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Abstract  

Recent changes have been observed in South African marine ecosystems. The main 

pressures on these ecosystems are fishing, climate change, pollution, ocean acidification 

and mining. The best long-term datasets are for trends in fishing pressures but there are 

many gaps, especially for non-commercial species. Fishing pressures have varied over 

time, depending on the species being caught. Little information exists for trends in 

other anthropogenic pressures. Field observations of environmental variables are 

limited in time and space. Remotely sensed satellite data have improved spatial and 

temporal coverage but the time-series are still too short to distinguish long-term 

trends from interannual and decadal variability. There are indications of recent cooling on 

the West and South coasts and warming on the East Coast over a period of 20–30 years. 

Oxygen concentrations on the West Coast have decreased over this period. Observed 

changes in offshore marine communities include southward and eastward changes in 

species distributions, changes in abundance of species, and probable alterations in 

foodweb dynamics. Causes of observed changes are difficult to attribute. Full 

understanding of marine ecosystem change requires ongoing and effective data collection, 

management and archiving, and coordination in carrying out ecosystem research. 

 

Introduction 

Human activities are changing marine environments at global (Checkley et al. 

2009a, Barange et al. 2010) and local (Hutchings et al. 2012) scales. Pressures on 

the oceans are linked to climate change (through changes in ocean temperature, 

ocean circulation, stratification and nutrient availability), ocean acidification, marine 

pollution, marine habitat alteration and destruction, coastal eutrophication, the spread 

of invasive species and fishing. These large-scale impacts occur concurrently and 

their effects can be synergistic, increasing the vulnerability of natural systems and at 

the same time making it difficult to predict how the ecosystems might respond (Link 

et al. 2010). Predictions of future change typically are based on results of models that 

combine best understanding of ecological processes with observations. Although 

global models predict likely consequences of change (e.g. Cheung et al. 2009), 

refining these predictions for specific regions is problematic because of difficulties 

in downscaling to local scales. Similarly, observed and perceived changes are difficult 

to identify and to attribute to particular causes because of the complexities of the 

processes involved (Fulton et al. 2003, Jarre et al. 2006), the variety of scales at which 
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they operate (Field and Shillington 2006) and the general paucity of ocean observations 

in relation to what is needed (Moloney and Shillington 2007). 

 

The marine ecosystems off South Africa are naturally variable on interannual and 

decadal time-scales. This variability makes it difficult to separate long-term trends 

from large-amplitude, short-term variability  (Hutchings et al. 2009). At the same 

time, the large variability results in strong signals in datasets and has promoted a 

good understanding of the scales of variability and some of their proximal causes. 

However, unequivocal, unidirectional change cannot be identified from short time-

series and changes cannot be detected without having an historical baseline against 

which to compare modern observations. This paper aims to synthesise what is currently 

known about global change and its impacts on continental shelf ecosystems off South 

Africa, including studies from the Thukela Bank, the KwaZulu-Natal Bight, the 

Benguela upwelling region and the Agulhas Bank. It also draws on the results of studies 

targeting demersal and reef-fish communities. The paper highlights some predictions of 

the impacts of change and the data that currently exist to test these predictions and 

constrain models, and it identifies gaps in knowledge as well as advises on priorities for 

future research. 

 

Pressures on South African marine ecosystems and their likely impacts 

Climate change as a pressure on the ecosystem 

There is widespread acceptance that contemporary climate change (Figure 1) is an 

important and increasing factor influencing marine ecosystems. General pressures in 

the ocean resulting from climate change include warming of the surface ocean, 

especially at the poles (IPCC 2007), increased wind stress (Young et al. 2011), more 

extensive low-oxygen zones (Diaz and Rosenberg 2008), increased surface 

stratification (Sarmiento et al. 1998) and changes in nutrient distributions (Deutsch et al. 

2005). 

 

Impacts of climate change 

There is less temperature variability in the ocean than on land (Sunday et al. 2011), 

so marine ectotherms in a warming ocean should change their ranges rather than 

expand them. These range shifts are predicted to occur towards the poles and to 

increased depths (Perry et al. 2005, Dulvy et al. 2008), and changes in distributions 

have been observed for individual species (Perry et al. 2005) and also entire 

communities (Beaugrand 2009). Changes in phenology have also been observed, with the 

onset of spring (a strong environmental signal in many marine ecosystems) generally 

occurring earlier each year (Parmesan 2007). Increased sea temperatures should 

enhance overall marine foodweb productivity at high latitudes, but reduced 

productivity is predicted in the tropics (Brander 2007). These changes should affect 

fisheries productivity (Brown et al. 2010) and also potentially cause dramatic changes in 

foodwebs and links to higher trophic levels (Moloney et al. 2010). There is also some 

evidence that climate warming could decrease body size (Sheridan and Bickford 2011), 

with implications for system productivity and biodiversity. 

 

Despite these general predictions and some observations from different regions,  

understanding  the  impacts of climate change on the oceans generally lags that of 
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terrestrial ecosystems (Cheung et al. 2009). At a South African workshop held in 

2000, most of the expert opinion summarised by van Jaarsveld and Chown (2001) 

focused on impacts on terrestrial and freshwater ecosystems. Five years later, Clark 

(2006) reviewed the main effects of climate change on South Africa’s marine environment 

and fisheries, presenting some generic predicted outcomes based on research and 

observations from elsewhere in the world. These predictions included changes in sea 

temperatures, wind fields, CO2   concentrations, rainfall (and runoff) and ultraviolet B 

radiation, but they were non-specific because there were few data with which to test 

their occurrences off South Africa. The situation has not changed much to date. 

 

Fishing as a pressure on the ecosystem 

Fishing is an activity with a long history, and fishing pressures have increased over time 

as human population numbers have increased, expanding from coastal and nearshore 

areas to the entire oceanic realm. Overfishing has been common in recent decades, 

reducing biodiversity and altering marine ecosystems (Worm et al. 2009). Off South 

Africa, commercial fishing has a history of more than 400 years, starting with the 

harvesting of seals in the early 1600s (Shaughnessy 1984), collection of penguin eggs 

from the mid-1600s (Randall 1995) and development of the whaling industry in the 

early 1700s (Best et al. 1997). Most of these early commercial activities targeting marine 

mammals and seabirds have now ceased, and the modern focus is on exploitation of species 

of fish, crustaceans and molluscs. 

 

Demersal trawling started gradually from 1900 and expanded rapidly from the 1950s 

(Cochrane et al. 1997). Stability was achieved after 1977 (Figure 2) when South Africa 

declared a 200-mile exclusive economic zone (Cochrane et al. 1997). The fishery 

initially targeted Agulhas sole Austroglossus pectoralis (Brown 1997) and then Cape 

hakes, Merluccius paradoxus and M. capensis, but many other piscivorous fish species 

were taken as bycatch. The bulk of present-day demersal harvesting is concentrated 

around the Western Cape. Other important but low-volume bottom fisheries include 

those for rock lobsters in the nearshore environment off the West Coast (for Jasus 

lalandii) and on the South Coast (for Palinurus gilchristi) (Mead et al. 2013). 

 

South Africa’s largest fishery in terms of volume landed is the pelagic purse-seine 

fishery on the West and South coasts (Figure 2), primarily consisting of sardine 

Sardinops sagax and anchovy Engraulis encrasicolus. These small pelagic fish species 

were first caught commercially in the 1940s (Butterworth 1983), with catches increasing 

rapidly in the 1960s, necessitating the introduction of various management measures 

(Cochrane et al. 1997). The small pelagic fishery is  characterised  by  large  interannual  

variability in the catches and dramatic changes in relative species abundance (Figure 

2). 

