
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2012

Simple Substitution Distance and Metamorphic
Detection
Gayathri Shanmugam
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Shanmugam, Gayathri, "Simple Substitution Distance and Metamorphic Detection" (2012). Master's Projects. 270.
DOI: https://doi.org/10.31979/etd.q9z6-vxd5
https://scholarworks.sjsu.edu/etd_projects/270

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SJSU ScholarWorks

https://core.ac.uk/display/80548393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/270?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Simple Substitution Distance and Metamorphic Detection

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Gayathri Shanmugam

December 2012

c© 2012

Gayathri Shanmugam

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Simple Substitution Distance and Metamorphic Detection

by

Gayathri Shanmugam

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2012

Dr. Mark Stamp Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Dr. Richard Low Department of Mathematics

ABSTRACT

Simple Substitution Distance and Metamorphic Detection

by Gayathri Shanmugam

To evade signature-based detection, metamorphic viruses transform their code

before infecting a new system. Software similarity measures are potentially useful as

a means of detecting metamorphic malware. We can compare a given file to a known

sample of malware and compute their similarity—if they are sufficiently similar, we

classify the file as malware of the same family. The goal of this project is to analyze

an opcode-based software similarity measure inspired by simple substitution cipher

cryptanalysis.

ACKNOWLEDGMENTS

I would like to thank Dr. Mark Stamp, my project advisor, for his guidance,

encouragement and support throughout the project.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Malware . 3

2.1 Encrypted Virus . 3

2.2 Polymorphic Virus . 3

2.3 Metamorphic Virus . 4

2.3.1 Code Obfuscation Techniques 4

2.4 Malware Detection Techniques . 7

2.4.1 Signature Detection . 7

2.4.2 Code Emulation . 7

2.4.3 Anomaly Detection . 7

3 Substitution Ciphers . 9

3.1 Simple Substitution Ciphers . 9

4 Fast Attack on Simple Substitution 11

4.1 Hill Climbing Technique . 11

4.2 Overview of the Algorithm . 12

5 Simple Substitution Distance for Metamorphic Malware Detec-
tion . 17

6 Experiments . 24

6.1 Test Data . 25

6.2 Test Results . 25

vi

vii

6.2.1 Different Scoring Functions Experimented 37

6.2.2 Different Size of the Matrix Experimented 39

6.2.3 Different Normalization Techniques Experimented 41

6.2.4 Different Swapping Strategies Experimented 42

6.2.5 Comparison with HMM Detection Technique 45

6.2.6 Efficiency of the Proposed Technique 45

7 Conclusions and Future Work . 48

LIST OF TABLES

1 Simple Substitution Key . 9

2 Fast Simple Substitution Attack [6, 18] 14

3 Fast Algorithm for Metamorphic Malware Detection 21

4 ROC AUC Statistics for Different Padding Ratios 36

5 ROC AUC Statistics for Different Scoring Functions 38

6 ROC AUC Statistics for Different Values of n 40

7 ROC AUC Statistics for Normalization Techniques 1 and 2 42

8 ROC AUC Statistics for Different Swapping Strategies 45

9 ROC AUC Statistics for Different Padding Ratios using Proposed Tech-
nique . 45

10 ROC AUC Statistics for Different Padding Ratios using HMM Detec-
tion Technique [16] . 45

11 Scoring Efficiency for MWOR Family Viruses and Benign Files 47

viii

LIST OF FIGURES

1 Different Generations of Win95/Regswap 5

2 Subroutine Permutation with Eight Subroutines 5

3 Flow Diagram of the Proposed Technique 20

4 Training Set: NGVCK . 26

5 Training Set: G2 . 27

6 Training Set: MWOR with Padding Ratio of 0.5 28

7 Training Set: MWOR with Padding Ratio of 1.0 29

8 Training Set: MWOR with Padding Ratio of 1.5 30

9 Training Set: MWOR with Padding Ratio of 2.0 31

10 Training Set: MWOR with Padding Ratio of 2.5 32

11 Training Set: MWOR with Padding Ratio of 3.0 33

12 Training Set: MWOR with Padding Ratio of 3.5 34

13 Training Set: MWOR with Padding Ratio of 4.0 35

14 ROC Curves for Different Padding Ratios 36

15 ROC Curves for Different Scoring Functions 38

16 ROC Curves for Different Values of n 40

17 ROC Curves for Normalization Techniques 1 and 2 42

18 ROC Curves for Different Swapping Strategies 44

ix

CHAPTER 1

Introduction

Malicious software, or malware, comes in many different forms. For example,

viruses and worms are types of malware that can replicate and spread from one

computer to another without user permission or knowledge [25]. In this paper, we

use the terms virus and malware interchangeably.

When the malware is executed, it might perform various malicious activities

on a system, such as deleting files, overwriting important information, or stealing

sensitive information such as passwords. Anti-virus (AV) developers apply a number

of different techniques to detect malware [15]. The most widely used AV methodology

is signature detection [17].

In the context of virus detection, a signature consisting of a sequence of bytes

(possibly, including wildcards) is extracted from a known virus. Various string match-

ing techniques are used to efficiently scan files for multiple signatures [1]. Since

signature detection is the most commonly-used detection strategy, virus writers have

developed many techniques designed to evade such detection. Arguably, metamorphic

malware represents the most sophisticated technique developed to date for evading

signature-based detection [2].

A metamorphic virus uses code transformations to morph its code at each in-

fection. That is, the internal structure is altered, but the functionality remains un-

changed. If the morphing is sufficient, then no common signature can be extracted

from the viruses, and hence, well-designed metamorphic malware will evade detection

by signature-based AV systems.

1

Previous research has shown that techniques based on software similarity are

potentially useful as a means of detecting metamorphic malware. Similarity-based

techniques classify a file as a virus if it is sufficiently similar to a member (or members)

of the virus family [13]. The goal of this research is to analyze an opcode-based

similarity measure inspired by simple substitution cipher cryptanalysis [6].

In a simple substitution cipher, each plaintext symbol is mapped to one cipher-

text symbol. A fast hill climb attack on simple substitutions is given in [6]. This

attack measures distance based on plaintext language digraph frequencies. Each pu-

tative plaintext is scored by computing the similarity of its digraph distribution to

the expected digraph distribution of the plaintext. The algorithm is extremely effi-

cient, since each modification of the key is mapped directly to a digraph distribution

matrix, without any need to re-compute the putative plaintext. At each step, a score

is obtained which measures how well the putative plaintext fits the plaintext language

digraph statistics. We have applied an analogous technique to metamorphic viruses,

based on extracted opcode sequences. For our approach, the score can be viewed as

a measure of distance between a given file and a specific metamorphic family. Files

that have scores indicating they are “close” to a metamorphic family will be classified

as family viruses.

