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CHAPTER 9

Alkali-Activated Cement-Based 
Binders (AACB) as Durable and 
Cost-Competitive Low-CO2 Binder 
Materials: Some Shortcomings 
That Need to be Addressed
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9.1 INTRODUCTION

With an annual production of almost 3 Gt ordinary Portland cement 

(OPC) is the dominant binder of the construction industry [1]. The pro-

duction of 1 t of OPC generates 0.55 t of chemical CO2 and requires 

an additional 0.39 t of CO2 in fuel emissions for baking and grinding, 

accounting for a total of 0.94 t of CO2 [2]. Other authors [3] reported that 

the cement industry emitted in 2000, on average, 0.87 kg of CO2 for every 

kilogram of cement produced. As a result the cement industry contributes 

about 7% of the total worldwide CO2 emissions [4]. The projections for 

the global demand of Portland cement show that by 2056 it will double,  

reaching 6 Gt/year [5]. The urge to reduce carbon dioxide emissions and 

the fact that OPC structures that have been built a few decades ago are still 

facing disintegration problems points out the handicaps of OPC. Portland 

cement–based concrete presents a higher permeability that allows water 

and other aggressive media to enter, leading to carbonation and corrosion 

problems. The early deterioration of OPC reinforced concrete structures is 

a current phenomenon with significant consequences both in terms of the 

cost for the rehabilitation of these structures, and in terms of environmen-

tal impacts associated with these operations. Research works carried out so 

far in the development of alkali-activated cement-based binders (AACBs) 
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showed that much has already been investigated and also that an environ-

mentally friendly alternative to Portland cement is becoming more popu-

lar [6–8]. However, AACBs still show some shortcomings that need to be 

addressed so that they can effectively compete against Portland cement. For 

instance, Zheng et al. [9] mention some AACB problems, namely the diffi-

culty of handling of caustic solutions, poor workability, quality control, and 

most important, the problem of efflorescences. Heidrich et  al. [10] con-

ducted an industry survey in Australia to identify the barriers to the adop-

tion of AACB concrete, and conclude that the fact that this material is not 

covered by existent Australian standards or any other constitutes the main 

barrier. Strangely, only 30% of the respondents mention that the cost is a 

relevant barrier. However, it is important to mention that only 23.1% of 

the respondents had a detailed knowledge about AACB. The survey also 

pointed to the need for more research regarding AACB durability. This 

chapter thus reviews some AACB shortcomings, including its costs and car-

bon dioxide emissions, and also some durability issues like efflorescences, 

alkali silica reaction (ASR), and corrosion of steel reinforcement.

9.2 AACB COST EFFICIENCY

Currently the cost of AACB concretes is located midway between OPC 

concretes and high performance concretes [11,12]. These materials only start 

to become economically competitive compared to OPC concretes with a 

strength class above C50/60 [13]. Also the average ERMCO concrete class 

production lies between C25/30 and C30/37 and only around 13% of the 

concrete ready-mixed production is above the strength class C35/45 [14], 

which means that currently geopolymer binders are targeting a very small 

market share. For instance Pacheco-Torgal et al. [15–18] showed that tungsten 

waste–based AACB mortars can be more cost efficient than current commer-

cial repair mortars. Therefore, in the short term the above-cited disadvantage 

means that the study of AACB applications should focus only on high-cost 

construction materials. The authors of Ref. [19] confirm that the high cost 

of AACB is one of the major factors that still remain a severe disadvantage 

over Portland cement. These authors suggest that waste-based activators could 

be used to overcome that gap. McLellan et al. [20] also suggests that the use 

of less expensive waste feedstocks may reduce AACB costs. Recently, some 

authors studied [21]. However, these authors did not provide any information 

regarding the costs of the new waste-based activator. Abdollahnejad et al. [22] 

recently studied foam fly ash–based two-part (NaOH, NaSiO3) AACBs and 

reported that the mixtures cost more than 300 euro/m3 (Fig. 9.1).

s0015

p0015

48-ELS-CHE_Nazari-1630805_CH009_S200.indd   196 8/1/2016   11:25:37 AM



AACBs as Durable and Cost-Competitive Low-CO2 Binder Materials 197

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal 

business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof 

online or in print.  This proof copy is the copyright property of the publisher and is con�dential until formal publication.

