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ASSESSMENTS ON SURFACE INTERPOLATION METHODS FOR LOCAL 

GEOID MODELLING 

SUMMARY 

The height information is crucial in many fields such as engineering surveying, flood 

management, coastal research, navigation, management of water sources, and risk 

analysis for earthquakes, etc. In parallel with the developments on satellite 

technology, obtaining ellipsoidal height using Global Navigation Satellite Systems 

(GNSS) provides practical, precise and quick solution in many applications and 

becomes widespread everyday. The ellipsoidal height does not answer the purposes 

for the applications that require spatial information. The height information, which 

has physical and uniquely defined, is used instead of ellipsoidal height. In this 

regard, orthometric height, which is defined according to geoid surface, is used in 

many countries. Geoid undulation is a connection while obtaining orthometric height 

information from ellipsoidal height.  

Within the scope of this study, local geoid models are determined by using different 

interpolation techniques in order to obtain geoid height information with high 

accuracy that directly affects the precision of transformed orthometric height through 

GNSS. Although there is no regional geoid model within cm in Turkey yet, local 

GPS/leveling geoid is computed in limited areas based on Large Scale Map and 

Spatial Data Production Regulation (2005, article 42). In computing a local geoid 

models; beside the distribution, quality and density of the reference data, the 

employed surface interpolation technique has critical role in obtained accuracy of the 

model. Hence different interpolation algoritms are implemented in Istanbul area 

using Istanbul GPS Triangulation Network 2005 for determining grid based local 

geoid model. 

In the content of research, the cross validation results belonging to the 12 

interpolation techniques (Inverse Distance Weighting, Nearest Neighbor, 

Triangulation with Linear Interpolation, Natural Neighbor, Polynomial Regression, 

Local Polynomial, Radial Basis Function, Modified Shepard‟s Method, Minimum 

Curvature, Moving Average, Biharmonic Spline Interpolation, Kriging) are 

investigated in order to test the consistence of computed grid values within 

themselves. In the light of obtained results, it can be stated that linear interpolation 

results for all of the gridding methods except minimum curvature, polynomial 

regression (simple planar surface, bilinear saddle) and moving average reveal the 

best performance with a standard deviation of 5.5 cm and 6.0 cm. The performances 

of the determined grids are examined at the reference benchmarks and test 

benchmarks, respectively by employing linear, nearest neighbor, cubic and spline 

interpolation methods. As a linear interpolation result of these testing processes of 

grids, biharmonic spline interpolation method draws the attention as the most 

accurate method, whose standard deviation is 1.2 cm at the reference benchmarks 

and 3.2 cm at test benchmarks. This results show that generated geoid model data 



xviii 

 

can be used in all kind of engineering projects that require height information within 

cm accuracy. 

In the evaluation of nearest neighbor interpolation at test points, the grid data that is 

obtained through natural neighbor method gives the most accurate result while 

moving average method gives the worst result. When considering cubic interpolation 

results, this can be said that triangulation with linear interpolation gives the best 

result; on the contrary, moving average gives the worst result. In the evaluation of 

spline interpolation results at test points, point Kriging (linear drift) and point 

Kriging (quadratic drift) give the best results. On the other hand, moving average has 

the worst standard deviation value. 

As a result, this study proved that local GPS/leveling geoids, which are performed 

with available interpolation algorithms, can be used in order to obtain high accuracy 

geoid undulation. Combining this research with different data sets except geoid and 

computation algorithms such as finite element and soft computing methods is one of 

the main goals in the planned studies in future. Local GPS/leveling geoids provide 

short-term and limited solution for height transformation problem. Therefore, having 

a 1-2 cm accuracy regional geoid across the country is more viable solution for 

height control in GNSS applications. 
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YEREL GEOİD MODELİNİN BELİRLENMESİNDE YÜZEY 

İNTERPOLASYON YÖNTEMLERİNİN ARAŞTIRILMASI 

ÖZET 

Mühendislik ölçmeleri, taşkın analizi ve planlama, kıyı araştırmaları, su 

kaynaklarının yönetimi, doğal afetler için risk analizi gibi alanlarda yükseklik bilgisi 

hayati önem taşımaktadır. Uydu teknolojilerindeki gelişmeler ile birlikte, hızlı ve 

pratik çözüm sağlayan Küresel Seyrüsefer Uydu Sistemleri‟nden (GNSS) elipsoit 

yüksekliklerinin elde edilmesi, günden güne yaygın hale gelmektedir. Konumsal 

veriyle ilgili birçok uygulamada elipsoidal yükseklikler ihtiyacı karşılayamamakta, 

bunun yerine fiziksel ve tek anlamlı olan nokta yükseklik bilgisine ihtiyaç duyulur. 

Bu bağlamda birçok ülkede geoid yüzeyine göre tanımlanan ortometrik yükseklikler 

kullanılmaktadır. Geoit ondülasyonları, elipsoit yüksekliklerinden ortometrik 

yüksekliklerin elde edilmesinde kullanılan bir bağlantıdır. 

Bu çalışma kapsamında, ortometrik yüksekliklerin doğruluğunu etkileyen 

prezisyonlu geoit yüksekliklerini elde etmek için farklı interpolasyon tekniklerini 

kullanarak yerel geoit modelleri oluşturulmuştur. Türkiye‟de santimetre (cm) 

doğrulukta bölgesel bir geoit modeli henüz mevcut olmadığından dolayı, Büyük 

Ölçekli Harita ve Harita Bilgileri Üretim Yönetmeliği‟ne dayanarak (2005, madde 

42), sınırlı alanlarda GPS/Nivelman geoidi hesaplanarak kullanılabilmektedir. 

Yüksek doğruluklu yerel geoit modelleri hesaplamak için; verinin dağılımı, 

yoğunluğu ve kalitesinin yanında modelin doğruluğunu etkileyen faktörlerden biri 

olan farklı interpolasyon metotları, bu çalışma kapsamında Istanbul GPS/Nivelman 

2005 (IGNA 2005) verilerini kullanarak geoit modelleme amacıyla uygulanmıştır.  

Sayısal testlerde, üretilen grid değerlerinin kendi içlerindeki tutarlılığını test etmek 

için 12 interpolasyon tekniğine ait çapraz test sonuçları değerlendirilmiştir. Bu 

çalışmalar ışığında belirtilebilir ki; en küçük eğrilikli yüzey interpolasyonu 

(minimum curvature), polinomlarla regresyon (polynomial regression- simple planar 

surface, bilinear saddle) ve hareketli ortalama (moving average) yöntemleriyle 

oluşturulan gridler hariç tüm gridlerin lineer interpolasyon sonuçlarına ait standart 

sapma değerleri 5.5 cm ile 6.0 cm arasında değişmektedir. Lineer (linear), en yakın 

komşu (nearest), kübik (cubic) ve spline interpolasyon yöntemlerini kullanarak, 

gridlerin referans ve test noktalarındaki performansları sırayla test edilmiştir. Bu test 

çalışmalarının sonucunda linear interpolasyon sonuçları değerlendirildiğinde, 

referans noktalarında 1.2 cm ve test noktalarında 3.2 cm doğruluğa sahip biharmonic 

spline interpolasyon yöntemi, en doğruluklu yöntem olarak dikkat çekmektedir. Bu 

sonuçlar, üretilen modelin 5 cm‟nin altında doğruluklu yükseklik bilgisi gerektiren 

mühendislik uygulamalarında da kullanılabileceğini göstermektedir. 

Test noktalarında en yakın komşu (nearest neighbor) metodu ile elde edilen 

interpolasyon verilerinin istatistikleri değerlendirildiğinde, hareketli ortalama 

(moving average) yöntemi en kötü sonucu verirken, en yakın komşuluk (nearest 

neighbor) yöntemi en iyi sonucu vermektedir. Test noktalarında kübik interpolasyon 

sonuçları değerlendirildiğinde, üçgenlemeye dayalı doğrusal interpolasyon 
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(triangulation with linear interpolation) metodunun en iyi sonucu verdiği 

söylenebilir. Buna karşılık, hareketli ortalama (moving average) en kötü sonucu 

vermektedir. Test noktalarında yapılan spline interpolasyon sonuçları 

değerlendirildiğinde, en iyi sonucu noktasal Kriging- doğrusal drift (linear drift) ve 

noktasal Kriging- kuadratik drift (quadratic drift) yöntemleri vermektedir. Diğer 

taraftan, hareketli ortalama en yüksek standart sapma değerine sahiptir. 

Sonuç olarak, bu çalışma uygun interpolasyon algoritmalarıyla yüksek doğruluklu 

(bir kaç santimetre doğruluklu) geoit ondülasyonlarının elde edilmesi için uygun 

sıklıkta ve dağılımda yerel GPS/Nivelman geoitlerinin kullanılabileceğini 

kanıtlamıştır. Bu çalışmanın geoit yüksekliklerinin dışında da farklı mekansal veri 

gruplarıyla ve esnek hesaplama, sonlu elemanlar gibi farklı hesaplama yaklaşımları 

ile birleştirilmesi, gelecekte gerçekleştirilmesi planlanan çalışmalardır. Yerel 

GPS/Nivelman geoitleri yükseklik dönüşümü sorununa sınırlı ve kısa süreli çözüm 

sağlamaktadır. Bu nedenle tüm ülkeyi kapsayan prezisyonlu bölgesel bir geoit 

modelinin hesaplanması ve kullanıma sunulması gerekmektedir. 
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1. INTRODUCTION 

1.1 Overview of Interpolation Methods 

The importance and urgency of spatial information, which states location, size etc. of 

an object in space, is increasing everyday in many fields such as engineering, 

management and risk analysis parallelto the technological progresses. Although this 

is hard to obtain spatial continuous data at every point in region of interest; due to 

restrictions of time, money, and geological conditions etc., spatial interpolation 

techniques are required and performed. Interpolation process can be described as an 

assumption of obtaining approximate values at unknown unsampled locations for any 

geographic point by using known sample data (Robeson, 1997). 

Spatial interpolation has been applied in many disciplines such as, geodesy, 

geophysics, civil engineering, water resources, meteorology, mathematics, marine 

science and agriculture etc. Specific applications under those disciplines are many 

such as mine exploration, climate change investigation, crustal deformation 

monitoring, classification of soil properties,  population density modelling, digital 

terrain model (DTM) generation and use, chemical concentration modelling, soil Ph 

or moisture estimation and so on (Li and Heap, 2008). 

There are many spatial interpolation methods and those methods are classified in 

different ways in the literature.  Siu and Lam (1983) classifies interpolation methods 

as Point and Areal Interpolation. Sen and Srivastava (1990) states that interpolations 

are grouped into three methods as i-) point wise, ii-) global and iii-) piece wise. Mitas 

and Mitasova (1999) classifies interpolation methods as local neighborhood, 

geostatistical and variational approaches. 

Interpolation methods are grouped into three as non-geostatistical methods, 

geostatistical methods and combined methods, by Li and Heap (2008). Some features 

that are used to distinguish interpolation methods can be described as follows: 
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In global interpolation, all of the spatial data in application area are used to obtain 

information about unknown point. Contrary to global interpolation, small samples 

around point being estimated are used in local interpolation. In exact interpolation, 

the estimated value of the point is the same value as its known value. On the 

contrary, the estimated value of the point and its known value are different from each 

other in inexact interpolation method.  

 There is no error computations belong to estimated value in deterministic methods, 

whereas there is error computations in stochastic methods belong to estimated value. 

According to Olea (1999), the “Geostatistics can be regarded as a collection of 

numerical techniques that deal with the characterization of spatial attributes, 

employing primarily random models in a manner similar to the way in which time 

series analysis characterizes temporal data”.  

If the techniques employ secondary information in geostatistics, they are described as 

multivariate; if not, they are described as univariate geostatistical techniques. The 

general name of this category is referred as Kriging method. In combined procedure, 

spatial interpolation methods and other statistical approaches are used together (Li 

and Heap, 2008). The details of the methods that are used in this study are described 

with details in following chapters. 

It is crucial to perform an optimal method for data interpolation in an application.  

Furthermore, while chosing an optimal methods, the factors that affect the 

performance of the spatial interpolation methods should be considered. These factors 

include data density, surface type, sample size and design, data quality, scale, 

variance and accuracy of the data (Li and Heap, 2008). Most of the methods give the 

same results if the data is sufficiently dense. On the other hand, deciding an 

appropriate interpolation method becomes crucial when the data has low density. 

Otherwise, interpolation methods give better results when the data get dense.  

When the surface types are taken into consideration, it can be said that discontinuity 

in the surface causes poor results in interpolation. As mentioned before, the sample 

size and design are crucial for the type of spatial interpolation methods. The low data 

noise decreases the grid size (scale) and hence may cause better result for 

interpolation process. The performance of the interpolation methods decreases when 

the variation of data increases (Li and Heap, 2008). As a last factor which affects the 
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performance of spatial interpolation can be described as its sampling within the 

region of interest. The sampling can be regular, random, stratified random, cluster, 

transect and contour type. 

1.2 Local Geoid Modelling 

In parallel to technological development, Global Navigation Satellite Systems 

(GNSS) have significant role in geodetic and surveying applications. The observable 

data from GPS, leveling and geoid information have significant role for geodetic 

height control (Kavzoglu and Saka, 2005). The height of a point can be obtained with 

traditional leveling measurements but height transformation using GPS and a geoid 

model is faster, easier, cheaper and practical in order to obtain orthometric height. 