 

The linefishery has been in existence since the late 1600s (Penney et al. 1997) and is 

much more diffuse than the major pelagic and demersal trawl fisheries, with catches 

landed by small-scale commercial fishers on small boats, as well as by recreational 

boat- and shore-anglers. It is a multispecies fishery, with many of the species also 

caught as bycatch in the demersal trawl fishery (Attwood et al. 2011). 
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The linefishery extends along the whole South African coastline, although there are centres 

of activity at Saldanha Bay, Struis Bay, Port Elizabeth and Richards Bay. Offshore reefs 

are readily accessible to fishers, and many of the target species are endemic, long-lived, 

slow-growing, resident, sex-changing predators, which have been heavily overexploited 

(Mann 2000; Figure 2). The declaration of a crisis in the linefishery in 2000 (Branch and 

Clark 2006) was followed in 2002 by substantial reductions in commercial permits and 

reduced recreational bag limits (Griffiths et al. 2004). 

 

Impacts of fishing 

The general impacts of fishing worldwide are well known. Fishing reduces the 

abundance of selected species and truncates the age structures of their populations, 

increasing their dependence on annual recruitment events (Perry et al. 2010) and 

reducing their ability to buffer environmental fluctuations (Planque et al. 2010). Fish 

adults and larvae show greater population variability in exploited than unexploited 

populations (Hsieh et al. 2006, 2008), but this effect has not been observed off South 

Africa. Fishing also affects sex ratios, with species exhibiting protogynous 

hermaphroditism being most impacted (Garratt et al. 1993). Populations of top 

predators have been found to be vulnerable to incidental mortality associated with fishing 

gear (Watkins et al. 2008, Petersen et al. 2009, Meÿer et al. 2011) and to local prey 

depletion through fishing (Pichegru et al. 2010). Fishing gear can also impact substrata, 

having a direct effect on invertebrate and vertebrate communities (Atkinson et al. 

2011a). Fishing can restructure foodwebs (Roux and Shannon 2004) by removing 

predator controls and depleting forage fish species (Shannon et al. 2000). 

 

 

https://repository.uwc.ac.za



5 
 

 
 

In South Africa, investigation of changes caused by fishing pressure initially focused on 

the target species to try and optimise catches (see management measures reviewed in 

Cochrane et al. 1997). Later, attention was increasingly focused on the impacts on non-

target species through, for example, studies of bycatch (e.g. Fennessy 1994, Walmsley et 

al. 2007), catch composition from research surveys (e.g. Wallace et al. 1984, Japp et al. 

1994, Yemane et al. 2005), predator–prey interactions (e.g. Crawford and Dyer 1995, 

Punt and Butterworth 1995) and environmental effects (van der Lingen et al. 2006a, 

Watermeyer et al. 2008). Near Tsitsikamma, fishing on a temperate reef community was 

found to affect the size and abundance of roman Chrysoblephus laticeps (Götz et al. 

2009a), the dominant fish species in catches, allowing their competitors to increase and 

also affecting benthic communities (Götz et al. 2009b). Small marine protected areas 

have been found to benefit resident fish populations like roman that are heavily exploited 

(Kerwath et al. 2008), whereas seasonal or spatial closures can be used for wide-ranging 

or migratory species (Grantham et al. 2008). 
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Marine pollution as a pressure on the ecosystem 

Pollution problems can be related to increasing human populations and increased 

urbanisation and industrialisation (Ukwe and Ibe 2010). Ocean pollution results from 

both point sources and diffuse sources. Point sources include harbours, sea-outfalls, 

stormwater drains, canals and rivers. Diffuse sources include the land–sea interface 

(coastal litter), ships at sea and atmospheric deposition (Ryan et al. 2009). Most sources 

have localised impacts in the nearshore zone, and contaminants are likely to be rapidly 

diluted by strong currents and mixing and so have limited impacts offshore (Marshall and 

Rajkumar 2003), but this needs to be confirmed. 

 

Oil pollution is caused by accidental spills and deliberate discharges, with the latter 

generally believed to be most common (Pavlakis et al. 2001). The frequency of oil spills 

might be expected to have increased because of increased shipping traffic (Wolfaardt et al. 

2009), but there are no readily accessible time-series data on historic or current oil 

contamination off South Africa and so it is not possible to identify trends. Three major 

accidental oil spills associated with the break-up of ships were documented off the South-

West Coast in the past 30 years (Wolfaardt et al. 2009) and there were more seabird 

oiling events (from identified and unknown sources) in the 2000s (10) than in earlier 

decades (2–7) (http://www.sanccob.co.za/?m=2&s=3, accessed 30 June 2012), but these 

results are not statistically significant (x² = 5.67, df = 2, p = 0.13). 

 

Measurements of deleterious trace elements and compounds released into the marine 

environment by industrial and mining activities, and organic-rich effluents associated 

with sewage outfalls and agricultural effluent, have been mostly confined to point sources 

along the KwaZulu-Natal coastline or near urban centres and in harbours (Griffiths et al. 

2010). Elevated levels of iron and titanium have been noted around the Huntsman-

Tioxide pipe off Amanzimtoti (Gregory et al. 2003) and trace metals in sediments off the 

Thukela Bank have exceeded acceptable toxicity threshold levels, with the main sources 

ascribed to terrestrially derived clays (Carter 2006). Tributyltin (TBT) contamination 

(mainly from antifouling paints) has been observed in harbours at Durban and Richards 

Bay and in Knysna Lagoon (Marshall and Rajkumar 2003). An accumulation of toxic 

compounds has been reported in the mussel Choromytilus meridionalis in the southern 

Benguela (Krock et al. 2009), originating from algal species under the influence of trace 

metals (Rhodes et al. 2006). 

 

Persistent organic pollutants (POPs) are produced mainly through industry and 

agriculture, the latter via the use of pesticides. POPs reach the oceans via point sources at 

the coast and atmospheric deposition. They can be transported large distances, frequently 

on the surfaces of plastic particles (Mato et al. 2001), especially microplastics (<5 mm) 

(Andrady 2011). Global monitoring of POPs is being done by the International Pellet 

Watch (http://www.pelletwatch. org/), which uses volunteers to collect plastic resin 

pellets from beaches and produces global maps showing concentrations at different 

geographical locations (Ogata et al. 2009). Current high values (Table 1) of 

hexachlorocyclohexanes (HCHs) from South Africa compared to other regions are 

believed to indicate their ongoing use in pesticides in the agricultural industry (Ogata et 

al. 2009). There are indications that the trends in POP concentrations off South Africa 

since the mid-1980s are decreasing or constant for concentrations of HCHs, 
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polychlorinated biphenyls (PCBs) and p,p’-dichlorodiphenyltrichloroethane (DDT) and 

its metabolites (Ryan et al. 2012). 

 

 
Marine plastic pollution is a global problem, with most information coming from surveys 

of plastics stranded on beaches (Coe and Rogers 1997), which are assumed to be 

representative of at sea pollution. Baseline data exist for South Africa from the 1980s 

(Ryan and Moloney 1990), with ongoing monitoring at five-year intervals. There has been 

a steady increase in plastic litter items on South African beaches (Figure 3), 

notwithstanding a concurrent increase in extensive and expensive beach-cleaning efforts 

by local municipalities and regional authorities (Ryan and Swanepoel 1996). However, 

there is little information on trends in microplastics and the extent to which these small 

particles might be entering marine foodwebs (Andrady 2011). 

