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Abstract. Under the framework of constraint based modeling, genome-
scale metabolic models (GSMMs) have been used for several tasks,
such as metabolic engineering and phenotype prediction. More recently,
their application in health related research has spanned drug discovery,
biomarker identification and host-pathogen interactions, targeting dis-
eases such as cancer, Alzheimer, obesity or diabetes. In the last years, the
development of novel techniques for genome sequencing and other high-
throughput methods, together with advances in Bioinformatics, allowed
the reconstruction of GSMMs for human cells. Considering the diversity
of cell types and tissues present in the human body, it is imperative
to develop tissue-specific metabolic models. Methods to automatically
generate these models, based on generic human metabolic models and a
plethora of omics data, have been proposed. However, their results have
not yet been adequately and critically evaluated and compared.

This work presents a survey of the most important tissue or cell
type specific metabolic model reconstruction methods, which use litera-
ture, transcriptomics, proteomics and metabolomics data, together with
a global template model. As a case study, we analyzed the consistency
between several omics data sources and reconstructed distinct metabolic
models of hepatocytes using different methods and data sources as
inputs. The results show that omics data sources have a poor overlap-
ping and, in some cases, are even contradictory. Additionally, the hepa-
tocyte metabolic models generated are in many cases not able to perform
metabolic functions known to be present in the liver tissue. We conclude
that reliable methods for a priori omics data integration are required to
support the reconstruction of complex models of human cells.

1 Introduction

Over the last years, genome-scale metabolic models (GSMMs) for several organ-
isms have been developed, mainly for microbes with an interest in Biotechnology
[6,20]. These models have been used to predict cellular metabolism and promote
biological discovery [17], under constraint-based approaches such as Flux Bal-
ance Analysis (FBA) [18]. FBA finds a flux distribution that maximizes biomass
production, considering the knowledge of stoichiometry and reversibility of reac-
tions, and taking some simplifying assumptions, namely assuming quasi steady-
state conditions.
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Recently, efforts on model reconstruction have also addressed more complex
multicellular organisms, including humans [5,9,25]. In biomedical research, they
have been used, for instance, to elucidate the role of proliferative adaptation
causing the Warburg effect in cancer [23], to predict metabolic markers for inborn
errors of metabolism [24] and to identify drug targets for specific diseases [11].

However, the human organism is quite complex, with a large number of cell
types/tissues and huge diversity in their metabolic functions. This led to the
need of developing tissue/cell type specific metabolic models, which could allow
studying in more depth specific cell phenotypes. Towards this end, it was imper-
ative to better characterize specific cell types, gathering relevant data. Indeed,
an important set of technological advances in the last decades greatly increased
available biological data through high-throughput studies that allow the iden-
tification and quantification of cell components (gene expression, proteins and
metabolites). These are collectively known as ‘omics’ data and have generated
new fields of study, such as transcriptomics, proteomics and metabolomics.

The most widely available omics data are transcriptomics, the quantification
of gene expression levels in a cell, using DNA microarrays or sequencing (e.g.
RNA-seq). The most significant databases for gene expression data are the Gene
Expression Omnibus (GEO) [3] and the ArrayExpress [19]. Other resources use
those databases as references to synthesize their information, such as the Gene
Expression Barcode [16], which provides absolute measures of expression for the
most annotated genes, organized by tissue, cell-types and diseases.

In the cells, mRNA is not always translated into protein, and the amounts
of protein depend on gene expression but also on other factors. Thus, knowledge
about the amounts of proteins in the cell, provided by proteomics data, is of
foremost relevance. These data can confirm the presence of proteins and provide
measurements of their quantities for each protein within a cell. For human cells, a
database is available with millions of high-resolution images showing the spatial
distribution of protein expression profiles in normal tissues, cancer and cell lines
- the Human Protein Atlas (HPA) portal [26].

Another source of information is provided by metabolomics data that involve
the quantification of the small molecules present in cells, tissues, organs and
biological fluids using techniques such as Nuclear Magnetic Resonance spec-
troscopy or Gas Chromatography combined with Mass Spectrometry [13]. The
Human Metabolome Database (HMDB) [28] contains spectroscopic, quantita-
tive, analytic and molecular-scale information about human metabolites, asso-
ciated enzymes or transporters, their abundance and disease-related properties.

