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RF ENERGY HARVESTING
IN WIRELESS COMMUNICATION SYSTEMS:
STATISTICAL MODELS FOR BATTERY RECHARGING TIME

SUMMARY

For electrical equipment, energy is the most important need to run. Moreover, the
importance of energy is much greater for wireless electrical devices. Is it possible
to provide sufficient energy to all devices in time? How can we reduce the energy
dependence of electrical devices? In the literature, the scope of research on energy is
quite large. Green energy is an emerging research area all over the world. Our thesis
can be evaluated as a research on energy of wireless communication systems. The
energy harvesting systems contribute to energy requirements of low-power devices
as renewable energy sources. In this thesis, RF energy harvesting is emphasized for
providing energy to wireless communication devices.

Before giving the details of study, the basic informations about the energy harvesting
for wireless communications need to be explained. Energy harvesting is used to
ensure self-powered devices by gathering energy from ambient sources. It converts
the received energy into direct current (DC) signal energy. The RF signal as a source
of energy is one of the alternatives available for energy harvesting. The RF signal
can be a good choice with the increasing use of wireless communication technologies.
The research activities on the energy harvesting tend to increase continuously. The
significant distinction of research is the type of energy source used in the energy
harvesting systems. We specifically focus on the RF energy harvesting and the related
basic issues in the literature review. In the literature, the papers on the energy allocation
are of great importance. On the other hand, the papers on RF energy harvesting usually
try to increase the efficiency of energy harvesting components. Currently, there are
no contributions about the impact of wireless channels on the RF energy harvesting
systems.

In communication systems, the statistical models describe the behaviour of wireless
channels to the incident electromagnetic signal. The impacts of wireless channels are
caused by path loss, reflection, diffraction, and scattering of signals. An overview for
wireless channel models are given as background information, which include small
scale and large scale effects. Among them, the lognormal shadowing distribution, the
Nakagami-m distribution, and the generalized-K distribution are well-known models
and used in this study.

The parameters of wireless channel directly affect the received power at the front end
of antenna. The equations for the received power are known for various channel types.
In addition to this information, it is shown in our thesis that the battery recharging
time is inversely proportional to the received power. Depending on the relationship
between the battery recharging time and the received power, it is possible to derive the
distribution equations of the battery recharging times for the given channels.
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Initially, the closed form expressions for the battery recharging times are derived
in the presence of a single RF source. @~ We derive the probability density
function (PDF), the mean, and the variance expressions of battery recharging time
for the lognormal shadowing distribution, the Nakagami-m distribution, and the
generalized-K distribution. Moreover, the cumulative distribution function (CDF)
and the moment generation function (MGF) are also derived for the generalized-K
distribution. Next, we investigate the battery recharging time in the presence of
multiple RF sources. In this context, the transformation of multiple random variables
is reminded to find the expressions of the battery recharging time. We express a
cascaded convolution equation to calculate the PDF of the battery recharging time for
the generalized-K distribution.

In order to simplify the statistical expressions analytically, the Gamma distribution
is used for channel approximation by means of the moment matching method with
an adjustment factor. The Gamma distribution provides a close approximation for
the generalized-K distribution. We derive the closed form expressions of the PDF, the
CDF, the MGF, the mean, and the variance of the battery charging time for this Gamma
distribution. These expressions are available for both single RF source and multiple
RF sources.

In addition to theoretical modeling studies, the numerical and simulation analyses are
performed for various channel conditions. The effects of channel parameters and the
number of RF sources are presented via the numerical results. The derived expressions
of the battery recharging time are verified by simulation results. Moreover, testbeds
are implemented to show real applications of the RF energy harvesting. The tests on
the energy harvesting of an wireless sensor node from RF sources are performed, and
results are presented.

As a conclusion, the effects of channel conditions should be taken into account while
designing an RF energy harvesting system. The derived parametric expressions can be
used for RF energy harvesting systems. We propose the battery recharging time as a
critical parameter for RF energy harvesting devices, especially for the wireless sensor
networks to ensure the sustainability of the system.
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KABLOSUZ HABERLESME SISTEMLERINDE
RF ENERJI HASATLAMA
PIL SARJ ZAMANI ICIN ISTATISTiK MODELLER

OZET

Teknolojinin biiyiik bir hizla gelistigi glintimiizde, cihazlarin ¢aligsabilmesi i¢in gerekli
olan enerji bir numarali kaynak olarak ortaya ¢ikmaktadir. Haberlesme sistemlerinde
de frekans bandi ile beraber en onemli iki kaynaktan birisi enerjidir. Enerjinin sinirli bir
kaynak oldugu ve verimli olarak kullanilmasi gerektigi acik bir sekilde ortadadir. Bu
sebeple, giiniimiizde kullanilan klasik enerji kaynaklar1 yaninda, yeni ve yenilenebilir
enerji kaynaklar1 aragtirllmaktadir. Yeni bir enerji kaynagi olarak nitelenebilecek olan
enerji hasatlama sistemleri, enerji kullanan her cihazin ¢evrede bulunan giines, riizgar,
basing, 1s1 ve elektromanyetik isaretler gibi mevcut enerji kaynaklarim kullanarak,
enerji bakimindan kendi kendine yetmesi olarak aciklanabilir. Ozellikle diisiik giic
harcayan cihazlarla kullanildiginda enerji hasatlama biitiinleyici bir ¢6ziim olarak
ortaya ¢ikmaktadir.

Endiistriyel alanda kablosuz sensor sebekeler, radyo frekansi ile tanimlama sistemlert,
tibbi ve askeri cihazlar enerji hasatlamanin sayilabilecek bazi uygulama alanlaridir.
Tiiketici elektroni8i alaninda ise mobil cihazlar ve diziistii bilgisayarlar, gelecekteki
teknolojik gelismelere bagl olarak, enerji hasatlamanin kullanildig1 onemli cihazlar
olabilir. Enerji hasatlama teknolojisinin bu giin geldigi noktada hareket enerjisini,
giines enerjisini, elektromanyetik isaret enerjisini elektrik enerjisine ¢evirerek enerji
hasatlayan mikro iiretegler yapilmaktadir. Bu iirlinlerin, 6zellikle diisiik gii¢ harcayan
sensoOrlerden olusan kablosuz sensor sebekelerde kullanimi miimkiindiir. Bu sayede
cok sayida olan sensorlerin kablolama ve pil degistirme maliyetlerinden kurtularak
ekonomik ve operasyonel kazan¢ saglanmaktadir.

Elektromanyetik frekans spektrumunun bir bolimii olarak tanimlanabilecek olan
RF igaretleri de, haberlesme sistemleri icin enerji hasatlama yapilabilecek enerji
kaynaklarindan biridir. Cevremizde heryerde bulunan RF isaret kaynaklar1 gelisen
kablosuz haberlesme teknolojilerinin yayginlasmasi ile beraber devamli olarak
artmaktadir.

Enerji hasatlayan cihazlar, elde ettikleri enerjiyi dogrudan kullanabildikleri gibi
enerji depolama birimlerinde de depolayabilirler.  Genellikle, hasatlanan enerji
dogrudan kullanim i¢in yeterli olmadigindan bir pil veya siiper kapasitoriin sarj
edilerek kullanilmas1 uygun goriilmektedir. Bu tezde, RF isaretinden enerji hasatlama
konusu ele alinmakta ve RF isaretinden enerji hasatlama sistemlerinde pil sarj
zamaninin istatistiki olarak nitelenmesi iizerine bir ¢alisma yapilmaktadir.  Pil
sarj zamani, bir pilin veya bir kapasitoriin belli bir yiik doluluk oranina ulagmasi
icin gereken siire olarak tamimlanabilir. Pil sarj zamani, RF isaret kaynagi ve
enerji hasatlama diigiimii arasindaki kablosuz kanalin istatistiki modeline dayanilarak
modellenmektedir. Teorik calismalar sonucu elde edilen ifadeler, bilgisayar ortaminda
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yapilan benzetim caligmalar1 ve enerji hasatlama gelistirme kitleri ile yapilan test
caligmalariyla desteklenmektedir. Pil sarj zamani, RF enerji hasatlama devresi bulunan
kablosuz cihazlar i¢in 6nemli bir parametre olarak onerilmektedir.

Ener;ji hasatlama son yillarda oldukga ilgi ¢ceken bir aragstirma alani haline gelmistir
ve bu alanda bir ¢ok arastirma yapilmaktadir. Literatiirde, enerji kaynaginin tiiriine
ve enerji hasatlama sisteminin iizerinde calisilan birimine gore farkli makaleler
ile karsilasilmaktadir. RF isareti disindaki enerji kaynaklariyla ilgili caligmalar
konumuzun disindadir. Bu sebeple, genel olarak enerji hasatlama ve ozellikle
RF isaretinden enerji hasatlama iizerine kapsamli bir literatiir taramasi yapilmistir.
Literatiirde, ilgi alanimiza giren enerji hasatlama konusu esas olarak iki eksen iizerinde
ele alinmaktadir. Bunlardan ilki elde edilen enerjinin yonetilerek optimum sekilde
kullanilmasi, digeri de RF isaretinden DC isaret elde etmeye yarayan devrelerin
tasarimidir. Enerji yonetimi ile ilgili makalelerde, enerjinin hangi kaynaktan alindigi
iizerinde durulmamistir. Bu makalelerde, enerjinin ve verinin paketler halinde geldigi
diistintilerek sistem modeli olusturulmugtur. Bu sistem modeline gore hasatlanan
enerjinin kablosuz sebekelerde veri gonderimi icin optimum olarak kullanimi iizerine
calisitlmistir.  RF isaret kaynagi kullanilan caligmalarda ise agirlikli olarak anten
ve devre tasarimi iizerine yogunlasildigr goriilmiistiir. Bunlarin yaninda enerji ve
verinin birlikte iletimi iizerine ve bilissel radyo sebekelerde enerji hasatlama iizerine
de calismalar mevcuttur. A¢ik bir alan olarak gordiigiimiiz ve tezimizde ilgilendigimiz
konu; kablosuz kanalin RF enerji hasatlamaya etkisinin gosterilmesi ve pil sarj
zamaninin modellenmesidir. Bu baglamda tezimizde, ¢alismamiza temel olusturan
RF enerji hasatlama sisteminin yapis1 ve kanal modelleri ayr1 birer boliim olarak ele
alinmig ve aciklayici bilgiler verilmistir.

Bir RF enerji hasatlama sistemi anten, gerilim sartlandirma ve enerji depolama ana
birimlerinden olusturmaktadir. Anten tarafindan alinan RF enerjisi, DC enerjiye
doniistiiriilerek depolanmakta ve kullanilmaktadir. Anten, havadaki RF isaretini
elektrik isaretine doniistiiren bir birimdir. Antenin ¢ikisinda elde edilen elektrik isareti
cihazlar ¢alisirmakta dogrudan kullanilamaz. Bu sebeple antenden gelen isaret,
gerilim sartlandirma devresinde DC isarete ¢evrilir ve genellikle bu isaretin gerilimi
diisiik oldugu icin yiikseltilerek istenilen seviyeye getirilir. Burada elde edilen enerji,
enerji depolama birimi olan bir pilin veya bir siiper kapasitoriin sarj edilmesinde
kullanilabilir. Yeterli doluluk oranina ulagan pil veya siiper kapasitordeki enerji cihaz
tarafindan kullanilir.

Kablosuz haberlesme sistemlerinde, alic1 ile verici arasinda elektromanyetik isareti
etkileyen bir kanal vardir. Vericiden gonderilen isaret, iletim ortaminda bulunan
cografi yapilara, binalara ve nesnelere ¢arparak yansima, kirilma ve sagilma etkilerine
maruz kalir. Bunun sonucunda, gonderilen isaret degiserek ve uzaklik sebebiyle yol
kaybina ugrayarak aliciya ulasir. Kablosuz haberlesme sistemlerinde, alici ile verici
arasindaki kanalin elektromanyetik isarete etkisini tanimlamak icin kanal modelleri
kullanilir. Yol kaybi, golgeleme ve soniimleme diye genel olarak tanimlanan kanal
etkileri kapali formda esitliklerle ifade edilebilmektedir. Tezimizde, bu modeller
anlatilmis ve iyi bilinen Lognormal, Nakagami-m ve Genellestirilmis-K dagilimlar
pil sarj zamani i¢in kullanilmistir.
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Kablosuz kanali modelleyen dagilimlarda kullanilan parametreler, anten tarafindan
alinan igaretin giiciinii dogrudan etkiler. Kanalin etkisine bagh olarak alinan giicii
ifade eden esitlikler, ¢esitli kanal tipleri i¢in dnceden belirlenmistir. Bunun disinda, pil
sarj zamaninin alinan gii¢ ile ters orantili oldugu tezimizde gosterilmektedir. Pil sarj
zamani ve alinan gii¢ arasindaki bu iligkiye dayanarak, verilen kanal modelleri i¢in pil
sarj zamaninin dagilimini1 gosteren esitlikler tiiretmek miimkiindiir.

Calismamizda oOncelikle tek RF kaynagi olmasi durumunda pil sarj zamani icin
kapali formda ifadeler elde etmek icin c¢alisilmistir. ~ Lognormal golgeleme,
Nakagami-m soniimleme ve Genellestirilmis-K bilesik dagilimlart i¢in pil sarj
zamaninin olasilik yogunluk fonksiyonu, ortalama ve varyans ifadeleri tiiretilmistir.
Ayrica, Genellestirilmis-K bilesik dagilimi icin birikimli dagilim fonksiyonu ve
moment iiretim fonksiyonu da tiiretilmistir. Daha sonra, birden fazla RF kaynagi
olmasi durumunda pil sarj zamaninin nasil ifade edilecegi arastirilmigtir.  Pil
sarj zamaninin bulunabilmesi icin bir 6n bilgi olarak, ¢oklu rastgele de8iskenlerin
doniisiimii ayr1 bir konu olarak anlatilmigtir. Buna gore Genellestirilmis-K dagilimi
icin, ard arda konvoliisyonlar alarak pil sarj zamaninin olasilik yogunluk fonksiyonu
elde edilebilmektedir.

Kapali formda ifadeler bulup analitik olarak ilerleyebilmek i¢in, Genellestirilmis-K
yerine Gama dagilimi yaklagiminin kullanilmasi onerilmistir. Gama dagilimi, moment
uyumu metodu ile Genellestirilmis-K dagilimina yaklastirilmaktadir. Moment uyumu
metodu yaninda bir diizeltme parametresi kullanilmasi durumunda, Gama dagilimi
Genellestirilmis-K dagilimina daha iyi bir yaklagim saglamaktadir. Gama dagilimi
kullanilarak pil sarj zaman i¢in kapali formda olasilik yogunluk fonksiyonu, birikimli
dagilim fonksiyonu, moment iiretim fonksiyonu, ortalama ve varyans ifadeleri
tiiretilmistir. Bu ifadeler, ortamda hem tek RF kaynagi hem de birden fazla RF kaynagi
bulunmasi durumunda kullanilabilir.

Tezimizde teorik modelleme calismalarimiza ek olarak, cesitli kanal kosullart i¢in
bilgisayar ortaminda sayisal ve benzetim analizleri yapilmistir. Sayisal sonuglar
vasitasiyla, kanal parametrelerinin ve RF kaynak sayisinin pil sarj zamani iizerine
etkisi gosterilmistir. Pil sarj zaman icin elde etti§imiz ifadeler, benzetim sonuglar
ile dogrulanmistir. Bunun yaninda, RF enerji hasatlama i¢in iiretilen gelistirme
kitleri kullanilarak test ortami olusturulmustur. Bu test ortamlarinda gercek RF
enerji hasatlama uygulamalarinin gosterilmesi amacglanmistir.  Kablosuz sensor
diiglimiin enerjisinin RF enerji hasatlama ile elde edilmesi ve kullanilmasi i¢in testler
gerceklestirilmis ve test ¢iktilar1 sunulmusgtur.