 

Impacts of marine pollution 

Impacts of pollution can be acute or chronic. Oil spills typically represent acute impacts, 

often measured by their effects on seabirds. Species most severely affected are the African 

penguin Spheniscus demersus, Cape gannet Morus capensis and several species of gulls 

and cormorants. However, impacts of oiling extend beyond direct, immediate mortality 
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and include chronic effects through reduced breeding productivity and life expectancy of 

de-oiled birds (Adams 1994, Altwegg et al. 2008, Wolfaardt et al. 2008a, 2008b). A 

variety of toxic substances in the marine environment are absorbed and ingested by living 

organisms, some of them bio-accumulating in the foodwebs (Cockcroft et al. 1989). 

Elevated concentrations of trace metals can increase algal bloom toxicity, affecting 

shellfish aquaculture (Rhodes et al. 2006). Marine plastic debris has been shown to 

entangle sealife, be ingested by many organisms, act as a substratum for other pollutants, 

help disperse invasive species, reduce aesthetics and smother benthic habitats (Gregory 

2009). 

 

Hypoxia as a pressure on the ecosystem 

Ocean hypoxia occurs when dissolved oxygen concentrations in seawater range between 

0.5 and 2 ml l–1 and anoxia occurs at <0.5 ml l–1 [O2]. Naturally occurring oxygen 

minimum zones are found in eastern boundary upwelling ecosystems, and it has been 

hypothesised that global warming will also lead to an expansion of these zones (Stramma 

et al. 2010). In the southern Benguela region, hypoxic conditions develop north of the 

Cape Columbine upwelling cell (Penven et al. 2000), with remineralisation of high surface 

productivity forming low-oxygen waters at depth in a stratified system. Advection of this 

water mass causes variability in hypoxia in the rest of the region (Monteiro and van der 

Plas 2006). Effective wind-stress (which drives upwelling) and insolation (which drives 

stratification) cause seasonal and interannual variability in coastal hypoxic events. 

Episodic events can proceed to anoxia and are associated with harmful algal blooms and 

widespread mortality of marine species (Cockcroft et al. 2000). 

 

Impacts of low-oxygen water 

The effects of low-oxygen conditions are most notable when rock lobster Jasus lalandii 

walkouts occur (Cockcroft et al. 2000), although other impacts are possible, such as 

mortality of other benthic organisms (Zhang et al. 2010), mass mortalities of pelagic fish 

(Diaz and Rosenberg 2008) and detrimental effects on fish spawning and egg 

development (Ekau and Verheye 2005). Low-oxygen conditions can also affect inorganic 

elemental cycles, particularly the redox active metals iron and manganese, as well as their 

associated surface adsorbed species (i.e. PO4, NH3). Once stratification conditions have 

broken down, outgas- sing of greenhouse-active species (CO2, N2O and CH4) is also 

known to occur (Weeks et al. 2002, Santana-Casiana et al. 2009). The meteorological 

variables influencing the formation of low-oxygen water are sensitive to climate-related 

change and should be monitored in the future. 
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Ocean acidification as a pressure on the ecosystem 

Ocean acidification is an environmental issue that has scarcely been addressed in 

southern African waters. Ocean pH can decrease as a result of localised inputs to near-

coastal environments of acidic compounds, such as nitric and sulphuric acid (Doney et al. 

2007), and nutrient loading controls on carbonate chemistry (Borges and Gypens 2010), 

but these effects are largely confined to urban coastal settings. The main cause of ocean 

acidification is increasing concentrations in the ocean of dissolved CO2, which reacts with 

seawater to form increased concentrations of bicarbonate (HCO–) and hydrogen (H+) 

ions and decreased concentrations of carbonate ions (CO 2–). Cold water at high pressure 

has the greatest capacity to take up excess CO2 and ocean acidification is most noticeable 

at high latitudes and at depth (Orr et al. 2005). 

 

Some ocean areas are naturally more acidic than others because excess CO2 is introduced 

to their surface waters through remineralisation of organic matter at depth followed by 

upwelling (Feely et al. 2008). This process is important in eastern boundary upwelling 

systems, such as off the west coast of South Africa, resulting in seawater with naturally 

low pH values. Gruber et al. (2012) showed that these ecosystems might be particularly 

vulnerable to increasing anthropogenic CO2 concentrations. The authors used a number 

of model scenarios of the California Current system and predicted that the nearshore 

region might become undersaturated in aragonite, one of the mineral forms of calcium 

carbonate, within the next two to three decades. 

 

Impacts of ocean acidification 

Calcareous organisms are at particular risk of dissolution in more acidic conditions as 

calcite and aragonite saturation states decrease. However, the ultimate effects can be 

more complex, and localised effects of physiology (Checkley et al. 2009b) and cellular 

microclimate (Flynn et al. 2012) can be more important than bulk seawater CO2 

concentrations and pH in determining outcomes. In the marine environment off South 
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Africa there is little information available on historical or current pH values, although 

there have been some recent studies examining the impacts of ocean acidification on coral 

reefs (Mead et al. 2013). Organisms most at risk from acidification include planktonic 

groups like coccolithophores, pteropod molluscs and foraminiferans (Fabry et al. 2008), 

benthic molluscs (Gazeau et al. 2007) and crustaceans (Spicer et al. 2007). The benthic 

groups contain commercially important species for fisheries and aquaculture. 

 

Mining, exploration and extraction as pressures on the marine ecosystem 

The exploration for non-renewable resources in South Africa and their extraction can 

threaten regional biodiversity, with perceived threats decreasing from inshore to offshore 

and from west to east (Lombard et al. 2004). The most important non-renewable 

resources are hydrocarbons (oil and gas) and various minerals (principally diamonds), 

most of which are located on the west and south-west coasts of South Africa. To date, 

most marine mining operations have been conducted at water depths <140 m, although 

as technology develops and resource values increase, it is likely that reserves and deposits 

at greater depths will become viable. For example, off Namibia there are now plans to 

extract phosphates from sediments at depths in excess of 180 m (Midgley 2012). The 

drivers of the exploitation of marine non-renewable resources are purely economic and 

largely dictated by forces outside of the region. 

 

Impacts of non-renewable resource exploitation 

There is almost no published information on the impacts of non-renewable resource 

exploitation around South Africa, although a number of reports have been published in 

the grey literature. Direct impacts of resource extraction include changes to seabed 

topography and sediment particle structure. These changes in turn can affect bottom 

currents and sediment transport pathways, as well as biological communities. Indirect 

effects can also occur at the coast in terms of beach drawdown and changes to wave 

conditions and tidal currents. In many cases, sediments are released into the water 

column and these sediment plumes affect turbidity. Ultimately, the suspended sediments 

settle out, altering the nature of the seabed habitats and smothering benthic organisms, 

although these impacts depend largely on the type of mining operation, the sediment type 

and local hydrodynamics. The extraction of minerals off the west coast of southern Africa 

might also be accompanied by the release of toxic hydrogen sulphide (H2S) and methane, 

and the resuspension of organic-rich fines can lead to localised hypoxia, as well as 

(potentially) the release of toxic compounds that have been sequestrated over time in the 

sediments (Ryan et al. 2012). There also may be cumulative effects caused by extraction 

from adjacent operations, in time and space, by the same or different license holders. 

