
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO
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Resumo

Nesta dissertação trabalhamos com teoria do risco, com especial ênfase sobre
dois grandes temas da área, nomeadamente, os modelos de risco e a teoria
de rúına. A resolução de equações é uma parte fundamental da matemática
e de praticamente qualquer outra ciência. Muito frequentemente somos con-
frontados com equações que foram formuladas pela observação da natureza
durante a resolução de problemas relacionados aos fenómenos que ocorrem
na vida real. Em ciências atuariais formulamos modelos de risco, a fim de
resolver problemas que surgem na prática atuarial dos seguros.

Em muitas ocasiões, durante a análise de tais modelos, encontramos a
equação de Lundberg. Há uma razão para isso: quando estudamos algumas
quantidades espećıficas, como a probabilidade de rúına, chegamos frequente-
mente a equações integro–diferenciais. Tais equações têm associado algum
tipo de equação caracteŕıstica a que chamamos equação de Lundberg.

Neste tese, consideramos o modelo de risco Sparre–Andersen, com três
diferentes distribuições de tempo: Erlang(n), Erlang(n) generalizada e
Phase–Type(n). Para cada um destes casos, a equação de Lundberg é difer-
ente e, consequentemente, é analisada de um modo único.

Depois, para cada distribuição, estudamos alguns dos mais importantes
tópicos de interesse neste modelo, como a rúına e as probabilidades de sobre-
vivência, a probabilidade de atingir uma barreira superior antes da rúına, a
gravidade máxima da rúına e os dividendos descontados esperados. O obje-
tivo desta tese é fornecer novas ferramentas para calcular essas quantidades
e uma melhor compreensão delas na prática.

PALAVRAS-CHAVE: modelo de risco Sparre–Andersen; distribuição
Erlang(n); distribuição Erlang(n) generalizada; distribuição Phase–Type(n);
equação fundamental de Lundberg; equação generalizada de Lundberg; prob-
abilidade de rúına; probabilidade de atingir uma barreira superior antes da
rúına; a gravidade máxima da rúına; dividendos descontados esperados antes
da rúına.
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Abstract

In this dissertation we work with risk theory with particular emphasis on two
major topics in the field, namely risk models and ruin theory. Solving equa-
tions is a fundamental part of mathematics and of almost any other science.
Very often we come across equations that were formulated by observation of
the nature, during solving problems related to phenomena that occur in life.
In actuarial science, we formulate risk models in order to solve problems that
appear in the practice of the insurance business.

Lundberg’s equations shows up on many occasions when analyzing such
models. There is a reason for this: when we study some particular quantities
like, for example, the ruin probability, we often arrive to integro–differential
equations. Such integro–differential equations have associated some kind of
characteristic equation. The latter is often called the Lundberg’s equation.

In this manuscript we consider the Sparre–Andersen risk model with three
different interclaim times distributions: Erlang(n), generalized Erlang(n) and
Phase–Type(n). For each of these cases the Lundberg’s equation is different
and therefore it is analyzed in a unique way.

Afterwards, for each distribution, we study some of the most important
topics of interest, like the ruin and survival probabilities, the probability of
attaining and upper barrier prior to ruin, the maximum severity of ruin and
the expected discounted dividends. The aim of this thesis is to provide new
tools for computation of those quantities and a better understanding of them
in the practice. In the process we give examples to illustrate those methods.

KEYWORDS: Sparre–Andersen risk model; Erlang(n) distribution; gen-
eralized Erlang(n) distribution; Phase–Type(n) distribution; fundamental
Lundberg’s equation; generalized Lundberg’s equation; ruin probability;
probability of reaching an upper barrier; maximum severity of ruin; expected
discounted dividends prior to ruin.
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Chapter 1

Introduction

If people do not believe that
mathematics is simple, it is only
because they do not realize how
complicated life is

John von Neumann

Risk theory is a field of mathematics which has its origins in the beginning
of twentieth century, when fundamental ideas were published by Lundberg
(1903). Risk theory is a synonym for non–life insurance mathematics, which
deals with the modeling of claims that arrive in an insurance business and
which give insight on how much a premium has to be charged in order to
avoid bankruptcy (ruin) of an insurance company. It is based on probability
theory, statistics, stochastic processes, renewal theory, functional analysis
and optimization theory, and investigates fluctuations shown by incoming
claims at an insurance company. Claims are amounts of money to be paid
to policy holders, and they are thought to be of uncertain size and coming
at uncertain future instants. One of the Lundberg’s main contributions is
the introduction of a simple model which is capable of describing the basic
dynamics of a homogeneous insurance portfolio. By this we mean a portfolio
of contracts or policies for similar risks such as car insurance for a particular
kind of car, insurance against theft in households or insurance against water
damage of family homes. There are three assumptions in the model:

• Claims happen at the times Ti satisfying 0 ≤ T1 ≤ T2 ≤ · · · . We call
them claim arrivals, claim times or claim arrival times.

• The i–th claim arriving at time Ti causes the claim size or claim severity
Xi. The sequence {Xi} constitutes an i.i.d. sequence of non–negative
random variables.
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• The claim size process {Xi} and the claim arrival process {Ti} are
mutually independent.

Moreover, Risk theory has been an active research area in Actuarial Sci-
ence since the 20th century. The heart of risk theory is ruin theory, which
discusses how an insurance portfolio may be expected to vary with time.
Ruin is said to occur if the insurer’s surplus drops under a specific lower
bound. The probability that ruins occurs, commonly referred as the ruin
probability, is a very important measure of risk.

Much of the literature on ruin theory is concentrated on the classical risk
theory, where an insurer starts with an initial surplus u, collects premiums
continuously at a constant rate of c, while the aggregate claim process follows
a compound Poisson process. The main research interest is the calculation
of finite and infinite time ruin probabilities. Later on, actuarial researchers
considered more components related to the time of ruin, like the surplus
prior to ruin, the severity or deficit at ruin and its maximum, the probability
of attaining a given upper barrier before ruin and the expected discounted
dividends. Many results involving those quantities have been found during
the recent years.

Gerber and Shiu (1998) considers the evaluation of the expected dis-
counted penalty function, giving a unified treatment to the surplus before
ruin, the deficit at ruin and the time to ruin.

Great part of the results in the classical risk model, like the results of
Gerber et al. (1987), Dufresne and Gerber (1988a), Dufresne and Gerber
(1988b), Dickson (1992) and Dickson and Eǵıdio dos Reis (1996), are ob-
tained as particular cases when the discount factor is zero, and almost all
the previous results in classical ruin theory can be extended to the case with
a positive discounting factor.

Lin and Willmot (1999) proposed an approach to solve the defective re-
newal equation, in which the discounted penalty function is expressed in
terms of a compound geometric tail. Lin and Willmot (2000) further used it
to derive the moments of the surplus before ruin, the deficit at ruin and the
time of ruin.

During the last decades there have been a great interest in more general
surplus processes, like surplus models with stochastic premium income pro-
cesses, classical surplus processes under an economical environment (invest-
ment and inflation), surplus processes with dependent claim amounts and
claim inter–occurrence times, surplus processes in which aggregate claims
come from some classes of dependent or independent businesses, surplus pro-
cesses with general claim number processes, or classical risk models perturbed
by an independent diffusion process.
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Sparre-Andersen (1957) in a paper to the International Congress of Ac-
tuaries in New York proposed a generalization of the classical (Poisson) risk
theory, instead of assuming just exponentially distributed independent inter–
occurrence (interclaim) times, he introduced a more general distribution
function but retained the assumption of independence. He let claims occur
according to a more general renewal process and derived an integral equa-
tion for the corresponding ruin probability. Since then the Sparre–Andersen
model has been studied by many authors. In addition, random walks and
queueing theory have provided a more general framework, which has led to
explicit results in the case where the waiting times or the claim severities
have distributions related to the Erlang (see Borovkov (1976)).

Malinovskii (1998) gives the Laplace transform of the non-ruin probability
as a function of a finite time t, if claim sizes are exponentially distributed
with parameter α, and waiting times have a general distribution k. Wang
and Liu (2002) extends the result to claim sizes that are mixture of two
exponential distributions.

Dickson (1998) and Dickson and Hipp (1998) showed how methods that
are applied to derive results for the classical risk process can be adapted to
derive results for a class of risk process in which the claims occur as a renewal
process, namely as an Erlang(2) process. Dickson and Hipp (2001) considered
a Sparre–Andersen risk process for which the interclaim times distribution
is Erlang(2) with the purpose to find expressions for moments of the time
of ruin, given that ruin occurs. They obtain an explicit expression for the
Laplace transform of the ruin probability by solving a second order integro–
differential equation. More recently, Cheng and Tang (2003) complements
the work of Dickson and Hipp (2001), discussing the moments of the surplus
before ruin and the deficit at ruin in the Erlang(2) risk process.

Li and Garrido (2004b) extended the Erlang(2) risk model to Erlang(n)
for any integer n. They studied the joint distribution of the time of ruin,
the surplus just before ruin and the deficit at ruin and proved that the ex-
pected discounted penalty function satisfies an n-th order integro–differential
equation. The latter can be solved to obtain a defective renewal equation.
Li and Garrido (2004a), Gerber and Shiu (2005), Gerber and Shiu (2003a)
and Gerber and Shiu (2003b) further extend the Erlang risk models to gen-
eralized Erlangs, in which interclaim times are distributed as the sum of n
independent exponential random variables with possible different means.

Li and Dickson (2006) studied the maximum surplus before ruin in a
Sparre–Andersen risk process with the inter–claim times being Erlang(n)
distributed. The distribution was analyzed through the probability that the
surplus process attains a given level from the initial surplus without first
going to ruin. It was shown that this probability, viewed as a function of the
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initial surplus and the given level, satisfied a homogeneous integro–differential
equation with certain boundary conditions. Its solution was expressed as
a linear combination of n linearly independent particular solutions of the
homogeneous integro–differential equation.

Li (2008), continuing this approach, studied the distributions of the max-
imum surplus before ruin and the maximum severity of ruin for an Erlang(n)
risk model, and showed a method to find the particular solutions of the ho-
mogeneous integro–differential equation using the roots of the generalized
Lundberg’s equation.

Dickson and Waters (2004) considered a surplus process modified by the
introduction of a constant dividend barrier, which was originally proposed by
de Finetti (1957), and extended some results relating to the distribution of
the present value of dividend payments until ruin in the classical risk model
and show how a discrete time model can be used to provide approximations
when analytic results are not available. Later on Albrecher et al. (2005)
continued the work on dividends for a Sparre–Andersen risk model with
generalized Erlang(n) distributed interclaim times and a constant dividend
barrier.

Some authors have studied the Sparre–Andersen risk model with Phase–
Type interclaim times. Ren (2007) studied this risk model deriving a matrix
form expression for the discounted joint density of the surplus prior to ruin
and the deficit at ruin when the initial surplus is zero. Li (2008b) analyzed
some quantities like the Laplace transform of the recovery time after ruin,
the probability that the surplus attains a certain level before ruin and the
distribution of the maximum severity of ruin. Ji and Zhang (2011) analyzed
the role of the distinct roots of the fundamental Lundberg’s equation in the
right half of the complex plane and the linear independence of the eigenvec-
tors related to the Lundberg’s matrix.

Willmot (1999) considers the ruin probabilities for renewal risk processes
where the waiting times have a Kn distribution, for which the associated
Laplace–Stieltjes transform is the ratio of a polynomial of degree m < n to
a polynomial of degree n. This general class of distributions includes, as
special cases, Erlang and Phase–Type distributions, as well as combinations
of these.

Stanford et al. (2000) presents a recursive method of calculating ruin prob-
abilities for non–Poisson risk processes, by looking at the surplus process
embedded at claim instants, in which interclaim times are assumed to be
mixtures of exponential and Erlang(n) distributions.

Dufresne (2001) derives the Laplace transform of the integral equation
given by Sparre–Andersen, producing the Laplace transform of the non–ruin
probability for the wide class of waiting times or severity distributions that
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admit a rational Laplace transform representation. Lima et al. (2002) uses
Fourier/Laplace transforms to evaluate numerically quantities of interest in
classical and Erlang(2) ruin theory.

Albrecher and Boxma (2005), based on the analysis of the discounted
penalty function in a semi–Markovian risk model by means of Laplace–
Stieltjes transforms, derived and extended some results in the field. Li and
Lu (2007) obtained some results in the dividend payments prior to ruin in a
Markov–modulated risk model in which the rate for the Poisson claim arrival
process and the distribution of the claim sizes vary in time depending on the
state of an underlying (external) Markov jump process.

Outlining this dissertation we start presenting developments in the
Sparre–Andersen model for Erlang(n), generalized Erlang(n) interclaim
times and PH(n) interclaim times. Our work involves developments in Lund-
berg’s equations, where we search for the possibility of multiple roots. For the
models mentioned above, we also present new results in the maximum sever-
ity of ruin and expected present value of dividends payable to shareholders
prior to ruin.

Chapter 2 reviews the relevant results and techniques in the literature on
the classical risk model and the Sparre–Andersen risk model and gives the
mathematical preliminaries to the thesis.

In Chapter 3 we consider developments in the Erlang(n) model presenting
new theorems regarding the calculation of the maximum severity of ruin as
well as a new way of computing expected present value of dividends payable
to shareholders prior to ruin.

Chapter 4 is a step forward and studies generalized Erlang(n) interclaim
times which are a more general case of the Erlang(n) risk model. We follow
the same procedure of Chapter 3 keeping in mind the possibility of multiple
roots in the Lundberg’s equation.

Chapter 5 deals with the most general case which is PH(n) model. Here
we concentrate on analyzing the Lundberg’s equation and its roots, the cal-
culation of the survival probability and applications to obtain the maximum
severity of ruin.

Chapters 3 to 5 are the main core of this thesis where new developments
are presented. Numerical examples are discussed in the parts of the work
related to the maximum severity of ruin and dividends.

Finally, some conclusions and comments on further research are set out
in Chapter 6.

This thesis is based on the following papers:
1. In Bergel and Eǵıdio dos Reis (2011) we study the maximum severity of

ruin in the Erlang(n) risk model. We pay special attention to the multiplicity
of the roots of the fundamental Lundberg’s equation.
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2. In Bergel and Eǵıdio dos Reis (2013a) we consider the Sparre–Andersen
risk model when the interclaim times are Erlang(n) distributed. We first ad-
dress the problem of solving an integro-differential equation that is satisfied
by the survival probability and other probabilities, and show an alterna-
tive and improved method to solve such equations to that presented by Li
(2008). This is done by considering the roots with positive real parts of
the generalized Lundberg’s equation, and establishing a one–one relation be-
tween them and the solutions of the integro–differential equation mentioned
before. Afterwards, we apply our findings above in the computation of the
distribution of the maximum severity of ruin. This computation depends
on the non-ruin probability and on the roots of the fundamental Lundberg’s
equation. We illustrate and give explicit formulae for Erlang(3) interclaim
arrivals with exponentially distributed single claim amounts and Erlang(2)
interclaim times with Erlang(2) claim amounts. Finally, considering an in-
terest force, we consider the problem of calculating the expected discounted
dividends. Numerical examples are also provided for illustration.

3. In Bergel and Eǵıdio dos Reis (2013c) we propose some new approaches
in the Sparre–Andersen risk model when the interclaim times are general-
ized Erlang(n) distributed. We continued our previous work in Bergel and
Eǵıdio dos Reis (2013a), this time considering the cases when all the roots
with positive real parts of the Lundberg’s equation are single and when there
are roots with higher multiplicity. We apply our findings above in the compu-
tation of the distribution of the maximum severity of ruin taking into account
the cases with multiple roots. Given an interest force, we study the expected
discounted dividends prior to ruin, showing an alternative method to that
provided by Albrecher et al. (2005) for general claim amount distributions.

4. In Bergel and Eǵıdio dos Reis (2013b) we deal with the Sparre–
Andersen risk model when the interclaim times follow a Phase–Type distribu-
tion, PH(n). First of all we focus our attention on the generalized Lundberg’s
equation to determine the cases when multiple roots can arise, especially the
possibility of double roots. Second, we study the linear independence of the
eigenvectors related to the Lundberg’s matrix. Afterwards, considering the
survival probability we find an integro–differential equation and defective re-
newal equation. With this equations we obtain expressions for the Laplace
transform of the survival probability. Finally, we apply our results to com-
pute the ultimate and finite time ruin probabilities, the probability of arrival
to a barrier prior to ruin, severity of ruin and its maximum.

6



Chapter 2

Risk models and ruin
probability

Obvious is the most dangerous
word in mathematics

Eric Temple Bell

In this chapter we set out the models and main concepts of risk theory.
We use the term “risk” for describing a collection of similar policies, however
we also use the term for an individual policy. At the start of a period of
insurance cover the insurer does not know how many claims will occur, and
if claims occur, what the amounts of these claims will be. It is necessary to
talk about a model that takes into account these uncertainties.

In Section 2.1 we describe the collective risk model and denote the aggre-
gate claims as a random variables S. After that we consider the special case
when the distribution of S is a compound Poisson random variable.

Section 2.2 considers a risk process known as the Sparre–Andersen re-
newal risk process, and we introduce some definitions for ruin probabilities,
Lundberg’s equation, adjustment coefficient, survival probability and Laplace
transforms.

In Section 2.3 we start with useful results concerning the probability that
ruin occurs without the surplus process first attaining a specified level. Then
we consider the insurer’s deficit when ruin occurs and show the distribution
of this deficit. We extend this by considering the insurer’s largest deficit
before the surplus process recovers to level zero. After that we talk about
the distribution of the time to ruin.

Finally, in Section 2.4 we devote our attention to the problem of calculat-
ing the expected discounted dividends.
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Many of the definitions and notation of this chapter are taken from Dick-
son (2005).

2.1 The collective risk model

We define the random variable S to be the aggregate amount of claims for
a reference period of time. Let the random variable N denote the number
of claims from the risk for the same period, and let the random variable Xi

denote the amount of the i–th claim. The aggregate claim amount is the
sum of individual claim amounts, so we can write

S =
N∑
i=1

Xi

with the assumption that S = 0 when N = 0. (If there are no claims, the
aggregate claims amount are trivially zero).

Our model has claim amounts as non-negative random variables with a
positive mean. In this moment we do two important assumptions. First, we
consider Xi as a sequence of independent and identically distributed random
variables, and, second, we assume that the random variable N is independent
of {Xi}∞i=1.

These assumption say that the amount of any claim does not depend
on the amount of any other claim, and that the distribution of the single
claim amounts does not change. They also state that the number of claims
has no effect on the amount of claims. Let P (x) = Pr(X1 ≤ x) denote
the distribution function of individual claim amounts, p(x) its density and
µk = E[Xk

1 ] for k = 1, 2, . . . We further assume that P (0) = 0, so that all
claim amounts are positive. The existence of µ1 is a basic assumption, higher
moments may be required to exist in some parts of this work.

Our risk is a portfolio of insurance policies, and the name collective risk
model arises from the fact that we consider the risk as a whole. In partic-
ular we are counting the number of claims from the portfolio, and not from
individual policies.

When N has a Poisson distribution with parameter λ, we say that S
has a compound Poisson distribution with parameters λ and P , and similar
terminology applies in the case of other claim number distribution. Since the
mean and variance of the Poisson(λ) distribution are both λ, then when S
has a compound Poisson distribution, with

E[S] = λm1

8



and
V [S] = λm2.

Further, the third central moment is

E[S] = [(S − λm1)3] = λm3.

2.2 Sparre–Andersen risk processes

In a Sparre–Andersen risk process, an insurer’s surplus at a fixed time t > 0 is
determined by three quantities: the amount of surplus at time 0, the amount
of premium income received up to time t and the amount paid out in claims
up to time t. The only one of these three which is random is the claims outgo,
so we start by describing the aggregate claims process, which we denote by
{S(t)}t≥0.

Let {N(t)}t≥0 be a counting process for the number of claims, so that for
a fixed value t > 0, the random variable N(t) denotes the number of claims
that occur in the fixed time interval (0, t].

Like before, individual claim amounts are modeled as a sequence of in-
dependent and identically distributed random variables {Xi}∞i=1, so that Xi

denotes the amount of the i–th claim, with cumulative distribution function
P (x) and density p(x).

Let the claim inter–occurrence times, or interclaim times, be denoted by
the sequence of random variables {Wi}∞i=1, that we assume i.i.d. and indepen-
dent from sequence {Xi}. Then we haveN(t) = max{k : W1+W2+· · ·+Wk ≤
t}. The cumulative distribution function of the Wi is denoted by K(t) with
density k(t).

We say that the aggregate claim amount up to time t, denoted S(t), is

S(t) =

N(t)∑
i=1

Xi

when N(t) = 0 than S(t) = 0.

In the classical risk model it is assumed that {N(t)}t≥0 is a Poisson process
and therefore the interclaim times are exponentially distributed. In this case
the aggregate claims process {S(t)}t≥0 is a compound Poisson process.

In the Sparre–Andersen renewal risk model the distribution of the in-
terclaim times is not necessarily exponential, and there are no methods to
determine the nature of the counting process {N(t)}t≥0 for every possible
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distribution. For the total claim amount S(t) the expectation can be eas-
ily calculated by exploiting the independence of {Xi} and N(t), provided
E[N(t)] and E[X1] are finite

E[S(t)] = E

E
N(t)∑

i=1

Xi |N(t)

 = E[N(t)E[X1]] = E[N(t)]E[X1].

