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ABSTRACT

The mechanism and role of RNA secondary structure elements in the replication
and translation of human positive-strand RNA viruses remains poorly understood. These
secondary structures are formed when a single RNA strand folds over and base pairs with
itself, forming various types of loop structures. RNA strands fold into specific shapes.
This unique shape for each nucleic acid chain is the most stable state it can adopt. The
lower the energy, i.e., the fold with highest number of base pairs, the higher the stability
of the structure.

The Dynamic Programming technique, such as the one used in Nussinov-
Jacobson algorithm, predicts the locations to fold the sequence to give us an optimal
solution. But, the Nussinov algorithm does not necessarily generate the most stable
structure and may produce scattered matches that are not biologically relevant. More
complex algorithms are needed to solve this problem. Hence, we study Zuker’s energy
minimization algorithm that uses thermodynamic details with dynamic programming
principles at the core. Nussinov-Jacobson and Zuker algorithms give the maximum
number of base pairs that the given RNA molecule might have upon folding onto itself.

We analyze the outputs produced by both algorithms for small subsequences and
compare the predicted structures. Using a sliding window approach, we focus on specific
parts of RNA and analyze their structure. Studying the genomes of RNA viruses will give
an insight into the nucleotide positions that determine the virulence of the different virus

strains.
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1 Introduction

This chapter describes RNA, its structure, and computational algorithms that

predict RNA secondary structures.

1.1 Nucleic Acids

RNA is more primitive than DNA. DNA is only a store of genetic information.
Before DNA evolved, RNA carried genetic information. While DNA fulfills this
function, DNA itself still needs to be copied into RNA through the process of
transcription for a gene to be expressed. [1]

RNA can play many roles in cells: they are carriers of the stored genetic
information (e.g. mRNA), regulatory molecules (e.g. microRNAs), guides or templates
(e.g. telomerase), and enzymes (e.g. RNase P). Some of the worst plagues that affect
humanity are RNA pathogens (e.g. viruses that cause AIDS, influenza, polio, and dengue

fever).

1.2 Structure of RNA

RNA is a globular, single stranded structure. RNA is a polymer of repeating
monomer units called nucleotides. A nucleotide is composed of sugar, base, and
phosphate groups. They are Adenosine, Guanosine, Cytidine, and Uridine. [1]

a) Sugars:

Ribose sugars are five-membered ring-shaped molecules containing carbon atoms
and a single oxygen atom with side groups attached to the carbons. The carbon atoms are
numbered 1’ through to 5°.

The additional 2° —OH group in the ribose sugar has two consequences for the
function of RNA:

1. The 2° —OH group in ribose sugar is polar that makes RNA chemically more
reactive than DNA.

2. The ribose sugar molecule is slightly twisted to minimize interactions between

the polar 2° —OH group and the other non-bonding atoms attached to the ring. This



twisted shape has implications for the kinds of secondary structures that RNA forms
compared with DNA. [1]

b) Bases:

RNA is made from four different nucleotides. Each contains different bases
connected to ribose sugar. The four bases form two chemically distinct groups called
purines and pyrimidines. Both purine and pyrimidine bases are ring-shaped molecules
containing carbon and nitrogen atoms.

Purine bases are Adenine and Guanine. They contain a double ring with nine
carbon atoms. Pyrimidine bases are Uracil and Cytosine. They contain a single ring.
Hence, pyrimidines have less (six) carbon atoms than purines.

A clear difference between RNA and DNA is that RNA uses uracil as a base
whereas DNA uses thymine. The reason is related to the chemical stability of nucleotides

and the repair of nucleic acid damage in the cell. [1]

1.3 RNA Structural Organization

RNA molecules can fold into complex three-dimensional structures with three
hierarchical levels of organization. These three levels are [1]:

1. Primary Structure: This is the linear sequence of nucleotides in RNA.

2. Secondary Structure: There are helices that form through base pairing. RNA
helices form within single molecules of RNA (intra-molecular base pairing) and between
different RNA molecules (intermolecular base pairing).

3. Tertiary Structure: RNA molecules fold up into very compact and highly

organized structures.

1.4 Functions of RNA

DNA acts as a store of genetic information only. RNA forms more complex
structures than DNA. The ability to fold into diverse structures enables RNA to be
involved in a number of biological processes. Some of them are as follows [1]:

1. Store of genetic information: Some viruses have RNA genomes. E.g.

Poliovirus.



2. Template function: Telomerase RNA acts as template for making new DNA
ends of chromosomes.
3. Carrier of genetic information: mRNA carries out this function.

RNA is much more versatile. This makes it really interesting to study.

1.5 Algorithms for Predicting RNA Secondary Structures

The three dimensional structure of an RNA molecule is determined by the
information held inside the sequence of nucleotides. Analyzing the secondary structure of
the nucleotide sequence may provide an insight into first draft of the molecule. [2] Hence,
predicting the secondary structure given a primary sequence of RNA is crucial. Many
RNA families conserve their secondary structure more than they conserve their primary
sequence. [3] Many RNAs or functional elements in RNAs can only be identified by
comparative analysis of secondary structure. Also, the structure of molecules is
conserved across many species and may be used to infer phylogenetic relationships and

to determine two-dimensional and three-dimensional structure. [3]

1.5.1 Nussinov Algorithm

This is a dynamic programming algorithm that calculates maximum number of
base pairs in a folded RNA molecule. Nussinov algorithm is simple and acts as a basis for
all the other advanced RNA prediction algorithms.

The algorithm is designed to evaluate the contribution of individual base pairs to
the secondary structure of a polynucleotide chain. [4] Consider a sequence of n
nucleotides S;...S,. To identify the structure with the maximum number of base pairs, the
scoring system adds one per base pair to the score, adds zero for anything else. [5] The
optimal score, S (i, j), of a subsequence of the RNA from position i to position j, can be

defined recursively in terms of optimal scores of smaller subsequences. [3]

There are only four possible ways that a structure of nested base pairs can be constructed
(See Figure 1): [5]

1. i and j base pair, added on to a structure for i+, j-1.



2.1 1s unpaired, added onto a structure for i + 1, j.
3.j is unpaired, added onto a structure for i. j — 1.
4. i and j base pair but not to each other; the structure for i..; adds together sub-

structures for two sub-sequences, i..k and k + /..j (a bifurcation).

Si+1,j-1) S(i+1/)

S(ij-1)

Figure 1: Four possibilities of the recursive definition [5]

The algorithm uses the following mathematical recursion:

S (i, j) =max {
SG+1,j-1)+1,
SG+1,)),
S, j-1),
maxi<k<; S (i, k) + S (k+ 1, )

/

Storing the S(ij) matrix requires memory in the order of N* where N is the
number of nucleotides in the sequence to be folded. [2] However, the innermost loop of
having to find most optimal potential bifurcation points makes the time complexity of the
order N°. [5]

Base pair maximization is an inferior scoring scheme for prediction of RNA
secondary structures. Using minimum global energy of a structure is a better scoring
scheme and Zuker algorithm uses a dynamic programming approach that incorporates

energies of substructures.