The heights are described as the geometrical and physical relation in vertical between 

the point position and a reference surface. Ellipsoid is the geometrical shape of the 

Earth while Geoid is formed under topographical density and molar dispersal of 

ground irregularity. According to Heiskanen and Moritz (1967), “the geoid is a 

surface of a constant gravity potential and coincides with the mean sea level after 

removing the effect of sea surface topography over the oceans “. 

There is a simple geometrical relationship between the heights, which refer different 

reference surfaces, ignoring the vertical deflection of plumbline; 

 h – H – N = 0               (1.1) 

where H is the orthometric height, h is the ellipsoidal height, which is the vertical 

distance between the point on the Earth and the ellipsoid that can be obtained from 

GPS,  and N is the geoid height that is the distance between geoid and ellipsoid along 

ellipsoidal normal. Ellipsoidal height is a geometrical value and may not serve in 

practical purposes adequately. Therefore, in most high precision surveying and 

engineering applications, orthometric height, which is the distance from the point on 

Earth to the geoid along plumb line, is employed. The first way of obtaining 

orthometric height is performing geometric leveling measurements based on a 

control point, which has known height information, and applying the gravimetric 

corrections on that measurement results. Second way is transforming ellipsoidal 

height derived from GPS to orthometric height by using geoid height. Since geoid 

height affects the accuracy of orthometric height, determination of geoid model has a 
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key role in surveying applications (Yıldız, 2012). It can be said under these 

statements above that the local geoid model with higher accuracy means higher 

accurate geoid height and thus the orthometric height via GNSS.  

It is hard to make measurements for obtaining heights in whole region of interest, 

therefore; interpolation methods, which are used to perform geoid model, are 

effective tools for estimation of heights belong to unknown points. The distribution 

of the reference data, topographical character of region and interpolation method 

affect directly the accuracy of the derived height from the geoid model (Erol, 2007). 

Geoid models are mainly divided into three groups such as global (EGM96, OSU91, 

etc.), regional (TG03, TG07, etc.) and local (Istanbul 1999 local GPS/leveling geoid, 

etc). Global geoid models do not provide high accuracy for surveying applications -

accuracy is around 0.5 meter in Turkey - while local models may give results with 

higher accuracy (Ayar, 2009). Evaluating the geoid models in Turkey constitutes the 

initial objective of this study, therefore, a brief history of the geoid modelling studies 

in Turkey are given following (Erol, 2007; Yıldız, 2012). 1976 is the starting date of 

the studies of geoid determination in Turkey. For this preliminary study, Ayan 

(1978) and Gürkan (1978) performed Astrogeodetic Geoid (TG-76) by using 

astrogeodetic deflection at ED50 datum. After that South-Western Anatolia Doppler 

Geoid was performed in 1987 with developments in GNSS technology (Ayhan et al., 

1987). In 1991, General Command of Mapping employed Turkish Gravimetric 

Geoid (TG-91), which was estimated with remove-restore technique, by using earth 

geopotential model, DTM (digital terrain model) and gravity observations.  

Due to the fact that there are differences between orthometric heights which were 

derived from TG-91 Geoid and geometric leveling based on Turkish National 

Vertical Control Network (TUDKA or TNVCN). Therefore, 197 Turkish National 

Fundamental GPS Network (TUTGA-99 or TNFGN-99) benchmarks were 

connected to Turkish National Vertical Control Network 1999 (TUDKA-99 or 

TNVCN-99) via leveling measurements. Consequently, GPS/leveling geoid was 

determined (Ayar, 2009). It was investigated that there are differences such as slope 

and offsets in long wavelength between TG-91 Geoid and GPS/leveling geoid. In 

order to solve datum discrepancies, Turkey Geoid 1999A (TG99A) were employed 

by combining TG-91 and GPS/leveling geoid. The internal accuracy of TG99A is 10 

cm while external accuracy is 15 cm (Direnç et al., 2012). Relying on the assessment 
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results in small areas, the General Command of Mapping reported that the accuracy 

of TG99A Geoid model is sufficient for small scale mapping applications. 

As the updated version of TG99A geoid, the new geoid, which is named as Turkey 

Geoid 2003 (TG03), was released. For this purpose, EGM96 global geopotential 

model, 62 500 gravity measurements, which were used in the computation of TG91 

gravimetric model, and gravity anomalies derived from altimetry data were operated 

via least squares collocation (LSC). Although the geoid heights of GPS/leveling 

benchmarks are different, the accuracy of this geoid is in decimeter level (Yıldız, 

2012; Erol, 2007). By using a geopotential model which was derived from the 

combination of EGM96 global geopotential model and GRACE GGM02S global 

geopotential model, digital elevation model derived from SRTM-3 (Shuttle Radar 

Topography Mission-3) and KMS02 gravity anomalies; Turkey Geoid 2007 (TG07) 

were computed that has ±8.8 cm accuracy (Yıldız, 2012). Finally, Turkish Hybrid 

Geoid 2009 (THG-09), which has ±9 cm accuracy, were performed by using surface 

gravity observations, DTM (Digital Terrain Models) and EGM08 earth gravitational 

model and satellite altimetry (URL-1). 

The accuracy of recent geoid model in Turkey (THG-09) is still not good enough (±9 

cm), therefore; local geoid models are required and determined with higher accuracy 

in limited area. For this purpose, appropriate corrections are done by using leveling 

points in densification area. This procedure leads to determine GPS/leveling points in 

region of interest to determine geoid heights. Currently vertical control is provided 

relying on the Turkish National Vertical Control Network (TUDKA). However, the 

TUDKA benchmarks disappear due to structuring, enlargement works on roads and 

tectonic motions on crust. Considering all of these, it can be said that height system 

in Turkey needs to be modernized. The term of modernization means identifying new 

viable vertical datum. Modernization process can be realized by using three methods 

which are stated below (Türkezer et al., 2011). 

 Regeneration of whole leveling network 

 Recovering geoid and regeneration of some leveling network 

 Recovering geoid and using that as a vertical datum 

Even if regeneration of the whole leveling networks, which requires much time and 

money, are chosen for modernization process, the determination and use of local 



6 

 

geoid continues to provide the optimal solution untill re-establishment of height 

system is constituted all over the country.  

1.3 Objective 

The aim of this thesis is performing an optimal local geoid model with 1204 

GPS/leveling points by using different interpolation methods in order to obtain high 

accurate geoid heights. As stated in overview of introduction chapter, ellipsoidal 

heights derived from GPS are transformed to orthometric heights via geoid heights. 

Since the accuracy of Turkey Geoid is not sufficient, developing and employing local 

geoid model has a significant role in many geodetic applications require centimeter 

accuracy in heights. 

This thesis consists of five chapters. In Chapter 1, mainly, the preliminary 

information about geodetic terms, theoretical background, and the aim of the thesis 

are asserted. In order to give this chapter more explicitly; definitions, methods and 

examples of spatial interpolation methods are given. Identification of geoid, 

ellipsoidal and orthometric heights, history of geoid determination studies in Turkey, 

ongoing modernization of height systems, the importance of local geoid models for 

vertical control in Turkey are realized in details. 

Height systems and geoid modelling methods are identified in Chapter 2. The first 

part of this chapter starts with the definition of height systems and vertical datum. In 

the second part of the chapter, geoid modelling methods in general are provided. 

In Chapter 3, surface interpolation methods, which are specifically Biharmonic 

Spline, Inverse Distance to a Power, Kriging, Minimum Curvature, Modified 

Shepard‟s Method, Natural Neighbor, Nearest Neighbor, Polynomial Regression, 

Radial Basis Function in addition to Triangulation with Linear Interpolation, Moving 

Average and Local Polynomial, are described and explained.  

The experiment set-up and numerical tests are described in Chapter 4. Istanbul 2005 

GPS/leveling data is used in the study and defined briefly under the chapter. Data 

descriptions, pre-processes of data such as blunder detection procedure are explained 

and the numerical results of data interpolation processes are described in Chapter 4. 

In the last part, which is Chapter 5, the results of the numerical tests and 

interpolations are assessed and interpreted. 
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2. HEIGHT SYSTEMS AND GEOID MODELLING METHODS 

2.1 Introduction, Theoretical Background and Type of the Height Systems 

The height information is crucial in many applications such as engineering survey, 

flooding management, coastal research, navigation, management of water sources, 

and risk analysis for earthquakes. The height of a point with respect to a reference 

surface can be described relying on different height systems. The reference surface 

for describing the height of a point is called as vertical datum and these can be geoid, 

quasi-geoid, ellipsoid and mean sea level (MSL). The level surface of the gravity 

field of earth (such as geoid) and mean sea level do not fit each other. Furthermore; 

the difference between MSL and geoid is called as sea surface topography (SST). 

The mean sea level is obtained via the average level of ocean surface (Torge, 2001; 

Erol, 2007).  

As stated in the beginning of this chapter, there are different height systems based on 

chosen reference surface in order to obtain height information. The height systems 

that are geopotential numbers, dynamic heights, orthometric heights, ellipsoidal 

heights normal heights; and relationship among them are identified and illustrated in 

the following. 

2.1.1 Geopotential numbers 

Due to the fact that height differences, which are obtained from leveling, are 

dependent to the path; gravity potential can be used since the potential differences 

between points are independent from the leveling path, consistent and only one 

surface with W potential passes from a point. The difference in potential among 

geoid and equipotential surface is defined as geopotential number, furthermore; the 

geopotential of the point P on the Earth‟s surface Cp is identified below;  

 
         ∫    

 

  

  (2.1) 
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where    is the constant potential value at geoid, P is the point at the Earth‟s surface 

and    is its potential,    is the point on the geoid (Erol, 2007; Ince, 2011). 

The unit of geopotential number is m
2
/sn

2
. Leveling equipotential surfaces are 

illustrated in Figure 2.1. 

 

Figure 2.1: Equipotential surface and geopotential number (Roman, 2007). 

2.1.2 Dynamic height 

Owing to the fact that the unit of geopotential number m
2
/sn

2 
is not coherent with 

length unit, dynamic heights whose formula is given in 2.2 are performed. 

 
  

   
 

  

  
               (2.2) 

where    is normal gravity for fixed latitude which is usually taken as 45⁰. Dynamic 

height does not have precise geometric clarification. Moreover, dynamic heights on 

the same equipotential surfaces are the same but geometrical distances are different 

from each other (Torge, 2001). 

2.1.3 Orthometric height 

The orthometric height is the distance between geoid and the point located on the 

Earth‟s surface along plumb line, and described by; 

 
   

  

g̅
 

      (2.3) 

where g̅
 

 is the average value of the gravity through plumb line and obtained by the 

following formula below; 
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              (2.4a) 

Practically, this is not possible to obtain g̅
 

 since the mass density along plumb line 

is unknown. Therefore, orthometric heights are linked to approximation on 

calculation of the mean value of gravity. Furthermore, the value of g̅
 

 is obtained by 

using different models such as Helmert that is the most popular method and based on 

Poincaré Prey reduction model (Erol, 2007). 

In practice, the mean gravity value is performed as follows; 

 
g̅
 
           

 

 

  

  
       (2.4b) 

where nominal density value is ρ = 2.67 g/cm³, normal gravity gradient is: 

   

  
                    (2.4c) 

and k is the Newton‟s gravitational constant (66.7x10
-9

 cm
3
g

-1
sec

-2
). When these 

values are replaced in the formula, the recent view takes place as below; 

 g̅
 
                         (2.4d) 

By combining the formula above and the formula belongs to orthometric height, 

Helmert orthometric heights are performed as stated below; 

 
   

  

           
 

     (2.5) 

The given equation is solved via iterations since HP is a necessity in order to obtain 

mean gravity through plumb line (Hofmann-Wellenhof and Moritz, 2005; Jekeli, 

2000). 

As asserted so far, the distance between geoid and the point on the Earth‟s surface 

through plumb line is referred as orthometric height (Pizetti‟s projection). On the 

other hand, the distance through ellipsoidal normal instead of plumb line stated as 

orthometric height in order to obtain orthometric height simpler (Helmert‟s 

projection). This simplification process leads to errors and these errors are ignored 
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for the topographic heights on the Earth‟s surface (Jekeli, 2000; Erol, 2007). The 

vertical deflection between plumb line and ellipsoidal normal referred as   can be 

seen in the Figure 2.2. 

 

Figure 2.2: The difference in lengths along the curved plumb line (orthometric 

height, H) and the straight ellipsoidal normal (Erol, 2007). 

2.1.4 Ellipsoidal height 

Ellipsoidal height (h) is the distance from a point on the Earth‟s surface to the 

ellipsoid along ellipsoid normal. Nowadays, ellipsoidal heights can be employed 

from different ways that are satellite laser ranging (SLR), very long base 

interferometry (VLBI), global navigation satellite systems (GNSS) (Erol, 2007). 

The Figure 2.3 shows the relationships between ellipsoidal, orthometric and geoid 

heights. 

