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Introduction

“We have to remember that what we observe is not nature in itself but nature exposed to our method of
questioning.” Werner Heisenberg (1958)

One of the major hallmarks of marine species is that many produce large numbers of
small pelagic larvae that drift in the ocean for varying periods of time. For these species,
establishing the degree to which different populations are connected by larval dispersal is a
fundamental goal for larval ecologists interested in understanding the influence of planktonic
processes and larval supply on ecological and evolutionary processes within populations.
Assessing and predicting local population and community dynamics, spread of invasive species,
patterns of local adaptation, spread of advantageous alleles, maintenance of local biodiversity,
sustainability of fisheries, and effective marine reserve design, all require some knowledge of
rates and patterns of larval exchange among populations.

However, the tiny size of most marine larvae and the variable length of time they spend
in the plankton present obvious and significant obstacles for identifying the geographic origins
and destinations of dispersing larvae. The fate of marine larvae in the plankton may be likened
to a black box (Buston and D’Aloia 2013): for any local population we can estimate its
contribution to the pool of individuals in the planktonic darkness (many dispersing larvae), and
its harvest of individuals that emerge into the light (fewer settling larvae), but we cannot easily
describe the processes that affect the destination of larvae that disperse from a particular source,
or the source of larvae that settle or recruit into a particular destination.

As with the study of all unobservable processes, the methods of inquiry will determine, to
some extent, the apparent properties of the process. For example, not long ago, observations of
marine larvae far offshore (Scheltema 1986) combined with widespread genetic homogeneity at
allozyme loci (Buroker 1983; Saunders et al. 1986; Rosenblatt and Waples 1986), led many
marine ecologists to the reasonable conclusion that marine larvae regularly travelled vast
distances, such that many marine populations were likely well mixed on spatial scales of
thousands to tens of thousands of kilometers (Palumbi 1992). When Palumbi (1995) reviewed
the evidence for associations between variation in larval dispersal potential (such as among
species with long or short pelagic larval duration) and the geographic distribution of genetic
variation, nearly all comparative studies analyzed small numbers of populations and loci
(typically allozymes and mtDNA) with a limited number of analytical approaches. In the
intervening years, the size of data sets and the diversity of methods of analysis have grown
dramatically, and significant progress has been made towards understanding the scope and scale
of larval dispersal. Many tools have been used, but much of this progress has come from using
genetic methods. In this chapter, we describe some of the most commonly used analytical
genetic approaches and then discuss how these methods have improved our understanding of
larval dispersal.
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Genetic approaches to the study of larval dispersal

Rates and patterns of larval dispersal have been studied using a wide variety of methods,
including direct observations of larval movement (e.g., Gerrodette 1981; Olson 1985; Knowlton
and Keller 1986), mark-and-recapture (e.g., Jones et al. 1999; Thorrold et al. 2001), natural
environmental markers (e.g., DiBacco and Levin 2001), oceanographic modeling (Largier 2003;
Siegel et al. 2003), hybrid zones (e.g., Gilg and Hilbish 1996), and the expansion of geographic
ranges caused by anthropogenic introductions (e.g., Kinlan et al. 2005) or by climate change
(e.g., Sunday et al. 2015). Techniques that employ artificial tags (i.e., to otoliths or calcified
structures) or that estimate dispersal from inferred parent-offspring relationships may be
considered direct measurements of net dispersal, but these methods do not necessarily measure
larval dispersal alone, but instead some combination of larval and adult movement. We consider
only direct observations of advection or diffusion of individual larvae in the plankton as yielding
direct measurements of larval dispersal. Although direct observations give immediate insight
into dispersal, they are limited to species with large, short-lived larvae that can be followed on
small spatial scales. Indirect methods based on experimental or natural marking of larvae are
similarly limited to species with larval structures that can be marked and that are retained in
adults, and they share with direct observations some other important limitations (especially the
inability to infer average effective rates of dispersal integrated over longer periods of time into
the ecological or geological past). Consequently, indirect methods that use genetic data have
become the most widely used approach for inferring patterns of larval dispersal.