1.5.2 Zuker Algorithm

RNA molecules adopt a structure with minimum global energy than the structure
with maximum number of base pairs. Zuker’s algorithm considers energies of different
loops and base pairing interactions.

Consider an N nucleotides long sequence, S. The nucleotides of an RNA molecule
are referred as vertices in the graph representation. The N-1 arcs of the semicircle
between the bases are called exterior edges. Exterior edges represent the phosphodiester
bonds between consecutive nucleotides. Chords on the semicircle represent base pairing
between two nucleotides. These chords are called interior edges. Edges and vertices
combine to form the graph of a RNA sequence. Chords are not allowed to intersect or
touch each other as it rules out all the knotted substructures. The free energy of the
structure is associated with the regions between bonds. For graphical representation, the

energy depends on the faces of the graph. [2]
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Figure 2: Conventional and Graph representation of a RNA secondary structure [2]

There are overall five types of faces as follows: [2]
1. Hairpin loop: A face with a single interior edge.
The following three types have two interior edges.
2. Stacking Region: Interior edges are separated by single exterior edges on each

side.



3. Bulge Loop: Interior edges are separated by a single exterior edge on one side,
but by more than one exterior edge on the other side.

4. Interior Loop: Face with exactly two interior edges with no restrictions on
exterior edges on sides.

5. Bifurcation Loop: Face with three or more interior edges.

Refer figure 2 for graphical representation of the five faces described above.

Energy of a structure is the sum of the energies of its faces. Zuker algorithm finds a

secondary structure having the minimum energy using dynamic programming principles.

2]

The algorithm uses the following recursion [2]:

For all pairs i, j where 1 <i <j <N, define

W (i, j) = minimum free energy of all possible admissible structures formed by the

subsequence Sj;

V (i, j) = minimum free energy of all possible admissible structures formed from Sj in

which S;and Sjbase pair with each other.

Rules:
V (i, j) = o If Siand S;can’t base pair
Waij)=0ij-i=4

Calculation of V (1, j) [2]:
V (i, j) =min{El, E2, E3}

El =E (FH (i, ))),



where FH(i ,j) is the hairpin loop containing the interior edge between S;

and S;

E2=min{E(FL (i, ji,j))+ Vi, 6Jj)}
where i < i’ <j'<jand FL (i, j, i’, j’) is the face containing exactly two

interior edges, one between S;and S; and other between S; and S;

E3=min{W({i+1i)+W@ +1j—1)}

where i+1 <i’<j-2

See Figure 3 for graphical representation.
Calculation of W (i,j) [2]:
W (i, j) = min {
Wi+l j),
W (i j-1),
V(ij),
Min{W(i,i’)+ W(@i'+1,j)}
/

See Figure 3 for graphical representation.

See Appendix A for a detailed manual simulation of Zuker Algorithm.
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Figure 3: Zuker-Possibilities of the recursion for W and V [2]

Using the Nussinov and Zuker algorithms, we will predict secondary structures of

subsequences using a sliding window approach. Knowing the secondary structure of a

specific region can help us predict the binding sites for other RNAs or proteins. Using

sequence alignment, secondary structures of interesting regions of different virus strains

can be compared. The nucleotide variations at the positions can be investigated to see

their effect on the combination ability of virus to the host and virus RNA translation

efficiency.

In the next chapter, we will discuss the scope and limitations of this project.



2 Scope of the project

This chapter defines the scope and limitations of the algorithms and the software
package implemented in this project.

Tracing back a secondary structure is implemented but not discussed in this
report. Many secondary structures may have the same score. Only the optimal score is
used for analysis.

A pseudoknot forms by base pairing between a single-stranded region of RNA
and a loop. Pseudoknots break the recursive definition of the optimal score S (i,j) and

energy functions. Hence, Nussinov and Zuker algorithms can’t handle pseudoknots. [5]

—A-U-C-G-G
NN
Y-A-G-C-C-A-A-A-A-C-G-U-U-

—_ G-CAAA—

Figure 4: Pseudoknots

For example, see Figure 4. The stem and loop structure inside the rectangle has 5
base pairs. The algorithms will recursively calculate the score or energy assuming the
nucleotide subsequence UUUGCAAAA has no base pairing. If you add pseudoknot base
pairs (C-G, G-C, U-A, U-A, U-A) onto the sub-sequence
(AUCGGUUUGCAAAACCGAU) then, the algorithms can’t add the score or energy, as
they don’t keep track of individual nucleotides. The algorithms just add the score or
energy on a previously calculated subsequence. [5]

Nussinov algorithm only uses the basic folding rules. Zuker algorithm uses basic

folding rules and thermodynamic information. To predict an accurate secondary structure,



more information is necessary irrespective of the computing power available. This is a
limitation of the project.

The Nussinov algorithm can execute on any window size but it takes a lot of time
if the window size is greater than 300. The attached code has set the limit to 800 for the
maximum allowed window size.

Zuker algorithm is more complicated and more computationally intensive than
Nussinov algorithm. The energy values used in the software can only handle window size
of less than 35. Replacing the energy values with more comprehensive values can easily
reduce this limitation.

In the next chapter, we will discuss the high level design and software framework of

this project.
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3 Software Frameworks and Design

In this chapter, we describe the high level design of the project and all the modules
involved. There are four important steps in the software as shown in Figure 5.

Read FASTA file

l

Initialize

l

Calculate Score

l

Plot graph and analyze

Figure 5: High Level Design of Project

3.1 Common Modules

We only allow the FASTA format for input RNA sequences. Hence, input module
is the same for both algorithms. The input module will copy the contents of a FASTA file
into a string, remove the comment from the sequence, convert all the nucleotide
characters into uppercase, and replace all ‘T’s with ‘U’s. The output is exported as a table

in Microsoft Excel for further analysis.

3.2 Algorithm Specific Modules

Initialization module is different for both algorithms. Initialized values are useful as
they are used to check for terminating a recursive call in the program. Nussinov

algorithm uses a matrix to store the scores for each subsequence. Zuker algorithm needs

11



to initialize two matrices, since the traceback is more involved than with Nussinov
algorithm.

Nussinov algorithm calculates the number of maximum possible base pairs in a
sequence. This score is calculated recursively and stored in an N*N table (where N is
number of nucleotides). This table is useful for making the recursion efficient. When we
try to calculate the score S (i,j), we have already calculated the scores of all the smaller
subsequences.

Zuker algorithm deals with two N*N matrices, V and W, for calculating minimum
global energy of a folded sequence. The W matrix depends on the values from the V
matrix. V matrix values are calculated by using various loop modules and the energy
table. Using the two matrices, we can easily find base pairs of the folded sequence if
needed.

In both scoring modules discussed above, the diagonals of the matrices are
initialized to a suitable value so that the recursion never accesses an empty cell of the

matrices.

3.3 Implementation Platform

The UNIX platform is used for the implementation of the program. C is the
programming language used to develop the software. For analysis of the results,

Microsoft Excel is used.