Nazari-1630805 978-0-12-804524-4 00009

600

(A)

(B)

(C)

580

560

540

520

500
1% H2O2 2% H2O2

SS/SH = 2,5 SS/SH = 3,5 SS/SH = 4,5

SS/SH = 2,5 SS/SH = 3,5 SS/SH = 4,5

SS/SH = 2,5 SS/SH = 3,5 SS/SH = 4,5

3% H2O2

1% H2O2 2% H2O2 3% H2O2

1% H2O2 2% H2O2 3% H2O2

1% NaBO3 2% NaBO3 3% NaBO3

1% NaBO3 2% NaBO3 3% NaBO3

1% NaBO3 2% NaBO3 3% NaBO3

500

480

460

C
o
s
t 

(e
u
ro

/m
3
)

C
o
s
t 

(e
u
ro

/m
3
)

C
o

s
t 
(e

u
ro

/m
3
)

440

420

400

400

380

360

340

320

300

Figure 9.1 Cost according to activator/binder ratio and sodium silicate/sodium 

hydroxide mass ratio: (A) activator/binder ratio =1, (B) activator/binder ratio =0.8, and 

(C) activator/binder ratio =0.6. Reprinted from Abdollahnejad Z, Pacheco-Torgal F, Félix T,  

Tahri W, Aguiar A. Mix design, properties and cost analysis of fly ash-based geopolymer 

foam. Constr Build Mater 2015;80:18–30. Copyright © 2015, with permission from Elsevier.
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Cristelo et al. [23] compared the costs of 3880 m3 of Portland cement 

and AACB mixtures for jet mix columns and mentioned that the former 

has an average cost of almost 90% of the latter. However, it is important 

to emphasize that comparisons should have been made for identical ser-

vice life assessed by durability parameters. Also these authors made their 

comparisons against a high-cost Portland cement (type I 42,5 R) that is 

rarely used for this application. There is no doubt that if they used the less 

expensive Portland cement type IV/A (V) 32,5 R [24] the cost perfor-

mance of AACB mixtures would be much less cost competitive. That is 

why Provis et al. [25] recognized that new activators that allow for cost-

efficient AACBs constitute a key aspect that should be further investigated.

9.3 CARBON DIOXIDE EMISSIONS OF AACB

Davidovits et  al. [26] was the first author to address the carbon dioxide 

emissions of AACB stating that they generate just 0.184 t of CO2 per 

ton of binder. Duxson et  al. [27] do not confirm these numbers; they 

stated that although the CO2 emissions generated during the production 

of Na2O are very high, still the production of alkali-activated binders is 

associated to a level of carbon dioxide emissions lower than the emis-

sions generated in the production of OPC. According to those authors 

the reductions can go from 50% to 100%. Duxson and Van Deventer 

[28] mention a commercial life-cycle assessment (LCA) conducted by 

NetBalance Foundation on Zeobond’s E-Crete geopolymer, which was 

compared to standard OPC blends available in Australia in 2007. The 

binder-to-binder comparison shows an 80% reduction of CO2 emissions 

while the concrete-to-concrete comparisons show around 60% savings. 

Such conclusions allow the presentation of E-Crete as a very impressive 

performer against OPC concretes (Fig. 9.2).

A recent E-Crete geopolymer LCA study [29] used a 100% OPC con-

crete as the reference concrete although the construction industry uses 

concrete mixtures with partial replacement of Portland cement by poz-

zolanic additions. ERMCO [14] reports that the ready-mixed concrete 

industry in the United States and United Kingdom used 22% of cement 

additions while some countries like Israel and Portugal used respectively 

26% and 28%. Also important is the fact that the study mentioned that a 

40-MPa reference OPC concrete requires 440 kg/m3 of Portland cement. 