Although many methods have been developed to infer patterns of larval dispersal from
genetic data, we think a more useful and important categorization of genetic approaches is based
on the theoretical framework used to infer patterns of larval dispersal. The oldest and most
familiar framework is based on data in the form of allele frequencies and gene genealogies in
explicit population genetic models. These population models include one or more parameters
that represent migration (m), the proportion of individuals or gene copies (i.e., alleles or
haplotypes) in a population that are new immigrants each generation (and that successfully
reproduce), and use a diverse range of assumptions and calculations, and either optimization (i.e.,
maximum likelithood) methods or simulations to find the best estimate of migration and other
model parameter values fitted to the genetic data. When combined with an estimate of the
effective population size (N, or simply N), the product of the two parameters together can be
used to characterize the population migration rate (Nm), usually interpreted as the number of
immigrant individuals (i.e., organisms) per generation or the number of immigrant gene copies
(2Nm, for diploid loci) per generation (Wright 1969). Because these population-based estimates
represent the number of gene copies moving between populations, Nm is often called gene flow
(Slatkin 1987, 1993; but see Mallet 2001).

The second, newer framework for these approaches is based on data in the form of
multilocus genotypes for individual organisms without specifying a demographic model without
explicit parameters that represent migration or gene flow. Instead, these individual-based
approaches use multivariate clustering, similarity measures, or inferred parentage to assign
sampled individuals to groups (i.e., nominal populations consisting of similar genotypes, or
families consisting of parents, offspring, and siblings). Simple Mendelian inheritance rules or
population parameters are used to identify the most-likely number of groups or clusters that
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minimizes within-group differences (e.g., Pritchard et al. 2000; Wilson and Rannala 2003), or to
assign individuals to likely families including parent-offspring pairs or groups of siblings (e.g.,
Marshall et al. 1998; Wang 2004). These individual-based approaches infer larval dispersal from
counts of migrant individuals, including individuals that are strongly clustered with individuals
from a different sample, and individuals that have a high likelihood of being closely related to
parents or siblings in a different sample.

One of the most important distinctions between population-based methods and
individual-based methods is the timescale over which they provide information about migration.
All population-based approaches assume that the spatial distribution of alleles, the frequency of
alleles in populations, and the structure of gene genealogies evolve slowly, and that this long
timescale has an important effect on the observed patterns of genetic similarity or differences
among populations. Therefore, population-based approaches estimate migration and gene flow as
the time-averaged cumulative effects of variation in larval dispersal, larval retention, population
growth, and other demographic or ecological processes integrated over relatively long
evolutionary timescales (on the order of hundreds to thousands of generations). Individual-based
approaches also make an important but different assumption about the temporal scale of genetic
variation that can be used to detect migration. Strong allele- or genotype-sharing between
members of the same genetic cluster or members of the same family is expected to be rapidly
broken down by random mating with local mates (from other clusters or families) after
migration. Consequently, recombination among immigrant and local alleles will degrade the
signal of group membership or family identity among the descendants of an immigrant after one
or a few generations. Counts of immigrants based on such approaches can only identify new
migrants or their recent descendants on short ecological timescales, on the order of one or two
generations (e.g., Wilson and Rannala 2003). A corollary of this limitation is that individual-
based methods may not easily distinguish between recent immigrants that reach sexual maturity
and reproduce (and contribute to gene flow) and those that do not.

With the recent incorporation of individual-based approaches into the genetic toolkit of
larval biologists, researchers can potentially compare counts of immigrant individuals to
historical patterns of gene flow inferred from more complex population-based approaches. In
cases where both approaches give similar estimates of genetic connectivity, larval dispersal may
have been consistently high (or low) over both long and short (recent) timescales, and those
concordant measures of dispersal on both timescales may give reliable insight into the strength
(or weakness) of population connectivity (e.g., Pinsky et al. 2016). Numerous factors can
potentially explain contradictory results from these two approaches (e.g., Palstra et al. 2007),
such as natural year-to-year variability, recent changes in larval dispersal caused by human
impacts (and an opportunity for conservation ecologists to mitigate that change), genotyping
errors, or violation of assumptions of either method. Distinguishing among these hypotheses
may be difficult and will likely require repeated studies.