Implementation details will be discussed in the next chapter.

12



4 Implementation

This chapter discusses the implementation of Nussinov and Zuker algorithms. Both
algorithms follow similar steps. First, a FASTA file is read as an input and stored in a
string with the necessary input formatting. Second, the user is asked to enter a window
size for implementing the sliding window analysis of the algorithms. Third, recursive
functions are executed to calculate the maximum score for Nussinov algorithm or the
minimum energy for Zuker algorithm. Fourth, the individual output for each window is

plotted against the window number for the analysis using Microsoft Excel.

4.1 File Operation Module

Nussinov and Zuker algorithms use the same independent module to read a RNA
sequence from FASTA file. FASTA format is a standard for representing nucleotide
sequences.

A sequence in FASTA format has two parts. First part, the description line, begins
with a greater-than (">") symbol, followed by a single-line description and ends with the
UNIX new-line character. The second part, sequence data, consists of 4, C, G, and U/T.
[10] [11]

e.g. >gi|12408699|refINC_002058.3| Poliovirus, complete genome
TTAAAACAGCTCTGGGGTTGTACCCACCCCAGAGGCCCACGTGGCGGCTAGTACTCCGGTATTGCG

GTACCCTTGTACGCCTGTTTTATACTCCCTTCCCGTAACT [8]

We convert all 7 to U in the input module as we are dealing with RNA sequences only.

The above sequence will be stored in a string as follows:

UUAAAACAGCUCUGGGGUUGUACCCACCCCAGAGGCCCACGUGGCGGCUAGUACUCCGGUAUU
GCGGUACCCUUGUACGCCUGUUUUAUACUCCCUUCCCGUAACU

4.2 Implementation of Nussinov Algorithm

13



We will discuss the initialization and scoring functions in this section. [4][5] Score
(1, J) 1s the matrix that stores the maximum possible number of base pairs in a sequence.
The initialization function assigns the value ‘0’ to all the sequences of length 0 and 1. All
the other values are initialized to -1 to denote that they are not yet calculated.
Pseudocode:
Scoreli][i] = 0;
Scoreli][i-1] = 0,

This also assures that the recursion never accesses an empty cell of the Score matrix.

The scoring function is the heart of Nussinov algorithm and uses recursion
explained in the first section of this report. If the nucleotides base pair, the do basepair
function (used in the pseudocode below) adds a ‘1’ to the already calculated score.
Otherwise, it adds zero.

Pseudocode:

calculate_max_score(i, j)

{

max = scorefi+1][j],

if (score[i] [j-1] > max)
max = scorefi][j-1];

if (score[i+1][j-1] + do_basepair(i,j) > max)
max = score[i+1][j-1] + do_basepair(i,j),

for (k=i+1;k<j; kt++t)
if (score[i] [k] + score[k+1][j] > max)
max = scorefi] [k] + score[k+1][]];
return max,

/

4.3 Implementation of Zuker Algorithm

Zuker’s initialization function is similar to the one in Nussinov algorithm. Zuker
uses two matrices to store energy values namely, V and W. [2] V (i, j) stores the

minimum global energy of the subsequence S;; when 1 and j base pair. W (i,j) stores the

14



minimum global energy of the subsequence S;;. The V and W values of subsequences

with lengths 0 and 1 are initialized to infinity.

Pseudocode:
VIij[i] = V[i][i+1] = oo
WIlil[i] = W[i][i+1] = oo;

Scoring function for Zuker algorithm is a complicated yet beautiful dynamic

programming recursion that incorporates conformational rules and thermodynamic
details.

Pseudocode for calculating W matrix:
calculate W(i, j) {

if (W[i][j] is calculated) {
return W[i][j],
/

minimum_energy = calculate V(i, j);

if ( minimum_energy > calculate W(i+1j)) {
minimum_energy = W[i+1][j];
/

else if ( minimum_energy > calculate W(ij-1)) {
minimum_energy = W[i][j-1];
/

else{
for (k=i+l1 k<j k+t+){
if (minimum_energy > calculate W(i,k) + calculate W(k+1j) ) {
minimum_energy = W[i][k] + W[k+1][j], }
/
/
W[il[j] = minimum_energy,
return minimum_energy,

/

Pseudocode for calculating V matrix:

calculate V(i, j)
{
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if(i and j don’t base pair) { V[i][j] = infinity; return infinity;}

if (V[i][j] is calculated) { return V[i][j],}
// case 1: FH(i,j)

minimum_energy = hairpin_loop(i, j);
// case 2: min[FL(i,j,hk) + V(hk)]

for (h=1i+1; h<j h++){
for (k=j-1; k> h; k--) {
if (h and k base pair) {
ifth==i+tl && k==j-1) {
// Stacking Loop Energy calculation
temp_energy = stacking loop(i, j) + calculate V(h, k),
if (temp_energy < minimum_energy) {
minimum_energy = temp_energy,}
/

elseif (h==i+1|| k==j-1){
//Bulge Loop energy calculation
temp_energy = bulge loop(i, j, h, k) + calculate V(h, k);
if (temp_energy < minimum_energy) {
minimum_energy = temp_energy,}
/

else{
// Interior Loop energy calculation
temp_energy = interior loop(i, j, h, k) + calculate V(h, k),
if (temp_energy < minimum_energy) {
minimum_energy = temp_energy,}
/

/
/
/

// Bifurcation Loop calculation
for (k=i+2; k<j-1, k++) {
temp _energy = W[i+l1][k] + W[k+1][j-1];
if (temp_energy < minimum_energy) {
minimum_energy = temp_energy,}
/

V[il[j] = minimum_energy;
return minimum_energy,

/

In the next chapter, we discuss the analysis and results of this project.
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S ANALYSIS AND RESULTS

This chapter discusses the various analyses of the output from the software.

Nussinov algorithm has a time complexity of O(N*)[4] and Zuker has O(N*)[2]. Table 1
shows the execution time (in seconds) required for a given window size. The sequence
under consideration is the complete genome of Human Polio virus and it is 7440 base
pairs long. [8]

Window Size Nussinov Zuker

15 0.135304 0.231193
20 0.266494 0.455693
25 0.448400 0.947798
30 0.732963 1.885217
35 1.107857 3.887104
100 22.029250 NA

200 165.314504 NA

300 539.644728 NA

350 846.215939 NA

700 6739.113487 NA

Table 1: Execution times for different windows

As the window size increases, the execution time increases exponentially. Window size is
the length of a subsequence that is folded by the algorithm each execution cycle.

Nussinov

8000
7000
6000
5000
4000
3000
2000
1000

0
0 100 200 300 400 500 600 700 800

e=Gme N yssinov

Figure 6: Nussinov execution time for different window sizes

Figure 7 shows the comparison of execution times for Nussinov and Zuker algorithms for
different window sizes. Zuker execution time rises more exponentially than Nussinov.
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Figure 7: Comparison of execution times for small window sizes

There are many interesting correlations and properties that can be inferred from
the graphs. Figure 8 is a graph obtained from the output of Zuker algorithm with window

size 30.
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Figure 8: Zuker Output for Window Size 30

In Figure 8, position (3708, -14.16) represents the minimum energy of all the

windows for the given sequence.
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In simple words, the sequence that starts from position 3709 to 3738, with length
30, if folded with Zuker algorithm will have energy of -14.16 kcal/mole.