However, a similar 40-MPa 28-day compressive strength could easily be 

achieved with a mixture of just 200-kg/m3 Portland cement type II 42,5 
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plus 300-kg/m3 fly ash [30]. The LCA used an OPC with an emissions 

factor of 0.904 t CO2e/t, which is very far from being the best OPC 

environmental performance. It also used an alkali activator with a 1.070 t 

CO2e/t, which does not allow the assessment of which part is from the 

sodium hydroxide and which part is related to the sodium silicate. Weil 

et al. [31] confirm that the sodium hydroxide and the sodium silicate are 

responsible for the majority of CO2 emissions in alkali-activated binders.  

These authors compared OPC concrete and AACB concrete with simi-

lar durability reporting that the latter has 70% lower CO2 emissions. 

However, these authors’ study used 100% OPC concrete and as it was 

previously mentioned this is not a mix solution used by the construc-

tion industry. Habert et al. [19] carry out a detailed environmental evalu-

ation of alkali-activated binders using the LCA methodology, confirming 

that AACBs have a lower impact on global warming than OPC, but on 

the other hand, they have a higher environmental impact regarding 

other impact categories. McLellan et  al. [20] reported a 44–64% reduc-

tion in greenhouse gas emissions of AACB when compared to OPC. 

Strangely, other authors [32] who also used Australian-based materi-

als presented very different numbers. They showed that the CO2 foot-

print of a 40-MPa AACB concrete was approximately just 9% less 
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Figure 9.2 CO2 emissions of various cement binders as a function of OPC content. 

Reprinted from Duxson P, Van Deventer JSJ. Geopolymers, structure, processing, prop-

erties and applications. In: Provis J, Van Deventer J, editors. Cambridge, UK: Woodhead 

Publishing Limited Abington Hall; 2009. Copyright © 2009, with permission from Elsevier.
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than comparable concrete containing 100% OPC binder (328 kg/m3). 

This is much less than the 440 kg/m3 used in the Aurora Construction 

Materials (ACM) [29] E-Crete LCA. The study of Turner and Collins 

[32] shows that the major part of geopolymer carbon dioxide footprints 

is due to sodium silicate (Fig. 9.3). However, it is important to remem-

ber (once more) that the construction industry does not use plain 100% 

OPC concretes; therefore, these mixtures should not be used as a refer-

ence comparison. The OPC concrete mixture used in this study could 

even have a much lower carbon footprint (below the AACB con-

crete carbon footprint) if fly ash had been used as partial replace-

ment of OPC. A similar 40-MPa 28-day compressive strength could  

easily be achieved with a mixture of just 200 kg/m3 Portland cement [30]. 

These results confirm the fact that in some situations AACB can show “an 

emissions profile worse that of Portland cement-based concretes” as was 

already recognized by Ref. [7]. More recently, Provis et  al. [25] empha-

size that AACBs “are not intrinsically or fundamentally ‘low-CO2’ unless 

designed effectively to achieve such performance.”

Ouellet-Plamondon and Habert [33] confirmed that AACB only 

has better carbon dioxide emissions when comparisons are made against 

p0035

Figure 9.3 Summary of CO2-e for Grade 40 concrete mixtures with OPC and AACB. 

Reprinted from Turner L, Collins F. Carbon dioxide equivalent (CO2-e) emissions: a compari-

son between geopolymer and OPC cement concrete. Constr Build Mater 2013;43:125–130. 

Copyright © 2013, with permission from Elsevier.
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100% OPC concrete–based mixtures. These authors mention that only 

one-part geopolymers show carbon footprint levels much lower than 

Portland cement, 10–30% when compared to 100% OPC mixtures. One-

part geopolymers are considered an important phenomenon in the evo-

lution of low-carbon AACB technology in the “just add water” concept. 

However, they were associated with low compressive strength [34]. The 

2014 investigations of Peng et  al. [35] confirm that one-part geopoly-

mers show low mechanical strength. These authors noticed that one-part 

geopolymer mixtures show an increased reduced compressive strength 

after being immersed in water. This reduction is dependent on the kaolin 

thermal treatment. Higher calcination temperatures are responsible for 

higher compressive losses. Other authors [36] even reported a compres-

sive strength decrease for one-part geopolymers based on calcined red 

mud and sodium hydroxide blends just after the first week of curing.  