As with other approaches to the study of larval dispersal, those that use genetic
techniques have strengths and weaknesses, and the choice of methods will depend on what a
researcher wants to know about larval dispersal: an understanding of migration rates over
relatively long evolutionary timescales (population-based methods) or documentation of
extremely recent migration events (individual-based methods). In the next section, we briefly
discuss the theory and practice of studying larval dispersal of marine species using genetic data
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in either population- or individual-based methods. We then highlight some specific areas of
progress in applying both individual- and population-based methods, and consider how those
approaches give concordant or discordant insight into genetic and demographic connectivity
based on larval dispersal among marine populations.

How to estimate larval dispersal from genetics
Population-based Methods

The use of genetic methods to estimate larval dispersal requires a realistic model of the processes
that cause allele frequency changes and the evolution of allelic differences between populations.
The primary processes are mutation, genetic drift, and natural selection. By contrast, gene flow
is a homogenizing evolutionary force that slows, erodes, or prevents the buildup of genetic
difference between populations. Most of the population genetic theory that has been developed
to understand the movement of genes and individuals does so by focusing on the interaction
between gene flow (which introduces alleles to populations) and genetic drift (which eliminates
alleles from populations). Because genetic drift is a stochastic evolutionary force caused by
random mating in a finite-sized population, it will work randomly and independently in different
populations, such that, in the absence of gene flow between populations, genetic drift is expected
to cause allele frequencies to diverge. Given sufficient time (generations), drift will cause the
fixation of different alleles in different populations, meaning that different alleles will reach a
frequency of 1.0 in each of the individual populations.

Neutral genetic markers. To concentrate exclusively on gene flow and genetic drift,
population geneticists focus on neutral polymorphisms: allelic differences that are expected to
have no (or few) direct effects on fitness. To focus on neutral loci, population geneticists can
study genes or nucleotide sites that appear to have few functional constraints, such as
microsatellite loci, anonymous DNA, and synonymous 3™ codon polymorphisms in protein-
coding DNA (e.g., Karl and Avise 1992). One important consideration in identifying candidate
neutral polymorphisms is their possible linkage to other polymorphisms under selection. More
importantly, however, population geneticists can identify neutral polymorphisms for analysis
using data from multiple, unlinked genetic loci. Unlike migration and genetic drift, natural
selection is expected to cause idiosyncratic patterns of differentiation at individual loci, such that
loci affected by selection can be identified and potentially excluded as outliers with respect to a
larger sample of loci from across the genome (Schopf 1974; Koehn et al. 1976; Johnson and
Black 1984). The important corollary of this idea is that similar spatial patterns of differentiation
across multiple loci are best explained by the action of gene flow and genetic drift, forces that are
expected to affect all loci across the genome in the same way. The statistical power for
identifying outlier loci (influenced by selection) has increased significantly as data from very
large numbers of loci can now be gathered and analyzed, potentially within the framework of a
linkage map (e.g., Bradbury et al. 2013).

Classical Population Genetics. With respect to estimates of dispersal and gene flow, an
important point of departure for classical population genetic methods is the Hardy-Weinberg
Equilibrium (HWE) principle: in the absence of any evolutionary forces acting on a genetic
locus, allele frequencies at that locus will remain constant over time. This deterministic theory
also predicts that, for a locus with two alleles A and a with frequencies p and g, respectively, the
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proportion of AA homozygotes, aa homozygotes, and Aa heterozygotes is expected to be p>, ¢°,
and 2pq, respectively. Deviations from the expected genotype proportions in natural populations
provide evidence that at least one force of evolution is influencing allele frequencies. In the
absence of selection, Hardy-Weinberg deviations can be caused by several processes that lead to
non-random mating among individuals, and can provide insight into the genetic structure of
populations and, potentially, patterns gene flow.

