %; 5.05 % and 1.34 % of the total 

amount of Na in the fresh fly ash, drilled core S1 and S3 respectively. Thus only about 4.96 % 

(core S1) and 1.25 % (core S3) of Na was captured in the Secunda drilled ash cores compared 

to the fresh Secunda fly ash in the exchangeable fraction. The concentration of Na released in 

the carbonate fraction was 207.30 mg/kg in the fresh fly ash and the mean concentrations of 

Na extracted from the two drilled cores were 232.44 mg/kg in core S1and 445.01 mg/kg in 
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core S3. The amount of Na extracted from the carbonate fraction accounts for 1.27 %, of the 

total amount of Na in the fresh fly ash and 1.25 % and 3.48 % of the mean value of the total 

amount of Na extracted from the weathered drilled cores S1 and S3 respectively. The 

proportions of the captured Na in the carbonate fraction of the drilled ash cores S1 and S3, 

compared to the fresh Secunda fly ash are also negligible (±0.02 % in core S1 and ±2.57 % in 

core S3). In the Fe and Mn fraction the concentration of Na extracted in the fresh fly ash was 

404.45 mg/kg while the mean concentrations of Na extracted from the two drilled cores were 

135.10 mg/kg for S1 and 495.70 mg/kg for S3. The amount of Na extracted from Fe and Mn 

fraction accounts for 2.48 %, of the amount of Na in the fresh fly ash and 0.73 % and 3.96 % 

of the mean value of the total amount extracted weathered drilled cores S1 and S3 

respectively. The lesser amount of Na extracted in the carbonate fraction and Fe and Mn 

fraction when compared with the water soluble fraction and exchangeable fraction shows that 

Na release is not pH dependant (Warren and Dudas, 1984; Tiruta-Barna et al., 2004). Hence 

Na poses a great risk at the ash dam due to its leaching potential at natural pH. 

 

This extraction study shows that Na was slightly retained by the fly ash but was never the less 

released in the water soluble, exchangeable and carbonate fractions. Hence overall there was 

no retention of Na in the Secunda fly ash dump as can be seen from the XRF analysis (section 

4.4) which shows only a slight enrichment in the total Na content in the drilled Secunda ash 

core samples S1 (0.26 %) and S3 (0.55 %). This poor retention of Na a major component of 

Secunda brine ((Nyamhingura, 2009 and Mooketsi et al., 2007), in the drilled ash cores S1 and 

S3 clearly shows the unsustainability of the Secunda fly ash dump as a salt sink 

 

5.3.6 Potassium 

 

The proportions of the total K extracted from the Secunda fresh fly ash and drilled core 

samples (cores S1 and S3) in the water soluble, exchangeable, carbonate, Fe and Mn, and 

residual fractions are presented in Figure 5.3.6 and appendix 7 to 16. 
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Figure 5.3.6: Distribution patterns of K in the five geochemical phases of the fresh fly ash and 

weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 3, 30 

and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

From Figure 5.3.6, shows that the proportion of the total K was dominant in the water soluble, 

exchangeable and residual fraction in the fresh Secunda fly ash and drilled ash cores S1 and 

S3. In the residual fraction the concentration of K in the fresh fly ash was 6762.07 mg/kg 

(85.90 %) and the mean concentrations of K contained in the two drilled cores were 8267.44 

mg/kg (86.21 %) for core S1 and 3802.56 mg/kg (86.24 %) for core S3. Again the residual 

fraction contained the largest amount of the K released from the fresh Secunda fly ash and 

drilled ash core S1 and S3. The concentrations of K released in the water soluble fraction were 

355.22mg/kg (4.49 %); 501.07 mg/kg (5.23 %) and 46.91 mg/kg (1.06 %) in the fresh fly ash, 

drilled ash core S1 and S3 respectively. In the exchangeable fraction the concentration of K 

extracted from the fresh fly ash was 513.61 mg/kg (6.50 %) while the extracted mean 

concentration extracted from the two drilled cores was 549.30 mg/kg (5.73 %) for core S1 and 

249.30 mg/kg (5.65 %) for core S3. The carbonate fraction and the Fe and Mn fraction also 

contained significant amounts of K. In the carbonate fraction the concentration of K in the 

fresh fly ash was 147.47 mg/kg (1.87 %) while the mean concentration of K extracted for the 
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two drilled cores were 207.06 mg/kg (4.70 %) for core S3 and 63.24 mg/kg (0.66 %) for core 

S1. The concentration of K extracted in the Fe and Mn fraction from the fresh fly ash was 

98.03 mg/kg (1.24 %) and the mean concentrations of K extracted for the three cores were 

208.60 mg/kg (2.18 %) in S1 and 158.40 mg/kg (2.34 %) in S3. Na and K exist as soluble salts 

on the surface of fly ash particles and their leaching behaviour is not pH dependent. K had 

significant presence in the water soluble fraction, exchangeable fraction for the two drilled 

cores S1 and S3. Also as in the case of Na, potassium poses a great risk at the ash dam due to 

its leaching potential at natural pH. 

 

From this extraction it is observed that K as in the case of Na was also captured in the fly ash 

but was quickly released in the water soluble, exchangeable and carbonate fractions. Thus K 

was retained in the Secunda fly ash dump. The XRF analysis (section 4.4) shows that only a 

slight enrichment in the total K content in the drilled Secunda ash core samples S1 (0.02 %) 

and S3 (0.34 %). This poor retention of K as in the case of Na in the drilled ash cores S1 and 

S3 also highlights the unsustainability of the Secunda fly ash dump as a salt sink 

 

5.3.7 Magnesium   

 

Figure 5.3.7 appendix 7 to 16 presents the proportions of the total Mg extracted in the water 

soluble, exchangeable, carbonate, Fe and Mn, and residual fractions from the Secunda fresh 

fly ash and drilled core samples (cores S1 and S3). 
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Figure 5.3.7 Distribution patterns of Mg in the five geochemical phases of the fresh fly ash 

and weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 

3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

The largest proportion of Mg released was observed in the residual fraction and in the iron and 

manganese fraction of the fresh Secunda fly ash and weathered drilled cores S1 and S3. In the 

residual fraction the concentration of Mg extracted were 7423.53 mg/kg in the fresh fly ash; 

7819.85 mg/kg for core S1 and 9323.47 mg/kg for core S3 which accounts for 86.85 %, 86.42 

% and 87.54 % of the Mg content in the fresh fly ash and weathered drilled core S1 and S3 

respectively. The concentration of Mg in the Fe and Mn fraction of the fresh Secunda fly ash 

was 653.33 mg/kg while the mean concentrations of Mg extracted for the two drilled cores 

were 665.51 mg/kg for S1 and 719.23 mg/kg for S3. These concentration values accounts for 

7.26 %, 7.35 % and 6.60 % of the Mg content extracted from the fresh Secunda fly ash and 

drilled core S1 and S3 respectively. The large proportion of Mg extracted from the residual 

fraction and Fe and Mn fraction supports the suggestion that Mg is incorporated in the glass 

phases of the fly ash (Ugurlu, 2004). This large Mg content in the residual fraction and Fe and 

Mn fraction shows that Mg is not mobile in this fraction and may not be easily leached out of 

the fly ash.  
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A significant amount of the total Mg was also extracted from the carbonate fraction and 

exchangeable fraction of the fresh Secunda fly ash and drilled ash cores S1 and S3. The 

concentration of Mg released in the exchangeable fraction was 351.11 mg/kg in the fresh ash 

and for the two drilled core S1 and S3, 205.93 mg/kg and 200.01 mg/kg respectively. The Mg 

content extracted in the exchangeable fraction accounts for 2.93 %, of the Mg content in the 

fresh fly ash while 2.28 % and 1.88 % were the mean values of the Mg content  extracted from 

the drilled ash cores S1 and S3 respectively. In the carbonate fraction the concentration of Mg 

released from the fresh Secunda fly ash was 202.16 mg/kg and the mean concentrations of Mg 

released from the two drilled cores were 330.57 mg/kg for S1 and 404.97 mg/kg for S3. The 

Mg content released from the carbonate fraction accounts for 2.36 %, of the Mg content in the 

fresh fly ash while 3.65 % and 3.80 % were the mean values of the Mg content extracted from 

the weathered drilled cores S1 and S3 respectively. The significant proportion of Mg in the 

carbonate fraction may be due to the presence of dolomite (CaMg (CO3)2) in the fly ash 

(Garavaglia and Caramuscio, 1994). Though dolomite was not detected in the XRD results for 

the two drilled cores as it may have been obscured by the more dominant quartz and mullite 

peaks (a major shortcoming of XRD analysis), however the XRF results showed significant 

quantities of Mg in the fly ash.  

 

The mean values of the total concentrations of Mg extracted in the water soluble fraction from 

the fresh ash and weathered drilled cores were 20.34 mg/kg in the fresh ash; 26.72 mg/kg in 

core S1 and 18.72 mg/kg in core S3. The Mg content extracted from the water soluble fraction 

accounts for 0.24 %, of the Mg content in the fresh fly ash while 0.30 % and 0.18 % were the 

mean value of the Mg content extracted from the weathered drilled cores S1 and S3 

respectively. The water soluble fraction compared to the other fractions has the lowest amount 

of Mg extracted. This low proportion of Mg im the water soluble fraction coupled with the 

predominance of Mg in the Fe and Mn fraction and residual fraction is an indication that the 

Mg in fly ash exist in mineral phases that are not easily soluble under normal environmental 

condition. 
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5.3.8 Strontium 

 

The proportions of the total Sr extracted from the Secunda fresh fly ash and drilled core 

samples (cores S1 and S3) in the water soluble, exchangeable, carbonate, Fe and Mn, and 

residual fractions are presented in Figure 5.3.7 appendix 7 to 16. 

 

 

 

Figure 5.3.8: Distribution patterns of Sr in the five geochemical phases of the fresh fly ash and 

weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 3, 30 

and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

Figures 5.3.8 show that the proportion of the total Sr released is predominant in the residual 

fraction carbonate fraction, Fe and Mn fractions and the residual fraction of the fresh Secunda 

fly ash and drilled ash cores S1 and S3. The concentrations of Sr released in the residual 

fractions were 3523.42 mg/kg (87.56 %); 3530.33 mg/kg (86.33 %); and 7693.40 mg/kg 

(86.38 %) for the fresh fly ash and drilled ash core S1 and S3 respectively. In the carbonate 

fraction the concentration of Sr extracted was 113.66 mg/kg (2.96 %) in the fresh fly ash and 

the mean concentration of Sr extracted for the two drilled cores were 105.83 mg/kg (2.59 %) 

for S1 and 682.03 mg/kg (7.66 %) for S3. The concentration of Sr extracted in the Fe and Mn 
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fraction from the fresh fly ash was 262.53 mg/kg (6.83 %) and the mean concentrations of Sr 

extracted for the two drilled cores were 338.98 mg/kg (8.29 %) for S1 and 272.22 mg/kg (3.06 

%) for S3. The large amounts of Sr extracted amount in the carbonate fraction, Fe and Mn 

fraction and residual fraction may be due to Sr existing as SrO2 in fly ash or as Sr(OH)2 in 

solution and these compounds are dissolved in fly ash at low pH (Wang et al.,1999). This 

indicates that Sr release depend on the pH of the leachant. This release of Sr as a function of 

pH could also be due to its incorporation in the aluminosilicate matrixes of the fly ashes, 

which could only be released into solution as the aluminosilicate phases dissolve.  

 

In the water soluble fraction the concentration of Sr released was 56.72 mg/kg; 71.40 mg/kg 

and 100.58 mg/kg in the fresh fly ash, core S1 and cores S3 respectively. This concentration 

represents 1.47 %; 1.75 % and 1.13 % of the mean amount of Sr in the fresh fly ash and drilled 

cores S1 and S3 respectively. The concentration of Sr released in the exchangeable fraction of 

the fresh Secunda fly ash and drilled ash core S1 and S3 were 45.67 mg/kg; 42.69 mg/kg 

and158.37 mg/kg respectively, which represents 1.19 %; 1.04 % and 1.78 % of the amount of 

Sr in the fresh fly ash and drilled cores S1 and S3 respectively. The concentrations of Sr 

extracted from the water soluble fraction and exchangeable fraction of the fresh Secunda fly 

ash and drilled ash core S1 and S3 are low when compared to the carbonate fraction, Fe and 

Mn fractions and the residual fraction. This also corroborates with the existence of Sr in 

mineral phases the can only be dissolved at low pH or locked up in the aluminosilicate matrix.    

 

5.3.9 Barium 

 

Figure 5.3.9 appendix 7 to 16 presents the proportions of the total Ba extracted from the 

Secunda fresh fly ash and drilled core samples (cores S1 and S3) in the water soluble, 

exchangeable, carbonate, Fe and Mn, and residual fractions. 
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Figure 5.3.9: Distribution patterns of Ba in the five geochemical phases of the fresh fly ash 

and weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 

3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

In Figure 5.3.9 the trend of the extracted amounts of Ba in the five geochemical phases are 

similar to the trend observed in the release of Sr in Figure 5.3.8. The carbonate fraction, 

exchangeable fraction and the residual fraction had the largest proportion of the total Ba 

extracted. The concentration of Ba released in the carbonate fraction was 111.84 mg/kg in the 

fresh fly ash while 107.02 mg/kg and 550.69mg/kg were the concentrations released from 

drilled ash core S1 and S3 respectively. This concentration values accounts for 4.42 %; 4.38 % 

and 9.65 % of the Ba content in the fresh fly ash, drilled ash core S1 and S3 respectively. In 

the Fe and Mn fraction the concentration of Ba released were 138.72 mg/kg; 181.79 mg/kg 

and 107.61 mg/kg for the fresh fly ash, core S1 and core S3 respectively, which represents 

5.49 %, of the Ba content in the fresh fly ash while 7.45 % and 1.89 % represents the Ba 

content in the drilled ash core S1 and S3 respectively. The largest amount of Ba released in the 

Secunda fresh fly ash and drilled ash cores S1 and S3 were in the residual fraction. The fresh 

fly ash had Ba concentration of 2305.13 mg/kg while the mean concentrations of Ba contained 

in the two drilled cores were 2116.45 mg/kg for S1 and 4920.56 mg/kg for S3 and represents 
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87.52 %; 86.68 % and 86.23 % of the amount of Ba in the fresh fly ash, core S1 and core S3 

respectively. The large amounts of Ba that were released may have resulted from the low pH 

of the solvents that were used in the carbonate fraction, exchangeable fraction and the residual 

fraction. Andac and Glasser, (1999) reported the strong leaching of Ba in acidic environment 

which also indicate the pH dependence of the release of Ba in fly ash. Thus Ba as in the case 

of Sr exists in mineral phases the can only be dissolved at low pH or locked up in the 

aluminosilicate matrix.    