Abdollahnejad et  al. [37,38] investigated one-part geopolymers hav-

ing obtained relevant compressive strength by using fly ash and minor 

amounts of OPC. Cristelo et al. [23] compared the carbon dioxide emis-

sions of 3880 m3 of Portland cement and geopolymer-based mixtures for 

jet-mix columns and mentioned that the AACB solution is responsible for 

just 77% of the Portland cement–based emissions. These results are only 

possible because these authors made their comparisons against a high- 

clinker Portland cement (type I 42,5 R). Also the emission factors that 

they used for sodium hydroxide and silicate (Table 9.1) are considerably 

lower than the ones used by Turner and Collins [32], respectively 1915 

and 1514 kg CO2eq/t. If they did use those emissions factors they would 

have to conclude that the AACB-based mixtures had a lower carbon diox-

ide footprint than the Portland cement–based ones. Strange as it may 

seem, Poowancum and Horpibulsuk [39] mentioned that AACB is a low-

energy-consuming process and does not emit carbon dioxide. This shows 

the level of misunderstanding about these materials and that is related to 

the fact that, as it was previously mentioned, AACBs have been advertised 

as low-carbon footprint materials. However, since Davidovits [40] just 

mentioned that the carbon footprint calculations of sodium silicate in the 

paper of Habert et al. (2011) and in the paper of Turner and Collins [32] 

are wrong because these authors allegedly used the carbon emissions for 

100% solid lumps, in place of the actual value of the diluted silicate solu-

tion (45% solid), which means that further studies are needed to confirm 

the real carbon footprint of AACB.
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Table 9.1 Characterization of the activities involved in the production of 3880 m3 of jet mixing columns

Activity SC5A1 SA3a

Quant.  

(kg/m3)

Emission factor  

(kg CO2-eq/t) (database)

CO2  

(eq) (ton)

Quant.  

(kg/m3)

Emission factor  

(kg CO2-eq/t) (database)

CO2  

(eq) (ton)

Materials (prim.)a — — 836 — — 630
Cement 200 930 (Sust. conc.) 720 — — —
Steel rebars 22 1351.47b 110 22 1351.47b 110
Fly ash — — — 186 4 (Sust. conc.) 3
Water 100 0.3 (AEA, 2012) 0.1 100 0.3 (AEA, 2012) 0.1
Sodium hydroxide — — — 50 999 (Ecoinvent) 194
Sodium silicate — — — 75 1096 (Ecoinvent) 319
Energy (prim.) — — 53 — — 53
Diesel — 3.6028c (AEA, 2012) 49 — 3.6028c (AEA, 2012) 49
Network electricity — 0.379285d (IEA—CO2 

emissions from fuel 
combustion)

4 — 0.379285d (IEA—CO2 
emissions from fuel 
combustion)

4

Mob/demob (second.) — — 17 — — 13
Freight (second.) — — 54 — — 44
People transp. (second.) — — 4 — — 4
Assets (second.) — — 3 — — 3
Waste (second.) — — 1 — — 1

Source: Reprinted from Cristelo N, Miranda T, Oliveira D, Rosa I, Soares E, Coelho P, et al. Assessing the production of jet mix columns using alkali activated waste 
based on mechanical and financial performance and CO2 (eq) emissions. J Clean Prod 2015;102:447–460. Copyright © 2015, with permission from Elsevier.
aOnly the materials actively contributing to the CO2 (eq) emissions are listed.
bThe EF value used is a weighted average of the Ecoinvent v2.2 emission factor of the steel rebars (1857 kg CO2-eq/t) and the recycled steel rebars (624 kg CO2-eq/t), 
considering the 59% and 41% respective shares used.
cIn this case the EF unit is kg CO2-eq/L.
dIn this case the EF unit is kg CO2-eq/kWh.
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9.4 SOME IMPORTANT DURABILITY ISSUES OF AACBS

Duxon et al. [27] state that AACB durability is the most important issue in 

determining the success of these new materials. Other authors [41] men-

tion that the fact that samples from the former Soviet Union that have 

been exposed to service conditions for in excess of 30 years show little 

degradation means that AACBs do therefore appear to stand the test of 

time. But since those samples were of the (Si +Ca) type that conclusion 

cannot be extended to geopolymers defined as “alkali aluminosilicate gel, 

with aluminium and silicon linked in a tetrahedral gel framework” [28]. 