For example, consider a neutral genetic locus in two isolated populations (Fig. 1).
Because there is no larval dispersal (and no gene flow) between eastern and western populations,
genetic drift has caused allele frequencies to diverge, such that they have become fixed for
different alleles. In this situation, the HWE Principle provides a null model of high gene flow by
predicting that, if eastern and western individuals were freely exchanging migrants and
completely interbreeding with one another, half of the individuals (i.e., 2pq) should be
heterozygotes. Although an extreme example, any divergence in allele frequencies between
populations will result in a deficit of heterozygotes compared to expected HWE genotypic
proportions under the null model of high gene flow between populations.

Detection of heterozygote deficiencies forms the basis for the most common measure of
population genetic divergence, Wright’s (1978) Fst = (Hr — Hs)/ Hr, the difference between the
expected HWE heterozygosity for the “total” population (Ht) and the average expected
heterozygosity among “subpopulations” or individual populations (Hs) scaled by Hr. Other
measures of genetic differentiation have been developed, but are like Fgr in that they describe
how genetic variation is partitioned among populations or samples from different geographic
locations (e.g., Excoffier et al. 1992). Genetic differentiation measured as Fsr and its analogs
can also be used to infer the rate of gene flow among populations; in the simplest case, Fst =
1/(4Nm + 1) under a set of assumptions known collectively as Wright’s (1951) “island model.”
The island model assumes many equally-sized populations (each of size N) in which a fixed
proportion (m) of every population are immigrants each generation, and that m is relatively
small. The model also assumes each population has been separated for long enough that gene
flow among populations and genetic drift within populations have reached an evolutionary
equilibrium. An important consequence of these assumptions is that Fsr can only be used to
estimate the compound parameter Nm, a useful parameter for understanding the impact of gene
flow on allele frequencies, but of less value in understanding the demographic impact of
migration (see below).

Because many real populations likely do not conform to island-model assumptions
(Whitlock and McCauley 1999; Beerli and Felsenstein 1998; Neigel 2002), estimates of Nm from
Fsr are now rare in the literature (Marko and Hart 2011). However, understanding the
theoretical relationship between Nm and Fst highlights several important facts. First, Wright’s
equation Fsr = 1/(4Nm + 1) demonstrates that a single migrant per generation has the same
impact on allele frequencies in a large population as a single migrant per generation has in a
small population. This counter-intuitive result is explained by the fact that, in a large population,
the relatively small impact of a single migrant on allele frequencies is opposed by relatively
weak genetic drift; by contrast, in a small population, a single migrant has a much larger effect
on allele frequencies, but the impact of gene flow in a small population is opposed by much
stronger genetic drift. Second, the relationship between Fsr and Nm emphasizes how little gene
flow is necessary to keep allele frequencies similar among populations (Fig. 2) and how difficult
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it can be to precisely measure migration when Nm > 10 migrants per generation, especially
considering that the error associated with estimates of Fgt is often as large as the estimate itself
when Fgr is small (Waples 1998). This “gene flow problem” (Waples 1998) makes real
population differentiation very difficult to distinguish from random noise in marine species with
high gene flow, and makes gene flow that is sufficient to homogenize allele frequencies very
difficult to distinguish from panmixia (i.e., all individuals are potential mating partners).

Coalescent Population Genetics. Rather than modeling how allele frequencies are
expected to change moving forward in time, coalescent population genetics focuses on the
genealogical history (i.e., a gene tree) for a sample of gene copies moving backward in time: if
two individual gene copies have the same common ancestor in a previous generation, those two
copies are said to have coalesced. The earliest applications of coalescent theory were used to
make inferences about demographic parameters for a single population, but the theoretical
framework of the coalescent has been expanded to incorporate other demographic parameters.
For example, gene flow between populations can be estimated with gene trees by inferring the
rate at which gene copies in one population coalesce in an ancestor in another population (Nath
and Griffiths 1993; Beerli and Felsenstein 1999; Nielsen and Wakeley 2001).