 

In the exchangeable fraction and water soluble fraction the concentrations of Ba released were 

observed to be low compared to the carbonate fraction, exchangeable fraction and the residual 

fraction. The exchangeable fraction had released Ba concentration of 59.43 mg/kg; 30.10 

mg/kg and 94.73 mg/kg for the fresh fly ash, core S1 and S3 respectively, which represents 

2.35 %, of the total concentrations of Ba in the fresh fly ash while 1.23 % and 1.66 % are for 

core S1 and S3 respectively. The low amounts of Ba extracted in the exchangeable fraction 

and water soluble fraction also support the existence of Ba in fly ash in phases that are not 

easily dissolved. 

 

5.3.10 Manganese 

 

The proportions of the total Mn extracted from the Secunda fresh fly ash and drilled core 

samples (cores S1 and S3) in the water soluble, exchangeable, carbonate, Fe and Mn, and 

residual fractions are presented in Figure 5.3.10 appendix 7 to 16. 
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Figure 5.3.10: Distribution patterns of Mn in the five geochemical phases of the fresh fly ash 

and weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 

3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

The pattern of release of Mn observed in five fractions show the predominance of the released 

proportion of the total Mn in the residual fraction, the Fe and Mn fraction and the carbonate 

fraction and is similar to the trend observed for Fe in section 5.3.5.  In the residual fraction the 

concentration of Mn in the fresh fly ash was 348.89 mg/kg (86.07 %) while the mean mean 

concentrations of Mn contained in the two drilled cores were 444.13 mg/kg (76.47%) for core 

S1 and 515.45 mg/kg (86.57 %) for core S3. The concentration of Mn released in the Fe and 

Mn fraction was in the fresh fly ash was 40.51 mg/kg (9.55 %) and the mean concentrations of 

Mn released in the two drilled cores were 117.43 mg/kg (20.22%) for S1 and 70.57 mg/kg 

(11.85 %) for S3. In the carbonate fraction the concentration of Mn in the fresh fly ash was 

17.20 mg/kg (4.05 %,) and the mean concentrations of Mn released in the two drilled cores 

were 15.64 mg/kg (2.69 %) for S1 and 7.08 mg/kg (1.19 %) for S3. The large amount of Mn 

extracted from the residual fraction, the Fe and Mn fraction and the carbonate fraction as in 

the case of Fe may also be attributed to dissolution of the Mn bearing mineral phases in the fly 

ash or could have resulted from the dissolution of the aluminnosilicate matrix.  
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The concentrations of Mn released in the exchangeable fraction and water soluble fraction of 

the fresh Secunda fly ash and drilled ash core S1 and S3 were observed to be low In the 

exchangeable fraction the concentration of Mn released in the fresh fly ash was 0.61 mg/kg 

(0.14 %) while the extracted mean concentrations in the two weathered drilled cores was 2.64 

mg/kg (0.45 %) in S1 and 1.99 mg/kg in (0.33 %) S3. The concentration of Mn released in the 

water soluble fraction were 0.80 mg/kg (0.19 %,); 0.99 mg/kg (0.17 %) and 0.29 mg/kg (0.05 

%) in the fresh fly, core S1 and S3 respectively. Generally the two drilled ash cores S1 and S3 

had low concentration of Mn in the water soluble fraction. In the exchangeable Fraction the 

mean concentrations of Mn in the fresh ash and weathered drilled core S1 and S3 were much 

higher than that observed in the water soluble fraction. The fresh fly ash has a lower 

concentration of Mn than that observed in the water soluble extraction fraction. The low 

concentration of Mn in the water soluble and exchangeable fractions may be due to the 

precipitation of its metal hydroxide. According to Gitari et al., (2009), Mn in alkaline solution 

forms hydrous manganese.  

 

This extraction study showed that the release pattern of Mn observed in five fractions could be 

as a result of formation and dissolution of oxides of these elements at different pH levels.  

Since the highest concentration of Mn extracted were in the residual fraction, Fe and Mn and 

carbonate fractions respectively, it implies that Mn may only be leached out of the ash dump 

at extreme  conditions such as low pH. 

 

5.3.11 Arsenic 

 

 Figure 5.3.11 and appendix 7 to 16 presents the proportions of the total As extracted from the 

from the Secunda fresh fly ash and drilled core samples (cores S1 and S3) in the water soluble, 

exchangeable, carbonate, Fe and Mn, and residual fractions. 
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Figure 5.3.11: Distribution patterns of As in the five geochemical phases of the fresh fly ash 

and weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 

3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

  

From figure 5.3.11 it can be seen that significant proportion of the total As was released in all 

the five geochemical fraction of the fresh Secunda fly ash and drilled ash core S1 and S3. The 

residual fraction had the largest amount of As released with concentration values of 51.36 

mg/kg (86.09 %,) in the fresh fly ash and the mean concentrations of As contained in the two 

drilled cores were 58.19 mg/kg (70.93 %) for core S1 and 74.52 mg/kg (90.57 %) for core S3. 

In the water soluble fraction Core S1 had the highest mean concentration of As extracted from 

the drilled cores with a value of 14.17 mg/kg (17.27 %) while cores S3 had 1.87 mg/kg (2.27 

%). The concentration of As in the fresh fly ash was 1.51 mg/kg (2.54 %,). The difference in 

the mean values of the total concentrations of As extracted from the two drilled cores S1 and 

S3 also highlights the inhomogeneity of the ash dump. The large amount of As released from 

core S1in the water soluble fraction may resulted from the dissolution of aluminosilicate 

matrix of the fly ash due to weathering. The concentrations of As extracted in the 

exchangeable fraction from the fresh fly ash was 1.93 mg/kg (3.23 %) and for the two 

weathered drilled cores S1 and S3 the extracted mean concentrations in the two drilled cores 
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were 1.22 mg/kg (1.49 %) and 3.67 mg/kg (3.73 %) respectively.  In the carbonate fraction the 

concentration of As extracted in the fresh fly ash was 2.90 mg/kg (4.86 %) and the mean 

concentration of As extracted from the two drilled cores were 7.41 mg/kg (9.02 %) for S1 and 

1.35 mg/kg (1.63 %) for S3. The relatively high amount of As in the carbonate fraction could 

be attributed to the formation of calcite in fly ash. Galbreath and Zygarlicke, (2004)  reported 

that a high proportion of calcium oxide in coal fly ash can acts as a reactive capture of arsenic 

in fly ash. 

 

The Fe and Mn fraction had the lowest concentration of As released compared to the other 

fractions with 1.96 mg/kg (3.28 %) released in the fresh fly ash.  The mean concentrations of 

As extracted from the two drilled cores were 1.05 mg/kg (1.28 %) for S1 and 1.47 mg/kg (1.78 

%) for S3. The percentage of As in the iron and manganese fraction is relatively low compared 

with the other fractions.  

 

The fairly high concentration of As in the water soluble, exchangeable and carbonate fractions 

indicates its association with readily soluble mineral phases which implies that As is mobile in 

these fractions and can be easily leached and readily reach the environment when fly ash is 

infiltrated by rain water (Yuan, 2009).  

 

5.3.12 Lead 

 

Figure 5.3.12 and appendix 7 to 16 presents the proportions of the total Pb extracted in the five 

geochemical phases from the Secunda fresh fly ash and drilled core samples (cores S1 and 

S3). 
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Figure 5.3.12: Distribution patterns of Pb in the five geochemical phases of the fresh fly ash 

and weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 

3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

Figure 5.3.12 shows that the residual fraction had the largest proportion of the total Pb 

extracted from the fresh Secunda fly ash and weathered drilled core S1 and S3 followed by the 

water soluble and carbonate fraction. Also significant amounts were also extracted from the 

exchangeable fraction and the Fe and Mn fraction. The concentrations of Pb extracted in the 

residual fraction were 21.70 mg/kg (81.46 %); 22.37 mg/kg (72.92 %) and 26.16 mg/kg (97.93 

%) for the fresh fly ash, core S1 and S3 respectively. In the water soluble fraction core S1 had 

the highest mean value of the Pb extracted with a value of 5.74 mg/kg (18.70 %) while cores 

S3 had 0.61 mg/kg (2.05 %). Pb had a concentration of 0.23 mg/kg (0.87 %) in the fresh fly 

ash. . The large amount of Pb released from core S1in the water soluble fraction may resulted 

from the dissolution of aluminosilicate matrix of the fly ash due to weathering. The carbonate 

fraction had 3.84 mg/kg (14.43 %) in the fresh fly ash, while the mean concentration of Pb 

extracted from the two drilled ash cores were 1.89 mg/kg (6.16 %) for S1and 0.64 mg/kg (2.15  

%) for S3.  The exchangeable fraction and the Fe and Mn fraction had lower amounts of Pb 

extracted compared to the other fractions. In the exchangeable fraction the concentration of Pb 
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extracted from the fresh fly ash was 0.45 mg/kg (1.69 %) while the extracted mean 

concentrations in the two weathered drilled cores was 0.30 mg/kg (1.00 %) in S1 and 1.25 

mg/kg (4.20 %) in S3. For the Fe and Mn fraction the concentration of Pb released in the fresh 

fly ash was 0.41 mg/kg (1.55 %) while the mean concentrations of Pb extracted for the two 

drilled cores were 0.38 mg/kg (1.23 %) for S1 and 1.09 mg/kg (3.67 %) for S3.  

 

The fairly high concentration of Pb released in the and carbonate fraction may be associated 

with the gradual dissolution of the glass fractions phase present in fly ash due to weathering. 

According to Hulett et al., (1980) substantial portions of Pb are incorporated into the glass 

matrix of the fly ash with lesser portions existing as surface precipitates. Thus Pb will be 

easily leached from the fly ash. It has been reported that Pb leaching in coal fly ash can be 

controlled by acidity and alkalinity of the ash pore water (Vitkova et al., 2009).  

 

5.3.13 Zinc 

 

The proportions of the total Zn extracted from the Secunda fresh fly ash and drilled core 

samples (cores S1 and S3) in the water soluble, exchangeable, carbonate, Fe and Mn, and 

residual fractions are presented in Figure 5.3.13 and appendix 7 to 16. 
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Figure 5.3.13: Distribution patterns of Zn in the five geochemical phases of the fresh fly ash 

and weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 

3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

The proportions of the total of Zn extracted from the fresh Secunda fly ash and drilled as cores 

S1 and S3 in the water soluble fraction, exchangeable fraction, carbonate fraction and Fe and 

Mn fraction had similar values, while the bulk amount was extracted from the residual 

fraction. The concentrations of Zn extracted in the residual fraction were 21.90 mg/kg (85.21 

%) in the fresh fly ash; 27.68 mg/kg (86.51 %) and 24.28 mg/kg (88.62 %) in the drilled ash 

cores S1 and S3 respectively. In the Fe and Mn fraction the concentration of Zn released in the 

fresh fly ash was 1.65 mg/kg (6.43 %,). The mean concentrations of Zn extracted from the two 

drilled cores were 1.55 mg/kg (4.83 %) for S1 and 0.11 mg/kg (0.04 %) for S3. The bulk of Zn 

was contained in the residual fraction indicating that the significant concentrations of Zn 

cannot be leached out of the Secunda fly ash under normal environmental conditions. Metals 

in the residual fraction are suggested to be safer for the environment due to their lower 

mobility and bioavailability (Yuan, 2009). 
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The difference in the amounts of Zn extracted from the water soluble fraction, exchangeable 

fraction and carbonate fraction were negligible. In the water soluble fraction the 

concentrations of Zn extracted from the fresh Secunda fly ash and the drilled ash cores were 

0.59 mg/kg (2.29 %) in the fresh ash; 1.46 mg/kg (4.55 %) in core S1 and 1.03 mg/kg (3.77 

%) in cores S3.  The concentrations of Zn extracted in the exchangeable fraction were 0.78 

mg/kg (3.03 %); 0.96 mg/kg (3.01 %) and 1.04 mg/kg (3.78 %) in in the fresh ash and drilled 

ash cores S1 and S3 respectively. The carbonate fraction had 0.78 mg/kg (3.04 %,) of Zn 

released in the fresh fly ash while the mean concentrations of Zn extracted from the two 

drilled cores were 0.35 mg/kg (1.09 %) for S1 and 1.04 mg/kg (3.79 %) for S3. 

 

This extraction studies has shown that the bulk of Zn was contained in the residual fraction but 

the amount released in the water soluble fraction, exchangeable fraction and carbonate fraction 

were significant indicating the association of Zn in the Secunda ash samples with mineral 

phases that may be readily leached out of fly ash under normal environmental conditions.  