Juenger et al. [1] argue that “[t]he key unsolved question in the develop-

ment and application of alkali activation technology is the issue of dura-

bility.” Also, Van Deventer et al. [8] recognized that “whether geopolymer 

concretes are durable remains the major obstacle to recognition in stan-

dards for structural concrete.” Reed et  al. [42] stated that the construc-

tion industry has not yet fully embraced AACB concrete mainly because 

the information pertaining to the service life and the durability of AACB 

concrete applications or infrastructure has yet to be quantified. Scrivener 

[43] also mentioned that the durability of AACB is not well known. The 

present section thus reviews three durability issues, namely, efflorescences, 

ASR, and corrosion of steel reinforcement.

9.4.1 Efflorescences

Very few authors have investigated this serious limitation of AACB. Also a 

search on Scopus journal papers show that the first paper where this prob-

lem is mentioned was only published in 2007. Efflorescence is originated 

by the fact that “alkaline and/or soluble silicates that are added during pro-

cessing cannot be totally consumed during geopolymerisation” [9]. It is 

the presence of water that weakens the bond of sodium in the aluminosili-

cate polymers, a behavior that is confirmed by the Rowles structure model 

(Fig.  9.4). In the crystalline zeolites the leaching of sodium is negligible, 

contrary to what happens in the aluminosilicate polymers [45,46]. Recently 

Skvara et al. [47] showed that Na, K is bounded only weakly in the nano-

structure of the AACB (N, K)–A–S–H gel and is therefore almost com-

pletely leachable. This confirms that efflorescences are a worrying limitation 

of AACB when exposed to water or environments with RH above 30%.

Temuujin et  al. [48] state that although ambient-cured fly ash AACB 

exhibited efflorescences, that phenomenon does not occur when the 

same AACB are cured at elevated temperature, which means the leachate 
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sodium could be a sign of insufficient reaction. Pacheco-Torgal and Jalali 

[49] found that sodium efflorescences are higher in AACB based on alu-

minosilicate prime materials calcined at a temperature range below the 

dehydroxylation temperature with the addition of sodium carbonate as 

a source of sodium cations (Fig. 9.5). Kani et  al. [50] showed that efflo-

rescences can be reduced either by the addition of alumina-rich admix-

tures or by hydrothermal curing at temperatures of 65°C or higher. These 

authors found that the use of 8% of calcium aluminate cement greatly 

reduces the mobility of alkalis, leading to minimal efflorescences. Zhang 

et  al. [51] confirmed that hydrothermal curing can reduce efflorescence. 

They mentioned that NaOH-activated AACBs possess slower efflores-

cence than the sodium silicate solution–activated specimens.

According to Fig. 9.6 the lower Na-leaching rate is observed for the 

NaOH-based mixture (CL1H) while the higher one is related to the 

sodium silicate AACB (CL2H). Both were cured at 80°C for 90 days. 

A rather lower leaching behavior is associated with the AACB mixture 

CL1L made with NaOH and cured at 23°C having just 4.0 MPa at 90 

days curing (Table 9.2).

A rather lower leaching behavior is associated to the mixture CL1L 

made with NaOH and cured at 23ºC having just 4.0 MPa at 90 days cur-

ing (Table 9.2). A higher leaching behavior is noticed in the mixture CL2H 

that has a much higher compressive strength (58.4 MPa). These results are 
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Figure 9.4 Rowles structure model. Reprinted from Rowles MR, Hanna JV, Pike KJ,  

Smith ME, O’Connor BH. 29Si, 27Al, 1H and 23Na MAS NMR study of the bonding charac-

ter in aluminosilicate inorganic polymers. Appl Magn Reson 2007;32:663–89. Copyright © 