 

Figure 2.3: The relationship between orthometric and ellipsoidal heights (Yılmaz 

and Arslan, 2006). 
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2.1.5 Normal height 

Normal height is the distance between the point on the Earth‟s surface and quasi-

geoid. That is employed led by Molodensky with the thought that orthometric height 

cannot be employed theoretically. The normal height is obtained by using following 

equation; 

 
  

  
  

 ̅ 
                (2.6) 

where  ̅  is the mean normal gravity value along plumb line, R is the point on the 

telluroid where UR = WP  (see Figure 2.5). H
* 

is the normal height of the point P on 

Earth‟s surface, and    is the height anomaly at point P which is the difference 

between ellipsoidal height and normal height. The surface that is    upside of the 

ellipsoid is referred as quasi-geoid. (Hofmann-Wellenhof and Moritz, 2005; Jekeli, 

2000; Ince, 2011). Figure 2.4 shows the components of normal height. 

 

Figure 2.4: Normal height, height anomaly, telluroid and quasi-geoid (Ince, 2011). 

2.1.6 Relationships between height systems 

There is a connection between height systems via geopotential number. By using 

equations belong to Helmert orthometric heights    
  

           
 and orthometric 

heights   
  

  

 ̅ 
, the following equations can be computed; 

           N     
           (2.7) 
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and 

 
       

     
g̅   ̅

 ̅
   

   

 ̅
        (2.8) 

where     represents the Bouguer gravity anomaly. Although both of the 

orthometric and normal heights are stated geometrically; computation of normal 

height can be employed by using information about mass density while orthometric 

height cannot be employed. In contrast to dynamic heights, all other height systems 

don‟t have physical meaning (Ince, 2011).  

The reference surfaces and height systems are given in the Figure 2.5 following. 

 

Figure 2.5: The reference surfaces and height systems (Erol, 2007). 

In the light of the foregoing information mentioned so far, the definitions and 

characteristics of the height systems are summarized in Table 2.1 following. 
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Table 2.1: The definitions and characteristics of the height systems (Ince, 2011). 

 

2.2 Geoid Modelling Methods 

The aim of the geoid determination is obtaining geoid heights (N), which are natural 

connection between orthometric heights obtained from leveling and ellipsoidal 

heights derived from satellite positioning technologies. The geoid heights have lower 

accuracy than ellipsoidal heights, therefore; determining a precise geoid model is 

critical to get orthometric heights using global positioning satellite system hence the 

satellite positioning system is used more efficiently. Geoid models can be used in 

local, global and regional areas. Furthermore, the accuracy of model is dependent to 

topography, characteristics (density and distribution) of the reference data and 

modelling technique. The validation of regional geoid models can be controlled with 

geoid height differences that are derived from GPS/leveling and model at co-located 

benchmarks (see equation below) (Erol, 2007). 
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 N = h – H – Nmodel                (2.9) 

Geoid determination methods are classified below based on the computation method 

and data used in calculations (Yılmaz and Arslan, 2006): 

I) The Astro-Geodetic Geoid Determination 

II) The Gravimetric Geoid Determination 

 a) Stokes Function  

 b) Fast Fourier Transformation 

 1 Dimensional (1D-FFT) 

 2 Dimensional (2D-FFT) 

 Geoid Determination According to Numerical Density Method 

III) The Geopotential Approach 

IV) The Hybrid Method (Remove - Restore) 

V) The GPS/Leveling Methods 

 a) The polynomials method 

 b) The fuzzy logic method 

 c) The artificial neural network 

 d) Etc. (interpolation methods used in numerical test of the thesis) 

2.2.1 The astro-geodetic geoid determination 

Geoid height can be obtained by using vertical deflections. Ellipsoidal latitude and 

longitude have to be in a reference geodetic datum (e.g ITRF96 datum referring to 

GRS80 ellipsoid) in order to define astro-geodetic geoid. The change on geoid height 

in ds distance can be calculated as following; 

 dN = −εds              (2.10) 

where ε is deflection and calculated with the equation below; 

 ε = ξ cosα + ηsinα           (2.11) 
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ξ and η are components of deflection and α is the azimuth. The figure 2.6 belongs to 

Astrogeodetic Leveling can be seen below. 

 

Figure 2.6: Astrogeodetic Leveling (Deniz and Ayan, 2002) 

 The formula to calculate deflection components are given following. 

                 ξ = Φ –φ, η = (Λ − λ)cosφ              (2.12) 

In the equation above, Φ and Λ are astronomic coordinates while φ and λ are 

geodetic latitude and longitude. The change of geoid heights in a distance between A 

and B points can be calculated if the geoid height at starting point A is known. 

Furthermore, the geoid height at B can also be calculated with the integral below; 

 
       ∫    

 

 

             (2.13) 

As can be seen in the formulas above, astronomic and geodetic coordinates are used 

together in order to identify geoid, that‟s why this method is referred as 

astrogeodetic.  

Sparse data requirement to determine high precision geoid model in astrogeodetic 

levelling makes this method more efficient and economical. Determining a geoid that 
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has 2-5 cm accuracy, 50-500 gravity points in 1000 km
2
 are required while only 5-15 

astronomic points are enough (Yılmaz and Arslan, 2005). 

2.2.2 The gravimetric geoid determination 

2.2.2.1 Stokes function 

Geoid heights can be computed by using Stokes integral which is the way to 

transform gravity data collected at the Earth‟s surface to geoid heights. It based on an 

assumption that there is no any mass outside of the geoid; therefore the Earth‟s 

surface is eliminated mathematically. The disturbing potential (T), as the difference 

between the normal potential of the reference ellipsoid (U) and the gravity potential 

of the Earth (W):  

 
  

 

  
∬      

 

 

    (2.14a) 

where R is the mean radius, σ is Earth‟s surface, S(Ψ) is the Stokes function. If the 

same normal potential is chosen for reference ellipsoid (U) and gravity potential on 

Earth (W), the relationship between disturbing potential (T), normal gravity on 

reference ellipsoid (γ) and geoid height (N) can be created as following (Yılmaz and 

Arslan, 2005);  

T = γ ⋅ N             (2.14b) 

Hence the geoid height can be obtained through the following formula of Bruns; 

 
  

 

 
 

 

  
∬      

 

 

                (2.15) 

2.2.2.2 Fast fourier transformation (FFT) 

FFT is a productive evaluation of convolution integrals in contrast to classical 

numerical integration and decrease the time of computation for large dataset. The 

geoid height (N) can be obtained by using global geopotential model and residual 

gravity anomalies (Δg) as shown below (Yılmaz and Arslan, 2005; Ghanem and 

Jiancheng, 2000). 

  
          

    

   
  

  { {         } {         }} 
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  {                  }    (2.16) 

where F is 2D Fast Fourier Transformation, F
-1 

is inverse Fast Fourier 

Transformation and u-v are the frequencies corresponding to x-y.  

The Turkey Geoid 1991 (TG-91) can be given as an example that was calculated 

using gravimetric method and FFT computations (see the TG-91 in Figure 2.7).  

 

Figure 2.7: Turkey Geoid 1991 (TG91) (Direnç et al., 2012). 

2.2.2.3 Geoid determination using numerical density method 

Geoid determination relies on Newton‟s law of attraction and distribution of internal 

mass of the Earth. Therefore instead of adopting constant ρ=2.67 gr/cm
3 

mass density 

in Gravimetric geoid modelling, the topographic density models can be employed in 

order to provide more rigorous computations (Deniz and Ayan, 2002; Yılmaz and 

Arslan, 2005). 

2.2.3 The geopotential approach 

Geopotential models have a significant role to combine national height systems and 

promote vertical datum modernization based on GPS positioning. This model was 

used to determine the gravity potential of the Earth and computing the satellite orbits, 

but now, it has a significant role to determine geoid heights by using equations below 

(Erol, 2007);  
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         (2.17) 

where r, θ, λ are the polar coordinates of the gravity field of Earth (W), GM is the 

gravitational constant, a is the major radius of reference ellipsoid, Pnm (cosθ) is 

normalized Legendre function, Cnm, Snm are  the normalized global harmonic 

coefficients and Φ is the centrifugal potential. Gravity anomalies are calculated using 

the spherical harmonic expansion model; 
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(2.18) 

and geoid heights can be obtained as; 
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(2.19) 

where γ is the normal gravity value at point P(r, θ, λ). 

The accuracy of the model is getting higher when there are more coefficients due to 

the fact that the Earth has information about shorter wavelengths (Erol, 2007). 

2.2.4 The hybrid method (remove - restore) 

According to this method, which is one of the commonly applied technique for 

regional geoid determination, the geoid model is calculated with the combination of 

the global geopotential model and terrestrial gravity measurements. In this method, 

short wavelength and long wavelength components are subtracted that is called as 

“Remove”. After applying Stokes integral using residual gravity anomalies, the 

original signal in the region of interest are restored by replacing topography and 

geopotential model back. Therefore, this process is called as “Restore”. The 

advantage of this method is easy detection of ill-matched data in the region whereas 

the restricted dataset sufficiency in the limited area can be considered as its 
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disadvantage (Deniz and Ayan, 2002). Geoid heights are obtained with following 

equations; 

                                                                     (2.20) 

where        is geoid height obtaining from geopotential model, Ntc is the terrain 

correction of topography on the geoid height, NRes. is the residual geoid height 

derived from Stokes integral that is given below. 

 
   

 

   
∬         

 

 

      (2.21) 

where       is the residual FAYE anomaly. 

The hybrid geoids in Turkey, which were derived from remove-restore technique 

after fitting to GPS/leveling surface, are examplified below (see Figures 2.8 - a, b, c). 

 

Figure 2.8a: Turkey Hybrid Geoid 1999A (TG99A) (Direnç et al., 2012). 

     

Figure 2.8b: Turkey Hybrid Geoid 2003 (TG03) (Direnç et al., 2012). 
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Figure 2.8c: Turkey Hybrid Geoid 2009 (THG09) (Direnç et al., 2012). 

Although these regional geoids in Turkey were determined in different years 

sequentially, there is no improvement in accuracy among them (Yıldız, 2012). 

2.2.5 The GPS/leveling methods 

The global positioning system has wide range of application today, and determining 

precise geoid GPS is getting more important day by day in parallel to the progress in 

satellite positioning systems. Beside the ellipsoidal heights obtained through the GPS 

in the datum of World Geodetic System 1984 (WGS84), the orthometric heights, 

derived from leveling, are required for most of the geodetic applications. Geoid 

heights can be employed with the combination of ellipsoidal and orthometric heights. 

The equation belong to relationship between three different height is given below; 

             NGPS/Lev. = hGPS – HLeveling    (2.22) 

In order to determine the geoid via GPS/leveling method, a geodetic network is 

required which consists of collocated geoid reference points with known ellipsoidal 

and orthometric heights (see equation 22). These reference points should be selected 

in watershed lines, peaks and hills etc. in order to represent the topographic mass 

variations well (Deniz and Çelik, 2005). GPS/leveling geoids in Turkey are 

exemplified below (see Figures 2.9 - a,b,c,d,e and 2.10) (Ayan et al., 2006; Erol, 

2007). 
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Figure 2.9a: Istanbul 2005 local GPS/leveling geoid (Erol, 2007). 

 

Figure 2.9b: Sakarya 2002 local GPS/leveling geoid model (Erol, 2007). 

 

Figure 2.9c: Çankırı 2005 locally improved Turkey Geoid 2003 geoid model  

(Erol, 2007). 
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Figure 2.9d: Izmir 2001 local GPS/leveling geoid model (Erol, 2007). 

 

Figure 2.9e: Istanbul 1999 local GPS/leveling geoid (Erol, 2007). 

 

Figure 2.10: Turkey GPS/leveling geoid surface (Direnç et al., 2012). 

The geoid model can be served as a parametric model as wee as the produced grid 

data having geoid undulations. Local GPS/leveling geoid models constitute an 

alternative to the regional geoids of Turkey today with higher accuracy advantage in 

applications where transformation of GNSS ellipsoidal heights into regional vertical 

datum are required. However, the limited area where the local geoid model is 

available, is the main disadvantage of these modes (Erol, 2007). 
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3. SURFACE INTERPOLATION METHODS 

In most of geodetic, scientific and engineering applications, spatial information is 

required. However, there is no continues spatial data in every point of interested area. 

GPS/leveling data is used in case study and numerical tests of this thesis, and if the 

statements above are considered within the context of GPS/leveling method, this can 

be said that there is no possibility to have geoid height information, which is a 

connection between ellipsoidal height derived from GPS and orthometric height 

derived from leveling, for infinite number of points in the region of interest. In order 

to obtain geoid heights of unknown points, geoid models are performed by using 

several techniques such as (Soycan and Soycan, 2003);  

 Linear Interpolation 

 Polynomial regression equations 

 Least Squares Collocation 

 Finite Element Methods 

 Artificial Neural Network based models such as ANN, WNN, ANFIS 

In this thesis, 12 interpolation methods are used to determine geoid model in grid 

form. Basically interpolation is the process of estimating the data at unknown points 

by using the data at known points. There are wide range application areas for spatial 

interpolations like geophysical exploration, climate research, geodynamic (i.e. 

estmating the crustal velocities), hydrologic studies (investigating soil properties), 

population density research, DTM analysis (obtaining elevations from DTM) , 

environmental studies (mapping chemical concentrations, estimating soil Ph or 

moisture) and geology (predicting haddock of ages) (Li and Heap, 2008). 