The primary advantage of coalescent gene flow estimators is that they often employ a
much more realistic model of gene flow and population history than Wright’s Island model
(Beerli and Felsenstein 1999). Most coalescent gene flow estimators use a Bayesian statistical
framework, in which a posterior distribution is estimated for each demographic parameter by
simultaneously “sampling” (searching among) tree topologies and parameter values. Coalescent
methods typically use computationally intensive Markov Chain Monte Carlo (MCMC) samplers,
in which small random changes are repeatedly applied to gene trees. The likelihood of each gene
tree and parameter estimate is calculated at each step in the search until the search converges on
a sample of highly likely gene trees and associated parameter estimates. This capability to
calculate likelihoods for multiple individual parameter values (including those associated with
gene flow and other demographic processes) is an important source of the increased realism of
coalescent gene flow estimators, in contrast to the insights gained from single summary statistics
(such as Fgr). Either Nm or m can be estimated with coalescent samplers, but estimates of m are
typically scaled by mutation and can only be converted into demographically meaningful values
with an estimate (or assumption) about the mutation rate of the markers.

Coalescent methods have important limitations (Marko and Hart 2011). First, despite
lacking several of the unrealistic assumptions of Wright’s Island model, each coalescent
estimator has an underlying demographic model that still makes some assumptions about the
history and structure of the sampled populations that may or may not match reality. Second,
given the high among-locus variance in the coalescent, robust and consistent answers from
coalescent estimators require data from multiple loci (Karl et al. 2012). Third, even with high-
performance computing clusters, it is impractical to apply coalescent methods that use MCMC
samplers to genomic datasets consisting of thousands of individual Single Nucleotide
Polymorphisms (SNPs) in which each SNP has its own gene tree (although many population
genetic questions often do not require thousands of loci). Lastly, coalescent theory is based on
mathematical approximations that assume that effective population size is large and that
migration rates are low. So, like Fsr, coalescent methods are not expected to perform well when
Nm is very large (>10) or when N is very small (<100).
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Approximation Methods. A less computationally-intensive alternative, Approximate
Bayesian Computation (ABC) methods (Beaumont 2002; Lopes and Beaumont 2009; Csilléry et
al. 2010) estimate posterior distributions of demographic parameters from simulated data sets
and summary statistics (e.g., number of alleles, genetic diversity, genetic distances) rather than
from samples of likely gene trees. Instead of assuming a single demographic model (as with Nm
from Fgr and from coalescent estimators), ABC typically starts by simulating data under several
alternative demographic models (e.g., with and without migration) and then either accepting or
rejecting models by comparing summary statistics for each simulated data set to the observed
values. The posterior distributions for demographic parameters of interest are then approximated
from the distribution of parameters values from the accepted models (like model selection and
model averaging approaches used in some coalescent methods based on likelihoods). Like other
population-based methods, even though the posterior for m is estimated in demographic
quantities in most ABC methods, the value of m depends on the priors for mutation rates used in
the simulations. Because ABC methods do not make full use of sequence data (i.e., the
coalescent), they typically do not provide estimates of demographic parameters as precise as
those from MCMC methods (Beaumont et al. 2002). However, the practical advantages of ABC
lie in the capability to consider very large genome-wide data sets and to make direct comparisons
among complex demographic models defined by the investigator (e.g., Rougemont et al. 2016).
Alternatively, when estimating migration rates between two or more populations, the joint site
frequency spectrum (SFS) can also be used instead of summary statistics. The SFS is more
informative than any single summary statistic (all summary statistics can be calculated from
allele frequencies, but allele frequencies cannot be calculated from summary statistics) and is
advantageous in that increasing the number of SNPs or individuals does not proportionally
increase the computational time, but greatly increases the power of the analysis (Excoffier et al.
2013). Another relatively new computationally efficient approach for inferring demographic
parameters (including migration) combines diffusion approximation (e.g., Fisher 1922;
Kolmogorov 1931; Kimura 1964) of the expected SFS under alternative demographic models
with maximization of the similarity between the observed SFS and the simulated SFS across
simulated parameter values in the demographic model (Gutenkunst et al. 2009).