 

5.3.14 Nickel 

 

Figure 5.3.14 and appendix 7 to 16 presents the proportions of the total Ni extracted from the 

from the Secunda fresh fly ash and drilled core samples (cores S1 and S3) in the water soluble, 

exchangeable, carbonate, Fe and Mn, and residual fractions. 
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Figure 5.3.14: Distribution patterns of Ni in the five geochemical phases of the fresh fly ash 

and weathered drilled core S1 and S3 [number of determinations (n) for fresh ash, S1 and S3 

are 3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

From Figure 5.3.14 it is observed that Ni as in the case of Zn in section 5.3.13 had significant 

proportions of the total Ni extracted from the water soluble fraction, exchangeable fraction, 

carbonate fraction and Fe and Mn fraction with the bulk of the extracted Ni  reported in the 

residual fraction. The concentrations of Ni extracted in the residual fraction were 18.19 mg/kg 

(84.18 %) from the fresh fly ash; 17.74 mg/kg (72.16 %) in core S1 and 23.13 mg/kg (90.65 

%) in core S3. In the water soluble fraction the concentration of Ni extracted was 0.34 mg/kg 

(1.57 %) from the fresh fly ash.  The drilled ash core S1 had the highest mean concentration of 

Ni extracted from the two weathered drilled cores with a value of 1.49 mg/kg (6.04 %) while 

core S3 had a value of 0.44 mg/kg (1.72 %). The concentration of Ni extracted from the 

exchangeable fraction was 0.83 mg/kg (3.84 %) from the fresh fly ash while the mean 

concentration of Ni extracted from the two drilled cores were 1.87 mg/kg (7.59 %) and 0.33 

mg/kg (1.27 %) for core S1 and S3 respectively. In the carbonate fraction the concentrations 

of Ni extracted were 1.27 mg/kg (5.90 %,) from the fresh fly ash; 2.08 mg/kg (8.47 %) from 

core S1 and 0.86 mg/kg (3.36 %) from core S3. A larger amount of Ni was released from the 

fresh fly ash and drilled ash core S1 and S3 in the carbonate fraction compared to the water 
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soluble fraction and the exchangeable fraction. In the Fe and Mn fraction the concentration of 

Ni released in the fresh fly ash was 0.97 mg/kg (4.51 %) while the mean concentrations of Ni 

extracted for the two drilled cores were 1.41 mg/kg (5.74 %) for S1 and 0.76 mg/kg (3.00 %) 

for S3.  

 

As in the case of Zn the amount of Ni that was extracted was predominant in the residual 

fraction. But the amount released in the water soluble fraction, exchangeable fraction and 

carbonate fraction were significant which also show that Ni in the fly ash samples is 

associated with mineral phases that may be easily dissolved and leached out of the dump 

under normal environmental conditions.  

 

5.3.15 Molybdenum 

 

Figure 5.3.15 and appendix 7 to 16 presents proportions of the total Mo extracted from the 

Secunda fresh fly ash and drilled core samples (cores S1 and S3) in the water soluble, 

exchangeable, carbonate, Fe and Mn and residual fractions. 
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Figure 5.3.15: Distribution patterns of Mo in the five geochemical phases of the fresh fly ash 

and weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 

3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

The trend of the extraction of Mo observed in figure 5.3.15 shows that the residual fraction, 

the carbonate fraction and the water soluble fraction had the largest proportions of the total 

Mo extracted in the fresh Secunda fly ash and drilled ash cores S1 and S3. In the residual 

fraction the concentration of Mo in the fresh fly ash was 14.90 mg/kg (87.53 %). The mean 

concentrations of Mo contained in the two drilled ash cores were 14.74 mg/kg (86.39 %) for 

core S1 and 12.31 mg/kg (89.35 %) for core S3. The concentration of Mo extracted in the Fe 

and Mn fraction was 0.55 mg/kg (3.25 %) in the fresh fly ash while the two drilled ash core 

were 0.67 mg/kg (3.92 %) and 0.19 mg/kg (2.68 %) from core S1 and S3 respectively It has 

been reported that Mo release can be controlled by Fe and Al in solution, which reduces Mo 

mobility substantially at acidic conditions as metal molybdates (Comans et al., 2000, Kukier et 

al., 2003). 

 

The concentrations of Mo extracted water soluble fraction were 0.47 mg/kg (2.77 %) in the 

fresh ash; 0.38 mg/kg (16.38 %) in core S1 and 0.27 mg/kg (1.96 %) in core S3. The 
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difference in the amounts of Mo released in the two drilled ash cores S1 and S3 show the 

inhomogeneity of the ash dump. The extraction of Mo in the exchangeable fraction released 

0.46 mg/kg (2.72 %) in the fresh fly ash while the mean concentrations of Mo extracted for the 

two cores were 0.24 mg/kg (1.43 %) in S1 and 0.23 mg/kg (3.60 %) in S3. The significant 

concentration of Mo released in the water soluble fraction and exchangeable fraction may be 

attributed to Mo been highly soluble and mobile under alkaline conditions and can precipitate 

as MoO32- at high pH (Jankowski et al., 2006). It may also have resulted from the dissolution 

of the Si and Al matrix due to weathering. 

 

In the carbonate fraction the concentration of Mo extracted in the fresh fly ash was 0.64 mg/kg 

(3.73 %) and the mean concentrations of Mo extracted for the two drilled cores were 3.50 

mg/kg (6.04 %) for S1 and 0.49 mg/kg (3.73 %) for S3. Again the difference in the amounts of 

Mo released from core S1 and S3 indicates the inhomogeneity of the ash dump while the large 

amount of Mo released in the carbonate fraction may be due to the association of Mo with 

species in the carbonate phase. According to Fatoba, O., (2008), CaMoO4 was predicted by 

PHREEQC as one of the mineral phases that would precipitate and exert control on the release 

of Mo and Cr in the solution of the fly ashes. 

 

5.3.16 Copper  

 

The proportions of the total Mn extracted from the Secunda fresh fly ash and drilled core 

samples (cores S1 and S3) in the water soluble, exchangeable, carbonate, Fe and Mn, and 

residual fractions are presented in Figure 5.3.16 and appendix 7 to 16. 
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Figure 5.3.16: Distribution patterns of Cu in the five geochemical phases of the fresh fly ash 

and weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 and S3 are 

3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, Ex = 

exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual fraction. 

 

From Figure 5.3.16 it can be seen that Cu as in the case of Zn and Ni in sections 5.3.13 

and5.3.14 had significant proportions of the total Cu extracted from the water soluble fraction, 

exchangeable fraction, carbonate fraction and Fe and Mn fraction with the bulk contained in 

the residual fraction. In the residual fraction the concentration of Cu in the fresh fly ash was 

8.39 mg/kg (89.73 %) while the mean concentrations of Cu contained in the two drilled cores 

were 7.01 mg/kg (72.63 %) for core S1 and 8.14 mg/kg (88.95 %) for core S3.  The 

concentrations of Cu extracted in Fe and Mn faction were 0.37 mg/kg (4%) in the fresh fly 

ash; 0.86 mg/kg (8.88 %) in core S1 and 0.19 mg/kg (2.06 %) in core S3. In the water soluble 

fraction the concentrations of Cu extracted from the fresh fly ash and drilled ash cores S1 and 

S3 were 0.08 mg/kg (0.81 %); 0.51 mg/kg (5.26 %) and 0.11 mg/kg (1.15 %) respectively. 

The concentration of Cu extracted in the exchangeable fraction from the fresh fly ash was 0.03 

mg/kg (0.34 %) and the extracted mean concentrations from drilled ash cores S1 and S3 were 

0.54 mg/kg (5.61 %) and 0.23 mg/kg (2.50 %) respectively. In the carbonate fraction the 

concentration of Cu released in the fresh fly ash was 0.37 mg/kg (4.00 %) and the mean 

concentrations of Cu extracted from the two drilled cores were 0.86 mg/kg (8.88 %) for S1 
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and 0.26 mg/kg (2.06 %) for S3. The high concentration of Cu released shows its association 

with the carbonate fraction. According to Jegadeesan et al., (2008) the bulk of labile Cu in fly 

ash was associated with the carbonate fraction.  

 

This extraction study has shown that the amount of Cu released in the water soluble, 

exchangeable and carbonate fractions showed that the forms in which these species exist in the 

Secunda fly ash samples are easily soluble under normal environmental conditions. The high 

concentration of Cu in these fractions may have resulted from the interaction of the co-

disposed brine with the fly ash.   

 

5.3.17 Chromium  

 

Figure 5.3.3 and appendix 7 to 16 presents the proportions of the total Ca, extracted in the five 

geochemical phases from the Secunda fresh fly ash and drilled core samples (cores S1 and 

S3). 
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Figure 5.3.17 Figure 5.3.17: Distribution patterns of Cr in the five geochemical phases of the 

fresh fly ash and weathered drilled core S1 and S3 [number of determinations for fresh ash, S1 

and S3 are 3, 30 and 44 respectively] TMC = total metal content, WS = water soluble fraction, 

Ex = exchangeable fraction, Cb = carbonate fraction, Fe/Mn = Fe & Mn and Res = residual 

fraction. 

 

It is observed from Figure 5.3.17 that the bulk proportion of the total Cr extracted are 

contained in the residual fraction though the water soluble fraction, exchangeable fraction, 

carbonate fraction and Fe and Mn fraction also had significant amounts of Cr released. In the 

residual fraction the concentration of Cr in the fresh fly ash was 8.60 mg/kg (80.00 %,) and the 

mean concentrations of Cr contained in the two drilled cores were 5.46 mg/kg (70.17 %) for 

core S1 and 7.48 mg/kg (85.19 %) for core S3. The mean values of the total concentration of 

Cr in the fresh and weathered fly ash that were extracted in the water soluble fraction were 

0.26 mg/kg (2.40 %) in the fresh fly ash; 0.65 mg/kg (8.33%) in core S1 and 0.07 mg/kg in 

(0.80 %) core S3. In the exchangeable fraction the concentration of Cr released in the fresh fly 

ash was 0.43 mg/kg (4.00 %) and the extracted mean concentrations in the two drilled cores 

were 0.49 mg/kg (6.32 %) and 0.50 mg/kg (7.14 %) for S1 and S3 respectively. In the 

carbonate fraction the concentration of Cr extracted in the fresh fly ash was 0.78 mg/kg (7.24 

%). The mean concentrations of Cr extracted from the two drilled cores were 0.93 mg/kg 
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(12.01 %) for S1 and 0.33 mg/kg (3.93 %) for S3. In the Fe and Mn fraction the concentration 

of Cr released in the fresh fly ash was 0.68 mg/kg (6.35 %) and the mean concentrations of Cr 

extracted from the two drilled cores were 0.25 mg/kg (3.18 %) for S1 and 0.37 mg/kg (2.94 

%) for S3.  

 

The high concentration of Cr that was released in the carbonate fraction as in the case of Mo in 

section 5.3.15 may indicate that these elements exist in association with the carbonate phase. 

As explained in the case of Mo, CaMoO4, and CaCrO4, are predicted by PHREEQC as some 

of the mineral phases that would precipitate and exert control on the release of Mo and Cr in 

the solution of the fly ashes (Fatoba, O., 2008). This may be the reason for the observed high 

release of Cr and Mo in the carbonate fraction. Also fairly high concentrations of Cr were 

extracted in the water soluble, exchangeable and carbonate fractions hence Cr and Mo are 

expected to leach considerably from the Secunda fly ash dump.  

 

5.4 Assessment of data quality for total metal concentration for the major and trace 

elements (mass balance) 

 

As an assessment of the accuracy of the sequential extraction procedure, the concentrations 

obtained from individual fractions for each element are summed up and compared with the 

total concentration of that particular element (Tessier et al., 1979). In the two drilled cores S1 

and S3, the variability between the sums of the individual fractions versus the total metal 

content obtained from total acid digestion test was calculated and is reported in the discussion 

below. This variability arises from element loss during filtering in the laboratory and is more 

likely to occur when working within smaller concentration ranges Tables 5.1 and 5.2 shows 

the sum of the mean values of each major, minor and trace elements leached out from the four 

extraction steps and the residual and total metal contents for Secunda fresh fly ash vs. drilled 

core samples S1 and S3 respectively. Tables 5.1 and 5.2 also show the accuracy of the method 

used as shown in the calculated variance values. 

 

 

 

 

 

 

 

 



Chapter Five: Mobility and Partitioning of Elements 
 

152 

 

 

Table 5.1. Mass balance for the major and minor elements in Secunda fresh fly ash vs. 

weathered fly ash from drilled ash cores S1 and S3 

 

 

 

Table 5.3. Mass balance for the trace elements in Secunda fresh fly ash vs. weathered fly ash 

from drilled ash core S1 and S3 

 

 

 

SUM = water soluble + exchangeable + carbonate + Fe & Mn + residual, TMC = total metal 

content 

 

From Table 5.1 and 5.2 it was observed that the extractability of the major elements Si, Al, Ca, 

Fe, Na, K and Mg; minor elements Sr, Ba and Mn and trace elements As, Pb, Zn, Ni, Mo, Cu 

and Cr from the five fractions (water soluble fraction, exchangeable fraction, carbonate 

fraction, Fe & Mn fraction and residual) of the fresh Secunda fly ash and drilled ash core S1 

and S3 samples proved to be different. This is as a result of various distribution patterns and 

partitioning of the major elements between different fractions over time. All the major 

elements in the fresh Secunda fly ash and two drilled ash cores S1 and S3 had variability of 

(mg/Kg)

Majors Fresh S1 S3 Fresh S1 S3 Fresh S1 S3

Si 222903.57 239554.80 258578.90 230180.67 244662.66 264434.57 3.16 2.09 2.21

Al 132643.63 61716.99 117290.48 134015.28 62811.89 118566.14 1.02 1.74 1.08

Ca 62754.86 74280.56 51680.09 64096.73 75656.13 52210.04 2.09 1.82 1.02

Fe 15738.60 25333.60 28559.59 15874.44 25791.06 29328.18 0.86 1.77 2.62

Na 16306.30 18584.26 11600.17 16543.31 18817.10 11797.49 1.43 1.24 1.67

K 7903.05 9589.65 4409.24 7986.73 9726.40 4473.60 1.05 1.41 1.44

Mg 8570.60 9048.58 10650.49 8757.25 9199.82 10968.79 2.13 1.64 2.90

Sr 3846.26 4089.22 8906.59 3961.97 4153.33 9051.05 2.92 1.54 1.60

Ba 2528.47 2441.61 5706.62 2603.39 2489.94 5788.89 2.88 1.94 1.42

Mn 424.26 580.83 595.37 429.58 592.18 606.41 1.24 1.92 1.82

SUM TMC  VARIANCE (%) 

(mg/Kg)

Traces Fresh S1 S3 Fresh S1 S3 Fresh S1 S3

As 59.65 82.04 82.28 60.20 83.13 87.67 0.91 1.31 6.15

Pb 26.63 30.68 29.75 26.99 31.96 30.77 1.30 4.00 3.33

Zn 25.71 32.00 27.40 25.77 32.57 28.57 0.24 1.75 4.09

Ni 21.61 24.59 25.52 22.03 25.35 27.22 1.90 3.00 6.23

Mo 17.02 17.06 13.78 17.53 17.34 14.49 2.89 1.61 4.87

Cu 9.35 9.65 9.15 9.97 10.01 9.57 6.17 3.63 4.44

Cr 10.75 7.78 8.78 11.27 7.80 8.80 4.65 0.24 0.22

SUM TMC  VARIANCE (%) 
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less than 5 % while all the trace elements in the fresh Secunda fly ash and two drilled ash 

cores S1 and S3 had variability of less than 6.5 %. This affirms the accuracy of the method 

used. The water soluble, exchangeable and carbonate fractions were singled out as the most 

vulnerable to leaching at the ash dump; together they were referred to as the labile phase. The 

amount and percentage of each of the major, minor and trace element that were leached out in 

the labile phase are presented in Table 5.3 and 5.4.  