This paper is organized as follows. Chapter 2 gives background information on

different types of malware and their detection techniques. In Chapter 3, we briefly

discuss simple substitution ciphers, while Chapter 4 provides an overview of the fast

attack on simple substitution ciphers [6] that forms the basis of the software similarity

technique considered here. Chapter 5 discusses the proposed opcode-based similarity

technique and Chapter 6 presents our experimental results. Chapter 7 provides our

conclusion and a discussion of possible future work.

2

CHAPTER 2

Malware

Malware is software that is designed to break security [17]. Anti-virus (AV)

software aims to detect and remove malware. Since the first AV software developed,

there has been a constant battle between virus writers and AV developers [15]. As the

AV softwares are advancing their methods, the virus writers are developing various

techniques to produce malware that are more and more difficult to detect. The most

commonly used techniques are encryption, polymorphism and metamorphism [16].

2.1 Encrypted Virus

An encrypted virus encrypts its body using different keys each time it propagates.

Different keys will yield different virus copies. So the AV software cannot scan for the

common signature in the virus copies [19]. The downside of this approach is that the

encrypted virus must include the decryption code, which will remain constant across

generations. Hence this code is subject to signature detection [17].

2.2 Polymorphic Virus

A polymorphic virus is an encrypted virus whose decryption code is morphed.

As the decryption code varies from generation to generation, there will be no common

signature. Hence it would not be recognized by the signature-based scanners [10].

However, polymorphic viruses can be detected using code emulators [15]. The

code emulator executes the suspicious code on a virtual machine and examines its

behavior. If the program is a malware, it will eventually decrypt itself in the virtual

memory. Once decrypted, it can be detected using signature-based scanners, as all the

3

viruses carry the same virus body [14]. But this type of detection is slower than the

standard signature detection due to the emulation process [17]. Figure ?? illustrates

different generations of a polymorphic virus [21].

2.3 Metamorphic Virus

A metamorphic virus morphs its body before infecting a new system. The mu-

tated virus will have the same functionally as the original worm, but they are struc-

turally different. Metamorphic virus uses various advanced obfuscation techniques

such as register swapping, subroutine permutation, garbage instruction insertion, in-

struction substitution, transposition etc. to produce morphed copies [24].

2.3.1 Code Obfuscation Techniques

The most commonly used obfuscation techniques employed by metamorphic

viruses are presented in this section.

2.3.1.1 Register Swapping

Register Swapping is the simplest obfuscation technique employed by metamor-

phic viruses such as Win95/Regswap virus [20]. The virus mutates its body by using

different registers, but the opcodes remain the same across generations. Figure 1

shows the code fragments from two generations of Win95/Regswap which is given

in [21].

4

Figure 1: Different Generations of Win95/Regswap

2.3.1.2 Subroutine Permutation

Metamorphic viruses such as Win32/Ghost uses this technique to create morphed

copies by reordering the subroutines. If there are n number of subroutines, then n!

different copies can be produced. Figure 2 shows the subroutine permutation with

eight subroutines which is given in [21].

Figure 2: Subroutine Permutation with Eight Subroutines

5

2.3.1.3 Garbage Instruction Insertion

Metamorphic viruses such as Win95/ZPerm [21] uses insertion and removal of

garbage instructions to create morphed copies. Garbage instructions also known as

“do nothing code” are instructions that does not alter the functionality of the program

when executed. eg: NOP. Using garbage instructions, a virus can produce an unlimited

number of morphed copies [14, 16, 24].

2.3.1.4 Instruction Substitution

Certain metamorphic viruses generate morphed copies by replacing an instruction

with another equivalent instruction. For example, SUB EAX,EAX will be replaced by

XOR EAX,EAX in the morphed copy. Both the instructions mentioned above, have the

same functionality but the opcodes are different.

2.3.1.5 Transposition

Some metamorphic viruses create morphed copies by changing the order of exe-

cution of instructions having no dependency between them. The morphed copies will

have the same functionality, as the instructions that are re-ordered have no depen-

dency between them. For example, the set of instructions

MOV R1,R2

ADD R3,R4

will be morphed as:

ADD R3,R4

MOV R1,R2

6

2.4 Malware Detection Techniques

As viruses evolve, there has been a corresponding advancement in virus detection

techniques as well. This section gives an overview of some of the popular virus

detection techniques.

2.4.1 Signature Detection

Signature detection is the most widely used AV technique [1]. An unique string

of bits called “signatures” are extracted from all known viruses and is stored in the

AV scanner database. Signatures are selected in such a way that it does not appear

in any other softwares [17, 19]. The AV scanner scans the files to find the signature

of the viruses. If a known signature is present in any of the files, then the file will

be detected as the virus file. The downside of this method is that, it can only detect

known viruses [15].

2.4.2 Code Emulation

Code Emulation is one of the strongest virus detection techniques [15]. It exe-

cutes the suspicious program on a virtual machine and examines its behavior. Since

the detector deals with the malicious code in a controlled environment, the risk of

propagation is minimized [15]. Polymorphic viruses can be detected using this tech-

nique.

2.4.3 Anomaly Detection

Anomaly detection uses heuristics to detect unknown virus and variants of a

known virus by analyzing the program’s structure and its behavior instead of looking

for signatures. Heuristic scanners can be classified as static or dynamic [15]. The

7

primary difference between the two types is that the dynamic scanner uses emulation

to analyze the program behavior while the static one does the analysis on the actual

system, but the operation of both the scanners is the same. The scanner performs the

operation in two phases - analysis phase and detection phase [19]. During the analysis

phase, the scanner scans the virus body and gathers all possible behaviors from the

program under investigation. During the detection phase, it analyzes the observed

behaviors and classify the suspected program as virus or not [11]. The downside of

this approach is its high false alarm rate [5].

8

CHAPTER 3

Substitution Ciphers

Substitution ciphers are one of the oldest cipher systems [17]. In such a cipher,

each plaintext symbol is substituted by a ciphertext symbol. The symbols include

letters, digrams, trigrams etc. There are many different types of substitution ciphers.