2007, with permission from Springer.
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not in line with those of Allahverdi et al. [53] who mentioned that a highest 

compressive strength is associated with the least tendency for efflorescence 

formation. These authors also mentioned that slag-containing specimens 

showed much less and slower efflorescence. Still the role of calcium remains 

unclear and requires further study. The previous results seem to consti-

tute a step back in the development of AACB. For one, AACBs based only 

on NaOH solutions without sodium silicate show moderate mechani-

cal strength. Also, the use of hydrothermal curing has serious limitations 

for onsite concrete placement operations. On the other hand, the use of  

calcium-based mixtures reduces the acid resistance and raises the chances for 

the occurrence of the deleterious ASRs. Besides, the use of calcium reduces 

the global warming emissions advantage over Portland cement.

Figure 9.5 AACB mine-mortar specimens after water immersion. Above mortars 

based on plain mine-waste mud calcined at 950°C for 2 h. Below mortars based on 

mine-waste mud calcined at different temperatures with sodium carbonate. Reprinted 

from Pacheco Torgal F, Jalali S. Influence of sodium carbonate addition on the thermal 

reactivity of tungsten mine waste mud based binders. Constr Build Mater 2010;24:56–60. 

Copyright © 2010, with permission from Elsevier.
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9.4.2 ASR of AACBs

The chance that ASR may take place in AACBs is still a little-studied 

subject. For OPC binders, however, the knowledge of ASR has been 

intensively studied; therefore, some explanations could be also applied 

to understand the possibility of ASR when AACBs are used. ASR was 

reported for the first time by Stanton [54] and needs the simultaneous 

action of three elements in order to occur: (1) enough amorphous silica, 

s0035

p0065

Figure 9.6 The concentration of Na (A) and K (B) leached from the Callide fly ash 

mixtures. Reprinted from Zhang Z, Provis J, Reid A, Wang H. Fly ash-based geopolymers: 

the relationship between composition, pore structure and efflorescence. Cem Concr Res 

2014;64:30–41. Copyright © 2014, with permission from Elsevier.
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Table 9.2 Mix proportions and curing conditions of AACBs, and their compressive strengths at 90 days

Mixtures Fly ash (g) Slag (g) Activator solutions (g) Foam (g) Curing scheme Compressive 

strength (MPa)

Callide 12 M NaOH Na2O ∙1.5SiO2

CL1L 100 0 23.1 0 0 23°C × 90 days 4.0 ± 0.3
CL1H 100 0 23.1 0 0 80°C × 90 days 26.2 ± 2.1
CL2L 100 0 0 35 0 23°C × 90 days 53.2 ± 0.9
CL2H 100 0 0 35 0 80°C × 90 days 58.4 ± 12.1
CLSL 80 20 0 35 0 23°C × 90 days 77.4 ± 7.0
CLSH 80 20 0 35 0 80°C × 90 days 58.2 ± 11.2

Source: Reprinted from Zhang Z, Provis J, Reid A, Wang H. Fly ash-based geopolymers: the relationship between composition, pore structure and 
efflorescence. Cem Concr Res 2014;64:30–41. Copyright © 2014, with permission from Elsevier.
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(2) alkaline ions, and (3) water [55]. The ASR begins when the reactive 

silica from the aggregates is attacked by the alkaline ions from cement, 

forming an alkali–silica gel, which attracts water and starts to expand. The 

gel expansion leads to internal cracking, which has been confirmed by 

others [56] reporting 4 MPa pressures. Those internal tensions are higher 

than OPC concrete tensile strength, thus leading to cracking. However, 

some authors believe that ASR is not just a reaction between alkaline ions 

and amorphous silica but also requires the presence of Ca2+ ions [57]. 

Davidovits [58] compared AACB and OPC when submitted to the ASTM 

C227 mortar-bar test, reporting a shrinkage behavior in the first case and 

an expansion for the OPC binder. Other authors [11,12] reported some 

expansion behavior for AACB although it was smaller than for OPC 

binders. However, Puertas [59] believed ASR could occur in slag-based 

AACB containing reactive opala aggregates. Bakharev et al. [60] compared 

the expansion of OPC and AACB, reporting that the former had higher 

expansion. This is clear from the microstructure analysis (Fig. 9.7).