The sequence is "UUGUGGUGGCAUACUCAGAUGUCACCACGG”. Ithas 6 ‘A’s, 8
‘U’s, 7 ‘C’s,and 9 ‘G’s.

Theoretically,
Maximum possible number of base pairs = (A-U) + (C-G) + (G-U)
=6+7+2=15

From a similar graph for Nussinov,
Base pairs for window 3708 = 14

Energy = -14.16 kcal/mole
See Figure 9 for the predicted secondary structure.

U--U--G--U--G--G--U--G--G--C--A--U--A--C

l\ «L (L--A-- -U-- /l / / |

Figure 9: Secondary Structure for E=-14.16kcal/mole

Let’s consider another example. The most impossible structure is of the window number
4294 with energy as infinity. (In Figure 8, it is assigned as 20 for improving readability.)

According to Zuker algorithm,
Sequence that starts from 4295 and ends at 4324, with length 30, is impossible to fold.

The sequence is “AACCAAAUCUCAACUAUACACCAAUCAUGC”. It has 13 ‘A’s, 6
‘U’s, 10 ‘C’sand 1 ‘G’.

Theoretically,
Maximum possible number of base pairs = (A-U) + (C-G) + (G-U)
=6+1+0=7

According to Nussinov algorithm output,

Base pairs for window 4294 =7

See Figure 10 for one of the predicted secondary structure from the output of Nussinov
algorithm.
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A--A--C--C--

C--G--U--A--C--U--A--A--

/)

--A--A--U--C--U--C--A-

C--C--A--C--A=U

-A

Figure 10: Secondary Structure for 7 Base Pairs

Figure 11 shows the corresponding Nussinov output for the Poliovirus sequence.
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Figure 11: Nussinov output for Window Size 30
Table 2 shows the corresponding window numbers for minimum and maximum outputs
generated by both algorithms for the Poliovirus sequence. [8]

Window No. Nussinov Zuker

Nussinov Max
343 15 -8.12
7396 15 2.86

Nussinov Min
5387 4 2.66
5388 4 1.86

Zuker Min
3708 14 -14.16

Zuker Max
4294 7 infinity
4295 7 infinity
4296 7 infinity

Table 2: Minimum and Maximum output values for NC_002058

Figure 12 shows the outputs for each window of the Human Enterovirus B sequence. [7]
The top graph plots the Nussinov results and the lower graph plots the Zuker results.
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Figure 12: Outputs for Sequence NC_001472

Table 3 shows the corresponding window numbers for minimum and maximum outputs
generated by both algorithms for the Human Enterovirus B sequence.

Window No. Nussinov Zuker
Nussinov Max
3007 15 3.66
618 15 -11.1399
Nussinov Min
3254 5 4.4
3255 5 4.4
4663 5 4.4
4664 5 4.4
Zuker Min
5 11 -15.68
6 11 -15.68
7 11 -15.68
Zuker Max
7112 6 infinity

Table 3: Minimum and Maximum output values for NC_001472

Figure 13 shows the outputs for each window of the Human Enterovirus A sequence. [6]
The top graph plots the Nussinov results and the lower graph plots the Zuker results.
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Figure 13: Outputs for Sequence NC_001612

Table 4 shows the corresponding window numbers for minimum and maximum outputs
generated by both algorithms for the Human Enterovirus A sequence. [6]

Window No. Nussinov Zuker

Nussinov Max
351 15 -5.82
353 15 -5.82

Nussinov Min
687 5 4.4
688 5 4.4
689 5 4.4

Zuker Min
4 12 -13.68
5 12 -13.68

Zuker Max
685 6 5.62

Table 4: Minimum and Maximum output values for NC_001612

This analysis can be used to study RNA viruses at a comprehensive level as it gives
ability to the user to study specific genome regions that are interesting to her.
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6 CONCLUSION

We studied two RNA secondary structure prediction algorithms — Nussinov
algorithm and Zuker algorithm. We described the high level design of our algorithms,
their framework and implementation details. We analyzed the performance of both
algorithms.

Nussinov and Zuker algorithms give the mathematically optimal structure but not the
most accurate. Many different structures may have the same score. The shortcoming is
due to the scoring system and not the algorithm. If more information is added to the
scoring system, then the accuracy will improve. But, the underlying dynamic
programming principles remain the same.

The implementation only uses FASTA format for input that is common to both
algorithms. The output is two columns of numbers that show the score for each window
that is then used by Microsoft Excel for further analysis.

The software can’t deal with pseudoknots and really large sequences.
Thermodynamic energy values are limited and hence, Zuker can deal with only smaller
subsequences. This is not a serious limitation as adding extra values to the energy table
and using simple linear interpolation can overcome it.

The goal of this project was not to improve the accuracy of the existing algorithms
but to look at other properties for exploratory analysis. For this, we implemented a sliding
window approach. The user specifies a window size and then, a long sequence is used for
a sliding window of subsequences of the given window size. The score of each
subsequence is stored and plotted on a graph. Execution times of algorithms were plotted
for different window sizes and analyzed.

The programs will be very useful for biologists to study virulence determinants of an
RNA family. It can compare specific regions of genomes of various strains and predict

the corresponding secondary structures.
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7 FUTURE DIRECTIONS

Enterovirus 71 causes the large outsets of hand, foot, and mouth disease. Though it is
a self-limiting disease, fatal cases are increasing. [9] I want to study the virulence of EV-
71 virus and its strains by comparing the secondary structures of ‘self-limiting’ strains to

‘fatal’ strains.

Adding chemical reactivity properties and phylogenetic data for related sequences

will further improve the accuracy of Zuker algorithm.
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APPENDICES

Appendix A: Zuker manual simulation

A C G U U U C G U
A e’ e’ e’ 43 4.4 4.6 e’ e’ 0.7
C 0 0 0 0 e’ 0 e’ 2.4 0
G 0 0 0 0 4.1 4.1 4.4 0 2.9
U 43 0 e’ e’ 0 e’ oo 4.4 0
U 4.1 4.1 4.1 e’ 0 e’ oo 4.2 0
U 4.1 4.1 4.1 e’ e’ e’ oo 4.1 0
C 4.1 4.1 4.1 4.1 e’ 0 0 o 0
G 4.1 4.1 4.1 4.1 4.1 4.1 0 0 0
U 0.7 2.9 2.9 4.1 4.1 4.1 0 0 0

W(1,9)=V(1,9)
V(1,9) =FL(1,9,2.,8) + V(2.8)
V(2,8) =FL(2,8,3,7) + V(3,7)
V(3,7) =FH(3,7)

Base pairs are:(1,9) (2,8) (3,7)
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A nucleotide can’t base pair with itself.