The expectation does not tell us too much about the distribution of S(t).
We learn more about the order of magnitude of S(t) if we combine the infor-
mation about E[S(t)] with the variance V ar[S(t)].

Assume that V ar[N(t)] and V ar[X1] are finite. Conditioning on N(t) and
exploiting the independence of {Xi} and N(t), we obtain

V ar

N(t)∑
i=1

(Xi − E[X1]) |N(t)

 =

N(t)∑
i=1

V ar[Xi|N(t)]

= N(t)V ar[X1|N(t)] = N(t)V ar[X1],

and we can conclude that

V ar[S(t)] = E[N(t)V ar[X1]] + V ar[N(t)E[X1]]

= E[N(t)]V ar[X1] + V ar[N(t)](E[X1])2.

Now we can describe the surplus process, denoted by {U(t)}t≥0, as

U(t) = u+ ct− S(t)

where u is the insurer’s surplus at time 0 and c is the insurer’s rate of premium
income per unit time, which we assume to be received continuously.

Whenever the moment generating function of X1 exists, we denote it by
MX and we assume that when it exists, there exists some quantity γ, 0 <
γ ≤ ∞, such that MX(r) is finite for all r < γ with

lim
r→γ−

MX(r) =∞

Of course this model is a simplification of the reality. Some of the more
important simplifications are that we assume that claims are settled in full as
soon as they occur, there is no allowance for interest on the insurer’s surplus,

10
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Figure 2.1: The surplus process

and there is no mention of expenses that an insurer may incur. Nevertheless,
this is a useful model which can give us some insight into the stochastic
characteristics of an insurance operation. A graphical interpretation of the
surplus process is given in Figure 2.1, where we see how the surplus process
starts from the initial capital u at time t = 0, then grows at the constant rate
of premium c paid by the insureds until the time W1 when the first claim
arrives, and continues over time. By the time t0 the surplus process already
had 4 incurred (and settled) claims, so the counting process is equal to 4.

2.3 Some basic definitions

In this moment we introduce the most common equations and definitions
for the model. Specifically we talk about the Lundberg’s equation, the ruin,
survival probabilities and the Laplace transforms.

2.3.1 The ruin probability

The probability of ruin in infinite time, also known as the ultimate ruin
probability, is defined as

Ψ(u) = Pr(U(t) ≤ 0 for some t > 0).

In words, Ψ(u) is the probability that the insurer’s surplus falls below zero at
some time in the future, that is when claims outgo exceeds the initial surplus

11



plus premium income.

We denote the time to ruin, from initial surplus u, as the random variable
Tu, so we have Tu = inf{t > 0 : U(t) < 0}, u ≥ 0, and Tu =∞ if and only
if U(t) ≥ 0 ∀t > 0. Therefore, we can express the ruin probability as

Ψ(u) = Pr(Tu <∞).

Define Φ(u) = 1 − Ψ(u) to be the probability that ruin never occurs
starting from initial surplus u. This probability is also known as the survival
or non–ruin probability.
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Figure 2.2: The time of ruin

Figure 2.2 represents the time of ruin. In this example we have a surplus
process with 4 incurred claims. The surplus immediately prior to ruin, which
we denote by U(T−u ), was smaller than the claim X4 that arrived at time
t = Tu.

We also assume the so called net profit condition

cE[Wi] > E[Xi], (2.3.1)

which means cE[W1] > µ1, so that, per unit of time, the premium income
exceeds the expected aggregate claim amount. This condition is very im-
portant and it brings an economical sense to the model. If this condition
does not hold, then Ψ(u) = 1 for all u ≥ 0. It is often convenient to write
cE[W1] = (1 + θ)µ1, so that θ > 0 is the premium loading factor. During
the interval of time Wi the net income is given by cWi and the claim outgo
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is Xi. The net profit cWi−Xi might be positive or negative, but on average
it has to be positive. We show this in the Figure 2.3.
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Figure 2.3: The net profit condition

2.3.2 The Lundberg’s equation

The adjustment coefficient, which we denote by R, gives a measure of risk for
a surplus process. It takes into account two factors in the surplus process:
aggregate claims and premium income.

For the classical risk process, the adjustment coefficient is defined to be
the unique positive root of

λMX(r)− λ− cr = 0,

where λ is the Poisson parameter and MX denotes the moment generating
function. Then R is given by

MX(R) = 1 +
c

λ
R.

We remark that by writing c as (1 + θ)λMX(R), we can see that R is inde-
pendent of the parameter λ.

For a Sparre–Andersen renewal risk process, we also know well the notion
of the adjustment coefficient, provided that the moment generating function
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MX of X1 exists, see Mikosch (2006). The adjustment coefficient R is the
unique positive real root of the equation, developed as follows

E
[
e−r(cW1−X1)

]
= 1 ⇔ E

[
e−rcW1

]
E
[
erX1

]
= 1

⇔ MX(r) =
1

E [e−rcW1 ]
. (2.3.2)

We note that expectation E
[
erX1

]
exists at least for r < 0. The expectation

E
[
e−rcW1

]
can be seen as a Laplace transform. The lefthand side of the

starting equation above can be regarded as the expected discounted profit
for each waiting arrival period. So that the adjustment coefficient R, provided
that it exists, makes the expected discounted profit even (considering that
premium income and claim costs come together). The constant R can be
seen as an interest force. The equation (2.3.2) is known as the fundamental
Lundberg’s equation.

One of the most important characteristics of the adjustment coefficient is
that it provides an upper bound for the ruin probability.

For a Sparre–Andersen renewal risk model with net profit condition (2.3.1)
and adjustment coefficient R, the following inequality holds, ∀u > 0,

Ψ(u) ≤ e−Ru.

This inequality is known as the Lundberg’s inequality.

For practical purposes we find the Lundberg’s equation in the literature
written in a different way. We make a change of variable s = −r and extend
the domain for s ∈ C. The advantage of this change is that we get MX(r) =
MX(−s) = p̂(s), where p̂ denotes the Laplace transform of the density p.

Then, the fundamental Lundberg’s equation becomes

p̂(s) =
1

E [escW1 ]
. (2.3.3)

We could even go further with this notation and write the fundamental Lund-
berg’s equation as

p̂(s) =
1

k̂(−cs)
, or k̂(−cs)p̂(s) = 1. (2.3.4)

From now on every time when we refer to the fundamental Lundberg’s equa-
tion we refer to the equation (2.3.4).

For the barrier and dividend problems that we treat later in this thesis,
it is introduced the notion of an interest rate, denoted by δ ≥ 0. For such a
model with a barrier level, the corresponding Lundberg’s equation is called
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the generalized Lundberg’s equation and is defined as follows

p̂(s) =
1

k̂(δ − cs)
, or k̂(δ − cs)p̂(s) = 1. (2.3.5)

This last equation can be found in Gerber and Shiu (2005) and Ren (2007).

2.3.3 Laplace transforms

The Laplace transform is an important tool that can be used to solve both
differential and integro–differential equations. We will list some of the basic
properties of the Laplace transforms.

Let h(y) be a function defined for all y ≥ 0. Then the Laplace transform
of h is defined as

ĥ(s) =

∫ ∞
0

e−syh(y)dy, s ∈ C.

There are some technical conditions for the existence of ĥ(s), but as this hold
for our future purpose on this manuscript, we do not discuss them here.

An important property of a Laplace transform is that it uniquely identifies
a function, in the same way that a moment generating function uniquely
identifies a distribution. The process of going from ĥ to h is known as
inverting the transform.

The Laplace transform has the following properties:

1. Let h1 and h2 be functions whose Laplace transforms exist, and let α1

and α2 be constants. Then∫ ∞
0

e−sy(α1h1(y) + α2h2(y))dy) = α1ĥ1(s) + α2ĥ2(s).

2. Laplace transform of an integral: let h be a function whose Laplace
transform exists and let

H(x) =

∫ x

0

h(y)dy.

Then Ĥ(s) = ĥ(s)/s.

3. Laplace transform of a derivative: let h be a differentiable function
whose Laplace transforms exists. Then∫ ∞

0

e−sy
(
d

dy
h(y)

)
dy = sĥ(s)− h(0).
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4. Laplace transform of higher derivatives: let h be a m times differen-
tiable function whose Laplace transforms exists. Then the Laplace transform
of h(m)(y) is ∫ ∞

0

e−syh(m)(y)dy = smĥ(s)−
m−1∑
i=0

sm−1−ih(i)(0).

See Spiegel (1965), page 10.
5. Laplace transform of a convolution: let h1 and h2 be as in 1. above,

and define

h(x) = h1 ∗ h2(x) =

∫ x

0

h1(y)h2(x− y)dy.

Then ĥ(s) = ĥ1(s)ĥ2(s).
6. Laplace transform of a random variable: let X ∼ H, where H(0) = 0.

Then

E[e−sX ] =

∫ ∞
0

e−sydH(y).

When the distribution is continuous with density function h,

E[e−sX ] = ĥ(s).

2.3.4 The survival probability

In this section we define the Laplace transform of Φ and we list some basic
properties. We then present general expression for the Laplace transform
of Φ, and explain how Φ can be found from this expression. We show the
different cases for the classical risk model and for the Sparre–Andersen risk
model.

Classical risk process

Recall that in the classical risk model the interclaim times follow an expo-
nential distribution. Let λ be the parameter.

By considering the time and the amount of the first claim, we have the
following renewal equation for Φ(u)

Φ(u) =

∫ ∞
0

λe−λt
∫ u+ct

0

p(x)Φ(u+ ct− x)dxdt, (2.3.6)

noting that if the first claim occurs at time t, its amount must not exceed
u+ ct, since ruin otherwise occurs.
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A similar renewal equation can be obtained for the ruin probability Ψ(u)

Ψ(u) =

∫ ∞
0

λe−λt
[∫ u+ct

0

p(x)Ψ(u+ ct− x)dx+

∫ ∞
u+ct

p(x)dx

]
dt.

Substituting s = u+ ct in (2.3.6) we get

Φ(u) =
1

c

∫ ∞
u

λe−λ(s−u)/c

∫ s

0

p(x)Φ(s− x)dxds

=
λ

c
eλu/c

∫ ∞
u

e−λs/c
∫ s

0

p(x)Φ(s− x)dxdt. (2.3.7)

We establish an equation for Φ, known as an integro–differential equation,
by differentiating equation (2.3.7), and the resulting equation can be used to
derive explicit solutions for Φ. Differentiation gives

d

du
Φ(u) =

λ2

c2
eλu/c

∫ ∞
u

e−λs/c
∫ s

0

p(x)Φ(s− x)dxds

−λ
c

∫ u

0

p(x)Φ(u− x)dx

=
λ

c
Φ(u)− λ

c

∫ u

0

p(x)Φ(u− x)dx. (2.3.8)

We notice that the function Φ appears in three different places in this equa-
tion. However, by eliminating the integral term, a differential equation can
be created, and solved.

The properties of the Laplace transforms that we gave before can be ap-
plied to find the Laplace transform of Φ. Recall equation (2.3.8)

d

du
Φ(u) =

λ

c
Φ(u)− λ

c

∫ u

0

p(x)Φ(u− x)dx.

From Property 3, the Laplace transform of the left-hand side is sΦ(s)−Φ(0),
and from the properties 1. and 5. the Laplace transform of the second term
on the right hand side is −(λ

c
)p̂(s)Φ̂(s). Hence, we have

sΦ̂(s)− Φ(0) =
λ

c
Φ̂(s)− λ

c
p̂(s)Φ̂(s),

or

Φ̂(s) =
cΦ(0)

cs− λ(1− p̂(s))
=

−Φ(0)

(λ
c
− s)− p̂(s)

.
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When p̂ is a rational function we can invert Φ̂ to find Φ. Notice that the
zeros of the denominator in this expression are the roots of the fundamental
Lundberg’s equation in the classical risk model. We see later on that this is
the case for the Sparre–Andersen model as well.

Sparre–Andersen risk process

We recall that in the Sparre–Andersen model the interclaim times follow a
distribution K with density k.

Again, by considering the time and the amount of the first claim, we have
the following renewal equations for Φ(u) and Ψ(u)

Φ(u) =

∫ ∞
0

k(t)

∫ u+ct

0

p(x)Φ(u+ ct− x)dxdt, (2.3.9)

Ψ(u) =

∫ ∞
0

k(t)

[∫ u+ct

0

p(x)Ψ(u+ ct− x)dx

+

∫ ∞
u+ct

p(x)dx

]
dt. (2.3.10)

Replacing s = u+ ct in (2.3.9) we get

Φ(u) =
1

c

∫ ∞
u

k

(
s− u
c

)∫ s

0

p(x)Φ(s− x)dxds. (2.3.11)

Depending on the properties of the density function k(t) we follow a
method to obtain the Laplace transform of Φ(u). For the interclaim times
distributions that we consider in the following chapters we get an expression
of the form

Φ̂(s) =
dΦ(s)

Q(s)
,

where dΦ(s) is a polynomial on s with coefficients that depend on the values of
Φ(0) and the derivatives of Φ at zero, and the zeros ofQ(s) are the roots of the
fundamental Lundberg’s equation. There is no general expression for Q(s),
it can only be described when we specify the interclaim times distribution.
We will return to this point in the following chapters.

18



2.4 A barrier problem, severity of ruin

In this section we introduce definition treaties which are standard for the
model. We give a brief description of the probability of attaining a given
upper level, the maximum severity of ruin and the Laplace transform of the
time to ruin.

2.4.1 The probability of attaining a given level

We consider the following question: what is the probability that ruin occurs
from initial surplus u without the surplus process reaching level b > u prior
to ruin?

We denote this probability by ξ(u, b), and let χ(u, b) denote the probability
that the surplus process attains the level b from initial surplus u without first
falling below zero. To find expressions for ξ(u, b) and χ(u, b), we consider
the ruin and survival probabilities respectively in an unrestricted surplus
process. Let the random variable τb be the time to attain the level b, where
it is understood that τb =∞ if the surplus never reaches b. This is shown in
Figure 2.4.

If survivals occurs from initial surplus u, then the surplus process must
pass through the level b > u at some point in time, as the net profit condition
(2.3.1) implies that U(t)→∞ as t→∞ with probability one (almost surely).
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In the classical risk model, as the distribution of the time to the next claim
from the time the surplus attains b is exponential, the probabilistic behavior
of the surplus process once it attains level b is independent of its behavior
prior to attaining b. Hence Φ(u) = χ(u, b)Φ(b) or equivalently,

χ(u, b) =
1−Ψ(u)

1−Ψ(b)
.

Similarly, if ruin occurs from initial surplus u, then either the surplus process
does or does not attain level b prior to ruin. Hence

Ψ(u) = ξ(u, b) + χ(u, b)Ψ(b),

so that

ξ(u, b) = Ψ(u)− 1−Ψ(u)

1−Ψ(b)
Ψ(b) =

Ψ(u)−Ψ(b)

1−Ψ(b)
.

The reason for this is the memoryless property of the exponential distribu-
tion.

In a Sparre–Andersen risk model, we no longer have that memoryless
property, so the approach to find ξ(u, b) and χ(u, b) is different.

Considering the amount and the time of arrival of the first claim, we get
renewal equations for χ(u, b) and ξ(u, b) that resemble those we had before
for Φ(u) and Ψ(u)

χ(u, b) =

∫ b−u
c

0

k(t)

∫ u+ct

0

p(x)χ(u+ ct− x, b)dxdt+

∫ ∞
b−u
c

k(t)dt, (2.4.1)

and

ξ(u, b) =

∫ b−u
c

0

k(t)

[∫ u+ct

0

p(x)ξ(u+ ct− x, b)dx

+

∫ ∞
u+ct

p(x)dx

]
dt. (2.4.2)

Then it is clear that

lim
b→∞

χ(u, b) = Φ(u), and lim
b→∞

ξ(u, b) = Ψ(u).

Note that ξ(u, b) +χ(u, b) = 1, so that eventually either ruin occurs with-
out the surplus process ever attaining b or the surplus process first attains
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level b.

In the following chapters we present computations of χ(u, b) by solving an
integro–differential equation that it satisfies, which in turn depends on the
nature of k(t).

2.4.2 The severity of ruin and its maximum

In this section we are interested not just in the probability of ruin, but also
in the amount of the insurer’s deficit at the time of ruin, if ruin occurs.

Given an initial surplus u, recall that we denoted the time to ruin from
initial surplus u by Tu. Define

G(u, y) = Pr(Tu <∞ and U(Tu) ≥ −y),

to be the probability that ruin occurs and that the insurer’s deficit at ruin,
or severity of ruin, is at most y. We notice that

lim
y→∞

G(u, y) = Ψ(u),

so that
G(u, y)

Ψ(u)
= Pr(|U(Tu)| ≤ y)|Tu <∞)

is proper distribution function. Hence for a given initial surplus u, G(u, . ) is
a defective distribution with (defective) density

g(u, y) =
∂

∂y
G(u, y).

We now allow surplus process to continue if ruin occurs, and we consider the
insurer’s maximum severity of ruin from the time of ruin until the time that
the surplus process next attains level 0. As we are assuming the net profit
condition (2.3.1), it is certain that the surplus process will attain this level.

We define T ′u to be the time of the first upcrossing of the surplus process
through level 0 after ruin occurs and define the random variable Mu by

Mu = sup{|U(t)|, Tu ≤ t ≤ T ′u},

so that Mu denotes the maximum severity of ruin. This is shown in Figure
2.5.

Let
J(z;u) = Pr(Mu ≤ z|Tu <∞)
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Figure 2.5: The maximum severity of ruin

to be the distribution function of Mu given that ruin occurs. The maximum
severity of ruin is no more than z if ruin occurs with a deficit y ≤ z and if
the surplus does not fall below −z from the level −y. The probability of this
latter event is χ(z−y, z) since attaining level 0 form level −y without falling
below −z is equivalent to attaining level z from level z − y without falling
below 0.

Then

J(z;u) =

∫ z

0

g(u, y)

Ψ(u)
χ(z − y, z)dy. (2.4.3)

In the classical risk model we have Φ(u) = χ(u, b)Φ(b) and therefore we
evaluate (2.4.3) by nothing that

Ψ(u+ z) =

∫ ∞
z

g(u, y)dy +

∫ z

0

g(u, y)Ψ(z − y)dy. (2.4.4)

This follows by noting that if ruin occurs from initial surplus u+ z, then the
surplus process must fall below z at some time in the future.

By conditioning this event according to whether ruin occurs at the time
of this fall, the probability of which is given by the first integral, or at a
subsequent time, the probability of which is given by the second integral, we
obtain equation (2.4.4) for Ψ(u+ z).
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Noting that Ψ = 1− Φ we can write equation (2.4.4) as∫ z

0

g(u, y)Φ(z − y)dy =

∫ ∞
z

g(u, y)dy +

∫ z

0

g(u, y)dy −Ψ(u+ z)

= Ψ(u)−Ψ(u+ z).

Thus,

J(z;u) =
Ψ(u)−Ψ(u+ z)

Ψ(u)(1−Ψ(z))

However, this method can not be performed in the same way in the Sparre–
Andersen model since, once again, we used the memoryless property in the
process.

In the Sparre–Andersen model we work on a method to find J(z;u) in
(2.4.3) that involves finding first the probability of attaining an upper barrier
level χ(u, b).

2.4.3 The distribution of the time to ruin

Recall the random variable Tu denoting the time of ruin. The distribution
of Tu is important since Pr(Tu ≤ t) gives the probability that ruin occurs at
or before time t. If we know the distribution of Tu we are able to compute
finite time ruin probabilities.

Define a function ϕ as

ϕ(u, δ) = E[e−δTuI(Tu <∞)]

where δ is a non-negative parameter which we consider in this section as the
parameter of a Laplace transform, and I is the indicator function, so that
I(A) = 1 if the event A occurs and equals 0 otherwise. Notice that

lim
δ→0

ϕ(u, δ) = E[I(Tu <∞)] = Pr[Tu <∞] = Ψ(u).

In the next section of the expected discounted dividends we consider a
function similar to ϕ, and in that function the interpretation of δ is that it
is a force of interest. With this interpretation, ϕ(u, δ) gives the expected
present value of 1 payable at the time of ruin.

We can derive a renewal equation for ϕ using the technique of conditioning
on the time and the amount of the first claim.
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In the classical risk model we have

ϕ(u, δ) =

∫ ∞
0

λe−λte−δt
∫ u+ct

0

p(x)ϕ(u+ ct− x, δ)dxdt

+

∫ ∞
0

λe−λte−δt
∫ ∞
u+ct

p(x)dxdt. (2.4.5)

Substituting s = u+ ct in equation (2.4.5) gives

ϕ(u, δ) =
λ

c

∫ ∞
u

e−(λ+δ)(s−u)/c

∫ s

0

p(x)ϕ(s− x, δ)dxds

+
λ

c

∫ ∞
u

e−(λ+δ)(s−u)/c

∫ ∞
s

p(x)dxds.

Afterwards, we differentiate this equation with respect to u to obtain an
integro–differential equation

∂

∂u
ϕ(u, δ) =

λ+ δ

c
ϕ(u, δ)− λ

c

∫ u

0

p(u− x)ϕ(x, δ)dx− λ

c
(1− P (u)).