Garcia-Lodeiro et  al. [61] showed that fly ash–based AACB is less 

likely to generate expansion by ASR than OPC. They also showed that 

the calcium plays an essential role in the expansive nature of the gels. 

Investigations by Puertas and Palacios [62] show that siliceous aggregates 

are more prone to ASR than calcareous aggregates in AACB mixtures. 

p0070

Figure 9.7 AACB concrete after 10 months curing. Reactive aggregate; G =alkali–silica 

gel. Reprinted from Bakharev T, Sanjayan JG, Cheng YB. Resistance of alkali-activated slag 

to alkali-aggregate reaction. Cem Concr Res 2001;31:331-4. Copyright © 2001, with permis-

sion from Elsevier.
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Cyr and Pouhet [63] reviewed the work of several authors concerning 

the expansion due to ASR (Fig. 9.8) noticing that some mixtures show 

an expansion above the limit proposed in the standard used for ASR tests. 

Therefore the study of ASR in AACB is not a closed subject, at least for 

the AACBs containing calcium.

Figure 9.8 Ratios of the expansion relative to the limit proposed in the standard used 

for the ASR test, for Portland cement, and slag-based AACB mixtures. Reprinted from 

Cyr M, Pouhet R. Resistance to alkali-aggregate reaction (AAR) of alkali-activated binders. 

In: Pacheco-Torgal F, Labrincha J, Palomo A, Leonelli C, Chindaprasirt P, editors. Handbook 

of alkali-activated cements, mortars and concretes. Cambridge, UK: WoddHead Publishing; 

2014. p. 397–422. Copyright © 2014, with permission from Elsevier.

f0045

48-ELS-CHE_Nazari-1630805_CH009_S200.indd   209 8/1/2016   11:25:42 AM



Handbook of Low Carbon Concrete210

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal 

business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof 

online or in print.  This proof copy is the copyright property of the publisher and is con�dential until formal publication.

Nazari-1630805 978-0-12-804524-4 00009

9.4.3 Corrosion of Steel Reinforcement in AACBs

The corrosion of steel reinforcement is one of the causes that influences 

the structural capability of concrete elements. As concrete attack depends 

on its high volume and therefore is not of great concern, an attack on 

the steel reinforced bars is a serious threat eased by the fact that steel 

bars are very near to the concrete surface and are very corrosion sensi-

tive. In OPC binders, steel bars are protected by a passivity layer, due to 

the high alkalinity of calcium hydroxide. The steel bars’ corrosion may  

happen if pH decreases, thus destroying the passivity layer, due to carbon-

ation phenomenon or chloride ingress. The steel corrosion occurs due 

to an electrochemical action, when metals of different nature are in elec-

trical contact in the presence of water and oxygen. The process consists 

of the anodic dissolution of iron when the positively charged iron ions 

pass into the solution and the excess of negatively charged electrons goes 

to steel through the cathode, where they are absorbed by the electrolyte 

constituents to form hydroxyl ions. These in turn combine with the iron 

ions to form ferric hydroxide, which then converts to rust. The volume 

increase associated with the formation of the corrosion products will lead 

to cracking and spalling of the concrete cover. For AACB, the literature 

is scarce concerning its capability to prevent reinforced steel corrosion. 

Aperador et  al. [64] mention that AACB slag concrete (AAS) is associ-

ated with poor carbonation resistance, a major cause for corrosion of steel 

reinforcement. The calculated carbonation rate coefficients were 139 and  

25 mm (year)−1/2 for AAS and OPC concretes. Fig. 9.9 shows the low cor-

rosion resistance of AACB slag concretes. Other authors also confirmed 

the low carbonation resistance of AACB mixtures [65,66].