Resources for omics data, together with generic human metabolic models,
have been used to generate context-specific models. This has been achieved
through the development of methods, such as the Model Building Algorithm
(MBA) [12], the Metabolic Context-specificity Assessed by Deterministic Reac-
tion Evaluation (mCADRE)[27] and the Task-driven Integrative Network Infer-
ence for Tissues (tINIT)[2].

The reconstructed models have allowed, for instance, to find metabolic tar-
gets to inhibit the proliferation of cancer cells [29], to study the interaction
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between distinct brain cells [14], and to find potential therapeutic targets for
the treatment of non-alcoholic steatohepatitis [15].

However, the aforementioned methods have not yet been critically and sys-
tematically evaluated on standardized case studies. Indeed, each of the methods
is proposed and validated with distinct cases and taking distinct omics data
sources as inputs. Thus, the impact of using different omics datasets on the final
results of those algorithms is a question that remains to be answered. Here, we
present a critical evaluation of the most important methods for the reconstruc-
tion of tissue-specific metabolic models published until now.

We have developed a framework where we implemented different methods
for the reconstruction of tissue-specific metabolic models. In this scenario, the
algorithms use sets of metabolites and/or maps of scores for each reaction as
input. So, in our framework the algorithms are independent from the omics data
source, and the separation of these two layers allows to use different data sources
in each algorithm for the generation of tissue-specific metabolic models. As a
case study, to compare the three different approaches implemented, metabolic
models were reconstructed for hepatocytes, using the same set of data sources as
inputs for each algorithm. Moreover, distinct combinations of data sources are
evaluated to check their influence on the final results.

2 Materials and Methods

2.1 Human Metabolic Models

Modeling metabolic systems requires the analysis and prediction of metabolic
flux distributions under diverse physiological and genetic conditions. The human
organism is one of the most complex organisms to build a metabolic model
since the number of genes, types of cells and their diversity are huge. In the
last years, a few human metabolic models were proposed [5,9,15,25]. In this
work, we will use the Recon 2 human metabolic model that accounts for 7440
reactions, 5063 metabolites and 1789 enzyme-encoding genes. This model is a
community-driven expansion of the previous human reconstruction, Recon 1 [5],
with additional information from different resources: EHMN [9], Hepatonet1[8],
Ac-FAO module[21] and the small intestinal enterocyte reconstruction [22].

2.2 Algorithms for Tissue-Specific Metabolic Models
Reconstruction

Although there are several applications of the human GSMMs, the specificity of
cell types requires the reconstruction of tissue-specific metabolic models. Some
approaches have been proposed based on existing generic human models. Here,
we present three of the most well-known approaches for this task that will be
used in the remaining of this work.
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MBA. The Model-Building Algorithm (MBA) [12] reconstructs a tissue-specific
metabolic model from a generic model and two sets of reactions, denoted as core
reactions (CH) and reactions with a moderate probability to be carried out in
the specific tissue (CM ). These sets were previously built according to evidence
levels based on omics data, literature and experimental knowledge. In general,
the CH set includes human-curated tissue-specific reactions and the CM set
includes reactions certified by omics data. The algorithm iteratively removes
one reaction from the generic model, in a random order, and validates if the
model remains consistent. The process ends when the removal of all reactions,
except the ones in CH , is tried. As a result, this algorithm reconstructs a model
containing all the CH reactions, as many as possible CM reactions, and a minimal
set of other reactions that are required for obtaining overall model consistency
(for each reaction there is a flux distribution in which it is active).

Since reactions are scanned in a random order, the authors recommend to
run the algorithm a large number of times to generate intermediate models.
After this step, a score per each reaction is calculated, according to the number
of times it appears in these models. The final model is built starting from CH

and iteratively adding reactions ordered by their scores, until a final consistent
model is achieved.

INIT/ tINIT. The Integrative Network Inference for Tissues (INIT) [1] uses
the Human Protein Atlas (HPA) as its main source of evidence. Expression data
can be used when proteomic evidence is missing. It also allows the integration
of metabolomics data by imposing a positive net production of metabolites for
which there is experimental support, for instance in HMDB. The algorithm is
formulated using mixed integer-linear programming (MILP), so that the final
model contains reactions with high scores from HPA data. This algorithm does
not impose strict steady-state conditions for all internal metabolites, allowing a
small net accumulation rate. A couple of years later, a new version of this algo-
rithm was proposed, the Task-driven Integrative Network Inference for Tissues
(tINIT) [2], which reconstructs tissue-specific metabolic models based on protein
evidence from HPA and a set of metabolic tasks that the final context-specific
model must perform. These tasks are used to test the production or uptake of
external metabolites, but also the activation of pathways that occur in a spe-
cific tissue. Another improvement from the previous version is the addition of
constraints to guarantee that irreversible reactions operate in one direction only.