This section gives a brief overview of only one type, simple substitution ciphers.

3.1 Simple Substitution Ciphers

As its name suggests, simple substitution ciphers are the simplest of the sub-

stitution ciphers [17]. In this cipher, each plaintext symbol maps to one ciphertext

symbol [8, 18].

A simple substitution key is given in Table 1. In this table, each ciphertext letter

is obtained by shifting the plaintext letter 3 positions forward in the alphabet [17].

Hence the plaintext message LETTER encrypts to OHWWHU, if the key in Table 1 is used

for encryption [2].

Table 1: Simple Substitution Key

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ciphertext D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

If the plaintext is English, then the simple substitution cipher consists of 26! ≈

288 possible keys. On an average, an attacker has to try 287 to break the cipher using

the brute force approach. Suppose the attacker can test 240 keys per second, then the

above key can be exhausted in 287/240 = 247 seconds, or about 4.4 million years. This

implies that if the keyspace is big, then the brute force approach is highly impractical

9

on a simple substitution cipher. But a cryptanalyst uses English monograph statistics

to break the cipher than using an exhaustive search. That is, the attacker’s reasonable

guess would be the most frequent ciphertext letter maps to the most frequent letter in

English, which is E, the second most frequent ciphertext letter maps to T and so on.

By proceeding in this way, the attacker will be able to recover most of the plaintext

message. Then he/she can easily make guesses on the remaining ones [18].

10

CHAPTER 4

Fast Attack on Simple Substitution

An efficient algorithm to break simple substitution ciphers is given in [6]. It starts

by making an initial guess to the key and the key is improved through a number of

iterations. At each step, using a scoring function, it determines how close the current

key is to the actual key. If the current key is better, then the algorithm retains it;

otherwise it does not. This algorithm is a hill climb attack because it eliminate the

keys that does not improve the score [6].

The algorithm in [6] uses only the digraph distributions of English and the ci-

phertext to solve the cipher. It is extremely efficient because the ciphertext is parsed

only once to construct an initial digraph distribution matrix. In the subsequent it-

erations, key is modified by simply altering this matrix and not by decrypting the

ciphertext using the new key and re-constructing the digraph distribution matrix [6].

4.1 Hill Climbing Technique

Hill Climbing is a mathematical optimization technique that starts with a solu-

tion to a problem and it tries to discover a better solution by slightly altering the

putative solution [26]. The new solution is then scored to detect whether it is better

than the previous solution or not. If it is better, then an incremental change is made

to the new solution; otherwise no change is made. The above process is repeated until

the key can no longer be improved [18, 26].

11

4.2 Overview of the Algorithm

Jackobsen’s algorithm [6] assumes that the plaintext is in English and the ci-

phertext symbols include 26 English alphabets. It starts by guessing an initial key

that maps the most frequent ciphertext letter to the most frequent letter in English,

which is E, second most frequent ciphertext letter to T and so on.

In the iterated loop, the algorithm slightly modifies the current key and uses

that key to decrypt the ciphertext. It then checks if the putative plaintext is closer

to the expected English language than before [6]. If so, then the new key is retained

for the next iteration; otherwise the old key is modified in a different way. The above

process is repeated for
(
26
2

)
iterations to make sure all pairs of elements in the key are

swapped once.

The modification of putative key K at each iteration is explained in [18], which

is shown below. Suppose, the putative key is K = k1, k2,, k26, where K is a

permutation of English alphabets. In the first iteration, all adjacent elements are

swapped. i.e. k1 is swapped with k2, and so on. In the second iteration, the elements

at distance two are swapped. i.e. k1 is swapped with k3 and so on. In the nth

iteration, the elements at distance n are swapped. The above procedure is illustrated

diagrammatically in [18] which is shown in (1). In (1), ‘|’ denotes the swap.

iteration 1: k1 | k2 k2 | k3 k3 | k4 ... k23 | k24 k24 | k25 k25 | k26
iteration 2: k1 | k3 k2 | k4 k3 | k5 ... k23 | k25 k24 | k26
iteration 3: k1 | k4 k2 | k5 k3 | k6 ... k23 | k26

..
.

..
.

...

iteration 23: k1 | k24 k2 | k25 k3 | k26
iteration 24: k1 | k25 k2 | k26
iteration 25: k1 | k26

(1)

12

To alter the current key, the algorithm simplify modifies the digraph distribution

matrix of the putative plaintext. The procedure is explained in detail at the end of

this section.

The algorithm uses the following scoring function to determine how close the

putative plaintext digraph distribution matrix is to the expected English language

digraph distribution matrix. Suppose D = {dij} represents the putative plaintext

digraph distribution matrix and E = {eij} represents the expected English language

digraph distribution matrix, then the similarity of the matrices is given by the equa-

tion in (2). The similarity score is always greater than or equal to zero, with equality

obtained for a perfect match.

score(K) = d(D,E) =
∑
i,j

|dij − eij| (2)

Pseudocode of the algorithm is given in [18] which is shown in Table 2.

13

Table 2: Fast Simple Substitution Attack [6, 18]

Algorithm parameters:

E matrix - expected English language digraph distribution matrix

K = k1, k2,, kn - initial putative key in the descending

order of expected frequency

C - ciphertext

P - putative plaintext recovered from ciphertext C using key K
D matrix - digraph frequency matrix for P
score d(D,E) =

∑
i,j |dij − eij |

score = d(D,E)
for i = 1 to n− 1

for j = 1 to n− i
D′ = D
swap rows j and j + i of D′

swap columns j and j + i of D′

if d(D′, E) < score then

D = D′ //retain the swap

swap(kj , kj+i) //swap the elements in the key

score = d(D′, E) //update the least score

end if

next j
next i
return K

The procedure to modify the key K is illustrated in [18], which is shown below.

Let us take a simple substitution cipher which is based on only 10 English letters.

The plaintext symbols in the descending order of their frequencies are

E,T,A,O,I,N,S,R,H and D.

Suppose the ciphertext is

TNDEODRHISOADDRTEDOAHENSINEOARDTTDTINDDRNEDNTTTDDISRETEEEEEAA. (3)

The monograph statistics corresponding to the ciphertext in (3) is

E T A O I N S R H D

11 9 5 4 4 6 3 5 2 12

14

The initial putative key K is given in (4). The corresponding putative plaintext

and the digraph distribution matrix is given in (5) and (6) respectively.