Individual-based Methods

In contrast to population-based methods, the rate or direction of ongoing dispersal can be
estimated by the classification of individual genotypes as immigrants (or the recent descendants
of immigrants). This approach has great appeal because these insights into the dispersal history
of individual organisms provide estimates of net dispersal and therefore come closer to the kind
of direct insight into connectivity that would be gained from direct observations of larval
movements in the plankton. Here we focus on three methods and their implementation that have
been used by empiricists studying marine larvae. All three of these methods use transient, short-
lived effects of immigration on inter-individual genetic variation to detect recent or ongoing
migration events. This feature also sets the individual-based methods apart from population-
based methods that draw inferences from allele frequencies, coalescent times, or other population
genetic variables that are associated with changes in genetic variation on long timescales. Thus,
individual-based methods give insights into connectivity among populations that are
complementary to the results from population-based methods, but like population-based
methods, they have their own distinctive limitations on those insights (e.g., Jones et al. 2005;
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Planes et al. 2009; Christie et al. 2010; Harrison et al. 2012; Saenz-Agudelo et al. 2012; Pusack
et al. 2014).

Clustering Individuals from Different Samples. The most intuitively appealing individual-

based methods use clustering of individual genotypes from multiple samples (e.g., from several
geographic locations) into one or more genetically similar groups; immigrants can then be

identified as genotypes from one sample that are more confidently clustered with genotypes from
some other sample or location. Clustering methods can potentially be used to estimate
immigration (m) by dividing the number of immigrant genotypes identified in a population
sample by the size of that sample, if the number of genetic clusters is known and correctly
specified.

The most widely cited clustering method is the suite of algorithms in the program called
STRUCTURE described by Pritchard et al. (2000). Such clustering methods are sometimes
described as making fewer assumptions about demographic structure and history in comparison
to population-based methods (Pearse and Crandall 2004). In the case of STRUCTURE, each
cluster of genetically similar individuals is assumed to have its own demographic history in
which genotypes at a single locus are in HWE (due to random mating in a large population), and
alleles at different loci are expected to be in linkage equilibrium (due to recombination and
independent assortment). Optimization by MCMC is used to find the individual assignments to
clusters that minimize linkage disequilibrium (LD) and maximize HWE within each cluster.
Thus, although clustering and other individual-based methods do not directly estimate migration
rates or population size in an explicit population model, some of those model parameters enter
the individual-based methods under the guise of the quantities to be optimized in the search for
immigrant genotypes.

Under these assumptions, recent immigration events are expected to cause both transient
LD among loci (by adding unusual combinations of alleles at different loci) and deviations from
HWE for single loci (by adding unusual genotypes). These effects are expected to be short-lived
because random mating and recombination will break up linkage groups and restore HWE within
one or a few generations after each immigration event. Consequently, STRUCTURE results are
sensitive mainly to the genetic signal from recent or ongoing immigration. In the original
STRUCTURE model, first-generation immigrant individuals could be identified as those
multilocus genotypes from one geographic region (or destination) that had a high probability of
assignment to a cluster that was common in a different geographic region (or source). In
subsequent versions of the model, recent descendants of immigrants could also be identified as
those individuals with an admixture of alleles characteristic of both the source and destination
populations (Falush et al. 2003).

Although STRUCTURE can be thought of as a method to “let the data define the
populations” (Pearse and Crandall 2004), an important assumption of STRUCTURE is that the
the total sample consists of one or more genetically discrete clusters each of which is internally
homogeneous, and that the true number of clusters (K) is known and specified by the researcher.
In other words, K is not a model parameter value estimated from the data by optimization, but
rather a variable in the optimization algorithm. Incorrectly specifying K can lead to errors in
assignment, and thus errors in inferring dispersal from the distribution of clusters among
different geographic locations. The limitations on inferring both number of clusters and
assignment of genotypes to clusters in the same optimization are well known (Pritchard et al.
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2000), and several heuristic solutions to estimating K have been proposed (Evanno et al. 2005;
Kalinowski 2011; Puechemaille 2016).