 

Table 5.3: Element leachability chart for the major and minor elements in Secunda fresh fly 

ash vs. weathered fly ash from drilled ash core S1 and S3 

 

 

 

Table 5.4. Element leachability chart for the trace elements in Secunda fresh fly ash vs. 

weathered fly ash from drilled core S1 and S3 

 

 

 

SUM = water soluble + exchangeable + carbonate + Fe & Mn + residual, TMC = total metal 

content, Labile phase = water soluble + exchangeable + carbonate. 

 

mg/kg SUM LABILE PHASE % LEACHED

Major Fresh Core S1 Core S3 Fresh Core S1 Core S3 Fresh Core S1 Core S3

Si 222903.57 239554.80 258578.90 13704.12 17296.86 13684.70 6.15 7.22 5.29

Al 132643.63 61716.99 117290.48 10402.19 3588.21 6286.71 7.84 5.81 5.36

Ca 62754.86 63053.42 51680.09 6119.69 4669.12 5286.41 9.75 7.41 10.23

Fe 15738.60 25333.60 28559.59 249.10 216.95 103.20 1.58 0.86 0.36

Na 16306.30 18584.26 11600.17 1840.03 2454.62 1112.61 11.28 13.21 9.59

K 7903.05 9589.65 4409.24 1016.30 1113.61 503.28 12.86 11.61 11.41

Mg 8570.60 9048.58 10650.49 473.60 563.22 623.70 5.53 6.22 5.86

Sr 3846.26 4089.22 8906.59 216.05 219.91 940.98 5.62 5.38 10.56

Ba 2528.47 2441.61 5706.62 176.86 143.37 678.46 6.99 5.87 11.89

Mn 424.26 580.83 595.37 18.61 19.27 9.36 4.39 3.32 1.57

mg/kg

Traces Fresh Core S1 Core S3 Fresh Core S1 Core S3 Fresh Core S1 Core S3

As 59.65 82.04 82.28 6.34 22.80 6.29 10.63 27.79 7.65

Pb 26.63 30.68 29.75 4.53 7.93 2.50 17.00 25.86 8.40

Zn 25.71 32.00 27.40 2.15 2.77 3.11 8.37 8.65 11.34

Ni 21.61 24.59 25.52 2.44 5.43 1.62 11.31 22.10 6.35

Mo 17.02 17.06 13.78 1.57 1.65 1.10 9.22 9.68 7.97

Cu 9.35 9.65 9.15 0.59 1.78 0.82 6.27 18.48 8.99

Cr 10.75 7.78 8.78 1.47 2.07 1.04 13.65 26.65 11.87

SUM LABILE PHASE % LEACHED
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The entire major, minor and trace elements analysed in the fresh Secunda fly ash and 

weathered drilled cores S1 and S3 showed the potential to leach as shown in tables 5.3 and 

5.4. The sequential extraction procedures reported (section 5.3) that the bulk amount of the 

major and trace elements were contained in the residual fraction. The species in the residual 

fraction are locked up in the aluminosilicate matrix of fly ash and are only released upon the 

dissolution of the fly ash matrix. From Table 5.3 it can be seen that significant amounts of Si, 

Al, Ca, Na, K, Mg, Sr and Ba were leached out in the labile phase. Si had 7.22 % and 5.29 % 

leached out of the Secunda drilled ash cores S1 and S3 respectively while 5.81 % and 5.36 % 

of Al were respectively leached out of Secunda drilled ash core S1 and S3. This large amount 

of Si and Al leached out of the labile phase indicates the dissolution of the aluminosilicate 

matrix of the fly ash which may have a negative impact on the environment due to the release 

of other toxic species that are contained in the matrix (Choi et al., 2002). Also Na and K had 

the highest amounts leached out in the labile phase in the fresh Secunda fly ash and drilled ash 

core S1 and S3. Na leached out was 13.21 % and 9.59 % for core S1 and S3 respectively while 

the fresh fly ash leached out 11.28 % of Na. For K, core S1 and S3 leached out 11.61 % and 

11.41 % respectively while the fresh fly ash leached out 12.86 % of K. This highlights the risk 

of these elements leaching out of the ash dump considering the effect of infiltrating rain water 

over time at the ash dump. It also points to the unsustainability of the dam as a salt sink. 

 

Tables 5.4 show the mean values of the amount and the percentage of each trace element 

leached out in the labile phase fraction. Core S1 reported significant leaching of the trace 

elements in the labile phase while cores S3 had lower concentrations of elements leached out. 

In core S1, the proportions leached out for As, Pb, Zn, Ni, Mo, Cu and Cr were 18.76 %, 

27.79 %, 25.86 %, 8.65 %, 22.10%, 38.33 %, 18.48 % and 26.65 % respectively. In core S3, 

the concentrations leached out for As, Pb, Zn, Ni, Mo, Cu and Cr were 7.65 %, 8.40 %, 11.34 

%, 6.35 %, 7.97 %, 8.99 % and 11.87 % respectively. In the fresh fly ash sample, the 

concentrations leached out for As, Pb, Zn, Ni, Mo, Cu and Cr were 10.63 %, 17.00 %, 8.37 %, 

11.31 %, 9.22 %, 6.27 % and 13.65 % respectively. XRF analysis in section 4.4.1 shows that 

the trace metals (As, Pb and Ni) were enriched in the Secunda drilled ash cores S1 and S3 

when compared to the Secunda fresh fly ash. The enrichment of these elements is an 

indication that they were removed from the brine solution during the interaction of the co-

disposed with the fly ash. The large amount of As, Pb, Zn, Ni, Mo, Cu and Cr leached out in 

the labile phase is an indication that these species were either co-precipitated or adsorbed on 
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the surfaces of species like Al or Fe hydroxides which may have inhibited their solubility in 

the labile phase and not to be easily leached to the environment. The presence of Fe and Mn as 

Fe and Mn oxy-hydroxides has been observed to control the release of heavy metal such as Ni, 

Pb and Zn as these species adsorbed to the surface of the oxyhydroxides (Lee & Saunders, 

2003; Cho et al. 2005; Steenari, 1999).The high amounts of these trace elements leached out 

of the labile may also have resulted from the dissolution of the aluminosilicate matrix and are 

of major concern in terms of toxicity.   

 

5.5 Summary from sequential extraction scheme of weathered fine coal ash from cores 

S1 and S3 from Sasol Synfuels-Secunda ash dam 

 

The sequential extraction results show that the major and minor elements Si, Al, Ca, Fe, Na, 

K, Mg, Sr, Ba, and Mn and trace elements As, Pb, Zn, Ni, Mo, Cu, and Cr are present in 

Secunda fresh and weathered fly ash and are partitioned between the water soluble, 

exchangeable, carbonate, iron and manganese, and residual fractions of the coal fly ash at 

different stages of weathering. The proportion of each elements total that could be extracted 

varied significantly in the weathered drilled cores (S1 and S3) and in the extraction fractions.  

 

Generally, all the elements had the highest concentration in the residual fraction. It was 

evident that the labile phases (water soluble, exchangeable and carbonate fractions) had fairly 

high proportions of the total Ca, Mg, Ba, Sr, Na and K for the Secunda drilled core (S1 and 

S3) and fresh fly samples this indicates that the species can leach easily and will pose a danger 

to the environment. This has implications for the long-term durability of mineral phases thus 

drawing into question the sustainability of the ash dump and highlighting its potential for 

negatively impacting the environment over time.  

 

The assessment of accuracy of the sequential extraction procedure shows that the extractability 

of the major elements from the five fractions of the three fly ash samples proved to be 

different, so various distribution patterns and partitioning of the major elements between 

different fractions over time have been observed. Sodium and potassium had the highest 

concentrations leached out in the labile phase in all the three cores which highlights the risk of 

these elements leaching down the ash dam considering the effect of infiltrating rain water over 

time at the ash dam and it‟s unsustainability as a salt sink. In general, the study found that the 
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major elements Si, Al and Ca; minor elements, Na, K, Mg, Sr and Ba and trace elements As, 

Pb, Zn, Ni, Mo, Cu and Cr in Sasol Secunda fly ash are capable of being lost due to leaching. 

The conclusions, findings and recommendation obtained from this study will be presented and 

discussed in chapter six. 
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Chapter Six 

 

Conclusions and Recommendations 

 

6 Introduction 

 

This chapter gives a summary of the discussions, significant findings and conclusions 

of the results presented in the previous chapters. Recommendations for further 

research on some aspects are outlined. 

 

6.1 Overview 

 

The aim of the study was to determine the effects of weathering on the chemical 

composition, morphological properties and mineralogical composition of coal fly ash 

that was co-disposed with brine after some years of weathering. The purpose of co-

disposing this ash with brine was originally aimed at using the ash as a sustainable salt 

sink. From the findings of this study some conclusions about the long term effect of 

weathering at the dump site were drawn to confirm if the ash dam could serve as a 

sustainable salt sink. 

 

6.2 Site profile 

 

The Secunda fly ash dam was created in 1989 and dumping stopped in 2009. The 

oldest layer at the bottom is 21 years old as at the time of study (2010) and the 

youngest at the top being 1 year old. The Secunda fly ash is made up of 87% fly ash 

from the combustion of pulverized coal to produce steam and electric power and 13% 

fine ash from the gasification process. The particle size of the fine ash being dumped 

ranges between 20 ≤ 50 µm. The ash was pumped to the ash dam as slurry of 5:1 

water/ash ratio using the highly saline stream that was generated from the water 

treatment processes in the Secunda plant. Samples were taken along the depth of two 

drilled cores (S1 and S3) from the weathered ash dam and analysed in conjunction 

with the fresh (un-weathered) fly ash taken from the hoppers for comparative analysis. 
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6.3 pH, EC, TDS and moisture profile 

 

The Sasol Secunda fresh fly ash and weathered drilled core samples exhibited alkaline 

pH due to the lime content of the ash. The significant decrease in pH of the weathered 

drilled cores (9.33 – 11.32 for S1 and 9.32 – 11.287 forS3) in comparison to the fresh 

fly ash sample (12.38) was due to the formation of calcite in the weathered fly ash as 

result of infiltration of CO2 over time in the fly ash dump. The changes in pH values 

can also be attributed to the dissolution and flushing out from the dump basic alkaline 

oxides like CaO and MgO. 

 

The EC (Electrical Conductivity) and TDS (total dissolved solid) values essentially 

follow the same trend. The EC value of the fresh Secunda fly ash sample was 

observed to be 4.92 mS/cm. For the drilled Secunda ash core S1, the EC values were 

between 0.83 mS/cm at surface and 22.5 m, and 1.28 mS/cm at 7.5 m while for the 

drilled Secunda ash core S3, the EC values range from 0.32 - 1.08 mS/cm. A TDS 

value of 2.68 ppt (parts per thousand) was observed for the fresh Secunda fly ash 

sample. The drilled Secunda ash core S1 had TDS values ranging from 0.49 ppt 0.76 

ppt and for drilled Secunda ash core S3 the TDS values were between 0.19 – 0.68 ppt. 

The pH EC and TDS of the drilled cores show a large decrease in value when 

compared to the values of the fresh Secunda fresh fly ash. This shows the extent of 

leaching and poor salt sink capacity of the fly ash dam because the EC and TDS 

values would have been considerably higher in the drilled cores if the fly ash dam was 

holding salts. Usually ionic species from salts are responsible for high EC and TDS 

readings. 

 

Though the core S1 and S3 fly ash samples from the surface of the dump appeared 

dry, moisture content analysis showed that there is considerable water remaining 

within the fly ash dump. The fresh ash MC was 1.8 % while weathered drilled core S1 

ranged from 41.4 – 73.2 % and core S3 ranged from 21.7 – 76.4 % with higher 

moisture values at lower depths of the ash embankment. The wet method of disposal 

employed at the dump accounts for the high moisture content observed in the Secunda 

weathered fly ash drilled core samples when compared to the fresh fly ash samples. 
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6.4 Morphological analysis 

 

The morphology of the fresh fly ash and weathered drilled core samples showed 

spherical rounded particles and some agglomerations. The smooth outer surfaces of 

the fresh ash particles are mainly aluminosilicate structure. The surfaces of the 

particles from the drilled core samples appeared to be etched, corroded and encrusted 

due to the formation of new mineral phases in the weathered fly ash as shown in the 

XRD results. Qualitatively, the elements in the fly ashes were predominantly Si, Al 

and Ca in all the samples, while Mg and S were also detected in all the samples but in 

lower quantities as determined by EDS. 

