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Abstract

Recent changes have been observed in South African marine ecosystems. The main
pressures on these ecosystems are fishing, climate change, pollution, ocean acidification
and mining. The best long-term datasets are for trends in fishing pressures but there are
many gaps, especially for non-commercial species. Fishing pressures have varied over
time, depending on the species being caught. Little information exists for trends in
other anthropogenic pressures. Field observations of environmental variables are
limited in time and space. Remotely sensed satellite data have improved spatial and
temporal coverage but the time-series are still too short to distinguish long-term
trends from interannual and decadal variability. There are indications of recent cooling on
the West and South coasts and warming on the East Coast over a period of 20—30 years.
Oxygen concentrations on the West Coast have decreased over this period. Observed
changes in offshore marine communities include southward and eastward changes in
species distributions, changes in abundance of species, and probable alterations in
foodweb dynamics. Causes of observed changes are difficult to attribute. Full
understanding of marine ecosystem change requires ongoing and effective data collection,
management and archiving, and coordination in carrying out ecosystem research.

Introduction

Human activities are changing marine environments at global (Checkley et al.
2009a, Barange et al. 2010) and local (Hutchings et al. 2012) scales. Pressures on
the oceans are linked to climate change (through changes in ocean temperature,
ocean circulation, stratification and nutrient availability), ocean acidification, marine
pollution, marine habitat alteration and destruction, coastal eutrophication, the spread
of invasive species and fishing. These large-scale impacts occur concurrently and
their effects can be synergistic, increasing the vulnerability of natural systems and at
the same time making it difficult to predict how the ecosystems might respond (Link
et al. 2010). Predictions of future change typically are based on results of models that
combine best understanding of ecological processes with observations. Although
global models predict likely consequences of change (e.g. Cheung et al. 2009),
refining these predictions for specific regions is problematic because of difficulties
in downscaling to local scales. Similarly, observed and perceived changes are difficult
to identify and to attribute to particular causes because of the complexities of the
processes involved (Fulton et al. 2003, Jarre et al. 2006), the variety of scales at which
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they operate (Field and Shillington 2006) and the general paucity of ocean observations
in relation to what is needed (Moloney and Shillington 2007).

The marine ecosystems off South Africa are naturally variable on interannual and
decadal time-scales. This variability makes it difficult to separate long-term trends
from large-amplitude, short-term variability (Hutchings et al. 2009). At the same
time, the large variability results in strong signals in datasets and has promoted a
good understanding of the scales of variability and some of their proximal causes.
However, unequivocal, unidirectional change cannot be identified from short time-
series and changes cannot be detected without having an historical baseline against
which to compare modern observations. This paper aims to synthesise what is currently
known about global change and its impacts on continental shelf ecosystems off South
Africa, including studies from the Thukela Bank, the KwaZulu-Natal Bight, the
Benguela upwelling region and the Agulhas Bank. It also draws on the results of studies
targeting demersal and reef-fish communities. The paper highlights some predictions of
the impacts of change and the data that currently exist to test these predictions and
constrain models, and it identifies gaps in knowledge as well as advises on priorities for
future research.

Pressures on South African marine ecosystems and their likely impacts
Climate change as a pressure on the ecosystem

There is widespread acceptance that contemporary climate change (Figure 1) is an
important and increasing factor influencing marine ecosystems. General pressures in
the ocean resulting from climate change include warming of the surface ocean,
especially at the poles (IPCC 2007), increased wind stress (Young et al. 2011), more
extensive low-oxygen zones (Diaz and Rosenberg 2008), increased surface
stratification (Sarmiento et al. 1998) and changes in nutrient distributions (Deutsch et al.
2005).

Impacts of climate change

There is less temperature variability in the ocean than on land (Sunday et al. 2011),
so marine ectotherms in a warming ocean should change their ranges rather than
expand them. These range shifts are predicted to occur towards the poles and to
increased depths (Perry et al. 2005, Dulvy et al. 2008), and changes in distributions
have been observed for individual species (Perry et al. 2005) and also entire
communities (Beaugrand 2009). Changes in phenology have also been observed, with the
onset of spring (a strong environmental signal in many marine ecosystems) generally
occurring earlier each year (Parmesan 2007). Increased sea temperatures should
enhance overall marine foodweb productivity at high Ilatitudes, but reduced
productivity is predicted in the tropics (Brander 2007). These changes should affect
fisheries productivity (Brown et al. 2010) and also potentially cause dramatic changes in
foodwebs and links to higher trophic levels (Moloney et al. 2010). There is also some
evidence that climate warming could decrease body size (Sheridan and Bickford 2011),
with implications for system productivity and biodiversity.

Despite these general predictions and some observations from different regions,
understanding the impacts of climate change on the oceans generally lags that of
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terrestrial ecosystems (Cheung et al. 2009). At a South African workshop held in
2000, most of the expert opinion summarised by van Jaarsveld and Chown (2001)
focused on impacts on terrestrial and freshwater ecosystems. Five years later, Clark
(2006) reviewed the main effects of climate change on South Africa’s marine environment
and fisheries, presenting some generic predicted outcomes based on research and
observations from elsewhere in the world. These predictions included changes in sea
temperatures, wind fields, CO5 concentrations, rainfall (and runoff) and ultraviolet B

radiation, but they were non-specific because there were few data with which to test
their occurrences off South Africa. The situation has not changed much to date.

Fishing as a pressure on the ecosystem

Fishing is an activity with a long history, and fishing pressures have increased over time
as human population numbers have increased, expanding from coastal and nearshore
areas to the entire oceanic realm. Overfishing has been common in recent decades,
reducing biodiversity and altering marine ecosystems (Worm et al. 2009). Off South
Africa, commercial fishing has a history of more than 400 years, starting with the
harvesting of seals in the early 1600s (Shaughnessy 1984), collection of penguin eggs
from the mid-1600s (Randall 1995) and development of the whaling industry in the
early 1700s (Best et al. 1997). Most of these early commercial activities targeting marine
mammals and seabirds have now ceased, and the modern focus is on exploitation of species
of fish, crustaceans and molluscs.

Demersal trawling started gradually from 1900 and expanded rapidly from the 1950s
(Cochrane et al. 1997). Stability was achieved after 1977 (Figure 2) when South Africa
declared a 200-mile exclusive economic zone (Cochrane et al. 1997). The fishery
initially targeted Agulhas sole Austroglossus pectoralis (Brown 1997) and then Cape
hakes, Merluccius paradoxus and M. capensis, but many other piscivorous fish species
were taken as bycatch. The bulk of present-day demersal harvesting is concentrated
around the Western Cape. Other important but low-volume bottom fisheries include
those for rock lobsters in the nearshore environment off the West Coast (for Jasus
lalandii) and on the South Coast (for Palinurus gilchristi) (Mead et al. 2013).

South Africa’s largest fishery in terms of volume landed is the pelagic purse-seine
fishery on the West and South coasts (Figure 2), primarily consisting of sardine
Sardinops sagax and anchovy Engraulis encrasicolus. These small pelagic fish species
were first caught commercially in the 1940s (Butterworth 1983), with catches increasing
rapidly in the 1960s, necessitating the introduction of various management measures
(Cochrane et al. 1997). The small pelagic fishery is characterised by large interannual
variability in the catches and dramatic changes in relative species abundance (Figure

2).