Sonug olarak, bir RF enerji hasatlama sistemi tasarlanirken kablosuz kanal kosullarinin
dikkate alinmasi gerektigi goriilmektedir. Pil sarj zamanini, RF enerji hasatlama
cihazlarn1 ve Ozellikle kablosuz sensor aglarinda siirdiiriilebilirligin saglanmasi icin
Oonemli bir parametre olarak Onerilmektedir. Calismamizda elde edilen parametrik
ifadeler RF enerji hasatlama sistemlerinde kullanilmak iizere sunulmustur.
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1. INTRODUCTION

In human life, the role of wireless communication devices increases day by day. The
development and deployment of supporting systems continue on all areas of mobile
and wireless communication networks. As one of the most common communication
systems, cellular mobile communication systems are experiencing major changes in
a short time. It is reported in February 2014 that 268 Long Term Evolution (LTE)
networks were commercially launched in 100 countries, although the launch of the
first LTE network in Sweden is performed in December 2009 [1]. In addition to that,
according to the forecasts, the number of machine-to-machine (M2M) connections
will grow to 12 billion in 2020 [2]. Moreover, the number of wireless sensors
deployed per year will grow significantly with the increase of deployment of wireless
sensor networks. The communication industry is responding to these growing
demands by producing new user-friendly, fast, and smart wireless devices and systems.
However, researchers have some challenges to develop the technology of wireless
communication systems. The main constraint is the energy, which is one of two
primary resources for the communication systems. The absence or scarcity of energy
obstructs the realization of proposed new technologies and makes mobility difficult in

the wireless communication systems.

Currently, main mechanisms to provide energy are the energy storage devices and
the power cables. In the wireless communication systems, it is not meaningful
and possible to use power cable for all applications. Mainly, it causes the loss
of mobility for mobile devices, and high investment cost for stationary devices.
On the other hand, the energy storage devices are in wide use to power wireless
communication equipments. The most common energy storage devices are disposable
or rechargeable batteries. The disposable batteries have problems like more cost and
replacement difficulties due to the working environment. The rechargeable batteries

need a corresponding recharging point and enough time for recharging. And both



of disposable and rechargeable batteries increase the size and the weight of devices,
and cause environmental problems. Moreover, the expiring of batteries inhibits

sustainability of the communication systems that are sensitive to the outage of energy.

Hence, researchers investigate green, renewable, robust, and reliable energy sources
that are the requirements of communication devices. As a prominent and practical
idea, the energy harvesting systems are considered to power wireless devices like
energy sources. Energy harvesting implies to obtain energy from ambient energy
sources. A device with an energy harvesting circuit exploits the energy of the
medium to provide its own energy. In this regard, energy harvesting is very intriguing
for researchers. However, the first question that comes to mind is whether energy
harvesting achieves the required energy for powering electrical devices or not. The
amount of harvested power should be at least as much as the power required for
device. In order to ensure this condition, the energy harvesting technology and the
power consumption of electrical device are selected according to each other. The
use of rechargeable micro-batteries and supercapacitors in energy harvesting circuits
facilitates the implementation of energy harvesting technologies. Furthermore, energy
harvesting seems more suitable for low-power devices. Today, the micro-generators
that convert mechanical energy, solar energy, and RF signal energy into electrical
energy by energy harvesting technologies are produced and used in the market. As
an example, Arveni [3], which is a piezo energy harvesting company, develops a

harvesting technology used to produce a batteryless remote control device.

The RF signal energy can be used as an energy source for energy harvesting systems.
Although the power of RF signal decreases severely with increasing of distance, RF
signal is ubiquitous, which is the main advantage of RF signal. As a realized product,
Powercast Corporation [4] produces microchips that convert RF signal into DC signal.
The RF signal energy available in the medium is received by the antenna of RF energy

harvesting system, and converted to DC signal energy to power the electrical device.

The RF energy harvesting systems can be deployed in many wireless communication
systems, which have already been using RF signals. Today, the most common use area
of RF energy harvesting systems can be considered as the wireless sensor network.

The wireless sensor networks, whose nodes consume low power, are good candidates
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to use RF energy harvesting technology. A wireless sensor node of the wireless sensor
network transmits message when the amount of stored energy is sufficient. Thus, a
wireless sensor node with energy harvesting becomes self-sufficient as an autonomous
device. As a result, the RF energy harvesting systems ensure sustainability of wireless

sensor networks by increasing the lifetime of sensor nodes.

In the literature, energy harvesting is a relatively new research field with increasing
popularity. There have been many papers on the different aspects of energy harvesting.
The details of literature will be explained in the next chapter. In this thesis, we
deal with RF energy harvesting. The open issue in the literature is the effect of
channel conditions in the energy harvesting systems. Especially, we emphasize the
battery recharging time as an important parameter in the wireless sensor networks.
Since the aim of a wireless sensor network is to maximize data transmission rates
or to increase transmission time, the energy harvesting wireless sensor nodes with
finite energy capacity need to estimate the amount of harvested power and the battery
recharging time. Thus, each node can perform tasks to ensure performance criteria of
the wireless network by prediction of the harvested power and the battery recharging
time. The equations of probability distributions for the received power are available in
the presence of various channel conditions, whereas there is no study to obtain closed
form expressions of statistical models for the battery recharging time. However, the
prediction of the received power is not enough by itself. The knowledge of battery
recharging time is a requirement. The sensor nodes can set their sleep and active
periods according to the battery recharging time. Based on these facts, it can be
concluded that the battery recharging time is an important performance parameter
for energy harvesting systems, and the associated statistical characterizations in the

presence of wireless channel impairments will be investigated in this thesis.

1.1 Scope of Thesis

In this thesis, we focus on energy harvesting from RF signal source. The research

consists of six main chapters, as given below.

In the second chapter of this thesis, we present an overview and basics of energy

harvesting, which includes the motivation and necessity of harvesting energy from
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ambient sources. Further, the details of RF energy harvesting are presented. RF
energy harvesting system that consists of antenna, energy conditioning unit, and energy

storage unit are explained in separate sections.

In the third chapter, the literature review part investigates the related articles on energy
harvesting. The papers on energy allocation and transmission policy hold an important
place in the review. These research results presented for single-user, multi-user, and
cooperative communication are independent from the source of energy. On the other
hand, the papers on RF energy harvesting, which is our main research area, depend
on the design of RF energy harvesting circuit. They contain generally the design of
the device components of energy harvesting systems. In review sections, we highlight
issues in the articles related to the subjects such as antenna, conditioning circuit, or
storage unit. Additionally, our review mentions cognitive radio, and simultaneous
information and power transfer in the context of energy harvesting. These papers are

interested in both transmission policy and RF energy harvesting.

In the fourth chapter, we present the channel models for the wireless communication
systems, on which we study the statistical distributions of battery recharging times.
The signals transmitted from RF sources change in the wireless medium due to
the small scale and the large scale effects. Path loss and lognormal shadowing are
explained as the principal channel models for the large scale effect. The Nakagami-m
distribution for the small scale effect is also explained. Moreover, we present the
generalized-K distribution as a composite channel model. It is proposed to combine
the small scale and the large scale effects in a channel model. The appropriate channel

model is chosen according to transmission environment.

In the fifth and sixth chapters, we investigate a statistical model for the battery
recharging time in the energy harvesting systems [5]. Our analyses are based on the
channel models, as mentioned before. We define the relationship between the received
power and the battery recharging time. In the next step, we also define the relationship
between the distribution of received power and the distribution of battery recharging
time. Hence, it is possible to obtain the distributions of battery recharging times for

all considered channel models. Initially, we derive statistical equations for only a



single RF signal source, and then for multiple RF sources. The numerical results and

simulations are also presented to show the accuracy of equations.

Finally, we work to establish the test environment for RF energy harvesting with the
develoment kits of Powercast company. RF energy harvesting tests are performed for
a single RF source for different distances. And then, a testbed is implemeted for two
RF sources. We measure the received power and the recharging time of supercapacitor

as a storage unit. We compare the test results with numerical results.

The conclusions are given in the last chapter.

1.2 Contributions

The purpose of this thesis is to present the effect of wireless channels on RF energy
harvesting. We have introduced the battery recharging time in energy harvesting
systems as a parameter for the wireless systems. As contributions of this thesis we

present and discuss the following points:

Statistical models in RF energy harvesting systems in the presence of single RF

source and also multiple RF sources,

e Deriving the statistical equations of battery recharging time for corresponding

models,

e Showing the effects of wireless channels on the distribution of battery recharging

time by performing simulations,

e Supporting the numerical and simulation results with test results.

In the single RF source case, we study the statistical characterization of battery
recharging time as a function of the received power using well known channel models:
lognormal shadowing and the Nakagami-m fading. We also extend the results to the
generalized-K channel that jointly models the large scale and the small scale effects.
We derive the closed form expressions for the associated PDFs. We calculate the mean
and the variance of battery charging time for a wide range of channel conditions.

Additionally, we obtain the CDF and the MGF for the generalized-K channel. We
5



provide numerical results for a rechargeable micro-battery and verify our theoretical
analysis via simulations. We demonstrate that the effects of small scale and large scale
fading factors should be taken into account while designing an RF energy harvesting

system.

After the single RF source case, we study the statistical characterization of battery
recharging time for multiple RF sources case. We investigate closed form expressions
in the presence of the generalized-K channel conditions. However, it is not
straightforward with the generalized-K distribution for multiple RF sources case.
We decided to use an approximation with the Gamma distribution instead of the
generalized-K distribution. We derive the closed form expressions for the PDFs,
the mean, and the variance of battery charging time for the Gamma distribution.
Moreover, we obtain the CDF and the MGF of battery recharging time. We simulate

our expressions and channel conditions for battery recharging time.

We also set up two testbed implementation for RF energy harvesting. We make test
with a single RF source and two RF sources. We calculate small scale and shadowing

coefficients. We investigate whether test results and equations fit together.



2. ENERGY HARVESTING

Energy harvesting is a system that targets gathering energy from external ambient
sources for the purpose of providing energy to the electrical equipments. The
magnitude of harvested energy can be in macro scale or micro scale according to
the aim of the harvesting system. As examples of macro scale, solar panels or wind
tribunes can produce sufficient energy to provide energy to high power lines in regional
areas. These are very important operations in industrial area to produce energy from
renewable sources. However, in micro scale, the harvested energy can be on the order
of milliwatts or microwatts for low-power devices. Each device obtains its energy
with an additional energy harvesting circuit. Considering our study, it will be more
appropriate to use the energy harvesting term in the meaning of micro scale energy

harvesting from now on.

The block diagram of energy harvesting system is presented in Figure 2.1. The
harvested energy from ambient source is converted to DC signal energy and then
directly used or stored into a storage device. After storing energy, the energy is

managed for optimum usage.

Energy Energy
Source Using

T ~

Energy Energy Energy
Harvesting :> Storing :> Management

Figure 2.1: Block diagram of an energy harvesting system. Energy harvesting, energy
storing, and energy management blocks are designed according to the type
of energy source.



The energy sources for harvesting could be classified as radiant energy, thermal energy,
and mechanical energy. The examples of these classes and their power densities are

indicated as given below [6].

e Radiant Energy

— RF signal: 40uW /cm? at 10m.

— Solar wave: 100mW /cm? at outside.
e Thermal Energy

— Body heat: 60uW /cm? at 5°C.

— External heat: 135uW /cm? at 10°C.
e Mechanical Energy

— Body motion: 800uW /cm?.
— Air flow: 177uW /cm?.

— Vibration: 4uW /cm?.

Each energy source has advantages and disadvantages for energy harvesting. The
maximum energy is obtained from solar waves, but its efficiency is low inside a
building. Similarly, RF signals attenuate with distance and obstacles, which decrease
signal level in building. In order to obtain thermal energy from body heat and external
heat, high temperature difference is required. Mechanical energy depends on motion at
the deployed area or surrounding. Besides, energy is harvested by using piezoelectric
materials that convert the mechanical stress into electrical energy. The behaviour of
piezoelectric material in the presence of mechanical stress affects the efficiency of

system.

The design of an energy harvesting circuit depends on the exploitation of one or a
combination of these sources, if it is convenient for application conditions. The design
criteria depend on the availability of source, the amount of harvested power, and

sustainability of the target system. The application areas of energy harvesting extend



from industry to personel devices, will increase with the development of harvesting

technologies.

Considering the use of energy, the ideal case is to use the harvested energy to power
device directly. However, usage of rechargeable storage devices are preferred as
the harvested energy can be sporadic, random or small. Furthermore, it may not
be available when required. Hence, the storage devices are critical for the energy
harvesting systems, and the most frequently used storage devices are rechargeable
micro batteries. Herein, the benefit of using energy harvesting system is to use smaller

batteries, which decrease the size and weight of device, and environmental waste.

Energy management unit allocates energy to ensure efficient use of energy that is used
to power devices. According to the profile of incoming energy and the tasks of device,

the energy allocation is performed.

In this thesis, the research area is the RF energy harvesting systems as they will have
an important role to ensure the ease of mobility. RF signals are everywhere every time
and their intensity is increased by installation of TV towers, cellular base stations, and

Wi-Fi access points continuously.

2.1 RF Energy Harvesting

RF refers to a frequency band of electromagnetic wave spectrum in the range of around
3 kHz to 300 GHz. It is possible to use electromagnetic waves for producing energy
in the wireless communication systems. It is possible to use the intentional RF signal
sources for providing energy to the electrical devices. When an intentional RF signal
source is introduced in the system, it can be referred to RF energy transport [7]. The
history of wireless energy transport goes back to famous Wardenclyffe Tower that Tesla
built (1901-1917) in Shoreham, New York [8]. His aim was to send wireless energy

from this tower to the whole devices over the world.

On the contrary of energy transport, electromagnetic signals can be obtained from
environment. RF signal energy can be acquired from all wireless communication units
such as stationary networking equipments and mobile user devices. When RF signals

are harvested from ambient, such an operation is called as RF energy harvesting. If
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Conditioning Storage
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Figure 2.2: Operation of an RF energy harvesting system. RF signals are captured,
conditioned and stored to power the target device.
the power density of ambient is not sufficient to harvest energy, we have to apply RF
energy transport. However, the difference between the energy transport systems and
the energy harvesting systems can be ignored in the sense of their targets, because both
of them aim to ensure the operation of devices by obtaining wireless energy. So, the
structure of both systems has same characteristics. In this context, it is convenient to
name them as active and passive RF energy harvesting [9] or simply as RF energy

harvesting.

Note that in short-range, the radio frequency identification (RFID) technology is
a current application of energy transmission. RFID devices use the license-free
industry—science—medical (ISM) frequency bands around 0.9, 2.4, and 5.8 GHz. We

mention about the structure of RF energy harvesting system in far-field.

Mainly, the RF energy harvesting system is composed of successive antenna, energy
conditioning, and energy storage units [10]. The operation of RF energy harvesting
system is presented in Figure 2.2. RF signals propogated from communication devices
are captured by the antenna that converts RF energy into electrical energy. In the
conditioning circuit, the signal coming from antenna is rectified to obtain DC signal,
and then multiplied by voltage multiplier to obtain desired voltage level. The harvested
energy is used for providing energy to the target device. The parts of an energy

harvesting system are explained in detail below.
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Figure 2.3: Rectangular microstrip (patch) antenna [11].

2.1.1 Antenna

The antenna is a transducer that converts a signal in one form of energy to another
form of energy. Similarly, the antenna is defined as the transitional structure between
free-space and a guiding device for radiating or receiving radio waves [11]. The
transmitting antenna converts electrical signal into RF signal while the receiving
antenna converts RF signal into electrical signal. The basic antenna characteristics
are pattern, gain, directivity, radiation efficiency, impedance, current, and polarization
of antenna. There are many types of antennas such as wire, aperture, microstrip, array,
reflector, and lens antennas. In Figure 2.3, the rectangular microstrip (patch) antenna

is shown as an example.