mCADRE. The Metabolic Context specificity Assessed by Deterministic Reac-
tion Evaluation (mCADRE) [27] method is able to infer a tissue-specific network
based on gene expression data, network topology and reaction confidence lev-
els. Based on the expression score, the reactions of the global model, used as
template, are ranked and separated in two sets - core and non-core. All reac-
tions with expression-based scores higher than a threshold value are included
in the core set, while the remaining reactions make the non-core set. In this
method, the expression score does not represent the level of expression, but



344 S. Correia and M. Rocha

rather the frequency of expressed states over several transcript profiles. So, it
is necessary to previously binarize the expression data. Thus, it is possible to
use data retrieved from the Gene Expression Barcode project that already con-
tains binary information on which genes are present or not in a specific tissue/
cell type. Reactions from the non-core set are ranked according to the expres-
sion scores, connectivity-based scores and confidence level-based scores. Then,
sequentially, each reaction is removed and the consistency of the model is tested.
The elimination only occurs if the reaction does not prevent the production of
a key-metabolite and the core consistency is preserved. Comparing with the
MBA algorithm, mCADRE presents two improvements: it allows the definition
of key metabolites, i.e. metabolites that have evidence to be produced in the
context-specific model reconstruction, and relaxes the condition of including all
core reactions in the final model.

Table 1 shows the mathematical formulation and pseudocode for all algo-
rithms described above.

Table 1. Formulation and description of algorithms of MBA, tINIT and mCADRE.
In the table RG represents the list of reaction from the global model, RC the set of
core reaction on mCADRE algorithm, CH and CM the core and moderate probability
sets used in MBA algorithm, r a reaction and the for(i) and the rev(i) represent the
i-th reaction direction (forward and reverse).

MBA tINIT mCADRE

generateModel(RG, CH , CM ) min
∑

i∈R wi ∗ yi generateModel(RG, treshold)
RP ← RG s.t. RP ← RG

RS ← RP \(CH ∪ CM ) Sv = b RC ← score(RP ) > treshold
P ← randomPermutation(RS) |vi| ≤ vmax coreActiveG ← flux(r)! = 0, r ∈ RC

for(r ∈ P ) 0 < vi + (vmax ∗ yi) ≤ vmax RNC ← RP \RC

inactiveR ← CheckModel(RP , r) bj ≥ δ j ∈ Metabolomics for(r ∈ order(RNC))
eH ← inactiveR ∩ CH bj = 0 j 	∈ Metabolomics inactiveR ← CheckModel(RP , r)
eM ← inactiveR ∩ CM yfor(i) + yrev(i) ≤ 1 s1 = |inactiveR ∩ RC |
eX ← inactiveR\(CH ∪ CH) vi ≥ δ, i ∈ RequiredReac s2 = |inactiveR ∩ RNC |
if(|eH | == 0 AND |eM | < δ ∗ |eX |) yi ∈ 0, 1 if(r 	∈ withExpressionV alues AND

RP ← RP \(eM ∪ eX) wi, score for i ∈ R s1\s2 <= RACIO AND
endif checkModelFunction(Rp\inactiveR))

endfor RP ← RP \inactiveR
returnRP elseif(|s1| == 0 AND

endfunction checkModelFunction(Rp\inactiveR))
RP ← RP \inactiveR

endif
returnRP

endfunction

2.3 Omics Data

Proteomics data used in this work were retrieved from the Human Protein Atlas
(HPA) [26], which contains the profiles of human proteins in all major human
healthy and cancer cells. We collected information for the liver tissue (hepato-
cytes) from HPA version 12 and Ensembl [7] version 73.37. After a conversion
from Ensembl gene identifiers to gene symbols, duplicated genes with different
evidence levels were removed (Table S1 from supplementary data)1.
1 All supplementary files are provided in http://darwin.di.uminho.pt/epia2015

http://darwin.di.uminho.pt/epia2015
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Transcriptomics data were collected from Gene Expression Barcode (GEB)
[16] (HGU133plus2 (Human) cells v3). The conversion to gene expression
levels was done considering the average level of probes for each gene. The
mapping between probes and gene symbols was performed using the library
“hgu133plus2.db” [4] from Bioconductor. The gene expression is classified as
High, Moderate and Low if the gene expression evidence on that tissue is greater
than 0.9, between 0.5 and 0.9, and between 0.1 and 0.5, respectively. The genes
with expression evidence below 0.1 were considered not expressed in hepatocytes.