Regionally, it is clear from published work off southern Namibia that diamond mining has 

an effect on the composition of the sediments, and the natural ‘fining-upward’ sequence 

of deposits is completely and ‘irrevocably’ altered (Rogers and Li 2002). This leads to an 

increase in the textural heterogeneity of the substratum, and must inevitably lead to an 

altered benthic fauna. Information is entirely missing on natural levels of variability in the 

physical and biological benthic environment. As a consequence, it is impossible at this 

stage to contextualise environmental changes induced by the extraction of non-renewable 

resources in South African marine ecosystems, although the area of the seabed that is 

currently being exploited is relatively small. 
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Observed changes to South African marine ecosystems 

Observed changes  in  the  physical  environment  off South Africa 

Using satellite-derived sea surface temperature data (SST), Roy et al. (2007) and Rouault 

et al. (2010) found cooling trends nearshore off the west and south coasts of South Africa, 

which they attributed to an increase in upwelling-favourable winds. This contrasts with 

the results of Demarcq (2009), who used Pathfinder version 5 data products and found a 

weak warming trend of 0.1 °C decade–1 for the southern Benguela over the period 1998–

2007. However, Dufois et al. (2012) reported a warm bias in the Pathfinder data for 

versions before version 5.2, and suggested this bias is the cause of the discrepancy. Roy et 

al. (2007) found that the inner shelf east of Cape Agulhas became colder by about 0.5 °C 

in 1996; this cooling has persisted. The shift was linked to signals in atmospheric surface 

pressure and zonal wind data, indicating the main driver of the cooling was an increase in 

coastal upwelling east of Cape Agulhas. 

 

Rouault et al. (2010) also analysed monthly SSTs (from 1985 to 2009). They showed a 

cooling trend nearshore off the West (January–August) and South (May–August) coasts, 

and a warming trend offshore in the Agulhas Current (all year) and off KwaZulu-Natal (in 

summer only). The cooling was attributed to an increase in upwelling-favourable winds. 

The warming was attributed to an intensification of the Agulhas Current, caused by 

changes in winds. Both sets of results are consistent with the hypothesis that eastern 

boundary ecosystems will experience an increase in upwelling-favourable winds, because 

of intensified atmospheric pressure gradients in coastal areas (Bakun and Weeks 2008). 

Demarcq (2009) used monthly wind data and noted an increase of 0.36 m s–1 decade–1 

in the strength of the equatorward component of the winds in the southern Benguela from 

2000 to 2007. In general, observed global trends (derived from a 23-year time-series 

from satellite altimeter measurements) indicate increased wind speed and wave height in 

the oceans (Young et al. 2011), with a rate of increase that is greater for extreme events. 

The remotely sensed SST and wind datasets off South Africa span less than three decades. 

Observed variability in ocean conditions are known to occur on many scales (Hermes et 

al. 2007), some of which have decadal periods, and it is important to continue building on 

these time-series and analyses to confirm long-term trends. 

 

Observed changes in ocean chemistry off South Africa 

Datasets that can be used to estimate average or baseline dissolved O2   concentrations 

extend from 1958 for the southern Benguela (Monteiro and van der Plas 2006). There has 

been a significant decreasing trend in dissolved oxygen at St Helena Bay on the West 

Coast (Hutchings et al. 2009, 2012), at a rate of approximately 20 μl l–1  y–1  (Figure 4). 

Information pre-dating these dissolved O2 datasets is in the form of historical 

documentation of severe anoxic events, which have happened intermittently, the earliest 

dating back to 1869 (Pitcher and Calder 2000). It is not possible to assess longer-term 

oxygen changes in the region caused by anthropogenic activity, particularly since the 

onset of industrialisation. Models of hypoxia and upwelling are generally site-specific and 

cannot be adapted easily to other areas with similar conditions (Peña et al. 2010), 

implying that any given ‘baseline’ value is only valid for the site for which the model was 

developed. 
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On the East Coast, upwelling has been observed inshore of the Agulhas Current at three 

different sites: Cape St Lucia (Lutjeharms et al. 2000a), Port Alfred (Lutjeharms et al. 

2000b) and Jeffreys Bay (Schumann et al. 1982). Although dissolved oxygen 

measurements have  been  taken  (Lutjeharms  et al. 2010), there have been no reports of 

ocean anoxia or hypoxia in these areas. However, the formation of intermittent and 

localised low-oxygen events in these areas cannot be excluded as the temporal scale for 

sampling has been irregular and future work could identify East Coast upwelling sites 

where low-oxygen conditions develop. 

 

Ship-based studies off the central KwaZulu-Natal shelf in 2009 and 2010 recorded an 

area of low-oxygen water in the vicinity of the Thukela River (Oceanographic Research 

Institute, Durban, unpublished data). The origins, extent and temporal nature of this low-

oxygen event have yet to be determined. Persistent upwelling is known from the nearby 

KwaZulu-Natal Bight inshore of the Agulhas Current (Lutjeharms et al. 1989, Meyer et al. 

2002), boosting nutrient levels in an otherwise oligotrophic system (Hutchings et al. 

2010). However, this is unlikely to cause anoxic or hypoxic conditions. Rather, low-

oxygen waters are thought to be a consequence of the substantial outflow from nearby 

rivers of organic matter of terrestrial origin, which subsequently decomposes 

(Oceanographic Research Institute, Durban, unpublished data). 

 

Observed changes in marine organisms and communities off South Africa 

General responses in marine ecosystems to recent environmental change include changes 

in distribution and local abundance of species, changes in phenology, changes in 

community composition, changes in dominant foodweb pathways and ecosystem 

dynamics, and changes in morphology and behaviour (Parmesan 2006). 

 

Changes in distribution and local abundance 

There are some useful, long-term datasets from South Africa that allow assessments of 

long-term trends (Table 2), but in many cases the time-series are too localised, too short 

or are interrupted. In general, trends in abundance at low trophic levels are typically 
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explained by changes in the physical and chemical environment, those at high trophic 

levels by fishing (Fréon et al. 2005) and at mid-trophic levels by a combination of the two 

(Table 2). Pollution, ocean acidification and mining are rarely invoked as explanations. 

An increasing trend in measured surface chlorophyll during the 1990s has been 

documented for the West Coast, based on data from the St Helena Bay region (Verheye 

2000), but Hutchings et al. (2009) found little overall trend in chlorophyll measurements 

from 2000 to 2008 in  the same region. For the southern Benguela ecosystem as a whole, 

the phytoplankton variability derived from SeaWiFS ocean colour data and modelled 

primary production based on depth-integrated chlorophyll a distributions showed no 

trend over the period 1997 to the early 2000s (Demarcq et al. 2007). However, there was 

an average decrease of 0.4 mg Chl m–3 decade–1 over the continental shelf when the 

time-series was longer, from 1998 to 2007 (Demarcq 2009), with most of the decrease 

south of Cape Columbine. Zooplankton vary both spatially and temporally around the 

South African coastline, with inshore diversity being generally higher and biomass lower 

along the East Coast than the West Coast (Verheye et al. 1994). Seasonal zooplankton 

maxima appear in spring/summer, related to indices of wind-driven upwelling 

(Richardson et al. 2003, Hutchings et al. 2006), although winter copepod production also 

contributes significantly to annual production (Huggett et al. 2009). A long-term increase 

in the abundance of zooplankton in St Helena Bay on the West Coast from 1951–1996 

(Verheye et al. 1998) was reflected in an increase in copepod biomass for the entire West 

Coast since the 1970s (Huggett et al. 2009). Since the mid-1990s, the long-term 

increasing trend in zooplankton abundance in St Helena Bay has reversed (Figure 5), but 

this pattern is not uniform along the West Coast and western Agulhas Bank. These 

changes as well as changes in the size structure of the zooplankton community are 

thought to result locally from both bottom-up forcing by environmental fluctuations and 

varying top-down predation pressure and selectivity of small pelagic fish species 

(Hutchings et al. 2006, Huggett et al. 2009, Hutchings et al. 2012). Gelatinous 

zooplankton, regarded as sentinel groups signalling large-scale changes in marine 

ecosystems (Hay 2006), have shown no consistent changes in abundance in St Helena 

Bay over the period 1988–1997, although warm periods were associated with distinctly 

different taxa than cold periods (Buecher and Gibbons 2000). 