Isotherm map is provided as an example for interpolated temperatutes in South 

African Weather Stations for April 15, 2009 at 11 am can be seen in Figure 3.1. 
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Figure 3.1: Isotherm map in South Africa (Sutton et al., 2009). 

As stated in the introductory part, there are numerious interpolation methods in 

literature and the classifications of interpolation methods vary according to different 

references. Siu and Lam (1983) describes interpolation methods as point and areal 

Interpolation that can be seen in Figure 3.2 below. 

 

Figure 3.2: Categorization of spatial information methods according to Siu and Lam 

(1983). 
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Interpolation methods are grouped into three as: i-) point wise ii-) global and iii-) 

piece wise methods in Sen and Srivastava (1990). Mitas and Mitasova (1999) makes 

a categorization of the interpolation methods as local neighborhood approach, 

geostatistical approach and variational approach. Li and Heap (2008) provides a 

review of spatial interpolation methods for environmental science and cathegorize 

the methods into three as non-geostatistical methods, geostatistical methods and 

combined methods that can be seen in the Figure 3.3. 

Figure 3.3: The spatial interpolation methods according to Li and Heap (2008). 

The categorization of non-geostatistical interpolation methods is provided by de 

Smith (2015) and can be seen in the Table 3.1. 
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Table 3.1: The main characteristics of interpolation methods (de Smith et al., 2015). 

Method Speed Type Comments 

Inverse distance 

weighting 

(IDW) 

Fast Exact, unless 

smoothing factor 

specified 

Tends to generate bull‟s eye patterns. Simple and 

effective with dense data. No extrapolation. All 

interpolated values between data points lie within the 

range of the data point values and hence may not 

approximate valleys and peaks well 

Natural 

neighbor 

Fast Exact A weighted average of neighboring observations 

using weights determined by Voronoi polygon 

concepts. Good for dense datasets. Typically 

implementations do not provide extrapolation 

Nearest-

neighbor 

Fast Exact Most useful for almost complete datasets (e.g. grids 

with missing values). Does not provide extrapolation 

Kriging -

Geostatistical 

models 

Slow/ 

Medium 

Exact if no nugget 

(assumed 

measurement 

error) 

Very flexible range of methods based on modelling 

variograms. Can provide extrapolation and prediction 

error estimates. Some controversy over aspects of the 

statistical modelling and inference. Speed not 

substantially affected by increasing number of data 

points. Good results may be achieved with <250 data 

points 

Radial basis Slow/ 

Medium 

Exact if no 

smoothing value 

specified 

Uses a range of kernel functions, similar to variogram 

models in Kriging. Flexible, similar in results to 

Kriging but without addition assumptions regarding 

statistical properties of the input data points 

Modified 

Shepard 

Fast Exact, unless 

smoothing factor 

specified 

Similar to inverse distance, modified using local least 

squares estimation. Generates fewer artifacts and can 

provide extrapolation 

Triangulation 

with linear 

interpolation 

Fast Exact A Delaunay triangulation based procedure. Requires 

a medium-large number of data point to generate 

acceptable results. 

Minimum 

curvature 

Medium Exact/Smoothing Generates very smooth surfaces that exactly fit the 

dataset 

Spline functions Fast Exact (smoothing 

possible) 

Available as a distinct procedure and incorporated 

into a number of other methods. Bicubic and 

biharmonic splines are commonly provided  

Local pol. Fast Smoothing Most applicable to datasets that are locally smooth 

Polynomial 

regression 

Fast Smoothing Provides a trend surface fit to the data points. Most 

effective for analyzing 1
st
–order (linear) and 2

nd
-order 

(quadratic) patterns, and residuals analysis/trend 

removal. Can suffer from edge effects, depending on 

the data.  
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Deciding the optimal interpolation method has a significant role in local geoid 

modelling since the accuracy of the model is strictly connected to the performance 

and capabilities of interpolation methods. The factors such as data density, surface 

type, sample size and design, data quality, scale, variance and accuracy of the data; 

should be considered for the choice of interpolation methods (Li and Heap, 2008). 

The Figure 3.4 belongs to the types of sampling design, which are regular, random, 

stratified random, cluster, transect and contour samplings, are represented below. 

 

Figure 3.4: Data sampling examples (URL-2). 

The effects of all another factors on the performance of spatial interpolation are 

already mentioned in introduction chapter. 

The list of interpolation methods evaluated in this thesis is given below; 

 Inverse Distance Weighting (IDW) 

 Nearest Neighbor 

 Triangulation with Linear Interpolation 

 Natural Neighbor 

 Polynomial Regression 

 Simple Planar Surface 

 Bi-linear Saddle 



28 

 

 Quadratic Surface 

 Cubic Surface 

 Local Polynomial 

 First Order Polynomial 

 Second Order Polynomial 

 Third Order Polynomial 

 Radial Basis Function 

 Inverse Multiquadratic 

 Multilog 

 Multiquadratic 

 Natural Cubic Spline 

 Thin Plate Spline 

 Modified Shepard‟s Method 

 Minimum Curvature 

 Moving Average 

 Biharmonic Spline Interpolation 

 Kriging 

 Point Kriging 

 Block Kriging 

The basic idea of the spatial interpolation methods can be described by the following 

closed formula; 

 
      ∑    

 

   

     
     (3.1) 

where ẑ(x0) is the estimated value at the interpolation point in region of interest (x0), 

n is the number of sampled points, z is the observed value at the reference point, Pi is 

weight assigned to the reference point (Li and Heap, 2008). 

Considering the adopted interpolation algorithms in this thesis, it is possible to 

categorize the methods as deterministic and geostatistical as well. 
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3.1 Deterministic Interpolation Methods 

In this technique, surfaces are performed from measured points by using the 

smoothing degree or extend of similarity. Deterministic interpolation method is also 

divided into two groups like local and global interpolation. In global technique, all of 

the data in region of interest are used whereas discrete data are used in local 

technique. Last but not least, deterministic methods do not give illustrations about 

the degree of possible errors (URL-3). Deterministic interpolation methods are 

explained in details below. 

3.1.1 Inverse distance weighting (IDW) method 

In Inverse distance weighting method, which is one of the simplest and practicle 

methods, the value at an unsampled point is estimated by using weighted average of 

sampled point within a certain cut-off distance. The relevant figure (see Figure 3.5) 

and the equation of IDW (Li and Heap, 2008)  are illustrated below. 

 

 

Figure 3.5: Inverse distance weighting interpolation (Sutton et al., 2009). 

The equation of IDW is given below (Li and Heap, 2008); 

 
   

∑     
 
   

∑   
 
   

     
 

  
      √                  

 (3.2) 

where    is the geoid height at the new point to be estimated,    is the geoid height 

at the new point, k is the power parameter, m is the number of sampled points used, 

di is the distance between the reference and interpolation point (  ,   ). The power 

parameter “k” is the main factor that affects the accuracy of IDW. When the power 

parameter “k” decreases, weight for distance data increases. Similarly, weight 
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decreases when the distance is increased between reference point and interpolation 

point which will be predicted. The relationship between relative weight and distance 

is illustrated in Figure 3.6 below. 

 

Figure 3.6: The graphics on the effect of distance on relative weight (URL-3). 

The power parameter is mostly chosen as 2 (k=2). Power parameter is also affect 

smoothness of the estimated surface directly: The higher power parameter, the better 

surface smoothness. When k is equal to zero, IDW is called as “moving average”. If 

k is equal to 1, IDW is referred as “linear interpolation”. IDW is also referred as 

“weighted moving average” when p is not equal to 1 (Li and Heap, 2008). 

3.1.2 Nearest neighbor (NN) method 

In this method, geoid height of unsampled point is obtained from nearest sampled 

points by using bisector between sampled points (n) like Voronoi (Thiessen) 

polygons (Vi, i=1,2,3,…n) that are established by lining between neighbor points. 

Each sample has one polygon and samples are located in the center of these polygons 

(see Figure 3.7). The points within the same polygon are described with the same 

value. In another words, each points and its nearest sample points have the same 

value. This method can be used when the surface is not regular and sampling is not 

homogenous (Li and Heap, 2008; URL-2). 

The lines that are used to establish Thiessen polygons are the sides of Delaunay 

triangles. In Delaunay triangle, a circle is formed along its three corners that never 

involve another sample points. There are several methods to form polygons like 

pycnophylactic interpolation which was developed by Waldo Tobler. In this 
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technique, the volume of the data is preserved, but moved inside the area in order to 

generate a continuous surface (URL-2). 

The Figures 3.7, 3.8 and 3.9 belong to Voronoi diagram, Delaunay triangulation and 

an example of nearest neighbor are given below. Similar to Figure 3.9, a relation can 

be established between the reference data distribution that is applied in numerical 

tests in Figure 4.8 and interpolation surface that is calculated using Nearest Neighbor 

algorithm that is given in Figure 4.9(e). 

 

Figure 3.7: Voronoi diagram (Skiena, 2008). 

 

Figure 3.8: Delaunay triangulation (URL-4). 

 

Figure 3.9: Examples of classified post map (on the left) and the contour map (on 

the right) that represent the interpolated grid nodes derived using the nearest 

neighbor interpolation method (URL-5). 
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3.1.3 Triangulation with linear interpolation method 

This exact interpolation method works best when the data is distributed 

homogenously over the region of interest. In this method, triangles are generated by 

drawing lines between data points. Moreover, these triangles never intersect each 

other. The outputs are always within the data limits and obtained rapidly (URL-5). 

The figure (see Figure 3.10) and equations of planar linear surface are provided 

below (Soycan and Soycan, 2003);  

 

Figure 3.10: Planar Surface. 
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   (3.3a) 

where a0, a1, a2 coefficients are estimated from following equations; 

a0 = N1 

 
   

                     

           
 

      
                     

           
 

 

   (3.3b) 

An example belongs to triangulation with linear interpolation is given in Figure 3.11. 

Similar relation that is provided between the data points and interpolation surface 

according to Triangulation with Linear Interpolation method, the used reference data 

and interpolation surface is valid when the Figure 4.8 and Figure 4.9(f) are taken into 

account. 
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Figure 3.11: The classed post map (on the left).and the contour map (on the right) 

show the interpolated grid nodes using Triangulation with Linear Interpolation 

technique (URL-5). 

3.1.4 Natural neighbor method 

The natural neighbor interpolation method is used when the dense and sparse data 

exist in region of interest. Weighted averages of local data are obtained from natural 

neighbor coordinates that are derived from Thiessen polygons and polyhedral. 

Weighted average of nearest neighbor values, whose weights are dependent on 

volume of the data, is obtained from unsampled points. The number of sampled 

points, which are used in estimations of unsampled points, vary and dependent on the 

spatial construction of the data. The application areas of this method are mainly 

topography, bathymetry and geophysics (Mitas and Mitasova, 1999). 

An example of natural neighbor interpolation is given below (see Figure 3.12). 

Please find the similar comparison considering Figure 4.8 and Figure 4.9(d) that 

shows the interpolation surface that is generated using Natural Neighbor method. 

 

Figure 3.12: The classed post map is on the left. The contour map, which is on the 

right, illustrates the natural neighbor interpolation result (URL-5). 
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3.1.5 Polynomial regression method 

Polynomial regression is used to identify large-scale trends and patterns in the data. 

Thus, it cannot directly estimate unknown Z values but is used for trend surface 

determination. The main idea of this method is representing the working area with a 

function. The closed formula belongs to polynomial regression is illustrated below. 

 
        ∑∑     

   
 

 

   

 

   

      (3.4) 

where aij is the unknown coefficients of polynomial, n is the surface degree, i and j 

are the positive integers of powered numbers of x and y coordinates. 

There are different types of regression methods depend on surface definition such as 

simple planar surface, bi-linear saddle, quadratic surface, cubic surface, etc. The 

equations belong to these methods are given below (Soycan and Soycan, 2003);  

 Simple planar surface 

                                     (3.5) 

 Bi-linear saddle 

                                           (3.6) 

 Quadratic surface 

                                              
      

         (3.7) 

 Cubic surface 

                                    
      

           
      

 

     
        

  
  (3.8) 

Higher degree polynomials can be computed based on first equation. When the 

degree of polynomial increases, the number of required sampled data also increases. 

The reality and suitability of the surface depend on the selection of polynomial 

degree and coefficients.  



35 

 

The distribution of the sample data (in Figure 4.8) and calculated interpolation 

surface map using Polynomial Regression (in Figure 4.9 - h.1, h.2, h.3) can be 

considered for the visualization of the Polynomial Regression model. 

3.1.6 Local polynomial method 

In local polynomial, samples are located equally on a grid by using weighted least 

squares. Likewise, the data values, within the searching neighborhood, are 

distributed normally. Local polynomial method uses varying degrees of polynomials 

(first, second, third, etc.) within a defined neighborhood. The single order local 

polynomial performs a plane through the data, the second order local polynomial 

performs a surface with a bend while third order local polynomial performs two 

bends. The local polynomial equations based on polynomial degree are given below; 

                              

                                    
     

  

                               
     

     
    

    
     

     
  

 

       (3.9) 

 

The accuracy of surface is higher when the multiple planes are described. The 

computation speed is independent from data size; therefore, this method can be used 

for large data. If the data is getting closer to the grid nodes, the higher weight is 

obtained. The Figure 3.13 belongs to local polynomial is illustrated below; 

 

Figure 3.13: The classified map (on the left) was created with the data points. The 

contour map (on the right) represents the local polynomial interpolation result  

(URL-5). 
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3.1.7 Radial basis function method 

Radial basis function, which is the special case of spline, is basically a distance from 

the location of each points and it generates a reverse cone over each location. Radial 

basis function is an exact interpolation method and used for performing smooth 

surfaces from a large dataset. The technique is not suitable when there are extreme 

changes in the surface within short distance (URL-3 and URL-5). The figure 3.14 

belongs to radial basis function for different location and general equations are given 

below.  