The linefishery has been in existence since the late 1600s (Penney et al. 1997) and is
much more diffuse than the major pelagic and demersal trawl fisheries, with catches
landed by small-scale commercial fishers on small boats, as well as by recreational
boat- and shore-anglers. It is a multispecies fishery, with many of the species also
caught as bycatch in the demersal trawl fishery (Attwood et al. 2011).
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Figure 1: The International Geosphere-Biosphere Programme
(IGBP) climate change index (IGBP 2012), based on four
key indicators of global change: atmospheric carbon dioxide
concentrations, global surface temperature, global mean sea level
and the Arctic sea-ice minimum areal extent (after IGBP 2012)

The linefishery extends along the whole South African coastline, although there are centres
of activity at Saldanha Bay, Struis Bay, Port Elizabeth and Richards Bay. Offshore reefs
are readily accessible to fishers, and many of the target species are endemic, long-lived,
slow-growing, resident, sex-changing predators, which have been heavily overexploited
(Mann 2000; Figure 2). The declaration of a crisis in the linefishery in 2000 (Branch and
Clark 2006) was followed in 2002 by substantial reductions in commercial permits and
reduced recreational bag limits (Griffiths et al. 2004).

Impacts of fishing

The general impacts of fishing worldwide are well known. Fishing reduces the
abundance of selected species and truncates the age structures of their populations,
increasing their dependence on annual recruitment events (Perry et al. 2010) and
reducing their ability to buffer environmental fluctuations (Planque et al. 2010). Fish
adults and larvae show greater population variability in exploited than unexploited
populations (Hsieh et al. 2006, 2008), but this effect has not been observed off South
Africa. Fishing also affects sex ratios, with species exhibiting protogynous
hermaphroditism being most impacted (Garratt et al. 1993). Populations of top
predators have been found to be vulnerable to incidental mortality associated with fishing
gear (Watkins et al. 2008, Petersen et al. 2009, Meyer et al. 2011) and to local prey
depletion through fishing (Pichegru et al. 2010). Fishing gear can also impact substrata,
having a direct effect on invertebrate and vertebrate communities (Atkinson et al.
2011a). Fishing can restructure foodwebs (Roux and Shannon 2004) by removing
predator controls and depleting forage fish species (Shannon et al. 2000).
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Figure 2: Trends in fish catches over time for (a) global catches of 3l marine fish (right axis), hakes and small pelagics (left axis) since 1250
[source: FAQ, hitp:leww_fac.orgfigis/send=t 305 endet Mile=/usrlocaliomeatF 155 23 igisiwebappsfigis'temphgp_T150_xmil&cuttype=htm
[accessed 18 June 2012]). (k) South African landings of Merluecius spp. (source: 18171805 after Cochrane et al. 1887; 1806-2008 — George
Wamman Publications 2011}, (c) South Afmcan landings of Sardinops sagax and Engraulis encrasicolus (source: 1850-1805 after Cochrane et
al. 1287, 18062009 — George Warman Publications 2011}, (d) landings of linefish in KwaZulu-Natal (sownce: 12101225 after Penney 2t al.
1888; 1806-2010 from STATBASE hitpvmstatbase-dev mplind fr'statbase 3 [accessed 19 June 2012]). All catches are in 1000 t

In South Africa, investigation of changes caused by fishing pressure initially focused on
the target species to try and optimise catches (see management measures reviewed in
Cochrane et al. 1997). Later, attention was increasingly focused on the impacts on non-
target species through, for example, studies of bycatch (e.g. Fennessy 1994, Walmsley et
al. 2007), catch composition from research surveys (e.g. Wallace et al. 1984, Japp et al.
1994, Yemane et al. 2005), predator—prey interactions (e.g. Crawford and Dyer 1995,
Punt and Butterworth 1995) and environmental effects (van der Lingen et al. 20064,
Watermeyer et al. 2008). Near Tsitsikamma, fishing on a temperate reef community was
found to affect the size and abundance of roman Chrysoblephus laticeps (Go6tz et al.
2009a), the dominant fish species in catches, allowing their competitors to increase and
also affecting benthic communities (Gotz et al. 2009b). Small marine protected areas
have been found to benefit resident fish populations like roman that are heavily exploited
(Kerwath et al. 2008), whereas seasonal or spatial closures can be used for wide-ranging
or migratory species (Grantham et al. 2008).
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Marine pollution as a pressure on the ecosystem

Pollution problems can be related to increasing human populations and increased
urbanisation and industrialisation (Ukwe and Ibe 2010). Ocean pollution results from
both point sources and diffuse sources. Point sources include harbours, sea-outfalls,
stormwater drains, canals and rivers. Diffuse sources include the land—sea interface
(coastal litter), ships at sea and atmospheric deposition (Ryan et al. 2009). Most sources
have localised impacts in the nearshore zone, and contaminants are likely to be rapidly
diluted by strong currents and mixing and so have limited impacts offshore (Marshall and
Rajkumar 2003), but this needs to be confirmed.

Oil pollution is caused by accidental spills and deliberate discharges, with the latter
generally believed to be most common (Pavlakis et al. 2001). The frequency of oil spills
might be expected to have increased because of increased shipping traffic (Wolfaardt et al.
2009), but there are no readily accessible time-series data on historic or current oil
contamination off South Africa and so it is not possible to identify trends. Three major
accidental oil spills associated with the break-up of ships were documented off the South-
West Coast in the past 30 years (Wolfaardt et al. 2009) and there were more seabird
oiling events (from identified and unknown sources) in the 2000s (10) than in earlier
decades (2—7) (http://www.sanccob.co.za/?m=2&s=3, accessed 30 June 2012), but these
results are not statistically significant (x2= 5.67, df = 2, p = 0.13).

Measurements of deleterious trace elements and compounds released into the marine
environment by industrial and mining activities, and organic-rich effluents associated
with sewage outfalls and agricultural effluent, have been mostly confined to point sources
along the KwaZulu-Natal coastline or near urban centres and in harbours (Griffiths et al.
2010). Elevated levels of iron and titanium have been noted around the Huntsman-
Tioxide pipe off Amanzimtoti (Gregory et al. 2003) and trace metals in sediments off the
Thukela Bank have exceeded acceptable toxicity threshold levels, with the main sources
ascribed to terrestrially derived clays (Carter 2006). Tributyltin (TBT) contamination
(mainly from antifouling paints) has been observed in harbours at Durban and Richards
Bay and in Knysna Lagoon (Marshall and Rajkumar 2003). An accumulation of toxic
compounds has been reported in the mussel Choromytilus meridionalis in the southern
Benguela (Krock et al. 2009), originating from algal species under the influence of trace
metals (Rhodes et al. 2006).

Persistent organic pollutants (POPs) are produced mainly through industry and
agriculture, the latter via the use of pesticides. POPs reach the oceans via point sources at
the coast and atmospheric deposition. They can be transported large distances, frequently
on the surfaces of plastic particles (Mato et al. 2001), especially microplastics (<5 mm)
(Andrady 2011). Global monitoring of POPs is being done by the International Pellet
Watch (http://www.pelletwatch. org/), which uses volunteers to collect plastic resin
pellets from beaches and produces global maps showing concentrations at different
geographical locations (Ogata et al. 2009). Current high values (Table 1) of
hexachlorocyclohexanes (HCHs) from South Africa compared to other regions are
believed to indicate their ongoing use in pesticides in the agricultural industry (Ogata et
al. 2009). There are indications that the trends in POP concentrations off South Africa
since the mid-1980s are decreasing or constant for concentrations of HCHs,
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polychlorinated biphenyls (PCBs) and p,p’-dichlorodiphenyltrichloroethane (DDT) and
its metabolites (Ryan et al. 2012).