The reaction scores were obtained through the Gene-Protein-Rules present
in the Recon2 model, based on the scores associated with each gene in the data.
The reaction scores were calculated by taking the maximum (minimum) value of
expression scores for genes connected by an “OR” (“AND”). If one of the gene
scores is unknown, the other gene score is assumed in the conversion rule.

3 Results

To compare the metabolic models generated by the different algorithms and the
effects of distinct omics data sources, we chose the reconstruction of hepatocytes
metabolic models as our case study. Hepatocytes are the principal site of the
metabolic conversions underlying the diverse physiological functions of the liver
[10]. The hepatocytes metabolic models were generated using Recon2 as a tem-
plate model and the GEB, HPA and the sets CH and CM from [12] as input
data, for the three methods described in the previous section.

In the experiments, we seek to answer two main questions: Are omics data
consistent across different data sources? What is the overlap of the resulting
metabolic models obtained using different methods and different data sources? In
2010, a manually curated genome-scale metabolic network of human hepatocytes
was presented, the HepatoNet1 [8], used as a reference in the validation process.

3.1 Omics Data Consistency

The HPA has evidence information related with 16324 genes in hepatocytes. The
reliability of the data is also scored as “supportive” or “uncertain”, depending on
similarity in immunostaining patterns and consistency with protein/gene char-
acterization data. On the other hand, the GEB transcriptome has information
for 20149 genes, of which 5772 have evidence of being expressed in hepatocytes.

Together, these two data sources have information for 21921 genes, but only
14552 are present in both (Figure 1A). Moreover, the number of genes with
evidence of being expressed in the tissue in both sources is only of 3549, around
24% of all shared genes (Figure 1B). These numbers decrease significantly if
using only HPA information marked as “supportive”. In this scenario, only 3868
genes are present also in GEB and only 1294 of them have expression evidence.

Next, evidence levels frequencies (High, Moderate, Low) were calculated
across the GEB and HPA, as shown in Figure 2. Only a small number of genes
have similar evidence levels in both data sources. Furthermore, a significant
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Fig. 1. A) Number of genes present in Gene Expression Barcode and Human Protein
Atlas. In HPA, the number of genes with reliability “supportive” and “uncertain” are
shown. B) Number of genes with evidence level “Low”, “Moderate” or “High” in HPA
and gene expression evidence higher than 0 in Gene Expression Barcode.

Fig. 2. A) Distribution of genes from Gene Expression Barcode project and Human
Protein Atlas across the evidence levels - “High”, “Moderate” and “Low”. The ranges
[0.9, 1], [0.5, 0.9[ and [0.1, 0.5[ were used to classify the data into “Low”, “Moderate”
and “High” levels. B) Genes with no evidence to be present in hepatocytes from GEB,
but with evidence in the HPA. C) Genes with no evidence to be present in hepatocytes
from HPA, but with evidence in GEB.

number of genes have contradictory levels of evidence - genes with expression
evidence in one data source and not expressed in the other. If we focus only
in the genes present in the model Recon2 with information in GEB and HPA
(supportive), there are 15% of genes with “High” or “Moderate” evidence in one
of the sources and not expressed in the other. This number increases to 22% if
we also consider “Low” evidence level (Supplementary Figure S1).

The methods to reconstruct tissue-specific metabolic models use reaction
scores calculated based on omics data to determine their inclusion in the final
models. So, we analyzed the impact of these omics discrepancies in the values of
reaction scores and compared those with the manually curated set CH from Jerby
et al. [12]. In Figure 3A, the poor overlap of the reaction scores calculated based
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Fig. 3. A) Reactions with evidence that support their inclusion in the hepatocytes
metabolic model. B) Number of reactions that have a high level of evidence of expres-
sion for each data source. C) Number of reactions that have a moderate evidence of
expression for each data source

on different sources can be observed. Considering all data sources, 3243 reactions
show some evidence that support their inclusion in the hepatocytes metabolic
model, but only 388 are supported by all sources. The numbers are further
dramatically reduced if we consider only moderate or high levels of evidence
(Figure 3 B-C).