 

Figure 3.14: Radial basis functions for different locations (URL-3). 

 
          ∑    

 

   

               (3.10) 

where zp is z value at point, Pi is weight for i
th 

point,  (ri) is radial basis function for 

radius ri and m is the bias or offset value. 

This method is like Kriging method due to the fact that the result of radial basis 

function performs an accurate data. There are five types of radial basis function 

(RBF) which are listed below; 

 Inverse Multiquadratic 

 Multilog 

 Multiquadratic 

 Natural Cubic Spline 

 Thin Plate Spline 
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Each method has different equations and their interpolated surfaces differ from each 

other. If the parameters have high value, the occurred map is smooth except inverse 

multiquadratic (the case is vice versa for inverse multiquadratic) (URL-3). 

Thin plate spline, whose performance is illustrated in Figure 3.15, is widely used in 

geodetic applications. The result of the application using Thin Plate Spline with 

geoid reference data can be seen in Figure 4.9(i.5). 

 

Figure 3.15: The classed post map on the left was created with the data points. The 

contour map on the right represents the interpolation result belongs to radial basis 

function (URL-5). 

3.1.8 Modified Shepard’s method 

Modified Shepard‟s method, which is an exact interpolation method and reveals 

rather smooth surface pattern, works similar to inverse distance weighting, and the 

“bull‟s eye” effect is eliminated by using least squares adjustment. This method 

bases on a weighted average of the values at the points and is formulated by 

(Thacker, et al., 2009) as;  

 
     

∑           
 
   

∑      
 
   

    (3.11) 

      is the weight function,       is a local approximant to the function f(x) 

centered at   
    and with weight function; 
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   (3.12a) 

where       is the Euclidean distance between     
    ,  
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                 ‖    
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 (3.12b) 

  
   

 is a radius of influence for point   
     and    is the polynomial function .This is 

possible to work in n-dimensional space in modified Shepard‟s method and it can be 

used to interpolate the distributed data.  

3.1.9 Minimum curvature method 

The minimum curvature interpolation method performs a surface which is analog to 

a thin, linearly elastic plate for the data values with minimum blending. This method 

is not an exact interpolation method, and it performs a smoothest surface as far as 

possible (Yang et al., 2012). 

The formula of minimum curvature interpolation method based on the modified 

biharmonic differential equation is given below (Dressler, 2009).  

      ∇ 
           ∇ 

          (3.13) 

 with three boundary condition; 
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  (3.14) 

where 

T  <0,1> is a tensioning parameter, ∇ 
  is the Laplacian operator; 

 ∇ 
     

      
    

      
   (3.15a) 

∇ 
   ∇ 

    is the biharmonic operator; 

 ∇ 
     

      
     

      
     

      
    

   (3.15b) 

and n is the boundary normal. The biharmonic differential equation is solved when 

T=0. On the other hand, if T=1, the Laplace differential equation is solved.  In this 
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method, estimation speed is high and the effect of the data increase is less on that 

speed. However, the algorithm is complex and required computer usage (Dressler, 

2009). 

3.1.10 Moving average method 

In this method, averages of the values are used by forming search ellipse that is 

defined by the user. The large number of data is required in order to obtain 

reasonable results. By locating the search ellipse to the center of the node, the 

neighboring data are determined. The output value is assigned the same as the 

arithmetic average of the determined neighboring data. The grid node is blanked if 

the output grid node value is less than the amount of minimum specified data in the 

neighborhood. In another words, the range of interpolated values is limited by the 

range of the data (Yang et al., 2012). The main equation of simple moving average is 

given below (URL-6). 

 
   

 

 
∑  

 

   

    (3.16) 

where    is the interpolated value of the point with moving average method,    is the 

value of the each sampled point being averaged and n is the number of the points. 

3.1.11 Biharmonic spline interpolation method 

Biharmonic Spline Interpolation is a linear combination of Green function that is 

located at the center of the data. This method is very flexible, but relatively 

unaffected and unsteady. The data belong to slope measurements can be used in this 

method which is useful for some remote sensing applications when the accuracy of 

slopes are higher than heights. Another benefit of this method is that the degree of 

Green functions can be less than the number of data. Therefore, interpolating surface 

can be independent from inaccurate sample points. The degree of this differentiation 

can be high, but not useful if it is more than 4. In this thesis, This method is used as 

two dimensional. The equation of the method is described as follow (Sandwell, 

1987); 
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                    (3.17) 

where N is the number of data points in m dimensions, ∇4 
is the biharmonic operator 

and x is the position in m dimensions.  

 

     ∑       

 

   

        (3.18) 

where αj is found by solving linear system. 

 

   ∑        

 

   

        (3.19) 

where    is Green function. As stated before, slope data can be used in this method 

whose equation is illustrated below; 

 

    ∇      ∑  ∇      

 

   

           (3.20) 

 3.2 Geostatistical Interpolation Method 

Geostatistics is a branch of statistic which is used to perform continuous surface by 

estimating and evaluating the spatial attributes of sampled points. Kriging is one of 

the main techniques of geostatistical interpolation (Isaaks and Srivastava, 1989).  

3.2.1 Kriging method 

This method, which is local, exact and stochastic, is founded by a mining engineer 

named D.G. Krige and a geostatistician named Georges Matheron, and estimates the 

values at unsampled points by using sampled points at surrounding locations. This 

method is one of the commonly used methods for interpolation since it is based on 

the statistical illustration of the best linear unbiased estimate. In another word, the 

variance of the observations is minimized (best) and the true expected value of data 

is matched (unbiased) in Kriging method that is a linear estimator (URL-7). The 

Figure 3.16 describes the Kriging interpolation result on sample scattered elevation 



41 

 

data. Also a similar comparison is valid in Figure 4.8 and 4.9(k.1-k.6) using the 

numerical data of this study. 

 

Figure 3.16: The classed post map on the left represents the scattered elevation data. 

The contour map on the right illustrates the result of Kriging method using the given 

sample discrete data (URL-5). 

In order to describe the variation on the surface, a spatial correlation, which is 

expressed by the distance between sampled points, is used. This method has a 

multistage process that involves exploratory statistical analysis of the data, variogram 

modelling, performing the surface, and exploring a variance surface arbitrarily. The 

variogram model is a mathematically illustration of spatial variability of data. When 

there is a directional bias in the data or spatially correspond distance, Kriging is one 

of the most useful interpolation technique. (URL-8). 

The Kriging process starts by defining the variation on spatial data that is usually too 

complicate to be modeled mathematically with a simple function. Therefore, that 

variation of spatial data is modeled as a stochastic surface or random field. The 

equation belongs to Kriging method is given below (URL-2); 

                      (3.21) 

where      is a random variable at x,      is a constructional component,       is 

auto-correlated residual from       and     is random noise. 

The expected differences in the value of two points x and x+l is zero since the mean 

value of      is the mean value in the sampled area. 

                  (3.22) 
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where   is the distance between points.  The variance of the differences can be stated 

as distance between points like: 

   {           }     {             }         (3.23) 

where      is referred as the semivariance. Under the statements above when the 

semivariance is substituted to the auto-correlated residual in Eq. (3.21), the model 

can be described as; 

                     (3.24) 

Semivariance can be estimated by using the equation below; 

 
 ̂    
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    (3.25) 

The number of pairs of sample points is described by n in the equation above. 

According to different l values, semivariance can be estimated. Experimental 

variogram is the name of the plot for the semivariance that uses l values. There are 

various variogram models, which are spherical, exponential, Gaussian, linear, and 

suitable model is determined considering the shape of the experimental variogram. If 

the shape of the variogram is classic (a), a spherical model is used. When the 

spherical model is smooth, estimations for correlations are zero. However, there may 

be small correlations for large distance, and this property is modeled with 

exponential variogram (b). If there is no sill within the region of interest, linear 

model can be used (c). When there is small nugget and very smooth variation, 

Gaussian model can be used (d). The Figure 3.17 belongs to various variogram 

models, which are described so far, is given below.  

 

Figure 3.17: Various variogram models: (a) Gaussian, (b) linear, (c) spherical  and 

(d) exponential  models (Chang, 2008). 

(a) (b) (c) (d) 
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Spherical, exponential and linear variograms are illustrated together on the same 

figure that can be seen below (see Figure 3.18). 

 

Figure 3.18: Variogram Models (Erol, 2007). 

The expressions and conditions of the various variogram models are illustrated in the 

Table 3.2. 

Table 3.2: Various variogram models (Isaaks and Srivastava, 1989). 

 

K is the first order effect of the variogram. And K0 is the nugget effect (random 

noise) which is corresponding semivariance value at d=0. The intersection point of 

the vertical axis and variogram curve referred as nugget (see Figure 3.18). α is the 

horizontal distance at range (top limit). Horizontal distance between the samples is 

illustrated with d. The top limit of the variogram (K0 + K) is stated as the sill (Isaaks 

and Srivastava, 1989). 

There are two Kriging types commonly applied that are point and block Kriging. In 

point Kriging, the value of a point is simply estimated from neighbor values. Block 

Kriging calculates the mean value of the rectangular blocks that are located on the 

center of the grid nodes. The drift type can be choosed as linear, quadratic or the drift 
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may not be applied as optional. If there is no drift adopted, the method is preserved 

as ordinary Kriging. On the other hand, the linear or quadratic drift type choices 

reveal to universal Kriging. Ordinary Kriging is a linear prediction considering 

stationary mean structure. In another words, the mean is constant within region of 

interest. However, universal Kriging is a linear prediction considering non-stationary 

mean structure which means linear or higher order trend in values of the data are 

fitted. The data can be predicted easier in ordinary Kriging. In contrast to ordinary 

Kriging, the universal Kriging method relies on more complicate predicting 

algorithm (URL-5). An example belongs to outputs of some interpolation methods is 

given below in order to discriminate differences (see Figure 3.19).  

 

Figure 3.19: The output of different interpolation algorithms (Yang et al., 2012). 

The shadow and color change can be seen on the figure above. For more information 

see Yang et al., (2012). 
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4. NUMERICAL TEST 

The orthometric heights can be derived from GPS ellipsoidal heights and geoid 

heights that are derived from geoid model. It has to be considered that the accuracy 

of geoid heights affects directly the accuracy of orthometric heights during the 

transformation process. The performance and efficiency of GPS technique in 

geodetic and surveying applications increases with a high accurate geoid model. The 

Turkish regional geoid does not have sufficient accuracy (approximately 10 cm); 

therefore, performing local geoids has an important role for GPS/leveling 

applications (Deniz and Çelik, 2005). The aim of this study is to determine precise 

local GPS/leveling geoid for Istanbul by using different interpolation methods (e.g., 

Inverse Distance to a Power, Kriging, Minimum Curvature, Modified Shepard‟s 

Method, Nearest Neighbor). In order to determine the optimal geoid solution in the 

study area, the accuracy and practicability of the local geoids, which are calculated 

via different interpolation algorithms, are assessed and compared. Finally, local 

geoid models are provided that can be embedded into regional geoid model for 

Turkey (TG03) in future works. IGNA 2005 data, is used for numerical evaluations 

and the processes of numerical test are identified step by step in Figure 4.1. 

4.1 Data Description 

In this thesis, 1204 Istanbul GPS Leveling Network 2005 (IGNA 2005) data, which 

is established to realize the height systems as geodetic infrastructure of Istanbul, is 

operated. The location of Istanbul is between 4030‟ N - 4200‟ N latitudes, 2730‟ E    

- 3000‟ E longitudes, and topographic heights change between sea level and 650 

meter. IGNA network is established in 1999, however the measurements are renewed 

in 2005 due to earthquakes in Kocaeli (August 17, 1999) and Düzce (November 12, 

1999). The GPS observations are performed by using dual frequency GPS receivers 

and the recording interval is at most 15 second. The observation time for C1 degree 

network is at least 2 hours while that is 45 – 60 minutes for C2 degree network 

(Deniz and Çelik, 2005). 
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Figure 4.1: Processes of numerical tests step by step. 
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The coordinates of IGNA 2005 data is obtained in ITRF96 datum and orthometric 

heights of the C order densification points are obtained in TUDKA99 (Turkey 

National Vertical Control Network Datum 1999) through adjustment of leveling 

observations in the network (Ayan et al., 2006). 

The density of GPS/leveling benchmarks in IGNA2005 is “1 benchmark per 20 km
2
” 

which means 1 benchmark in every 4-5 km. The description of local GPS/leveling 

networks is given as a table below. 

Table 4.1: The description of local Istanbul GPS/leveling network (IGNA 2005) 

(Ayan et al., 2006). 