Plaintext: E T A O I N S R H D

Ciphertext: D E T N A R I O S H
(4)

AOETRENDSHRIEENATERIDTOHSOTRINEAAEASOEENOTEOAAAEESHNTATTTTTII. (5)

E T A O I N S R H D

E 3 1 2 1 0 3 1 1 0 0
T 2 4 1 1 1 0 0 2 0 0
A 2 2 2 1 0 0 1 0 0 0
O 2 2 1 0 0 0 0 0 1 0
I 1 0 0 0 1 1 0 0 0 1
N 1 1 1 1 0 0 0 0 0 1
S 0 0 0 2 0 0 0 0 2 0
R 1 0 0 0 3 0 0 0 0 0
H 0 0 0 0 0 1 1 1 0 0
D 0 1 0 0 0 0 1 0 0 0

(6)

The next step is to modify the putative key K. As discussed in the swapping

procedure in (1), we first swap the first two elements. This gives us a new putative

key, which is shown in (7). The corresponding putative plaintext and the digraph

distribution matrix is given in (8) and (9) respectively.

Plaintext: E T A O I N S R H D

Ciphertext: E D T N A R I O S H
(7)

AOTERTNDSHRITTNAETRIDEOHSOERINTAATASOTTNOETOAAATTSHNEAEEEEEII. (8)

15

E T A O I N S R H D

E 4 2 1 1 1 0 0 2 0 0
T 1 3 2 1 0 3 1 1 0 0
A 2 2 2 1 0 0 1 0 0 0
O 2 2 1 0 0 0 0 0 1 0
I 0 1 0 0 1 1 0 0 0 1
N 1 1 1 1 0 0 0 0 0 1
S 0 0 0 2 0 0 0 0 2 0
R 0 1 0 0 3 0 0 0 0 0
H 0 0 0 0 0 1 1 1 0 0
D 1 0 0 0 0 0 1 0 0 0

(9)

It is clearly evident from the matrices (6) and (9) that, swapping the elements

in the key is done by simply swapping the corresponding rows and columns of the

putative plaintext digraph distribution matrix (D matrix), that begin or end with

the swapped elements.

16

CHAPTER 5

Simple Substitution Distance for Metamorphic Malware Detection

For metamorphic malware detection, we intend to develop a hill climbing tech-

nique analogous to Jackobsen’s algorithm [6], on extracted opcode sequences. The

recovered “key” here can be viewed as a measure of the distance between the two

opcode sequences. The basic idea is that we train the detection system on a sequence

of opcodes extracted from a specific metamorphic family and the trained system will

be used to score an unknown file to determine whether it belongs to the same virus

family or not. In the remainder of this section, we discuss the design of this technique

in detail.

Given an unknown executable file, we extract the opcode sequences from the

code/text section of the file. We also extract the sequence of opcodes from the code

section of a specific metamorphic family of viruses. We then construct two digraph

distribution matrices, one using opcodes present in the unknown file and the other

using opcodes present in the family viruses. Suppose n represent the number of

distinct most frequently used opcodes. We map the opcodes to indices 0,1,2,..,n-1.

Any opcode other than the top n that occurs in the family viruses or the benign files

are grouped together under the same opcode category “Unknown”. Since we consider

only the top n, there will be very less number of zero entries in the matrices. That is,

using this approach, the digraph matrices will not be sparse. Let D = {dij} and E =

{eij} be the digraph distribution matrices of size (n+ 1 × n+ 1) of the unknown file

and the family viruses respectively. Also, {dij} and {eij} represent the probability

that opcode i is followed by opcode j in the unknown file and in the family viruses

respectively. We experimented with different values of n and 25 proved to be the best

17

value for this technique. Both the matrices values are initialized to zero.

We choose an initial key K, that best matches with the monograph statistics of

opcodes in the family viruses. That is, we assume the most frequent opcode in the

family viruses maps to the most frequent opcode in the unknown file, second most

frequent opcode in the family viruses maps to the second most frequent opcode in

the unknown file and so on. We fill in the matrix D based on this initial key K. We

then normalize the D matrix by dividing the count in each cell by the sum of all the

cells in the matrix.

We construct E matrix using the following procedure. Suppose m denotes the

number of distinct virus files under the metamorphic family, we construct m matrices

of size (n+ 1 × n+ 1). We fill matrix 0 with the digraph frequency counts of opcodes

in file 0, matrix 1 with the digraph frequency counts of opcodes in file 1 and so on.

We then normalize the matrices, matrix 0 to matrix m − 1 by dividing each cell in

the matrix by the sum of all the cells in the matrix.

We then construct E matrix as follows.

E = {eij} = (matrix0 ij + matrix1 ij + ... + matrix (m − 1)ij)/m (10)

We experimented with another normalization technique to normalize the E matrix,

but the above mentioned technique proved to give better results for this technique.

To compare the matrices D and E, we compute the score using the scoring function

in (11). Other scoring functions were tested, but the above mentioned one proved to

give better results for this technique.

score(K) = d(D,E) =
∑
i,j

|dij − eij| (11)

In the iterated loop, we alter the putative key by swapping opcodes in the key

K = opcode0, opcode1,, opcoden−1, opcodeUnknown. Swapping procedure, which is

18

the same as in Jackobsen’s approach [6], is as follows. In the first iteration, all the

adjacent opcodes are swapped. That is, opcode0 is swapped with opcode1 and so on.

In the second iteration, the opcodes at distance two are swapped, that is opcode0

is swapped with opcode2 and so on. In the nth iteration, the opcodes at distance

n are swapped. After each swap, we update the D matrix and compute the score

by comparing the updated matrix with matrix E. If the score improves, we update

the putative key and start over again from the first iteration. If the score does not

improve, then we take the old key and try a different modification. We continue the

swapping procedure for
(
n
2

)
iterations to make sure all

(
n
2

)
pairs of opcodes in the

key are swapped once. If the resulting score is below the threshold, we classify the

unknown file as virus of the same family. We experimented with different swapping

strategies, but the above mentioned strategy proved to give better results for this

technique.

Figure (3) and Table (3) show the flow diagram and pseudocode of the detection

technique respectively.