Table 1: Median concentrations of persistent organic pollutants
measured in beached plastic resin pellets (International Pellet
Watch, http:/fwww_pelletwatch.org/ [accessed 31 July 2012]).
PCB — polychlorinated biphenyl, HCH — hexachlorocyclohexane,
DDT — 2,20-bis(p-chlorophenyl)-1, 1-trichloroethane, DDD —
2.20-bis(p-chlorophenyl)-1,1-dischloroethane, DDE —
2,20-bis(p-chlorophenyl)-1,1-dischloroethylene. Total DDT is the
sum of DDT, DDD and DDE

Site Date 'f’f Pollutant Conizemration
collection (ng g-' of pellet)
South of Durban 16 July 2007 HCH 339
PCB 410
Total DDT 25
(DDT) (0.9)
(DDD) (1.2)
(DDE) (0.4)
Woody Cape July 2005 HCH 2.2
PCB 250
Total DDT 252
(DDT) (19.0)
(DDD) (3.9)
(DDE) (2.3)
Port Elizabeth May 2008 HCH 38
PCB 270
Total DDT 48
(DDT) (2.4)
(DDD) (1.9)
(DDE) (0.5)
Y zerfontein March 2008 HCH 27
PCB 610
Total DDT 239
(DDT) (19.4)
(DDD) (2.6)
(DDE) (1.9)

Marine plastic pollution is a global problem, with most information coming from surveys
of plastics stranded on beaches (Coe and Rogers 1997), which are assumed to be
representative of at sea pollution. Baseline data exist for South Africa from the 1980s
(Ryan and Moloney 1990), with ongoing monitoring at five-year intervals. There has been
a steady increase in plastic litter items on South African beaches (Figure 3),
notwithstanding a concurrent increase in extensive and expensive beach-cleaning efforts
by local municipalities and regional authorities (Ryan and Swanepoel 1996). However,
there is little information on trends in microplastics and the extent to which these small
particles might be entering marine foodwebs (Andrady 2011).

Impacts of marine pollution

Impacts of pollution can be acute or chronic. Oil spills typically represent acute impacts,
often measured by their effects on seabirds. Species most severely affected are the African
penguin Spheniscus demersus, Cape gannet Morus capensis and several species of gulls
and cormorants. However, impacts of oiling extend beyond direct, immediate mortality
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and include chronic effects through reduced breeding productivity and life expectancy of
de-oiled birds (Adams 1994, Altwegg et al. 2008, Wolfaardt et al. 2008a, 2008b). A
variety of toxic substances in the marine environment are absorbed and ingested by living
organisms, some of them bio-accumulating in the foodwebs (Cockcroft et al. 1989).
Elevated concentrations of trace metals can increase algal bloom toxicity, affecting
shellfish aquaculture (Rhodes et al. 2006). Marine plastic debris has been shown to
entangle sealife, be ingested by many organisms, act as a substratum for other pollutants,
help disperse invasive species, reduce aesthetics and smother benthic habitats (Gregory
2009).

Hypoxia as a pressure on the ecosystem

Ocean hypoxia occurs when dissolved oxygen concentrations in seawater range between
0.5 and 2 ml 1-1 and anoxia occurs at <0.5 ml 1-1 [O2]. Naturally occurring oxygen
minimum zones are found in eastern boundary upwelling ecosystems, and it has been
hypothesised that global warming will also lead to an expansion of these zones (Stramma
et al. 2010). In the southern Benguela region, hypoxic conditions develop north of the
Cape Columbine upwelling cell (Penven et al. 2000), with remineralisation of high surface
productivity forming low-oxygen waters at depth in a stratified system. Advection of this
water mass causes variability in hypoxia in the rest of the region (Monteiro and van der
Plas 2006). Effective wind-stress (which drives upwelling) and insolation (which drives
stratification) cause seasonal and interannual variability in coastal hypoxic events.
Episodic events can proceed to anoxia and are associated with harmful algal blooms and
widespread mortality of marine species (Cockcroft et al. 2000).

Impacts of low-oxygen water

The effects of low-oxygen conditions are most notable when rock lobster Jasus lalandii
walkouts occur (Cockcroft et al. 2000), although other impacts are possible, such as
mortality of other benthic organisms (Zhang et al. 2010), mass mortalities of pelagic fish
(Diaz and Rosenberg 2008) and detrimental effects on fish spawning and egg
development (Ekau and Verheye 2005). Low-oxygen conditions can also affect inorganic
elemental cycles, particularly the redox active metals iron and manganese, as well as their
associated surface adsorbed species (i.e. PO4, NH3). Once stratification conditions have
broken down, outgas- sing of greenhouse-active species (CO2, N20 and CH4) is also
known to occur (Weeks et al. 2002, Santana-Casiana et al. 2009). The meteorological
variables influencing the formation of low-oxygen water are sensitive to climate-related
change and should be monitored in the future.
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Figure 3: Trends in the abundance of selected plastic litter items at 50 South African beaches sampled in 1984, 1989, 19%4 and 2005. Pale
shading represents all beaches: dark bars = rural beaches with no municipal cleaning programmes (PG Ryan and CL Moloney, University of
Cape Town, unpublished data)

Ocean acidification as a pressure on the ecosystem

Ocean acidification is an environmental issue that has scarcely been addressed in
southern African waters. Ocean pH can decrease as a result of localised inputs to near-
coastal environments of acidic compounds, such as nitric and sulphuric acid (Doney et al.
2007), and nutrient loading controls on carbonate chemistry (Borges and Gypens 2010),
but these effects are largely confined to urban coastal settings. The main cause of ocean
acidification is increasing concentrations in the ocean of dissolved CO2, which reacts with
seawater to form increased concentrations of bicarbonate (HCO-) and hydrogen (H+)
ions and decreased concentrations of carbonate ions (CO 2—). Cold water at high pressure
has the greatest capacity to take up excess CO2 and ocean acidification is most noticeable
at high latitudes and at depth (Orr et al. 2005).

Some ocean areas are naturally more acidic than others because excess CO2 is introduced
to their surface waters through remineralisation of organic matter at depth followed by
upwelling (Feely et al. 2008). This process is important in eastern boundary upwelling
systems, such as off the west coast of South Africa, resulting in seawater with naturally
low pH values. Gruber et al. (2012) showed that these ecosystems might be particularly
vulnerable to increasing anthropogenic CO2 concentrations. The authors used a number
of model scenarios of the California Current system and predicted that the nearshore
region might become undersaturated in aragonite, one of the mineral forms of calcium
carbonate, within the next two to three decades.

Impacts of ocean acidification

Calcareous organisms are at particular risk of dissolution in more acidic conditions as
calcite and aragonite saturation states decrease. However, the ultimate effects can be
more complex, and localised effects of physiology (Checkley et al. 2009b) and cellular
microclimate (Flynn et al. 2012) can be more important than bulk seawater CO2
concentrations and pH in determining outcomes. In the marine environment off South

9
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Africa there is little information available on historical or current pH values, although
there have been some recent studies examining the impacts of ocean acidification on coral
reefs (Mead et al. 2013). Organisms most at risk from acidification include planktonic
groups like coccolithophores, pteropod molluscs and foraminiferans (Fabry et al. 2008),
benthic molluscs (Gazeau et al. 2007) and crustaceans (Spicer et al. 2007). The benthic
groups contain commercially important species for fisheries and aquaculture.

Mining, exploration and extraction as pressures on the marine ecosystem
The exploration for non-renewable resources in South Africa and their extraction can
threaten regional biodiversity, with perceived threats decreasing from inshore to offshore
and from west to east (Lombard et al. 2004). The most important non-renewable
resources are hydrocarbons (oil and gas) and various minerals (principally diamonds),
most of which are located on the west and south-west coasts of South Africa. To date,
most marine mining operations have been conducted at water depths <140 m, although
as technology develops and resource values increase, it is likely that reserves and deposits
at greater depths will become viable. For example, off Namibia there are now plans to
extract phosphates from sediments at depths in excess of 180 m (Midgley 2012). The
drivers of the exploitation of marine non-renewable resources are purely economic and
largely dictated by forces outside of the region.