 

The distribution of GPS/leveling data is illustrated on SRTM 30 plus data (±16 cm 

reported accuracy) for Istanbul region in order to determine how well the density and 

distribution of GPS/leveling points on topography (see Figure 4.2). 
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Figure 4.2 : Istanbul GPS/leveling points on topography (SRTM30 plus) (URL-9).  

4.2 Pre-Analysis of Data 

Using 1204 GPS/leveling points having the ITRF coordinates and orthometric 

heights in TUDKA99, firstly; geoid heights are calculated as the difference of 

ellipsoidal heights and orthometric heights (h – H = N) and these points are plotted 

with wireframe and postmap for visual detection of possible blunders in the data (see 

Figure 4.3). 

 

Figure 4.3: Istanbul GPS/leveling surface with blundered benchmarks. 
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Considering Figure 4.3 above; a sharp bounce (point no: 624) on GPS/leveling data 

can be seen visually. The figure compared with the topography in Istanbul, and the 

point with number of 624, which causes that sharp bounce, is determined as a 

blunder and omitted from the data set. The map belongs to overlayed wireframe and 

postmap without blunder can be seen in Figure 4.4 following. 

 

Figure 4.4: Istanbul GPS/leveling surface after removing the blundered benchmarks. 

This can be seen when looking at Figure 4.4 above that the sudden change on the 

topography of Istanbul is eliminated and a smooth geoid surface is obtained. Since 

the determined models do not reveal reasonable residuals at benchmarks 96 and 

1060, these two points are decided as blunder as well, and omitted from the data set.  

Testing local geoid with model points, which are used to evaluate the performance of 

local geoid models, give an optimistic results and cannot examine the performance of 

the model objectively. Therefore, in order to test the performance of local geoid 

model; test points, which are approximately 5% of the entire GPS/leveling data 

(equal to 50 points), are identified. These 50 test points are distributed homogenously 

and represent the topography well. While selecting the test points, it is also 

considered not to harm the distribution of reference benchmarks that contributes to 

calculation of grid models. The rest of the points after choosing test points are 

referred as geoid reference points (1151 points). The Istanbul GPS/leveling surface, 

the distribution of geoid reference points and test points are shown in Figures 4.5, 4.6 

and 4.7 respectively. 
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Figure 4.5: Istanbul GPS/leveling surface.  

 

Figure 4.6: Distribution of 1151 geoid reference points. 

 

Figure 4.7: Distribution of 50 test points. 
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The distribution of the geoid reference points and test points on SRTM3 topographic 

data (±16 cm reported accuracy) are also given in following Figure 4.8. 

 

Figure 4.8: Geoid reference points and test points on SRTM3 data (URL-9). 

4.3 Data Gridding and Interpolation Results 

By using 12 different gridding methods (please see Figure 4.1) and 1151 geoid 

reference points, the grid geoid models are calculated. The surfaces of local geoid 

models, visualized relying on the calculated grid data from the each interpolation 

method are provided in Figure 4.9.  
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(a) Inverse Distance to a Power         (b) Minimum Curvature 

                               

(c) Modified Shepard‟s Method         (d) Natural Neighbor 

                                          

       (e) Nearest Neighbor        (f) Triangulation with Linear Interpolation 

Figure 4.9: The contour maps of Istanbul GPS/leveling geoid based on various gridding methods. 
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       (g) Moving Average          (h.1)Polynomial Regression - Simpe Planar Surface 

                                          

  (h.2) Polynomial Regression - Bilinear Saddle            (h.3) Polynomial Regression - Quadratic Surface 

                                           

         (i.1) Radial Basis Function - Inverse Multiquadratic      (i.2) Radial Basis Function – Multilog 

Figure 4.9 (continued): The contour maps of Istanbul GPS/leveling geoid based on various gridding methods. 
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  (i.3) Radial Basis Function – Multiquadratic          (i.4) Radial Basis Function – Natural Cubic Spline 

                                       

  (i.5) Radial Basis Function – Thin Plate Spline       (j.1) Local Polynomial- First Order 

                                  

         (j.2) Local Polynomial - Second Order          (j.3) Local Polynomial - Third Order 

Figure 4.9 (continued): The contour maps of Istanbul GPS/leveling geoid based on various gridding methods. 
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         (k.1) Point Kriging - No Drift             (k.2) Point Kriging- Linear Drift 

                                            

        (k.3) Point Kriging- Quadratic Drift                (k.4) Block Kriging – No Drift 

                                    

      (k.5) Block Kriging – Linear Drift        (k.6) Block Kriging – Quadratic Drift 

Figure 4.9 (continued): The contour maps of Istanbul GPS/leveling geoid based on various gridding methods. 
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In order to evaluate the gridding method performances, two methods are used: 

a) Cross validation methods are performed in Surfer and statistics belong to 

residual (N) values are obtained.  

b) After gridding process with 1151 geoid reference points, these points are 

interpolated by using four different interpolation methods (Linear, Nearest, 

Cubic and Spline interpolations), and minimum, maximum, mean, standard 

deviation and root mean square error values are considered. 

The applied cross validation methodology is a statistical evaluation procedure for 

model performance. In this method, the initial point is described as the „new point‟ 

and model parameters are estimated by using the rest of the points. By using the 

model, the residual at new point is estimated and this estimated value is compared 

with an error of closure belongs to known height at the same point. This operation is 

repeated with each of the new point till the end of the evaluation considering each 

point as new in data set. The root mean square error (RMSE) of the cross validation 

is calculated by using following equation (Harvey, 1991). 

 
       

 

 
∑√  

    
 

 

   

        (4.1) 

where the average RMSE is referred as maver., n is the iteration number, σ is the 

standard deviation and μi is the mean value of the evaluated residuals. To sum up, 

cross validation algorithm, which removes sample points and interpolates to the 

removed location, is an effective way to compare interpolation methods (Mitas and 

Mitasova, 1999). 

In order to assess model accuracy objectively, gridded data with 1151 points are 

interpolated with linear, nearest, cubic and spline interpolation by using 50 test 

points. The interpolation results on gridded data are evaluated and illustrated in 

Appendix (see Tables A.2-A.5). In the process of gridding the geoid reference points 

with polynomial regression – cubic surface method, the error “The system of 

regression equations is singular” is occured. Therefore, geoid reference points and 

test points are both required to be normalized.  

Linear, nearest and cubic interpolation methods are applied to gridded data, which is 

performed with triangulation with linear interpolation, by using both Surfer and 
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Matlab codes, respectively. This can be seen on the Table A.2 belongs to linear 

interpolation that there is 1.2 cm difference on the result of standard deviation at 

reference points while this result is 0.2 cm at test points. These differences at test 

points are 1.0 cm for neraest interpolation and 18.5 cm for cubic interpolation. The 

different triangulation geometry and using different reference points for estimation 

may cause that standard deviation differences. As a last; linear, nearest, cubic and 

spline interpolation plots are given in Appendix (see Figures B.1-B.4). 

According to linear interpolation results given in Table A.2, the gridded data 

performed by biharmonic spline interpolation gives the most accurate results. Geoid 

undulation residuals at reference benchmarks vary between -10.8 cm and 10.3 cm, 

and standard deviation is 1.2 cm. The values at test benchmarks vary between -6.4 

cm and 9.1 cm, and standard deviation at these benchmarks is 3.2 cm. On the other 

hand, moving average method whose RMSE value at reference and test benchmarks 

are 41.3 cm and 38.7 cm respectively, gives the worst result. 

When considering nearest interpolation results in Table A.3, triangulation with linear 

interpolation gridding method (in matlab) gives the most accurate results. Geoid 

undulation residuals at test benchmarks vary between -6.8 cm and 9.5 cm, and 

standard deviation is 3.2 cm.  

This can be seen on Table A.4 that, the gridded data performed by triangulation with 

linear interpolation in Matlab gives the most accurate result for cubic interpolation. 

Geoid undulation residuals at test benchmarks vary between -5.6 cm and 9.7 cm, and 

standard deviation is 3.0 cm. 

According to Table A.5, point Kriging (linear drift) and point Kriging (quadratic 

drift) gridding methods give the best results for spline interpolation. Geoid 

undulation residuals at test benchmarks vary between -6.1 cm and 8.8 cm, and 

standard deviation is 3.1 cm for both methods. 

The worst results for the models belong to moving average method for all 

interpolation techniques with 38.7 cm RMSE error at test benchmarks. 

. 

 

 



58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

 

 

5. CONCLUSION 

In this study, different interpolation algorithms are used to estimate GPS/leveling 

surface in Istanbul Metropolitan area. Due to the fact that there is no regional geoid 

within cm accuracy in Turkey, local GPS/leveling geoids are determined and 

performed in limited areas by using more dense data in transformation of GNSS 

ellipsoidal heights into orthometric heights in regional vertical datum. In order to 

determine local GPS/leveling geoid; the density, distribution and quality of the 

reference data are described in Large Scale Map and Spatial Data Production 

Regulation (2005, article 42). In addition to property of geoid reference points, 

interpolation method also has significant role in the accuracy of the determined 

model. 

Spatial interpolation methods are not only used for geoid modelling applications in 

geodesy, but also used for most of the geoscience applications. Therefore, the 

research study for theoretical and numerical comparison of interpolation methods in 

literature, contributes the activities about this topic cardinally.  

Within this study, different interpolation methods in literature are examined for local 

geoid determination and the drawn conclusions follow: 

 In consideration of the statistics in Table A.1, cross-validation results of 12 

interpolation methods, geoid undulation differences obtained from 

examination at reference and test points provide consistent results in general. 

The cross-validation statistics given in Table A.1, demonstrate the 

consistence of computed grid values within themselves. In the light of cross-

validation results, this can be said that all of the methods except minimum 

curvature, polynomial regression (simple planar surface, bilinear saddle, 

quadratic surface) and moving average have standard deviation value 

approximately between the ranges of 5.5 cm – 9.0 cm.  

 The performances of grid models, which have 1 arc minute resolution, 

obtained from different interpolation methods are evaluated at reference and 
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test points, respectively. The spatial resolution of the determined grid is 

chosen 1 arc minute considering the density of the geoid reference points as 

4.5 km, which approximately corresponds to 1 arc second. In the process of 

these evaluations; linear, nearest, cubic and spline interpolation algorithms 

are applied on gridded data, which has 1 resolution, and obtained values are 

compared with observation values at the benchmarks. The interpolation 

methods, which are used to estimate grid values, are exact interpolator (more 

details about exact interpolator can be found in previous chapters). 

 In consequence of assessments for linear interpolation at reference and test 

points, biharmonic spline interpolation gives the most accurate result. 

According to the statistics obtained with this method, geoid undulation 

residuals at reference benchmarks vary between -10.8 cm and 10.3 cm, and 

standard deviation is 1.2 cm. The geoid undulation residuals at test 

benchmarks vary between -6.4 cm and 9.1 cm, and standard deviation at these 

benchmarks is 3.2 cm. When considering statistics belong to biharmonic 

spline interpolation method, this is clear that the generated model can be used 

for 3
rd

 order vertical control purposes in engineering projects that require 

height information better than 5 cm accuracy. 

 The worst result according to statistics belongs to the model points that are 

estimated via moving average method. The accuracies (RMSE) of this grid 

model at reference and test benchmarks are 41.3 cm and 39.1 cm, 

respectively. The reason for this result is that the moving average method 

does not include the weighting procedure base on the distance among the data 

and interpolation point, and it assumes all the reference benchmark 

contribution as equally weighted. However, the geoid phenomenon is 

strongly correlated with distributions of the masses hence the geoid 

undulation of an interpolation point is strongly related with the data in the 

nearest territory. Therefore, un-weighted interpolation algorithms and the 

method that consider the entire computation area as a whole are not 

appropriate for geoid modelling. 

 Triangulation with linear interpolation (in Matlab) gives the most 

accurate results for nearest interpolation at test points.  According to the 

statistics obtained with this method, geoid undulation residuals at test 
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benchmarks vary between -6.8 cm and 9.5 cm, and standard deviation is 3.2 

cm. When considering the statistics, as expected, the worst result belongs to 

the model that is estimated via moving average method. The accuracy 

(RMSE) of this grid model at test benchmarks is 39.1 cm. Hence the natural 

neighbor method reveals an almost 99% of improvement in terms of standard 

deviation comparing the moving average method. 

 In the evaluation of cubic interpolation results at test points, this can be said 

that triangulation with linear interpolation, which is applied by Matlab 

codes, gives the most accurate result. According to the statistics obtained with 

this method, geoid undulation residuals at test benchmarks vary between -5.6 

cm and 9.7 cm, and standard deviation is 3.0 cm. The worst result according 

to statistics belongs to the model that is estimated via moving average 

method. The accuracy (RMSE) of this grid model at test benchmarks is again 

39.1 cm. 

 According to the spline interpolation results at test points, point Kriging 

(linear drift) and point Kriging (quadratic drift) give the best results. 

Geoid undulation residuals at test benchmarks vary between -6.1 cm and 8.8 

cm, and standard deviation is 3.1 cm for both methods. On the other hand, the 

worst method is moving average with 39.1 cm RMSE value. 

 The development of this research study with finite element and soft 

computing methods, which are available in the literature and getting popular 

day by day in geodetic applications, and the use of different data sets except 

geoid are planned as the future work. 