Hence,

V(1,1)=V(2,2)=V(3,3) =V(4,4) = V(5,5 =V(6,6)=V(7,7) = V(8,8) = V(9,9) = =
A nucleotide can’t base pair with the neighboring nucleotide.

Hence,

V(1,2)=V(2,3)=V(3,4)=V(4,5)=V(5,6) =V(6,7)=V(7,8) =V(8,9) ==

Also, rules for base pairing are:

1. Only A-U, G-C, and G-U base pairings are allowed.
2. Pseudoknots are not allowed.

Hence,

As A and G don’t base pair,
V(1,3)=V(1,8) =

As A and C don’t base pair,
V(1,7) =

As C and U don’t base pair,
V(2,4)=V(2,5)=V(2,6) = V(2,9) = V(4,7) = V(5,7) = V(7,9) = »

As G, C, and U don’t base pair with themselves,
V(2,7)=V(3.,8) =V(4,6) = V(4,9) = V(5,9) = V(6,9) =

Recursive relations are,

V@, j) =min {
FH(1,),

min[FLG, j, h, k) + V(h,k)] fori<h<k<j
min[W(i+1, k) + W(k+1, j-1)] for i+1 <k <j-1
}
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V(1, 4) =min {
FH(1,4)=4.3
FL(1,4,2,3) + V(2,3) = (Doesn’t have two interior edges)
o (Doesn’t have three or more interior edges)

b
V(1,5)=min {
FH(1,5)=4.4
o (Doesn’t have two interior edges)
o (Doesn’t have three or more interior edges)
b
V(3,5) =min {
FH(3,5)=4.1
o (Doesn’t have two interior edges)
o (Doesn’t have three or more interior edges)
b
V(1,6) = min {
FH(1, 6) =4.6
FL(1,6,3,5) + V(3,5 =4.8+4.1=8.9
o (Doesn’t have three or more interior edges)
b
V(3,6) = min {
FH(3,6) = 4.1
o (Doesn’t have two interior edges)
o (Doesn’t have three or more interior edges)
b
V(3,7) = min {
FH(3,7)=4.4
o (Doesn’t have two interior edges)
o (Doesn’t have three or more interior edges)
b
V(4,8) = min {
FH(4,8) =4.4

o (Doesn’t have two interior edges)
o (Doesn’t have three or more interior edges)

}
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V(5,8) = min {
FH(5,8) =4.4
o (Doesn’t have two interior edges)
o (Doesn’t have three or more interior edges)

}

V(6,8) = min {
FH(6,8) = 4.1
o (Doesn’t have two interior edges)
o (Doesn’t have three or more interior edges)

}

V(2,8) = min {
FH(2,8) =4.8
FL(2,8,3,7) +V(3,7)=-2.0+44=24
o (Doesn’t have three or more interior edges)

}

V(3,9) = min {
FH(3,9)=4.8
FL(3,9,4,8) + V(4,8)=-1.5+44=29
o (Doesn’t have three or more interior edges)

b
V(1,9) = min {

FH(1,9)=5.2

min {
FL(1,9,2,8) + V(2,8) =-1.7+2.4 =0.7
FL(1,9,3,7) + V(3,7)=55+4.4=9.9
FL(1,9,3,6) + V(3,6)=5.8+4.1=9.9
FL(1,9,3,5) + V(3,5 =6.2+4.1=10.3
FL(1,9,6,8) + V(6,8) =6.2 + 4.1 =10.3
b

o (Doesn’t have three or more interior edges)

b
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Let’s calculate the other score matrix, W.

According to the rules of base pairing,

W(i, i) =
W(i, i+1) =

W(i,j) = min {
W(i+ 1, j),
WG, j- 1),
V@, Jj)s

min[W(i,k) + W(k + 1, j)] fori <k <j

b

W(1,3) =min {
W(2,3) =
W(1,2) =00
V(1,3)=o

Case 4 not possible.

}

W(2,4) =min {
W(3,4)=o
W(2,3) =
V(2,4)=o

Case 4 not possible.

}

W(3,5) =min {
W(4,5) =0
W(3,4)=o
V(3,5)=4.1

Case 4 not possible.

}

W(4,6) =min {
W(5,6) = o
W(4,5) =0
V(4,6) =

Case 4 not possible.

}
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W(5,7) =min {
W(6,7) =
W(5,6) = o
V(5,7) =
Case 4 not possible.

}

W(6,8) =min {
W(7,8) =
W(6,7) = o0
V(6,8)=4.1
Case 4 not possible.

}

W(7,9) =min {
W(8,9) = o
W(7,8) =
V(7,9) =
Case 4 not possible.

}

W(1,4) =min {
W(2,4)= o0
W(1,3) =
V(1,4)=43
W(1,2)+W (3,4)=
h

W(2,5) =min {
W(@3,5)=4.1
W(2,4) =0
V(2,5)=»
W(2,3)+W 4,5 =
b

W(3,6) = min {
W(4,6) = o
W(@3,5)=4.1
V(3,6)=4.1
W(3,4) + W(5,6) =
b
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W(4,7) =min {
W(5,7) =0
W(4,6)=4.1
V(4,7) =
W(4,5) + W(6,7) =
b

W(5,8) =min {
W(6,8)=4.1
W(5,7) =0
V(6,8)=4.1
W(5,6) + W (6,7) = x
b

W(6,9) = min {
W(7,9) =0
W(6,8)=4.1
V(6,9) = x
W(6,7) + W (8,9) =
b

W(1,5) =min {
W(2,5)=4.1
W(l,4)=43
V(1,5)=4.4
min {

W(1,2) + W(3,5) = o
W(1,3) + W(4,5) = o

b
b

W(2,6) = min {
W(@3,6)=4.1
W(2,5)=4.1
V(2,6) =
min {

W(2,3) + W(4,6) = o
W(2,4) + W(5,6) = o

}
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W(3,7) =min {

W4,7)=4.1

W(@3,6)=4.1

V(3,7)=4.4

min {
W(3,4) + W(5,7) =
W(@3,5) + W(6,7) =
b

b

W(4,8) = min {
W(5,8)=4.1
W(@3,7)=4.1
V(4,8)=4.4
min {
W(4,5) + W(6,8) =
W(4,6) + W(7,8) =
}
}
W(5,9) = min {
W(6,9) =4.1
W(5,8)=4.1
V(5,9) =
min {
W(5,6) + W(7,9) =
W(5,7) + W(8,9) =
}
}

W(1,6) = min {

W(2,6)=4.1

W(1,5)=4.1

V(1,6)=4.6

min {
W(1,2) + W(3,6) =
W(1,3) + W(4,6) =
W(1,4) + W(5,6) =
}
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W(2,7) =min {