19

Figure 3: Flow Diagram of the Proposed Technique

20

Table 3: Fast Algorithm for Metamorphic Malware Detection

Algorithm parameters:

Extract opcode sequences from the unknown file and family viruses

Determine top n distinct most frequently used opcodes

E - digraph distribution matrix of a specific metamorphic family

K = opcode0, opcode1,, opcoden−1, opcodeUnknown - initial putative key

in the descending order of frequency

D - digraph frequency matrix corresponding to an unknown file

score - d(D,E) =
∑

i,j |dij − eij |

score = d(D,E)
for k = 1 to n

for i = 0 to n− 1 and j = i+ k to n− 1
swap rows i and j of D
swap columns i and j of D
if d(D,E) < score then

swap(opcodei, opcodej) //swap the elements in the key

score = d(D,E) //update the least score

k = 0 //start over from the first iteration

break //start over from the first iteration

end if

else

swap rows i and j of D //revert back to the old key

swap columns i and j of D //revert back to the old key

end else

next i (i++) and next j (j+ = k)
next k
if score ≤ threshold

unknown file is a virus of the same family

else

unknown file is not a virus of the same family

To demonstrate the procedure to update the D matrix, we take a simplified

example. Let us consider the matrices are of size (5 × 5) and the top 5 distinct

opcodes that can be present in any kind of virus or benign files in the decreasing

order of frequencies are

MOV CALL ADD XOR CMP (12)

21

For simplicity, let us also assume that the distinct opcodes in the metamorphic

family of viruses are restricted to 5. The opcodes in the decreasing order of their

frequencies are

MOV ADD PUSH POP CALL

Suppose that we are given an unknown file with the following opcode sequences

JMP

MOV

MOV

ADD

INC

INC

INC

(13)

The monograph statistics corresponding to the unknown file in (13) is

INC MOV ADD JMP

3 2 1 1

The initial putative key K is

Metamorphic family of virus files: MOV ADD PUSH POP CALL

Unknown file: INC MOV ADD JMP
(14)

The content of the unknown file according to the key in (14) is

POP

ADD

ADD

PUSH

MOV

MOV

MOV

(15)

22

The digraph distribution matrix corresponding to the key in (15) is

MOV CALL ADD XOR CMP UNKNOWN

MOV 2 0 0 0 0 0
CALL 0 0 0 0 0 0
ADD 0 0 1 0 0 1
XOR 0 0 0 0 0 0
CMP 0 0 0 0 0 0

UNKNOWN 1 0 1 0 0 0

(16)

As in Jackobsen’s approach, the first step in hill climbing is to swap the first

two opcodes in (12). This is done by swapping the first two rows and columns of the

digraph distribution matrix in (16). The modified matrix is given by

MOV CALL ADD XOR CMP UNKNOWN

MOV 0 0 0 0 0 0
CALL 0 2 0 0 0 0
ADD 0 0 1 0 0 1
XOR 0 0 0 0 0 0
CMP 0 0 0 0 0 0

UNKNOWN 0 1 1 0 0 0

(17)

It is clearly evident from the matrices (16) and (17) that, swapping the elements

in the key is done by simply swapping the corresponding rows and columns of the

D matrix, that begin or end with the swapped elements, which is the same as in

Jackobsen’s algorithm [6].

23

CHAPTER 6

Experiments

This section shows the results obtained by implementing the algorithm in Java.

“Objdump” was the tool used to extract the opcode sequences from the executable

files. The effectiveness of the technique is evaluated by measuring the similarity be-

tween the opcode sequences extracted from different metamorphic family of viruses

and the benign executable files. The family of metamorphic viruses used for test-

ing include Next Generation Virus Generation Kit (NGVCK), Second Generation

Virus Generator (G2) and Metamorphic Worm (MWOR) generated by metamorphic

generator in [16]. Cygwin utility files and Linux library files were used as benign files.

In [16], a metamorphic generator was developed for the sole purpose of defeating

Hidden Markov Model (HMM) detection technique. The metamorphic generator uses

two morphing techniques to achieve its goal:

• Garbage instruction insertion

• Equivalent instruction substitution

The viruses produced by this generator look different from each other across genera-

tions. And they look very much similar to benign files since blocks of dead code from

one or more benign files are inserted directly into the virus files. The metamorphic

generator produces virus with different “padding ratios”. Padding ratio is defined

as the ratio of number of dead code instructions to the number of instructions that

constitute the core functionality of the virus. Padding ratio of 0.5 indicates that the

virus has half as much dead code instructions as virus’s instructions [16].

24

6.1 Test Data

Our test set of metamorphic viruses consists of 50 NGVCK files, 50 G2 files

and 100 MWOR files with padding ratios of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0

(MWOR 0 5 ... MWOR 4 0). As the data set is relatively small, we used five-fold

cross-validation technique in order to get the best out of it. In this technique, 80%

of the data will be used for training and 20% of the data will be used for testing and

the experiment will be repeated five times.

Our test set of benign files consists of 10 Cygwin Utility files and 20 Linux library

files. The metamorphic generator in [16] uses these Linux library files to extract the

dead code and insert it directly into the virus files.

We trained the detection system on a set of NGVCK family viruses and then

scored against a different set of viruses under the same family and a set of Cygwin

files. We conducted a similar experiment with G2 family viruses. We also trained the

detection system on a set of MWOR with different padding ratios and scored against

a different set of MWOR files and a set of Linux library files from which the dead

code was extracted.

6.2 Test Results

The similarity scores obtained by comparing various metamorphic family of

viruses with the virus files under the same family and benign executable files is shown

in this section. We used Receiver Operating Characteristic (ROC) curve for evalu-

ating the performance of the detection system. It is a two-dimensional graph, in

which the X-axis represents the false positive rate and the Y-axis represents the true

positive rate [22]. Accuracy of the detection system is measured by the area under

the ROC curve (AUC) [16]. An AUC of 1 represents a perfect system; an area of 0.5

represents a worst system. In the remainder of this section, we summarize the results

25

of the tests that were conducted.

The graphs in Figures 4 and 5 show the similarity scores obtained by training

the detection system on a set of NGVCK or G2 family of viruses respectively. Results

in the graphs indicate that there is a clear separation between NGVCK or G2 family

of viruses and the benign files using this technique.

Figure 4: Training Set: NGVCK

26

Figure 5: Training Set: G2

The similarity scores obtained by training the detection system on a set of

MWOR files with different padding ratios are shown by the following graphs. Results

indicate that as more code is copied from the benign files into the virus files, closer the

scores approach to that of the benign files. When the padding ratio is greater than or

equal to 1.5, there are lots of misclassifications. The performance of detection system

trained on MWOR with different padding ratios is illustrated by the ROC curves in

Figure 14. The AUC and standard error for each of the curves in the graph is shown

in Table 4.