 

6.5 Chemical analysis 

 

Based on the concentrations of the elements determined by the XRF analysis for the 

fresh fly ash and drilled core samples, the major oxides identified were SiO2, Al2O3, 

CaO, Fe2O3, MgO, Na2O and TiO2, minor elements were K, P, S and Mn and trace 

elements in the samples were As, Ba, Ce, Co, Cu, Nb, Ni, Pb, Rb, Sr, U, V, Y, Zr and 

Th. Sr (4465 ppm and 4864  ppm in core S1 and S3 respectively), Ba (2682 ppm and 

3014 ppm in core S1 and S3 respectively) and Th (2075 ppm and 2283 ppm in core 

S1 and S3 respectively) recorded the highest levels among the trace elements in the 

ash dump cores while Rb (16 ppm and 25 ppm in core S1 and S3 respectively) and Ni 

(29 and 32 in core S1 and S3 respectively) recorded the lowest levels. The sum of the 

SiO2, Al2O3, and Fe2O3 content present in the Secunda weathered drilled fly ash and 

fresh ash samples were > 70 % in each of the respective sample, making the Secunda 

fly ash samples class F fly ash according to ASTM C 618, 1993. The XRF analysis 

further indicated how the species were enriched and (or) depleted along the depths of 

the drilled core samples when compared to the fresh ash samples showing 

considerable mobility and inconsistency/ inhomogeneity of the ash dump. From the 

enrichment and depletion table no significant enrichment or accumulation of any 

particular element was observed down the two drilled Secunda ash cores. This shows 

that the dump is not holding or encapsulating any particular element to any significant 

extent. There was no significant enrichment of Na in the drilled Secunda ash cores S1 
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and S3 only (0.26 % and 0.55 % in drilled ash cores S1 and S3 respectively) which 

highlights the unsustainability of the Secunda ash dump as a salt sink. 

 

6.6 Mineralogical analysis 

 

The XRD analysis revealed the primary minerals present in the weathered drilled core 

samples to be quartz and mullite. Lime and calcite were also identified but as minor 

peaks. The ingress of CO2 in the ash over time upon disposal led to the formation of 

calcite in the weathered drilled core samples. Halite (NaCl), bassanite (CaSO4.2H2O), 

nitratine (NaNO3), hydrophitte (CaCl2), microline and (KAlSi3O8) are considered as 

transient mineral that were identified in low quantities in the weathered drilled core 

samples but not in the Secunda fresh fly ash sample. These transient mineral phases 

may have formed from the interaction of brine with the fly ash. This is based on the 

chemical composition of these mineral phases which can be linked to the chemical 

composition of the co-disposed brine. Since halite, bassanite and nitratine could be 

formed at high temperatures during evolution in complex aqueous systems, these 

transient mineral may also have formed at the point of analysis due to the drying 

process used. EC and TDS values showed high salt content in the pore-water of 

Secunda fly ash samples. The XRD analysis of the Secunda fresh fly ash sample 

showed quartz and mullite as the major crystalline mineral phases. Lime was also 

identified but was present in low amounts. 

 

6.7 Total metal content 

 

The total metal content analysis showed the total concentration of the elements Si, Al, 

Ca, Fe, Na, Mg, Sr, Ba, Mn, As, Pb, Zn, Ni, Mo, Cu and Cr that were analysed in the 

Secunda fly ash samples. The concentrations of the elements (Si, Al, Ca, Fe, Na, Mg, 

Sr, Ba and Mn) accounted for 99.96 % of the total elemental components analysed in 

the fresh Secunda fly ash; 99.95 % and 99.96 % in drilled Secunda ash cores S1 and 

S3 respectively. The concentrations of the trace elements (As, Pb, Zn, Ni, Mo, Cu and 

Cr), accounted for 0.04 % of the total elemental components analysed in the fresh 

Secunda fly ash and drilled ash core S3 and 0.05 % of drilled Secunda ash core S1. 
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6.8 Anionic Species 

 

The study also revealed that there was significant enrichment of sulphate anions 

which were associated with the water soluble phases as shown in the pore water 

analysis though negligible in the chloride anions in the Secunda weathered fly ash 

from drilled ash core (S1 and S3) compared to the Secunda fresh fly ash. This 

observed enrichment of sulphates and chlorides anions may have resulted from the co-

disposal of the fly ash with brine that is rich in sulphates and chlorides.  

 

6.9 Sequential extraction 

 

From the results of the concentration profile of the investigated major and trace 

chemical species in the Secunda weathered drilled cores (S1 and S3) and fresh fly ash 

samples using the sequential extraction scheme. The study showed that the mobility of 

major and trace elements in fly ashes depended on the pH and the elements 

concentration. The major elements (Al, Si, Ca, Mg, Ba, Sr, Fe and Mn) were found to 

be associated with the carbonate, iron and manganese and residual fraction phases. 

Furthermore the solubility of fly ash matrix major components such as Al, and Si are 

pH dependent as there is more release of these elements as the pH decreases. Ca Na 

and K were also found to be associated with the water soluble and exchangeable 

fractions showing their presence in readily soluble forms. It was also observed that the 

trace elements As, Pb, Cr, Mo, Cu, Ni and Zn do not show permanent association with 

particular mineral phases as a continuous partitioning between different mineral 

phases was observed in the weathered drilled core. It is also noteworthy that the labile 

fractions (water soluble, exchangeable and carbonate) of the major and trace elements 

in Secunda fly ash dam were high. Thus highlighting the inhomogeneity of the ash 

dam and the potential of the dump to negatively impact the surface and groundwater 

in the ash dump vicinity over time 

 

Furthermore there was no indication of Na retention in the ash dam. Although brine 

enriched the fly ash with Na, there was no accumulation of Na along the cores at the 

ash dam despite the continuous addition of brine over the 20 year period. It was noted 
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that Sasol Secunda fly ash seems to reach a saturation point of holding Na at about 

0.26 % above which the fly ash holds no more Na. 

 

6.10 Significance of the study 

 

The study showed that chemical weathering as a result of ingress of CO2, atmospheric 

O2, infiltrating rainwater and co-disposed brine resulted in changes in the physical, 

chemical and mineralogical properties of the weathered Secunda fly ash compared to 

fresh Secunda fly ash. This study also showed how the major (Si, Al, Ca and Fe), 

minor (Na, K, Mg, Sr, Ba and Mn) and trace (As, Pb, Zn, Ni, Mo, Cu and Cr) 

elements are distributed in the five geochemical phases of the Secunda fly ash 

samples. Furthermore it was observed from the study that elements were leached out 

of the Secunda fly ashes at both alkaline and acidic pH and their mobility through the 

dump is correlated with their association with different mineralogical phases at certain 

depths within the dump. But over time, with high moisture and a low pH, the 

mineralogical association of all the elements in the ash varied considerably showing 

their high mobility. Hence the Secunda fly ash dump is not a sustainable salt sink 

because there is continuous mobilization and migration of species present in the ash 

and co-disposed brine through the dump. 

 

6.11  Recommendations 

 

This study has shown that the co-disposal of brine and coal fly ash is not sustainable. 

It is therefore recommended that alternative methods of disposing brine generated by 

the Sasol Secunda syngas plant should be adopted. If brine is to be co-disposed with 

fly ash the excessive flow of brine and rainwater through the ash dump should be 

circumvented. 

 

Also the sequential extraction procedures used in this study proved valid, replicable 

and can therefore be applied in similar research studies. It also proved to be adequate 

for the defined purpose of understanding mineralogical association and can therefore 

be applied in similar research studies. The limitation of the present study is that the 

presence of sulphur as various metal sulphides would be expected in fly ashes. 
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Therefore, it seems to be necessary to add more extraction steps with properly 

selected extractants, including more aggressive reagents. 
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APPENDIX 1 

The chemical composition of the major and trace elements of Secunda core S1 as obtained from XRF analysis 
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APPENDIX 2 

The chemical composition of the major and trace elements of Secunda core S3 as obtained from XRF analysis 

 

 

Fresh ash 0m 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 15m 16.5m 18m 19.5m 21m 22.5m 24m 25.5M 27m 28.5m 30m 31.5m

Major / wt%

SiO2 50.91 46.16 47.47 47.52 47.44 45.43 45.08 45.75 47.88 49.65 41.44 45.89 45.64 47.77 47.74 48.12 47.04 46.62 40.65 45.03 44.74 43.53 58.86

Al2O3 25.49 23.43 25.70 24.71 25.50 24.43 23.59 20.69 22.08 21.27 21.52 23.59 21.53 22.32 22.91 22.51 25.42 21.21 23.27 21.35 20.08 24.54 11.87

CaO 8.95 8.45 8.10 8.14 7.40 8.89 8.57 9.90 8.93 8.51 9.22 7.75 8.76 8.69 9.34 9.60 8.64 9.98 10.39 9.81 11.24 9.76 6.69

Fe2O3 2.27 3.18 2.73 3.12 2.87 3.50 4.99 4.30 3.16 3.39 10.41 5.10 4.21 3.33 3.19 2.94 2.19 2.47 5.50 2.92 2.90 2.63 6.81

Na2O 2.21 2.36 2.45 2.56 2.57 2.79 2.61 3.00 2.85 2.90 2.53 2.38 2.66 2.88 2.72 2.80 2.57 3.02 2.81 3.13 3.16 2.74 3.17

MgO 1.87 3.31 2.78 2.55 2.60 2.58 2.56 2.77 2.93 3.00 2.57 2.44 2.76 2.90 2.81 2.91 2.74 3.10 2.74 3.19 3.31 2.83 2.91

TiO2 1.78 1.91 1.83 1.91 1.74 1.90 1.75 2.10 2.04 2.08 1.68 1.74 1.88 1.98 1.97 2.08 1.85 2.11 1.79 2.05 2.12 1.85 1.51

K2O 0.95 1.14 1.09 1.22 1.25 1.24 1.15 1.29 1.34 1.39 0.98 1.15 1.24 1.27 1.26 1.21 0.98 1.10 0.90 1.00 0.88 0.95 4.41

P2O5 0.71 0.83 0.75 0.71 0.74 0.78 0.72 0.81 0.82 0.83 0.67 0.71 0.75 0.84 0.76 0.81 0.80 0.84 0.79 0.89 0.95 0.85 0.36

MnO 0.05 0.07 0.06 0.07 0.06 0.07 0.07 0.08 0.07 0.07 0.10 0.07 0.08 0.07 0.08 0.08 0.07 0.08 0.09 0.08 0.09 0.08 0.12

SO3 0.03 0.05 0.12 0.09 0.09 0.10 0.12 0.11 0.10 0.10 0.09 0.08 0.09 0.09 0.09 0.09 0.08 0.10 0.10 0.11 0.09 0.10 0.04

LOI 4.78 9.05 6.90 7.33 7.72 8.22 8.76 9.04 7.71 6.73 8.76 9.07 10.32 7.80 7.08 6.78 7.60 9.28 10.90 10.34 10.27 10.11 3.18

Sum 100.00 99.95 99.98 99.94 99.99 99.93 99.96 99.85 99.93 99.94 99.97 99.97 99.91 99.94 99.94 99.93 99.98 99.90 99.93 99.90 99.84 99.95 99.93

Trace/ppm

Sr 4160 4769 4801 4570 4494 5025 4388 5463 5257 4789 4874 4686 5018 5209 4870 4832 5007 5595 5742 5636 5590 5465 919

Ba 2749 3141 3110 2808 3077 3174 2809 3177 3218 3096 2657 2703 2985 3241 2920 3105 3058 3320 3108 3319 3476 3138 1674

Th 1922 2237 2253 2141 2103 2369 2028 2591 2486 2252 2249 2179 2354 2457 2279 2264 2355 2657 2718 2674 2649 2587 351

Zr 664 724 709 701 645 703 689 780 744 730 719 692 749 757 751 768 737 806 741 817 833 772 266

Y 156 174 173 164 158 172 162 186 182 174 150 168 176 184 176 178 175 194 188 205 202 186 39

Ce 177 190 160 188 163 175 169 247 211 226 248 217 200 203 199 224 167 214 225 232 218 226 142

Nb 109 146 144 141 139 144 113 158 161 148 114 130 134 157 132 148 157 169 159 164 163 153 27

As 61 95 81 77 61 93 73 104 92 80 112 80 79 84 78 82 77 87 109 86 92 78 153

Co 32 37 24 32 37 33 23 38 27 41 26 51 38 34 32 26 18 35 31 42 36 28 49

Pb 28 33 24 34 42 42 34 45 34 34 24 36 37 34 25 35 33 31 32 41 30 32 47

Ni 23 28 24 29 30 29 30 31 32 34 31 23 29 32 29 30 31 33 39 36 37 32 61

Rb 16 12 ND 23 24 13 18 17 19 30 33 9 25 22 29 11 2 2 ND ND ND ND 135

V 15 48 72 112 74 116 57 90 69 81 53 61 60 122 63 41 85 101 58 70 54 48 30
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APPENDIX 3  

Analysis of the extractions in the total acid digestion test for the Secunda fresh fly ash and the drilled core samples (S1) as a function of depth 
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APPENDIX 4 

Analysis of the extractions in the total acid digestion test for the Secunda fresh fly ash and the drilled core samples (S3) as a function of depth   

 

 

Fresh surface 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 15m 16.5m 18m 19.5m 21m 22.5m 24m 25.5m 27m 28.5m 30m 31.5m Mean

Major(mg/kg)