In the Sparre–Andersen risk model the renewal equation is given by

ϕ(u, δ) =

∫ ∞
0

k(t)e−δt
∫ u+ct

0

p(x)ϕ(u+ ct− x, δ)dxdt

+

∫ ∞
0

k(t)e−δt
∫ ∞
u+ct

p(x)dxdt. (2.4.6)

Any further developments will depend on the specific characteristics of the
density of k(t).

2.5 Expected discounted dividends

We now consider a problem where an insurance portfolio is used to provide
dividend income for the insurance company’s shareholders. Specifically, let
u denote the initial surplus and let b ≥ u be a dividend barrier.

Whenever the surplus attains the level b, the premium income is paid to
shareholders as dividends until the next claim occurs, so that in this modified
surplus process, the surplus never attains a level greater than b, see Figure
2.6.

It is straightforward to show that it is certain that ruin eventually occurs
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Figure 2.6: The expected discounted dividends

for the modified surplus process. We represent the modified surplus process
in Figure 2.7.

Let us assume that the shareholders provide the initial surplus u and pay
the deficit at ruin. An interesting question is how the level of the barrier b
should be chosen to maximize the expected present value of net income to
the shareholders, assuming that there is no further business after the time
of ruin. Another interesting question is how the situation changes when we
introduce capital injections after the time of ruin.

We define V (u, b) to be the expected present value at force of interest δ
of dividends payable to shareholders prior to ruin, Yu,b to be the deficit at
ruin and Tu,b to be the time of ruin, so that E[Yu,b e

−δTu,b ] gives the expected
present value of the deficit at ruin. Then we want to choose b such that the
following function

L(u, b) = V (u, b)− E[Yu,b e
−δTu,b ]− u

is maximized, and to address this question we must consider the components
of L(u, b).

We can find an expression for V (u, b) by the standard technique of con-
ditioning on the time and the amount of the first claim. We note that for
u < b, if no claim occurs before time τ = (b− u)/c, then the surplus process
attains level b at time τ .
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Figure 2.7: The modified surplus

In the classical risk model, for 0 ≤ u < b, the renewal equation is

V (u, b) = e−(λ+δ)τV (b, b) +

∫ τ

0

λe−(λ+δ)t

∫ u+ct

0

p(x)V (u+ ct− x, b)dxdt.

Substituting s = u+ ct we obtain

V (u, b) = e−(λ+δ)(b−u)/cV (b, b)

+
λ

c

∫ b

u

e−(λ+δ)(s−u)/c

∫ s

0

p(x)V (s− x, b)dxds,

and differentiating with respect to u we get

∂

∂u
V (u, b) =

λ+ δ

c
V (u, b)− λ

c

∫ u

0

p(x)V (u− x, b)dxdt. (2.5.1)

Similarly, by considering dividends payments before and after the first
claim, we have

V (b, b) =

∫ ∞
0

λe−(λ+δ)tcst dt

+

∫ ∞
0

λe−(λ+δ)t

∫ b

0

p(x)V (b− x, b)dxdt, (2.5.2)

where st = (eδt−1)/δ is the accumulated amount at time t at force of interest
δ of payments at rate 1 per unit time over (0, t).
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Integrating out in equation (2.5.2) we obtain

V (b, b) =
c

λ+ δ
+

λ

λ+ δ

∫ b

0

p(x)V (b− x, b)dx. (2.5.3)

From equation (2.5.1) we find that

c

λ+ δ

∂

∂u
V (u, b)

∣∣∣∣
u=b

= V (b, b)− λ

λ+ δ

∫ b

0

p(x)V (b− x, b)dx,

which, together with equation (2.5.3), gives the boundary condition

∂

∂u
V (u, b)

∣∣∣∣
u=b

= 1.

In the Sparre–Andersen risk model the renewal equation for V (u, b) takes
the form

V (u, b) =

∫ ∞
b−u
c

k(t)e−δt
(
c s

t− b−u
c

+

∫ b

0

p(x)V (b− x, b)dx
)
dt+

+

∫ b−u
c

0

e−δtk(t)

∫ u+ct

0

V (u+ ct− x, b)p(x)dx dt. (2.5.4)

Furthermore, let the random variable Du,b denote the present value at force
of interest δ(> 0) per unit time of dividends payable to shareholders until
ruin occurs, and denote m–th moment as Vm(u, b) = E[Dm

u,b], m ≥ 0, where
V0(u, b) ≡ 1. Then we have V1(u, b) = V (u, b).

A renewal equation for Vm(u, b), m ≥ 1 is the following

Vm(u, b) =

∫ ∞
b−u
c

k(t)e−mδt
[(
c s

t− b−u
c

)m
+

+

m∑
j=1

(
m

j

)(
c s

t− b−u
c

)m−j ∫ b

0
p(x)Vj(b− x, b)dx

 dt+

+

∫ b−u
c

0
e−mδtk(t)

∫ u+ct

0
Vm(u+ ct− x, b)p(x)dx dt. (2.5.5)

Depending on the claim amounts distribution k(t), we obtain integro–
differential equations together with boundary conditions from the renewal
equations (2.5.4) and (2.5.5) that allow us to compute Vm(u, b),m ≥ 1.
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2.6 Final remarks

In this chapter we have learned about the most important quantities of inter-
est in Risk Theory. We have taken a closer look at the renewal risk models,
specifically the classical and the Sparre–Andersen risk model. Depending
on the choice of the interclaim times distribution we have presented results
and formulae. In the next chapter we will discuss how previously presented
theory can be applied to deal with a Sparre–Andersen model with Erlang(n)
distributed interclaim times.
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Chapter 3

The Sparre–Andersen model
with Erlang(n) interclaim times

The only way to learn mathematics
is to do mathematics

Paul Halmos

3.1 Introduction

In this chapter we study the Sparre–Andersen risk model under the assump-
tion that the interclaim times are Erlang(n) distributed.

In Section 3.2 we investigate the fundamental and the generalized Lund-
berg’s equations, take a closer look at the roots of these equations and assume
the net profit condition. The most important result of this section say that
the roots of the equations mentioned above are distinct.

In Section 3.3 we present results from Li and Dickson (2006) and Li
(2008b) which are part of the mathematical foundation for the chapter. In
particular we begin by describing the problem of finding the survival proba-
bility and the probability of attaining an upper barrier prior to ruin.

A new theorem for obtaining the latter is given in section 3.4.

We continue in Section 3.5 applying our theorem for the maximum severity
of ruin.

In Section 3.6 we deal with numerical examples that are based on the re-
sults of the previous sections. We consider the cases of Erlang(3) distributed
interclaim times with exponentially distributed single claim amounts and
Erlang(2) interclaim times with Erlang(2) claim amounts.

29



In the last section of this chapter we focus on dividends, where numerical
examples are provided.

3.2 The Lundberg’s equation

The density of the interclaim time Wi, which we denote as kn(t),

kn(t) =
λntn−1e−λt

(n− 1)!
, t ≥ 0, λ > 0, n ∈ N+,

and its probability distribution function denoted as

Kn(t) = 1−
n−1∑
i=0

(λt)ie−λt

i!
.

The most important properties of this distribution are the following

k̂n(s) =

(
λ

λ+ s

)n
,

k′n(t) = λ(kn−1(t)− kn(t)),

k(i)
n (0) = 0, i = 0, . . . , n− 2,

k(n−1)
n (0) = λn,

which we use later on this chapter.
The fundamental Lundberg’s equation from the previous chapter (2.3.4)

can be written in the form(
λ

c
− s
)n

=

(
λ

c

)n
p̂(s). (3.2.1)

On the other hand we have the generalized Lundberg’s equation (2.3.5) ex-
pressed as (

λ+ δ

c
− s
)n

=

(
λ

c

)n
p̂(s), (3.2.2)

where δ > 0 is the force of interest. We consider this equation in the section
of dividends.

We can notice that equation (3.2.2) has exactly n roots with positive
real parts, and similarly equation (3.2.1) has n − 1 roots with positive real
parts. The precise proof of this fact uses Rouché’s theorem, see Li and
Garrido (2004b). Moreover, for both equations, the above mentioned roots
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are different. We can find in Ji and Zhang (2011) a detailed explanation of
this result. By the numbers ρ1, ρ2, . . . , ρn−1 ∈ C denote the roots of (3.2.1)
which have positive real parts, and R > 0 is the adjustment coefficient.

We assume the net profit condition (2.3.1), which in our case becomes

cE[Wi] > E[Xi]⇐⇒ c
n

λ
> µ1. (3.2.3)

3.3 Mathematical background

In the literature of risk theory, it is common to work with integro–differential
equations.

We know from Li and Dickson (2006) that the probability of attaining an
upper barrier prior to ruin, χ(u, b), satisfies an order n integro–differential
equation with n boundary conditions. This can be written in the form

B(D)v(u) =

∫ u

0

v(u− y)p(y)dy, u ≥ 0, (3.3.1)

where

B(D) =
(
I −

( c
λ

)
D
)n

=
n∑
k=0

(−1)k
( c
λ

)k (n
k

)
Dk =

n∑
k=0

BkDk,

and Bk = (−1)k
(
c
λ

)k (n
k

)
.

The operator D = d/du denotes differentiation with respect to u and I
is the identity operator. Thus, B(D) is a differential operator of degree n.
If we find n linearly independent particular solutions vj(u), j = 1, . . . , n for
this equation, then we have

χ(u, b) = −→v (u)[V(b)]−1−→e T , (3.3.2)

where −→v (u) = (v1(u), . . . , vn(u)) is a 1 × n vector, V(b) is a n × n matrix
with entries given by

(V(b))ij =
di−1vj(u)

dui−1

∣∣∣∣
u=b

and −→e = (1, 0, . . . , 0) which is a 1 × n vector. We can find a complete
derivation of this result in Li (2008a).

The equation (3.3.2) gives an expression for χ(u, b) as linear combina-
tion of n linearly independent particular solutions of the integro–differential
equation (3.3.1).
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In this chapter our aim is to seek for those solutions, which in turn depend
on the roots of the fundamental Lundberg’s equation. Li (2008a) finds a
vector of solutions −→v (u) for the case when ρ1, ρ2, . . . , ρn−1 are all distinct.

Our work starts by giving an improved version for the expressions pre-
sented by Li (2008a) for the functions vi(u), i = 1, . . . , n. This is given in
the next section. Further, we apply our results in order to find the distribu-
tion of the maximum severity of ruin.

Afterwards, we deal with the dividends problem, we mean the calculation
of the moments Vm(u, b). As we mentioned before for a classical risk model,
an integro–differential equation for V (u, b) can be found in Dickson (2005),
and for Vm(u, b) in Dickson and Waters (2004). For the Erlang(n) model
we give the respective integro–differential equations as well as a method of
finding the solutions of this equations.

3.4 Solutions for the integro-differential

equation

In this part we consider the relation between the roots of the fundamental
Lundberg’s equation that have positive real parts and the solutions for the
integro-differential equation ((3.3.1)). Li (2008a) found that

Theorem 3.4.1 If ρ1, ρ2, . . . , ρn−1 ∈ C are distinct, then we have the fol-
lowing expressions for the vj(u)’s

v1(u) = Φ(u),

vj(u) =

j−1∑
i=1

ai,j

∫ u

0

Φ(u− y)eρiydy, j = 2, 3, . . . , n,

where ai,j = − 1∏j−1
k=1,k 6=i(ρk − ρi)

, i = 1, 2, . . . , j − 1.

We introduce developments, proposing a new version of Theorem 3.4.1:

Theorem 3.4.2 If ρ1, ρ2, . . . , ρn−1 ∈ C are distinct, then we have the fol-
lowing expressions for the vj(u)’s

v1(u) = Φ(u),

vj(u) =

∫ u

0

Φ(u− y)eρj−1ydy, j = 2, 3, . . . , n.
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Proof : Any solution v(u) of (3.3.1) has Laplace transform

v̂(s) =
dv(s)

B(s)− p̂(s)
,

where

dv(s) =
n−1∑
i=0

(
n∑

k=i+1

(
n

k

)(
−c
λ

)k
v(k−1−i)(0)

)
si

=
n−1∑
i=0

(
n∑

k=i+1

Bkv
(k−1−i)(0)

)
si.

The survival probability Φ(u) is a solution of (3.3.1), and its Laplace trans-
form is given by [see Li (2008a)]

Φ̂(s) = −Φ(0)
( c
λ

)n ∏n−1
i=1 (ρi − s)

B(s)− p̂(s)
,

we denote

dΦ(s) = −Φ(0)
( c
λ

)n n−1∏
i=1

(ρi − s). (3.4.1)

Now we show that any function vj(u) =
∫ u

0
Φ(u − y)eρj−1ydy, with

j = 2, 3, . . . , n, is solution of (3.3.1). We need to prove that

B(D)vj(u) = dΦ(ρj−1)eρj−1u +

∫ u

0

(B(D)Φ(u− t))eρj−1tdt

and that ∫ u

0

vj(u− y)p(y)dy =

∫ u

0

(B(D)Φ(u− t))eρj−1tdt.

For the left hand side, the k-th derivative of vj(u) gives

v
(k)
j (u) =

(
k−1∑
i=0

Φ(k−1−i)(0)ρij−1

)
eρj−1u +

∫ u

0

Φ(k)(u− y)eρj−1ydy.
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Therefore,

B(D)vj(u) =
n∑
k=0

Bkv
(k)
j (u) =

=
n∑
k=0

Bk

(
k−1∑
i=0

Φ(k−1−i)(0)ρij−1

)
eρj−1u +

n∑
k=0

Bk

∫ u

0
Φ(k)(u− y)eρj−1ydy

=

(
n−1∑
i=0

(
n∑

k=i+1

BkΦ
(k−1−i)(0)

)
ρij−1

)
eρj−1u +

∫ u

0

(
n∑
k=0

BkΦ
(k)(u− y)

)
eρj−1ydy

= dΦ(ρj−1)eρj−1u +

∫ u

0

(
n∑
k=0

BkΦ
(k)(u− y)

)
eρj−1ydy

=

∫ u

0
(B(D)Φ(u− y))eρj−1ydy,

since dΦ(ρj−1) = 0, j = 2, . . . n from (3.4.1).

And for the right hand side we get∫ u

0

vj(u− x)p(x)dx =

∫ u

0

(∫ u−x

0

Φ(u− x− y)eρj−1ydy

)
p(x)dx

=

∫ u

0

(∫ u−y

0

Φ(u− y − x)p(x)dx

)
eρj−1ydy

=

∫ u

0

(B(D)Φ(u− y))eρj−1ydy.

We have just proved that the functions vj(u) are solutions of (3.3.1).

The only remaining part to prove is that those vj(u)’s are linearly inde-
pendent. We do this in the following way.

Suppose that we have a linear combination such that
∑n

j=1 cjvj(u) = 0,
∀u ≥ 0. Considering the cases (i) and (ii) below.
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(i) For c1 = 0. Let H(t) =
∑n

j=2 cje
ρj−1t, then

n∑
j=1

cjvj(u) =
n∑
j=2

cj

∫ u

0

Φ(u− y)eρj−1ydy

=

∫ u

0

Φ(u− y)
n∑
j=2

cje
ρj−1ydy

= Φ ∗H(u) = 0.

The fact that Φ∗H(u) = 0, ∀u ≥ 0 with Φ(u) 6≡ 0, implies that H(u) ≡
0 almost everywhere. But on the other side H(t) is a continuously
differentiable function, this implies that c1 = c2 = · · · = cn = 0.

(ii) For c1 6= 0. We define G(t) =
∑n

j=2 (−cj/c1) eρj−1t, so Φ ∗ G(u) =
Φ(u) ∀u ≥ 0. Not all the remaining coefficients cj’s can be 0, otherwise
G(t) ≡ 0. But then limu→+∞G(u) = ±∞ depending on the sign of
the non zero coefficients. As Φ(u) is a non–decreasing non–negative
function with limu→+∞Φ(u) = 1, we have that limu→+∞Φ ∗ G(u) =
±∞, which is a contradiction and concludes the proof. �

Remark 3.4.1 For any complex root ρ of the fundamental Lundberg’s equa-
tion the conjugate ρ̄ is also a root, we have that v(u) =

∫ u
0

Φ(u−y)eρydy and

its conjugate v(u) =
∫ u

0
Φ(u−y)eρ̄ydy are both solutions of (3.3.1). We take

advantage of this fact in Theorem 3.4.2. Thus, for computational purposes
this theorem becomes much simpler than Theorem 3.4.1.

3.5 The maximum severity of ruin

In the previous section we have shown how to obtain the solutions of the
integro–differential equation. Now, we use these results to obtain the corre-
sponding expressions for the distribution of the maximum severity of ruin.
We find an expression for that distribution which only depends on the non-
ruin probability Φ(u) and the claim amounts distribution.

From Dickson (2005) and (3.3.2) we know that the distribution of the
maximum severity of ruin J(z;u) can be expressed as:

J(z;u) =
1

1− Φ(u)

∫ z

0
g(u, y)(v1(z − y), . . . , vn(z − y))dy[V (z)]−1−→e T . (3.5.1)
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For simplicity we denote by

−→
h (z, u) =

∫ z

0

g(u, y)(v1(z − y), . . . , vn(z − y))dy

=

(∫ z

0

g(u, y)v1(z − y)dy, . . . ,

∫ z

0

g(u, y)vn(z − y)dy

)
= (h1(z, u), . . . , hn(z, u)),

In this moment the only remaining part to find is an expression for every

component of
−→
h (z, u). We consider the case of the Theorem 3.4.2 like in

the previous section. In a similar way as it is done by Li (2008a) we get for
j = 1: ∫ z

0

g(u, y)v1(z − y)dy = Φ(u+ z)− Φ(u), (3.5.2)

and for j = 2, . . . , n:∫ z

0

g(u, y)vj(z − y)dy =

∫ z

0

g(u, y)

∫ z−y

0

Φ(z − y − x)eρj−1xdxdy

=

∫ z

0

eρj−1x[Φ(u+ (z − x))− Φ(u)]dx.

Hence we get the desired expression for the maximum severity of ruin.

3.6 Explicit expressions

In this section our aim is to determine explicit expressions for the (existing)
moments of the maximum severity of ruin as well as the probability that
the maximum severity occurs at ruin. Li (2008a) considered those moments
for Erlang(2) interclaim times and exponential claims. We work here with
other two cases and present formulae as well as some numerical calculations.
Namely, for cases where:

1. Interclaim arrivals are Erlang(3,λ) and single claim amounts are
exponential(β) distributed. For simplification we denote this case by
Erlang(3)–exponential;

2. Interclaim arrivals are Erlang(2,λ) and single claim amounts are
Erlang(2,β) distributed. Similarly, we denote this case by Erlang(2)–
Erlang(2).
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3.6.1 Erlang(3) – exponential case

Considering the net profit condition (3.2.3) we write c = (1 + θ)λ/3β with
safety loading coefficient θ > 0. The fundamental Lundberg’s equation
(3.2.1) takes the form (

1−
( c
λ

)
s
)3

− β

(s+ β)
= 0,

which has four roots: 0, ρ1, ρ2 and −R, where 0 < R < β is the adjustment
coefficient, ρ1, ρ2 are complex roots with positive real parts and ρ2 = ρ1.
The three solutions for the integro–differential equation (3.3.1) come

Φ(u) = 1−
(

1− R

β

)
e−Ru,

v2(u) =
−1

ρ1

+
β −R

β(R + ρ1)
e−Ru +

R(β + ρ1)

ρ1β(R + ρ1)
eρ1u,

v3(u) =
−1

ρ2

+
β −R

β(R + ρ2)
e−Ru +

R(β + ρ2)

ρ2β(R + ρ2)
eρ2u.

These solutions were obtained using Theorem 3.4.2.

Distribution and moments of the maximum severity

Continuing work we want to find the corresponding expressions for the distri-
bution and the moments of the maximum severity of ruin. After calculating
(3.5.1) we get

1− J(z;u) =
αe−Rz

1− γe−(ρ1+R)z − εe−(ρ2+R)z − ηe−Rz
,

where

α =
R(R + ρ1)(R + ρ2)

β(β + ρ1)(β + ρ2)
γ = − R(β −R)(R + ρ2)

ρ1(β + ρ1)(ρ2 − ρ1)

ε =
R(β −R)(R + ρ1)

ρ2(β + ρ2)(ρ2 − ρ1)
η =

(β −R)(R + ρ1)(R + ρ2)

βρ1ρ2

,

with 0 < α < 1, ε = γ and 0 < η = 1−α−γ−ε. Note that this expression
is independent from u.
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n = 1 n = 2 n = 3
m = 1 m = 1 m = 1

θ E(Mu) s.d.(Mu) E(Mu) s.d.(Mu) E(Mu) s.d.(Mu)
0.05 3.197 7.324 2.474 5.532 2.236 4.933
0.1 2.638 5.007 2.063 3.805 1.875 3.404
0.15 2.342 4.015 1.848 3.069 1.687 2.754
0.2 2.150 3.443 1.709 2.646 1.567 2.381
0.25 2.012 3.064 1.611 2.368 1.481 2.136
0.3 1.906 2.792 1.536 2.169 1.416 1.962

Table 3.1: Expected values and standard deviations of Mu for n = 1, 2, 3
(interclaim times) and m = 1 (claim amounts)

The r-th moment of Mu, given that ruin occurs, is given by the formula

E(M r
u|Tu <∞) = r

∫ ∞
0

zr−1(1− J(z;u))dz

= rα

∫ ∞
0

zr−1e−Rz

1− γe−(ρ1+R)z − εe−(ρ2+R)z − ηe−Rz
dz, (3.6.1)

for r ≥ 1. Since |γe−(ρ1+R)z + εe−(ρ2+R)z + ηe−Rz| < 1 we can write that

1− J(z;u) = αe−Rz
∞∑
k=0

(γe−(ρ1+R)z + εe−(ρ2+R)z + ηe−Rz)k.