 

One of the best-documented changes in  distribution that has occurred off South Africa is 

for commercially and trophically important small pelagic fish species (sardine and 

anchovy). Their population sizes are naturally variable, with both species exhibiting a 

positive relationship between stock size and distributional area (Barange et al. 1999, 

van der Lingen et al. 2006a), so that changes in population size affect spatial extent. 

Sardine biomass increased from reduced levels in the late 1990s, peaking at more than 4 

million tonnes in 2002 but decreasing again by 2008 (Coetzee et al. 2008). Anchovy 

biomass increased from a low in 1996 to peak in 2001, after which it remained relatively 

high (Fairweather et al. 2006). Since data collection began in 1985, the bulk of both 

anchovy and sardine biomass has been found on the West Coast, but since 1997 and 1999 

respectively, the greater proportion of biomass has been found east of Cape Agulhas (van 

der Lingen et al. 2002, Roy et al. 2007, Coetzee et al. 2008). A recent decrease in sardine 

population size is believed to be the result of poor recruitment since 2004, an 

unexplained increase in adult mortality (i.e. not caused by fishing) and a spatial mismatch 

between fishing effort and sardine biomass, resulting in high exploitation rates west of 
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Cape Agulhas (Coetzee et al. 2008). The cause of the spatial mismatch was a relative 

increase in sardine biomass east of Cape Agulhas in the late 1990s, attributed to a 

combination of disproportionately large spawning and recruitment success during the late 

1990s/early 2000s and a natal-homing effect (Coetzee et al. 2008). It is also possible that 

there are two sardine stocks, each favouring different coasts for spawning (Coetzee et al. 

2008). For anchovy, environmental mediation is suggested as the cause of the increased 

proportion found east of Cape Agulhas since 1996, which has been linked to inshore 

cooling and a change in the local food environment (Roy et al. 2007). 

 

For the main piscivorous fish species off South Africa, there have been observed changes 

in abundance but most of these have been attributed to fishing pressure. All exploited 

species have decreased markedly in abundance since commercial fishing started (Table 

2), but there are also recent changes that are not easily attributed simply to bulk biomass 

removal by fishing. Average abundance of both hake species appeared to be lower during 

the 2000s than during the 1990s, based on summer/autumn survey data (Rademeyer et 

al. 2008). Other demersal species were also affected, and size-based indicators showed a 

decrease between 1986 and 2003 as a direct result of fishing pressure (Yemane et al. 

2008). Survey data from 1986 to 2009 indicated changes in demersal fish assemblages on 

the West Coast in 1992 and 2003/2004, corresponding to periods when shifts were noted 

in West Coast rock lobsters and pelagic fish species (Atkinson et al. 2011a). Fast-growing, 

early-maturing demersal species increased in abundance and slow-growing, late-

maturing species decreased (Atkinson et al. 2011a), as is generally predicted to result from 

fishing. However, fishing pressure was relatively stable when these shifts occurred, and 

the changes are believed to be the result of indirect fishing effects in combination with 

environmental fluctuations (Atkinson et al. 2011a). 

 

Hake and other demersal species did not appear to increase in  biomass  on  the  South  

Coast to  match  the increase observed in major prey species (small pelagic fish) in the 

2000s (van der Lingen et al. 2006a). In contrast, Atlantic-based albacore tuna Thunnus 

alalunga abundance off South Africa seems to have been decreasing since the late 1990s 

whereas that of yellowfin tuna T. albacares, originating in the Indian Ocean, appears to 

have increased, which could be in response to the increase in easterly bio-mass of small 

pelagic fish (van der Lingen et al. 2006b). 
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The greatest impacts on most linefish species have been by fishing, although this has 

possibly been exacerbated recently by environmental changes. By the 1990s catches per 

unit effort (an index of abundance) of a number of the slow-growing teleost species 

targeted by the linefishery in the Western Cape had decreased well below sustainable 

levels (Table 2; Griffiths 2000, Griffiths et al. 2004). The sparid seventy-four 

Polysteganus undulosus has been considered commercially extinct since before the 

fishery was closed in 1998 (Chale-Mastau et al. 2001). Size structures of communities also 

have been affected, with decreases in mean length associated with increased fishing 

pressure, except in the case of snoek Thyrsites atun (Yemane et al. 2004). More nomadic 

species (snoek and yellowtail Seriola lalandi) have been less impacted by fishing and do 

not appear to have undergone notable changes in distribution or abundance (Table 2; 

Griffiths 2000, Griffiths et al. 2004), although an increase in snoek biomass since the 

1980s has been suggested, based on calculations from mass-balanced ecosystem models 

of the southern Benguela compared over different time periods (Osman 2010). 

 

Decreases in catch per unit effort, to the point of severe depletion in some cases, also have 

been recorded off the Eastern Cape (Table 2; Griffiths 2000, Brouwer and Buxton 2002). 

Similar patterns are evident in the KwaZulu-Natal linefish fisheries, where total catch and 

catch per unit effort have decreased since the early 1900s, with most resident species now 

overexploited (Penney et al. 1999, Mann 2000). Current catch composition shows an 

increased contribution from small rather than large reef fish species and shoaling migrant 

species and, as in Cape waters, a decrease in large reef dwellers such as seventy-four, red 

steenbras Petrus rupestris and rock cods (Penney et al. 1999). 

 

Clark (2006) had speculated that under climate change, fish species on the East Coast 

should occupy waters farther south, whereas species on the West Coast might be 

displaced to greater depths or become restricted to the immediate vicinity of upwelling. 

There have been changes in depth distributions of some species but these have been 

attributed to fishing pressure. Species whose depth distributions increase with age, such 

as red steenbras and carpenter Argyrozona argyrozona, have undergone offshore shifts 

in adult abundance as their inshore stocks have been depleted by fishing. The range of red 

steenbras has also contracted around the coast as stocks in areas with a longer history of 

exploitation are fished down, leaving abundance off the Transkei Coast highest (Griffiths 

2000). More recently, however, warming in the Agulhas Current region on the east coast 

of South Africa has been shown to coincide with increased abundance and diversity of 

tropical species at subtropical reefs off KwaZulu-Natal (Lloyd et al. 2012). These results 

support the predictions of poleward range expansions and increased species richness as 

sea temperatures increase (Lloyd et al. 2012). 