Si 230180.67 251992.00 271694.00 257290.67 121177.90 274564.00 281973.00 275391.00 257203.00 269524.00 226085.00 272750.00 292880.00 270430.00 299296.00 269493.00 222102.00 286468.00 279431.00 261722.00 286287.00 307030.00 282777.00 264434.57

Al 134015.28 102716.80 132763.60 109812.87 78911.47 111929.00 135576.00 129289.13 98467.87 133422.53 91064.93 111019.90 130122.07 98443.40 133107.00 95928.47 239209.33 119444.47 105122.10 102363.22 138337.80 141032.00 70371.10 118566.14

Ca 64096.73 25240.18 40516.67 20789.71 18931.83 88670.60 84104.27 52833.73 47310.93 33112.47 23262.18 29896.07 45229.33 22356.64 103738.53 37087.60 71045.00 75704.27 60354.15 45404.81 108381.53 106826.13 7824.30 52210.04

Fe 15874.44 13729.69 19770.81 15792.07 8709.80 37377.33 65419.53 33390.93 21423.27 19098.28 63018.40 36886.80 35820.87 20474.91 40519.40 23295.33 25289.67 22388.16 36367.51 15786.03 27744.53 30293.47 32623.20 29328.18

Na 16543.31 7138.83 10561.79 7838.52 6425.21 19911.96 18396.96 13688.26 12990.19 12271.18 9340.85 6775.63 8467.22 6332.93 18506.81 9386.60 11792.25 11052.82 8937.25 7433.55 13547.75 10345.62 28402.50 11797.49

Mg 8757.25 13505.77 10991.78 8931.37 5437.47 7197.67 11455.21 7451.89 8092.16 10255.99 3958.28 12996.14 15355.36 10335.53 33502.53 8129.88 11113.50 11751.26 11186.01 7245.37 9654.60 14604.95 8160.57 10968.79

K 7986.73 2296.48 2524.11 2850.47 2508.02 11372.69 7901.19 1620.82 408.46 1189.02 2743.97 2657.36 3602.12 1891.13 15741.62 1709.04 1992.72 2256.12 4344.43 2504.23 7822.75 5016.25 13466.24 4473.60

Sr 3961.97 9315.89 9765.88 8838.86 8724.70 9849.32 8591.39 10755.92 10543.83 9297.53 9546.54 9105.21 9949.01 10285.49 9459.16 9302.22 1054.93 9981.41 10962.15 10802.19 10794.33 10444.88 1752.34 9051.05

Ba 2603.39 6154.55 6182.25 5552.80 6006.61 6223.64 5422.23 6190.09 6341.59 6041.38 4753.69 5197.03 5631.77 5643.57 5624.80 6007.95 5944.44 6467.88 6026.17 6593.85 6595.74 6031.11 2722.45 5788.89

Mn 429.58 455.26 538.34 447.10 203.87 598.80 763.24 538.17 380.49 339.63 456.66 547.45 750.78 500.10 1270.13 785.02 1016.36 743.05 565.51 371.51 732.65 724.03 612.77 606.41

Trace (mg/kg)

As 60.20 87.14 77.43 74.69 56.71 86.64 68.75 98.84 88.16 75.63 106.05 73.39 78.45 77.41 73.31 77.63 70.15 81.81 101.13 179.03 81.31 71.53 143.49 87.67

Pb 26.99 28.40 19.44 29.77 38.47 37.99 28.15 39.15 29.11 29.16 19.75 30.18 30.61 30.39 22.84 31.76 29.70 29.07 28.71 38.29 38.35 27.61 40.10 30.77

Zn 25.77 30.83 37.24 33.88 37.19 21.89 29.93 32.36 33.29 31.62 24.51 30.64 26.69 29.98 26.76 27.61 27.64 29.52 26.17 29.36 27.79 10.09 23.55 28.57

Ni 22.03 25.71 20.04 25.23 26.59 24.82 25.72 26.26 27.02 27.03 20.05 29.59 32.29 30.32 20.50 26.86 26.46 26.68 32.40 30.93 30.77 26.82 36.68 27.22

Mo 17.53 20.94 22.71 8.08 20.05 9.56 20.22 21.15 20.57 9.76 16.26 15.10 11.06 6.89 6.12 15.08 13.31 13.04 22.58 10.87 16.75 8.76 9.87 14.49

Cu 9.97 8.72 9.78 10.16 10.04 8.80 11.00 9.70 8.61 9.41 12.00 12.06 13.50 11.21 8.90 7.99 9.02 8.64 7.17 8.61 8.28 9.62 7.41 9.57

Cr 11.27 7.62 8.87 8.09 8.65 9.49 9.95 6.37 9.25 9.57 8.36 7.83 7.37 10.85 9.76 7.87 6.93 7.95 7.71 6.88 12.41 12.00 9.79 8.80
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APPENDIX 5 

 

 

 

 

APPENDIX 6 

 

 

 

 

 

Anions (mg/kg) Fresh 1.5m 3m 4.5m 6m 7.5m 9m 12m 13.5m 16.5m 18m 19.5m 21m 22.5m

Core S1

Cl-
4.05 20.50 21.89 27.22 20.61 7.62 20.31 28.86 20.73 20.11 19.88 34.34 18.73 23.33

SO4
2-

13.64 253.58 208.42 208.62 355.30 59.40 219.23 191.63 229.01 359.87 195.40 285.65 262.46 280.49

Anions (mg/kg) Fresh Surface 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 15m 16.5m 18m 19.5m 21m 22.5m 24m 25.5m 27m 28.5m 30m 31.5m

Core S3

Cl-
4.05 2.56 8.04 8.35 15.44 51.32 24.29 33.03 22.00 7.72 22.04 21.02 29.94 11.72 35.22 20.29 13.98 7.20 18.80 19.70 8.45 11.56 9.02

SO4
2-

13.64 70.08 459.41 108.94 176.80 594.13 325.93 509.29 379.13 98.81 286.25 217.52 269.24 138.45 273.20 193.35 174.24 82.70 225.55 200.20 103.94 144.67 27.98
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APPENDIX 7 

Analysis of the extractions in the water soluble fraction for the Secunda fresh fly ash and the drilled core samples (S1) as a function of depth   

 

 

Fresh surface 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 16.5m 18m 19.5m 21m 22.5m Mean

Major(mg/kg)

Si 1217.26 3481.31 3407.70 2041.24 1313.55 1216.92 2638.17 1703.72 3554.26 4139.80 4573.63 3328.12 1656.61 1147.54 514.53 783.81 2366.73

Al 495.52 512.70 1056.85 439.40 90.99 153.58 76.88 496.58 649.46 704.80 208.06 17.64 225.32 499.43 206.59 425.93 384.28

Ca 792.11 323.01 361.07 1445.56 2510.36 828.38 344.73 1308.60 2108.90 708.94 758.53 1851.23 1197.86 619.48 1050.11 2901.05 1221.19

Fe 5.61 Nd 42.75 1.42 8.25 6.10 18.20 8.44 20.09 48.06 36.76 21.27 11.17 18.42 19.78 27.07 20.56

Na 1618.30 1100.94 1155.43 1654.92 1340.88 1387.71 1410.09 1072.25 1251.81 1523.15 600.53 841.07 1195.69 1818.74 1153.12 1744.05 1283.36
K 355.22 429.91 448.36 391.86 389.52 528.78 458.09 362.47 405.19 422.23 703.34 440.52 636.09 620.30 516.32 763.10 501.07

Mg 20.34 35.64 73.47 30.55 6.33 10.68 5.34 34.52 45.15 49.00 14.46 1.23 15.66 34.72 14.36 29.61 26.72

Sr 56.72 28.24 108.67 109.15 71.29 75.72 67.13 51.03 79.77 94.23 51.18 48.94 Nd Nd Nd Nd 71.40

Ba 5.59 5.98 13.87 7.67 4.81 6.77 5.95 3.26 10.82 13.91 11.54 5.80 0.81 1.18 0.23 1.21 6.25

Mn 0.80 Nd Nd Nd Nd Nd 2.24 0.71 1.04 Nd Nd 0.43 1.54 1.23 0.47 0.24 0.99

Trace (mg/kg)

As 1.51 Nd Nd Nd Nd Nd 11.57 Nd 27.36 18.45 23.08 17.83 4.57 Nd 5.70 4.78 14.17

Pb 0.23 Nd Nd Nd Nd Nd 3.13 2.64 5.10 7.60 20.03 Nd 4.29 2.85 1.59 4.41 5.74

Zn 0.59 Nd 2.18 1.83 2.59 0.90 0.31 0.80 0.60 0.24 1.25 0.29 3.00 1.99 1.22 3.17 1.46

Ni 0.34 1.60 Nd 0.20 Nd Nd Nd Nd 2.62 Nd 1.52 Nd Nd Nd Nd Nd 1.49

Mo 0.47 0.02 0.05 0.88 0.09 0.09 Nd 1.32 Nd Nd 0.78 0.04 0.56 0.36 0.02 0.31 0.38

Cu 0.08 0.15 0.14 0.38 0.21 0.40 0.07 0.28 0.33 0.66 Nd Nd 0.51 1.00 0.75 1.71 0.51

Cr 0.26 1.00 0.58 0.67 0.48 0.05 Nd Nd Nd Nd Nd 1.10 Nd Nd Nd Nd 0.65
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APPENDIX 8 

Analysis of the extractions in the water soluble fraction for the fresh Secunda fly ash and the drilled ash core samples (S3) as a function of depth  
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APPENDIX 9 

Analysis of the extractions in the exchangeable fraction for the Secunda fresh fly ash and the drilled core samples (S1) as a function of depth  

 

APPENDIX 10 

Fresh surface 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 16.5m 18m 19.5m 21m 22.5m Mean

Major (mg/kg)

Si 47.85 928.25 1316.09 1152.91 1010.37 2079.01 1466.30 1116.28 581.46 607.44 2199.50 949.71 68.86 358.66 1162.95 2435.02 1162.19

Al 46.20 108.08 556.38 252.78 248.37 256.70 372.59 369.53 367.06 422.95 497.30 532.69 250.77 726.38 582.77 438.72 398.87

Ca 1399.64 735.87 592.91 1705.52 2138.00 1809.27 2288.24 2105.05 1040.08 1302.93 1444.72 2666.36 1452.86 1103.74 2197.00 1317.86 1593.36

Fe 53.79 80.75 98.32 39.19 48.29 35.91 40.81 37.30 72.72 78.61 249.33 171.84 55.65 65.83 48.76 78.86 80.14

Na 14.43 1037.65 1258.28 786.86 690.57 770.06 902.29 940.12 1176.97 1187.51 1327.14 985.30 845.51 863.39 655.28 655.48 938.83

K 513.61 1304.97 1161.51 516.48 652.07 806.51 250.70 274.80 447.44 457.67 586.29 379.65 297.66 567.40 268.88 267.49 549.30

Mg 251.11 261.84 310.54 142.53 112.81 137.90 139.15 138.94 287.54 417.80 261.45 214.10 169.33 144.32 69.88 280.82 205.93

Sr 45.67 19.47 19.23 47.32 53.69 42.34 54.26 47.15 29.95 29.11 32.61 62.28 40.96 45.62 75.55 40.74 42.69

Ba 59.43 15.76 22.06 33.04 35.99 31.90 38.53 28.31 25.45 24.34 31.12 37.76 24.95 34.23 41.69 26.32 30.10

Mn 0.61 4.43 1.91 1.44 2.24 3.45 3.21 3.88 3.69 2.92 2.62 1.45 0.99 1.29 2.21 3.86 2.64

Trace (mg/kg)

As 1.93 Nd Nd Nd Nd Nd 1.07 4.28 2.27 0.79 0.66 0.99 0.64 0.26 0.05 Nd 1.22

Pb 0.45 0.38 0.26 0.25 Nd 0.04 Nd Nd Nd Nd 1.00 0.24 0.01 0.27 Nd Nd 0.31

Zn 0.78 1.20 1.26 0.66 0.51 0.60 0.52 0.53 1.03 1.22 2.03 1.17 0.77 1.32 0.57 1.06 0.96

Ni 0.83 1.60 Nd 1.30 0.88 1.22 1.06 1.08 2.48 2.59 4.42 2.06 1.79 2.70 1.00 1.95 1.87

Mo 0.46 Nd Nd Nd Nd Nd 0.30 0.22 Nd Nd Nd Nd 0.39 Nd 0.07 Nd 0.24

Cu 0.03 0.87 Nd Nd 0.43 0.29 Nd Nd Nd Nd Nd 0.56 0.61 Nd 0.48 Nd 0.54

Cr 0.43 Nd 0.77 0.06 0.64 0.11 0.86 0.38 Nd Nd 0.85 0.09 0.36 0.83 0.25 0.70 0.49
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Analysis of the extractions in the exchangeable fraction for the Secunda fresh fly ash and the drilled core samples (S3) as a function of depth  

 

 

APPENDIX 11 

Fresh surface 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 15m 16.5m 18m 19.5m 21m 22.5m 24m 25.5m 27m 28.5m 30m 31.5m Mean

Major(mg/kg)

Si 47.85 1163.71 344.79 54.70 163.71 1340.73 627.82 945.98 622.18 1276.73 821.79 941.62 539.66 1757.94 1258.95 1047.42 1244.72 778.83 1702.54 1031.56 1363.07 876.84 1289.15 963.38

Al 46.20 103.61 354.52 175.89 163.97 161.65 298.85 201.68 313.67 185.97 214.94 207.96 197.82 280.55 227.90 213.57 505.08 199.20 303.39 143.34 273.15 284.96 278.58 240.47

Ca 1399.64 1449.13 1183.90 1723.53 1237.65 1505.76 911.53 1451.14 1459.17 1730.80 1704.62 1798.41 1339.34 1112.55 1290.63 1170.94 1259.56 29.39 102.24 88.76 58.08 25.79 75.57 1032.20