Ry
Ze T T MW
1I'\\ // N / \ /: R,
v A\ \ 7 v
| Standing wave | |
I I

l«— Source —}«—————— Transmission line —————>}< Antenna >
Zy=Rp+R)+jXy

Figure 2.4: Transmission-line Thevenin equivalent of transmitting antenna. Antenna
is considered as a load with complex impedance [11].

11



An antenna in transmitting mode can be considered as a load Z4 shown in Figure 2.4.
The resistance of Ry and R, represent conduction-dielectric losses and radiation part
of antenna, respectively. X4 represents the imaginary part of impedance in Thevenin
equivalent of antenna. The maximum power transfer from source to the antenna is
delivered under conjugate matching case. The standing waves are caused by the
reflected waves from interface between the transmission line and the antenna. For
antenna system design, the internal impedance of source, line loss, and reflection loss

should be considered to ensure signal transmission properly.

The antenna is the front end of RF energy harvesting systems. It captures RF signal,
and converts to electrical signal as an input to the conditioning circuit. There are many
studies to design antennas such as microstrip patch, helical, loop or Yagi-Uda antennas
for the RF energy harvesting systems [12—-18]. Most of the studies on RF energy
harvesting systems are using microstrip single antennas. The microstrip antennas have
small size and high efficiency, convenient for energy harvesting. As an example of
microstrip antennas, prototype and radiation pattern of a microstrip antennas is shown
in Figure 2.5. In addition to single antennas, the array form of antennas are used to

harvest more energy, which increases the size of antenna as an undesired situation.
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240° 300°
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|
Figure 2.5: Prototype and radiation pattern of the microstrip single patch antenna [13].

In the antenna system design, the informations about the location of transmitter, the
operation frequency, and the bandwidth of antenna are primary design factors [14]. If

the location of the transmitter is unknown, the antenna need to be omnidirectional
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that has low gain. Otherwise, the directional antennas are used with higher gain
capacity. If the antenna capture RF signals of all frequencies, it is necessary to design
an antenna for broadband. If not, a narrowband antenna with matching circuit should
be used to capture the maximum power. Besides, other basic antenna characteristics are
determined according to the requirements of application. Consequently, the antenna
design affects the harvested power and also the whole performance of RF energy

harvesting system.

2.1.2 Conditioning unit

The energy conditioning unit consists of one matching circuit, one rectifier circuit,
and one voltage multiplier circuit. A simple conditioning circuit is indicated in Figure
2.6. The matching circuit is used to address the impedance mismatch at the interface
between the rectifier circuit and the antenna. A simple impedance matching circuit is
formed by a series combination of lumped elements such as inductors and capacitors.
It provides efficient RF to DC conversion by serving good impedance matching.

C' - _
N T el

L,
Zin

1Tl

Figure 2.6: A simple conditioning circuit [15]. It performs the functions of matching,
rectifying, and multiplying.

In energy harvesting from RF signals, the received power density is low due to severely
decreasing of energy with the distance from the source. Because of low power density
at the receiver, the obtained voltage level becomes in low mV and uV levels, although
the low-power electrical devices are usually powered by more than 1V DC voltage.
Therefore, it is necessary to use the rectifier and the voltage multiplier. The rectifier
is an electrical circuit that converts the received power from antenna into DC power.
The basic rectifier circuit is designed a combination of a diode as a rectifying device,

a shunt capacitor, and the load resistor.

Since, the output voltage of the rectifier circuit is too low for directly powering of

electrical devices, the voltage multiplier circuit is added to the output of the rectifier
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circuit. The voltage multiplier circuit boosts a lower voltage to a higher DC voltage
using a combination of capacitors and diodes [15]. The characteristic of diode is
very important to ensure the conversion from RF signal energy into DC signal energy
efficiency [16]. Schottky diode has low forward voltage and high switching speed,
which provides both high power conversion efficiency and high voltage gain. Hence,
Schottky diode is usually used in the rectifier and the voltage multiplier circuits
[17]. In order to increase the voltage sensitivity value, it is possible to use cascaded
Schottky diodes. The voltage multiplier circuit can be one-stage or multi-stage to
increase DC voltage from low level to the required high level. Figure 2.7 presents the
schematics of a 5-stage modified Dickson charge pump as an example of multi stage
voltage multiplier. Additionally, the output voltage of rectifier circuit changes with the
changing value of input power. The voltage multiplier circuit regulates the rectified

voltage to the voltage of device to be used.

Vin

J_CS _I_CS J_CS J_CS _|GCs
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—J_st ICS ICS —LCS —:R)s

Figure 2.7: Schematics of a 5-stage modified Dickson charge pump [18]. Voltage is
boosted up at each stage.

2.1.3 Storage unit

The RF energy harvesting systems need an energy storage unit, because the amount
of harvested energy is usually not sufficient to power electrical devices directly. The
most common energy storage units are rechargeable batteries for energy harvesting
systems. There are mainly 3 types of rechargeable battery technologies, which
are lead-based, nickel-based, and lithium-based such as Sealed Lead Acid (SLA),
Nickel Cadmium (NiCd), Nickel Metal Hydride (NiMH), and Lithium Ion (Li-ion).
The performance of battery technologies are evaluated according to output voltage,
capacity, energy density, power density, efficiency, self-discharge rate, memory effect,

charging method, and recharge cycles. Depending on these parameters, lithium-based
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and NiMH battery technologies have been proposed for energy harvesting systems

[19].

Recently, a technological trend in rechargeable battery is of thin film solid-state
batteries [20]. Infinite Power Solutions [21] and Cymbet Corporation [22] are two main
manufacturers of rechargeable thin film solid-state batteries with a charging capacity of
0.1 to 2.5 mAh. Cymbet Corporation produces EnerChip’ ¥, and states that EnerChip
is more than 10x smaller than nonrechargeable coin cell batteries. Moreover, it lasts
3x longer than conventional coin cell batteries. These batteries have very light weight
which are less than 1g, and very thin thickness which is less than 200um, and also
very long lifetime which is up to 100,000 recharging cycles. The rechargeable thin
film solid-state batteries can be recharged by trickle charging that is appropriate to
the nature of energy harvesting systems. Figure 2.8 shows the rechargeable thin film

solid-state battery of Infinite Power Solutions, Thinergy’™.

Figure 2.8: A rechargeable thin film solid-state battery of Infinite Power Solutions, a
charging capacity of 0.7 mAh [21].

Supercapacitors are other alternatives to use in the energy harvesting systems for
storing energy with higher energy density than normal capacitors. The order of
millions recharging cycles is possible in the operation of supercapacitors. They also
have higher power density than batteries, which provide a large amount of energy in
a short duration. However, the self-discharge rate of supercapacitors is higher than

batteries. Hence, there is a tradeoff between supercapacitors and batteries.

In the energy harvesting systems, the use of both rechargable micro-batteries and

supercapacitors provides low size, low weight, and don’t require to access the device
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for replacement. According to differences between their characteristics, the suitable

storage unit is chosen for a given energy harvesting application.

2.2 Conclusions

In this chapter, we explain the scope of energy harvesting term. Energy sources for
energy harvesting and their energy capacities are investigated. RF signal is ubiquitous
due to common wireless networking applications. It can be seen that RF signal is a
possible energy source for energy harvesting systems. The main parts of RF energy
harvesting system are antenna, conditioning unit, and storage unit, which are explained
in detail. Antennas, matching circuits, rectifiers, voltage multipliers, batteries, and
supercapacitors are important parts for wireless systems. They can be designed
according to the requirements of RF energy harvesting systems. The related literature

is reviewed in the following chapter.
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3. LITERATURE REVIEW

Recently, the number of energy harvesting related publications increase in parallel
to the usage of energy harvesting systems in wireless networking applications.
A comprehensive literature review is given on common research areas of energy
harvesting. The encountered papers during review vary according to the type of energy
source and the part of interest of energy harvesting system. The reviewed papers can
be classified into two groups, which are the papers about energy allocation in energy
harvesting systems and the papers about RF energy harvesting systems. The details of

reviewed papers are given in the following sections.

3.1 The Literature on Energy Allocation in Energy Harvesting Systems

The most popular area is about optimal transmission policy and energy allocation of
devices that are equipped by the energy harvesting systems. The goals of transmission
policies are transmission completion time minimization and short-term throughput
maximization. Transmission completion time minimization implies to minimize the
time at which all bits have been sent by transmitter for given a number of bits.
Short-term throughput maximization implies to maximize the number of bits sent
before the end of transmission for given a deadline. The most relevant papers are

explained according to main characteristics.

3.1.1 Single-user communication systems

The following two papers are about single-user communication with an energy
harvesting transmitter. The optimal scheduling policies are developed for different

scenarios.

Yang and Ulukus [23] investigate the optimal packet scheduling in a single-user energy
harvesting wireless communication system. The system model is shown in Figure 3.1.

The incoming data and the harvested energy reach to transmitter, and are queued in
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Figure 3.1: An energy harvesting communication system model for single-user. B;
denotes the number of bits and E; denotes the amount of harvested energy
in the " arrival [23].
the data queue and in the energy queue, respectively. In this model, it is assumed
that both the energy harvesting times and amounts, and the data packets arrival times
and sizes are known before the transmission starts. The transmitter sends data with a
fixed amount of harvested power to ensure a transmission rate, which is a function of
harvested power. The goal of research is to sent all data packets in the minimum time
by adaptively setting the transmission rate under constraints such as the data traffic and
available harvested energy. The optimal offline transmission policies are developed for

different cases to minimize transmission completion time.

In a system that contains an energy harvesting transmitter with finite energy storing
capacity, Tutuncuoglu and Yener [24] consider the optimal transmission policy for
single link. An optimal power allocation policy is proposed, which solves short-term
throughput maximization problem for a given deadline. The feasible energy tunnel
defines the area between energy arrivals upper staircase and finite battery constraint
lower staircase as graphical description. The energy consumption curve must be in the
feasible energy tunnel. It is shown that maximum amount of data transfer for a given
deadline has same meaning with the minimum completion time for a given of amount
of data. It is proved that the proposed algorithm of transmision policy provide optimal

solution for energy harvesting system.

3.1.2 Multi-user communication systems

After single-user systems, the optimal scheduling policies for multi-user communica-

tion systems are investigated as stated below.

18



Ozel et al. [25] research the optimal transmission policy for transmission completion
time minimization problem in a multi-user system. There is a system that consists of M
receivers with an energy harvesting rechargable transmitter sending data in an additive
white Gaussian noise (AWGN) broadcast channel. The system model is illustrated in
Figure 3.2. Energy is harvested during transmission between transmitter and receiver.
It is proved that M-user channel has same power structure as single user channel. A
cut-off power is found for stronger user in two-user case. If the optimal total transmit
power is lower than cut-off power, the total power is allocated to the stronger user.
Otherwise, the total power is allocated to the weaker user. The result is extended to

multi-user channel. The iterative algorithm is developed based on the structure of

optimal policy.
energy queue
B data queues
LS T o O RX1
= 111
= O - (O RX 2
—Bu =T :
O RXM
Figure 3.2: An energy harvesting communication system model for multi-user. TX
represents transmitter. RX 1, ..., RX M represent receivers [25].

In [26], for the multi-user broadcast system, an energy harvesting transmitter is used
with a finite capacity rechargeable battery storing energy. Ozel et al. study for
developing the optimal transmission policy to minimize the transmission completion
time under finite battery constraint. An algorithm is proposed for optimal offline policy
that uses directional water-filling iteratively. It is proved that there are M-1 cut-off

power levels to determine power allocation of M users.

19



3.1.3 Cooperative communication systems

It is possible to use energy harvesting nodes in different areas of cooperative

communication. The following three papers are the most relevant works.

In [27], the cooperative transmission is performed to maximize throughput for a
given deadline by a battery operated sensor node and an energy harvesting sensor
node. In order to find the jointly optimal transmission policy for transmitting a
common message to a distant base station, Berbalov et al. propose the jointly optimal
transmission policy. The simulation results show that joint optimization of transmit
policies in combination with beamforming provides a significant amount of throughput
gains. When the energy of harvesting sensor and battery operated sensor are same, the

obtained throughput gain becomes the highest gain.

Moreover, energy harvesting systems can be used in cooperative wireless networks.
The usage of energy harvesting nodes as cooperative relay in wireless sensor networks
is investigated by Bhargav et al. [28]. The energy harvesting sensor nodes amplify
signals received from source node, and then forward to destination node. Herein,
energy constrained and energy unconstrained concepts are introduced. The amount
of harvested energy, the transmit power of relay and the total number of relays in
the system affects the decision of energy constrained or energy unconstrained of a
relay. As a result, energy harvesting relay systems give good results for enhancing

performance when compared with conventional relay systems.

Also, the energy harvesting nodes can share their energy in an energy harvesting
network, which is named as energy cooperation. Two-hop relay channel with energy
harvesting source and relay nodes, and one-way energy transfer from the source node
to the relay node are indicated in Figure 3.3. When a node needs a fixed amount
of energy, an other node sends a portion of its available energy wirelessly. The
main goal is to improve the performance of system by means of energy cooperation.
Gurakan et al. [29] investigate the optimal power allocation in such a system with
energy cooperation. A two-dimensional directional water-filling algorithm is proposed

to control the flow of harvested energy between users in time. The proposed algorithm
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Figure 3.3: An energy harvesting communication system model with energy
cooperation. S, R, and D indicate source, relay, and destination nodes,
respectively [29].

ensures to transfer energy from one user to another while maintaining optimal

allocation in time.

It is possible to increase the number of samples of energy allocation and optimal
transmission policy [30-32]. Generally, these papers are independent from the type
of source. Since the main research area is RF energy harvesing in this thesis, the

papers on RF energy harvesting are reviewed in the next section.

3.2 The Literature on RF Energy Harvesting Systems

There are several research works according to various aspects of RF energy harvesting
systems. Mostly, the improvement of energy conditioning circuits and antennas are
handled to maximize the harvested power by maximizing conversion efficiency of
energy harvesting circuit. The conversion efficiency is the ratio of the harvested power

to the received power.

The reviewed papers perform designs by changing one or a few of equipment
specifications such as type of antenna, type of storage device, value of capacitor, type
of Shottky diode, number of stage used in voltage conditioning circuit etc. The related
papers presented in the following sections are grouped to draw attention to the different
aspects of RF energy harvesting systems, although they have some common issues with

other groups.
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Figure 3.4: Total RF power density in the urban area, which is measured around
-12dBm/m?, versus time [33].

3.2.1 RF surveys

Before harvest energy, RF survey should be performed to know the potential capacity
of ambient using a spectrum analyser. The structure of energy harvesting is based on

RF survey to design broadband or narrowband circuit.

Bouchouicha et al. [33] present a study on RF energy harvesting techniques. RF
power density in the different points in the urban environments is measured between
-60dBm/m? and -14.5dBm/m? for the 680MHz-3.5GHz band. In addition, the total
power density of all signals is measured around-12dBm/m?, which is presented in
Figure 3.4. An RF/DC converter circuit at broadband is designed with spiral antenna.
And then, a matching circuit is added to the energy harvesting system to maksimize
harvested power for narrowband. A prototype of antenna and rectifier, also called
as rectenna, is fabricated. The harvested DC power with matching circuit rises from
12.5pW to 400pW. According to results, the harvested power is not sufficient to power
a device directly, it needs a battery or super capacitor for storage and antenna array for

maximizing input power.

The feasibility of energy harvesting is investigated with Powercast energy harvester.
Baroudi et al. [34] perform an RF survey by scanning the available power spectrum at
six different locations inside the King Fahd University campus. The following values

of power is measured using Powercast omnidirectional (dipole) antenna.

e Whole spectrum (1IMHz-2.7GHz) = -14.4dBm
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e Band (900MHz-950MHz) = -31.0dBm
e Band (902MHz-928MHz) = -33.8dBm

e Band (500MHz-1500MHz) = -20.0dBm

The measured results show that the energy of ambient is not sufficient to harvest energy
with a Powercast device. It needs more power than -10dBm via a dedicated transmitter.
Also, the outdoor and indoor experiments are performed for different azimuths and
elevations along radial line between transmitter and receiver. It is observed that the
variations of azimuth and elevation values affect both of the received signal strength

indicator and recharging time.