 

A large number of seabird species have undergone changes in distribution or abundance 

since the 1990s (Table 2). Suggested causes of these changes are climate impacts and food 

availability. Crawford et al. (2008a) showed that changes in seabird populations off South 

Africa have been similar to those observed off Marion Island and elsewhere, attributing 

these changes to climate change. Site-faithful, long-lived species, such as Cape gannet, 

have been shown to be particularly susceptible to local extinctions as a result of 

environmental change (Pichegru et al. 2010). The local availability of prey has also 

impacted seabirds, with species with small foraging areas or fixed breeding localities 
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(African penguins, Cape gannets and Cape cormorants Phalacrocorax capensis) being 

more susceptible than widely ranging species such as the swift tern Thalasseus bergii 

(Crawford et al. 2008a, 2008b, 2008c, 2008d, Crawford 2009). Another important factor 

impacting seabird population numbers is predation. Colonies of African penguins and 

bank cormorants P. neglectus at Lambert’s Bay, previously the northernmost colonies for 

both species in the Western Cape, have been considered extinct since 2006 (Crawford et 

al. 2008a) and 1999 (Crawford et al. 2008b) respectively, partly as a result of local 

predation by Cape fur seals Arctocephalus pusillus pusillus. In 2003, African penguins 

established a new colony at De Hoop, but land-based predation caused numbers to drop 

(Underhill et al. 2006, Crawford 2007). At Lambert’s Bay, breeding was abandoned by the 

Cape gannet colony in 2006, attributed by Crawford et al. (2007a) to predatory attacks by 

Cape fur seals. Breeding subsequently resumed (Distiller et al. 2012) following the 

introduction of management measures to reduce seal–seabird interactions at the colony. 

 

In contrast to many fish species, which have decreased in abundance as a result of fishing, 

marine mammals have tended to remain constant or increase in abundance over the past 

decades because of a cessation of harvesting in combination with other factors. The Cape 

fur seal population was estimated at 2 million in 1993, approximately 40% of which 

resided in the southern Benguela with the remaining majority found in Namibia 

(Butterworth et al. 1995, Kirkman et al. 2007). Since 1993, distribution and abundance of 

the Cape fur seal in the southern Benguela have remained relatively stable (Kirkman et al. 

2013), and did not reflect the increase in small pelagic fish biomass in the early 2000s or 

the increase in relative distribution of these prey species on the South Coast. It is likely 

that limited suitable space for the expansion of breeding, particularly along the South 

Coast, contributed to this stability (Kirkman et al. 2013). However, since the 1990s a fur 

seal colony on the Robberg Peninsula that was harvested to extinction in the 1800s has 

been recolonised and is expanding, coinciding with an increase in small pelagic fish in the 

area (Huisamen et al. 2011). Conversely, abundance on the South-East Coast of Bryde’s 

whales Baleanoptera edeni, which also prey on small pelagic fish, appears to have 

decreased since the 1980s (Best 2001, Penry et al. 2011), possibly because of small-scale, 

local fluctuations (Penry et al. 2011). Numbers of southern right whales Eubalaena 

australis have continued to recover at a rate of approximately 7% annually since 

monitoring began in the 1970s (Best et al. 2001, Brandão et al. 2010) and there has been 

an increase in humpback whales Megaptera novaeangliae migrating through the coastal 

waters of KwaZulu-Natal since the late 1980s (Findlay et al. 2011). On the West Coast 

there are approximately 500 humpback whales that are temporarily resident during 

spring and summer when they feed (Barendse et al. 2011). Dolphin abundance in the 

southern Benguela is not well known and, although some population-level studies have 

been undertaken (e.g. Elwen et al. 2009), there is a lack of long-term abundance data. 

Populations of loggerhead turtles Caretta caretta show a significant increase since the 

1960s, when a nesting site monitoring and protection programme was introduced on the 

KwaZulu-Natal beaches (FAO 2006). The nesting population of leatherback turtles 

Dermochelys coriacea has remained unchanged (Nel 2009 in Brazier et al. 2012). 

 

Changes in timing/phenology 

Changes in timing of specific ecological processes might be expected when local 

conditions change as a result of climate change. Off South Africa, the lack of time-series 
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data showing intra-annual conditions in shelf and benthic ecosystems makes it difficult to 

detect any changes in plankton groups if they are occurring. However, top predators can 

act as sentinel species, integrating and responding to environmental change with a greater 

likelihood of being detected than small species. Durant et al. (2010) related changes in the 

timing of breeding of African penguins and their growth rates on Dassen Island to the 

Southern Oscillation Index and SSTs at breeding and prey-spawning grounds. The African 

penguins at Dassen Island bred approximately one month earlier during the period 

2004–2008 than they did from 1995 to 2001 (Durant et al. 2010). The change was 

attributed to warmer temperatures. However, this response had a knock-on effect because 

the penguins went on to exhibit reductions in per capita growth rates. This was believed 

to be a result of temporal mismatches in winter between the penguin predators and their 

prey, which are young-of-the-year pelagic fish (Durant et al. 2010). Changes in phenology 

at one trophic level can thus have unexpected results at other trophic levels, with both 

positive and negative feedbacks possible. 

 

Changes in community composition 

The species richness of zooplankton communities changes around the South African 

coastline in a manner consistent with changes in biogeography. There are peaks in the 

tropical and subtropical waters of the East Coast and troughs are obvious in the cold-

temperate waters along the West Coast (Gibbons et al. 1995, 2010). Fish communities 

also show changes in richness around the coast (Turpie et al. 2000), although 

distributional peaks in endemism vary with taxa. Cross-shelf changes in demersal fish 

communities linked to bathymetry are pronounced (Yemane et al. 2010), with distinct 

assemblages associated with different depth strata (Fennessy and Groeneveld 1997, 

Walmsley et al. 2007, Attwood et al. 2011). Information on depth-related changes in other 

taxa is restricted to sponges along the East Coast, which, like demersal fish, decrease in 

richness with increasing depth (Samaai et al. 2010). 

 

In contrast to our understanding of spatial changes in species richness and evenness 

around South Africa, our knowledge about temporal changes in either of these community 

attributes is limited. In the case of zooplankton, there is a coupling between oceanography 

and diversity measures, with cool, recently upwelled water tending to support 

assemblages of lower diversity than warm, stratified water. This should be reflected in 

seasonal changes to communities, although there are few studies that have explored this. 

In the case of fish communities, there is little evidence of seasonality in the species 

composition of demersal catches along the West Coast overall (Atkinson et al. 2011b, but 

see Roel 1987), although limited data suggest that some species could move inshore and 

offshore on a seasonal basis (Atkinson et al. 2011b). 

 

Studies of changes in community composition at interannual scales are scarce, and their 

results need to be interpreted with caution. In the absence of standardisation (such as 

occurs, for example, in continuous plankton recorder surveys [Richardson et al. 2006]) or 

calibration, there are marked effects on estimates of species diversity caused by 

interannual changes in survey protocols, survey design, sampling gears (e.g. Atkinson et 

al. 2011b) and both taxonomy and taxonomic expertise (e.g. Bianchi et al. 2000). Such 

issues in part complicated the conclusions of Atkinson et al. (2011b), who noted two 

changes in the composition of demersal fish assemblages along the west coast of South 
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Africa. The first of these occurred in the early 1990s and the second in the mid 2000s, 

with the latter confounded by changes in sampling gear. Although Atkinson et al. (2011b) 

did not examine richness or evenness of the fish fauna specifically, it is clear that 

evenness at least will have changed because of changes in relative abundance of different 

species among the three periods. In the absence of major changes in fishing pressure over 

the study period (1986–2009), these authors attributed the changes to ‘long-term indirect 

effects of fishing (e.g. species replacements, trophic cascades, habitat modification) in 

combination with environmental changes’ (Atkinson et al. 2011b, p 169). Their arguments 

for environmental change reflect the fact that the later changes are coincident with the 

abovementioned eastward shift for pelagic fish and rock lobster (Mead et al. 2013). 