27

Figure 6: Training Set: MWOR with Padding Ratio of 0.5

28

Figure 7: Training Set: MWOR with Padding Ratio of 1.0

29

Figure 8: Training Set: MWOR with Padding Ratio of 1.5

30

Figure 9: Training Set: MWOR with Padding Ratio of 2.0

31

Figure 10: Training Set: MWOR with Padding Ratio of 2.5

32

Figure 11: Training Set: MWOR with Padding Ratio of 3.0

33

Figure 12: Training Set: MWOR with Padding Ratio of 3.5

34

Figure 13: Training Set: MWOR with Padding Ratio of 4.0

35

Figure 14: ROC Curves for Different Padding Ratios

Table 4: ROC AUC Statistics for Different Padding Ratios

Padding-ratio AUC Standard Error
0.5 1 0
1.0 1 0
1.5 0.998 0.00207
2.0 0.9985 0.00129
2.5 0.9858 0.00605
3.0 0.9725 0.00974
3.5 0.9506 0.01502
4.0 0.9564 0.01277

36

6.2.1 Different Scoring Functions Experimented

In order to determine the effective scoring function for evaluating the goodness

of the putative key K, we experimented with the following six scoring functions and

analyzed their strengths. We conducted experiments using MWOR with padding

ratio of 4.0. The results are summarized in the ROC curves shown in Figure 15. The

AUC and standard error for each of the curves in the graph is shown in Table 5.

ROC curves in Figure 15 show that score1 and score2 perform better than the other

scoring functions.

score1 (K) = d(D,E) =
∑
i,j

|dij − eij|

score2 (K) = d(D,E) =
1

n2

∑
i,j

|dij − eij|

score3 (K) = d(D,E) =
∑
i,j

|dij − eij|2

score4 (K) = d(D,E) =
1

n2

∑
i,j

|dij − eij|2

score5 (K) = d(D,E) =
∑
i,j

|d2ij − e2ij|

score6 (K) = d(D,E) =
1

n2

∑
i,j

|d2ij − e2ij|

37

Figure 15: ROC Curves for Different Scoring Functions

Table 5: ROC AUC Statistics for Different Scoring Functions

Scoring Systems AUC Standard Error
Scoring System 1 0.97848 0.01073
Scoring System 2 0.97848 0.01073
Scoring System 3 0.93391 0.02287
Scoring System 4 0.93391 0.02287
Scoring System 5 0.88065 0.03501
Scoring System 6 0.88326 0.03436

In order to choose between score1 and score2 , we conducted experiments using

38

MWOR with padding ratio of 3.5. Since score1 and score2 produced similar results in

that test setup too, we used score1 for scoring the putative key K in this technique.

6.2.2 Different Size of the Matrix Experimented

For a particular processor, there are more than 130 opcodes [19]. If we allocate a

row/column for all of the opcodes, then the size of the matrices will become too large

to compare. Also the opcodes which occur less frequently or which does not occur

in the family viruses or the benign files will not contribute much for the similarity

score. So we parsed through around 600 different disassembled virus and benign files

to collect the top n most frequent distinct opcodes. We conducted experiments with

the following different values to determine an effective value for n.

15,20,25,30,35,50,60,100

For the experiments, we trained the system using MWOR with padding ratio of

4.0. Results are summarized in the ROC curves shown in Figure 16. The AUC and

standard error for each of the curves in the graph is shown in Table 6. ROC curves

in Figure 16 show that n = 25 works better for this technique. Hence we created D

and E matrices of size (26 × 26) for this technique. Experiments show that AUC

remains the same for value of n beyond 50. This is because those opcodes occur less

frequently or not at all in the metamorphic family of viruses or the benign files and

they do not contribute anything for the similarity score.

39

Figure 16: ROC Curves for Different Values of n

Table 6: ROC AUC Statistics for Different Values of n

Different n values AUC Standard Error
15 0.96696 0.01471
20 0.98065 0.00989
25 0.98239 0.00944
30 0.97935 0.01052
35 0.97891 0.01064
50 0.97957 0.01035
60 0.97957 0.01035
100 0.97957 0.01035

40

6.2.3 Different Normalization Techniques Experimented

We experimented with two different normalization techniques for normalizing the

E matrix. Let m denote the set of metamorphic family of virus files, on which the

detection system is trained on.

• Normalization Technique 1

We parse through all the m files and construct an E matrix of size (26 × 26).

This matrix contains the sum of digraph distributions of opcodes in all the m

files. We then normalize the E matrix by dividing each cell in the matrix by

the sum of all the cells in the matrix.

• Normalization Technique 2

We construct m matrices of size (26 × 26). matrix 0 contains the digraph

distribution of opcodes in file 0, matrix 1 contains the digraph distribution of

opcodes in file 1 and so on. We normalize the matrices matrix 0 to matrix m−1

by dividing each cell in the matrix by the sum of all the cells in the matrix.

We then construct E matrix as follows.

E = {eij} = (matrix0 ij + matrix1 ij + ... + matrix (m − 1)ij)/m (18)

We conducted the experiment using MWOR with padding ratio of 4.0. ROC curves

in Figure 17 summarize the results obtained using the two techniques. The AUC and

standard error for each of the curves in the graph is shown in Table 7. ROC curves

in Figure 17 show that technique 2 performs better than the technique 1. Hence we

used technique 2 for normalizing the E matrix.

41

Figure 17: ROC Curves for Normalization Techniques 1 and 2

Table 7: ROC AUC Statistics for Normalization Techniques 1 and 2

Normalization Techniques AUC Standard Error
Normalization Technique 1 0.97848 0.01073
Normalization Technique 2 0.97891 0.01064

6.2.4 Different Swapping Strategies Experimented

We experimented with the following six strategies to determine an effective swap-

ping strategy for this technique. For the experiments, we trained the system using

42

MWOR with padding ratio of 4.0. Results obtained for different swapping strategies

are summarized in the ROC curves in Figure 18. The AUC and standard error for

each of the curves in the graph is shown in Table 8. ROC curves in Figure 18 show

that the swapping strategy 2 works better for this technique. Hence we used that as

the swapping strategy for this technique.

• Swapping Strategy 1

In this technique, we swap all adjacent pairs of opcodes, then all pairs at distance

of 2, then all pairs at distance of 3 and so on until we complete exactly
(
n
2

)
swaps.