 When considering from the viewpoint of geodesy discipline, the highly 

accurate geoid model is an essential part of geodetic infrastructure. The local 

GPS/leveling geoids provide short-term and limited solution for the problem 

in height transformation. Therefore; regional geoid, whose accuracy is within 

cm, have to be performed across the country. In future years, this is planned 

to contribute to studies for computing regional geoid model. 
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APPENDICES 

APPENDIX A: The cross validation statistics and the results of linear, nearest, 

cubic and spline interpolation on gridded data 

APPENDIX A.1: The cross validation statistics 

APPENDIX A.2: Linear interpolation results belong to different gridding 
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APPENDIX A 

Table A.1: The cross validation statistics 

INVERSE 

DISTANCE to a 

POWER 

Min Max Mean Std Rmse 

-34.8 49.7 0.0 6.1 6.1 

     

POINT KRIGING 

No Drift 

-34.8 50.9 0.0 4.9 4.9 

     

POINT KRIGING 

Linear Drift 

-36.5 50.9 0.0 4.8 4.8 

     

POINT KRIGING 

Quadratic Drift 

-36.5 50.9 0.0 4.8 4.8 

     

BLOCK KRIGING 

No Drift 

-36.0 50.9 0.0 4.9 4.9 

     

BLOCK KRIGING 

Linear Drift 

-36.5 50.9 0.0 4.8 4.8 

     

BLOCK KRIGING 

Quadratic Drift 

-36.5 50.9 0.0 4.8 4.8 

     

MINIMUM 

CURVATURE 
-44.4 205.9 0.3 9.1 9.1 

     

MODIFIED 

SHEPARD’S 

METHOD 

-35.6 50.1 -0.1 4.8 4.8 

     

NATURAL 

NEIGHBOR 
-38.3 50.6 -0.2 4.9 4.9 

     

NEAREST 

NEIGHBOR 
-52.1 50.3 0.1 7.1 7.1 

     

POLYNOMIAL 

REGRESSION 

Simple Planar 

Surface 

-75.9 66.3 0.0 20.8 20.8 

     

POLYNOMIAL 

REGRESSION 

Bi-linear Saddle 

-41.8 49.5 0.0 15.6 15.6 

     

POLYNOMIAL 

REGRESSION 

Quadratic Surface 

-43.7 48.7 0.0 9.8 9.8 

     

POLYNOMIAL 

REGRESSION 

Cubic Surface 

-39.4 43.5 0.0 6.8 6.8 

     

RADIAL BASIS 

FUNCTION 

Inverse 

Multiquadratic 

-37.2 50.7 0.1 5.7 5.7 
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Table A.1 (continued): The cross validation statistics 

RADIAL BASIS 

FUNCTION 

Multilog 

Min Max Mean Std Rmse 

-39.2 51.2 -0.1 5.4 5.4 

RADIAL BASIS 

FUNCTION 

Multiquadratic 

-45.5 51.3 0.0 5.9 5.9 

     

RADIAL BASIS 

FUNCTION 

Natural Cubic Spline 

    -55.7      62.9       0.0      6.8       6.8 

     

RADIAL BASIS 

FUNCTION 

Thin Plate Spline 

-50.9 57.2 0.0 6.3 6.3 

     

TRIANGULATION 

WITH LINEAR 

INTERPOLATION 

-39.4 50.6 -0.2 4.9 4.9 

     

MOVING 

AVERAGE 

-80.9 126.4 0.7 41.3 41.3 

     

LOCAL 

POLYNOMIAL 

1. Order 

-38.2 45.8 -2.0 5.7 6.1 

     

LOCAL 

POLYNOMIAL 

2. Order 

-37.4 51.3 0.0 4.8 4.8 

 

LOCAL 

POLYNOMIAL 

3. Order 

-37.7 51.7 0.0 4.7 4.7 
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Table A.2: Linear interpolation results belong to different gridding methods. 

INVERSE 

DISTANCE to 

a POWER 

(cm) Min Max Mean Std Rmse 

Ref. Points -42.0 28.7 0.0 3.9 3.9 

Test Points -8.5 24.7 1.7 5.2 5.4 

POINT 

KRIGING 

No Drift 

Ref. Points -37.8 28.7 0.0 2.9 2.9 

Test Points -6.8 9.5 0.2 3.1 3.1 

POINT 

KRIGING 

Linear Drift 

Ref. Points -37.8 21.2 0.1 2.9 2.9 

Test Points -6.8 9.0 0.2 3.1 3.1 

POINT 

KRIGING 

Quadratic Drift 

Ref. Points -37.8 21.1 0.1 2.9 2.9 

Test Points -6.8 9.0 0.2 3.1 3.1 

BLOCK 

KRIGING 

No Drift 

Ref. Points -37.4 23.8 0.3 3.2 3.2 

Test Points -6.2 11.1 0.8 3.2 3.3 

BLOCK 

KRIGING 

Linear Drift 

Ref. Points -37.5 23.8 0.5 3.1 3.2 

Test Points -6.2 11.1 0.8 3.2 3.3 

BLOCK 

KRIGING 

Quadratic Drift 

Ref. Points -37.5 23.8 0.5 3.1 3.2 

Test Points -6.2 11.1 0.8 3.2 3.3 

MINIMUM 

CURVATURE 
Ref. Points -29.7 22.6 0.0 3.1 3.1 

Test Points -6.7 10.9 0.4 3.3 3.3 

MODIFIED 

SHEPARD’S 

METHOD 

Ref. Points -31.3 20.0 0.0 2.5 2.5 

Test Points -9.6 6.6 0.0 3.1 3.1 

NATURAL 

NEIGHBOR 

Ref. Points -26.8 24.9 0.1 3.1 3.1 

Test Points -6.4 10.7 0.4 3.2 3.2 

NEAREST 

NEIGHBOR 

Ref. Points -50.8 32.6 -0.1 3.3 3.3 

Test Points -7.8 7.3 0.2 3.3 3.3 

POLYNOMIAL 

REGRESSION 

Simple Planar 

Surface 

Ref. Points -66.3 75.9 0.0 20.8 20.8 

Test Points -39.2 76.5 9.1 20.9 22.7 

POLYNOMIAL 

REGRESSION 

Bi-linear Saddle 

Ref. Points -49.5 41.8 0.0 15.6 15.6 

Test Points -26.0 46.9 6.3 13.3 14.7 

POLYNOMIAL 

REGRESSION 

Quadratic 

Surface 

Ref. Points -48.7 43.8 0.1 9.8 9.8 

Test Points -18.0 36.2 2.8 9.1 9.5 

POLYNOMIAL 

REGRESSION 

Cubic Surface 

Ref. Points -43.5 39.4 0.0 6.8 6.8 

Test Points -27.8 18.4 -7.4 10.4 12.7 
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Table A.2 (continued): Linear interpolation results belong to different gridding 

methods. 

RADIAL BASIS 

FUNCTION 

Inverse 

Multiquadratic 

(cm) 
Min Max Mean Std Rmse 

Ref. Points -38.8 19.7 0.0 3.0 3.0 

Test Points -6.3 23.4 0.9 4.5 4.5 

RADIAL BASIS 

FUNCTION 

Multilog 

Ref. Points -37.4 18.7 0.0 2.7 2.7 

Test Points -7.8 11.5 0.3 3.4 3.4 

RADIAL BASIS 

FUNCTION 

Multiquadratic 

Ref. Points -35.9 18.2 0.0 2.6 2.6 

Test Points -9.9 8.1 0.1 3.3 3.3 

RADIAL BASIS 

FUNCTION 

Natural Cubic Spline 

Ref. Points -32.5 17.8 0.0 2.5 2.5 

Test Points -7.1 10.0 0.1 3.3 3.3 

RADIAL BASIS 

FUNCTION 

Thin Plate Spline 

Ref. Points -34.2 17.9 0.0 2.5 2.5 

Test Points -6.6 8.8 0.1 3.1 3.1 

TRIANGULATION 

WITH LINEAR 

INTERPOLATION 

Ref. Points -26.0 23.5 0.1 3.0 3.0 

Test Points -6.6 10.0 0.4 3.1 3.1 

MOVING 

AVERAGE 

Ref. Points -126.0 80.9 -0.1 41.3 41.3 

Test Points -85.0 74.5 -0.6 39.1 39.1 

LOCAL 

POLYNOMIAL 

1. Order 

Ref. Points -45.2 37.6 2.0 5.5 5.9 

Test Points -10.9 25.4 3.9 5.8 6.9 

LOCAL 

POLYNOMIAL 

2. Order 

Ref. Points -47.4 35.0 0.0 4.5 4.5 

Test Points -8.4 13.2 0.4 4.1 4.1 

LOCAL 

POLYNOMIAL 

3. Order 

Ref. Points 47.7 34.8 0.0 4.3 4.3 

Test Points -7.7 12.6 0.3 3.9 3.9 

BIHARMONIC 

SPLINE 

INTERPOLATION 

Ref. Points -10.8 10.3 0.0 1.2 1.2 

Test Points -6.4 9.1 -0.1 3.2 3.2 

TRIANGUALTION 

WITH LINEAR 

INTERPOLATION 

(Matlab) 

Ref. Points -18.2 13.3 0.1 1.8 1.8 

Test Points -5.6 9.7 0.1 2.9 2.9 
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Table A.3: Nearest interpolation results belong to different gridding methods. 

INVERSE 

DISTANCE to a 

POWER 

(cm) Min Max Mean Std Rmse 

Test Points -12.3 28.6 1.7 6.1 6.3 

POINT 

KRIGING 

No Drift 

Test Points -9.2 12.0 0.2 4.2 4.2 

POINT 

KRIGING 

Linear Drift 

Test Points -9.2 11.8 0.1 4.2 4.2 

POINT 

KRIGING 

Quadratic Drift 

Test Points -9.2 11.8 0.1 4.2 4.2 

BLOCK 

KRIGING 

No Drift 

Test Points -8.8 13.7 0.8 4.2 4.3 

BLOCK 

KRIGING 

Linear Drift 

Test Points -8.8 13.7 0.8 4.2 4.3 

BLOCK 

KRIGING 

Quadratic Drift 

Test Points -8.8 13.7 0.8 4.2 4.3 

MINIMUM 

CURVATURE Test Points -9.5 11.1 0.2 4.3 4.3 

MODIFIED 

SHEPARD’S 

METHOD 

Test Points -10.4 12.3 -0.1 4.5 4.5 

NATURAL 

NEIGHBOR 
Test Points -8.6 13.5 0.4 4.2 4.2 

NEAREST 

NEIGHBOR 
Test Points -15.8 10.1 0.1 5.1 5.1 

POLYNOMIAL 

REGRESSION 

Simple Planar 

Surface 

Test Points -40.4 76.3 9.0 21.0 22.8 

POLYNOMIAL 

REGRESSION 

Bi-linear Saddle 

Test Points -25.7 48.7 6.3 13.5 14.8 

POLYNOMIAL 

REGRESSION 

Quadratic 

Surface 

Test Points 

 

-20.7 37.6 2.7 9.7 10.0 

RADIAL BASIS 

FUNCTION 

Inverse 

Multiquadratic 

Test Points -9.0 26.2 0.8 5.4 5.4 
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Table A.3 (continued): Nearest interpolation results belong to different gridding 

methods. 

RADIAL BASIS 

FUNCTION 

Multilog 

(cm) Min Max Mean Std Rmse 

Test 

Points 

8.3 14.5 0.2 4.4 4.4 

RADIAL BASIS 

FUNCTION 

Multiquadratic 

Test 

Points 

-7.7 10.7 0.0 4.3 4.3 

RADIAL BASIS 

FUNCTION 

Natural Cubic Spline 

Test 

Points 

-7.6 11.9 -0.2 4.5 4.5 

RADIAL BASIS 

FUNCTION 

Thin Plate Spline 

Test 

Points 

-7.2 10.6 -0.1 4.3 4.3 

TRIANGULATION 

WITH LINEAR 

INTERPOLATION 

Test 

Points 

-8.2 12.6 0.4 4.2 4.2 

MOVING 

AVERAGE 
Test 

Points 

-85.6 75.0 -0.6 39.1 39.1 

LOCAL 

POLYNOMIAL 

1. Order 

Test 

Points 

-13.5 27.2 4.0 6.3 7.4 

LOCAL 

POLYNOMIAL 

2. Order 

Test 

Points 

-10.0 15.0 0.5 4.7 4.7 

LOCAL 

POLYNOMIAL 

3. Order 

Test 

Points 

-10.3 14.3 0.3 4.6 4.6 

BIHARMONIC 

SPLINE 

INTERPOLATION 

Test 

Points 

-6.8 9.5 -0.3 3.5 3.5 

TRIANGULATION 

WITH LINEAR 

INTERPOLATION 

(Matlab) 

Test 

Points 

-6.8 9.5 0.0 3.2 3.2 
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Table A.4: Cubic interpolation results belong to different gridding methods. 