Impacts of non-renewable resource exploitation

There is almost no published information on the impacts of non-renewable resource
exploitation around South Africa, although a number of reports have been published in
the grey literature. Direct impacts of resource extraction include changes to seabed
topography and sediment particle structure. These changes in turn can affect bottom
currents and sediment transport pathways, as well as biological communities. Indirect
effects can also occur at the coast in terms of beach drawdown and changes to wave
conditions and tidal currents. In many cases, sediments are released into the water
column and these sediment plumes affect turbidity. Ultimately, the suspended sediments
settle out, altering the nature of the seabed habitats and smothering benthic organisms,
although these impacts depend largely on the type of mining operation, the sediment type
and local hydrodynamics. The extraction of minerals off the west coast of southern Africa
might also be accompanied by the release of toxic hydrogen sulphide (H2S) and methane,
and the resuspension of organic-rich fines can lead to localised hypoxia, as well as
(potentially) the release of toxic compounds that have been sequestrated over time in the
sediments (Ryan et al. 2012). There also may be cumulative effects caused by extraction
from adjacent operations, in time and space, by the same or different license holders.
Regionally, it is clear from published work off southern Namibia that diamond mining has
an effect on the composition of the sediments, and the natural ‘fining-upward’ sequence
of deposits is completely and ‘irrevocably’ altered (Rogers and Li 2002). This leads to an
increase in the textural heterogeneity of the substratum, and must inevitably lead to an
altered benthic fauna. Information is entirely missing on natural levels of variability in the
physical and biological benthic environment. As a consequence, it is impossible at this
stage to contextualise environmental changes induced by the extraction of non-renewable
resources in South African marine ecosystems, although the area of the seabed that is
currently being exploited is relatively small.

10
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Observed changes to South African marine ecosystems

Observed changes in the physical environment off South Africa

Using satellite-derived sea surface temperature data (SST), Roy et al. (2007) and Rouault
et al. (2010) found cooling trends nearshore off the west and south coasts of South Africa,
which they attributed to an increase in upwelling-favourable winds. This contrasts with
the results of Demarcq (2009), who used Pathfinder version 5 data products and found a
weak warming trend of 0.1 °C decade—1 for the southern Benguela over the period 1998—
2007. However, Dufois et al. (2012) reported a warm bias in the Pathfinder data for
versions before version 5.2, and suggested this bias is the cause of the discrepancy. Roy et
al. (2007) found that the inner shelf east of Cape Agulhas became colder by about 0.5 °C
in 1996; this cooling has persisted. The shift was linked to signals in atmospheric surface
pressure and zonal wind data, indicating the main driver of the cooling was an increase in
coastal upwelling east of Cape Agulhas.

Rouault et al. (2010) also analysed monthly SSTs (from 1985 to 2009). They showed a
cooling trend nearshore off the West (January—August) and South (May—August) coasts,
and a warming trend offshore in the Agulhas Current (all year) and off KwaZulu-Natal (in
summer only). The cooling was attributed to an increase in upwelling-favourable winds.
The warming was attributed to an intensification of the Agulhas Current, caused by
changes in winds. Both sets of results are consistent with the hypothesis that eastern
boundary ecosystems will experience an increase in upwelling-favourable winds, because
of intensified atmospheric pressure gradients in coastal areas (Bakun and Weeks 2008).
Demarcq (2009) used monthly wind data and noted an increase of 0.36 m s—1 decade—1
in the strength of the equatorward component of the winds in the southern Benguela from
2000 to 2007. In general, observed global trends (derived from a 23-year time-series
from satellite altimeter measurements) indicate increased wind speed and wave height in
the oceans (Young et al. 2011), with a rate of increase that is greater for extreme events.
The remotely sensed SST and wind datasets off South Africa span less than three decades.
Observed variability in ocean conditions are known to occur on many scales (Hermes et
al. 2007), some of which have decadal periods, and it is important to continue building on
these time-series and analyses to confirm long-term trends.

Observed changes in ocean chemistry off South Africa

Datasets that can be used to estimate average or baseline dissolved O2 concentrations
extend from 1958 for the southern Benguela (Monteiro and van der Plas 2006). There has
been a significant decreasing trend in dissolved oxygen at St Helena Bay on the West
Coast (Hutchings et al. 2009, 2012), at a rate of approximately 20 pl 1-1 y—1 (Figure 4).
Information pre-dating these dissolved O2 datasets is in the form of historical
documentation of severe anoxic events, which have happened intermittently, the earliest
dating back to 1869 (Pitcher and Calder 2000). It is not possible to assess longer-term
oxygen changes in the region caused by anthropogenic activity, particularly since the
onset of industrialisation. Models of hypoxia and upwelling are generally site-specific and
cannot be adapted easily to other areas with similar conditions (Pefia et al. 2010),
implying that any given ‘baseline’ value is only valid for the site for which the model was
developed.

11

https://repository.uwc.ac.za



a
=]
|

&
o
T

P
(=]
|

OXYGEN (ml I'")

—
o
|

T 95% confidence intervals

| | I I | |
1960 1970 1980 1990 2000 2010
YEAR

Figure 4: Changes in mean oxygen concentrations (ml I-) in
the sub-thermocline layer in St Helena Bay (32°S), 1957-2007,
indicating a significant decrease (p < 0.01) since 1960 in oxygen
concentrations of approximately 1 ml ' (35%) over a period of 50
years (after Hutchings et al. 2009)

On the East Coast, upwelling has been observed inshore of the Agulhas Current at three
different sites: Cape St Lucia (Lutjeharms et al. 2000a), Port Alfred (Lutjeharms et al.
2000b) and Jeffreys Bay (Schumann et al. 1982). Although dissolved oxygen
measurements have been taken (Lutjeharms et al. 2010), there have been no reports of
ocean anoxia or hypoxia in these areas. However, the formation of intermittent and
localised low-oxygen events in these areas cannot be excluded as the temporal scale for
sampling has been irregular and future work could identify East Coast upwelling sites
where low-oxygen conditions develop.

Ship-based studies off the central KwaZulu-Natal shelf in 2009 and 2010 recorded an
area of low-oxygen water in the vicinity of the Thukela River (Oceanographic Research
Institute, Durban, unpublished data). The origins, extent and temporal nature of this low-
oxygen event have yet to be determined. Persistent upwelling is known from the nearby
KwaZulu-Natal Bight inshore of the Agulhas Current (Lutjeharms et al. 1989, Meyer et al.
2002), boosting nutrient levels in an otherwise oligotrophic system (Hutchings et al.
2010). However, this is unlikely to cause anoxic or hypoxic conditions. Rather, low-
oxygen waters are thought to be a consequence of the substantial outflow from nearby
rivers of organic matter of terrestrial origin, which subsequently decomposes
(Oceanographic Research Institute, Durban, unpublished data).

Observed changes in marine organisms and communities off South Africa
General responses in marine ecosystems to recent environmental change include changes
in distribution and local abundance of species, changes in phenology, changes in
community composition, changes in dominant foodweb pathways and ecosystem
dynamics, and changes in morphology and behaviour (Parmesan 2006).