• Swapping Strategy 2

In this technique, we swap as in Strategy 1, but any time the score improves,

we start again from the beginning.

• Swapping Strategy 3

This is another variant of Strategy 1. In this case, we swap all adjacent pairs of

opcodes, then all pairs at distance 2, then add pairs at distance 3, and so on.

Once we complete the
(
n
2

)
steps, we iterate the entire process, repeating until

we complete one entire iteration without any swap improving the score.

• Swapping Strategy 4

In this technique, we only swap adjacent pairs of opcodes. That is, we make

only n swaps.

• Swapping Strategy 5

This is similar to Strategy 4, except that whenever a swap improves the score,

we continue swapping that element until the score no longer improves, at which

point we revert to the position where the series of swaps began.

43

• Swapping Strategy 6

As in Strategy 4, we do n swaps of adjacent pairs. We then repeat, until we go

through one entire iteration without any swap improving the score.

Figure 18: ROC Curves for Different Swapping Strategies

44

Table 8: ROC AUC Statistics for Different Swapping Strategies

Different swapping strategies AUC Standard Error
Swapping strategy 1 0.97087 0.01373
Swapping strategy 2 0.98239 0.00944
Swapping strategy 3 0.97913 0.01080
Swapping strategy 4 0.95565 0.01883
Swapping strategy 5 0.95761 0.01782
Swapping strategy 6 0.95391 0.01850

6.2.5 Comparison with HMM Detection Technique

Hidden Markov Model (HMM) detection technique was tested in [16] by training

the model using MWOR with different padding ratios. Comparing our results with

the results obtained using HMM technique [16], we see that our technique performs

better. Here are the ROC AUC statistics for both the techniques.

Padding Standard
ratio AUC Error
0.5 1 0
1.0 1 0
1.5 0.998 0.00207
2.0 0.9985 0.00129
2.5 0.98585 0.00605
3.0 0.9725 0.00974
4.0 0.95645 0.01277

Table 9: ROC AUC Statistics for Dif-

ferent Padding Ratios using Proposed

Technique

Padding Standard
ratio AUC Error
0.5 1 0
1.0 0.99 0.0105
1.5 0.9625 0.03503
2.0 0.9725 0.02112
2.5 0.8325 0.06556
3.0 0.8575 0.06225
4.0 0.8225 0.06661

Table 10: ROC AUC Statistics for Dif-

ferent Padding Ratios using HMM De-

tection Technique [16]

6.2.6 Efficiency of the Proposed Technique

Efficiency of the proposed technique can be measured in terms of number of score

computations, file size, number of swaps it requires and the time it takes to compute

the similarity score. Table 11 shows the score computation count, swap count, file

45

size and the time taken to compute the similarity score (in milliseconds), when the

scoring technique is trained using MWOR with different padding ratios.

46

Table 11: Scoring Efficiency for MWOR Family Viruses and Benign Files

Comparison No. of Score Computations Swap Count Average Time
(in milliseconds)

File Size (in kilo-
bytes)

MWOR 0.5 family viruses
vs MWOR 0.5 virus

Average: 1584 Average: 23 29.5 20.95
Minimum: 603 Minimum: 6
Maximum: 3704 Maximum: 63

MWOR 0.5 family viruses
vs Benign file

Average: 1831 Average: 32 36.2 84.6
Minimum: 1067 Minimum: 20
Maximum: 2592 Maximum: 48

MWOR 1.0 family viruses
vs MWOR 1.0 virus

Average: 1251 Average: 23 26.45 27.25
Minimum: 492 Minimum: 5
Maximum: 2145 Maximum: 35

MWOR 1.0 family viruses
vs Benign file

Average: 1827 Average: 37 37.45 84.6
Minimum: 1167 Minimum: 19
Maximum: 2785 Maximum: 55

MWOR 1.5 family viruses
vs MWOR 1.5 virus

Average: 1114 Average: 23 24 34.25
Minimum: 585 Minimum: 11
Maximum: 1824 Maximum: 46

MWOR 1.5 family viruses
vs Benign file

Average: 1387 Average: 31 36 84.6
Minimum: 922 Minimum: 19
Maximum: 1929 Maximum: 42

MWOR 2.0 family viruses
vs MWOR 2.0 virus

Average: 924 Average: 19 23.85 41
Minimum: 660 Minimum: 10
Maximum: 1597 Maximum: 37

MWOR 2.0 family viruses
vs Benign file

Average: 1493 Average: 34 34.6 84.6
Minimum: 942 Minimum: 22
Maximum: 2220 Maximum: 55

MWOR 2.5 family viruses
vs MWOR 2.5 virus

Average: 1023 Average: 21 31.15 48.05
Minimum: 591 Minimum: 11
Maximum: 1679 Maximum: 33

MWOR 2.5 family viruses
vs Benign file

Average: 1586 Average: 37 35.55 84.6
Minimum: 868 Minimum: 18
Maximum: 2940 Maximum: 65

MWOR 3.0 family viruses
vs MWOR 3.0 virus

Average: 1118 Average: 24 27.2 55
Minimum: 744 Minimum: 16
Maximum: 1646 Maximum: 35

MWOR 3.0 family viruses
vs Benign file

Average: 1529 Average: 35 34.25 84.6
Minimum: 988 Minimum: 25
Maximum: 2799 Maximum: 48

MWOR 3.5 family viruses
vs MWOR 3.5 virus

Average: 1114 Average: 24 25.25 58.85
Minimum: 674 Minimum: 11
Maximum: 1920 Maximum: 51

MWOR 3.5 family viruses
vs Benign file

Average: 1612 Average: 38 35.9 84.6
Minimum: 830 Minimum: 24
Maximum: 3055 Maximum: 67

MWOR 4.0 family viruses
vs MWOR 4.0 virus

Average: 1020 Average: 21 23.3 68.7
Minimum: 533 Minimum: 8
Maximum: 1524 Maximum: 32

MWOR 4.0 family viruses
vs Benign file

Average: 1588 Average: 36 35.2 84.6
Minimum: 955 Minimum: 23
Maximum: 2426 Maximum: 53

47

CHAPTER 7

Conclusions and Future Work

We designed and implemented an opcode-based software similarity technique for

metamorphic malware detection. The algorithm uses a hill climb approach analogous

to the one used in simple substitution cipher attack [6]. The algorithm was imple-

mented and extensively tested. Results have shown that we can easily set a threshold

that clearly separates NGVCK or G2 family viruses and the benign files.