Hence,

E(M r
u|Tu <∞) = αr!

∞∑
k=0

k∑
j=0

k−j∑
l=0

(
k

j

)(
k − j
l

)
ηjγlεk−j−l

(R(k + 1) + ρ1l + ρ2(k − j − l))r
.

We choose β = 1, λ = 3 and c = 1 + θ to evaluate formula (3.6.1) for
some values of θ with r = 1 . These values are compared with Li (2008a)
results.

Figures are given in Table 3.1. From the table we observe that the mean
and the standard deviation of Mu decrease as θ increases for the three cases.
This is expected since an increase in θ means an increase in the income unit
c, which gives faster growth of the surplus per unit of time. Also, we note
that for fixed θ the mean and the standard deviation of Mu decrease as n
increases. The reason for this is that for higher values of n with fixed m we
are increasing the expected value of the interclaim times, which is given by
E(Wi) = n/λ, so we expect to get claims after longer time intervals.
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The probability that the maximum severity occurs at ruin

At the time of ruin Tu, the size of the severity is not necessarily maximal.
This means that the probability p̃ that the maximum severity occurs at ruin
is not necessarily equal to 1. Therefore it is important to have a measure
for this probability. Due to the memoryless property of the exponential
distribution we have that g(u, y) = Ψ(u)p(y). Hence

p̃ = Pr(Mu = |U(T )| | T <∞) =

∫∞
0
g(u, y)χ(0, y)dy

Ψ(u)
=

∫ ∞
0

χ(0, y)p(y)dy.

Now from (3.3.2) we get, for u = 0

χ(0, y) =

(
R

β

)
1 + ρ1γ

R
e−(ρ1+R)y + ρ2γ

R
e−(ρ2+R)y

1− γe−(ρ1+R)y − εe−(ρ2+R)y − ηe−Ry
,

so

p̃ =

(
R

β

)∫ ∞
0

1 + ρ1γ
R
e−(ρ1+R)y + ρ2γ

R
e−(ρ2+R)y

1− γe−(ρ1+R)y − εe−(ρ2+R)y − ηe−Ry
βe−βydy

=

∫ ∞
0

R + ρ1γe
−(ρ1+R)y + ρ2γe

−(ρ2+R)y

1− γe−(ρ1+R)y − εe−(ρ2+R)y − ηe−Ry
e−βydy. (3.6.2)

We choose the same values for λ, β and θ as before and evaluate (3.6.1) to
get the figures in Table 3.2. From the table we conclude that the probability
that the maximum deficit occurs at ruin increases as θ increases. This means
that for bigger premium c is less likely that the surplus will drop to lower
levels of deficit after ruin.

θ 0.05 0.1 0.15 0.2 0.25 0.3
p̃ 0.735 0.752 0.768 0.782 0.795 0.808

Table 3.2: Probability that the maximum deficit occurs at ruin, for n = 3,
m = 1.

3.6.2 Erlang(2) – Erlang(2) case

Following the previous example we again consider the net profit condition
(3.2.3) and we write c = (1+θ)λ/β with θ > 0. The fundamental Lundberg’s
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equation (3.2.1) takes the form(
1−

( c
λ

)
s
)2

− β2

(s+ β)2
= 0,

which has four real roots: 0,−R1,−R2 and ρ, where 0 < R1 < β is
the adjustment coefficient and R2 > β, ρ > β. The two solutions for the
integro–differential equation (3.3.1)

Φ(u) = 1− R2(β −R1)2

β2(R2 −R1)
e−R1u − R1(β −R2)2

β2(R1 −R2)
e−R2u,

v2(u) = −1

ρ
+

R1R2(β + ρ)2

β2ρ(ρ+R1)(ρ+R2)
eρu +

R2(β −R1)2

β2(R2 −R1)(ρ+R1)
e−R1u

+
R1(β −R2)2

β2(R1 −R2)(ρ+R2)
e−R2u.

were obtain following Theorem 3.4.2.

Distribution and moments of the maximum severity

In this case the formula that we get from (3.5.1) is not independent from u,
we write it in the following way

J(z;u) =
1

Ψ(u)

[
R2(β −R1)2

β2(R2 −R1)
e−R1uJ1(z;u) +

R1(β −R2)2

β2(R1 −R2)
e−R2uJ2(z;u)

]
.

So,

1− J(z;u) =
1

Ψ(u)

[
R2(β −R1)2

β2(R2 −R1)
e−R1u(1− J1(z;u))

+
R1(β −R2)2

β2(R1 −R2)
e−R2u(1− J2(z;u))

]
.

The functions J1(z;u) and J2(z;u) are

J1(z;u) =
1

JD(z)

(
1− γ1e

−(ρ+R1)z − γ2e
−(ρ+R2)z−

(1− γ1)e−R1z − τ1e
−R2z − ω1e

−(ρ+R1+R2)z
)
,

40



and

J2(z;u) =
1

JD(z)

(
1− γ1e

−(ρ+R1)z − γ2e
−(ρ+R2)z−

τ2e
−R1z − (1− γ2)e−R2z − ω2e

−(ρ+R1+R2)z
)
,

where the denominator in both expressions is given by

JD(z) = 1− γ1e
−(ρ+R1)z − γ2e

−(ρ+R2)z − δ1e
−R1z − δ2e

−R2z − ηe−(ρ+R1+R2)z,

and

γ1 = −R1(β −R1)2(ρ+R2)

ρ(R2 −R1)(β + ρ)2
, γ2 = −R2(β −R2)2(ρ+R1)

ρ(R1 −R2)(β + ρ)2
,

δ1 =
R2(β −R1)2(ρ+R1)

β2ρ(R2 −R1)
, δ2 =

R1(β −R2)2(ρ+R2)

β2ρ(R1 −R2)
,

τ1 =
R1(β −R2)2(ρ+R2)

ρ(R1 −R2)(β + ρ)2
, τ2 =

R2(β −R1)2(ρ+R1)

ρ(R2 −R1)(β + ρ)2
,

ω1 = −(β −R2)2

(β + ρ)2
, ω2 = −(β −R1)2

(β + ρ)2
,

η = −(β −R1)2(β −R2)2

β2(β + ρ)2
, α =

R1R2(ρ+R1)(ρ+R2)

β2(β + ρ)2
,

with 0 < α < 1 and η = 1− α− γ1 − γ2 − δ1 − δ2.

In the same way, we compute the conditional moments of Mu, given that
ruin occurs,

E(M r
u|T <∞) = r

∫ ∞
0

zr−1(1− J(z;u))dz

=
r

Ψ(u)

[
R2(β −R1)2

β2(R2 −R1)
e−R1u

∫ ∞
0

zr−1(1− J1(z;u))dz

+
R1(β −R2)2

β2(R1 −R2)
e−R2u

∫ ∞
0

zr−1(1− J2(z;u))dz

]
, (3.6.3)

for r ≥ 1.

We choose β = 1, λ = 1 and c = 1 + θ to evaluate formula (3.6.3)
for some values of θ with r = 1 . Afterwards we compare with the resuts
by Li (2008a). As before, Table 3.3 shows figures for E(Mu) and s.d.(Mu).
From Table 3.3 we observe that the mean and the standard deviation of
Mu decrease as θ increases for all the three cases. This is expected since
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n = 2,m = 1 n = 2,m = 2
θ E(Mu) s.d.(Mu) E(Mu) s.d.(Mu)
0.05 2.474 5.532 3.279 7.137
0.1 2.063 3.805 2.759 4.911
0.15 1.848 3.069 2.485 3.959
0.2 1.709 2.646 2.307 3.411
0.25 1.611 2.368 2.179 3.049
0.3 1.536 2.169 2.082 2.791

Table 3.3: Values of E(Mu) and s.d.(Mu) for n = 2;m = 1 and n = m = 2

an increase in θ means an increase in the premium income c, which gives
faster growth of the surplus, per unit of time. Also we note that for a fixed
θ the mean and the standard deviation of Mu are higher in the Erlang(2) –
Erlang(2) case than in the Erlang(2) – exponential case. The reason for this
is that for higher values of m with fixed n we are increasing the expected
value of the claim amounts, which is given by E(Xi) = m/β, so we are
increasing the average size of the claims that will be paid.

The probability that the maximum severity occurs at ruin

From (3.3.2) we get, for u = 0

χ(0, y) =

(
R1R2

β2

)
1 + ργ1

R1
e−(ρ+R1)y + ργ2

R2
e−(ρ+R2)y

d(y)
,

where

d(y) = 1− γ1e
−(ρ+R1)y − γ2e

−(ρ+R2)y − δ1e
−R1y − δ2e

−R2y − ηe−(ρ+R1+R2)y.

The formula for P (Mu = |U(T )| | T < ∞) is obtained in the same way as
in equation (3.6.1). Choosing the same values of λ, β and θ as before we
evaluate that probability to get the figures in Table 3.4 where p̃ = P (Mu =
|U(T )| | T < ∞). From the table we conclude that the probability that the
maximum deficit occurs at ruin increases along with θ. Like in Section 3.6.1,
this means that for a bigger c it is less likely that the surplus drops to lower
levels of deficit after the ruin time.
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θ 0.05 0.1 0.15 0.2 0.25 0.3
p̃ 0.730 0.745 0.759 0.772 0.784 0.795

Table 3.4: Probability that the maximum deficit occurs at ruin, for n = 2,
m = 2.

3.7 Dividends

In this section we consider the dividends problem. We use the method pro-
posed by Dickson and Waters (2004) and present an equation for Vm(u, b) in
Erlang(n) risk process. As before, conditioning on the time and the amount
of the first claim we get, for 0 ≤ u < b and m ≥ 1

Vm(u, b) =

∫ ∞
b−u
c

kn(t)e−mδt
[(
c s

t− b−u
c

)m
+

+
m∑
j=1

(
m

j

)(
c s

t− b−u
c

)m−j ∫ b

0

p(x)Vj(b− x, b)dx

]
dt+

+

∫ b−u
c

0

e−mδtkn(t)

∫ u+ct

0

Vm(u+ ct− x, b)p(x)dx dt. (3.7.1)

In particular, for m = 1

V (u, b) =

∫ ∞
b−u
c

kn(t)e−δt
(
c s

t− b−u
c

+

∫ b

0

p(x)V (b− x, b)dx
)
dt+

+

∫ b−u
c

0

e−δtkn(t)

∫ u+ct

0

V (u+ ct− x, b)p(x)dx dt, (3.7.2)

where st = (eδt − 1)/δ in standard actuarial notation.
For an Erlang(n) risk process the integro–differential equations satisfied by
the discounted expected dividends are

((
1 +

δ

λ

)
I − c

λ
D
)n

V (u, b) =

∫ u

0

V (u− x, b)p(x)dx (3.7.3)

dkV (u, b)

duk

∣∣∣∣
u=b

=

(
δ

c

)k−1

, 1 ≤ k ≤ n,

and for a general m ≥ 1,
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((
1 +

mδ

λ

)
I − c

λ
D
)n

Vm(u, b) =

∫ u

0

Vm(u− x, b)p(x)dx (3.7.4)

dkVm(u, b)

duk

∣∣∣∣
u=b

=
k∑
j=1

m!

(m− j)!

{
k

j

}(
δ

c

)k−j
Vm−j(b, b),

for 1 ≤ k ≤ n, where
{
k
j

}
= (1/j!)

∑j
i=0(−1)j−i

(
j
i

)
ik denotes the Stir-

ling numbers of the second kind. We define for convenience Vm−j(u, b) ≡
0, for m < j in the formula (3.7.4).

These equations generalize those proposed by Dickson (2005) and Dick-
son and Waters (2004) for the classical Poisson risk model, and extend the
equations proposed by Albrecher et al. (2005).

So far we have shown the equations for the expected discounted dividends
and higher moments. In this part our aim is to solve those equations. We
follow an argument originally proposed by Bühlman (1970), Section 6.4.9,
for a Poisson risk model, and also treated by Zhou et al. (2006). For an
Erlang(n) risk model we propose V (u, b) in the form

V (u, b) =
n∑
i=1

Cie
ρiuβi(u), (3.7.5)

where Ci’s are constants (that depend on the parameter b), ρi’s are the n
roots with positive real parts of the generalized Lundberg’s equation (3.2.2),
and the functions βi(u) are solutions of

(λiI − cD)nβi(u) = λni

∫ u

0

βi(u− x)pi(x)dx, (3.7.6)

with λi = λp̂
1
n (ρi) and pi(x) = e−ρixp(x)/p̂(ρi).

The constants Ci’s we determine using the boundary conditions given in
(3.7.3), which gives us a system of n equations with n unknowns

dkV (u, b)

duk

∣∣∣∣
u=b

=
n∑
i=1

Ci
dk(eρiuβi(u))

duk

∣∣∣∣
u=b

=

(
δ

c

)k−1

, 1 ≤ k ≤ n, (3.7.7)
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Equivalently, in matrix form we get,


C1

C2

...
Cn

=



d(eρ1uβ1(u))

du

∣∣∣∣
u=b

d(eρ2uβ2(u))

du

∣∣∣∣
u=b

· · ·
d(eρnuβn(u))

du

∣∣∣∣
u=b

d2(eρ1uβ1(u))

du2

∣∣∣∣
u=b

d2(eρ2uβ2(u))

du2

∣∣∣∣
u=b

· · ·
d2(eρnuβn(u))

du2

∣∣∣∣
u=b

...
...

. . .
...

dn(eρ1uβ1(u))

dun

∣∣∣∣
u=b

dn(eρ2uβ2(u))

dun

∣∣∣∣
u=b

· · ·
dn(eρnuβn(u))

dun

∣∣∣∣
u=b



−1

1(
δ

c

)
..
.(

δ

c

)n−1


.

We summarize this in the following theorem

Theorem 3.7.1 The solutions of integro-differential equation (3.7.3) are of
the form

V (u, b) =
n∑
i=1

Cie
ρiuβi(u),

where ρi’s are the roots with positive real parts of the generalized Lundberg’s
equation (3.2.2), βi(u)’s are defined in (3.7.6) and the constants Ci’s are
defined in (3.7.7).

Proof:
The proof is technical and follows by taking derivatives of V (u, b). In next

step of the proof we determine which conditions must be satisfied by the ρi’s
and βi(u)’s to get the equality in (3.7.3).

Let ρ be a constant and β(u) a function. We apply the integro–differential
equation (3.7.3) to the product eρuβ(u). From one side we get

((
1 +

δ

λ

)
I − c

λ
D
)n

eρuβ(u) = eρu
((

1 +
δ

λ
− c

λ
ρ

)
I − c

λ
D
)n

β(u),

and from the other side∫ u

0

eρ(u−x)β(u− x)p(x)dx = eρu
∫ u

0

β(u− x)e−ρxp(x)dx.

To obtain an equality we must have((
1 +

δ

λ
− c

λ
ρ

)
I − c

λ
D
)n

β(u) =

∫ u

0

β(u− x)e−ρxp(x)dx.

If we assume that ρ is a root of the generalized Lundberg’s equation (3.2.2),
then

((λp̂
1
n (ρ))I − cD)nβ(u) = λnp̂(ρ)

∫ u

0

β(u− x)
e−ρxp(x)

p̂(ρ)
dx.
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Choosing λ̃ = λp̂
1
n (ρ) and p̃(x) = e−ρxp(x)/p̂(ρ) we get the desired result.

Clearly the functions eρiuβi(u) with ρi a root of the generalized Lundberg’s
equation (3.2.2) and βi(u) defined as in (3.7.6) are linearly independent.
Therefore, it is possible to obtain the coefficients Ci using the boundary
conditions given in (3.7.3) and inverting the corresponding matrix. �

Our method generalizes the results obtained by Albrecher et al. (2005).
It works for any kind of claim amounts distribution, and not only for the
distributions with rational Laplace transforms. Moreover, the same approach
can be implemented to find an expression for Vm(u, b), m ≥ 2 written the
form (3.7.5) using the corresponding boundary conditions.

3.7.1 Example

In this section we give one example for the Erlang(2) risk model with Er-
lang(2) claim amounts. Our aim is to compute V (u, b) and V2(u, b).

Let the interclaim timesWi and the claim amountsXi be both Erlang(2,2),
let the positive loading c = 1.1 and the force of interest δ = 0.03.

Then, for V (u, b) we get the roots ρ1 = 0.169, ρ2 = 2.631, the functions

β1(u) = 1 + 0.026e−2.954u − 0.718e−0.492u,

β2(u) = 1 + 0.047e−5.235u − 0.108e−3.845u,

and the constants

(
C1

C2

)
=


d(eρ1uβ1(u))

du

∣∣∣∣
u=b

d(eρ2uβ2(u))

du

∣∣∣∣
u=b

d2(eρ1uβ1(u))

du2

∣∣∣∣
u=b

d2(eρ2uβ2(u))

du2

∣∣∣∣
u=b


−1 1(

δ

c

)  ,

Therefore

C1 = C1(b) =
0.323e7.123b − 0.163e8.512b + 6.849e12.358b

D(b)
,

C2 = C2(b) =
−0.205e6.942b + 0.081e9.404b − 0.024e9.896b

D(b)
,

where

D(b) = 0.002e4.337b − 0.015e5.727b + 0.065e6.799b + 0.057e7.291b

−0.027e8.189b − 0.031e8.681b − 1.039e9.572b + 1.802e12.034b

+1.093e12.526b.
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Finally the function V (u, b) gets the form

V (u, b) = C1e
ρ1uβ1(u) + C2e

ρ2uβ2(u).

b\u 0 1 2 3 4 5 6 7 8 9
0 1.07
1 0.83 1.80
2 0.85 1.84 2.84
3 0.84 1.82 2.81 3.80
4 0.81 1.72 2.66 3.59 4.57
5 0.73 1.57 2.42 3.27 4.17 5.14
6 0.64 1.39 2.15 2.90 3.70 4.57 5.53
7 0.56 1.21 1.87 2.53 3.22 3.98 4.84 5.79
8 0.48 1.04 1.61 2.18 2.78 3.43 4.17 5.01 5.96
9 0.41 0.89 1.38 1.86 2.37 2.93 3.56 4.28 5.11 6.07

Table 3.5: Values of V (u, b) for 0 ≤ u, b ≤ 9

From the values in the Table 3.5 we notice that from a cetain initial
surplus u, if we increase the level of the barrier b, the values of V (u, b)
decrease. This is expected since for a higher barrier the distance b − u is
larger and therefore the probability of attaining such barrier from the level
u is lower, as well as the expected discounted dividends. On the other hand,
for a fixed barrier b if we increase the initial surplus u, with u ≤ b, we
obtain higher values of V (u, b), since the distance b − u is smaller and the
probability of attaining b is higher.

In a similar way we get V2(u, b) with ρ1 = 0.273, ρ2 = 2.654,

β1(u) = 1 + 0.033e−3.054u − 0.636e−0.673u,

β2(u) = 1 + 0.047e−5.256u − 0.107e−3.873u,

and the constants

(
C1

C2

)
=


d(eρ1uβ1(u))

du

∣∣∣∣
u=b

d(eρ2uβ2(u))

du

∣∣∣∣
u=b

d2(eρ1uβ1(u))

du2

∣∣∣∣
u=b

d2(eρ2uβ2(u))

du2

∣∣∣∣
u=b


−1 2V (b, b)

2 + 2

(
δ

c

)
V (b, b)

 .
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Finally we get

V2(u, b) = C1e
ρ1uβ1(u) + C2e

ρ2uβ2(u),

and the table with values for V2(u, b).

b\u 0 1 2 3 4 5 6 7 8 9
0 1.71
1 2.24 5.23
2 3.51 7.86 12.91
3 4.19 9.37 15.18 21.97
4 4.19 9.36 15.17 21.87 30.04
5 3.76 8.41 13.62 19.63 26.94 36.13
6 3.16 7.07 11.45 16.50 22.65 30.41 40.30
7 2.55 5.71 9.25 13.33 18.30 24.57 32.63 42.99
8 2.01 4.51 7.30 10.52 14.44 19.39 25.75 34.01 44.67
9 1.56 3.51 5.68 8.18 11.23 15.08 20.03 26.46 34.84 45.69

Table 3.6: Values of V2(u, b) for 0 ≤ u, b ≤ 9

Analogously to the previous table for V (u, b), a similar reasoning can be
done. This means that from a cetain initial surplus u, if we increase the level
of the barrier b, the values of V2(u, b) decrease and, for a fixed b, the values
of V2(u, b) increase as u increases, with u ≤ b. Therefore V (u, b) and V2(u, b)
as well as the standard deviation of the discounted dividends behave in the
same way.