 

Other studies have explicitly attributed long-term changes in composition of fish 

communities to fishing. Using discrete time-series within a 100-year dataset collected 

from the Cape coastline (Kei River to Orange River), Yemane et al. (2004) showed 

significant changes in linefish catch assemblages. Increases in the number of linefish 

species were observed along the South-East and South coasts and a decrease along the 

West Coast. The South-West Coast showed no obvious change. These changes reflect 

changes in the dominant species caught, which in turn reflects fishing pressure. In the 

cool-temperate Western Cape region, catches have become dominated by a single, fast-

growing species (snoek), whereas catches on the warm-temperate South Coast have 

become more diverse over time (Griffiths 2000, Yemane et al. 2004) as previously 

preferred fish species (geelbek Atractoscion aequidens and silver kob Argyrosomus 

indorus) have been depleted. Similar increases in diversity and richness were observed by 

Yemane et al. (2010) in a study of demersal fish assemblages off the South Coast over the 

period 1988–2003. The changes were attributed to the differential impact of exploitation 

on different species (Griffiths 2000). 

 

Using a foodweb model of the southern Benguela fitted to time-series data (catch and 

abundance), Shannon et al. (2009) suggested there was no overall change in biomass 

diversity over the period 1978–2003, although it steadily increased from 1978 to 2000 

before decreasing markedly to 2003. During the same period, the trophic level of the 

community decreased. These patterns were probably influenced by a large peak in 

biomass of small pelagic fish in the early 2000s, which would have caused biomass 

diversity and mean trophic level to decrease. Biomass diversity would have increased in 

the early period as dominant species were reduced by fishing. 

 

Species richness on the East Coast has increased as a result of range extensions of tropical 

fish species to the south. For example, off the Pondoland Coast, a subtidal (1–30 m) 

ichthyofaunal survey yielded 138 species from 49 families, with 30 species from 15 

families representing range extensions to the south (Mann et al. 2006). Farther south, 

James et al. (2008) reported the appearance of several tropical fish species in a warm-

temperate estuary on the South-East Coast from 1998 to 2006. The authors attributed 

these southward range extensions to increasing local SSTs over this period. 

 

Ecosystem dynamics and dominant foodweb pathways  

Short- and long-term (Kirby and Beaugrand 2009) shifts in dominant trophic pathways 

have been documented for a variety of marine ecosystems (Moloney et al. 2010). Some of 
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these shifts have been shown to reverse relatively quickly, but other ecosystems have not 

reverted to their previous states over time (Jarre and Shannon 2010). At least two marked 

marine ecosystem changes occurred in southern Africa during the past few decades 

(Hutchings et al. 2009), one off Namibia and one off South Africa. These changes have 

variously been explained by overfishing (off Namibia; Boyer et al. 2001), spatially biased 

fishing mortality (off South Africa; Coetzee et al. 2008), and changed environmental 

conditions (van der Lingen et al. 2006a, Roy et al. 2007, Coetzee et al. 2008). 

 

The Namibian pelagic ecosystem changed dramatically with the collapse of stocks of small 

pelagic fish in the late 1960s, resulting in the proliferation of jellyfish, increased 

abundance of a key species (bearded goby Sufflogobius bibarbatus),  and  major  changes  

in  seabird  and  marine mammal predator populations (Cury and Shannon 2004, van der 

Lingen et al. 2006a). Off South Africa, large-scale spatial changes occurred in the 

abundance of important species off the South and West coasts, including commercially 

important small pelagic fish species (sardine and anchovy) and rock lobsters (van der 

Lingen et al. 2006a). Species of conservation importance, such as African penguins and 

Cape gannets, also exhibited large changes in relative abundance along the coastline, 

probably as a result of changes in their prey resources (van der Lingen et al. 2006a). 

 

These concurrent changes in species abundances and distributions in the southern 

Benguela reflect complex alterations to the functioning of the ecosystem. Balanced 

trophic models for 1900, 1960, 1980 and 2004–2008 required an overall decrease in 

biomass of large fish (adult hake and large pelagic fish) and an increase in biomass of 

planktivorous fish by the 2000s following an initial decrease to the 1980s (Shannon et al. 

2003, Watermeyer et al. 2008, Osman 2010). Ecosystem-level indicators based on data 

from 1986 to 2005 showed that overall biomass of the community increased but the 

proportion of predatory fish and the average trophic level decreased (Bundy et al. 2010). 

Analyses using decision-trees indicated that the overall state of the southern Benguela 

ecosystem had decreased since the 1980s (Bundy et al. 2010). Diversity indices decreased 

from theoretical, historical ‘pristine’ levels to the 1960s, but were greater in the 2000s 

compared with the 1960s, probably as a result of high small pelagic fish biomass in the 

most recent period (Watermeyer et al. 2008). An index of the overall health of seabirds in 

South Africa, derived from population estimates for 10 dominant species from the 1950s 

to 1999, increased from the 1950s to the 1970s then decreased to the 1990s, with an 

overall decrease of 5–12% over the whole period (Underhill and Crawford 2005). 

 

The times at which ecosystem changes were triggered, and their ultimate causes, are 

difficult to identify unambiguously because of lagged effects and differences in life-history 

parameters among dominant species and affected groups. This is similar to observations 

made in the North Sea, where the exact years of the change vary according to the group(s) 

used to illustrate the change (Beaugrand 2004). Howard et al. (2007) applied a statistical 

method to long-term South African datasets and identified two periods that might signal 

the onset of major ecosystem changes since 1950. The first occurred during the 1960s, 

attributed to heavy fishing pressure but with some environmental forcing. The second 

change occurred in the early 2000s, attributed mainly to environmental forcing. Fishing 

pressure was identified by Mackinson  et  al.  (2009)  as the primary driver of change  at 
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an ecosystem  level  in the southern Benguela, based on an ecosystem model constructed 

to represent the period 1978–2002 (Shannon et al. 2004). 

 

A number of modelling studies have investigated possible effects of global change on 

South African marine ecosystems. Smith and Jarre (2011) used a frame-based modelling 

approach to represent different scenarios of relative abundance of sardine and anchovy, 

assumed to result from different environmental drivers. The authors found that fishing 

could cause changes in states, but these occurred more readily if environmental triggers 

were used as well. A similar result was obtained by Heymans et al. (2004) and 

Watermeyer et al. (2008), whose results from trophic ecosystem models showed that 

fishing appeared to reduce the resilience of the ecosystem to environmental 

perturbations. There are complex interactions in ecosystems and these make it difficult to 

disentangle causes and effects, even when the ecosystems are represented by simplified 

ecosystem models. 

 

Along the east coast of South Africa, the shelf ecosystems are likely to be responsive to 

fishing and to changes in river flows, either through river management or through 

changes in rainfall over the continent. Changes in river flows would affect riverine inputs 

to the shelf ecosystems, which are detritus-driven rather than phytoplankton-driven 

(Ayers and Scharler 2011). Crustacean and linefish fisheries of the Thukela Banks could 

be impacted by reduced flows, with the commercial linefishery projected to have a 20% 

reduction in catch and a 17% reduction in annual value under extreme flow reduction 

scenarios (Turpie and Lamberth 2010). The prawn fishery would probably experience 

limited economic effects because it is buffered by having large diversity in the bycatch and 

important contributions by catches offshore that are not affected by river flow in the short 

term (Turpie and Lamberth 2010). 

 

In general, off South Africa, the strong signals  that have been observed in marine 

ecosystems and the good understanding that exists of ecosystem functioning have not 

provided clarity on the drivers of observed changes, their triggers or the likelihoods of 

their persistence. It has been possible to document some changes and to infer possible 

causal mechanisms for past and projected future changes. However, without improved 

monitoring systems and longer time-series of environmental and biological data, it will be 

difficult to unequivocably identify and understand future observed changes or to predict 

their consequences with any degree of confidence. 