W(3,7)=4.1
W(2,6)=4.1

V(2,7) =

min {

}

W(3,8) =min {

W(2,3) + W(4,7) = o
W(2,4) + W(5,7) = o
W(2,5) + W(6,7) = o
}

W(4,8)=4.1
W(3,7)=4.1
V(3,8) =

min {

}

W(4,9) = min {

W(3,4) + W(5,8) =
W(3,5) + W(6,8) =
W(3,6) + W(7,8) = o
}

W(5,9)=4.1
W(4,8)=4.1
V(4,9) = o

min {

}

W(1,7) =min {

W(4,5) + W(6,9) = o
W(4,6) + W(7,9) = o
W(4,7) + W(8,9) = o
}

W(2,7)=4.1
W(1,6)=4.1
V(1,7) =

min {

W(1,2) + W(3,7) = o
W(1,3) + W(4,7) = o
W(1,4) + W(5,7) =
W(1,5) + W(6,7) = o
}
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}

W(2,8) =min {

W(3,8)=4.1
W(2,7)=4.1
V(3,8) =

min {

}

W(3,9) =min {

W(2,3) +W(4,8)=x

W(2,4)+ W(5,8) =

W(2,5)+ W(6,8)=4.1+4.1=8.2
W(2,6) + W(7,8) =

}

W(4,9)=4.1
W(3,8)=4.1
V(3,9)=2.9

min {

}

W(1,8) =min {

W(3,4)+ W(5,9) =
W(@3,5)+W(6,9)=4.1+4.1=8.2
W(3,6) + W(7,9) =

W(3,7) + W(8,9) =

}

W(2,8)=4.1
W(l,7)=4.1
V(1,8) =

min {

}

W(2,9) =min {

W(1,2) + W(3,8) = o

W(1,3) + W(4,8) = o

W(1,4) + W(5,8)=4.3 +4.1=8.4
W(1,5) + W(6,8) = 4.1

W(1,6) + W(7,8) = o

}

W(3,9)=2.9
W(2,8)=4.1
V(2,9) =
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min {

W(2,3) + W(4,9) = o
W(2,4) + W(5,9) = o
W(2,5) + W(6,9) = 4.1
W(2,6) + W(7,9) = o
W(2,7) + W(8,9) = o
}

b
W(1,9) = min {

W(2,9)=2.9

W(1,8)=4.1

V(1,9)=0.7

min {
W(1,2) + W(3,9) =
W(1,3) + W(4,9) =
W(1,4) + W(5,9)=4.3
W(1,5) +W(6,9)=4.1
W(1,6) + W(7,9) =
W(1,7) + W(8,9) =
b

b
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Appendix B: Nussinov Algorithm Implementation

//

// main.c

// NussinovJacobson

//

/I Created by Hardik Shah on 11/20/12.

/I Copyright (c) 2012 San Jose State University. All rights reserved.
//

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <time.h>

char input_sequence[8000], window sequence[700];
int input_length;

int score[700][700];

int window_begin,window_end;

void read_fastafile(void);

void initialize score matrix(int);// Window size is the argument
int do_basepair(char, char);

int calculate maxscore(int, int);

void print_score matrix(int);

int main (int argc, const char * argv([])

{
int window_size;//,window_begin,window_end;
clock t start time;
start_time = clock();

read_fastafile();

printf("\nEnter the Window Size:");
scanf("%d", &window _size);

initialize score matrix(window_size);

for (window_begin = 0; window_begin < (input_length - window_size);
window_begin++) {
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initialize score matrix(window_size);
strncpy(window_sequence, input_sequence+window_begin, window_size);

printf("%d \t %d\n",window_begin, calculate maxscore(0, window_size-1));

}

printf("Time elapsed: %f\n", ((double)clock() - start_time) / CLOCKS PER SEC);

return O;

}

//**********************************************************************

void read_fastafile(void)
{

FILE *fasta fp;

char current_fp;

int index = 0;

fasta_fp = fopen("/Users/hardikshah/Desktop/NC 0020583.txt", "r");

if (fasta_fp ==NULL) {
printf("Error Opening File");
b

while ( (current fp = fgetc(fasta_fp)) = EOF ) {
// ' Not storing the Fasta comment that begins with ™' and ends with "n
if (current_fp =="") {
do {
current fp = fgetc(fasta fp);
} while (current fp !="\n');

'

}

else
{
if (current_fp =="\n') {
continue;
b
else{
current fp = toupper(current_fp);
if (current_fp =="T") {
current fp="U";
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!
input_sequence[index++] = current fp;
}
}
}

fclose(fasta fp);
input_sequence[index] ="\0'";
input_length = index;

/I printf("\nInput String is: %s",input_sequence);
// printf("\nIndex: %d",index);
b

ﬁ**********************************************************************

ﬁ**********************************************************************

int do_basepair(char i, char j)

{
if (='A'&&j=="'U") return 1;
elseif 1=="U" && j=="A") return I;
else if 1=="'G' && j=="U") return I;
elseif 1=="U"'&& j=="'G") return I;
elseif 1=="'G' && j=="C") return 1;
elseif 1=="C' && j=="G") return 1;
else return 0;

}

ﬁ**********************************************************************

ﬁ**********************************************************************

void initialize score matrix(int window_size)
inti, j;
for (1=0; 1 <window_size; i++)
for (j =0; j <window_size; j++){

if(i==j){
score[i][j] = 0; /' score[1][1] = 0 by definition (Initializing the Diagonal to
0 as no nucleotide can basepair with itself)
b
else

score[i][j] =-1;
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// Intializing the next diagonal to O .. Base pairs of length 1..
for (1= 1; i< window_size; i++) {
score[i][i-1]=0;
b
b

ﬁ**********************************************************************

ﬁ**********************************************************************

void print_score matrix(int window_size)
intr, c;
for (r = 0; r <window_size; r++)

{
printf("\n");
for (c = 0; c <window_size; c++)
{
printf("\t");
printf("%d",score[r][c]);
b
b
printf("\n");
)

ﬁ**********************************************************************

ﬁ**********************************************************************

int calculate maxscore(int r, int c)

{

int max_score, k;

if (score[r][c] !=-1) {
return score[r][c];

}

max_score = calculate_maxscore(r+1,c); // Case 'V'

if (max_score < calculate maxscore(r, c-1)) {
max_score = score[r][c-1]; // Case 'H'
b
// Case 'D'
else if ( max_score < (calculate maxscore(r+1,c-1) +
do_basepair(window_sequence[r], window_sequence[c])) ){
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max_score = score[r+1][c-1] + do_basepair(window_sequence[r],
window_sequence[c]);

}

for (k=r+1; k <c; k++) {
if ((calculate_maxscore(r,k) + calculate maxscore(k+1,c) ) > max_score) {
max_score = score[r][k] + score[k+1][c];
b
b

score[r][c] = max_score;
return max_score;

}

//**********************************************************************
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Appendix C: Zuker Algorithm Implementation

//

// main.c

/l" zuker

//

/I Created by Hardik Shah on 11/11/12.