3.2.2 Antenna design

The characteristics of antenna are crucial for energy harvesting systems. The number,

type, pattern, and structure of antennas can be changed to obtain the maximum power.

Gunathilaka et al. [10] design an RF energy harvesting circuit, which includes
transducer, energy conditioning unit, and energy storage unit. The design of antenna
includes the determination of antenna specifications such as gain, radiation pattern,
bandwidth, efficiency, center frequency, and size. Tree types of antennas are examined
with conditioning circuit and super capacitor that is used for energy storage. The
harvested power from internet dongle and mobile phone is used to drive both of an
light emitting diode (LED) and calculator. Figure 3.5 shows energy harvesting using
micro strip antenna near mobile phone as 2.385V. The experiments show that dipole

and micro strip antennas give better results than monopole antennas.

Mi et al. [35] propose the usage of multiple energy harvestig antennas to increase the
amount of harvested energy. As an example, a design of four cooperating antenna
is performed, which gives 300% more power by an increase of 83% in the area is
presented. The utility factor is calculated by dividing 4 by 1.83 to get 2.18. The
result shows that the use of multiple antennas is very useful method for energy
harvesting. Also, it is possible to obtain better results with different antenna structures

and dimensions.
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Figure 3.5: Energy harvesting from mobile phone by using micro strip antenna. The
measured voltage is 2.385V [10].
In [36], Visser et al. express that the rechargeable batteries charged by dedicated RF
signals can be used for indoor wireless sensors. The received RF energy and therefore
energy efficiency becomes low because of path loss. In order to increase efficiency, a
transmit antenna with beam-shaping capabilities is performed by using six Yagi-Uda
array antennas. Transmit antenna radiation pattern is adapted to the propagation
channel characteristics, so the input power of the antenna and rectifier is maximized

without increasing the effective isotropic radiated power (EIRP) of transmitter.

Keyrouz et al. [37] target to design an energy harvesting circuit from Digital TV
stations. A broadband Yagi-Uda antenna is presented with a voltage conditioning
circuit and antenna matching circuit, which works at 470-8§10MHz frequency band.
The antenna have a reflector and a single director. The length of the director, the
distance between the feed and the director, and the distance between the feed and the
reflector are designed to obtain the widest bandwidth for receiving the digital television
(DTV) broadcasting signals. The results show that the gain of proposed Yagi-Uda
antenna is higher than 4.27dBi in the DTV frequency band. This value is suitable for

energy harvesting from DTV stations.
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3.2.3 Conditioning unit design

In the following papers, the design of energy harvesting systems are performed with

different stages of multiplier circuit.

Arrawatia et al. [38] presents an energy harvesting system to harvest energy near a
cellular base station. Firstly, a square micro strip antenna is designed, which gives
9.1dB antenna gain at 877-998MHz frequency band. Secondly, silicon based Schottky
diode having threshold voltage of 230mV and diode capacitance of 0.26pF is used
to design Dickson voltage conditioning circuits. The fabrication of single stage and
6-stage voltage conditioning circuit are achieved. 6-stage voltage conditioning circuit
is used for lower power levels, whereas single stage circuit is used higher power levels.

It is shown that a voltage of 2.78V is measured at a distance of 10m from the cellular

tower.
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Figure 3.6: Schematics of a 3-stage Villard voltage conditioning circuit. It is a
combination of capacitors and Schottky diodes [39].

Schottky diodes are suitable for voltage doubler circuits in RF energy harvesting
systems with low forward voltage and high switching speed. Practical and simulation
results are presented for Schottky based circuits at different frequencies from 400MHz
to 2.4GHz in [39]. The schematic of a 3-stage Villard voltage conditioning circuit is
shown in Figure 3.6. It is possible to use complementary metal oxide semiconductor
(CMOS) transistor based voltage conditioning circuit instead of Shottky based circuit.

Jabbar et al. also propose a new CMOS transistor based Villard voltage conditioning
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circuit, which gives 160% more power than a traditional Villard voltage multiplier

circuit at 0dBm input power.

In [40], Nintanavongsa et al. propose a dual-stage energy harvesting circuit composed
of a 7-stage and 10-stage conditioning circuit design for low input power and high
input power ranges. An optimization framework is developed to decide the switchover
point between 7-stage and 10-stage conditioning circuit to obtain the highest efficiency.
According to measurements, the fabricated prototype of proposed energy harvesting
circuit gives 100% more performance between -20dB - 7dB than Powercast 1100

energy harvesting device.

ElAnzeery and Guindi [41] perform a simulation survey to show the effect of frequency
in energy harvesting systems. Different frequencies ranging from SOMHz to 9GHz are
chosen to accomplish simulations for 3, 9, and 13-stage conditioning circuits. The
output voltages of conditioning cicuits change for different frequency values. The
results show that S00MHz is the most suitable for a 3-stage conditioning circuit, and
915MHz is the most suitable for a 9-stage conditioning circuit. As a result, there is a
relation between used frequency and the stage of circuit which affect the size of energy

harvesting circuit.

ElAnzeery et al. [42] also present an energy harvesting model for RFID system that
works at 2.1-2.45MHz frequency band. Various frequencies starting from 50MHz
up to 9GHz, capacitor values from 560pF to 1uF, number of stages from 1 to 11,
and six different Shottky diode types are experimented to obtain output voltages in
simulations. The output voltage values vary from OV up to 4.222V, which show the
effect of operation frequency and chosen equipments. According to results, wireless

sensor nodes and RFIDs can be powered with the proposed energy harvesting system.

Because of variation in the power density during RF transmission, it is useful to use

power management circuit to obtain maximum power independent of the load behavior.

It is expressed that an efficient application below mW levels has not been realized due
to constraints in current control circuits [43]. In order to perform online optimization
and efficient operation over a wide range of operating conditions, Dolgov et al.

propose a smart microcontroller based maximum power point tracking (MPPT) power
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Figure 3.7: Schematics of conditioning circuit with power management circuit [44].

management system. The results are presented for the input powers of converter, which
have values between 10uW - 1mW. Near a cellular base station, the proposed power
management system provides 7 times more energy storage than direct connection to

battery.

Mishra et al. [44] design a 2.4GHz square slot antenna and power management circuit
for RF energy harvesting. Four square slots are used to improve the gain of antenna
that has 5.7dBi simulated gain. The power management is accomplished by combining
conditioning circuit with the N-channel and P-channel Metal oxide semiconductor
field effect transistors (MOSFETs) to improve efficiency of the overall system. The
schematic of conditioning circuit with power management circuit is illustrated in
Figure 3.7. The proposed circuit with power management gives 412mV output for the
input power of -20dBm. Moreover, it is possible to obtain power for -50dBm rectifier

input.

3.2.4 Storage unit design

RF energy harvesting is an alternative energy source with some challenges because the
obtained energy is generally low. If the incoming RF signal is not sufficient to power
a device directly, a storage unit should be used in energy harvesting systems. In most
applications, the use of rechargable micro battery, super capacitor or thin-film battery

is preferred in energy harvesting systems.

Ghao et al. [45] design an energy harvesting system which is composed of a broadband

antenna, 3- stage voltage conditioning circuit, and new thin-film battery. New
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lightweight flexible thin-film battery is developed that offers the highest specific charge
storage capacity. The picture of flexible thin-film battery is shown in Figure 3.8.
Lithium batteries need more than 3V to recharge. The developed thin-film battery
can be recharged with a voltage of less than 1.2 V. The system is experimented by
recharging battery with RF signals from a walkie-talkie. It is measured that the energy

harvesting efficiency of system is achieved as 11.6%.

Figure 3.8: A flexible thin-film battery prepared in the laboratory [45].

3.2.5 Cognitive radio networks

At the same time, there have been researches for the usage of energy harvesting

systems in cognitive radio networks.

Lee et al. [46] propose a novel communication and energy harvesting method
for cognitive radio networks. Secondary transmitters harvest energy from the
communication process established by primary transmitters when primary transmitters
are close. Otherwise, secondary transmitters transmit message when primary
transmitters are far away. A harvesting zone and a guard zone are defined for primary
transmitters. The radius of harvesting zone is smaller than the radius of guard zone.
The details can be seen in Figure 3.9. Energy is harvested in harvesting region, and
information is transmitted at the outside of guard zone by secondary transmitters. It

is observed from the numerical results that the densities of primary and secondary
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transmitters affect the transmission probability and the maximum throughput for

secondary transmitters.
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Figure 3.9: A wireless energy harvesting cognitive radio network in which primary
transmitter (PT) and secondary transmitter (ST) are distributed [46].

Park et al. [47] study on the mode selection of sensor node in cognitive radio network

whether it harvest RF energy from primary network or use the frequency spectrum. An

optimal mode selection policy is proposed to maximize an expected total throughput.

The proposed policy depends on the spectrum occupancy state of the primary network

and available energy of sensor node in secondary network. It finds a balance between

throughput and energy.

3.2.6 Simultaneous information and power transfer

RF signals that are used for wireless information transfer are considered as a viable
new source for wireless power transfer. There are a few papers on wireless power and

information transfer simultaneously.

In [48], it is expressed that Nikola Tesla designed a wireless power transfer circuit
with coupled inducttors to deliver power to the load. However, Claude Shannon
used it to send information as a communication device. Grover and Sahai investigate
simultaneous information and power transfer, which is possible for most applications.
At the same time, there is a tradeoff between information and power transfer on the

same link. Because, power efficiency is maximized at low frequencies, but information
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requires to use large bandwidth and high frequencies to maximize throughput. An
optimal tradeoff between the rate of information transfer and the received power on a
coupled-inductor circuit is developed, which can be used for any system with a slow

frequency selective channel.

Zhou et al. [49] state that there is no practical circuit to harvest energy from RF
signals and to decode information simultaneously. A theoretical receiver operation is
proposed, which splits the received RF signal to energy harvesting part and information
decoding part. The power ratio of each part can be static or adjusted by time switching
and power splitting shown in Figure 3.10. The separated and integrated information
and energy receiver architectures are proposed. For these two receivers, the optimal

transmission strategies are developed and compared according to obtained rate-energy

tradeoff results.
Energy Energy
: Harvester ; Harvester
& o
Information Information
Decoder Decoder
(a) Time Switching (b) Power Splitting

Figure 3.10: Two designs for the co-located energy and information receivers, time
switching and power splitting [50].

In [50], it is indicated that wireless power transfer can be perfomed by using inductive
coupling , magnetic resonate coupling, and electromagnetic radiation. Simultaneous
wireless information and power transfer is possible by RF signals. Zhang and Ho
study on a multiple-input multiple-output (MIMO) wireless broadcast system, which
consists of an energy harvesting receiver, an information decoding receiver, and a
common transmitter nodes with multiple antennas. A MIMO broadcast system for
simultaneous wireless information and power transfer is indicated in Figure 3.11.The
optimal transmission strategy in the presence of seperated and co-located receiver
scenarios is developed to obtain different tradeoffs for maximum information rate

versus energy transfer.
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Figure 3.11: A MIMO broadcast system for simultaneous wireless information and
power transfer [50].

3.2.7 Other researches

Apart from grouped papers above, we can mention about other some researches. The
design of energy harvesting systems should be performed according to application

properties.

In [51], two wireless power transfer system is introduced by Intel Research Seattle.
Sample and Smith study on RF energy harvesting techniques from RFID reader and
TV station. Firstly, an energy harvesting system for small sensor devices that spend
power between 2uW - 2mW is designed and powered from a few meters by the RFID
reader. Secondly, an energy harvesting circuit is placed at a distance of 4.1km from a
TV station that broadcast at UHF and VHF band. The broadcast power is 960kW at
674-680MHz, and 60uW power is harvested from 4.1km distance by energy harvesting
circuit. The thermometer/hygrometer that consumes 251 A at 1.5V is powered and
functioned properly by harvested power. The operation of system can be seen in Figure

3.12.

Also, there are researches about medical applications of RF energy harvesting. Cheng
et al. [52] intend to run wireless sensors on human body by means of RF energy
harvesting. A base station that transmits at 434.16MHz was used to send signals
to four sensor nodes. These nodes are placed on a human standing 1.4m away

from base station. The placement of system is shown in Figure 3.13. The voltage

31



fr
T LR

TR =
W

L]

i

Figure 3.12: Operating a temperature and humidity meter (including LCD display)
using only ambient RF power [51].

measurements of 1.1V and 0.56V are taken as harvested supply voltages by using

two 100uF surface-mount capacitors. Hence, the proposed techniques will help to

use disposable wearable sensors by decreasing of size and cost of sensors for various

applications in the future.

Additionally, a laboratory established at the University of Alcald (Spain), which is used
for RF energy harvesting researches is introduced in [53]. Boquete et al. state that
students have used this laboratory to understand the concept of RF energy harvesting
and to design energy harvesting systems for three academic years. The lectures
are about antennas, Friss equation, transmitter-receiver block diagram, and ZigBee,
Bluetooth, and Wi-Fi protocols. The laboratory practises depend on harvesting energy
from an operating mobile phone by using designed antenna and conditioning circuit

for different applications.
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of person [52].
3.3 Conclusions

A comprehensive literature search is performed in accordance with the scope of thesis.
Energy allocation and transmission policy studies in energy harvesting systems are
very popular recently. Various optimum policies are developed for different system
scenarios such as single-user, multi-user, and cooperative communication systems. On
the other hand, RF energy harvesting research areas can be classified as antenna-circuit
design area, cognitive radio network applications area, and simultaneous information
and energy transmission area. The antenna-circuit design targets to improve the
efficiency of harvested energy for given RF input signal. In the cognitive radio network
applications, secondary users aim to exploit primary network for both transmitting
information and harvesting energy. The research about simultaneous wireless
information and power transfer investigate rate-energy tradeoff during transmission

on the same link.

All of mentioned research papers are mainly related to maximization of harvested
energy after receiving of RF signal , but not interested in the effect of wireless channel
conditions on harvested energy. Moreover, the battery recharging time has a crucial
role to increase and sustain the life of wireless networks. There is no any study about
the effect of wireless channels on battery recharging time in energy harvesting systems.

The channel models for wireless communications are explained in the next chapter.
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4. CHANNEL MODELS

In this thesis, we propose statistical models for battery recharging time in RF energy
harvesting systems. In this context, we start with an overview of wireless fading
channels that will be used to model channels between RF signal source and energy

harvesting node.

4.1 Overview of Wireless Communications

Wireless communication allows people the possibility of mobility during communica-
tion, which is the main reason of rapid development and spread of wireless systems.
If it is done a brief summary, the history of wireless radio communication goes to
the last decade of 19th century. In 1895, Guglielmo Marconi realized to establish
the first radio transmission link between the Isle of Wight and a boat sailing 18 miles
away. In 1930s, amplitude modulation (AM) and frequency modulation (FM) radio
techniques were invented for wireless communication systems. After the development
of cellular concept in Bell Laboratories, the first 1G analog cellular system named as
Nordic Mobile Telephony (NMT) started to operation commercially in 1981. However,
analog network was not sufficient to carry all mobile voice traffic. Therefore, it was an
unavoidable change from 1G analog systems to 2G digital systems for cellular mobile

communication.