Mg 251.11 283.38 258.36 246.11 282.79 228.04 264.93 174.96 208.27 183.51 185.28 181.67 204.14 170.68 170.03 150.87 178.16 169.19 188.64 155.87 181.34 170.81 162.38 199.97

Ba 59.43 176.81 127.71 72.99 77.73 73.25 40.10 106.51 74.53 69.08 60.46 72.64 38.75 92.76 117.74 103.74 102.14 125.43 112.16 109.49 155.16 89.04 85.75 94.73

Sr 45.67 192.36 175.77 132.65 111.81 126.91 66.44 178.43 133.02 115.13 127.95 132.83 66.31 129.60 162.46 149.69 159.36 248.79 258.29 237.94 253.71 214.75 110.02 158.37

Fe 53.79 14.22 14.07 14.04 11.75 33.25 40.96 31.25 17.01 12.53 20.32 33.36 31.70 18.40 2.92 18.85 8.44 10.69 14.84 19.84 3.30 9.24 9.99 17.77

Mn 0.61 0.74 1.43 1.47 1.37 0.94 0.51 1.69 1.08 1.17 1.28 1.45 0.47 1.58 2.07 1.62 1.51 3.93 4.09 4.16 4.69 3.67 2.78 1.99

Na 14.43 68.53 85.10 112.15 127.64 186.56 85.86 220.79 137.64 53.70 36.25 31.15 17.05 102.69 129.97 42.43 86.37 271.43 379.79 395.14 346.22 361.13 149.30 155.77

K 513.61 237.13 188.24 197.93 203.25 212.84 101.73 268.95 190.19 123.37 89.93 99.21 69.13 142.78 222.94 124.18 170.77 290.91 515.11 405.61 501.96 506.38 622.14 249.30

Trace (mg/kg)

As 1.93 4.61 Nd 1.32 0.17 Nd Nd 0.21 Nd 1.17 Nd 1.36 Nd 5.00 6.48 7.02 1.72 4.73 Nd Nd Nd Nd Nd 3.07

Pb 0.45 Nd Nd Nd Nd 0.93 1.40 2.28 2.89 0.15 Nd Nd Nd 1.19 0.82 0.56 Nd Nd 0.67 1.04 1.84 1.20 Nd 1.25

Zn 0.78 1.73 1.46 1.38 1.50 1.59 1.60 1.70 1.75 1.04 0.89 0.71 0.71 1.04 1.04 1.03 1.02 0.08 1.49 0.02 0.49 0.31 0.23 1.04

Ni 0.83 0.31 0.27 Nd 0.43 0.28 0.62 0.65 0.65 0.07 0.37 0.27 0.20 Nd Nd Nd 0.20 Nd Nd 0.02 0.46 0.09 Nd 0.33

Mo 0.03 0.05 Nd Nd Nd 0.57 0.10 0.32 0.28 0.19 0.10 0.41 0.22 Nd Nd Nd Nd Nd Nd Nd Nd 0.05 Nd 0.23

Cu 0.03 0.27 Nd 0.22 Nd Nd 0.81 Nd 0.25 0.50 0.31 0.74 0.80 Nd Nd Nd Nd Nd 0.89 0.90 0.64 0.95 0.86 0.63

Cr 0.46 0.10 0.48 0.75 0.59 Nd Nd Nd Nd 0.56 0.15 0.40 0.22 0.03 0.58 0.08 0.01 0.70 0.20 1.22 1.63 1.08 0.16 0.50
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Analysis of the extractions in the carbonate fraction for the Secunda fresh fly ash and the drilled core samples (S1) as a function of depth  

 

 

 

 

Fresh surface 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 16.5m 18m 19.5m 21m 22.5m Mean

Major (mg/kg)

Si 12439.00 18056.07 18485.11 8685.94 6241.21 8733.30 8680.74 9081.70 14938.76 13774.49 29416.95 16985.00 12788.63 23873.44 6457.69 10320.14 13767.94

Al 9860.47 2713.27 2791.33 2367.21 1504.18 1256.72 1681.95 1573.83 3182.82 3299.75 10072.41 5746.60 557.94 1925.49 851.35 2551.01 2805.06

Ca 3927.94 3035.34 2522.66 1022.45 1269.59 1276.16 1177.38 1201.23 3077.37 3210.35 2668.46 1705.91 1038.78 1734.39 2847.22 31.14 1854.56

Fe 189.70 nd 295.23 180.26 152.81 nd nd 0.01 108.51 nd nd nd 59.73 93.53 71.42 84.73 116.25

Na 207.30 227.15 237.73 Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd 232.44

K 147.47 52.45 101.21 55.08 53.27 3.25 Nd Nd Nd Nd Nd Nd Nd Nd Nd 114.17 63.24

Mg 202.16 131.87 266.26 349.34 442.77 367.28 514.17 392.01 262.33 276.94 321.38 542.14 235.63 243.94 364.68 247.88 330.57

Sr 113.66 30.41 49.80 62.08 57.00 52.80 114.76 153.84 104.94 130.63 107.69 168.13 115.27 144.10 142.27 153.66 105.83

Ba 111.84 47.99 67.20 51.44 62.70 79.30 80.68 122.45 120.49 157.25 147.96 159.39 91.58 136.74 127.16 152.97 107.02

Mn 17.20 5.51 14.30 12.08 17.04 14.70 20.32 18.71 11.13 11.95 17.33 23.99 15.24 14.87 21.67 15.79 15.64

Trace (mg/kg)

As 2.90 Nd 4.54 Nd Nd Nd 42.06 2.24 1.69 1.41 2.37 Nd 1.31 3.63 Nd Nd 7.41

Pb 3.84 Nd 2.13 0.77 Nd 2.24 1.20 2.00 5.37 1.47 Nd 0.85 0.99 Nd Nd Nd 1.89

Zn 0.78 Nd Nd Nd 0.08 Nd Nd 0.62 Nd Nd Nd Nd Nd Nd Nd Nd 0.35

Ni 1.27 Nd 2.24 Nd Nd 1.12 3.94 1.65 Nd 2.88 Nd Nd Nd 1.83 0.91 Nd 2.08

Mo 0.64 Nd Nd Nd Nd 0.49 0.22 0.28 0.58 0.93 0.32 Nd Nd 4.39 Nd Nd 1.03

Cu 0.48 Nd Nd Nd Nd Nd Nd 0.73 Nd Nd Nd Nd Nd Nd Nd Nd 0.73

Cr 0.78 1.45 1.04 0.67 1.20 1.28 0.58 0.62 1.06 0.85 1.28 Nd 0.05 1.23 0.84 Nd 0.93
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APPENDIX 12 

Analysis of the extractions in the Carbonate fraction for the Secunda fresh fly ash and the drilled core samples (S3) as a function of depth 

 

 

Fresh surface 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 15m 16.5m 18m 19.5m 21m 22.5m 24m 25.5m 27m 28.5m 30m 31.5m Mean

Major(mg/kg)

Si 12439.00 11664.20 24051.54 22801.20 26194.41 17215.50 21663.42 8196.06 4710.36 2989.24 4652.22 3733.14 3127.20 10510.62 10738.44 7226.70 12891.06 15155.64 11903.46 16975.14 23383.20 13636.20 3739.04 12598.09

Al 9860.47 3173.22 3911.07 3902.78 3748.00 3562.26 4713.18 4359.64 4063.47 3912.74 4259.76 3621.96 3566.04 6561.07 10219.05 7827.10 11058.10 13878.88 12000.40 8502.47 6073.62 5554.64 3908.40 6017.18

Ca 3927.94 2587.29 2825.58 3031.27 2862.67 1817.54 4088.96 4547.89 2942.86 1132.12 3240.69 2769.47 2480.67 2269.89 3143.50 2382.75 3443.90 4680.20 5984.16 4800.32 5935.22 4472.33 768.61 3282.17

Fe 189.70 31.74 78.81 27.31 81.65 55.48 174.65 75.06 62.10 49.07 42.65 91.36 54.79 39.15 99.66 45.69 94.63 14.48 71.32 72.76 16.26 68.74 26.29 62.44

Na 207.30 304.79 337.16 355.47 387.13 358.40 444.24 571.05 349.66 368.15 448.04 454.19 451.98 540.11 644.32 399.08 539.66 575.33 551.31 492.36 480.33 435.85 301.64 445.01

K 147.47 127.25 115.78 158.58 133.31 112.65 203.65 260.61 161.62 83.91 167.79 120.67 170.68 220.83 271.63 94.32 175.37 278.94 375.40 375.83 350.62 342.53 253.41 207.06

Mg 202.16 293.54 345.88 354.67 322.82 361.06 323.75 474.98 348.03 316.16 380.45 387.04 297.66 404.88 551.16 438.32 447.02 422.64 480.57 497.80 453.21 463.42 435.08 400.01

Sr 113.66 487.23 634.39 612.30 580.94 320.29 701.23 998.80 689.13 361.94 706.46 673.42 537.69 484.54 636.02 455.22 788.31 1044.23 1232.48 951.72 1171.46 798.89 137.88 682.03

Ba 111.84 337.02 632.13 599.43 568.58 299.21 698.57 751.05 479.11 319.81 547.98 472.35 422.97 387.75 557.20 422.59 628.67 747.37 712.86 631.44 1120.20 607.61 171.21 550.69

Mn 17.20 5.70 11.61 11.67 9.34 6.61 5.46 5.62 5.88 4.25 9.40 8.00 5.95 6.87 8.60 10.38 9.85 1.80 6.09 1.81 5.46 9.93 5.52 7.08

Trace (mg/kg)

As 2.90 2.79 1.08 Nd 1.52 3.43 1.28 0.56 1.94 Nd 1.31 0.28 0.29 0.18 1.36 0.84 2.07 2.07 0.22 2.39 1.52 1.31 0.55 1.35

Pb 3.84 Nd 0.64 0.07 0.06 0.16 Nd Nd Nd 0.31 Nd 0.53 0.83 0.24 0.51 0.85 0.81 0.98 0.62 1.58 0.62 0.62 1.41 0.64

Zn 0.78 0.99 1.01 1.03 0.99 0.97 1.05 1.15 0.98 1.03 1.00 0.99 1.04 1.01 1.13 1.10 1.09 1.02 1.01 1.02 1.09 1.06 1.05 1.04

Ni 1.27 2.45 1.90 1.12 1.70 2.38 0.83 0.35 0.34 0.75 0.39 0.42 0.39 0.37 0.74 1.52 0.46 0.32 0.36 0.41 0.66 0.51 0.55 0.86

Mo 0.48 0.10 0.18 0.07 0.46 0.28 0.51 0.69 0.01 0.57 Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd 1.29 1.23 Nd 0.49

Cu 0.78 0.45 0.49 0.24 0.57 0.34 0.38 0.23 0.39 0.53 0.39 0.27 0.42 0.26 0.30 0.27 0.22 0.17 0.25 0.28 0.29 0.47 0.40 0.35

Cr 0.64 0.69 0.42 0.35 0.31 0.30 0.17 0.56 0.83 0.21 0.85 0.67 0.34 0.19 0.11 0.12 0.11 0.23 0.16 0.17 0.20 0.09 0.23 0.33
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APPENDIX 13 

Analysis of the extractions in the Fe/Mn fraction for the Secunda fresh fly ash and the drilled core samples (S1) as a function of depth  

 

 

Fresh surface 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 16.5m 18m 19.5m 21m 22.5m Mean

Major (mg/kg)

Si 13545.89 18571.49 3515.56 17567.22 6990.53 550.71 656.64 20394.69 22206.44 17772.37 22788.55 14030.63 21280.08 24833.66 7822.76 15439.08 14294.70

Al 8328.45 5082.05 92.57 6190.17 3706.50 619.56 483.42 5724.28 13095.70 2604.28 3053.52 6547.47 4827.30 5057.40 816.41 13169.63 4738.02

Ca 2152.95 687.37 3178.90 5674.96 3530.52 4559.73 4162.38 3419.05 3712.90 5170.91 1705.83 2814.70 2211.04 2854.66 1913.59 2459.41 3203.73

Fe 1996.23 3955.33 3370.00 4063.21 1720.28 15.30 32.77 1860.30 4425.38 3741.37 4209.29 2527.04 3130.88 3879.30 728.64 10251.84 3194.06

Na 404.45 71.67 79.31 Nd Nd 72.60 186.77 Nd Nd 169.87 292.47 Nd Nd 98.36 109.76 Nd 135.10

K 98.03 90.15 111.45 Nd 37.83 351.11 277.48 Nd Nd 335.82 816.57 Nd 45.42 22.55 195.22 11.03 208.60

Mg 653.33 358.56 3.93 1042.04 1298.87 12.65 64.23 645.44 787.47 915.83 310.20 1392.87 1155.43 262.33 293.66 1439.83 665.56

Sr 262.53 309.82 559.66 209.68 207.78 353.20 320.83 347.90 460.93 449.62 450.47 340.32 411.09 416.13 203.43 34.16 338.34

Ba 138.72 205.46 303.00 144.66 78.59 186.32 172.33 168.01 234.60 247.50 194.66 154.73 184.71 272.48 86.30 93.52 181.79

Mn 40.51 145.73 11.13 199.24 271.09 4.75 6.45 144.39 145.84 81.57 81.54 254.63 167.15 31.21 42.35 181.40 117.90

Trace (mg/kg)

As 1.96 0.49 1.44 1.04 0.35 0.90 1.06 0.30 1.05 1.61 1.46 Nd Nd 1.91 0.96 Nd 1.05

Pb 0.41 0.40 0.38 0.45 0.49 0.03 0.10 0.25 Nd 0.22 0.28 0.34 0.26 1.03 0.17 0.88 0.38

Zn 1.65 2.35 2.51 1.67 1.34 1.58 0.94 1.54 1.29 1.71 1.24 1.07 1.52 2.13 1.10 1.22 1.55