Changes in distribution and local abundance

There are some useful, long-term datasets from South Africa that allow assessments of
long-term trends (Table 2), but in many cases the time-series are too localised, too short
or are interrupted. In general, trends in abundance at low trophic levels are typically
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explained by changes in the physical and chemical environment, those at high trophic
levels by fishing (Fréon et al. 2005) and at mid-trophic levels by a combination of the two
(Table 2). Pollution, ocean acidification and mining are rarely invoked as explanations.
An increasing trend in measured surface chlorophyll during the 1990s has been
documented for the West Coast, based on data from the St Helena Bay region (Verheye
2000), but Hutchings et al. (2009) found little overall trend in chlorophyll measurements
from 2000 to 2008 in the same region. For the southern Benguela ecosystem as a whole,
the phytoplankton variability derived from SeaWiFS ocean colour data and modelled
primary production based on depth-integrated chlorophyll a distributions showed no
trend over the period 1997 to the early 2000s (Demarcq et al. 2007). However, there was
an average decrease of 0.4 mg Chl m—3 decade—1 over the continental shelf when the
time-series was longer, from 1998 to 2007 (Demarcq 2009), with most of the decrease
south of Cape Columbine. Zooplankton vary both spatially and temporally around the
South African coastline, with inshore diversity being generally higher and biomass lower
along the East Coast than the West Coast (Verheye et al. 1994). Seasonal zooplankton
maxima appear in spring/summer, related to indices of wind-driven upwelling
(Richardson et al. 2003, Hutchings et al. 2006), although winter copepod production also
contributes significantly to annual production (Huggett et al. 2009). A long-term increase
in the abundance of zooplankton in St Helena Bay on the West Coast from 1951-1996
(Verheye et al. 1998) was reflected in an increase in copepod biomass for the entire West
Coast since the 1970s (Huggett et al. 2009). Since the mid-1990s, the long-term
increasing trend in zooplankton abundance in St Helena Bay has reversed (Figure 5), but
this pattern is not uniform along the West Coast and western Agulhas Bank. These
changes as well as changes in the size structure of the zooplankton community are
thought to result locally from both bottom-up forcing by environmental fluctuations and
varying top-down predation pressure and selectivity of small pelagic fish species
(Hutchings et al. 2006, Huggett et al. 2009, Hutchings et al. 2012). Gelatinous
zooplankton, regarded as sentinel groups signalling large-scale changes in marine
ecosystems (Hay 2006), have shown no consistent changes in abundance in St Helena
Bay over the period 1988-1997, although warm periods were associated with distinctly
different taxa than cold periods (Buecher and Gibbons 2000).

One of the best-documented changes in distribution that has occurred off South Africa is
for commercially and trophically important small pelagic fish species (sardine and
anchovy). Their population sizes are naturally variable, with both species exhibiting a
positive relationship between stock size and distributional area (Barange et al. 1999,

van der Lingen et al. 2006a), so that changes in population size affect spatial extent.
Sardine biomass increased from reduced levels in the late 1990s, peaking at more than 4
million tonnes in 2002 but decreasing again by 2008 (Coetzee et al. 2008). Anchovy
biomass increased from a low in 1996 to peak in 2001, after which it remained relatively
high (Fairweather et al. 2006). Since data collection began in 1985, the bulk of both
anchovy and sardine biomass has been found on the West Coast, but since 1997 and 1999
respectively, the greater proportion of biomass has been found east of Cape Agulhas (van
der Lingen et al. 2002, Roy et al. 2007, Coetzee et al. 2008). A recent decrease in sardine
population size is believed to be the result of poor recruitment since 2004, an
unexplained increase in adult mortality (i.e. not caused by fishing) and a spatial mismatch
between fishing effort and sardine biomass, resulting in high exploitation rates west of

13

https://repository.uwc.ac.za



Cape Agulhas (Coetzee et al. 2008). The cause of the spatial mismatch was a relative
increase in sardine biomass east of Cape Agulhas in the late 1990s, attributed to a
combination of disproportionately large spawning and recruitment success during the late
1990s/early 2000s and a natal-homing effect (Coetzee et al. 2008). It is also possible that
there are two sardine stocks, each favouring different coasts for spawning (Coetzee et al.
2008). For anchovy, environmental mediation is suggested as the cause of the increased
proportion found east of Cape Agulhas since 1996, which has been linked to inshore
cooling and a change in the local food environment (Roy et al. 2007).

For the main piscivorous fish species off South Africa, there have been observed changes
in abundance but most of these have been attributed to fishing pressure. All exploited
species have decreased markedly in abundance since commercial fishing started (Table
2), but there are also recent changes that are not easily attributed simply to bulk biomass
removal by fishing. Average abundance of both hake species appeared to be lower during
the 2000s than during the 1990s, based on summer/autumn survey data (Rademeyer et
al. 2008). Other demersal species were also affected, and size-based indicators showed a
decrease between 1986 and 2003 as a direct result of fishing pressure (Yemane et al.
2008). Survey data from 1986 to 2009 indicated changes in demersal fish assemblages on
the West Coast in 1992 and 2003/2004, corresponding to periods when shifts were noted
in West Coast rock lobsters and pelagic fish species (Atkinson et al. 2011a). Fast-growing,
early-maturing demersal species increased in abundance and slow-growing, late-
maturing species decreased (Atkinson et al. 2011a), as is generally predicted to result from
fishing. However, fishing pressure was relatively stable when these shifts occurred, and
the changes are believed to be the result of indirect fishing effects in combination with
environmental fluctuations (Atkinson et al. 2011a).

Hake and other demersal species did not appear to increase in biomass on the South
Coast to match the increase observed in major prey species (small pelagic fish) in the
2000s (van der Lingen et al. 2006a). In contrast, Atlantic-based albacore tuna Thunnus
alalunga abundance off South Africa seems to have been decreasing since the late 1990s
whereas that of yellowfin tuna T. albacares, originating in the Indian Ocean, appears to
have increased, which could be in response to the increase in easterly bio-mass of small
pelagic fish (van der Lingen et al. 2006b).
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The greatest impacts on most linefish species have been by fishing, although this has
possibly been exacerbated recently by environmental changes. By the 1990s catches per
unit effort (an index of abundance) of a number of the slow-growing teleost species
targeted by the linefishery in the Western Cape had decreased well below sustainable
levels (Table 2; Griffiths 2000, Griffiths et al. 2004). The sparid seventy-four
Polysteganus undulosus has been considered commercially extinct since before the
fishery was closed in 1998 (Chale-Mastau et al. 2001). Size structures of communities also
have been affected, with decreases in mean length associated with increased fishing
pressure, except in the case of snoek Thyrsites atun (Yemane et al. 2004). More nomadic
species (snoek and yellowtail Seriola lalandi) have been less impacted by fishing and do
not appear to have undergone notable changes in distribution or abundance (Table 2;
Griffiths 2000, Griffiths et al. 2004), although an increase in snoek biomass since the
1980s has been suggested, based on calculations from mass-balanced ecosystem models
of the southern Benguela compared over different time periods (Osman 2010).

Decreases in catch per unit effort, to the point of severe depletion in some cases, also have
been recorded off the Eastern Cape (Table 2; Griffiths 2000, Brouwer and Buxton 2002).
Similar patterns are evident in the KwaZulu-Natal linefish fisheries, where total catch and
catch per unit effort have decreased since the early 1900s, with most resident species now
overexploited (Penney et al. 1999, Mann 2000). Current catch composition shows an
increased contribution from small rather than large reef fish species and shoaling migrant
species and, as in Cape waters, a decrease in large reef dwellers such as seventy-four, red
steenbras Petrus rupestris and rock cods (Penney et al. 1999).