The most prominent 2G digital cellular technology names as Global System for Mobile
Communication (GSM) can be considered as a breakpoint for the widespread use
of mobile communication. The first GSM network was launched in 1991 and has
seen great demand by the people. GSM addressed the requirements for voice traffic
greatly although it was slow for data traffic. After GSM and similar 2G systems
such as Digital Advanced Mobile Phone System (D-AMPS), Personal Digital Cellular
(PDC), and Personal Communications Service (PCS), 3G systems offered wide

band for multi media communication. 3G systems depend on International Mobile
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Telecommunications-2000 (IMT-2000) standards determined by The 3rd Generation
Partnership Project (3GPP) group in International Telecommunication Union (ITU).
In 2001, the first commercial 3G network based on wideband code division multiple
access (W-CDMA) technology was began operations in Italy. Due to the rapid growth
of large amounts of data need, the use of larger frequency bands, higher degree
modulation techniques, and multiple input multiple output (MIMO) antenna systems
was considered and applied to the cellular systems. While the data rates of 3G systems
have been developed continuously, 4G systems such as Long Term Evolution (LTE)
standards was determined. The first LTE network started operations in Norway in
2009. Up to date, 4G systems has operated in 100 countries of the world. Moreover,
LTE Advanced standards aimed to reach 1Gbps downlink data rate by using multiple

carrier bands, adaptive modulation techniques, and MIMO systems.

These major changes in data rate from kbps to Gbps took only about 20 years. Now
we are talking 5G cellular mobile systems and new technologies that will take us into
the future. The history of cellular mobile systems explains many things about the
development of wireless communication systems. Beside, broadcast TV, satellite, local
area network (LAN), and wide area network (WAN) systems are other applications
of wireless communication like cellular systems. The developed communication
tecniques have been applied all related wireless systems. Each application of wireless
communication need different requirements. Hence, the disadvantages of wireless
communication become advantages as the wireless tecnologies grow up in time.
Finally, wireless communications play more important role than wired communication

in humanlife today.

4.2 Radio Frequency Propagation

In the wireless communication systems, the used part of electromagnetic frequency is
named as RF spectrum between 3kHz and 300GHz. The radio spectrum is a scarce
source for wireless communication. Therefore, the radio spectrum is allocated for the
use of different wireless communication systems by authorized government agencies

of countries. Frequency allocation of the radio spectrum can be licensed or unlicensed
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according to the purpose of use. In Table 4.1, a part of the radio spectrum allocated to

licensed and unlicensed wireless communication systems is shown for Turkey [54].

Table 4.1: Frequency allocation of the radio spectrum.

Wireless System Frequency Band
] 148.5 —283.5 KHz
AM Radio
526.5 —1606.5 KHz
FM Radio 88 — 108 MHz
Broadcast TV (UHF) 470 —790 MHz
2G - GSM 900 890 — 960 MHz
1.71 —-1.725 GHz
2G - GSM 1800
1.805 — 1.82 GHz
1.92 —-1.97 GHz
3G - IMT-2000 2.01 —2.015 GHz
2.11-2.16 GHz
ISM Band 2.446 —2.454 GHz

RF signals provide communication between transmitter and receiver in the wireless
systems. The information sended by transmitter should be detected and estimated
truely by receiver for reliable communication. However, the detection and estimation
of sended information on RF signals are not straightforward in wireless communication

unlike wired communication because of transmission medium.

RF signals, namely electromagnetic waves, propagate in different ways through the
medium between transmitter and receiver. During propagation, electromagnetic waves
are affected from reflection, diffraction, and scattering due to buildings, geographical
shapes and other objects. The incident electromagnetic wave is reflected from the
smooth surface of buildings or mountains, and diffracted from the knife-edges of
buildings, which changes the direction of wave. While electromagnetic wave impinges
upon an object with rough surface, the wave split into the number of signals due
to scattering effect. Reflection, diffraction, and scattering of radio frequency wave
is presented in Figure 4.1. At the end of the travel, electromagnetic waves with

impediments that change over time arrive at the front end of receiver. Moreover,

the power of electromagnetic wave attenuates dramatically with distance. Because
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Figure 4.1: Reflection, diffraction, and scattering of radio frequency wave [55].

of power attenuation, mobility, and impediments such as noise and interference, it is

difficult to estimate sended RF signal.

In order to address the mentioned challenges, a valid approach is to model the
communication channel between transmitter and receiver. The simplest channel model
is AWGN, which is an undesired noise added to all frequencies in the transmission
channel. But AWGN is not a sufficient model for many wireless communication
systems , hence it is necessary to consider more complex multiplicative channel

models.

Mainly, the variations of signal in the transmission channel should be considered to
form the right channel model. The prediction of average signal strength for a given
distance gives us coverage area of transmitter, which is important for planning of
wireless network. The channel effects for average value of signal strength are called as
large scale fading effect [56]. At the same time, the received signal strength changes
quickly in the wide range for the same distance. The channel effects for the rapid
fluctuations of received signal strength are named as small scale fading effect. The
reasons of rapid fluctuations are multipath components of same signal that have the

greatest impact on small scale effect. Path loss, shadowing, and multipath effects
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Figure 4.2: Path loss, shadowing, and multipath effects versus distance [57].

C

versus distance is shown in Figure 4.2. The wireless radio channel models are designed
to include one of large scale effects such as path loss and shadowing or small scale
effects. There are also composite channel models that includes both of them. The
details of channel models are explained in the following sections. Our aim is not to
explain all channel models. The explained models are selected for the understanding

of the subject.

4.3 Large Scale Channel Models

Free-space path loss, the simplified path loss, the Hata model, and the lognormal

shadowing channel models are described for the large scale effects.

4.3.1 Path loss

Path loss implies the attenuation of transmitted signal power during propagation. The
linear path loss is defined as the ratio of transmitted power to received signal power,
the path loss in dB is also defined as the difference in dB between the transmitted and
received power. According to definitions, the lineer path loss is [57]

P =— 4.1)

where P, and P, represent transmitted and received power, respectively. And the path

loss in dB is
P
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In the line-of-sight (LOS) case, there are no obstruction between the transmitter and
receiver. The transmitted wave propagates in free space directly. The received power
is a function of the transmitted power, the wavelength (A), the antenna seperation
distance (d) between the transmitter and receiver, the gain of transmitting antenna
(Gy), and the gain of receiving antenna (G,). In free space, the Friis transmission

equation states that [57]

A 2

The effect of channel conditions will be more understandable with our simulations in

Matlab. The system parameters for simulations are listed in Table 4.2.

Table 4.2: Simulation parameters for channel models.

Parameters Values
Frequency (f) 915 MHz
Transmit Power (F) 1w
Gain of Transmitting Antenna (G;) 8 dBi
Gain of Receiving Antenna (G,) 3 dBi
Dimensions (x X y) 100 x 100 m

We define a coverage area whose dimensions are 100 x 100 meters. A transmitter with
omni directional antenna is placed at a point with coordinates (20,20). The receivers
at each point have directional antennas. In Figure 4.3, the coverage of received power
for defined area is shown. The different colors represent the different power levels of

received power (dBm) at each point in the defined area.

In another simulation, we would like to show the variation of received power according
to distance between transmitter and receiver. It is seen in Figure 4.4 that the received

power is decreasing with increasing distance, which shows of the path loss effect.

Free-space propagation is usually considered for satellite-to-satellite links. Because of
obstacles and other distorting efects, the transmission environment is not simple like
free-space propagation. In order to model the attentuation between the transmitter and
receiver in complex environments, the commonly used simplified path loss model is
do\P
)= plao) (2, )
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Figure 4.3: The coverage of signal strength (dBm) for 100 x 100 m area. The

transmitter is placed at (20,20) coordinates.
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Figure 4.4: The variation of signal strength (dBm) versus distance (m).
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where dj is a reference distance for the antenna seperation and f is the path loss
exponent. The value of B depends on the propagation environment. Generally, it takes

a value between 1.6 and 6.5, for example 3 can be equal to 1.6 in office buildings [57].

Furthermore, the other ways to model more complex propagation environments are the
empirical path loss models. The residential areas are classified as urban, suburban,
rural, etc. areas, which depend on the characteristics of wireless environment. One of
the familiar emprical path loss models is the Hata model, which simplifies prediction
of path loss at frequencies between 150-1500 MHz. The parametric closed-form path

loss in dB formula of the Hata model for urban areas is [57]

P(d) = 69.55+26.16log,o(f.) — 13.8210g,o(h:) — a(hy) 4.5)

+(44.9 — 6.5510g,o(h;))1og,(d),

where the carrier frequency is denoted by f.. The parameters of 4; and h, represent
the base station antenna height and the mobile receiver antenna height, respectively.
a(h,) is a correction factor for the mobile receiver antenna height based on the size
of the coverage area. The correction factor in dB for small to medium sized cities is

expressed as

a(hy) = (1.11og;o(fe) —0.7)h, — (1.5610g4(f:) —0.8) (4.6)

and for larger cities at frequencies f. > 300MHz, it becomes

a(hy) = 3.2(log,(11.75h,))> — 4.97). @.7)

The Hata model for urban area can be expanded to suburban and rural areas by
corrections. The models like the Hata model is valid for general coverage prediction,

whereas it is not convinient for any specific transmission link.

The Okumura model, COST 231 model, and ray tracing models such as two-ray and
ten-ray models are other examples of path loss models [57]. After path loss models, in
order to quantify the fluctuations of the received signal powers with respect to (4.3 and

4.4) here we consider, shadowing, small scale, and also composite fading models.
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4.3.2 Shadowing

As a large scale fading effect, shadowing occurs when large objects such as a hill or
large buildings block paths of propagation between the transmitter and receiver. It
causes random slow fluctuations of the received power over small distances. The other
reasons of shadowing are the reflection and scattering of signals due to objects in the
middle range. Shadowing is frequently modeled as a multiplicative lognormal random
variable. Let u; and oy represent the mean and the standard deviation of P, in dB
(Pr,dB = 10log10P;), respectively. The variable of x represents a random variable for
lognormal shadowing. The PDF of the instantaneous received power in the presence

of shadowing, fp(x), is lognormal distribution [57]

_ 2
exp (_(lOloglox Ks) ), x>0, 4.8)

20,2

-
Jrs) = T

where £ = %. The mean of shadowing distribution is calculated as

2
Hs |, Os } . (4.9)

E[Ps] = exp [€+f

From above equations, it is possible to derive lognormal shadowing distribution for the

value of x in units of dB, x,p, as below

. 1 (de _us)z
fPS(de) - \/Eﬁsexp (_T

The equation in (4.10) shows that x;p has Gaussian distribution with the mean value

), xqp > 0, 4.10)

of g and the variation value of o> in dB. When the mean value of u is calculated
according to the simplified path loss model with path loss exponent 3, the lognormal
shadowing effect can be considered as the summation of path loss and shadowing

effect, which represents the large scale effect.

We would like to show the effects of shadowing with different variance on the received
power. Figure 4.5 shows our simulations for lognormal shadowing with the variance
values of 0,2 = —10dB and 0,2 = 4dB. It is obvious that the higher values of variance

increase the variation of received power around the path loss efffect.

The lognormal shadowing channel model is useful for practise, but does not allow

further mathematical analysis. Therefore, other channel models are proposed such as
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the Rayleigh-lognormal and the Nakagami-lognormal. These models have a structure
that is composite of shadowing and small scale fading. In later sections, we mention
about the composite models. The small scale channel models are explained in the

following section.

4.4 Small Scale Channel Models

The small scale effect is also called as small scale fading or only fading. The
transmitted signal is splitted into more than one signal during travel through the
wireless medium. The copies of transmitted signal propagate and arrive at the receiver
in different ways, which is called multipath. The multipath components of signal are
combined at the receiver antenna. Because of multipath signals, the amplitude of
received signal changes rapidly over a short time interval and small travel distance.
At the same time, mulipath effect causes changes in the phase of received signal. The
presence of reflecting and scattering objects, the speed of transmitter, the speed of
receiver, the speed of surrounding objects and the transmission bandwidth of the signal

are important factors effecting the small scale fading.

In order to model small scale fading effects, the Rayleigh and Nakagami-m
distributions are commonly used. Now, the Rayleigh and Nakagami-m channel models

are explained in the following sections.

4.4.1 Rayleigh fading

The Rayleigh distribution is used to model channel, if the radio channel has
no LOS or dominant component of multipath signal. The Rayleigh distribution
describes the envelope of received signal that varies in time. At the same time, the
Rayleigh distribution equals to the envelope of a complex variable whose real and
imaginary parts are zero-mean Gaussian distributed with no correlation. The Rayleigh

distribution is given as [56]

X x?
fPR (X) = ?exp —r‘z s x> 0, (4.11)
where o2 is not variance of the Rayleigh distribution, it is the time-average power of

the received signal before envelope detection. The variance is calculated as 0.4292¢62
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by using expectation formulas. Moreover, the average of Rayleigh distribution is also

calculated as 1.25330.

When the envelope of the signal is Rayleigh distributed, the PDF of received power
has an exponential distribution shown as [58]
Fonx) = — ( x) >0 (4.12)

Pe(X) = —exp | —— |, x>0, .

! 1y 1y
where L, is the average power of received signal.
The Rayleigh distribution represents bad channel condition that means there are many
objects in the environment to fade signal. Hence, it can be used to model channel in

dense urban areas where there is no LOS between the transmitter and receiver.

4.4.2 Nakagami-m fading

The Nakagami-m distribution is a common small scale fading model, which is
parameterized by the Nakagami parameter (m). The Nakagami parameter is also called
as shape parameter representing the effect of fading. The Nakagami-m channel model
is an approximation of the Rician channel and the generalized form of the Rayleigh
channel (for m = 1). It is possible to obtain different channel conditions by changing
m parameter. For m = % the distribution goes to one-sided Gaussian distribution, which
has worse channel condition than the Rayleigh distribution. For m = oo the distribution
goes to impulse that means there is no small scale fading. The Nakagami-m distrbution
is expressed as [57]
my2m—1 )
)= oo (o) 2

where I'(+) is the Gamma function and 1, is the average received power.

, (4.13)

| =

The PDF of instantaneous received power in the presence of Nakagami-m fading

becomes Gamma distributed given as [57]

(4.14)

m,m—1 o 1
foyl) = 2 exp( ””) > 0m> L

L(m) L
The Nakagami-m distribution provides flexibility to model wireless channels. Hence,
it can be preferred to use for small scale fading instead of the Rayleigh and Rician
fading models.
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In Figure 4.6, the amount of variations on the received power due to the small scale
effect is shown by our simulation. The small scale channel is modeled by using the
Nakagami-m distribution with m = 2 and m = 8. The reason of fluctuations is multipath
signals. It is seen that the amount of variations changes simultaneously. The scale of
fluctuations decreases with increasing value of m. m = 8 has a range between 1.5dBm

and —2.5dBm in this realization.

4.5 Composite Channel Models

The large and small scale fading models are commonly used for modeling wireless
radio channels, but using only one of them may not provide sufficient accuracy for
real-life scenarios. In most cases, it is necessary to take into account the simultaneous
effect of fading and shadowing on the received signal. The composite channel
models are used for jointly considering the shadowing and multipath fading. The
Rayleigh-lognormal, the Nakagami-lognormal, the generalized-K, the generalized
Gamma are distributions to model the received power in shadowed fading channels.
Here, the generalized-K channel model is described as a proposed composite channel

model.

4.5.1 Generalized-K fading

The generalized-K distribution has been proposed to model the instantaneous received
power as a composite channel model. It is also called as the Nakagami-Gamma
distribution. In the generalized-K distribution, the Nakagami-m and the Gamma
distributions are used jointly for small scale fading and shadowing, respectively.
The Nakagami-lognormal distribution has no closed-form expression. Therefore, the
Gamma distribution is preferred to represent shadowing instead of the lognormal
distribution. The generalized-K distribution is given in the closed-form expression

as [59]

B 2bm+cxm2+671K 2b\/x 0 4.15
fPG(X)_W e—m( x), x>0, (4.15)

where K._,,(-) is the modified Bessel function of the second kind with order (¢ —m).