Lloyd et al. [67] showed that AACB is prone to alkali leaching, which 

could lead to a rapidly and disastrous reduction in the pH, causing steel 

corrosion. They stated that it is not certain how long a steel-reinforced 

AACB concrete structure would be able to resist corrosion. They also 

mention that the presence of calcium is crucial for having durable steel-

reinforced AACB concrete because calcium-rich mixtures have much 

lower diffusion coefficients and a more tortuous pore system that hinders 

the movements of ions through the paste. Law et al. [68] recently recog-

nized that for chloride-induced attack the long-term protection provided 

by AACB concrete may be lower than for OPC and blended cement con-

cretes. It is true that as Criado [69] recommends, the use of stainless steel 

reinforcement could overcome the corrosion problems of AACB concrete; 

s0040
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however, since stainless steel is much more expensive than current steel 

this option will damage the AACB concrete cost competitiveness against 

OPC concrete. The use of corrosion inhibitors or even the use of concrete 

coatings may be a more cost-effective option than stainless steel. Still, fur-

ther studies are needed to confirm this.
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Figure 9.9 Polarization resistance (Rp) and current density (icorr) versus time for steel 

rebars embedded in AAS and OPC concretes with and without exposure to carbon-

ation: AASA and OPCA were exposed to accelerated testing in a cabinet with 3% CO2, 

65% RH, and 25°C while AASL and OPCL remain in a laboratory environment with 

0.03% CO2, 65% RH, and 25°C. Reprinted from Aperador W, de Gutiérrez R, Bastidas D.  

Steel corrosion behaviour in carbonated alkali-activated slag concrete. Corros Sci 

2009;51:2027–33. Copyright © 2009, with permission from Elsevier.
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9.5 CONCLUSIONS AND FUTURE TRENDS

Research carried out so far in the development of AACB showed 

that much has already been investigated and also that an environmen-

tally friendly alternative to Portland cement is becoming more viable. 

However, AACBs still show some shortcomings that need to be addressed 

so that they can effectively compete against Portland cement. This chapter 

reviewed some AACB shortcomings, including its costs and carbon diox-

ide emissions, and also some durability issues like efflorescences, ASR, and 

corrosion of steel reinforcement. Currently the cost of AACB concretes is 

located midway between OPC concretes and high-performance concretes. 

These materials only start to become economically competitive compared 

to OPC concretes with a strength class. In the short term, the above-cited 

disadvantage means that the study of AACB applications should focus only 

on high-cost construction materials. The use of activators based on less-

expensive waste feedstocks may reduce AACB costs. This constitutes a 

research area that deserves priority attention. AACBs have been advertised 

as low-carbon footprint materials; still, no study has ever confirmed the 

very low emissions (0.184 t of CO2 per ton of binder) found by Davidovits. 

Some studies even found that OPC and AACB have similar carbon foot-

prints. However, and since Davidovits has mentioned that the carbon 

footprint calculations of sodium silicate used in those studies are wrong, 

further studies are needed to confirm the real carbon footprint of AACB. 

The durability of AACB is the most important issue in determining the 

success of these new materials; still, some durability issues show some wor-

rying results. So far, very few authors have investigated the efflorescence of 

AACB, which is originated by the fact that Na, K is bounded only weakly 

in the nanostructure of these materials and is therefore almost completely 

leachable. Efflorescence can be greatly reduced by the use of hydrothermal 

curing and the addition of calcium aluminate. However, the use of hydro-

thermal curing has serious limitations for onsite concrete-placement oper-

ations. On the other hand, the use of calcium-based mixtures reduces the 

acid resistance and raises the chances for the occurrence of the deleterious 

ASRs. Besides, the use of calcium reduces the global warming emissions 

advantage over Portland cement. Although ASR has been intensively stud-

ied for OPC concrete, the chance that it also may take place in AACB 

concrete is still scarcely studied. Since calcium plays a significant role in 

ASR expansion this could mean that studies on how to prevent ASR in 

calcium-based AACB are needed. The corrosion of steel reinforcement 
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is one of the causes that influences the structural capability of concrete  

elements. In OPC binders, steel bars are protected by a passivity layer, due 

to the high alkalinity of calcium hydroxide. Some studies show that since 

AACB is prone to alkali leaching, that could lead to a rapidly and disastrous 

reduction in the pH causing steel corrosion. They also show that the pres-

ence of calcium is crucial for having durable steel-reinforced AACB.
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