3.8 Final remarks

As we have mentioned before, one of the fundamental purposes in insurance
mathematics is to provide adequate methods to solve the problems that may
appear in the actuarial practice. Throughout this chapter we have considered
the Sparre–Andersen risk model with Erlang(n) interclaim times. We have
developed new theorems for the computation of two very important quantities
in Risk Theory. One of them shows improvements in the calculation of the
maximum severity of ruin. The other deals with dividends.

The presented methods can be extended for more general distributions.
We will continue our work in the next chapter based on generalized Erlang(n)
interclaim times.
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Chapter 4

The Sparre–Andersen model
with generalized Erlang(n)
interclaim times

Mathematics is the science that
uses easy words for hard ideas

Edward Kasner

4.1 Introduction

In this chapter we work with the Sparre–Andersen model under the assump-
tion that the interclaim times are generalized Erlang(n) distributed.

In comparison with the last chapter we have more complex developments.
We start in Section 4.2 by setting some mathematical background and apply-
ing it to the problem of finding the survival probability and the probability
of attaining an upper barrier prior to ruin. By investigating the Lundberg’s
equation we have discovered the possibility of multiple roots.

Taking into account the possibility of multiple roots, we show in Section
4.3 new theorems considering the computation of the probability of attaining
an upper barrier prior to ruin. In addition, we find some interesting results
about the survival probability and its derivatives.

We continue in Section 4.4 applying new theorems for the maximum sever-
ity of ruin.

Finally, in Section 4.5 we apply the developed theory to case of dividends
and present examples.
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4.2 Mathematical background and notation

In this section we define kn(t) which is the probability density function of Wi

kn(t) =
n∑
i=1

(
n∏

j=1,j 6=i

λj
λj − λi

)
λie
−λit, n ∈ N+,

and the cumulative distribution function

Kn(t) = 1−
n∑
i=1

(
n∏

j=1,j 6=i

λj
λj − λi

)
e−λit,

where λ1, . . . , λn are the parameters of the distributions.

As before we assume the net profit condition (2.3.1), which in the case of
a Sparre–Andersen model with generalized Erlang(n) distributed interclaim
times is

cE[Wi] > E[Xi]⇔ c
n∑
i=1

1

λi
> µ1. (4.2.1)

Gerber and Shiu (2003a) proved that χ(u, b) satisfies an order n integro–
differential equation with n boundary conditions which can be written in the
form

B(D)v(u) =

∫ u

0

v(u− y)p(y)dy, u ≥ 0, (4.2.2)

where

B(D) =
n∏
i=1

(
I −

(
c

λi

)
D
)

=
n∑
k=0

BkDk,

and D is the differential operator, with Bk =
∑

1≤i1<···<ik≤n

(
(−c)k
λi1 ···λik

)
.

Similarly to the Erlang(n) case, if we find n linearly independent particular
solutions vj(u), j = 1, . . . , n for this equation, we have

χ(u, b) = −→v (u)[V(b)]−1−→e T , (4.2.3)

where −→v (u) = (v1(u), . . . , vn(u)) is a 1×n vector of solutions, V(b) is a n×n
matrix with entries given by

(V(b))ij =
di−1vj(u)

dui−1

∣∣∣∣
u=b

and −→e = (1, 0, . . . , 0) is a 1× n vector.
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In the previous chapter we discussed work based on Bergel and
Eǵıdio dos Reis (2013a) and Li (2008a), where we found a vector of solutions
−→v (u) for the case when the interclaim times follow an Erlang(n) distribution.

In the present chapter, we start by giving the corresponding version of
−→v (u) when we have generalized Erlang(n) interclaim times. This is given
in the next section. We apply results in order to find the corresponding
expressions for the distribution of the maximum severity of ruin. Afterwards,
we deal with the dividends problem, we mean the calculation of the moments
Vm(u, b). For a Poisson model, an integro–differential equation for V (u, b)
can be found in Dickson (2005), and for Vm(u, b) in Dickson and Waters
(2004). For the generalized Erlang(n) model we give the respective integro–
differential equations as well as a method to find their solutions, extending
the results of Albrecher et al. (2005).

4.2.1 Multiplicity of the roots of the generalized (fun-
damental) Lundberg’s equation

In this section we briefly study the possibility of multiple roots in the
Lundberg’s equations, specifically double roots.

Recall the fundamental Lundberg’s equation given by (2.3.4)

n∏
i=1

(
1− c

λi
s

)
= p̂(s). (4.2.4)

We denote by the numbers ρ1, ρ2, . . . , ρn−1 ∈ C, the roots of this equation
which have positive real parts, and by R > 0 the adjustment coeffi-
cient. We can write equation (4.2.4) in the form B(s) = p̂(s), where
B(s) =

∏n
i=1 (1− (c/λi)s) =

∑n
k=0 Bks

k.

On the other hand the generalized Lundberg’s equation given by (2.3.5)
becomes

n∏
i=1

(
1 +

δ

λi
− c

λi
s

)
= p̂(s), (4.2.5)

where δ > 0 is the force of interest. This equation has exactly n roots with
positive real parts (see Li and Garrido (2004b)) and will be considered in
the section of dividends. For simplicity we rewrite equation (4.2.5) in the
following form

Bδ(s) = p̂(s),
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where Bδ(s) =
∏n

i=1 (1 + δ/λi − (c/λi)s) =
∑n

k=0Bk,δs
k.

The next theorem show the possibility of multiple roots in the generalized
Lundberg’s equation.

Theorem 4.2.1 Let s1 and s2 be two consecutive positive real zeros ofBδ(s).
If Bδ(s) is positive in the interval (s1, s2) then the generalized Lundberg’s
equation has one of the following:

• Two real roots in the interval.

• A double root in the interval.

• No real roots in this interval.

Proof : The proof is based on a comparison of both sides of the equation
(4.2.5). We observe that for s ∈ R+, the Laplace transform p̂(s) is a positive
and decreasing function of s, with p̂(0) = 1 and lims→∞p̂(s) = 0. Therefore
p̂(s) has no zeros or poles in s ∈ R+.

Assume that Bδ(s1) = Bδ(s2) = 0 and Bδ(s) > 0 in the interval (s1, s2).
The function Bδ(s) is polynomial and by the mean value theorem it has a
global maximum on smax ∈ (s1, s2).

If Bδ(smax) < p̂(smax) there are no real roots of the Lundberg’s equation
in (s1, s2), and if Bδ(smax) ≥ p̂(smax) we will have either two real roots or a
double root in (s1, s2). �

Example 4.2.1 Suppose that the interclaim times Wi follow a generalized
Erlang(3) distribution, with parameters λ1 = 0.5, λ2 = 1.5, λ3 = 2.5. Then
E[Wi] = 3.067. Suppose that the claim amounts Xi are exponentially dis-
tributed with parameter β ≥ 0.5. Then we choose c = 1 to satisfy the
positive loading condition and let δ = 0.5.

Notice that the generalized Lundberg’s equation becomes

Bδ(s) =
(1− s)(2− s)(3− s)

1.875
=

β

β + s
= p̂(s).

The function Bδ(s) has 3 zeros at s = 1, 2, 3, furthermore it is positive in the
interval (2, 3). It is easy to verify that the generalized Lundberg’s equation
has

• Two real roots in (2, 3) for 0.5 ≤ β < 0.67.
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• A double root 2.61 in (2, 3) for β = 0.67.

• Two complex conjugate roots, where the real part of them is in (2, 3)
for β > 0.67.

B_delta(s)

p(s), beta = 0.5

p(s), beta = 0.67

p(s), beta = 1

2.2 2.4 2.6 2.8 3.0

0.05

0.10

0.15

0.20

0.25

0.30

Figure 4.8: Example of the roots of the generalized Lundberg’s equation

Corollary 4.2.1 Let s1 and s2 be two consecutive positive real zeros of B(s).
If B(s) is positive in the interval (s1, s2) then the fundamental Lundberg’s
equation has one of the following:

• Two real roots in the interval.

• A double root in the interval.

• No real roots in this interval.

Remark 4.2.1 So far we have investigated the possibility of double roots
in the fundamental and generalized Lundberg’s equations for a Sparre–
Andersen model with generalized Erlang(n) interclaim times. Empirically,
after many numerical tests with different parameters λi and different values
of n, we haven’t found roots of higher order than double. However, the pos-
sibility of roots of a higher order is still open, and this is currently one of our
lines of research.

4.3 Solutions for the integro–differential

equation

In this section we look for n linearly independent particular solutions
vj(u), j = 1, . . . , n of the integro-differential equation (4.2.2). We use the
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roots of the fundamental Lundberg’s equation that have positive real parts
(ρi, i = 1, . . . , n − 1) and the non–ruin probability Φ(u) in the following
manner.

Theorem 4.3.1 If ρ1, ρ2, . . . , ρn−1 ∈ C are distinct, then the following func-
tions are linearly independent particular solutions of the integro-differential
equation (4.2.2)

vj(u) =

∫ u

0

Φ(u− y)eρjydy, j = 1, 2, . . . , n− 1,

vn(u) = Φ(u).

Proof :
Like in the Erlang(n) case, it can be proven that any solution v(u) of

(4.2.2) has Laplace transform

v̂(s) =
dv(s)

B(s)− p̂(s)
,

where dv(s) is a polynomial of degree at most n− 1 of the form

dv(s) =
n−1∑
i=0

 n∑
k=i+1

 ∑
i1<···<ik

(−1)k

λi1 · · ·λik

 v(k−1−i)(0)

 si

=
n−1∑
i=0

(
n∑

k=i+1

Bkv
(k−1−i)(0)

)
si. (4.3.1)

It is known that Φ(u) is solution of (4.2.2), its Laplace transform is given by

Φ̂(s) = −Φ(0)

(
cn∏n
i=1 λi

) ∏n−1
i=1 (ρi − s)

B(s)− p̂(s)
,

Denote by

dΦ(s) = −Φ(0)

(
cn∏n
i=1 λi

) n−1∏
i=1

(ρi − s). (4.3.2)

Now we see that any function vj(u) =
∫ u

0
Φ(u − y)eρjydy, with

j = 1, 2, . . . , n− 1, is solution of (4.2.2).

We can show that

B(D)vj(u) = dΦ(ρj)e
ρju +

∫ u

0

(B(D)Φ(u− t))eρjtdt
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and that ∫ u

0

vj(u− y)p(y)dy =

∫ u

0

(B(D)Φ(u− t))eρjtdt,

Since the roots of the fundamental Lundberg’s equation (4.2.4) are all single,
we proceed like we did in the previous chapter.

The remaining part to prove is that those vj(u)’s are linearly independent.
The proof is as follows.

Suppose that we have a linear combination such that
∑n

j=1 cjvj(u) = 0,
∀u ≥ 0. We consider the two cases (i) and (ii) below.

(i) cn = 0:

Let H(t) =
∑n−1

j=1 cje
ρjt, then

n∑
j=1

cjvj(u) =
n−1∑
j=1

cj

∫ u

0

Φ(u− y)eρjydy

=

∫ u

0

Φ(u− y)
n−1∑
j=1

cje
ρjydy

= Φ ∗H(u) = 0.

The fact that Φ ∗ H(u) = 0, ∀u ≥ 0 with Φ(u) 6≡ 0, implies that
H(u) ≡ 0 almost everywhere. But H(t) is a continuously differentiable
function, therefore c1 = c2 = · · · = cn = 0.

(ii) cn 6= 0:

Define G(t) =
∑n−1

j=1 (−cj/cn) eρjt, so Φ ∗ G(u) = Φ(u) ∀u ≥ 0. Not
all the remaining coefficients cj’s can be 0, otherwise G(t) ≡ 0. But
then limu→+∞G(u) = ±∞ depending on the sign of the non zero co-
efficients. As Φ(u) is a non–decreasing non–negative function with
limu→+∞Φ(u) = 1, we have that limu→+∞Φ ∗G(u) = ±∞, which is a
contradiction.

This completes the proof. �

We have shown a set of n linearly independent particular solutions
of the integro-differential equation (4.2.2) for the case when the roots
ρ1, ρ2, . . . , ρn−1 ∈ C are distinct. Since the fundamental Lundberg’s equation
for the model with generalized Erlang(n) interclaim times has the possibility
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of multiple roots, we show the corresponding particular solutions for this
cases.

First suppose that we have one root with multiplicity n− 1.

Theorem 4.3.2 If ρ1 = ρ2 = . . . = ρn−1 = ρ then the following functions are
linearly independent particular solutions of the integro-differential equation
(4.2.2)

vj(u) =

∫ u

0

Φ(u− y)yj−1eρydy, j = 1, 2, . . . , n− 1,

vn(u) = Φ(u).

Proof : In the same way by taking derivatives of the functions vj(u)’s we get

B(D)vj(u) =

∫ u

0

vj(u− y)p(y)dy, j = 1, 2, . . . , n.

Let vj(u) =
∫ u

0
Φ(u − y)yj−1eρydy, for some 1 ≤ j ≤ n − 1. The k-th

derivative of vj(u) is given by

v
(k)
j (u) =

(
j−1∑
i=0

(
j − 1

i

)
f

(i)
k (ρ)uj−1−i

)
eρu +

∫ u

0

Φ(k)(u− y)yj−1eρydy,

where the functions fk(s) are defined as follows

fk(s) =
k−1∑
i=0

Φ(k−1−i)(0)si, 0 ≤ k ≤ n, f0(s) ≡ 0.

Notice that f
(i)
k (s) ≡ 0 for i ≥ k. Recalling (4.3.1) and (4.3.2) we obtain

dΦ(s) =
n−1∑
i=0

(
n∑

k=i+1

BkΦ
(k−1−i)(0)

)
si

=
n∑
k=0

Bk

(
k−1∑
i=0

Φ(k−1−i)(0)si

)

=
n∑
k=0

Bkfk(s) = −Φ(0)

(
cn∏n
i=1 λi

)
(ρ− s)n−1.
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Therefore, the derivatives of dΦ(s) are

d
(i)
Φ (s) =

n∑
k=0

Bkf
(i)
k (s),

and d
(i)
Φ (ρ) ≡ 0 for 0 ≤ i ≤ n− 2.

Hence we have, from one side

B(D)vj(u) =
n∑
k=0

Bkv
(k)
j (u) =

=

n∑
k=0

Bk

(
j−1∑
i=0

(
j − 1

i

)
f

(i)
k (ρ)uj−1−i

)
eρu +

n∑
k=0

Bk

∫ u

0
Φ(k)(u− y)yj−1eρydy

=

j−1∑
i=0

(
j − 1

i

)( n∑
k=0

Bkf
(i)
k (ρ)

)
uj−1−ieρu +

∫ u

0

(
n∑
k=0

BkΦ
(k)(u− y)

)
yj−1eρydy

=

j−1∑
i=0

(
j − 1

i

)
d

(i)
Φ (ρ)uj−1−ieρu +

∫ u

0
(B(D)Φ(u− y)) yj−1eρydy

=

∫ u

0
(B(D)Φ(u− y)) yj−1eρydy,

and from the other side

∫ u

0

vj(u− x)p(x)dx =

∫ u

0

(∫ u−x

0

Φ(u− x− y)yj−1eρydy

)
p(x)dx

=

∫ u

0

(∫ u−y

0

Φ(u− y − x)p(x)dx

)
yj−1eρydy

=

∫ u

0

(B(D)Φ(u− y))yj−1eρydy.

This finishes the proof that the functions vj(u) are solutions of (4.2.2).

To see the linear independence of the vj(u)’s we proceed like in the proof
of Theorem 4.3.1. �

Now assume the most general case, when we have k different roots,

ρ1, ρ2, . . . , ρk, where the root ρi has multiplicity mi and
k∑
i=1

mi = n− 1.
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Theorem 4.3.3 Under the conditions described above, the following func-
tions are linearly independent particular solutions of the integro-differential
equation (4.2.2)

v00(u) = Φ(u),

vij(u) =

∫ u

0

Φ(u− y)yj−1eρiydy, i = 1, 2, . . . , k,

j = 1, 2, . . . ,mi.

Proof : The proof is based on the Theorems 4.3.1 and 4.3.2. �

4.3.1 A note on the survival probability

In this section we consider the survival probability and its derivatives when
u = 0. Li and Garrido (2004a) showed that

Φ(0) =

∏n
i=1 λi(c

∑n
i=1

1
λi
− µ1)

cn
∏n−1

i=1 ρi
.

We write Φ(0) = (λ̄ µ̄)/(cn ρ̄), where λ̄ =
∏n

i=1 λi, µ̄ = c
∑n

i=1(1/λi) − µ1

and ρ̄ =
∏n−1

i=1 ρi.

First of all we recall an operator of integrable real functions, originally
proposed by Dickson and Hipp (2001) and Li and Garrido (2004b). We list
some of the most important properties.

Remark 4.3.1 Let f be a real–valued integrable function, and define

Trf(x) =

∫ ∞
x

e−r(u−x)f(u)du, r ∈ C, x ≥ 0, (4.3.3)

where r has a non–negative real part, Re(r) ≥ 0.

The operator Tr satisfies the following properties:

1. Trf(0) =
∫∞

0
e−ruf(u)du = f̂(r), is the Laplace transform of f .

2. Tr1Tr2f(x) = Tr2Tr1f(x) =
(Tr1f(x)−Tr2f(x))

r2−r1 , for r2 6= r1.

3. T nr f(x) =
(

(−1)n−1

(n−1)!

)(
dn−1

drn−1

)
Trf(x) and the corresponding Laplace
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transform

TsT
n
r f(0) =

f̂(s)

(r − s)n
−

n∑
j=1

T jr f(0)

(r − s)n+1−j , s ∈ C.

4. If r1, r2, . . . , rk are distinct complex numbers, then

Trk · · ·Tr2Tr1f(x) = (−1)k−1

k∑
i=1

Trif(x)

τ ′k(ri)
,

where τk(r) =
∏k

i=1(r − ri). The corresponding Laplace transform is

TsTrk · · ·Tr2Tr1f(0) = (−1)k

[
ˆf(s)

τk(s)
−

k∑
i=1

f̂(ri)

(s− ri)τ ′k(ri)

]
, s ∈ C. �

We have mentioned before that

dΦ(s) = −Φ(0)

(
cn∏n
i=1 λi

) n−1∏
i=1

(ρi − s)

=

(
− µ̄
ρ̄

) n−1∏
i=1

(ρi − s) =
n−1∑
i=0

ãis
i, (4.3.4)

where

ãi =

(
− µ̄
ρ̄

)(−1)j
∑

i1<···<in−1−j

ρi1 · · · ρin−1−j

 .

On the other hand we have

dΦ(s) =
n−1∑
i=0

(
n∑

k=i+1

BkΦ
(k−1−i)(0)

)
si =

n−1∑
i=0

b̃is
i. (4.3.5)

We compare the coefficient of si in (4.3.4) and (4.3.5) to get a system of n
equations ãi = b̃i, 0 ≤ i ≤ n−1, for the unknowns Φ(k)(0), k = 0, 1, . . . , n−1
(we already know Φ(0)). After solving that system we obtain the following

Φ(k)(0) = AkΦ(0), k = 0, 1, . . . , n− 1, (4.3.6)
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where the constants Ak are given by A0 = 1 and

Ak =
∑

i1<···<ik

(−1)k+1

[
λi1 · · ·λik

ck
− ρi1 · · · ρik

]
+

k−1∑
j=1

(−1)k+1−j
[
λi1 · · ·λik−j

ck−j

]
,

with k = 1, . . . , n−1. We notice that the higher derivatives of Φ(u) at u = 0
are just multiples of Φ(0).

Li and Garrido (2004b) found a defective renewal equation for the survival
probability Φ(u)

Φ(u) =

∫ u

0

Φ(u− y)η0(y)dy + Φ(0), (4.3.7)

where η0(y) = λ̄
cn
T0Tρn−1 · · ·Tρ1p(y) is a “defective density”.

We compute the derivatives of Φ(u) at u = 0 using equation (4.3.7) and
obtain

Φ(k)(0) = Φ(0)

[
ηk0(0) +

k−1∑
i=1

(
k − 1

i

)
ηk−1−i

0 (0)η
(i)
0 (0)

]
, k = 1, . . . , n− 1,

(4.3.8)

Thus, comparing the expressions for Φ(k)(0) in (4.3.6) and (4.3.8) we get

Ak = ηk0(0) +
k−1∑
i=1

(
k − 1

i

)
ηk−1−i

0 (0)η
(i)
0 (0).

Hence, from the equation above we obtain expressions for the derivatives of
η0(y) at y = 0

η0(0) = A1,

η
(k−1)
0 (0) =

k∑
j=0

(−1)j+1

 ∑
i1<···<ij

λi1 · · ·λij
cj

×
 ∑
i1≤···≤ik−j

ρi1 · · · ρik−j

 , (4.3.9)
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for k = 1, . . . , n− 1. On the other hand, we compute directly the derivatives
of η0(y) at y = 0 to get the expression

η
(k−1)
0 (0) = −

n∑
i=n−k

 ∑
1≤j1<···<jn−i≤n

(
n−i∏
m=1

(
ρn−(k−1) −

λjm
c

))×
 ∑

1≤j1≤···≤ji−n+k≤n−k

(
i−n+k∏
m=1

(
ρjm − ρn−(k−1)

)) . (4.3.10)

Both expressions for η
(k−1)
0 (0) given in (4.3.9) and (4.3.10) are equivalent.