 

Adaptability to change 

Some possible and unpredictable consequences of global change involve the abilities of 

organisms to adapt to changes in their biotic and abiotic environments (Moloney et al. 

2011). These adaptations can be behavioural or involve changes in phenotype or genotype. 

A common behavioural adaptation is to simply move from unfavourable to favourable 

areas, changing the distributions of many species. Other species have inherent abilities to 

adapt quickly, because they occur naturally in dynamic marine environments. These 

species could retain their current large-scale distributions but alter other aspects of their 

biology or ecology, with knock-on effects in the ecosystem. 
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In the dynamic coastal upwelling region off southern Africa, there are a number of 

examples of species pairs where each member of the pair appears to be adapted in 

fundamentally different ways to continually changing environments. For copepods, 

Huggett et al. (2007) investigated the factors influencing the relative abundance on the 

West Coast and Agulhas Bank of Calanoides carinatus and Calanus agulhensis. They 

found the two species responded in similar ways to temperature, food concentration, food 

size and type but differently to variability in food abundance. Calanus agulhensis 

recovered quickly from short periods of starvation but Calanoides carinatus recovered 

quickly from long periods without food. Thus, the two species appear to be adapted to 

variability at different time-scales. Sardine and anchovy are similarly suited to variable 

environments but their populations off southern Africa appear to vary at different time-

scales. The longer lifespans of sardine, their omnivorous diet and their ability to filter-

feed smaller plankton than anchovy allow their populations to respond to decadal-scale 

variability, whereas anchovy populations are more closely linked to interannual variability 

(van der Lingen et al. 2006a). Sardine also display variability in body shapes and 

vertebral counts, possibly in response to environmental cues (Wessels 2009). 

 

Another important species pair off the West Coast is that of the Cape hakes. This is the 

only region in the world where two hake species have similar latitudinal distributions, 

being separated mainly by depth (Lloris et al. 2005). Wilhelm (2012) used studies of 

otoliths of M. capensis off Namibia to conclude that this species was faster-growing than 

had previously been assumed. These results were underpinned by the hypothesis that M. 

capensis occupies a niche that allows the species to react quickly to short-term variability 

in the pelagic and demersal environments, similar to anchovy and Calanus agulhensis. In 

contrast, the slower- growing M. paradoxus relies on longer-term variability to produce 

good year-classes that sustain the population over many years (Wilhelm 2012), as has 

been suggested for sardine and Calanoides carinatus. 

 

On the East Coast, James et al. (2007) compared the impacts of intermittent opening of 

estuaries on two fish species that require these habitats as juveniles for at least the first 

year of life. They concluded that white steenbras Lithognathus lithognathus was more 

susceptible to changes in estuary opening-closing than Cape stumpnose Rhabdosargus 

holubi, illustrating again that not all species are likely to be impacted in the same ways by 

global change. It would be useful to include information on species-level characteristics in 

ecosystem models, so as to capture some of the basic differences that exist among species 

in their biological and ecological attributes. In this way it might be possible to capture 

some of the interplay among species diversity and trophic flows in ecosystems, improving 

the ability to understand and predict potential plausible ecosystem states. 

 

Synthesis 

In reviewing the evidence for long-term changes in South Africa’s offshore marine 

ecosystems it was clear that there are insufficient baseline data to disentangle short- and 

medium-term variability from long-term change. Where large-scale ecosystem changes 

have been observed, it was generally not possible to attribute these changes to specific 

pressures. The current state of understanding mainly involves untested hypotheses based 

on incomplete data, but with relatively good understanding of the processes involved, and 

model-assisted interpretations of the complex interactions. 
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The need for baseline data and continuous monitoring 

It is clear that changes are occurring in the pressures on the marine environment (Fréon 

et al. 2005) but it is difficult to quantify these and, in some instances, it is not clear what 

data are available. Important, unidirectional drivers, such as the increase in atmospheric 

carbon dioxide, are measured on a global scale. However, their regional impacts are 

difficult to identify because there are few baseline values from shelf waters to compare 

with current and future measurements. Other notable knowledge gaps include the effects 

of ocean acidification on South African ecosystems as opposed to individual species, 

adaptation responses of species groups over realistic, long time-scales and the effects of 

pH on metal-organic interactions. 

 

There are few historical records of seawater quality in South Africa to use as baselines for 

tracking changes and possible impacts of organic and other pollutants. For trace metals 

there are also difficulties associated with accurate sampling and measurement, for which 

the employment of clean techniques is relatively recent (Cutter et al. 2010). The sparse 

data that exist on pollutants tend to be better represented from the East Coast than the 

West Coast, but these data are patchy in space and time. The general paucity of 

measurements and difficulties in accessing what data there are make it difficult to draw 

many conclusions on the role of marine pollution as a significant pressure in South 

Africa’s marine ecosystems and long-term trends cannot be identified. There is also 

limited understanding of eco-toxicological effects and impacts on marine life. In the case 

of impacts of offshore mining operations, it would be useful if the data collected by private 

and parastatal license holders during their mandatory environmental monitoring 

programmes were to be standardised and centralised. Some companies are relatively 

transparent and open in this regard, but others are not. This should change; the 

companies have access to financial resources for monitoring the environment that the 

regional and national governments cannot match for this purpose. 

 

In contrast to the situation for pollution, mining and ocean acidification pressures, there 

has been  reasonably good information available for many fisheries and it is possible to 

track the history of fisheries exploitation in South African marine ecosystems. There are 

also good data available for some commercially important species and those of 

conservation interest. However, data on plankton are patchy in space and time, and 

confounded by changes in sampling methods and identification skills. Many of the data 

gaps can be partly filled through the use of models, and mass-balance models have been 

particularly useful in constraining likely biomass ranges for species that are poorly known 

(e.g. Watermeyer et al. 2008). 

 

The need for coherent ecosystem projects 

This study was motivated by the need to synthesise information from projects funded 

through the South African Network for Coastal and Oceanic Research’s SEAChange 

programme under the ‘Ecosystems and Change’ theme (SANCOR 2006). The results of 

some of these projects were used, but there was limited coherence among them, possibly 

because project proposals are prepared by principal investigators who are effectively in 

competition for limited funding with their potential collaborators. As a result, some 

obvious gaps were not addressed and it was difficult to use the results in a coordinated 
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fashion. There is also very limited understanding of how primary productivity and the 

structures of phytoplankton communities might be changing in response to changes in 

ocean temperatures, despite the fundamental importance of primary production in 

ecosystem models. Some of these issues are likely related to limited resources and the 

difficulties of carrying out ship-based research, but they also reflect the difficulties of 

designing appropriate research projects for ecosystem-level issues when the funding is 

allocated to individual principal investigators. 

 

To understand the impacts of global change requires good long-term datasets and the 

ability to unambiguously identify change and the causes of that change. At present, the 

time-series off South Africa are mostly too short and the data too sparse to meet 

conditions for attributing observed changes to causal processes. It is difficult to 

distinguish between speculation and evidence-based change, especially as the latter often 

is associated with large uncertainties. However, it is important to continue documenting 

changes that have been observed, searching for patterns in observations, identifying 

consistency in hypotheses to explain observed changes and testing these hypotheses 

through future observations and analyses. A coordinated approach is needed to ensure 

that the right data are effectively collected, archived and managed so future generations 

have an informed basis on which to make decisions relating to the marine and coastal 

environment. 
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