The parameter of b is defined as b =, /ﬁ—; and e denotes the average received
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power. The parameters of m and ¢ are small scale fading and shadowing parameters,
respectively. The increasing of m and c¢ values leads to the decreasing of destructive
effects. As ¢ — o the generalized-K distribution is reduced to the Nakagami-m
distribution. For m =1 the generalized-K distribution goes to the K distribution. The
K distribution is shown to be as [58]

2bc+1 %
fp(;(x):Tj;Kcl(zbﬁ), x>0, (4.16)

The generalized-K channel model is analytically simpler than lognormal shadowed
fading models. Therefore, it seems to be appropriate for jointly modeling of shadowing

and fading in wireless communication channels.

Our simulations for the received power in case of the generalized-K distributed channel
are shown in Figure 4.7. The red line represents the condition of m =2 and ¢ = 2
while the black line shows m = 10 and ¢ = 10 case. It can be seen that the fading of
channel decrease with the increasing values of m and ¢, namely, for m = ¢ = 10 the
distribution approaches to Gaussian distribution. The blue line is simulated for m = 2
and ¢ = 50 that means nearly no-shadowing case. Hence, both of shadowing and small

scale fading effects can be demonstrated by means of the generalized-K distribution.

4.6 Conclusions

In this chapter, we give an overwiew of wireless communication and summary of
primary models to understand the concept of wireless channels. Wireless channel
models characterize the behaviour of wireless channels between transmitter and
receiver during signal transmission. All of given models from the simplest to more
complex models are used according to the requirement of communication system.
Friis equation for free-space path loss, the Hata model as an emprical path loss model,
lognormal distribution for shadowing, the Rayleigh and the Nakagami-m distribution

for small scale fading are frequently used wireless channel models.

The statistical model that describes wireless channel model should be appropriate
for analytical studies. Therefore, it is useful to use the statistical models that have
closed-form expressions. Moreover, the selection of channel model is very important

to ensure high reliability in the wireless system design. In our thesis, we use lognormal
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Figure 4.7: The distribution of received power due to the generalized-K composite
channel. The simulation plots for the values of parameters m = ¢ = 2,
m=c=10,and m =2,¢c = 50.

shadowing, the Nakagami-m fading, and the generalized-K composite fading models.

We derive distributions over these channels for battery recharging time in the following

section.
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5. BATTERY RECHARGING TIME FOR SINGLE SOURCE

5.1 Purpose

The open issue in the related literature is the characterization of battery recharging
time of an energy harvesting receiver node. RF energy harvesting has challenges due
to the wireless propagation environment and conversion efficiency. On the propagation
side, the different channel models between source and harvesting node should be
taken into account in order to obtain realistic results. Our aim is to propose statistical
models for battery recharging time for the Nakagami-m and the generalized-K fading
channels. We also include the effects of lognormal shadowing. We derive the
associated closed form probability density function, cumulative distribution function,
moment generation function, mean, and variance expressions for battery recharging
time. The simulations are used to verify the theoretical results. The results show that
analytical and simulation results fit to each other. Also, simulations shows that the
channel model and conversion efficiency affect battery recharging time directly. This

chapter was published as a conference paper [5].

5.2 System Description and Channel Models

5.2.1 System model

The main goal of energy harvesting is obtaining energy from ambient sources. In
our system model, the source node (S) acts as the ambient source by continuously
transmitting RF signal. The energy is harvested by our harvesting node (H), while S
is transmitting a message signal to the intended destination (D), as shown in Figure
5.1. The harvesting node has a micro-battery with finite capacity for storage. It is
well known that the channel between the source node and the destination node (hgp)

characterizes the behavior of the system, affecting several performance metrics such
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Figure 5.1: RF energy harvesting system model. S is the RF transmitter, and D is
the intended receiver. H 1is the harvesting receiver node. H and D are
physically separated.

as the outage probability and error rates. Based on this fact, it can be inferred that the

channel between the source node and the harvesting node (hgy) will have a significant

impact on the battery charging time. To quantify this impact, it is necessary to know
the impact of channels on the distrbutions of instantaneous received power (P,), where

P < |hsy|?.

5.2.2 Channel models

We have already explained an overview of wireless fading channels in Chapter 4.
However, we would like to highlight the channel models that will be used in our study
to characterize hgy. We will use the lognormal shadowing, the Nakagami-m fading,
and the generalized-K composite fading channels as tree important models for deriving
the statistical expressions of battery recharging time. Moreover, the Friis transmission
equation for path loss will be used in simulations. The instantaneous received powers,

P., in the presence of wireless channels used in our study are given as

o Path Loss

A 2
Pr(d) = PGG, (m) ) (5-1)

where P, is the transmit power, A is the wavelength, d is the distance between the
source and the receiver, G; is the gain of transmitting antenna and (G,) is the gain

of receiving antenna.
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e Lognormal Shadowing

é 10log1ox — Ly)?
fro(x) = NorTe ! 2132 ) . x>0, (5.2)

. U and oy represent the mean and the standard deviation of P, in

10

where § = 75

dB (P.4p = 10log10F;), respectively.

e Nakagami-m Fading

m"xm—1 —mx 1
_ m> — .
pr(x)—r( ] Zﬂexp( ™ ), x>0, 25 (5.3)

where I'(-) is the Gamma function and u, is the average received power. m

represents the effect of fading as fading parameter.

e Generalized-K Fading

2bm+cxm§’"—l
fpg(x) = WKC—M(zb\/)_C)7 x> 07 (5.4)
where K._,,(+) is the modified Bessel function of the second kind with order ¢ —m
and b = % The parameters of m and c¢ are small scale fading and shadowing

parameters, respectively.

5.3 Statistical Models for Battery Recharging Time

The models for the instantaneous received power, P, given in (5.2), (5.3), and (5.4)
represent large scale, small scale, and composite fading effects, respectively. The

power harvested by the harvesting receiver node (P,) can be calculated as
P, =P, (5.5)

where 1] is the conversion efficiency of RF signal to DC signal. The recharging current
(Ip) of a battery can be calculated from P, according to

by

I =
b v,

(5.6)

for a battery with a constant operating voltage (V}). Assuming that the capacity of
battery (Cp) and the discharge depth (D) are known, the battery recharging time (7;)
can be obtained as

_ GpDy
==
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Defining the conversion coefficient, a > 0, as

CpyD 4V
o — PV
n

, (5.8)

it can be seen that the battery recharging time becomes inversely proportional to the

received power

T — (5.9)

(04
P’
The distribution of battery recharging time can be obtained by using the distribution

of received power through the Jacobian approach using (5.9). It can be shown that the

PDF of the battery recharging time, f7.(7), is

o

fr.(7) = % fr. (—) (5.10)

T

Here, fp (p) is the PDF of received power with possible distributions as given in (5.2),
(5.3), and (5.4). Thus, the closed form expression of the PDF of the battery recharging

time can be derived for the above-mentioned channel models.

5.3.1 Lognormal shadowing

Considering only shadowing effects, the PDF of battery recharging time, f7,(7),

derived by using (5.10) is

¢ (10l0g10(%) — ps)?
fr(7) = mcsrexp (— 0.2 , 7> 0. (5.11)

The mean can be obtained via statistical expectation as

% i o2
Uz, = /0 T fr,(7)dT = 010" 0exp (2§2>, (5.12)

and the variance is shown to be

2 2
o3 = a210“ssexp<65 > [exp (g_s) _ 1} . (5.13)
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5.3.2 Nakagami-m fading

The PDF of the battery recharging time in presence of the Nakagami-m channel,

fr,(7), can be derived as

o"m™ om 1
fry(7) = Wexp (_,unr)’ T>0,m> 3 (5.149)
with the mean that can be shown to be
omIl'(m—1)
== eE>0m>1, 5.15
v = =, T (m) " 15
where € = ‘ZL—T. The variance can be obtained as
2 (“m)2 Lim—2) (F<m_1))2 £>0,m>2 (5.16)
— — s 7]’I’l . .
T Hn ['(m) ['(m)

5.3.3 Generalized-K fading

Considering the generalized-K distribution as a channel model, the PDF of the battery
recharging time, f7,,(7), becomes
2ot [t 1
fr,(7) = —— K. (219 —), T>0m>=,c>0. (5.17)
D e T 2
The mean value is derived as
(m—1I(c—1)
L(m)C(c)
where 8§ = 2b+/a, and the variance is obtained to be
I(m—2)T(c—2) (T(m—1T(c—1)\?
L(m)I(c) L(m)I'(c)
0>0,m>2,¢c>2.

r
ur, = ab? §>0,m>1,c>1, (5.18)

2 _ 234
o7, =a'b

: (5.19)

In addition to the PDF, mean, and variance expressions, the CDF and the MGF
expressions can be derived. The CDF of the instantaneous received power for the
generalized-K channel, Fp,(x), is expressed in [59] as (5.20) where ,F,(-) is the

generalized hypergeometric function, p and g are integers.

(b*x)™ Fy(m; 1 — ¢ 4+ m, 1 + m;b%x)
I'mI'(1 —c+mI'(1+m) (5.20)

Fp,(x) = mese(mw(c — m)) [

B (B?x)¢1Fy(c;1 + ¢ —m, 1 + ¢;b%x) x>0
I'(e)l'(14+c—m7I(1+c) ’
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It is used for deriving the CDF of battery recharging time. Since (5.9) expresses the
relation between power and time, the relation between their CDF expressions for the

generalized-K channel model becomes

o

E%@):]a—ﬂb(?>, (5.21)

by substituting Fp, (x) in (6.37), the CDF of battery recharging time, Fr,(7), can be

shown to be as given in (5.22).

(bz%)mle(m;l —c+m,1+ m;bz%)
I'(m)'(1 —c+mI(1+m) (5.22)
b*2L) Fy(c;l +c—m,1 4 c;b*2

_( ikl +c—m1+c T)]7 >0

Fr,(t) =1 — mese(m(c —m)) [

L)'l +c—mI'(1+c)

The MGF of the generalized-K distribution, ®p, (s), has been derived as in (5.23), [60].

bz m+§—l bz b2
(I)PG (S) = (a) exXp <—g>W1rgc762m <a> (5.23)

From the following definition of MGF

Dr,(s) = [ exp(=s7) fi()a. (5.24)

by substituting f7,(7) in (5.24), the MGF of battery recharging time, ®7,(s), is derived
as in (5.25).

20+m
[(m)I(c)
(bm%cocm?cscl“(—c)r(—c +m)oFa(:1 + ¢, 1+ ¢ — m:b*as) +

Pr;(s)) = 4 {on(;l —c,1 —m;b*as) +

(5.25)

3m+c

T 8" (—c)I'(—c +m)oF2(;1 +m,1 +m — c;bzas)>]

b3m+c o

5.4 Numerical and Simulation Results

The numerical analyses and simulations are conducted to show the effects of channel
conditions and the correctness of the derived expressions. The system parameters for

simulations are listed in Table 5.1.
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Table 5.1: Simulation parameters for single source.

Parameters Values
Frequency (f) 915 MHz
Transmit Power (F) 20 W

Gain of Transmitting Antenna (Gy) 0 dBi
Gain of Receiving Antenna (G,) 6 dBi

Battery Charging Voltage (V}) 1.2V
Battery Capacity (Cp) 10 mAh
Conversion Efficiency (1) 0.5
Discharge Depth (D) 0.4
Dimensions (x X y) 10x 10 m

Firstly, we want to show the varying of battery recharging time according to distance
between the source node and the harvesting receiver node. We define a coverage area
whose dimensions are 10 x 10 meters. The source node is placed at the center of
this area with coordinates (5,5). Each point in this area is considered as a potential
harvesting receiver node with an omnidirectional antenna. And the source node
transmits in an omnidirectional fashion. Figure 5.2 illustrates solely the deterministic
path loss effect, which is the variation of battery recharging time in defined area. It can
be seen that battery recharging time is changing dramatically due to distance but has

very low values within close proximity of the source node, as expected.

Secondly, we demonstrate both the small scale and large scale effects on the PDF of
battery recharging time. We placed the harvesting receiver node at (3,3) coordinates
and the source node at (5,5). The closed form calculations and simulations are done for
the generalized-K channel. The values of m and c¢ are changed to different values, and
theoretical PDFs and matching simulation histograms are plotted in Figure 5.3. The
plots show that at low values of m and ¢, i.e. when more intensive fading conditions
are encountered, the average of battery recharging time increases. At high values of
m and c, i.e. at more favorable fading conditions with partial line of sight and less
intense shadowing, the battery average recharging time decreases, and the variance
of distribution is also reduced, improving the reliability of the RF energy harvesting

system. This is an expected result, battery recharging time increases when the channel
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Figure 5.2: The coverage of battery recharging time (hour) for 10 x 10 m area. The

red square at (5,5) shows an RF source.

Theoretical
0.5F #  Simulation

PDF

0 1 2 3 4 5 6
battery recharging time (hour)

Figure 5.3: The analytical expression and simulation plots of the PDF of battery
recharging time for fading parameters m = ¢ values 1,2,4,8.

condition deteriorates. The total effect can be evaluated according to the product of m

and ¢ paremeters, (m X c).

We also investigate the effects in the presence of small scale fading alone, considering
the Nakagami-m channels. As, ¢ — o, we repeated calculations and simulations. In

Figure 5.4, the red line shows the plot of m = 1, ¢ = 1 for comparison purpose with
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the shadowing case. The PDFs for m = 1,2,4,8 are given and it can be seen that
the battery recharging time becomes more predictable and smaller as the value of
m increases. Furthermore, we need to emphasize that the shadowing effects have to
be taken into consideration when setting up an RF energy harvesting system, as it
dramatically affects the battery recharging time. Similarly, it can be proposed that the
effect of small scale should not be ignored such as shadowing and path loss.

0.8 : : : : : : :

Theoretical
#  Simulation ||

0.6
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0.4r

PDF

0.3

m=1,c=1

08 i i i i
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battery recharging time (hour)

Figure 5.4: The comparison of shadowing and no-shadowing cases. The red line
shows the channel with shadowing effect and the black lines are variations
at no-shadowing case, namely, the Nakagami-m channel form =1,2,4,8.

In the last figure, given in Figure 5.5, the tree dimensional plot of battery recharging
time and distance and conversion efficiency is shown. The mean of battery recharging
time are plotted at logarithmic scale. It can be seen that battery recharging time
takes low values at the lowest value of distance and the highest value of conversion
efficiency. It means that the improvement of conversion efficiency will have a very

positive effect on the future energy harvesting systems.

5.5 Conclusions

In this chapter, energy harvesting from single RF signal source is considered. Using a
continuously radiating RF source, the received power distributions for small scale and

large scale channel models have been expressed. We investigated battery recharging
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Figure 5.5: The mean value of battery recharging time vs. the distance and the
conversion coefficient 1. The mean values are plotted at logarithmic scale.
time of an energy harvesting receiver node. We propose battery recharging time as a
critical parameter for energy harvesting devices or networks for ensuring availability

of system.

We derived PDF, mean, and variance expressions of battery recharging times for
lognormal shadowing channel distribution and the Nakagami-m distribution. We
extended our results to PDF, mean, variance, CDF, and MGF expressions of battery
recharging time for the generalized-K channel distribution. The conducted simulation
results match theoretical analysis, showing the importance of distance and conversion

efficiency and both of small scale and large scale fading effects.

The derived parametric expressions can be used for energy harvesting systems. In
practical applications, the energy harvesting systems for wireless sensor networks can
calculate the battery recharging time by distributions given in Section 5.3. Following
this process, each sensor node can decide whether it will be in active or sleep mode. In
the next chapter, this study will be extended to investigate the battery recharging time

in the presence of multiple RF sources.
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6. BATTERY RECHARGING TIME FOR MULTIPLE SOURCES

6.1 Purpose

The energy can be obtained from more than one source in the energy harvesting
systems. As a continuation of the previous chapter, this chapter investigates the
usage of RF signals emitted from multiple source nodes in energy harvesting systems.
The system we consider consists of multiple RF source nodes, one destination node,
and one energy harvesting receiver node. The total received power changes with
the nuimber of RF source nodes and the channel conditions. At the same time, the
variation of instantaneous received power due to the number of source nodes affects the
battery recharging time. We will investigate statistical models for battery recharging
time in the presence of multiple RF source nodes for the generalized-K channel
conditions. And then, we propose the Gamma distribution to obtain analitically
tractable equatons. We derive the associated closed form probability density function,
cumulative distribution function, moment generation function, mean, and variance
expressions for battery recharging time. The simulations are used to verify the

theoretical results.