From this equivalence we obtain many combinatorial identities, but that
belongs to field of Combinatorics and goes beyond the scope of this thesis.

Remark 4.3.2 The defective density η0(y) is a special case of the function
ηδ(y) for a force of interest δ ≥ 0. This function appears in Li and Garrido
(2004b) for the study of the Gerber–Shiu penalty functions. We give a short
description of the penalty functions in the Appendix B.

4.4 The maximum severity of ruin

In the previous section we have shown how to obtain the solutions of the
integro–differential equation. Now we use these results to obtain the corre-
sponding expressions for the distribution of the maximum severity of ruin.
We find an expression for that distribution which only depends on the non-
ruin probability Φ(u) and the claim amounts distribution.

From Dickson (2005) and (4.2.3) we know that the distribution of the
maximum severity of ruin J(z;u) can be expressed as

J(z;u) =
1

1− Φ(u)

∫ z

0

g(u, y)(v1(z − y), . . . , vn(z − y))dy[V (z)]−1−→e T .

(4.4.1)
If we denote by

−→
h (z, u) =

∫ z

0

g(u, y)(v1(z − y), . . . , vn(z − y))dy

=

(∫ z

0

g(u, y)v1(z − y)dy, . . . ,

∫ z

0

g(u, y)vn(z − y)dy

)
= (h1(z, u), . . . , hn(z, u)),
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then we only have to find an expression for every component of
−→
h (z, u).

We consider the case of the Theorem 4.3.1 and obtain

For j = 1, 2, . . . , n− 1

∫ z

0

g(u, y)vj(z − y)dy =

∫ z

0

g(u, y)

∫ z−y

0

Φ(z − y − x)eρjxdxdy

=

∫ z

0

eρjx[Φ(u+ (z − x))− Φ(u)]dx,

and for j = n∫ z

0

g(u, y)vn(z − y)dy =

∫ z

0

g(u, y)Φ(z − y)dy = Φ(u+ z)− Φ(u).

In a similar manner when we consider the case of the Theorem 4.3.3 we
have

For i = j = 0∫ z

0

g(u, y)v00(z − y)dy =

∫ z

0

g(u, y)Φ(z − y)dy = Φ(u+ z)− Φ(u),

and for i = 1, . . . , k; j = 1, . . . ,mi∫ z

0

g(u, y)vj(z − y)dy =

∫ z

0

g(u, y)

∫ z−y

0

Φ(z − y − x)xj−1eρixdxdy

=

∫ z

0

xj−1eρix
[∫ z−x

0

g(u, y)Φ((z − x)− y)dy

]
dx

=

∫ z

0

xj−1eρix[Φ(u+ (z − x))− Φ(u)]dx.

4.4.1 Example

In this part we present an example. Consider that the interclaim times are

generalized Erlang(3,λ1, λ2, λ3) distributed, with λ1 6= λ2 6= λ3, and claim
amounts exponential(β) distributed. For simplification we denote this case
by generalized Erlang(3) – exponential:

Wi ∼ generalized Erlang(3, λ), Xi ∼ exponential(β)
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Considering the safety loading c =
(1 + θ)λ1λ2λ3

β(λ1λ2 + λ1λ3 + λ2λ3)
with θ > 0, the

generalized Lundberg’s equation (4.2.3) takes the form

3∏
i=1

(
1−

(
c

λi

)
s

)
− β

(s+ β)
= 0,

which has four roots: 0, ρ1, ρ2 and −R, where 0 < R < β is the adjustment
coefficient. Assume that ρ1 = ρ2 = ρ is a double (real) root (therefore ρ > 0).

Applying Theorem 4.3.2, the 3 solutions for the integro – differential equa-
tion (4.2.2) are

Φ(u) = 1−
(

1− R

β

)
e−Ru,

v2(u) =
−1

ρ
+

β −R
β(R+ ρ)

e−Ru +
R(β + ρ)

ρβ(R+ ρ)
eρu,

v3(u) =
1

ρ2
− β −R
β(R+ ρ)2

e−Ru − R(2βρ+Rβ + ρ2)

ρ2β(R+ ρ)2
eρu +

R(β + ρ)

ρβ(R+ ρ)
ueρu.

We calculate the distribution of the maximum of ruin using Equation
(4.4.1) to get

J(z;u) = 1− αe−Rz

1− γe−(ρ+R)z − δe−(ρ+R)zz − ηe−Rz
,

where

α =
R(R + ρ)2

β(β + ρ)2
, δ = −R(ρ+R)(β −R)

ρ(β + ρ)
,

γ = − R(β −R)

ρ2(β + ρ)2
((R + ρ)(β + ρ) + ρ(2ρ+R + β)),

η = 1− R

β + ρ

[
R + ρ

β
− (β −R)(R + ρ)

ρβ
− (β −R)(R + 2ρ)

ρ2

]
,

with η = 1− α− γ.
Observe that the expression for J(z;u) is independent from u.

We obtain formulas for the moments of the maximum severity Mu given
that ruin occurs
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E(M r
u|T <∞) = r

∫ ∞
0

zr−1(1− J(z;u))dz

= rα

∫ ∞
0

zr−1e−Rz

1− γe−(ρ+R)z − δze−(ρ+R)z − ηe−Rz
dz,

for r ≥ 1.

Choosing β = 1, λ1 = 6.098, λ2 = 2, λ3 = 3, θ = 0.1 and c = 1.103 . We
get a double root ρ = 4.596, with adjustment coefficient R = 0.129 and

J(z;u) = 1− 0.092e−0.129z

1 + 0.012e−4.724z + 0.021e−4.724zz − 0.921e−0.129z
.

The expected value and the standard deviation of the maximum severity
of ruin are E(Mu) = 1.932 and s.d.(Mu) = 3.528.

4.5 Dividends

In this section we consider once more the dividends problem. We follow Dick-
son and Waters (2004) to present an equation for Vm(u, b) in a generalized
Erlang(n) risk process. Conditioning on the time and the amount of the first
claim we get, for 0 ≤ u < b,

Vm(u, b) =

∫ ∞
b−u
c

kn(t)e−mδt
[(
c s

t− b−u
c

)m
+

+
m∑
j=1

(
m

j

)(
c s

t− b−u
c

)m−j ∫ b

0
p(x)Vj(b− x, b)dx

 dt+

+

∫ b−u
c

0
e−mδtkn(t)

∫ u+ct

0
Vm(u+ ct− x, b)p(x)dx dt, (4.5.1)

for m ≥ 1. In particular, for m = 1,

V (u, b) =

∫ ∞
b−u
c

kn(t)e−δt
(
c s

t− b−u
c

+

∫ b

0

p(x)V (b− x, b)dx
)
dt+

+

∫ b−u
c

0

e−δtkn(t)

∫ u+ct

0

V (u+ ct− x, b)p(x)dx dt, (4.5.2)
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where st = (eδt − 1)/δ in standard actuarial notation.
For a generalized Erlang(n) risk process the integro–differential equations
satisfied by the discounted expected dividends are

n∏
i=1

((
1 +

δ

λi

)
I − c

λi
D
)
V (u, b) =

∫ u

0

V (u− x, b)p(x)dx (4.5.3)

dkV (u, b)

duk

∣∣∣∣
u=b

=

(
δ

c

)k−1

, 1 ≤ k ≤ n,

and for a general m

n∏
i=1

((
1 +

mδ

λi

)
I − c

λi
D
)
Vm(u, b) =

∫ u

0
Vm(u− x, b)p(x)dx (4.5.4)

dkVm(u, b)

duk

∣∣∣∣
u=b

=

k∑
j=1

m!

(m− j)!

{
k

j

}(
δ

c

)k−j
Vm−j(b, b),

for 1 ≤ k ≤ n, where
{
k
j

}
= (1/j!)

∑j
i=0(−1)j−i

(
j
i

)
ik denotes the Stirling

numbers of the second kind, as in the previous chapter. For convenience we
define Vm−j(u, b) ≡ 0, for m < j in the formula above.

These equations generalize those proposed by Dickson (2005) and Dickson
and Waters (2004) for the classical Poisson risk model, and Albrecher et al.
(2005) for a Sparre–Andersen risk model.

For our purpose we solve the integro–differential Equations (4.5.3) and
(4.5.4) to determine the expected discounted dividends and the higher
moments considering that the generalized Lundberg’s equation (4.2.5) has
k different roots with positive real parts, ρ1, ρ2, . . . , ρk, and the root ρi has
multiplicity mi ≥ 1, i = 1, 2, . . . , k.

Following an argument originally proposed by Bühlman (1970), Section
6.4.9, for a Poisson risk model, we propose for a generalized Erlang(n) risk
model that V (u, b) is

V (u, b) =
k∑
i=1

(
mi∑
j=1

Cijβij(u)

)
eρiu, (4.5.5)

where Cij’s are constants (that depend on the parameter b), and the functions
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βij(u) are solutions of the integro–differential equations

n∏
t=1

(
I − c

λti
D
)
v(u) =

∫ u

0

v(u− x)pi(x)dx, (4.5.6)

with λti = λt + δ − cρi and pi(x) = e−ρixp(x)/p̂(ρi), for t = 1, . . . , n,
i = 1, . . . , k.

Thus, we get the functions βij(u) solving an equation of the same kind as
equation (4.2.2) but with different “parameters” and a different “density”.

The constants Cij’s are determined with the use of the boundary condi-
tions given in (4.5.3), which gives a system of n equations with n unknowns

dkV (u, b)

duk

∣∣∣∣
u=b

=
k∑
i=1

mi∑
j=1

Cij
dk(βij(u)eρiu)

duk

∣∣∣∣
u=b

=

(
δ

c

)k−1

, 1 ≤ k ≤ n. (4.5.7)

We summarize this in the following theorem

Theorem 4.5.1 The solutions of integro-differential equation (4.5.3) are of
the form

V (u, b) =
k∑
i=1

(
mi∑
j=1

Cijβij(u)

)
eρiu,

where ρi’s are the roots with positive real parts of the generalized Lundberg’s
equation (4.2.5), βij(u)’s are defined in (4.5.6) and the constants Cij’s are
defined in (4.5.7).

Proof:

The proof follows by taking derivatives of V (u, b) like in the Erlang(n)
case, and finding the conditions which must be satisfied by the ρi’s and
βij(u)’s in order to get the equality in (4.5.3). �

This method generalizes the results of Albrecher et al. (2005). It works
for any kind of claim amounts distribution, and not only for the distributions
with rational Laplace transforms.

We implement the same approach to find the m–th moment Vm(u, b), m ≥
2, writing it in the form (4.5.5) and using the corresponding boundary con-
ditions (4.5.4).
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4.5.1 Example

We consider the interclaim times generalized Erlang(3) distributed, with
parameters λ1, λ2, λ3, and the claim amounts exponentially distributed with
parameter α. The force of interest is δ > 0.

We get the generalized Lundberg’s equation (4.2.5)

(λ1 + δ − cs)(λ2 + δ − cs)(λ3 + δ − cs) =
λ1λ2λ3α

α + s
,

where c =
(1 + θ)λ1λ2λ3

α(λ1λ2 + λ1λ3 + λ2λ3)
for some θ > 0.

There are three roots with positive real parts. We assume R > 0 is the
adjustment coefficient and that we have a single root ρ1 > 0 and a double
root ρ2 > 0.

Applying Theorem 4.5.1 we write

V (u, b) = C11v11(u)eρ1u + (C21v21(u) + C22v22(u))eρ2u.

We already know ρ1 and ρ2. We must find the constants C11, C21, C22 and
the functions v11(u), v21(u), v22(u).

To find the functions v11(u), v21(u) and v22(u) we proceed as follows.

Notice that v11(u) is a solution of the integro–differential equation

3∏
t=1

(
I − c

λt1
D
)
v(u) =

∫ u

0

v(u− x)p1(x)dx, (4.5.8)

where λt1 = λt + δ − cρ1 and p1(x) = (α + ρ1)e−(α+ρ1)x = α1e
−α1x, for

t = 1, 2, 3.
Let

(λ11 − cs)(λ21 − cs)(λ31 − cs) =
λ11λ21λ31α1

α1 + s

be the associated fundamental Lundberg’s equation and R1 > 0 the
corresponding adjustment coefficient.

Then we choose v11(u) = 1 − (1 − R1

α1
)e−R1u, a “survival probability”,

which is a well known solution of (4.5.8).
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The functions v21(u) and v22(u) are both solutions of

3∏
t=1

(
I − c

λt2
D
)
v(u) =

∫ u

0

v(u− x)p2(x)dx, (4.5.9)

where λt2 = λt + δ − cρ2 and p2(x) = (α + ρ2)e−(α+ρ2)x = α2e
−α2x, for

t = 1, 2, 3.

Let

(λ12 − cs)(λ22 − cs)(λ32 − cs) =
λ12λ22λ32α2

α2 + s

be the associated fundamental Lundberg’s equation, R2 > 0 the correspond-
ing adjustment coefficient and ρ21, ρ22 the two roots with positive real parts.

Let ṽ(u) = 1− (1− R2

α2
)e−R2u. Thus, we use Theorem 4.3.1 (if ρ21 6= ρ22,

otherwise we use Theorem 4.3.2), and choose

v21(u) =

∫ u

0

ṽ(u− y)eρ21ydy

=
−1

ρ21

+
α2 −R2

α2(R2 + ρ21)
e−R2u +

R2(α2 + ρ21)

ρ21α2(R2 + ρ21)
eρ21u

v22(u) =

∫ u

0

ṽ(u− y)eρ22ydy

=
−1

ρ22

+
α2 −R2

α2(R2 + ρ22)
e−R2u +

R2(α2 + ρ22)

ρ22α2(R2 + ρ22)
eρ22u

For C11, C21, C22 we use the boundary conditions given in (4.5.3) and we
get

 C1

C2

C3

 =



d(eρ1uv11(u))

du

∣∣∣∣
u=b

d(eρ2uv21(u))

du

∣∣∣∣
u=b

d(eρ2uv22(u))

du

∣∣∣∣
u=b

d2(eρ1uv11(u))

du2

∣∣∣∣
u=b

d2(eρ2uv21(u))

du2

∣∣∣∣
u=b

d2(eρ2uv22(u))

du2

∣∣∣∣
u=b

d3(eρ1uv11(u))

du3

∣∣∣∣
u=b

d3(eρ2uv21(u))

du3

∣∣∣∣
u=b

d3(eρ2uv22(u))

du3

∣∣∣∣
u=b



−1
1(
δ

c

)
(
δ

c

)2

 .

The functions eρ1uv11(u), eρ2uv21(u) and eρ2uv22(u) are linearly indepen-
dent and we can invert the matrix in the above expression to obtain the
desired result.
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4.6 Final remarks

One of the important goals of the study of risk theory is to find exact nu-
merical techniques which can become popular in insurance practice. In this
chapter we have investigated the Lundberg’s equations in a Sparre–Andersen
risk model with generalized Erlang(n) interclaim times. We have obtained
theorems for the calculation of the maximum severity of ruin and the ex-
pected discounted dividends which are useful for the problem of the multiple
roots. However, the results can be still generalized for other interclaim times
distributions. Additionally, the possibility of roots with multiplicities higher
than double can be investigated. We will show further developments in the
next chapter.
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Chapter 5

The Sparre–Andersen model
with Phase–Type(n) interclaim
times

Pure mathematics is, in its way,
the poetry of logical ideas

Albert Einstein

5.1 Introduction

In this chapter we consider the Sparre–Andersen model under the assumption
that the interclaim times are Phase–Type(n) distributed.

In Section 5.2 we give a brief introduction to the Phase–Type(n) distri-
bution family following Asmussen (2000).

We focus on studying the generalized Lundberg’s equation in Section 5.3.
Our aim is to determine the cases when multiple roots arise. We find an
exact expression for the generalized Lundberg’s equation involving rational
polynomials, using some techniques from linear algebra, which gives us the
possibility of analyzing the roots.

We consider in Section 5.4 the survival probability associated to this
model. We find an integro–differential equation that is satisfied by the sur-
vival probability. Also, we find its Laplace transform and a defective renewal
equation. Following a similar procedure like in previous chapters, we propose
a method to study the maximum severity of ruin.

In Section 5.5 we introduce the Lundberg’s matrix and show new results
concerning its eigenvectors.
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Finally, in Section 5.6 we apply results to compute the probability of
arriving to a barrier prior to ruin.

5.2 Mathematical background and notation

Phase–type distributions are the computational vehicle of much of modern
applied probability. Typically, if a problem can be solved explicitly when
the relevant distributions are exponentials, then the problem may admit an
algorithmic solution involving a reasonable degree of computational effort, if
one allows for the more general assumption of phase–type structure, and not
in other cases. A proper knowledge of phase–type distributions seems there-
fore a must for anyone working in an applied probability area like risk theory.

We say that a distribution K on (0,∞) is Phase–Type(n) if K is the
distribution of the lifetime of a terminating continuous time Markov process
{J(t)}t≥0 with finitely many states and time homogeneous transition rates.
More precisely, we define a terminating Markov process {J(t)}t≥0 with state
space E = {1, 2, . . . , n} and intensity matrix B (n× n) as the restriction to
E of a Markov process {J̄(t)}0≤t<∞ on E0 = E ∪ {0} where 0 is some extra
state which is absorbing, that is, Pr(J̄(t) = 0|J̄(0) = i) = 1 for all i ∈ E
and where all states i ∈ E are transient. This implies in particular that the
intensity matrix for {J̄(t)} can be written in block–partitioned form as(

B bT

0 0

)
(5.2.1)

The 1 × n vector b = (b1, . . . , bn) is the exit rate vector, i. e., the i–th
component bi gives the intensity in state i for leaving E and going to the
absorbing state 0.

Note that since (5.2.1) is the intensity matrix of a non–terminating Markov
process, the rows sums to zero which in matrix notation can be written
as bT + B1T = 0 where 1 = (1, 1, . . . , 1) is the column vector with all
components equal to one. In particular we have

bT = −B1T

The intensity matrix B is denoted by B = (bi,j)
n
i,j=1. This matrix satisfies

the conditions: bi,i < 0, bi,j ≥ 0 for i 6= j, and
∑n

j=1 bi,j ≤ 0 for i = 1, . . . , n.

The vector of entry probabilities is given by α = (α1, α2, . . . , αn) with
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αi ≥ 0 for i = 1, . . . , n, and
∑n

i=1 αi = 1, so Pr(J̄(0) = i) = αi.

We list the most important properties of K.

Density k(t) = αeBtbT, t ≥ 0,

C.D.F. K(t) = 1−αeBt1T, t ≥ 0,

L.T. k̂(s) = α(sI−B)−1bT, (5.2.2)

Mean E[W1] = −αB−11T,

k(j)(0) = αBjbT, j ≥ 0,

where I is the n× n identity matrix. In the Figure 5.10 below we represent
three of the transient states i, j and k as well as their transition rates, exit
rates and entry probabilities.
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Figure 5.9: Phase–Type distribution

Now we give some examples of some very well known distributions.

Example 5.2.1 Suppose that n = 1 and write B = (−b11) = (−β). Then
α = (α1) = (1), b = (b1) = (b11) = (β) and k(t) = αeBtbT = βe−βt. Thus,
the class of Phase–Type(1) distributions is exactly the class of exponential
distributions.

Example 5.2.2 The Erlang distributions. Suppose that E = {1, 2, . . . , n}.
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Let α = (1, 0, . . . , 0), b = (0, 0, . . . , β) and

B =


−β β · · · 0
0 −β · · · 0
...

...
. . .

...
0 0 · · · −β
0 0 · · · 0

0
0
...
β
−β

 .

We compute the density k(t) and obtain

k(t) = αeBtbT =
βntn−1e−βt

(n− 1)!
.

Therefore K is an Erlang(n) distribution.

Example 5.2.3 The generalized Erlang distributions. Analogously, suppose
that E = {1, 2, . . . , n}. Let α = (1, 0, . . . , 0), b = (0, 0, . . . , βn) and

B =


−β1 β1 · · · 0

0 −β2 · · · 0
...

...
. . .

...
0 0 · · · −βn−1

0 0 · · · 0

0
0
...

βn−1

−βn

 .

We compute the density k(t) and obtain

k(t) = αeBtbT =
n∑
i=1

(
n∏

j=1,j 6=i

βj
βj − βi

)
βie
−βit.

Therefore K is a generalized Erlang(n) distribution.

In this chapter we assume that the interclaim times Wi follow a Phase–
Type(n) distribution K with vector of entry probabilities α and intensity
matrix B. Therefore the net profit condition (2.3.1) becomes

cE[W1] > E[X1]⇐⇒ −cαB−11T > µ1. (5.2.3)

5.3 Lundberg’s equation

Our purpose in this section is to find rational expressions for the Lundberg’s
equations.
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Recall that the generalized Lundberg’s equation is given by (2.3.5)

p̂(s) =
1

k̂(δ − cs)
, or k̂(δ − cs)p̂(s) = 1.