Clark (2006) had speculated that under climate change, fish species on the East Coast
should occupy waters farther south, whereas species on the West Coast might be
displaced to greater depths or become restricted to the immediate vicinity of upwelling.
There have been changes in depth distributions of some species but these have been
attributed to fishing pressure. Species whose depth distributions increase with age, such
as red steenbras and carpenter Argyrozona argyrozona, have undergone offshore shifts
in adult abundance as their inshore stocks have been depleted by fishing. The range of red
steenbras has also contracted around the coast as stocks in areas with a longer history of
exploitation are fished down, leaving abundance off the Transkei Coast highest (Griffiths
2000). More recently, however, warming in the Agulhas Current region on the east coast
of South Africa has been shown to coincide with increased abundance and diversity of
tropical species at subtropical reefs off KwaZulu-Natal (Lloyd et al. 2012). These results
support the predictions of poleward range expansions and increased species richness as
sea temperatures increase (Lloyd et al. 2012).

A large number of seabird species have undergone changes in distribution or abundance
since the 1990s (Table 2). Suggested causes of these changes are climate impacts and food
availability. Crawford et al. (2008a) showed that changes in seabird populations off South
Africa have been similar to those observed off Marion Island and elsewhere, attributing
these changes to climate change. Site-faithful, long-lived species, such as Cape gannet,
have been shown to be particularly susceptible to local extinctions as a result of
environmental change (Pichegru et al. 2010). The local availability of prey has also
impacted seabirds, with species with small foraging areas or fixed breeding localities

18

https://repository.uwc.ac.za



(African penguins, Cape gannets and Cape cormorants Phalacrocorax capensis) being
more susceptible than widely ranging species such as the swift tern Thalasseus bergii
(Crawford et al. 2008a, 2008b, 2008¢, 2008d, Crawford 2009). Another important factor
impacting seabird population numbers is predation. Colonies of African penguins and
bank cormorants P. neglectus at Lambert’s Bay, previously the northernmost colonies for
both species in the Western Cape, have been considered extinct since 2006 (Crawford et
al. 2008a) and 1999 (Crawford et al. 2008b) respectively, partly as a result of local
predation by Cape fur seals Arctocephalus pusillus pusillus. In 2003, African penguins
established a new colony at De Hoop, but land-based predation caused numbers to drop
(Underhill et al. 2006, Crawford 2007). At Lambert’s Bay, breeding was abandoned by the
Cape gannet colony in 2006, attributed by Crawford et al. (2007a) to predatory attacks by
Cape fur seals. Breeding subsequently resumed (Distiller et al. 2012) following the
introduction of management measures to reduce seal—seabird interactions at the colony.

In contrast to many fish species, which have decreased in abundance as a result of fishing,
marine mammals have tended to remain constant or increase in abundance over the past
decades because of a cessation of harvesting in combination with other factors. The Cape
fur seal population was estimated at 2 million in 1993, approximately 40% of which
resided in the southern Benguela with the remaining majority found in Namibia
(Butterworth et al. 1995, Kirkman et al. 2007). Since 1993, distribution and abundance of
the Cape fur seal in the southern Benguela have remained relatively stable (Kirkman et al.
2013), and did not reflect the increase in small pelagic fish biomass in the early 2000s or
the increase in relative distribution of these prey species on the South Coast. It is likely
that limited suitable space for the expansion of breeding, particularly along the South
Coast, contributed to this stability (Kirkman et al. 2013). However, since the 1990s a fur
seal colony on the Robberg Peninsula that was harvested to extinction in the 1800s has
been recolonised and is expanding, coinciding with an increase in small pelagic fish in the
area (Huisamen et al. 2011). Conversely, abundance on the South-East Coast of Bryde’s
whales Baleanoptera edeni, which also prey on small pelagic fish, appears to have
decreased since the 1980s (Best 2001, Penry et al. 2011), possibly because of small-scale,
local fluctuations (Penry et al. 2011). Numbers of southern right whales Eubalaena
australis have continued to recover at a rate of approximately 7% annually since
monitoring began in the 1970s (Best et al. 2001, Brandao et al. 2010) and there has been
an increase in humpback whales Megaptera novaeangliae migrating through the coastal
waters of KwaZulu-Natal since the late 1980s (Findlay et al. 2011). On the West Coast
there are approximately 500 humpback whales that are temporarily resident during
spring and summer when they feed (Barendse et al. 2011). Dolphin abundance in the
southern Benguela is not well known and, although some population-level studies have
been undertaken (e.g. Elwen et al. 2009), there is a lack of long-term abundance data.
Populations of loggerhead turtles Caretta caretta show a significant increase since the
1960s, when a nesting site monitoring and protection programme was introduced on the
KwaZulu-Natal beaches (FAO 2006). The nesting population of leatherback turtles
Dermochelys coriacea has remained unchanged (Nel 2009 in Brazier et al. 2012).

Changes in timing/phenology
Changes in timing of specific ecological processes might be expected when local
conditions change as a result of climate change. Off South Africa, the lack of time-series
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data showing intra-annual conditions in shelf and benthic ecosystems makes it difficult to
detect any changes in plankton groups if they are occurring. However, top predators can
act as sentinel species, integrating and responding to environmental change with a greater
likelihood of being detected than small species. Durant et al. (2010) related changes in the
timing of breeding of African penguins and their growth rates on Dassen Island to the
Southern Oscillation Index and SSTs at breeding and prey-spawning grounds. The African
penguins at Dassen Island bred approximately one month earlier during the period
2004—-2008 than they did from 1995 to 2001 (Durant et al. 2010). The change was
attributed to warmer temperatures. However, this response had a knock-on effect because
the penguins went on to exhibit reductions in per capita growth rates. This was believed
to be a result of temporal mismatches in winter between the penguin predators and their
prey, which are young-of-the-year pelagic fish (Durant et al. 2010). Changes in phenology
at one trophic level can thus have unexpected results at other trophic levels, with both
positive and negative feedbacks possible.

Changes in community composition

The species richness of zooplankton communities changes around the South African
coastline in a manner consistent with changes in biogeography. There are peaks in the
tropical and subtropical waters of the East Coast and troughs are obvious in the cold-
temperate waters along the West Coast (Gibbons et al. 1995, 2010). Fish communities
also show changes in richness around the coast (Turpie et al. 2000), although
distributional peaks in endemism vary with taxa. Cross-shelf changes in demersal fish
communities linked to bathymetry are pronounced (Yemane et al. 2010), with distinct
assemblages associated with different depth strata (Fennessy and Groeneveld 1997,
Walmsley et al. 2007, Attwood et al. 2011). Information on depth-related changes in other
taxa is restricted to sponges along the East Coast, which, like demersal fish, decrease in
richness with increasing depth (Samaai et al. 2010).

In contrast to our understanding of spatial changes in species richness and evenness
around South Africa, our knowledge about temporal changes in either of these community
attributes is limited. In the case of zooplankton, there is a coupling between oceanography
and diversity measures, with cool, recently upwelled water tending to support
assemblages of lower diversity than warm, stratified water. This should be reflected in
seasonal changes to communities, although there are few studies that have explored this.
In the case of fish communities, there is little evidence of seasonality in the species
composition of demersal catches along the West Coast overall (Atkinson et al. 2011b, but
see Roel 1987), although limited data suggest that some species could move inshore and
offshore on a seasonal basis (Atkinson et al. 2011b).