6.2 System Description and Channel Models

6.2.1 System model

The energy harvesting system can use multiple RF signal sources. In this chapter, we
will deal to express the distributions of battery recharging time in the event of multiple
RF source nodes. Initially, we would like to find expressions for two RF source nodes,
and then move from two source nodes to multi source nodes. In this context, the energy
harvesting system model for two source nodes is shown in Figure 6.1. The source

nodes (S} and S7), the intended destination node (D), and the harvesting node (H) are

61



Figure 6.1: RF energy harvesting system model. S; and S, are the RF transmitters,
D is the intended receiver, and H is the harvesting node. All nodes are
physically separated.

the main components of system. S; and S> nodes transmit RF signals, which convey

information to the destination node. At the same time, the energy of incoming signals

from S and S, nodes is harvested by the harvesting node. The harvested energy can be
used to power a device directly, if the amount of harvested energy is sufficient. Now,
we assume that the harvesting node uses this energy to recharge a micro-battery with
finite capacity. The impacts of channel between sources and destination (hsp ; and
hsp ) define the behaviours of communication channels. Since the informations are
sent from the source nodes to the destination node, hgp 1 and hgp > have an important
role on the accuracy of transmission and other critical issues. On the other hand, the
channels between the source nodes and the harvesting node (igy 1 and hgy 2) affects

the amount of received energy at the front end of the harvesting node.

6.2.2 Channel models

We have already explained an overview of wireless fading channels in Chapter 4 and
a summary of used channel models in Chapter 5. In this chapter, we will use the
generalized-K composite fading channel model to find the statistical expressions of
battery recharging time for more than one source. Further, we will use the Gamma
distribution, which will be explained in the related section. Additionally, we will
simulate the Friis transmission equation as deterministic expression of path loss for

the instantaneous received power.
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6.2.3 Transformation of multiple random variables

Probability theory allows to calculate the probability of an event that is defined as the
joint behaviour of multiple random variables. In the next section, we will utilize the
the relationship between random variables and their functions. Now, we would like to

remind the transformation of multiple random variables.

Let i and w represent the vectors of random variables, the relationship between them

and their distributions can be expressed as
i—w = f(i)— f(w) (6.1)

where f(-) is the PDF of random variables. # and w are vector random variables.

Assume that each of them has two random variables are shown as

U= (u1,u2), w=(wp,wa). (6.2)

Consider that the random variables u; and u, are expressed in terms of wy and wj, or

vice versa, as below

up =hi(wi,wa), up=nha(wi,w2) (6.3)

w1 = h3(u1,u2), Wy = h4(u1,u2) (6.4)

where hy(-), ha(+), h3(+), and ha(-) represent mathematical functions. In such a case,
we can use the Jacobian matrix that is the matrix of first order partial derivatives of

each function of random variables in vector

dwy  dwy

_ | du du
Jo(ur,ua) = | Gy dws
duy duy

(6.5)

In this event, the matrix is a square matrix, and its determinant can be calculated as the

absolute value of the Jacobian determinant of w

J = |det(Jz(u1,u))|. (6.6)

The distribution of # and the Jacobian matrix are used to obtain the PDF of w, as

_ falur,u)
fw(wi,wa) = det (I y )| (6.7)
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And subtitude &y, hy, and J in (6.7), the expression becomes

Folwiwg) = fa(l (W1>W237 hz(WhWZ)). 68)

It is well known that the equation can be integrated to obtain the marginal distribution

of only one random variable.

(oo}

S (W) = /fw(wl,wz)dwz, wi,wa >0 (6.9)
0

Finally, the joint PDF of w is replaced with expression in terms of the joint PDF of &

in (6.8)
fwl(Wl) :/fﬁ(hl(WhWZ;,hz(Wl,wz))

dwy, wi,wy >0 (6.10)
0

6.3 Statistical Models for Battery Recharging Time

In order to express the statistical model of battery recharging time, we need to model
the distribution for the instantaneous received power, P,, at the harvesting node. It
is assumed that the channel effects are the combination of path loss, shadowing, and
fading. In our system model, both of RF sources are transmitting continuously, and
the received signals are non-overlapping narrowband signals, which do not reduce the
total power by affecting other signal. Under these conditions, the total received power

in two RF source nodes case is expressed as
Pr:Pr,l +Pr,2 (6'11)

where P.; and P, represent the instantaneous received power when RF signal of first
and second source is received at the antenna alone, respectively. It is obvious that the
battery recharging time (7,) is not equal to the total of battery recharging times for
each RF source, namely, T, # T;.1 + T;.2. According to the definition in [5], it becomes

o o
T =—=—— 6.12
" P Pa+Po (612

The distribution of 7, can be obtained according to the relationship between 7, and the
received powers (6.12) by using the distributions of received powers. We can utilize

the vectoral representations of variables to achive transforming of distributions.
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Now, we can use the informations mentioned in the previous section to obtain the PDF

of battery recharging time. % and w can be defined as

(04
i=(P.. P w—=| — P 6.13
u ( rl r,2)7 w (Pnl—f—Pnz, r,Z), ( )

where o was defined in (5.8) as a positive constant parameter.

We need to find an expression for the Jacobian determinant. The absolute value of the
Jacobian determinant is calculated from (6.6) as

o
- - .14
J (Pr,l +Pr,2>2 (6 )

According to (6.3), P, and P, are expressed as

a
Pr1 = hi(wi,w2) = W Pry = ha(wi,wp) = wa. (6.15)

For independent random variables, the marginal distributions of RF signals are

producted to obtain the joint distribution.
fi(Pr1,Pr2) = fp. (Pr1) X fp,(Pr2)- (6.16)

It is obvious that w; = 7 (6.12) where 7 is the outcomes of battery recharging time
for two source nodes. From (6.10), the equation of battery recharging time for the

generalized-K distributed channel becomes

- /""fpr,l (h1 (T, P2)). frn (B2 (T, Pr2))
0

fr(t dP;,, (6.17)

J

where J can be replaced with J = %2 by using (6.14) and (6.15).
The distributions of P.; and P, are chosen as the generalized-K distribution. Then,

the integration in (6.18) is obtained.

[o5S)

a 2bMmt g ML o
_ (e (% p Keyom (2611/ % — P
fTG(T) O/TZ F(m1>F(C1)<T r,2) c1—my 1 T 72 (6.18)

2b2m2+6‘2 my+cy 1
[Ty 72 P Keymy(2024/Pr2)dPrp

This expression gives the PDF of battery recharging time for two independent RF

sources, which is not a closed form expression. In this instance, we prefer to propose
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a method to obtain battery recharging time by using convolution integral. Remember

that the definition of convolution for two independent functions f and g is given as

com(f,g)(z) = (fxg)(x / £(0) (6.19)

where * denotes the convolution sign. If functions f and g are non-negative, the

integration limits becomes between 0 and o, [0, o), instead of (—eo,o0).

After this reminder, it can be recognized that the equation in (6.18) is a form of
convolution on P,; and P>, which was transformed by using (5.10). Depending on
convolution, we can express battery recharging time for independent two RF source

nodes as
fTG< ) ;.x (Prl*PrZ)(OTC> (6.20)

If three source nodes are available instead of two source nodes, the total received
power becomes P, = P, + P> + P.3. It is possible to write an equation for the battery

recharging time as
(04 (04
ng<T> :?-(Prﬁ*(Pr,l*Pr,Z))(?)- (6.21)

In order to obtain a more general expression, the number of independent source nodes

can be denoted as i = 1,2,...,N. In that case, the total received power is expressed as
Pr=P +Po+ - +PEnN. (6.22)

We can extend equations (6.20) and (6.21) to find the PDF of battery recharging time

for N independent source nodes as
OC o
Jrp(T) = =) 5 (Prn o (Pry—1 %% (Prax (P % Pr2)) - -)(?)- (6.23)

Eventually, the PDF of battery recharging time for independent multiple RF source
nodes has been calculated by using (6.23). This is a method, but not a closed form
expression. In order to find a closed form expression, the Gamma distribution can be

used, which is explained in the next section.
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6.4 Gamma Distribution for Channel Approximation

The closed form expressions provide us analytical tractability. Hence, it can be tried
to find alternative solutions that provide well-approximation for the generalized-K
distribution. In this context, the use of the Gamma distribution approximated by the
moment matching with adjustment has proposed in [59]. The Gamma PDF is also
known as the distribution of the instantaneous received power on the Nakagami-m

fading channel. The Gamma PDF of the instantaneous received power is given as
¥kl X
= ——), >0, 6.24
where k is shape parameter, and 0 is scale parameter of the Gamma PDF. Depending

on these two parameters, the Gamma distribution is also indicated as Gamma(k, 0).

As another definition, the amount of fading (AF) is defined as a parameter that is a

scale for fading in the wireless channels [58]

2 2

) (6.25)

where o2 represents the variance, and u is the mean.
By using the moment matching method for the first and the second moments, k and 6
become [59]

1 1 1 1
o= (—+—+—)uo=AFIJ07 k=, (6.26)
m ¢ mc AF

where L is the received local power. Then, the adjustment factor (&) is used to address
poor approximation in the related regions [59]. The adjusted expressions of 0 and k

are obtained as

1

961 ( 8).“07 ka AF—87

(6.27)

where € is limited, —AF < € < AF. Equaitions in (6.27) is valid for a single
random variable. Considering RF energy harvesting, the Gamma distribution with
the parameters in (6.27) describe the PDF of received power in the presence of a single

RF source node.

It is possible to find expressions in the presence of more than one RF source nodes.

For the sum of two independent the Gamma distributed random variables, 6, and k,
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are given in [59] as

(AR — &)%) + (AR — &2)p%) 5

04,12 = ; (6.28)
Uo,1 + Ho,2
(Lo.1 + Uo2)?
ko 1y = 1 T Ho. , 6.29
2 (AF — &)Uy + (AR — &)U, (629

where the indices, 1 and 2, represent the correponding random variables. Additionally,
the definition of 6,1, and k412> can be obtained for the independent identically
distribution ( i.i.d.) case. The indices in (6.28) and (6.29) are removed for the i.i.d
case, namely, AF = AF| = AF>, € = € = & and Uy = Uy 1 = Ho . As a result of this
process, the parameters are simplified as

2
AF — ¢’

0412 = (AF —€)lo, kg12 = (6.30)

Hence, we obtained 6, 1> and k, 1> for two source nodes that have the i.i.d. RF signals.
Recognize that 6,12 = 6, and k, 12 = 2 X k,. It is possible to extend the Gamma
distribution from the sum of two random variables to the sum of N random variables
for the i.i.d. case. The PDF of the sum of N i.i.d. Gamma random variables is shown

to be as [61]

N
ZPW' ~ Gamma(Nkg, 6,). (6.31)
i=1

Considering the expressions for a single random variable, 6, remains unchanged, k, is
multipled by N. The equations of shape and scale parameters for total received power
from N sources are defined as

N
AF — ¢’

Ou,iv = (AF — &)Uy, ko in = 6.32)

Now, we can derive expressions for battery recharging time in the presence of single
RF source node and also multiple RF source nodes. We know that the PDF of received
power can be transformed to obtain the distribution of battery recharging time by

following equation (5.10)

1) =2 1 (3).

By performing the transformation of the Gamma PDF (6.24) according to (5.10)

together with 6, and k,, the PDF of battery recharging time is obtained as

OCk

o
T1(0) = S (ko &P 70,

a

T>0. (6.33)
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The mean value of battery recharging time can be calculated by using the first order
statistical expectation as

ol (ks —1)

—, 0,>0,k;>1 6.34
Qar(ka) 9 a > s va > ( )

Uz, = /Oooffrr(r)dr =

and the variance is obtained by using the first and the second moments, which is shown

to be
2 2
2 o I'(k,—1)

= ———|I'(ky—2)—————1|, 6,>0,k;,>2. 6.35
% = o [ (ka=2) =~ —Fi5 > 0,k (6.35)

The CDF of the Gamma distribution is given by

Gamma(ky, 3-)

Fp.(x) = —. 6.36

As the battery recharging time is inversely proportional to the received power, the CDF

of battery recharging time for the Gamma distribution channel can be calculated by

o
Fr(t)=1—Fp (?) . (6.37)
The transformation of distribution is performed by puting (6.36) into (6.37), the CDF
of battery recharging time, Fr,(7), can be shown to be as

Gamma(kq, 7g-)

r(,r) =1- F(ka) ’

(6.38)

The MGF of instantaneous received power for the Gamma distribution, ®p,(s), has
been given as in (6.39). From the following definition of MGF as the expectation
function, ®7,(s) = [, exp(—s7) fr,(7)d7, the MGF of battery recharging time for the

Gamma distribution channel, @7 (s), is derived as in (6.40).

p (s) = (1 — O,s) ka, (6.39)

2061+k7a(9as>71+k7a[(ka,2 (2 %5)
S)=
(5) k)

(6.40)

where o, 0,, and s are greater than zero.

As a convinience, the expressions are derived by using 6, and k,. All equations from
(6.33) to (6.40) can be used for multiple RF source nodes by using N X k, instead of
ka-
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6.5 Numerical and Simulation Results

The numerical analyses and simulations are performed to verify the derived
expressions for battery recharging time. In simulations, RF source nodes transmit
signals continuously. We assume that the received RF signals are non-overlapping

narrowband signals.

y distance (m)

0 2 4 6 8 10
x distance (m)

Figure 6.2: The coverage of battery recharging time (hour) for 10 x 10 m area. The
red squares at (1,1),(2,8),(6,4),(7,9), and (9,1) show RF sources.

Firstly, we want to demonstrate the deterministic change of battery recharging time
according to distance between RF source nodes and the harvesting node. We define
a coverage area whose dimensions are 10 x 10 meters. Similar to the situation in
single source, each point in the defined area is a potential harvesting node, which has
an omnidirectional antenna. The number of RF source nodes are increased from one
to five to show multi sources case. Five RF source nodes marked with red squares
are placed at seperate coordinates as (1,1),(2,8),(6,4),(7,9), and, (9,1). RF source
nodes send signals with omnidirectional antennas. Figure 6.2 illustrates the value of
battery recharging time due to the path loss effect at each point of coverage area.
Simulation parameters for this figure are same as the simulation parameters of single
source case, as given in Table 5.1. If we pay attention to the color scale in Figure
6.2, it can be seen that the maximum value of the color scale decreases to from 10

(Figure 5.2) to 1 for the defined area. Moreover, the areas with red color are smaller
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than the red colored areas in single source case. It means that the battery recharging
time decrease with the increase of the number of RF source nodes. This is an expected

result owing to the summation of received powers.

Secondly, the difference between the generalized-K distribution and the Gamma
distribution can be indicated on a figure. The parameters are same as the single source
simulation. Figure 6.3 shows battery recharging time in the presence of both channel
conditions for single source. The black line is the generalized-K distribution, and the
red line is the Gamma distribution for the same conditions. The Gamma distribution
provides a significant approximation as shown in the figure. In the numerical
calculation, the adjustment factor is equal to zero for the Gamma distribution. It means
that the difference between two distributions can be decreased by searching appropriate

adjustment factor.

Thirdly, we would like to investigate the use of adjustment factor in the Gamma
distribution. Two RF source nodes and one harvesting node are used in the simulation.
There are 2.8 meters between the source nodes and the harvesting node, which are
spatially seperated. The distributions of battery recharging time for two source nodes
are illustrated in Figure 6.4. The black squares show the simulation results for the

parameters of m = ¢ = 4. The blue line is the Gamma distribution with € = 0.