The proposed technique also achieved an accuracy rate of 100% when we tested

it against MWOR, provided those padding ratios are 1.0 and below. The probability

of misclassification starts increasing for padding ratios beyond 1.0, as indicated by

the ROC curves in Figure 14. Results clearly indicate that the proposed technique

performs very well when “equivalent instruction substitution” is used as the morphing

technique, while it actually yields worse results when blocks of code from benign files

are used for morphing. However, it is interesting to note that, although the accuracy

rate in detecting MWOR with padding ratio of 1.5 and above is not 100%, this

technique performs better than HMM detection technique which is shown in section

6.2.5.

Previous research has shown that similarity technique based on chi-squared dis-

tance had performed better in detecting metamorphic viruses if “subroutine insertion”

was used as the morphing technique [22]. It might be useful to create a hybrid model

using the proposed technique and the chi-squared distance technique to produce a

stronger metamorphic virus detector.

48

LIST OF REFERENCES

[1] J. Aycock, Computer Viruses and Malware, Springer, 2006

[2] J. Borello and L. Me, Code Obfuscation Techniques for Metamorphic Viruses,
Journal in Computer Virology, Vol. 4, No. 3, pp. 30-40, 2008

[3] Cygwin, Cygwin Utility Files,
http://www.cygwin.com/

[4] S. Govindaraj, Practical Detection of Metamorphic Computer Viruses, Master’s
report, Department of Computer Science, San Jose State University, 2008,
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?

article=1092&context=etd_projects

[5] N. Idika and A. Mathur, A Survey of Malware Detection Techniques, Technical
report, Department of Computer Science, Purdue University, 2007,
http://www.serc.net/system/files/SERC-TR-286.pdf

[6] T. Jakobsen, A Fast Method for the Cryptanalysis of Substitution Ciphers, Cryp-
tologia, Vol.19, pp. 265 – 274, 1995

[7] D. Lin, Hunting for Undetectable Metamorphic Viruses, Master’s report, De-
partment of Computer Science, San Jose State University, 2009,
http://scholarworks.sjsu.edu/etd_projects/18/

[8] J. Mathai, History of Computer Cryptography and Secrecy System,
http://www.dsm.fordham.edu/~mathai/crypto.html

[9] I. Muttik, Silicon Implants, Virus Bulletin, pp. 8–10, May 1997

[10] C. Nachenberg, Understanding and Managing Polymorphic viruses, The Syman-
tec Enterprise Papers, Vol. 30,
http://www.symantec.com/avcenter/reference/striker.pdf

[11] C. Nachenberg, Understanding Heuristics: Symantec’s Bloodhound Technology,
Symantec White Paper Series, Vol. 34,
http://www.symantec.com/avcenter/reference/heuristc.pdf

[12] D. Oranchak, Evolutionary Algorithm for Decryption of Monoalphabetic Ho-
mophonic Substitution Ciphers Encoded as Constraint Satisfaction Problems,
Technical report, NTU School of Engineering and Applied Science, 2008,
http://oranchak.com/t14pap379-oranchak.pdf

49

[13] M. Patel, Similarity Tests for Metamorphic Virus Detection, Master’s report,
Department of Computer Science, San Jose State University, 2011,
http://www.cs.sjsu.edu/faculty/stamp/students/

patel_mahim.pdf

[14] S. Priyadarshi, Metamorphic Detection via Emulation, Master’s report, Depart-
ment of Computer Science, San Jose State University, 2011,
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?

article=1176&context=etd_projects

[15] B. B. Rad, M. Masrom, S. Ibrahim, Evolution of Computer Virus Concealment
and Anti-Virus Techniques: A Short Survey, IJCSI International Journal of
Computer Science Issues, Vol.8, Issue 1, January 2011,
http://arxiv.org/pdf/1104.1070.pdf

[16] S. M. Sridhara, Metamorphic Worm that carries its own Morphing Engine, Mas-
ter’s report, Department of Computer Science, San Jose State University, 2012,
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?

article=1238&context=etd_projects

[17] M. Stamp, Information Security: Principles and Practice, second edition, Wiley,
2011

[18] M. Stamp, R. M. Low and A. Dhavare, Efficient Cryptanalysis of Homophonic
Substitution Ciphers, Technical report, Department of Computer Science, San
Jose State University, 2011,
http://www.cs.sjsu.edu/faculty/stamp/RUA/

homophonic.pdf

[19] M. Stamp, R. M. Low and N. Runwal, Opcode Graph Similarity and Metamor-
phic Detection, Journal in Computer Virology, Vol. 8, Nos. 1-2, pp. 37-52, May
2012

[20] P. Szor, The Art of Computer Virus Research and Defense, First edition,
Addison-Wesley, 2005,
http://computervirus.uw.hu/ch11lev1sec4.html

[21] P. Szor and P. Ferrie, Hunting for Metamorphic, Symantec Security Response,
http://www.symantec.com/avcenter/reference/

hunting.for.metamorphic.pdf

[22] A. H. Toderici, Chi-squared Distance and Metamorphic Virus Detection, Mas-
ter’s report, Department of Computer Science, San Jose State University, 2012,
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?

article=7710&context=etd_theses

50

[23] S. Venkatachalam, Detecting Undetectable Computer Viruses, Master’s report,
Department of Computer Science, San Jose State University, 2010,
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?

article=1155&context=etd_projects

[24] A. Venkatesan, Code Obfuscation and Virus Detection, Master’s report, Depart-
ment of Computer Science, San Jose State University, 2008,
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?

article=1115&context=etd_projects/

[25] Wikipedia, Computer Virus,
http://en.wikipedia.org/wiki/Computer_virus

[26] Wikipedia, Hill Climbing,
http://en.wikipedia.org/wiki/Hill_climbing

[27] Wikipedia, Substitution Cipher,
http://en.wikipedia.org/wiki/Substitution_cipher

[28] W. Wong, Analysis and Detection of Metamorphic Computer Viruses, Master’s
report, Department of Computer Science, San Jose State University, 2006,
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?

article=1152&context=etd_projects

51

	San Jose State University
	SJSU ScholarWorks
	Fall 2012

	Simple Substitution Distance and Metamorphic Detection
	Gayathri Shanmugam
	Recommended Citation

	tmp.1356193829.pdf.vwH1S