Ni 0.97 0.85 Nd 1.71 0.50 1.40 1.57 2.11 1.39 Nd Nd Nd 1.38 1.79 Nd Nd 1.41

Mo 0.55 0.67 0.77 0.40 0.53 Nd Nd Nd 0.84 0.31 0.27 Nd 0.88 0.90 0.62 1.16 0.67

Cu 0.37 0.88 1.01 Nd Nd 0.43 0.84 nd Nd 1.09 0.75 Nd Nd 1.05 0.80 Nd 0.86

Cr 0.68 Nd Nd 0.07 0.50 0.03 Nd Nd 0.43 Nd Nd Nd 0.04 0.21 0.19 0.51 0.25
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APPENDIX 14 

Analysis of the extractions in the Fe and Mn fraction for the Secunda fresh fly ash and the drilled core samples (S3) as a function of depth 

 

 

Fresh surface 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 15m 16.5m 18m 19.5m 21m 22.5m 24m 25.5m 27m 28.5m 30m 31.5m Mean

Major(mg/kg)

Si 13545.89 19907.79 8333.15 9202.16 11015.38 12295.33 35558.62 27987.43 19702.84 26877.03 13596.66 29150.09 30598.78 15713.68 19950.69 22020.16 18551.08 9930.70 38283.58 24418.18 17737.18 13430.98 18484.30 20124.81

Al 8328.45 6378.53 5580.66 5298.86 4255.76 5368.84 12835.60 11432.28 8755.73 9882.66 7252.62 10802.60 13826.93 10246.57 13473.07 13538.15 11484.70 10568.76 9691.09 15461.72 11603.05 12026.98 15130.99 10222.55

Ca 2152.95 938.78 1264.33 1448.14 906.20 1218.37 1446.14 1444.96 1698.08 1660.93 1519.89 3062.35 1646.58 1907.10 3950.85 2414.22 2964.48 1703.94 2181.90 3021.73 2196.82 2875.73 2861.76 2015.15

Fe 1996.23 2396.73 4018.03 4157.61 5151.71 5572.25 5884.41 2817.66 2225.56 3399.30 3595.97 5198.46 7013.71 3516.43 3377.75 3888.54 2790.43 1492.40 1259.41 2345.64 1676.73 2095.77 3728.97 3527.43

Na 404.45 442.16 402.73 544.11 559.13 625.70 960.35 696.93 601.96 496.30 210.89 1597.67 494.40 651.05 129.78 343.25 247.22 249.98 199.83 46.91 179.69 211.97 221.33 459.70

K 98.03 124.59 99.00 79.85 117.41 117.11 205.49 196.02 129.66 138.76 141.33 204.15 66.79 165.55 12.35 50.56 103.76 107.61 21.96 24.31 17.05 47.13 114.99 103.88

Mg 653.33 891.96 830.77 492.09 786.30 789.63 755.29 743.79 637.24 525.90 491.49 754.06 747.91 809.45 360.14 943.15 589.59 937.09 598.70 749.29 845.58 913.96 273.60 703.04

Sr 262.53 16.90 46.27 158.55 300.62 663.35 449.00 498.32 314.99 150.04 201.01 150.95 369.51 149.67 173.99 88.00 269.23 311.88 354.04 560.13 264.39 402.52 95.42 272.22

Ba 138.72 4.00 14.81 47.38 126.64 182.43 163.59 156.06 111.34 87.66 56.36 53.86 158.39 62.49 83.10 52.91 98.94 133.22 97.31 223.15 158.86 105.70 189.22 107.61

Mn 40.51 76.84 64.28 52.57 55.71 59.75 87.17 80.10 70.27 73.71 84.72 81.81 61.81 47.12 42.40 66.45 50.75 60.70 51.44 68.72 61.68 59.34 195.25 70.57

Trace (mg/kg)

As 1.96 1.66 1.86 1.71 1.68 1.75 0.40 1.59 0.56 1.35 Nd 2.24 1.32 1.05 0.65 Nd 2.73 2.75 0.46 Nd 0.70 1.94 Nd 1.47

Pb 0.41 2.35 2.51 2.27 1.63 0.47 1.04 Nd Nd Nd Nd 0.78 Nd 0.18 Nd Nd 0.02 1.05 Nd Nd 0.33 Nd 0.47 1.09

Zn 1.65 0.03 Nd Nd Nd 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.00 0.01 0.01

Ni 0.97 1.05 0.81 0.55 0.62 0.52 0.61 0.89 0.93 0.85 1.84 0.52 0.82 0.69 0.92 0.71 0.57 0.75 0.24 0.99 0.68 0.54 0.71 0.76

Mo 0.37 0.38 Nd Nd Nd 0.15 0.11 0.15 0.19 0.11 0.38 0.13 0.18 0.12 0.16 0.15 0.16 0.20 0.14 0.22 0.31 0.20 0.13 0.19

Cu 0.68 0.32 0.12 0.53 0.39 0.29 0.37 0.17 0.20 0.50 0.32 0.18 0.24 0.21 0.30 0.15 0.12 0.18 0.13 0.17 Nd Nd Nd 0.26

Cr 0.55 0.54 0.34 0.41 0.23 0.30 0.39 Nd 0.39 0.29 0.29 0.37 0.33 0.44 0.31 0.16 0.59 0.61 0.45 Nd 0.27 0.31 Nd 0.37
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APPENDIX 15 

Analysis of the extractions in the residual fraction for the Secunda fresh fly ash and the drilled core samples (S1) as a function of depth  

 

APPENDIX 16 

Fresh surface 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 16.5m 18m 19.5m 21m 22.5m Mean

Major (mg/kg)

Si 195653.57 182931.56 210129.61 203851.17 187156.06 170912.16 203962.43 172580.94 195940.05 189314.13 266021.33 273383.06 172788.00 289894.71 186461.10 214122.65 207963.26

Al 113912.99 31840.41 39286.24 58127.25 43959.03 42002.67 39362.31 40104.53 47317.12 36377.88 38433.88 35500.59 49604.64 42386.04 135097.19 121451.85 53390.11

Ca 54482.22 57417.76 50594.87 26456.34 31452.08 40236.47 31091.26 54007.30 50405.60 48186.61 50811.64 57339.15 58505.12 53223.30 54786.20 45101.91 47307.71

Fe 13493.27 25453.42 23281.84 13055.51 7651.58 22818.85 19891.11 12603.97 14734.32 22661.43 47440.14 31467.96 21021.35 23488.73 18643.74 24622.12 21922.40

Na 14061.82 16152.51 12439.04 6967.16 15849.40 7359.31 19798.46 28289.57 21434.48 20814.04 14733.46 26317.50 18254.86 3379.45 16019.27 12109.57 15994.54

K 6788.72 9984.30 8519.11 4211.51 5225.75 7143.82 4919.92 7421.50 12187.90 11633.44 8910.74 8115.90 7059.51 11208.65 7193.78 10275.79 8267.44

Mg 7443.67 4966.52 4651.14 8794.88 1547.95 10278.09 3516.04 3841.10 7259.58 8605.98 12918.95 6935.82 7837.02 14505.69 12080.65 9558.34 7819.85

Sr 3367.67 2793.95 2894.06 1405.50 3914.45 3895.03 3731.72 3650.27 3637.24 3873.21 3738.51 3540.85 3893.87 3946.47 3983.44 4056.42 3530.33

Ba 2212.88 1630.90 1685.27 2481.58 2315.20 2533.15 2027.76 1979.64 2160.81 2049.28 2000.46 2233.78 2043.18 2232.52 2153.08 2220.08 2116.45

Mn 365.15 344.54 331.85 277.93 263.38 378.61 384.83 321.06 404.04 485.42 919.38 634.97 415.58 577.60 479.27 443.56 444.13

Trace (mg/kg)

As 51.36 57.59 38.21 51.26 49.16 56.13 47.01 56.29 68.85 72.26 54.47 55.30 118.18 83.34 106.56 145.29 70.66

Pb 21.70 20.76 31.78 29.33 33.76 36.59 31.10 31.74 27.65 27.27 22.70 24.98 19.57 25.89 26.28 18.02 27.16

Zn 21.90 27.67 25.90 29.15 29.47 28.35 20.78 24.32 30.19 30.24 29.97 31.46 31.00 26.20 27.67 27.68 28.00

Ni 18.19 15.13 21.03 18.62 20.28 22.14 21.64 21.56 21.16 26.11 24.28 24.62 20.71 22.72 22.63 20.57 21.55

Mo 8.39 16.44 15.53 10.39 13.13 21.03 13.75 16.42 10.40 18.45 2.42 15.27 12.17 16.66 9.76 29.21 14.74

Cu 8.60 10.59 7.68 10.75 4.63 7.76 7.31 9.20 6.78 7.45 5.24 8.26 10.63 17.25 9.72 4.37 8.51

Cr 14.90 7.85 6.29 8.45 7.21 7.88 4.77 5.94 5.54 8.25 4.61 6.12 5.46 7.90 6.01 7.20 6.63
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Analysis of the extractions in the residual fraction for the Secunda fresh fly ash and the drilled core samples (S3) as a function of depth 

 

Fresh surface 1.5m 3m 4.5m 6m 7.5m 9m 10.5m 12m 13.5m 15m 16.5m 18m 19.5m 21m 22.5m 24m 25.5m 27m 28.5m 30m 31.5m MEAN

Major(mg/kg)

Si 195653.57 214193.20 230939.90 218697.07 103001.22 233379.40 239677.05 234082.35 218622.55 229095.40 192172.25 231837.50 248948.00 229865.50 254401.60 229069.05 188786.70 243497.80 237516.35 222463.70 243343.95 260975.50 240360.45 224769.39

Al 113912.99 87309.28 112849.06 93340.94 67074.75 95139.65 115239.60 109895.76 83697.69 113409.15 77405.19 94366.92 110603.76 83676.89 113140.95 81539.20 203327.93 101527.80 89353.79 87008.74 117587.13 119877.20 59815.44 100781.22

Ca 54482.22 21454.15 34439.17 17671.26 16092.05 75370.01 71488.63 44908.67 40214.29 28145.60 19772.85 25411.66 38444.93 19003.14 88177.75 31524.46 60388.25 64348.63 51301.02 38594.09 92124.30 90802.21 6650.66 44378.54

Fe 13493.27 11670.23 16805.19 13423.26 7403.33 31770.73 55606.60 28382.29 18209.78 16233.54 53565.64 31353.78 30447.74 17403.67 34441.49 19801.03 21496.22 19029.94 30912.38 13418.12 23582.85 25749.45 27729.72 24928.95

Na 14061.82 6068.01 8977.52 6662.74 5461.43 16925.17 15637.42 11635.02 11041.66 10430.50 7939.73 5759.28 7197.14 5382.99 15730.79 7978.61 10023.41 9394.90 7596.66 6318.51 11515.59 8793.78 24142.13 10027.86

K 6788.72 1952.01 2145.49 2422.90 2131.82 9666.78 6716.01 1377.70 347.19 1010.67 2332.38 2258.76 3061.80 1607.46 13380.38 1452.68 1693.82 1917.70 3692.76 2128.60 6649.33 4263.82 11446.30 3802.56

Mg 7443.67 11479.91 9343.01 7591.67 4621.85 6118.02 9736.93 6334.11 6878.34 8717.59 3364.54 11046.72 13052.06 8785.20 28477.15 6910.40 9446.48 9988.57 9508.11 6158.57 8206.41 12414.21 6936.48 9323.47

Sr 3367.67 7918.50 8301.00 7513.03 7416.00 8371.92 7302.68 9142.53 8962.25 7902.90 8114.56 7739.43 8456.66 8742.67 8040.29 7906.89 896.69 8484.20 9317.83 9181.86 9175.18 8878.15 1489.49 7693.40

Ba 2212.88 5231.36 5254.92 4719.88 5105.62 5290.09 4608.89 5261.57 5390.35 5135.17 4040.64 4417.48 4787.00 4797.03 4781.08 5106.75 5052.77 5497.70 5122.24 5604.77 5606.38 5126.44 2314.08 4920.56

Mn 365.15 386.97 457.59 380.04 173.29 508.98 648.76 457.45 323.42 288.68 388.16 465.34 638.16 425.09 1079.61 667.27 863.91 631.59 480.68 315.78 622.75 615.43 520.86 515.45

Trace (mg/kg)

As 51.36 74.07 65.82 63.49 48.21 73.64 58.44 84.02 74.94 64.29 90.14 62.38 66.68 65.80 62.31 65.99 59.63 69.54 85.96 152.17 69.11 60.80 121.97 74.52

Pb 21.70 24.14 16.52 25.31 32.70 32.29 23.93 33.28 24.74 24.79 16.78 25.65 26.02 25.83 19.41 27.00 25.24 24.71 24.40 32.54 32.60 23.47 34.08 26.16

Zn 21.90 26.20 31.66 28.80 31.61 18.60 25.44 27.50 28.30 26.87 20.84 26.04 22.69 25.48 22.74 23.47 23.50 25.09 22.24 24.95 23.62 8.57 20.02 24.28

Ni 18.19 21.85 17.04 21.45 22.60 21.10 21.86 22.32 22.96 22.98 17.04 25.15 27.45 25.77 17.43 22.83 22.49 22.68 27.54 26.29 26.15 22.79 31.18 23.13

Mo 14.90 17.80 19.31 6.86 17.04 8.13 17.19 17.97 17.48 8.30 13.83 12.83 9.40 5.86 5.20 12.82 11.32 11.09 19.19 9.24 14.23 7.45 8.39 12.31

Cu 8.39 7.41 8.31 8.64 8.53 7.48 9.35 8.25 7.32 8.00 10.20 10.26 11.48 9.53 7.57 6.79 7.67 7.34 6.09 7.32 7.04 8.18 6.30 8.14

Cr 8.60 6.48 7.54 6.88 7.36 8.07 8.45 5.42 7.86 8.13 7.11 6.66 6.27 9.22 8.30 6.69 5.89 6.76 6.56 5.85 10.55 10.20 8.32 7.48
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