We run an iterative code to minimize the absolute value of difference between the
simulation results and the Gamma distribution with adjustment factor. We use
fminsearch’ command in Matlab. &€ is changed step by step to find minimum
difference value. After a sufficient number of trials, the resulting value of € does
not change much. Thus, the minimization code gives us the most appropriate value
of € to provide well-approximation. The value of € is calculated as 0.095. The red
dash line is drawn for the Gamma distribution with € = 0.095. It can be seen that the
adjustment factor should be used for fine-tuning of approximation in the calculation of

battery recharging time.

Fourthly, we aim to understand the effect of second source node on the battery
recharging time. Firstly, we consider that there is an energy harvesting node capturing

signal from single RF source node. And then, we put another RF source node to
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Figure 6.3: The generalized-K distribution and the Gamma distribution for the same
parameters.
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Figure 6.4: The distributions of battery recharging time with different adjustment
factors, € = 0 and € = 0.095.
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observe the change of battery recharging time. Figure 6.5 represents the results with
the same parameters as in the previous simulation. The red line is for single source
case, and the black line shows the battery recharging time when we add the second
source. The most probable value of battery recharging time drops from 1.2 to 0.7 with

the second source.
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Battery recharging time (hour)
Figure 6.5: The distributions of battery recharging time for single source and two
sources. Battery has 1.2V operating voltage and 10mAh capacity.

In the last simulation, we would like to include some results about the number of
sources (N>2). Figure 6.6 illustrates the PDFs of battery recharging time for N sources,
where N is the number of RF sources. The mean value of battery recharging time for
5 sources is calculated about 2.2 hours, while the mean value of battery recharging
time for 2 sources is about 6.7 hours. It means that the increase of RF source number
will cause to decrease in the battery recharging time for energy harvesting systems.
At the same time, we show the effect of operating voltage and capacity of battery on
the battery recharging time. The operating voltage of battery is increased from 1.2V
to 3.3V and the capacity of battery is increased from 10mAh to 20mAh. This process
causes an increase in the battery recharging time. It can be seen when we compare the

results with the previous simulation.
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Figure 6.6: The distributions of battery recharging time for N sources, N=1,2,...,5.

Battery has 3.3V operating voltage and 20mAh capacity.

6.6 Conclusions

In the previous chapter where the system model depends on single RF signal source,
we proposed statistical models and derived the distribution expressions for battery
recharging time. Also, it is possible for an energy harvesting system to gather signals
from multi source nodes. In this chapter, we studied on a system with multi RF
signal sources to obtain battery recharging time distribution equations. We tried to
extend equations from single source to two sources for the generalized-K distribution.
We saw that it is difficult to advance with the obtained equations. In that case, we
proposed to use the Gamma distribution instead of the generalized-K distribution.
We derived the PDF, the CDF, the MGF, the mean, and the variance expressions of
battery recharging times for the Gamma distribution. The conducted simulation results
shows that the Gamma distribution ensure well-approxiimation to the generalized-K
distribution. Moreover, we propose the use of adjustment factor, which bring closer
both of them. Additionally, we demonstrated the effect of second RF source node,
which allow of the decrease of battery recharging time. Hence, the number of RF

source is important for energy harvesting systems.
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7. TEST STUDY

7.1 Purpose

So far, we have explained theoretical aspect of RF energy harvesting and statistical
models of battery recharging time. Now, we would like to investigate real-life RF

energy harvesting applications. Thus, we will carry out a testbed implementation.

7.2 Equipment

Powercast is a technology company producing RF energy harvesting integrated
circuits, which bring wireless power capability to micro-power devices. Powercast
also produce evaluation boards and development kits. These products are useful for
experimental research studies. We use P2110-EVAL-01 that is an energy harvesting
development kit for wireless sensors. The components of P2110-EVAL-01 are listed

below.

1. Power and Data Transmitter (TX91501-3W-ID)

2. P2110 Evaluation Board Kit (P2110-EVB)

3. Wireless Sensor Board (WSN-EVAL-01)

4. Microchip 16-bit XLLP Development Board (DM?240311)

5. Microchip MRF24J40 PICtail/PICtail Plus Daughter Board (AC164134-1)

The image of parts can be seen in Figure 7.1.

The Powercast TX91501 transmitter sends both power and data at the center frequency
value of 915MHz. It transmits signal whose power is 3W EIRP with integrated 8dBi
antenna. The antenna of transmitter is designed, which has 60° horizontal and 60°

vertical beam patterns.
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Figure 7.1: The contents of P2110-EVAL-01 energy harvesting development kit [4].

The P2110-EVB kit contains the following parts.

™

e Evaluation board for P2110 Powerharvester' ™ receiver

e PCB omnidirectional (dipole) antenna

e PCB directional (patch) antenna

The P2110 Powerharvester receiver converts RF energy into DC energy at the
frequency range of 850-950MHz. It gives regulated voltage output up to 5.25V, and
output current up to SOmA. If the input power level is less then -11.5dBm, it is not
possible to harvest energy with P2110. There is an supercapacitor with 50 mF capacity
on the evaluation board to store energy and to give regulated output power. The
antennas are designed as printed circuit board. The gain of antennas are 1dBi and
6.1dBi for dipole and patch antennas, respectively. The beam pattern of patch antenna

is 122° horizontal and 68° vertical, while the beam pattern of dipole antenna is 360°.

Wireless sensor board measures the values for temperature, humidity, light, and an
external input. It sends these informations to the access point by adding the received
power value and transmit time. Additionally, the identity number of transmitter is

decoded by the microcontroller on the wireless sensor board.

16-bit XLP development board and MRF24J40 PICtail/PICtail plus daughter board are
products of Microchip company [62]. 16-bit XLP development board is a development

platform that works by programming Microchip’s PIC24F microcontroller for the
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Figure 7.2: The display of HyperTerminal that shows the received data from the
wireless sensor board.
desired purpose. MRF24J40 PICtail/PICtail plus daughter board is a IEEE 802.15.4

radio receiver at 2.4GHz.

7.3 Operation

The P2110-EVAL-01 is a demonstration and development platform for wireless sensor
applications with RF energy harvesting. The operation of development kit is started by
powering of transmitter. The TX91501 transmitter sends RF signal with the identity
number of transmitter. The incident RF signal is received by the antenna of P2110
evaluation board, which the received signal is converted to DC signal by the P2110
Powerharvester component. The obtained DC energy is stored in the supercapacitor.
When the charge of supercapacitor is sufficient, the regulated output of the P2110
powers the WSN-EVAL-01 wireless sensor board that sends a radio signal including
ambient information to the access point. The acces point consists of 16-bit XLP
development board and MRF24J40 PICtail/PICtail plus daughter board that is plugged
into development board. It is programmed to receive data coming from the wireless

sensor board.
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The access point is connected to a laptop via an USB cable, which transfer the data
to a terminal emulator program. HyperTerminal can be used as a terminal emulator
program, which displays and logs the incoming data. Figure 7.2 shows the received

data by HyperTerminal during our tests.

7.4 Test Models

We use P2110-EVAL-01 energy harvesting development kit as a testbed equipment.
Firstly, we would like to demonstrate the variation of mean value of battery recharging
time with distance. The test model depends on the energy harvesting application
between a transmitter as RF source, and an evaluation board with plugin wireless
sensor board as energy harvesting node. The signal energy coming from a transmitter
is harvested and stored to 50mF supercapacitor by the evaluation board, and used
for sending data by the wireless sensor board. The values of received power and
the times between each incoming data are logged by means of HyperTerminal. The
energy harvesting node is shifted to other distance at the end of each measurement.
The mentioned process is repeated for various distances. In our test, we measured the
received power and the incoming data time for four different distances from 3m to 6m.

This test is named as Testbed-1 whose model can be seen in Figure 7.3.

The time between each incoming data gives the recharging time of supercapacitor

similar to the battery as a storage unit. Hence, it can be taken as the battery recharging

time.
RF Source Harvesting Nodes
b i i (AP il i
0 3m 4dm 5m 6m

Figure 7.3: The test model for Testbed-1.

Another test model is established by using two transmitters as two RF sources, and
an evaluation board with plugin wireless sensor board as energy harvesting node. Our

aim is to show the energy harvesting in the presence of multi RF source. Similar to
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the first test, the incident RF signal energies from two sources are captured, stored,
and used to power the wireless sensor board. In our testbed named as Testbed-2, two
transmitters are placed 7m distance to the energy harvesting node with same angle and

Im seperation distance. Figure 7.4 illustrates the test model for Testbed-1.

RF Sources

[ Harvesting

: Im Node
Qi S R RSO O

'1m sl

Figure 7.4: The test model for Testbed-2.

7.5 Test Results

Tests were performed on an empty area of the communication laboratory at the
university. There was LOS between the transmitter node and the energy harvesting
node. The nodes were placed on the taborets, which ensures same height level from
ground. The acces point that was connected to a laptop with an USB cable was placed

on a near table. A photo taken during the test can be seen in Figure 7.5.

The parameters for tests are listed in Table 7.1. The directional patch antenna was used

at the harvesting node side for the presented test results.

Table 7.1: Test parameters for single source and two sources testbeds.

Parameters Values
Frequency (f) 915 MHz
EIRP (P x G;) 3W

Gain of Receiving Antenna (G,) | 6.1 dBi
Battery Charging Voltage (V}) 33V

Supercapacitor Capacity (Cy) 50 mF
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Figure 7.5: A photo taken during the test.

First, we implemented Testbed-1 to obtain the received power and the battery
recharging time. Figure 7.6 shows the mean values of received power versus the
distance between the transmitter and the harvesting node. Additionally, the computed
standard deviation of received power is given to see the variations due to the effect of
wireless channel. It is computed about 0.19 for 5 meters distance. The mean value of
received power was measured as 2.7mW for 3m, which is the maximum value among
the test results of 3-6m distances. The received power decreases with the increasing

distance as expected.

The mean values and variations of battery recharging time versus the distance are
illustrated in Figure 7.7. We measured the mean value of battery recharging time for
3m as 1.8 seconds. It increased up to 8.5s for 6m distance. As a result, the battery
recharging time increases severely with the increasing values of distance. Moreover,
it can be seen that the battery recharging time is reversely proportional to the received
power. The values of standard deviation are computed between 0.42 to 0.81 for battery

recharging time.
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Figure 7.6: The received power versus the distance for energy harvesting with single
RF source node. Bars show the standard deviation of received power.

10

Battery recharging time (s)

%.5 3 35 4 4.5 5 5.5 6 6.5
Distance (m)

Figure 7.7: The battery recharging time versus the distance for energy harvesting with
single RF source node. Bars show the standard deviation along a curve.
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Figure 7.8: The battery recharging time for one RF source and two RF sources.

Secondly, we set-up Testbed-2 to investigate multi RF source nodes case. We measured
battery recharging time for the first transmitter and the second transmitter alone, and
then both of them together. In two transmitters case, RF signals are sent by two
transmitters and received together by the energy harvesting wireless sensor. Figure
7.8 illustrates the distributions of battery recharging time for both one transmitter and
two transmitters. As shown in the figure, the mean value of battery recharging time
was reduced from 19.2s to 8.8s with the activation of the second source. It is inferred
that the battery recharging time decreases with the increasing number of RF source

nodes.

We also would like to compare the distribution of battery recharging time obtained
by test study with the distribution of battery recharging time obtained by simulation.
Figure 7.9 illustrates the simulation and the test distribution. The red points show
simulation results and the black points show test results. It is possible to extract
the parameters of wireless channel from the comparison of them. As a comparision

criterion, we calculate the summation of difference between them. The values of ¢,
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Figure 7.9: The distributions of battery recharging time obtained by simulation and
test results.
m, and c that provide the minimization of calculated difference can be found as the

parameters of wirelss channel.

We use 'fminsearch’ command in Matlab and run an iterative code to minimize the
absolute value of difference between the simulation results and the test results. The
values of m and ¢ parameters are changed iteratively to obtain minimum difference
value. After a sufficient number of trials, the values of parameters approach stable
values. According to our simulation and test results, we found the channel parameters
about m = 90.2 and ¢ = 100.8 for the first transmission line in Testbed-2. The values
of m and c are very high due to stationary medium. It can be stated that, our tests was

performed in good channel conditions.

7.6 Conclusions

Two testbeds are implemented to show practical applications of RF energy harvesting.
According to test results, the distance between the source node and the harvesting

node is very important, which the battery recharging time increase with distance. The
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number of source is also influential factor. When the number of source increases, the
battery recharging time decreases significantly. Actually, we performed other tests that
include one source, two sources, directional antenna and omnidirectional antenna. The
battery recharging time of wireless sensor node increases when we use omnidirectional

antenna as expected. The test results are generally similar and consistent.
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8. CONCLUSIONS AND RECOMMENDATIONS

RF energy harvesting is proposed as an energy source to capture RF signal energy from
ambient sources in our thesis. It is easy to access to RF signals, because RF signal
is ubiquitous due to the wide use of wireless communication systems. The received
power of RF signal is not high to power wireless communication devices directly.
However, thin film solid-state rechargeable micro-batteries and supercapacitors are
used to store energy, and then to power wireless communication devices when needed.
The time required for charging the battery is defined as battery recharging time. In the
literature, there are no research depending on the nature of the medium between the
source and the harvesting node in RF energy harvesting system. This medium is called
as wireless channel in communication systems, which is described by a statistical
wireless channel model. We state that wireless channel models have an important

impact on the battery recharging time.

In this thesis, a study on the statistical characterization of battery recharging time is
carried out for RF energy harvesting systems. The battery recharging time of an energy
harvesting node is defined and modeled depending on the statistical models of wireless
channels between the source node and the harvesting node. Additionally, testbeds
are set, and measurements are performed to show real-life applications of RF energy
harvesting. The battery recharging time is proposed an important parameter for the
wireless devices and networks with RF energy harvesting circuit, and modeled as a

random variable.

It is shown in our thesis that the battery recharging time is reversely proportional to
the received power. Based on this information and given distribution of the received
power, the statistical equations of the battery recharging time are obtained for RF
energy harvesting systems. The closed form expressions for the battery recharging
time are derived in the presence of single RF source. The PDF, the mean, and

the variance expressions of battery recharging time are derived for the lognormal
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shadowing distribution and the Nakagami-m distribution. Additionally, the PDF,
the CDF, the MGF, the mean, and the variance expressions are derived for the
generalized-K distribution. The battery recharging time in the presence of multiple
RF sources is also investigated to generelize expressions. The PDF of the battery
recharging time is derived by cascading convolution process for the generalized-K
distribution in the presence of multiple sources. Moreover, the PDF, the CDF, the
MGEF, the mean, and the variance expressions are derived in the presence of both
single source and multiple sources for the Gamma distribution as an approximation

of the generalized-K distribution.

The derived distributions are verified by the numerical and simulation studies. In
figures, it can be seen that the distribution of battery recharging time changes with
channel conditions. The high values of m and ¢ parameters, which mean good channel
conditions, cause to approach a certain value as an impulse function. The conversion
coefficient and distance have an important impact on the value of battery recharging
time. The high values for conversion coefficient and the low values of distance ensure
fast recharging, namely, decrease the battery recharging time. The number of RF
source is also very important. When the number of source is increased, the value
of battery recharging time is decreased proportional to the number of source. In
addition to the simulations, testbeds are implemented to show real applications of the
RF energy harvesting. The tests on the energy harvesting of an wireless sensor node
from both single RF source and two RF sources are performed. Test results show that
the mean value of received power decrease with distance, and the mean value of battery
recharging time increase with distance. The addition of a second source accelerates the

charging of battery, which ensures low battery recharging time.

As a conclusion, we would like to emphasize that the effects of channel conditions
should be taken into account while designing an RF energy harvesting system. The
derived parametric expressions can be used for RF energy harvesting systems. We
propose the battery recharging time as a critical parameter for RF energy harvesting

devices, especially for the wireless sensor networks to ensure the sustainability of
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system. As a recommendation, the effect of energy profile of source on RF energy

harvesting can be investigated for future work.
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