Studies of changes in community composition at interannual scales are scarce, and their
results need to be interpreted with caution. In the absence of standardisation (such as
occurs, for example, in continuous plankton recorder surveys [Richardson et al. 2006]) or
calibration, there are marked effects on estimates of species diversity caused by
interannual changes in survey protocols, survey design, sampling gears (e.g. Atkinson et
al. 2011b) and both taxonomy and taxonomic expertise (e.g. Bianchi et al. 2000). Such
issues in part complicated the conclusions of Atkinson et al. (2011b), who noted two
changes in the composition of demersal fish assemblages along the west coast of South

20

https://repository.uwc.ac.za



Africa. The first of these occurred in the early 1990s and the second in the mid 2000s,
with the latter confounded by changes in sampling gear. Although Atkinson et al. (2011b)
did not examine richness or evenness of the fish fauna specifically, it is clear that
evenness at least will have changed because of changes in relative abundance of different
species among the three periods. In the absence of major changes in fishing pressure over
the study period (1986—2009), these authors attributed the changes to ‘long-term indirect
effects of fishing (e.g. species replacements, trophic cascades, habitat modification) in
combination with environmental changes’ (Atkinson et al. 2011b, p 169). Their arguments
for environmental change reflect the fact that the later changes are coincident with the
abovementioned eastward shift for pelagic fish and rock lobster (Mead et al. 2013).

Other studies have explicitly attributed long-term changes in composition of fish
communities to fishing. Using discrete time-series within a 100-year dataset collected
from the Cape coastline (Kei River to Orange River), Yemane et al. (2004) showed
significant changes in linefish catch assemblages. Increases in the number of linefish
species were observed along the South-East and South coasts and a decrease along the
West Coast. The South-West Coast showed no obvious change. These changes reflect
changes in the dominant species caught, which in turn reflects fishing pressure. In the
cool-temperate Western Cape region, catches have become dominated by a single, fast-
growing species (snoek), whereas catches on the warm-temperate South Coast have
become more diverse over time (Griffiths 2000, Yemane et al. 2004) as previously
preferred fish species (geelbek Atractoscion aequidens and silver kob Argyrosomus
indorus) have been depleted. Similar increases in diversity and richness were observed by
Yemane et al. (2010) in a study of demersal fish assemblages off the South Coast over the
period 1988-2003. The changes were attributed to the differential impact of exploitation
on different species (Griffiths 2000).

Using a foodweb model of the southern Benguela fitted to time-series data (catch and
abundance), Shannon et al. (2009) suggested there was no overall change in biomass
diversity over the period 1978—2003, although it steadily increased from 1978 to 2000
before decreasing markedly to 2003. During the same period, the trophic level of the
community decreased. These patterns were probably influenced by a large peak in
biomass of small pelagic fish in the early 2000s, which would have caused biomass
diversity and mean trophic level to decrease. Biomass diversity would have increased in
the early period as dominant species were reduced by fishing.

Species richness on the East Coast has increased as a result of range extensions of tropical
fish species to the south. For example, off the Pondoland Coast, a subtidal (1—30 m)
ichthyofaunal survey yielded 138 species from 49 families, with 30 species from 15
families representing range extensions to the south (Mann et al. 2006). Farther south,
James et al. (2008) reported the appearance of several tropical fish species in a warm-
temperate estuary on the South-East Coast from 1998 to 2006. The authors attributed
these southward range extensions to increasing local SSTs over this period.

Ecosystem dynamics and dominant foodweb pathways
Short- and long-term (Kirby and Beaugrand 2009) shifts in dominant trophic pathways
have been documented for a variety of marine ecosystems (Moloney et al. 2010). Some of
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these shifts have been shown to reverse relatively quickly, but other ecosystems have not
reverted to their previous states over time (Jarre and Shannon 2010). At least two marked
marine ecosystem changes occurred in southern Africa during the past few decades
(Hutchings et al. 2009), one off Namibia and one off South Africa. These changes have
variously been explained by overfishing (off Namibia; Boyer et al. 2001), spatially biased
fishing mortality (off South Africa; Coetzee et al. 2008), and changed environmental
conditions (van der Lingen et al. 2006a, Roy et al. 2007, Coetzee et al. 2008).

The Namibian pelagic ecosystem changed dramatically with the collapse of stocks of small
pelagic fish in the late 1960s, resulting in the proliferation of jellyfish, increased
abundance of a key species (bearded goby Sufflogobius bibarbatus), and major changes
in seabird and marine mammal predator populations (Cury and Shannon 2004, van der
Lingen et al. 2006a). Off South Africa, large-scale spatial changes occurred in the
abundance of important species off the South and West coasts, including commercially
important small pelagic fish species (sardine and anchovy) and rock lobsters (van der
Lingen et al. 2006a). Species of conservation importance, such as African penguins and
Cape gannets, also exhibited large changes in relative abundance along the coastline,
probably as a result of changes in their prey resources (van der Lingen et al. 2006a).

These concurrent changes in species abundances and distributions in the southern
Benguela reflect complex alterations to the functioning of the ecosystem. Balanced
trophic models for 1900, 1960, 1980 and 2004—-2008 required an overall decrease in
biomass of large fish (adult hake and large pelagic fish) and an increase in biomass of
planktivorous fish by the 2000s following an initial decrease to the 1980s (Shannon et al.
2003, Watermeyer et al. 2008, Osman 2010). Ecosystem-level indicators based on data
from 1986 to 2005 showed that overall biomass of the community increased but the
proportion of predatory fish and the average trophic level decreased (Bundy et al. 2010).
Analyses using decision-trees indicated that the overall state of the southern Benguela
ecosystem had decreased since the 1980s (Bundy et al. 2010). Diversity indices decreased
from theoretical, historical ‘pristine’ levels to the 1960s, but were greater in the 2000s
compared with the 1960s, probably as a result of high small pelagic fish biomass in the
most recent period (Watermeyer et al. 2008). An index of the overall health of seabirds in
South Africa, derived from population estimates for 10 dominant species from the 1950s
to 1999, increased from the 1950s to the 1970s then decreased to the 1990s, with an
overall decrease of 5—12% over the whole period (Underhill and Crawford 2005).

The times at which ecosystem changes were triggered, and their ultimate causes, are
difficult to identify unambiguously because of lagged effects and differences in life-history
parameters among dominant species and affected groups. This is similar to observations
made in the North Sea, where the exact years of the change vary according to the group(s)
used to illustrate the change (Beaugrand 2004). Howard et al. (2007) applied a statistical
method to long-term South African datasets and identified two periods that might signal
the onset of major ecosystem changes since 1950. The first occurred during the 1960s,
attributed to heavy fishing pressure but with some environmental forcing. The second
change occurred in the early 2000s, attributed mainly to environmental forcing. Fishing
pressure was identified by Mackinson et al. (2009) as the primary driver of change at
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an ecosystem level in the southern Benguela, based on an ecosystem model constructed
to represent the period 1978—2002 (Shannon et al. 2004).

A number of modelling studies have investigated possible effects of global change on
South African marine ecosystems. Smith and Jarre (2011) used a frame-based modelling
approach to represent different scenarios of relative abundance of sardine and anchovy,
assumed to result from different environmental drivers. The authors found that fishing
could cause changes in states, but these occurred more readily if environmental triggers
were used as well. A similar result was obtained by Heymans et al. (2004) and
Watermeyer et al. (2008), whose results from trophic ecosystem models showed that
fishing appeared to reduce the resilience of the ecosystem to environmental
perturbations. There are complex interactions in ecosystems and these make it difficult to
disentangle causes and effects, even when the ecosystems are represented by simplified
ecosystem models.

Along the east coast of South Africa, the shelf ecosystems are likely to be responsive to
fishing and to changes in river flows, either through river management or through
changes in rainfall over the continent. Changes in river flows would affect riverine inputs
to the shelf ecosystems, which are detritus-driven rather than phytoplankton-driven
(Ayers and Scharler 2011). Crustacean and linefish fisheries of the Thukela Banks could
be impacted by reduced flows, with the commercial linefishery projected to have a 20%
reduction in catch and a 17% reduction in annual value under extreme flow reduction
scenarios (Turpie and Lamberth 2010). The prawn fishery would probably experience
limited economic effects because it is buffered by having large diversity in the bycatch and
important contributions by catches offshore that are not affected by river flow in the short
term (Turpie and Lamberth 2010).