/I Copyright (c) 2012 San Jose State University. All rights reserved.
//

//**********************************************************************

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <time.h>

# define MAXLEN 40
# define infinity 999
# define not_calculated 4567

float calculate V(int,int);

float calculate W(int,int);

void initialize everything(void);
int do_basepair(char,char);

float hairpin_loop(int,int);

float stacking loop(int,int);

int getindex_ stacking(int,int);
float bulge loop(int,int,int,int);
float interior loop(int,int,int,int);
void read_fastafile(void);

char input_sequence[8000],window_sequence[ MAXLEN];
int input_length,window begin;

float VIMAXLEN][MAXLEN],W[MAXLEN][MAXLEN];
/fint loop_type[MAXLEN][MAXLEN], pathmatrixy MAXLEN][MAXLEN][2];

//int traceback stack[ MAXLEN][2];
//int stack pointer = -1;

float stacking_energy[6][6]={

{-0.9,-1.8,-2.3,-1.1,-1.1,-0.8,
{-1.7,-2.9,-3.4,-2.3,-2.1,-1.4},
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{-2.1,-2.0,-2.9,-1.8,-1.9,-1.2},
{-0.9,-1.7,-2.1,-0.9,-1.0,-0.5},
{-0.5,-1.2,-1.4,-0.8,-0.4,-0.2},
{-1.0,-1.9,-2.1,-1.1,-1.5,-0.4}
}3
/*A/U=0,C/G=1,G/C=2,UA=3,G/U=4,U/G=5.
Sequence of the rows and columns in stacking energy
Stacking energy in double-stranded region when the base
pair listed in left column is followed by the base pair listed in top row.C/G followed by
U/A is therefore the dinucleotide 5'CU 3' paired to 5' AG 3' with stacking energy as
stacking_energy[2][4] =2.3

*/

float destabilizing_energy[3][5] = {
{infinity, 5.3, 6.6, 7.0, 7.4},
{3.9,4.8,5.5,6.3,6.7},
{infinity, 4.4,5.3,6.1,6.5}

}3

/* Rows*Columns 1 5 10 20 30
interior,

Bulge,

Hairpin

*/

ﬁ**********************************************************************

ﬁ**********************************************************************

/
int main (int argc, const char * argv([])

{
int window_size; //,row,column;
clock t start time;
start_time = clock();
read fastafile();
printf("\nEnter the Window Size:");

scanf("%d", &window_size);

initialize everything();
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for (window_begin = 0; window_begin < (input_length - window_size);
window_begin++) {

initialize everything();
strncpy(window_sequence, input_sequence+window begin, window_size);

printf("%d\t%f\n",window_begin, calculate W(0, window_size-1));
h
printf("Time elapsed: %f\n", ((double)clock() - start_time) / CLOCKS PER SEC);
return O;

}

ﬁ**********************************************************************

ﬁ**********************************************************************

float calculate V(int i, int j)

{

float minimum_energy,temp_energy;
int h,k;

// When they don't base pair

if (!do_basepair(window_sequence[i],window_sequence[j])) {
V[i][j] = infinity;
return infinity;

}

if (V[i][j] !=not_calculated) { //crazy way of saying if V is calculated
return V[i][j];
b

// case 1: FH(i,j)

minimum_energy = hairpin_loop(i, j);
//pathmatrix[i][j][0] = i+1;
/lpathmatrix[i][j][1] = j-1;
/Noop_typel[i][j] = -4; /-4 for hairpin

/*

case 2: min[FL(i,j,h,k) + V(h,k)]

a-> If there are not two interior edges then energy is infinity

Also, if there are only 4 nucleotides in the subsequence then energy is infinity as it
can't have two interior edges.
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b-> If there are two interior edges then it can be either stacking region or bulge loop or
interior loop
*/

for (h=1+1; h <j; h++) {
for (k=3-1; k> h; k--) {
if (do_basepair(window_sequence[h],window sequence[k])) {
if (h=1i+1 && k==j-1) {
//Check if i+1 and j-1 base pair, else return infinity. Stacking loop will have
two basepairs
temp_energy = stacking loop(i, j) + calculate V(h, k);
if (temp_energy < minimum_energy) {
minimum_energy = temp_energy;

/l pathmatrix[i][j][0] = h;
/l pathmatrix[i][j][1] = k;
/! loop type[i][j] =-1;// -1 for stacking
b
b

else if (h==i+1 || k==j-1){
temp_energy = bulge loop(i, j, h, k) + calculate V(h, k);
if (temp_energy < minimum_energy) {
minimum_energy = temp_energy;

/l pathmatrix[i][j][0] = h;
/l pathmatrix[i][j][1] = k;
/! loop type[i][j] =-2; // -2 for bulge
b
b
else{

temp_energy = interior_loop(i, j, h, k) + calculate V(h, k);
if (temp_energy < minimum_energy) {
minimum_energy = temp_energy;

/l pathmatrix[i][j][0] = h;
/l pathmatrix[i][j][1] = k;
/! loop type[i][j] = -3; /-3 for interior
b
b
b
b
b
/*

case 3: min[W(i+1,k) + W(k+1,j-1)] condition is i+1 <k <j-1
This has more than two interior edges.*/
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for (k =1+2; k <j-1; k++) {
temp_energy = W[i+1][k] + W[k+1][j-1];
if (temp_energy < minimum_energy) {
minimum_energy = temp_energy;

/l pathmatrix[i][j][0] = k;
/l pathmatrix[i][j][1] = k;
/! loop type[i][j] = -4; // value of the bifurcation position
b
b

V[i][j] = minimum_energy;

return minimum_ energy;

}

ﬁ**********************************************************************

ﬁ**********************************************************************

float calculate W(int i, int j)

{
int k;
float minimum_energy;

if (W[i][j] '= not_calculated) { //if W is calculated then return its value.
return W[i][j];
b

minimum_energy = calculate V(i, j);

/*
(i,i-D @G, J)
(i+1,j-1)  (+1, j)
*/

/I All the following cases require the earlier values to be calculated. So, I should call
calculate W function in increasing diagonal order.

if ( minimum_energy > calculate W(i+1,j)) {
minimum_energy = W[i+1][j];
/! loop type[i][j] = -5; // don't basepair
b

else if ( minimum_energy > calculate W(ij-1)) {
minimum_energy = W/[i][j-1];
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/! loop type[i][j] = -5; // don't basepair
b

else{
for (k=1+1; k <j; k++) {
if ( minimum_energy > calculate W(i,k) + calculate W(k+1,j) ) {
minimum_energy = W[i][k] + W[k+1][j];
/! loop type[i][j] = k;// a little dubious
b
b
}
WIi][j] = minimum_energy;
return minimum_ energy;

}

ﬁ**********************************************************************

ﬁ**********************************************************************

// ' This function will be used after secondary structure of each subsequence is calculated.
void initialize everything()
{

inti,j;

for (i=0; iI<MAXLEN; i++) {
for (j=0; jJ<MAXLEN; j++) {

V[i][j] = not_calculated;

WIi][j] = not_calculated;