3.2 Metabolic Models

We applied each of the three algorithms to each omics data source, resulting
in nine metabolic models for hepatocytes. In the application of mCADRE, we
consider the list of key metabolites as published in the original article and a
threshold of 0.5 to calculate the core set. A set of core metabolic tasks, that
should occur in all cell types, was retrieved from [2] and used in the tINIT
algorithm. The final MBA models were constructed based on 50 intermediate
metabolic models. According to [12], a larger number would be desirable, but
the time needed to generate each model prevented larger numbers of replicates.
The detailed list of reactions that compose each metabolic model are available
in supplementary material.

In Figure 4 A-C, we observe the consistency of the intermediate models gen-
erated by MBA, as well as the number of occurrences of reactions present in the
final model. Moreover, Figure 4D shows the relations between the nine metabolic
models generated through hierarchical clustering. The models obtained using the
CH and CM sets as input data group together. Regarding the remaining, the
mCADRE and MBA resulting models group according to their data (HPA and
GEB), while the models created by tINIT cluster together. Overall, the data
used as input seems to be the most relevant factor in the final result.

A more detailed comparison between the models reconstructed using the
same algorithm or the same data source is available in Figure 5, A and B respec-
tively. Considering the models generated by the same algorithm, it is observed
that mCADRE has a smaller overlap (only 812 reactions) compared to the other
methods. This could be explained by the possibility of removing core reactions
during the mCADRE reconstruction process. Note that both reactions with
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Fig. 4. A-C) Distribution of reactions across the 50 models for each data type. Grey
bars show an histogram with the number of reactions present in a certain number of
models. Green bars show the reactions that are present in the final model. D) Results
from hierarchical clustering of the resulting nine models.

“High” and “Moderate” evidence levels, and from CH and CM sets, are all
considered as belonging to the core. Furthermore, the mean of reactions that
belong to all models of the same algorithm is around 45%. When the compari-
son is made by grouping models with the same input data, the variance between
models is lower than grouping by algorithm. Here, the mean of reactions com-
mon to all models with the same data source is around 67% (Supplementary
Table S3). Again, the variability of the final results seems to be dominated by
the data source factor.

The quality of the metabolic models was further validated using the metabolic
functions that are known to occur in hepatocytes [8]. The generic Recon2 human
metabolic model, used as template in the reconstruction process, is able to satisfy
337 of the 408 metabolic functions available. Metabolic functions related with
disease or involving metabolites not present in Recon2 were removed from the
original list.
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Fig. 5. Metabolic models reaction intersection considering: (A) the same algorithm;
(B) the same omics data source.

Table 2. Number of reactions and the percentage of liver metabolic functions that
each metabolic model performs when compared with the template model - Recon 2.

Method
Sets HPA GEB

N. Reac. Tasks N. Reac Tasks N. Reac. Tasks

MBA 2044 18% 2633 24% 2909 6%

mCADRE 1728 2% 2387 3% 2327 4%

tINIT 2005 4% 2665 5% 3255 6%

The results of this functional validation, showing also the number of reactions
in each metabolic model, are given on Table 2. These show that the number of
satisfied metabolic tasks is very low compared with the manual curated metabolic
model HepatoNet1. The metabolic model which performs the higher number of
metabolic tasks was obtained using the MBA algorithm with the HPA evidence.
Nevertheless, the success percentage is less than 25% when comparing with the
performance by the template metabolic model - Recon2.

4 Conclusions

In this work, we present a survey of the most important methods for the recon-
struction of tissue-specific metabolic models. Each method was proposed to use
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different data sources as input. Here, we analyze the consistency of information
across important omics data sources used in this context and verify the impact
of such differences in the final metabolic models generated by the methods.

The results show that metabolic models obtained depend more on the data
sources used as inputs, than on the algorithm used for the reconstruction. To
validate the accuracy of the obtained metabolic models, a set of metabolic func-
tions that should be performed in hepatocytes was tested for each metabolic
model. We found that the number of satisfied liver metabolic functions was sur-
prisingly low. This shows that methods for the reconstruction of tissue-specific
metabolic models based on a single omics data source are not enough to gen-
erate high quality metabolic models. Methods to combine several omics data
sources to rank the reactions for the reconstruction process could be a solution
to improve the results of these methods. Indeed, this study emphasizes the need
for the development of reliable methods for omics data integration, which seem
to be required to support the reconstruction of complex models of human cells,
but also reinforce the need to be able to incorporate known phenotypical data
available from literature or human experts.
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