INVERSE 

DISTANCE to a 

POWER 

(cm) Min Max Mean Std Rmse 

Test 

Points 
-8.3 24.5 1.6 5.2 5.4 

POINT KRIGING 

No Drift 

Test 

Points 
-6.1 9.3 0.1 3.2 3.2 

POINT KRIGING 

Linear Drift 

Test 

Points 
-6.1 

 

8.8 

 

0.1 

 

3.1 

 

3.1 

 

POINT KRIGING 

Quadratic Drift 

Test 

Points 
-6.1 8.8 0.1 3.1 3.1 

BLOCK KRIGING 

No Drift 

Test 

Points 
-6.3 

 

11.0 

 

0.7 

 

3.2 

 

3.2 

 

BLOCK KRIGING 

Linear Drift 

Test 

Points 
-6.3 11.0 0.7 3.2 3.2 

BLOCK KRIGING 

Quadratic Drift 

Test 

Points 
-6.3 

 

10.9 

 

     0.7 

 

3.2 

 

3.2 

 

MINIMUM 

CURVATURE 

Test 

Points 
-7.4 10.3 0.3 3.4 3.4 

MODIFIED 

SHEPARD’S 

METHOD 

Test 

Points 

 

-13.7 

 

7.2 

 

-0.3 

 

3.9 

 

3.9 

 

NATURAL 

NEIGHBOR 
Test 

Points 
-225.81 74.2 -1.3 35.7 35.7 

NEAREST 

NEIGHBOR 

Test 

Points 
-9.8 8.0 -0.1 3.5 3.5 

POLYNOMIAL 

REGRESSION 

Simple Planar 

Surface 

Test 

Points 
-39.2 76.5 9.1 20.9 22.7 

POLYNOMIAL 

REGRESSION 

Bi-linear Saddle 

Test 

Points 
-26.0 46.9 6.3 13.3 14.6 

POLYNOMIAL 

REGRESSION 

Quadratic Surface 

Test 

Points 
-18.1 36.1 2.7 9.1 9.4 

RADIAL BASIS 

FUNCTION 

Inverse 

Multiquadratic 

Test 

Points 
-8.6 23.4 0.8 4.6 4.7 
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Table A.4 (continued): Cubic interpolation results belong to different gridding 

methods. 

RADIAL BASIS 

FUNCTION 

Multilog 

(cm) Min Max Mean Std Rmse 

Test 

Points 

-11.3 11.4 0.2 3.7 3.7 

RADIAL BASIS 

FUNCTION 

Multiquadratic 

Test 

Points 

-14.3 9.4 -0.1 3.8 3.8 

RADIAL BASIS 

FUNCTION 

Natural Cubic Spline 

Test 

Points 

-9.1 12.7 -0.1 3.9 3.9 

RADIAL BASIS 

FUNCTION 

Thin Plate Spline 

Test 

Points 

-8.3 11.0 -0.1 3.6 3.6 

TRIANGULATION 

WITH LINEAR 

INTERPOLATION 

Test 

Points 

-13.9 114.2 4.7 21.0 21.5 

MOVING 

AVERAGE Test 

Points 

-85.0 74.4 -0.6 39.1 39.1 

LOCAL 

POLYNOMIAL 

1. Order 

Test 

Points 

-11.0 25.7 3.8 5.8 6.9 

LOCAL 

POLYNOMIAL 

2. Order 

Test 

Points 

-8.1 13.2 0.3 4.2 4.2 

LOCAL 

POLYNOMIAL 

3. Order 

Test 

Points 

-8.0 12.3 0.2 3.9 3.9 

 

BIHARMONIC 

SPLINE 

INTERPOLATION 

Test 

Points 

-6.4 9.5 -0.1 3.3 3.3 

TRIANGULATION 

WITH LINEAR 

INTERPOLATION 

(Matlab) 

Test 

Points 

-5.6 9.7 0.1 3.0 3.0 
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Table A.5: Spline interpolation results belong to different gridding methods. 

INVERSE 

DISTANCE to a 

POWER 

(cm) Min Max Mean Std Rmse 

Test Points -8.3 24.5 1.6 5.2 5.4 

POINT 

KRIGING 

No Drift 

Test Points -6.1 9.3 0.1 3.2 3.2 

POINT 

KRIGING 

Linear Drift 

Test Points -6.1 8.8 0.1 3.1 3.1 

POINT 

KRIGING 

Quadratic Drift 

Test Points -6.1 8.8 0.1 3.1 3.1 

BLOCK 

KRIGING 

No Drift 

Test Points -6.3 11.0 0.7 3.2 3.2 

BLOCK 

KRIGING 

Linear Drift 

Test Points -6.3 11.0 0.7 3.2 3.2 

BLOCK 

KRIGING 

Quadratic Drift 

Test Points -6.3 10.9 0.7 3.2 3.2 

MINIMUM 

CURVATURE Test Points -7.4 10.3 0.3 3.4 3.4 

MODIFIED 

SHEPARD’S 

METHOD 

Test Points -13.7 7.2 -0.3 3.9 3.9 

NATURAL 

NEIGHBOR Test Points -225.81 74.2 -1.3 35.7 35.7 

NEAREST 

NEIGHBOR Test Points -9.8 8.0 -0.1 3.9 3.9 

POLYNOMIAL 

REGRESSION 

Simple Planar 

Surface 

Test Points -39.2 76.5 9.1 20.9 22.7 

POLYNOMIAL 

REGRESSION 

Bi-linear Saddle 

Test Points -26.0 46.9 6.3 13.3 14.7 

POLYNOMIAL 

REGRESSION 

Quadratic 

Surface 

Test Points -18.1 36.1 2.7 9.1 9.4 

RADIAL 

BASIS 

FUNCTION 

Inverse 

Multiquadratic 

Test Points -8.6 23.4 0.8 4.6 4.7 
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Table A.5 (continued): Spline interpolation results belong to different gridding 

methods. 

RADIAL BASIS 

FUNCTION 

Multilog 

(cm) Min Max Mean Std Rmse 

Test 

Points 

-11.3 11.4 0.2 3.7 3.7 

RADIAL BASIS 

FUNCTION 

Multiquadratic 

Test 

Points 

-14.3 9.4 -0.1 3.8 3.8 

RADIAL BASIS 

FUNCTION 

Natural Cubic Spline 

Test 

Points 

-9.1 12.7 -0.1 3.9 3.9 

RADIAL BASIS 

FUNCTION 

Thin Plate Spline 

Test 

Points 

-8.3 11.0 -0.1 3.6 3.6 

TRIANGULATION 

WITH LINEAR 

INTERPOLATION 

Test 

Points 

-13.9 114.2 4.7 21.0 21.5 

MOVING 

AVERAGE 
Test 

Points 

-85.0 74.4 -0.6 39.1 39.1 

LOCAL 

POLYNOMIAL 

1. Order 

Test 

Points 

-11.0 25.7 3.8 5.8 6.9 

LOCAL 

POLYNOMIAL 

2. Order 

Test 

Points 

-8.1 13.2 0.3 4.2 4.2 

LOCAL 

POLYNOMIAL 

3. Order 

Test 

Points 

-8.0 12.3 0.2 3.9 3.9 

BIHARMONIC 

SPLINE 

INTERPOLATION 

 

Test 

Points 

-6.4 9.8 0.0 3.3 3.3 
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APPENDIX B 

                      

         (a) Minimum Curvature               (b) Inverse Distance to a Power

            

    (c) Modified Shepard‟s Method     (d) Natural Neighbor        

           

          (e) Nearest Neighbor    (f) Moving Average 

 

(g) Triangulation with Linear Interpolation 

Figure B.1: The distribution of geoid undulation residuals at the test benchmarks 

depending on Linear Interpolation Algorithm. 
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(h.1) Polynomial Regression- Quadratic        (h.2) Polynomial Regression- Bilinear   

  Surface          Saddle 

                          

                  (h.3) Radial Basis-                     (i.1) Polynomial Regression-Simple 

  Inverse Multiquadratic     Planar Surface 

                       

        (i.2) Radial Basis- Multiquadratic           (i.3) Radial Basis- Multilog          

 

(i.4) Radial Basis- Natural Cubic Spline 

Figure B.1 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Linear Interpolation Algorithm. 
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  (i.5) Radial Basis- Thin Plate Spline              (j.1) Local Polynomial- 1.order          

          

    (j.2) Local Polynomial- 2.order       (j.3) Local Polynomial- 3.order 

         

     (k.1) Point Kriging- No Drift       (k.2) Point Kriging- Linear Drift 

 

(k.3) Point Kriging- Quadratic Drift 

Figure B.1 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Linear Interpolation Algorithm. 
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         (k.4) Block Kriging- Linear Drift            (k.5) Block Kriging- No Drift 

        

   (k.6) Block Kriging- Quadratic Drift          (l) Biharmonic Spline Interpolation 

Figure B.1 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Linear Interpolation Algorithm. 
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           (a) Minimum Curvature           (b) Inverse Distance to a Power 

                 

    (c) Modified Shepard‟s Method               (d) Natural Neighbor 

          
   (e) Nearest Neighbor    (f) Moving Average  

 

(g) Triangulation with Linear 

Interpolation 

 

Figure B.2: The distribution of geoid undulation residuals at the test benchmarks 

depending on Nearest Neighbor Interpolation Algorithm. 
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      (h.1) Polynomial Regression-        (h.2) Polynomial Regression- Bilinear 

   Quadratic Surface           Saddle   

                         

   (h.3) Radial Basis-             (i.1) Polynomial Regression- 

   Inverse Multiquadratic      Simple Planar Surface   

                     

    (i.2) Radial Basis- Multiquadratic               (i.3) Radial Basis- Multilog               

 

(i.4) Radial Basis- Natural Cubic Spline 

Figure B.2 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Nearest Neighbor Interpolation Algorithm. 
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   (i.5) Radial Basis- Thin Plate Spline               (j.1) Local Polynomial-1.order 

           

     (j.2) Local Polynomial- 2.order       (j.3) Local Polynomial- 3.order 

           

        (k.1) Point Kriging- No Drift      (k.2) Point Kriging- Linear Drift 

 

(k.3) Point Kriging- Quadratic Drift 

Figure B.2 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Nearest Neighbor Interpolation Algorithm. 
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  (k.5) Block Kriging- Linear Drift     (k.4) Block Kriging- No Drift 

          

  (k.6) Block Kriging- Quadratic Drift      (l) Biharmonic Spline Interpolation 

Figure B.2 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Nearest Neighbor Interpolation Algorithm. 
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       (a) Minimum Curvature              (b) Inverse Distance to a Power 

               

   (c) Modified Shepard‟s Method      (d) Natural Neighbor 

             
       (e) Nearest Neighbor        (f) Moving Average 

 

(g) Triangulation with Linear Interpolation 

Figure B.3: The distribution of geoid undulation residuals at the test benchmarks 

depending on Cubic Interpolation Algorithm. 
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       (h.1) Polynomial Regression-   (h.2) Polynomial Regression- Bilinear  

  Quadratic Surface      Saddle          

           

 (h.3) Radial Basis-          (i.1) Polynomial Regression-  

 Inverse Multiquadratic    Simple Planar Surface      

            

   (i.2) Radial Basis- Multiquadratic                          (i.3) Radial Basis- Multilog  

 

      (i.4) Radial Basis- Natural Cubic Spline 

Figure B.3 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Cubic Interpolation Algorithm. 
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 (i.5) Radial Basis- Thin Plate Spline                 (j.1) Local Polynomial- 1.order 

          

     (j.2) Local Polynomial- 2.order         (j.3) Local Polynomial- 3.order

             

      (k.1) Point Kriging- No Drift         (k.2) Point Kriging- Linear Drift 

 

(k.3) Point Kriging- Quadratic Drift 

Figure B.3 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Cubic Interpolation Algorithm. 
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   (k.4) Block Kriging- Linear Drift          (k.5) Block Kriging- No Drift 

        

(k.6) Block Kriging- Quadratic Drift         (l) Biharmonic Spline Interpolation 

Figure B.3 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Cubic Interpolation Algorithm. 
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        (a) Minimum Curvature       (b) Inverse Distance to a Power 

          

    (c) Modified Shepard‟s Method               (d) Natural Neighbor 

          

           (e) Nearest Neighbor    (f) Moving Average 

 

(g) Triangulation with Linear Interpolation  

Figure B.4: The distribution of geoid undulation residuals at the test benchmarks 

depending on Spline Interpolation Algorithm. 
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  (h.1) Polynomial Regression-   (h.2) Polynomial Regression- Bilinear         

   Quadratic Surface         Saddle 

        

   (h.3) Radial Basis-                   (i.1) Polynomial Regression-  

Inverse Multiquadratic    Simple Planar Surface     

      

     (i.2) Radial Basis- Multiquadratic          (i.3) Radial Basis- Multilog        

 

(i.4) Radial Basis- Natural Cubic Spline 

Figure B.4 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Spline Interpolation Algorithm. 
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   (i.5) Radial Basis- Thin Plate Spline                 (j.1) Local Polynomial- 1.order 

      

     (j.2) Local Polynomial- 2.order           (j.3) Local Polynomial- 3.order 

      

       (k.1) Point Kriging- No Drift      (k.2) Point Kriging- Linear Drift 

 

(k.3) Point Kriging- Quadratic Drift 

Figure B.4 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Spline Interpolation Algorithm. 

 



93 

 

 

 

        

  (k.4) Block Kriging- Linear Drift           (k.5) Block Kriging- No Drift 

        

  (k.6) Block Kriging- Quadratic Drift            (l) Biharmonic Spline Interpolation 

Figure B.4 (continued): The distribution of geoid undulation residuals at the test 

benchmarks depending on Spline Interpolation Algorithm. 
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