In general, off South Africa, the strong signals that have been observed in marine
ecosystems and the good understanding that exists of ecosystem functioning have not
provided clarity on the drivers of observed changes, their triggers or the likelihoods of
their persistence. It has been possible to document some changes and to infer possible
causal mechanisms for past and projected future changes. However, without improved
monitoring systems and longer time-series of environmental and biological data, it will be
difficult to unequivocably identify and understand future observed changes or to predict
their consequences with any degree of confidence.

Adaptability to change

Some possible and unpredictable consequences of global change involve the abilities of
organisms to adapt to changes in their biotic and abiotic environments (Moloney et al.
2011). These adaptations can be behavioural or involve changes in phenotype or genotype.
A common behavioural adaptation is to simply move from unfavourable to favourable
areas, changing the distributions of many species. Other species have inherent abilities to
adapt quickly, because they occur naturally in dynamic marine environments. These
species could retain their current large-scale distributions but alter other aspects of their
biology or ecology, with knock-on effects in the ecosystem.
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In the dynamic coastal upwelling region off southern Africa, there are a number of
examples of species pairs where each member of the pair appears to be adapted in
fundamentally different ways to continually changing environments. For copepods,
Huggett et al. (2007) investigated the factors influencing the relative abundance on the
West Coast and Agulhas Bank of Calanoides carinatus and Calanus agulhensis. They
found the two species responded in similar ways to temperature, food concentration, food
size and type but differently to variability in food abundance. Calanus agulhensis
recovered quickly from short periods of starvation but Calanoides carinatus recovered
quickly from long periods without food. Thus, the two species appear to be adapted to
variability at different time-scales. Sardine and anchovy are similarly suited to variable
environments but their populations off southern Africa appear to vary at different time-
scales. The longer lifespans of sardine, their omnivorous diet and their ability to filter-
feed smaller plankton than anchovy allow their populations to respond to decadal-scale
variability, whereas anchovy populations are more closely linked to interannual variability
(van der Lingen et al. 2006a). Sardine also display variability in body shapes and
vertebral counts, possibly in response to environmental cues (Wessels 2009).

Another important species pair off the West Coast is that of the Cape hakes. This is the
only region in the world where two hake species have similar latitudinal distributions,
being separated mainly by depth (Lloris et al. 2005). Wilhelm (2012) used studies of
otoliths of M. capensis off Namibia to conclude that this species was faster-growing than
had previously been assumed. These results were underpinned by the hypothesis that M.
capensis occupies a niche that allows the species to react quickly to short-term variability
in the pelagic and demersal environments, similar to anchovy and Calanus agulhensis. In
contrast, the slower- growing M. paradoxus relies on longer-term variability to produce
good year-classes that sustain the population over many years (Wilhelm 2012), as has
been suggested for sardine and Calanoides carinatus.

On the East Coast, James et al. (2007) compared the impacts of intermittent opening of
estuaries on two fish species that require these habitats as juveniles for at least the first
year of life. They concluded that white steenbras Lithognathus lithognathus was more
susceptible to changes in estuary opening-closing than Cape stumpnose Rhabdosargus
holubi, illustrating again that not all species are likely to be impacted in the same ways by
global change. It would be useful to include information on species-level characteristics in
ecosystem models, so as to capture some of the basic differences that exist among species
in their biological and ecological attributes. In this way it might be possible to capture
some of the interplay among species diversity and trophic flows in ecosystems, improving
the ability to understand and predict potential plausible ecosystem states.

Synthesis

In reviewing the evidence for long-term changes in South Africa’s offshore marine
ecosystems it was clear that there are insufficient baseline data to disentangle short- and
medium-term variability from long-term change. Where large-scale ecosystem changes
have been observed, it was generally not possible to attribute these changes to specific
pressures. The current state of understanding mainly involves untested hypotheses based
on incomplete data, but with relatively good understanding of the processes involved, and
model-assisted interpretations of the complex interactions.
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The need for baseline data and continuous monitoring

It is clear that changes are occurring in the pressures on the marine environment (Fréon
et al. 2005) but it is difficult to quantify these and, in some instances, it is not clear what
data are available. Important, unidirectional drivers, such as the increase in atmospheric
carbon dioxide, are measured on a global scale. However, their regional impacts are
difficult to identify because there are few baseline values from shelf waters to compare
with current and future measurements. Other notable knowledge gaps include the effects
of ocean acidification on South African ecosystems as opposed to individual species,
adaptation responses of species groups over realistic, long time-scales and the effects of
pH on metal-organic interactions.

There are few historical records of seawater quality in South Africa to use as baselines for
tracking changes and possible impacts of organic and other pollutants. For trace metals
there are also difficulties associated with accurate sampling and measurement, for which
the employment of clean techniques is relatively recent (Cutter et al. 2010). The sparse
data that exist on pollutants tend to be better represented from the East Coast than the
West Coast, but these data are patchy in space and time. The general paucity of
measurements and difficulties in accessing what data there are make it difficult to draw
many conclusions on the role of marine pollution as a significant pressure in South
Africa’s marine ecosystems and long-term trends cannot be identified. There is also
limited understanding of eco-toxicological effects and impacts on marine life. In the case
of impacts of offshore mining operations, it would be useful if the data collected by private
and parastatal license holders during their mandatory environmental monitoring
programmes were to be standardised and centralised. Some companies are relatively
transparent and open in this regard, but others are not. This should change; the
companies have access to financial resources for monitoring the environment that the
regional and national governments cannot match for this purpose.

In contrast to the situation for pollution, mining and ocean acidification pressures, there
has been reasonably good information available for many fisheries and it is possible to
track the history of fisheries exploitation in South African marine ecosystems. There are
also good data available for some commercially important species and those of
conservation interest. However, data on plankton are patchy in space and time, and
confounded by changes in sampling methods and identification skills. Many of the data
gaps can be partly filled through the use of models, and mass-balance models have been
particularly useful in constraining likely biomass ranges for species that are poorly known
(e.g. Watermeyer et al. 2008).

The need for coherent ecosystem projects

This study was motivated by the need to synthesise information from projects funded
through the South African Network for Coastal and Oceanic Research’s SEAChange
programme under the ‘Ecosystems and Change’ theme (SANCOR 2006). The results of
some of these projects were used, but there was limited coherence among them, possibly
because project proposals are prepared by principal investigators who are effectively in
competition for limited funding with their potential collaborators. As a result, some
obvious gaps were not addressed and it was difficult to use the results in a coordinated
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fashion. There is also very limited understanding of how primary productivity and the
structures of phytoplankton communities might be changing in response to changes in
ocean temperatures, despite the fundamental importance of primary production in
ecosystem models. Some of these issues are likely related to limited resources and the
difficulties of carrying out ship-based research, but they also reflect the difficulties of
designing appropriate research projects for ecosystem-level issues when the funding is
allocated to individual principal investigators.

To understand the impacts of global change requires good long-term datasets and the
ability to unambiguously identify change and the causes of that change. At present, the
time-series off South Africa are mostly too short and the data too sparse to meet
conditions for attributing observed changes to causal processes. It is difficult to
distinguish between speculation and evidence-based change, especially as the latter often
is associated with large uncertainties. However, it is important to continue documenting
changes that have been observed, searching for patterns in observations, identifying
consistency in hypotheses to explain observed changes and testing these hypotheses
through future observations and analyses. A coordinated approach is needed to ensure
that the right data are effectively collected, archived and managed so future generations
have an informed basis on which to make decisions relating to the marine and coastal
environment.
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