Notice that in order to solve such equation we need to determine an expres-
sion for k̂(δ − cs). We are looking for expressions similar to those given in
(3.2.2) and (4.2.5).

In the previous section we mentioned that the Laplace transform of a
Phase–Type(n) distribution with density k is

k̂(s) = α(sI−B)−1bT.

So the main problem is to compute the inverse matrix (sI−B)−1. Before we
go further we give some definitions from linear algebra.

Definition 1 Let A = (ai,j)
n
i,j=1 be a n× n matrix.

Define, for 1 ≤ i1 < i2 < . . . < ik ≤ n

Mi1,i2...ik =


ai1,i1 ai1,i2 . . . ai1,ik
ai2,i1 ai2,i2 . . . ai2,ik

...
...

. . .
...

aik,i1 aik,i2 . . . aik,ik

, 1 ≤ k ≤ n,

then
trk(A) =

∑
1≤i1<i2<...<ik≤n

det(Mi1,i2...ik).

To understand the definition of trk(A), we choose k out of n elements from
the diagonal of A, compute the determinant of the k×k minor of A that has
those elements in its diagonal, and finally sum over all the possible choices.
The functions trk(A) generalize the notion of the trace and the determinant
of a matrix A, as we will see in the following example.

Example 5.3.1 For k = 1

tr1(A) =
n∑
i=1

det(Mi) =
n∑
i=1

aii = tr(A).
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For k = 2

tr2(A) =
∑

1≤i<j≤n

det(Mij) =
∑

1≤i<j≤n

(aiiajj − aijaji).

For k = n− 1

trn−1(A) =
n∑
i=1

det(M1...,i−1,i+1,...,n) = det(A)tr(A−1).

For k = n
trn(A) = det(M1...n) = det(A).

By convention we set tr0(A) = 1.

We use the functions trk(A) in the following lemmas and theorems.

Lemma 5.3.1 The characteristic polynomial of the matrix B is given by

det(sI−B) =
n∑
i=0

(−1)n−itrn−i(B)si.

Proof : The matrix sI−B

sI−B =


s− β11 −β12 · · · −β1,n−1

−β21 s− β22 · · · −β2,n−1
...

...
. . .

...
−βn−1,1 −βn−1,2 · · · s− βn−1,n−1

−βn,1 −βn,2 · · · −βn,n−1

−β1,n

−β2,n
...

βn−1,n

s− βn,n

 .

The proof follows observing that to get the coefficient of si we must choose
i elements of the diagonal, eliminate the rows and columns of sI − B con-
taining those elements and compute the determinant of the (n− i)× (n− i)
submatrix of −B that remains. Thus, adding over all the possible choices
gives the coefficient (−1)n−itrn−i(B). �

A very known result from linear algebra, known as the Cayley–Hamilton
theorem, states that every square matrix satisfies its own characteristic equa-
tion, see Lang (2010). Using the lemma we get

det(BI−B) =
n∑
i=0

(−1)n−itrn−i(B)Bi = 0. (5.3.1)
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Theorem 5.3.1 The inverse matrix (sI−B)−1 has the expression

(sI−B)−1 =
N(s,B)

det(sI−B)
,

where the matrix N(s,B) takes the form

N(s,B) =
n−1∑
i=0

(
n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j

)
si.

Proof : We prove that (sI−B)−1(sI−B) = I or, equivalently, that

(sI−B)N(s,B) = det(sI−B)I.

If we denote by

ai =
n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j,

then

(sI−B)N(s,B) = (sI−B)
n−1∑
i=0

(
n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j

)
si

= (sI−B)
n−1∑
i=0

ais
i

= an−1s
n +

n−1∑
i=1

(ai−1 − aiB)si − a0B.

Now we can easily verify that an−1 = I.

Using (5.3.1) we get −a0B = (−1)ndet(B)I and

ai−1 − aiB =
n−i∑
j=0

(−1)jtrj(B)Bn−i−j −

(
n−1−i∑
j=0

(−1)jtrj(B)Bn−1−i−j

)
B

= (−1)n−itrn−i(B)I.

Therefore,
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(sI−B)N(s,B) = Isn +
n−1∑
i=1

((−1)n−itrn−i(B)I)si + (−1)ndet(B)I

=
n∑
i=0

((−1)n−itrn−i(B)I)si = det(sI−B)I.

�

Corollary 5.3.1 The Laplace transform k̂(s) can be written as

k̂(s) = α(sI−B)−1bT =
αN(s,B)bT

det(sI−B)
.

Example 5.3.2 For n = 1, α = (1), B = (−β), 1 = (1), then

k̂(s) =
α[I]bT

s− det(B)
=

β

s+ β
.

For n = 2

k̂(s) =
α[Is+ (B− Itr(B))]bT

s2 − tr(B)s+ det(B)
.

For n = 3

k̂(s) =
α[Is2 + (B− Itr(B))s+ (B2 −Btr(B) + Itr2(B))]bT

s3 − tr(B)s2 + tr2(B)s− det(B)
.

Example 5.3.3 Consider the Erlang distributions. Following the notation
of the Erlang example given before, we notice that since α = (1, 0, . . . , 0)
and b = (0, 0, . . . , β), the product αN(s,B)bT gives the element (1, n) of
the matrix N(s,B) (which is equal to βn−1) times β. Thus,

k̂(s) =
αN(s,B)bT

det(sI−B)
=

βn

(β + s)n
.

Example 5.3.4 Consider the generalized Erlang distributions. Analogously,
since α = (1, 0, . . . , 0) and b = (0, 0, . . . , βn), the product αN(s,B)bT gives
the element (1, n) of the matrix N(s,B) (which is equal to

∏n−1
i=1 βi) times

βn. Thus,

k̂(s) =
αN(s,B)bT

det(sI−B)
=

∏n
i=1 βi∏n

i=1(βi + s)
.
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Finally, we get the rational expression for the Lundberg’s equations, as
desired. The generalized Lundberg’s equation for the Phase–Type(n) model
becomes

1

k̂(δ − cs)
=
det((δ − cs)I−B)

αN(δ − cs,B)bT
= p̂(s), (5.3.2)

and we obtain the corresponding fundamental Lundberg’s equation by setting
δ = 0 in equation (5.3.2)

1

k̂(−cs)
=
det((−cs)I−B)

αN(−cs,B)bT
= p̂(s). (5.3.3)

5.3.1 Multiplicity of the roots of the Lundberg’s equa-
tions

Now, we recall the generalized Lundberg’s equation k̂(δ − cs)p̂(s) = 1. Al-
brecher and Boxma (2005) shows that this equation has n solutions in the
right half of the complex plane, which we denote by ρ1, ρ2, . . . , ρn. Moreover
the fundamental Lundberg’s equation has only n− 1 roots with positive real
parts, say ρ1, ρ2, . . . , ρn−1, and we have ρn = 0.

Thus, considering the right half of the complex plane, more specifically
the positive real axis, we look for the possibility of having a double real root.

We state the following theorem

Theorem 5.3.2 Let s1 and s2, with s1 < s2, be two real poles of k̂(δ − cs),
and suppose that there is no other real pole or zero of k̂(δ−cs) in the interval
(s1, s2). If k̂(δ − cs) is positive in the interval (s1, s2) then the generalized
Lundbeg’s equation has one of the following:

• Two real roots in the interval.

• A double root in the interval.

• No real roots in this interval.

Proof : We compare both sides of equation (5.3.2).
For s ∈ R+, we notice that the Laplace transform p̂(s) is a positive and

decreasing function of s, with p(0) = 1 and lims→∞p̂(s) = 0. Therefore p̂(s)
has no zeros or poles in s ∈ R+.

On the other hand, the function k̂(δ−cs) is the quotient of the polynomial
αN(δ − cs,B)bT, which has degree at most n − 1, and the polynomial
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det(sI − B), which has degree n. The poles of k̂(δ − cs) are the numbers
s = (δ − ζ)/c, where ζ ranges over all the eigenvalues of B.

Now assume that s1 and s2, with s1 < s2, are two real poles of k̂(δ − cs),
and suppose that k̂(δ − cs) > 0 in the interval (s1, s2). Then the function
1/k̂(δ − cs) has two consecutive zeros at s1 and s2 and it is positive in the
interval (s1, s2).

Since 1/k̂(δ− cs) is continuous and differentiable in (s1, s2) it has a max-
imum in this interval, and comparing the values of 1/k̂(δ − cs) and p̂(s) at
this maximum we get the result.

�

Corollary 5.3.2 Let s1 and s2, with s1 < s2, be two real poles of k̂(−cs),
and suppose that there is no other real pole or zero of k̂(−cs) in the interval
(s1, s2). If k̂(−cs) is positive in the interval (s1, s2) then the fundamental
Lundbeg’s equation has one of the following:

• Two real roots in the interval.

• A double root in the interval.

• No real roots on this interval.

Example 5.3.5 Suppose that the interclaim times Wi follow a Phase–
Type(4) distribution, with intensity matrix

B =


−7 0 1 2
3 −5 1 1
6 0 −8 1
0 0 2 −4

 ,

α = (0.2, 0.3, 0.1, 0.4) and b = (4, 0, 1, 2). Then E[Wi] = 0.475. Suppose
that the claim amounts Xi are exponentially distributed with parameter
β ≥ 2.11. Then we choose c = 1 to satisfy the net profit condition (5.2.3).

The fundamental Lundberg’s equation (5.3.3) becomes

1

k̂(−cs)
=

810− 702s+ 203s2 − 24s3 + s4

810− 317.3s+ 40.1s2 − 1.7s3
=

β

β + s
= p̂(s).

The function k̂(−cs) is positive and has no zeros in the interval (7.646, 9).
Then it is easy to verify that the fundamental Lundberg’s equation has

• Two real roots in (7.646, 9) for 2.11 ≤ β < 3.239.
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• A double root 8.42 in (7.646, 9) for β = 3.239.

• Two complex conjugate roots, where the real part of them is in
(7.646, 9) for β > 3.239.

Remark 5.3.1 So far we have investigated the possibility of double roots
in the fundamental and generalized Lundberg’s equations for a Sparre–
Andersen model with Phase–Type(n) interclaim times. Empirically, after
many numerical tests with different intensity matrices B and different vectors
of initial probabilities α, we only found simple and double roots. Moreover,
there were no cases where more than one double root appears. However, the
possibility of roots of a higher order is still open, and this is currently one of
our lines of research.

5.4 The ruin and survival probabilities

In this section we study the ruin probability associated to this model. We
find an integro–differential equation that is satisfied by the ruin probability,
the Laplace transform and a defective renewal equation. Following a similar
procedure like in previous chapters, we study the maximum severity of ruin.

5.4.1 A differential operator

In Chapter 2 we considered a renewal equation for the survival probability

Φ(u) =
1

c

∫ ∞
u

k

(
s− u
c

)∫ s

0

p(x)Φ(s− x)dxds

=
1

c

∫ ∞
u

k

(
s− u
c

)
WΦ(s)ds, (5.4.1)

where WΦ(s) =
∫ s

0
p(x)Φ(s− x)dx.

Now, we recall the integro–differential equations satisfied by Φ(u) in the
Erlang model (equation (3.3.1))

B(D)Φ(u) =
(
I −

( c
λ

)
D
)n

Φ(u) =

∫ u

0

Φ(u− y)p(y)dy = WΦ(u), u ≥ 0,

and the generalized Erlang model (Equation (4.2.2)),

B(D)Φ(u) =
n∏
i=1

(
I −

(
c

λi

)
D
)

Φ(u) =

∫ u

0

Φ(u−y)p(y)dy = WΦ(u), u ≥ 0.
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We notice that in both equations there is a differential operator, denoted
B(D), that depends entirely on the interclaim times distribution and its
parameters. Moreover, the Erlang(n) and generalized Erlang(n) densities
satisfy for their respective operators the following equation

B(D)kn

(
s− u
c

)
= 0. (5.4.2)

Our objective is to find the differential operator B(D) that corresponds
to the Phase–Type(n) model.

Theorem 5.4.1 For the Phase–Type(n) density k(t) = αeBtbT the corre-
sponding differential operator is

B(D) =
det(B + cID)

det(B)
(5.4.3)

Proof : We have to show that

B(D)k

(
s− u
c

)
=

1

det(B)
det(B + cID)[αeB( s−u

c
)bT] = 0.

First of all we write the polynomial form of B(D)

B(D) =
det(B + cID)

det(B)
=

n∑
k=0

BkDk,

with Bk = ck trn−k(B)

det(B)
. Note that B0 = 1.

Then,

B(D)k

(
s− u
c

)
=

n∑
k=0

BkDk[αeB( s−u
c

)bT] = α

[
n∑
k=0

BkDk(eB( s−u
c

))

]
bT

= α

[
n∑
k=0

Bk

(
−1

c

)k
BkeB( s−u

c
)

]
bT

= α

[
n∑
k=0

Bk

(
−1

c
B

)k]
eB( s−u

c
)bT

= α

[
B

(
−1

c
B

)]
eB( s−u

c
)bT

= α

[
det(B + cI

(−1
c B

)
)

det(B)

]
eB( s−u

c
)bT = 0,
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where the last equality comes from the Cayley–Hamilton theorem in (5.3.1).
Hence, we get the result. �

Example 5.4.1 For the Erlang and generalized Erlang distributions it
is easy to verify that the operator (5.4.3) becomes

(
I −

(
c
λ

)
D
)n

and∏n
i=1

(
I −

(
c
λi

)
D
)

, respectively.

5.4.2 An integro–differential equation for Φ(u)

We apply the differential operator (5.4.3) to the renewal equation (5.4.1),
which gives integro–differential for the survival probability in the Phase–
Type(n) model.

Using equation (5.4.1) we get the i–th derivative of Φ(u),

Φ(i)(u) =
1

c

∫ ∞
u

(
−1

c

)i
k(i)

(
s− u
c

)
WΦ(s)ds

+
i−1∑
j=0

(
−1

c

)j+1

k(j)(0)W
(i−1−j)
Φ (u).

Therefore,

B(D)Φ(u) =
n∑
i=0

BiDiΦ(u) =
n∑
i=0

BiΦ
(i)(u)

=
n∑
i=0

Bi

[
1

c

∫ ∞
u

(
−1

c

)i
k(i)

(
s− u
c

)
WΦ(s)ds

+
i−1∑
j=0

(
−1

c

)j+1

k(j)(0)W
(i−1−j)
Φ (u)

]

=
1

c

∫ ∞
u

B(D)k

(
s− u
c

)
︸ ︷︷ ︸

=0

WΦ(s)ds+

n−1∑
j=0

[
n∑

i=j+1

Bi

(
−1

c

)i−j
k(i−1−j)(0)

]
W

(j)
Φ (u), (5.4.4)
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Denote B̃j =
∑n

i=j+1Bi

(−1
c

)i−j
k(i−1−j)(0) and define

q(D) =
n−1∑
j=0

B̃jDj.

Thus, from (5.4.4) we get the integro–differential satisfied by Φ(u)

B(D)Φ(u) = q(D)WΦ(u). (5.4.5)

Example 5.4.2 Consider the Erlang distributions.
The Erlang(n) density function kn(t) satisfies the properties k

(i)
n (0) = 0,

i = 0, . . . , n− 2 and k
(n−1)
n (0) = λn.

We have B̃j = 0, j = 1, . . . , n− 1 and

B̃0 = Bn

(
−1

c

)n
k(n−1)(0) =

(
c

−λ

)n(−1

c

)n
λn = 1.

Hence, q(D) = I and the integro–differential equation (5.4.5) becomes

B(D)Φ(u) = WΦ(u),

which corresponds to the Equation (3.3.1).

Example 5.4.3 Consider the generalized Erlang distributions.
The generalized Erlang(n) density function kn(t) satisfies the properties

k
(i)
n (0) = 0, i = 0, . . . , n− 2 and k

(n−1)
n (0) =

∏n
i=1 λi.

Analogously, we have B̃j = 0, j = 1, . . . , n− 1 and

B̃0 = Bn

(
−1

c

)n
k(n−1)(0) =

(−c)n∏n
i=1 λi

(
−1

c

)n n∏
i=1

λi = 1.

Then q(D) = I and the integro–differential equation (5.4.5) becomes

B(D)Φ(u) = WΦ(u),

which corresponds to the Equation (4.2.2).

5.4.3 The Laplace transform of Φ(u)

The Laplace transform is a widely used integral transform for solving differ-
ential and integro–differential equations. We apply Laplace transforms for
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the integro–differential equation (5.4.5)

B̂(D)Φ(s) = ̂q(D)WΦ(s) (5.4.6)

to find an expression for the Laplace transform of the survival probability.

On the left hand side of (5.4.6) we have

B̂(D)Φ(s) =
n∑
i=0

BiΦ̂(i)(s) =
n∑
i=0

Bi

[
siΦ̂(s)−

i−1∑
j=0

sjΦ(i−1−j)(0)

]

= B(s)Φ̂(s)−
n−1∑
j=0

[
n∑

i=j+1

BiΦ
(i−1−j)(0)

]
sj,

and the right hand side gives

̂q(D)WΦ(s) =
n−1∑
i=0

B̃iŴ
(i)
Φ (s)

=
n−1∑
i=0

B̃i

[
siΦ̂(s)p̂(s)−

i−2∑
j=0

sj

(
i−1∑

m=j+1

p(i−1−m)(0)Φ(m−1−j)(0)

)]

= q(s)Φ̂(s)p̂(s)−
n−3∑
j=0

[
n−1∑
i=j+2

B̃i

(
i−1∑

m=j+1

p(i−1−m)(0)Φ(m−1−j)(0)

)]
sj.

Thus,

B(s)Φ̂(s)− q(s)Φ̂(s)p̂(s) =
n−1∑
j=0

[
n∑

i=j+1

BiΦ
(i−1−j)(0)

]
sj −

n−3∑
j=0

[
n−1∑
i=j+2

B̃i

(
i−1∑

m=j+1

p(i−1−m)(0)Φ(m−1−j)(0)

)]
sj.

Denoting

dΦ(s) =
n−1∑
j=0

[
n∑

i=j+1

BiΦ
(i−1−j)(0)−

n−1∑
i=j+2

B̃i

(
i−1∑

m=j+1

p(i−1−m)(0)Φ(m−1−j)(0)

)]
sj,

(5.4.7)
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we get

(B(s)− q(s)p̂(s))Φ̂(s) = dΦ(s).

Finally, the Laplace transform of the survival probability takes the form

Φ̂(s) =
dΦ(s)

B(s)− q(s)p̂(s)
, (5.4.8)

where dΦ(s) is a polynomial of degree at most n− 1 defined in (5.4.7).

As a consequence we have the following theorem

Theorem 5.4.2 The fundamental Lundberg’s equation (5.3.3) and the
equation B(s) = q(s)p̂(s) have identical sets of solutions.

Proof : We need to prove that

q(s) =
(−1)n

det(B)
αN(−cs,B)bT. (5.4.9)

Each side of the equation (5.4.9) represents a polynomial of degree at most
n− 1. On the right hand side the coefficient of si is given by

ãi =
n−1−i∑
j=0

(−1)n−i−jci
trj(B)

det(B)
αBn−1−i−jbT, i = 0, . . . , n− 1,

while on the left hand side the respective coefficient is equal to

B̃i =
n∑

j=i+1

Bj

(
−1

c

)j−i
k(j−1−i)(0)

=
n∑

j=i+1

cj
trn−j(B)

det(B)

(
−1

c

)j−i
αBj−1−ibT

=
n−1−i∑
l=0

cn−l
trl(B)

det(B)

(
−1

c

)n−i−l
αBn−1−i−lbT

=
n−1−i∑
l=0

ci
trl(B)

det(B)
(−1)n−i−lαBn−1−i−lbT.

Thus, we get ãi = B̃i, i = 0, . . . , n− 1. This proves equation (5.4.9).

�
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5.4.4 A defective renewal equation for the survival
probability

In this section we look for a defective renewal equation that is satisfied by the
survival probability Φ(u) in the Phase–Type(n) risk model. Such equation
was proposed by Li and Garrido (2004b) and Gerber and Shiu (2003b) for
the Erlang(n) model and generalized Erlang(n) models, respectively. Recall
that the numbers ρ1, ρ2, . . . , ρn−1 are the n − 1 roots of the fundamental
Lundberg’s equation which has positive real parts and ρn = 0.

Definition 5.4.1 Let f(s) be an arbitrary function. We denote by
f [r1, r2, . . . , rk−1, rk, s] the k–th divided difference of the function f(s) with
respect to the points of collocation r1, r2, . . . , rk−1, rk. We give a more de-
tailed definition of the divided differences in Appendix A.

We concentrate our attention on the ruin probability Ψ(u) to find a defec-
tive renewal equation that it satisfies. Since Φ(u) = 1 − Ψ(u) this will give
us the desired equation for the survival probability.

Theorem 5.4.3 The ruin probability satisfies the following defective re-
newal equation

(−1)n
cn

det(B)
Ψ(u) = (q(D)Ψ) ∗ Tρn · · ·Tρ1p(u) + (−1)n−1Ω[ρ1, . . . , ρn, u]

+Tρn · · ·Tρ1P̃ (u), (5.4.10)

where the function Ω(s, u) takes the values

Ω(ρk, u) =
n−1∑
i=1

B̃i

i−1∑
j=0

[
Ψ(j)(0)(Tρkp

(i−1−j)(u))− p̂(ρk)ρi−1−j
k Ψ(j)(u)

]
,

for k = 1, . . . , n and P̃ (u) = 1− q(D)P (u).