/! loop_type[i][j] = -5;//-5 for don't base pair
/l pathmatrix[i][j][0] = -1;
/l pathmatrix[i][j][1] = -1;
h
h
/I Sequences of length 0 and 1 can't base pair.
IIN

for (i=0; iI<MAXLEN; i++) {

V[i][i] = infinity;

if (1 < MAXLEN-1) V[i][i+1] = infinity;
)
/W
for (i=0; iI<MAXLEN; i++) {

WI[i][i] = infinity;

if (1 < MAXLEN-1) W[i][i+1] = infinity;
b
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}

ﬁ**********************************************************************

ﬁ**********************************************************************

int do_basepair(char i, char j)

{
if (='A'&&j=="'U") return 1;
elseif 1=="U" && j=="A") return I;
else if 1=="'G' && j=="U") return I;
elseif 1=="U"'&& j=="'G") return I;
elseif 1=="'G' && j=="C") return 1;
else if 1=="C' && j=="G") return 1;
else return 0;

b

ﬁ**********************************************************************

ﬁ**********************************************************************

float hairpin_loop(int row, int column)

{

float hairpin_energy,interpolation;
int hairpin_nucleotides;

hairpin_nucleotides = abs(column-row) + 1;

//Pentanucleotide hairpins are stable. Anything less than that is not permitted.
if (hairpin_nucleotides <= 4)
return infinity;

if (hairpin_nucleotides == 5) {
hairpin_energy = destabilizing_energy[2][1];// Value is 4.4. Refer the hardcoded
values.
//return hairpin_energy;
}
else if (hairpin_nucleotides <= 10) {
interpolation = ( (10-hairpin_nucleotides) * ( (destabilizing energy[2][2] -
destabilizing_energy[2][1]) / 5) );
hairpin_energy = destabilizing_energy[2][2] - interpolation;

/*hairpin_energy = 5.3 - ((10-temp) * 0.18);// Good trick!
return hairpin_energy;*/

b
else if (hairpin_nucleotides <= 20) {
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interpolation = ( (20-hairpin_nucleotides) * ( (destabilizing energy[2][3] -
destabilizing energy([2][2]) / 10));
hairpin_energy = destabilizing_energy[2][3] - interpolation;

/*hairpin_energy = 6.1 - ((20-temp) * 0.08);
return hairpin_energy;*/

}

else if (hairpin_nucleotides <= 30){
interpolation = ( (30-hairpin_nucleotides) * ( (destabilizing energy[2][4] -
destabilizing energy([2][3]) / 10));
hairpin_energy = destabilizing_energy[2][4] - interpolation;

//hairpin_energy = 6.5 - ((30-temp) * 0.04);
b

return hairpin_energy;

}

ﬁ**********************************************************************

ﬁ**********************************************************************

int getindex_stacking(int row, int column)

{

if (window_sequence[row] =="'A"' && window_sequence[column] =="U") {
return O;

b

if (window_sequence[row] =="'C' && window_sequence[column] =="G'") {
return 1;

b

if (window_sequence[row] =="'G' && window_sequence[column] =="'C") {
return 2;

b

if (window_sequence[row] == 'U' && window_sequence[column] =="A") {
return 3;

b

if (window_sequence[row] =='G' && window_sequence[column] =="U") {
return 4;

b
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if (window_sequence[row] == 'U' && window_sequence[column] =="'G") {
return 5;

}

return -1;

}

float stacking loop(int row,int column)

{

float stacking energy value;
int row_pointer,column_pointer;

row_pointer = getindex_stacking(row, column);
//What if i+1 and j-1 don't base pair? Column_pointer will go
column_pointer = getindex_stacking(row+1, column-1);

stacking_energy value = stacking energy[row_pointer][column_pointer];

return stacking energy value;

}

ﬁ**********************************************************************

ﬁ**********************************************************************

float bulge loop(int row1, int columnl, int row2, int column?2)

{

float bulge energy,interpolation;
int bulge nucleotides;

bulge nucleotides = ( (row2 - rowl) > (columnl - column2)? (row2 -rowl) :
(columnl - column2) ) + 2;

if (bulge nucleotides <=5) {
interpolation = ( (5 - bulge nucleotides) * ( (destabilizing energy[1][1] -
destabilizing energy[1][0]) / 5) );
bulge energy = destabilizing_energy[1][1] - interpolation;
b

else if (bulge nucleotides <= 10) {
interpolation = ( (10 - bulge nucleotides) * ( (destabilizing energy[1][2] -
destabilizing_energy[1][1]) / 5) );
bulge energy = destabilizing_energy[1][2] - interpolation;
b
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else if (bulge nucleotides <= 20) {
interpolation = ( (20 - bulge nucleotides) * ( (destabilizing energy[1][3] -
destabilizing energy[1][2]) / 10));
bulge energy = destabilizing_energy[1][3] - interpolation;
b

else if (bulge nucleotides <= 30) {
interpolation = ( (30 - bulge nucleotides) * ( (destabilizing energy[1][4] -
destabilizing energy[1][3]) / 10));
bulge energy = destabilizing_energy[1][4] - interpolation;
b

return bulge energy;

}

ﬁ**********************************************************************

ﬁ**********************************************************************

float interior loop(int row1, int columnl, int row2, int column2)

{

float interior _energy, interpolation;
int interior nucleotides;

interior nucleotides = (row2-rowl) + (columnl - column2) + 2;

if (interior_nucleotides == 5) {
interior energy = destabilizing_energy[0][1];

}

else if (interior nucleotides <= 10) {
interpolation = ( (10-interior nucleotides) * ( (destabilizing energy[0][2] -
destabilizing_energy[0][1]) / 5) );
interior energy = destabilizing_energy[0][2] - interpolation;

}

else if (interior nucleotides <= 20) {
interpolation = ( (20-interior nucleotides) * ( (destabilizing energy[0][3] -
destabilizing energy[0][2]) / 10) );
interior energy = destabilizing_energy[0][3] - interpolation;

}

else if (interior nucleotides <= 30) {
interpolation = ( (30-interior nucleotides) * ( (destabilizing energy[0][4] -
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destabilizing energy[0][3]) / 10) );
interior energy = destabilizing_energy[0][4] - interpolation;

}

// what about the case with more than 30 edges. How do we handle that?

return interior energy;

}

ﬁ**********************************************************************

ﬁ**********************************************************************

void read_fastafile(void)
{

FILE *fasta fp;

char current_fp;

int index = 0;

fasta_fp = fopen("/Users/hardikshah/Desktop/NC 0016121.txt", "r");

if (fasta fp ==NULL) {
printf("Error Opening File");
b

while ( (current fp = fgetc(fasta_fp)) = EOF ) {
// Not storing the Fasta comment that begins with ™' and ends with "n
if (current_fp =—="") {
do {
current fp = fgetc(fasta fp);
} while (current fp !="\n');

'

}
else
{
if (current_fp =="\n") {
continue;
}
else{
current fp = toupper(current_fp);
if (current_fp =="T") {
current fp="U";
!
input_sequence[index++] = current fp;
}
}
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fclose(fasta fp);
input_sequence[index] ="\0'";
input_length = index;

}

//**********************************************************************
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