Proof : Recall that B(s) = det(B+csI)
det(B)

=
∑n

k=0Bks
k and q(s) =

∑n−1
j=0 B̃js

j.
We also recall the integral operators Tr defined in Chapter 4, for a real–

valued integrable function f

Trf(x) =

∫ ∞
x

e−r(u−x)f(u)du, r ∈ C, x ≥ 0,

It is straightforward to show that the ruin probability Ψ(u) satisfies the
integro–differential equation
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B(D)Ψ(u) = q(D)WΨ(u) + P̃ (u). (5.4.11)

where WΨ(u) =
∫ u

0
p(x)Ψ(u−x)dx = Ψ∗p(u). We consider Equation (5.4.11)

as the “stage 0”.

To prove the theorem we use an inductive argument as follows.

Let B(s) = B(ρ1) + (s− ρ1)B[ρ1, s]. We define the differential operator

B(D) = B(ρ1)I − (ρ1I − D)B[ρ1,D].

Applying this operator to Ψ(u) gives

B(D)Ψ(u) = B(ρ1)Ψ(u)− (ρ1I − D)B[ρ1,D]Ψ(u)

= q(D)WΨ(u) + P̃ (u). (5.4.12)

We have Tρ1 = (ρ1I − D)−1, which means that

Tρ1(ρ1I − D)f(u) = (ρ1I − D)Tρ1f(u) = f(u) ∀ function f,

Thus, we apply the integral operator Tρ1 to the Equation (5.4.12) and we
obtain

B(ρ1)Tρ1Ψ(u)− Tρ1(ρ1I − D)︸ ︷︷ ︸
=I

B[ρ1,D]Ψ(u) = Tρ1q(D)WΨ(u) + Tρ1P̃ (u),

so

−B[ρ1,D]Ψ(u) = Tρ1q(D)WΨ(u)−B(ρ1)Tρ1Ψ(u) + Tρ1P̃ (u). (5.4.13)

We need to compute Tρ1q(D)WΨ(u). Using the fact that Tρ1D = DTρ1 , we
have

Tρ1q(D)WΨ(u) = q(D)Tρ1WΨ(u) = q(D)Tρ1(Ψ ∗ p)(u)

= q(D)(Ψ ∗ Tρ1p)(u) + p̂(ρ1)q(D)Tρ1Ψ(u)

= (q(D)Ψ) ∗ Tρ1p(u) + Ω(ρ1, u) +B(ρ1)Tρ1Ψ(u).

Replacing Tρ1q(D)WΨ(u) in (5.4.13) we get

−B[ρ1,D]Ψ(u) = (q(D)Ψ) ∗ Tρ1p(u) + Ω(ρ1, u) + Tρ1P̃ (u). (5.4.14)

We consider the Equation (5.4.14) as the “stage 1”.
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Now we repeat this process. Let B[ρ1, s] = B[ρ1, ρ2] + (s− ρ2)B[ρ1, ρ2, s]
and define the differential operator

B[ρ1,D] = B[ρ1, ρ2]I − (ρ2I − D)B[ρ1, ρ2,D].

Applying this operator to Ψ(u) and then applying Tρ2 to the resulting equa-
tion gives

−Tρ2B[ρ1,D]Ψ(u) = −B[ρ1, ρ2]Tρ2Ψ(u) +B[ρ1, ρ2,D]Ψ(u)

= Tρ2Tρ1q(D)WΨ(u)−B(ρ1)Tρ2Tρ1Ψ(u) + Tρ2Tρ1P̃ (u).

We compute Tρ2Tρ1q(D)WΨ(u)

Tρ2Tρ1q(D)WΨ(u) = q(D)Tρ2Tρ1WΨ(u) = q(D)

(
Tρ1WΨ(u)− Tρ2WΨ(u)

ρ2 − ρ1

)
= (q(D)Ψ) ∗ Tρ2Tρ1p(u)− Ω[ρ1, ρ2, u]

+
B(ρ1)Tρ1Ψ(u)−B(ρ2)Tρ2Ψ(u)

ρ2 − ρ1

,

and similarly we obtain

B[ρ1, ρ2,D]Ψ(u) = (q(D)Ψ)∗Tρ2Tρ1p(u)−Ω[ρ1, ρ2, u]+Tρ2Tρ1P̃ (u). (5.4.15)

We consider the Equation (5.4.15) as the “stage 2”.

Continuing this process until the “stage n” we arrive to the following
equation

(−1)nB[ρ1, . . . , ρn,D]Ψ(u) = (q(D)Ψ) ∗ Tρn · · ·Tρ1p(u) +

+(−1)n−1Ω[ρ1, . . . , ρn, u] + Tρn · · ·Tρ1P̃ (u),

and since B[ρ1, . . . , ρn,D] = BnI = cn

det(B)
I we get the desired result. �

Example 5.4.4 We want to calculate the survival probability in the Phase–
Type(2) model. For this purpose we use the defective renewal equation satis-
fied by the ruin probability to derive the respective equation for the survival
probability. Then we apply Laplace transforms and inverse Laplace trans-
forms to this equation to obtain Φ(u).

We have B(s) = 1 +B1s+B2s
2 and q(s) = 1 + B̃1s.
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The defective renewal equation satisfied by Ψ(u) is

c2

det(B)
Ψ(u) = (q(D)Ψ) ∗ Tρ2Tρ1p(u)− Ω[ρ1, ρ2, u]

+Tρ2Tρ1P̃ (u), (5.4.16)

where

−Ω[ρ1, ρ2, u] =
Ω(ρ1, u)− Ω(ρ2, u)

ρ2 − ρ1

= B̃1(Ψ(0)Tρ2Tρ1p(u)− Tρ2Tρ1p(0)Ψ(u)),

and
Tρ2Tρ1P̃ (u) = Tρ2Tρ1(1− P (u)− B̃1p(u)).

Defining η0(u) = det(B)
c2

Tρ2Tρ1p(u) as the “defective density” we can
rewrite the Equation (5.4.16) as

Ψ(u) = (q(D)Ψ)∗η0(u)+B̃1(Ψ(0)η0(u)−η0(0)Ψ(u))+

∫ ∞
u

η0(x)dx−B̃1η0(u).

Replacing ψ(u) = 1− Φ(u) in the previous equation we get the defective
renewal equation for Ψ(u),

Φ(u) = (q(D)Φ)∗η0(u)+B̃1(Φ(0)η0(u)−η0(0)Φ(u))+B̃1η0(0)+1−
∫ ∞

0

η0(x)dx.

(5.4.17)
The next step is to apply Laplace Transforms to the Equation (5.4.17). This
gives

Φ̂(s) =
Φ(0)
s

1− η̂0(s)− B̃1(sη̂0(s)− η0(0))
. (5.4.18)

The denominator in the Equation (5.4.18) is given by

1− η̂0(s)− B̃1(sη̂0(s)− η0(0)) =
B(s)− q(s)p̂(s)

(c2/det(B))s(s− ρ1)
.

Finally, replacing the denominator in (5.4.18) we get

Φ̂(s) = −Φ(0)

(
c2

det(B)

)
ρ1 − s

B(s)− q(s)p̂(s)
. (5.4.19)

If we compare the last expression with Laplace transform of Φ(u) that
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was given in (5.4.8) we observe that

dΦ(s) = −Φ(0)
c2

det(B)
(ρ1 − s).

For the particular case when the claim amounts are exponentially dis-
tributed with parameter β, we can invert the Laplace transform in (5.4.19)
and results

Φ(u) = 1−
(

1− R

β

)
e−Ru,

where R is the adjustment coefficient from the fundamental Lundberg’s equa-
tion.

5.4.5 Maximum severity of ruin

In order to compute the maximum severity of ruin in the Phase–Type(n)
model we proceed in a similar way as in Chapters 3 and 4. We need to

(i) Compute the survival probability Φ(u).

(ii) Calculate the probability of attaining an upper barrier level χ(u, b).

(iii) Using the Equation (2.4.3), evaluate J(z;u).

For (i) we can apply Laplace transforms to the defective renewal equation
(5.4.10). Then we can invert the Laplace transform of Φ(u) in (5.4.8) to
obtain explicit expressions for the survival probability.

For (ii) we can implement the analogous of Theorems 3.4.2, 4.3.1 and 4.3.2
for the Phase–Type(n) model.

5.5 Lundberg’s matrix

The following matrix

Lδ(s) =

(
s− δ

c

)
I +

1

c
B +

1

c
bTαp̂(s), (5.5.1)

which is called the Lundberg’s matrix in Ji and Zhang (2011), have been
subject of study in several works, like Albrecher and Boxma (2005), Ren
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(2007), Li (2008b), Ji and Zhang (2011). In the expression δ stands for a non
negative constant.

According to Ren (2007), the solutions of

Det(Lδ(s)) = 0, (5.5.2)

and the solutions of the generalized Lundberg’s equation

k̂(δ − cs)p̂(s) = 1, (5.5.3)

as defined in Gerber and Shiu (2005) are identical.

Albrecher and Boxma (2005) show that (5.5.2) has exactly n solutions
in the right half of the complex plane using matrix theory, therefore the
generalized Lundberg’s equation (5.5.3) have exactly the same n solutions in
the right half of the complex plane, which we denote by ρ1, ρ2, . . . , ρn.

In all the papers mentioned before, it is assumed that these roots have
distinct values. However, in Section 5.3.1 we show that we can find a great
variety of examples where multiple roots arise, specially double roots.

Consider the Lundberg’s matrices Lδ(ρi), i = 1, 2, . . . , n. All those ma-
trices are singular, or equivalently all of them have 0 as an eigenvalue. Let
hi be an eigenvector of Lδ(ρi) associated to the eigenvalue 0 or, equivalently,
let hi be a vector in the null space of Lδ(ρi).

Theorem 5.5.1 Let ρ1, ρ2, . . . , ρm be distinct, 2 ≤ m ≤ n. Then the eigen-
vectors h1,h2, . . . ,hm are linearly independent.

Proof : By contradiction, suppose that they are linearly dependent. Assume
that we can find a subset of l elements of {h1,h2, . . . ,hm}, with 2 ≤ l ≤ m,
that is linearly dependent and that every subset with l − 1 elements or less
is linearly independent.

Without loss of generality assume that the dependent subset is
{h1,h2, . . . ,hl}. Then there are constants c1, c2, . . . , cl not all zero such that

c1h1 + c2h2 + · · ·+ clhl = 0.

Assume that cl 6= 0, then we can write

hl =
l−1∑
i=1

c̃ihi, c̃i = −ci
cl
.
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Multiplying both sides by Lδ(ρl) we obtain

0 = Lδ(ρl)hl = Lδ(ρl)
l−1∑
i=1

c̃ihi

l−1∑
i=1

c̃iLδ(ρl)hi =
l−1∑
i=1

c̃ih̃i,

where h̃i = Lδ(ρl)hi, i = 1, . . . , l − 1.

Since hi, i = 1, . . . , l− 1 are not eigenvectors of Lδ(ρl) we have h̃i 6= 0, so
the vectors h̃i are linearly dependent.

Now the eigenvectors h1,h2, . . . ,hl−1 are linearly independent by as-
sumption and they are not in the null space of Lδ(ρl), therefore Lδ(ρl) maps
them to another set of linearly independent vectors.

However, this means that h̃i are linearly independent and this is a
contradiction. �

5.6 The first time the surplus attain a certain

level

For a barrier level b ≥ u define

tb = min{t ≥ 0 : U(t) = b},

to be the first time the surplus reaches level b. For δ ≥ 0 define,

T (u, b) = E[e−δtb|U(0) = u],

to be the Laplace transform of tb. Furthermore define,

Ti,j(u, b) = Ei[e
−δtbI(J(tb) = j)|U(0) = u],

to be the Laplace transform of tb when the process starts from initial surplus
u at state i and reaches the level b at state j. Then,

T (u, b) = αT(u, b)eT,

where T(u, b) = (Ti,j(u, b))
n
i,j=1.
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It follows from Li (2008b) that

T(u, b) = e−K(b−u), T (u, b) = αe−K(b−u)eT, u ≤ b,

where K is a n× n matrix that satisfies the following equation

cK = (δI−B)− bTα

∫ ∞
0

p(x)e−Kxdx.

Assuming that the roots of the generalized Lundberg’s equation with pos-
itive real parts ρ1, ρ2, . . . , ρn are distinct, Li (2008b) shows that

K = H∆H−1,

where ∆ = diag(ρ1, ρ2, . . . , ρn) and H = (h1,h2, . . . ,hn). The column vector
hi is an eigenvector of Lδ(ρi) corresponding to the eigenvalue 0. Then

T (u, b) = αHe−∆(b−u)H−1eT, u ≤ b. (5.6.1)

If the roots ρ1, ρ2, . . . , ρn are not all distinct then the matrix H is not
invertible and we can not apply formula (5.6.1) to find T (u, b).

In the case of a double root we propose to replace such root by one of the
negative roots of the generalized Lundberg’s equation. Under our assump-
tions on this model there is always one negative real root. We denote it by
ρ0 = −R where R > 0 is the adjustment coefficient.

Example 5.6.1 We continue the example 5.3.5 and we consider an interest
force of δ = 0.2. Choosing β = 3.316 the generalized Lundberg’s equation
has the following roots

ρ0 = −R = −1.534, ρ1 = 0.457, ρ2 = 5.319, ρ3 = ρ4 = 8.62,

the corresponding eigenvectors are

h0 = (0.583, 0.407, 0.503, 0.490), h1 = (0.484, 0.517, 0.497, 0.501),

h2 = (−0.015,−0.986,−0.004, 0.167), h3 = (−0.008, 0.156,−0.905, 0.395).

Therefore,

H =


0.583 0.484 −0.015 −0.008
0.407 0.517 −0.986 0.156
0.503 0.497 −0.004 −0.905
0.490 0.501 0.167 0.395


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and we apply formula (5.6.1) to obtain

T (u, b) = 0.147e1.534(b−u)+0.853e−0.457(b−u)−0.0003e−5.319(b−u)−0.0003e−8.62(b−u).

Remark 5.6.1 For calculation of the expected discounted future dividends
we can apply the same method in the case of double roots, replacing this
root by the adjustment coefficient.

Remark 5.6.2 It is still an open problem if the fundamental (generalized)
Lundberg’s equation can have more than one double root, or if roots with
higher multiplicity than double can appear.

5.7 Final remarks

In this chapter we considered Phase–Type(n) interclaim times for a Sparre–
Andersen risk model. We studied the Lundberg’s equations and we found
cases where double roots appeared. For such cases we provided a method to
compute the Laplace Transform of the time to reach a barrier level. More-
over, we gave expressions for the defective renewal equation and the integro–
differential equation that are satisfied by the survival probability. This is
useful, for example, if one is interested in the computation of other quanti-
ties, such as the probability of arrival to a barrier level and the maximum
severity of ruin. Regarding the Lundberg’s Matrix, we showed a proof of the
linear independence of the eigenvectors related to different eigenvalues. Like
we mentioned before, we can extend the results to determine the possibility
of having more than one double root, or roots with higher multiplicity than
double.
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Chapter 6

Conclusion

The study of mathematics, like the
Nile, begins in minuteness but ends
in magnificence

Charles Caleb

It is in general difficult, if not impossible, to achieve all the objective of the
work which we want. Scientific research is never a complete perfect product
of developments but a long path of new improvements and exploration.

In this chapter we summarize all the work which was achieved during
writing this thesis.

In Chapter 3 we analyzed the Sparre–Andersen risk model under the as-
sumption of Erlang(n) distributed interclaim times. We improved techniques
that are used to compute the maximum severity of ruin, and we found a new
method to calculate the expected discounted dividends. It is always very
important to find new calculating tools that can surpass the existing ones.

In Chapter 4 we dealt with a Sparre–Andersen model with generalized
Erlang(n) distributed interclaim times, we followed the same approach like
in Chapter 3. However we encounter one big difference. In the Erlang(n)
model the roots of the fundamental (and the generalized) Lundberg’s equa-
tion were all different. In the generalized Erlang(n) model that was not
the case since we found roots with double multiplicity. We proposed a new
way of dealing with the problem of computing the maximum severity of ruin
and the expected discounted dividends in the presence of multiple roots. We
studied the cases when the double roots can arise and showed with numerical
examples how the new methods can be applied. Currently in the literature
there were no attempts to find mathematical methods that take into account
such multiplicities.
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In Chapter 5 we studied the Sparre–Andersen model with Phase–type(n)
interclaim times. Needles to say that this was the hardest part in all this
manuscript. Our first purpose was to obtain an adequate expression for
the Lundberg’s equations. Similarly to the case of Chapter 4, we studied
the behavior of the roots and determined the possibility of having double
roots. We formulated a theorem in this direction. Furthermore, we explored
the Lundberg’s matrix to obtain other interesting results. Afterwards, we
focused our attention in the computation of the survival probability, by means
of finding an integro–differential equation and a defective renewal equation.
We emulated the same techniques used in the two previous chapters which
means that we compute the probability of attaining an upper level from
the initial surplus by solving the same integro–differential equation from
the survival probability. Finally, we applied those results for computational
purposes. As mentioned before every work has the possibility of extension,
therefore some results in this thesis can be still generalized. First of all,
we can determine the possibility of finding roots of multiplicity higher than
double in the Lundberg’s equations. We can try to use other interclaims times
distributions and find methods to estimate the severity of ruin, to computed
dividends in the presence of a threshold strategy, or add a perturbation to
the model. Going even further with research we might change the Sparre–
Andersen model for other risk models.
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Bergel, A. I. and Eǵıdio dos Reis, A. D. (2011). Further advances on
the maximum severity of ruin in an Erlang(n) risk process, preprint.
http://cemapre.iseg.utl.pt/archive/preprints/466.pdf.
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Appendix A

Divided differences

In mathematics, divided differences is a recursive division process. The
method can be used to calculate the coefficients in the interpolation
polynomial in the Newton form.

Let f(x) be a function and x0, x1, . . . , xn a set of n+ 1 different points in
the complex plane C.

We define recursively the first, second and third divided differences of f
with respect to the points x0, x1, . . . , xn in the following way

f [x0] = f(x0)

f [x1, x0] =
f(x0)

(x0 − x1)
+

f(x1)

(x1 − x0)

f [x2, x1, x0] =
f(x0)

(x0 − x1)(x0 − x2)
+

f(x1)

(x1 − x0)(x1 − x2)
+

f(x2)

(x2 − x0)(x2 − x1)
.

In general the n–th divided difference is given by

f [xn, . . . , x1, x0] =
n∑
j=0

f(xj)

τ ′f (xj)
,

where τf (x) =
∏n

i=0(x− xi).

Example

Let f(x) = pn(x) = xn. Then
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pj[xn, . . . , x1, x0] = 0, 0 ≤ j < n,

pn[xn, . . . , x1, x0] = 1,

pn+1[xn, . . . , x1, x0] =
n∑
i=0

xi,

pn+m[xn, . . . , x1, x0] =
∑

0≤i1≤···≤im≤n

(
m∏
j=1

xij

)
.

Theorem A.0.1 Taylor series for divided differences

f [xn, . . . , x1, x0] =
∞∑
j=0

f (j)(0)

j!
pj[xn, . . . , x1, x0].
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Appendix B

Gerber–Shiu penalty functions

Consider a Sparre–Andersen surplus process

U(t) = u+ ct−
N(t)∑
i=1

Xi, t ≥ 0,

and denote by Tu the time to ruin. Let U(T−u ) be the surplus immediately
prior to ruin and |U(Tu)| the deficit at ruin.

For x, y ≥ 0, let w(x, y) be a non–negative function. For δ ≥ 0 define

Φδ(u) = E[e−δTuw(U(T−u ), |U(Tu)|)I(Tu < 0)|U(0) = u], u ≥ 0.

The quantity w(U(T−u ), |U(Tu)|) can be interpreted as a penalty at time of
ruin for the surplus U(T−u ) and the deficit |U(Tu)|.

Then Φδ(u) is the expected discounted penalty with δ being the force of
interest. Li and Garrido (2004b) find a defective renewal equation for Φδ(u)
for the case of Erlang(n, λ) interclaim times distributions.

Let ρ1, . . . , ρn be the n roots of the generalized Lundberg’s equation with
positive real parts. Then

Theorem B.0.2 Φδ(u) admits a defective renewal equation representation

Φδ(u) =

∫ u

0

Φδ(u− y)ηδ(y)dy +Gδ(u), (B.0.1)

where ηδ(y) = (λ/c)nTρn · · ·Tρ1p(y), Gδ(u) = (λ/c)nTρn · · ·Tρ1ω(u), with
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ω(u) =
∫∞
u
w(u, y − u)p(y)dy.

In particular, for δ = 0 and w(x, y) ≡ 1 we have Φδ(u) = Ψ(u), the ruin
probability, and the equation (B.0.1) becomes

Ψ(u) =

∫ u

0

Ψ(u− y)η0(y)dy + Ψ(0),

and a similar equation can be derived for the survival probability

Φ(u) =

∫ u

0

Φ(u− y)η0(y)dy + Φ(0).
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