A second important limitation of the STRUCTURE method is the assumption that gene
flow is low (Pritchard et al. 2000) and immigrants are rare. This assumption is inherent in all
individual-based methods (and like the assumptions underlying population-based methods),
which depend on the occurrence of recognizable clusters or differentiated populations that could
be the source of distinctive immigrant genotypes. This leads to the surprising expectation that as
the true migration rate (and the expected occurrence of immigrants in population samples)
increases, the sensitivity of individual-based methods to count immigrants and quantify
migration rates may greatly decline. Given this constraint, can clustering methods be used to
discover ecologically meaningful gene flow, or can these methods discover only gene flow that
is trivially low? Simulations (e.g., Waples and Gagiotti 2006) suggest that there may be
“situations where Nm is high enough that a realistic population sample would contain enough
immigrants to shed light on immigration patterns, yet where there remained enough
differentiation between populations to endow genetic assignment methods with adequate power
for Fy [first-generation] immigrant detection” (Paetkau et al. 2004). It seems uncertain whether
such situations are common among systems of marine animal populations. However, this
sensitivity to the homogenizing effects of long-term gene flow suggests caution in the
interpretation of individual-based estimates of ongoing gene flow when those estimates are high
(Saenz-Agudelo et al. 2009; Lowe and Allendorf 2010).

Assigning Immigrant Individuals to Source Populations. This second approach includes
some of the same model parameters from population-based methods (including the migration
rate, m), but estimates those model parameters by identifying recent immigrants and their
population of origin (rather than by characterizing long-term rates of gene flow). The most
widely used of these methods is called BayesAss (Wilson and Rannala 2003). Each sampling
location is assumed to constitute a population that may include some first-generation immigrants
from one or more source populations, as well as recent (second or third generation) descendants
of immigrants; allele and genotype frequencies at each locus can vary among populations (and to
vary away from HWE conditions); and different pairs of populations may exchange migrants at
different rates. Unlike clustering methods, BayesAss starts with the assignment (Packtau et al.
1995) of each individual genotype to the sample where that genotype’s expected frequency is the
greatest (based on the observed distributions of alleles). Then, like clustering methods, the fit of
the model to multilocus genotype assignments is evaluated by maximum likelihood, and
optimization is used to find the most likely values of m that can account for the number and
source of immigrant genotypes (or descendants of recent immigrants one or two generations into
the past). As with clustering methods, the assignment tests are sensitive only to recent
immigration because additional generations of mating with non-immigrant genotypes will erode
the signal of immigrant ancestry beyond the second-generation descendants of immigrants.

A significant limitation of this assignment approach may be its ability to resolve complex
patterns of migration among a biologically realistic (large) number of populations (Faubet et al.
2007; Mardulyn et al. 2008). Meirmans (2014) showed that estimates of migration rates from
BayesAss analyses may be biased by computational limitations on the ability to optimize model
parameter values (migration rates into many populations) from limited data (small numbers of



individuals and loci). In general, the quality of BayesAss results improves with larger samples
of organisms and deeper sampling of genomes, but declines with larger numbers of populations.

Assigning Individuals to Families. A third — and conceptually distinct — approach to
counting migration events includes the fewest population model parameters. This approach uses
genealogical methods to infer parent-offspring relationships among sampled genotypes, and
infers migration from the discovery of close family members in different population samples.
One highly cited method is called CERVUS; the original version was designed to assign
paternity to offspring given genotype data for those offspring and their known mothers (Marshall
et al. 1998); extensions of the method allowed for the effects of genotyping errors, and for more
accurate assignment of parentage given only genotypes of offspring and candidate parents (and
without a known maternal or paternal genotype; Kalinowski et al. 2007). Some candidate parents
can be excluded by allelic mismatches with offspring genotypes; like clustering and assignment
methods, CERVUS then uses likelihood scores to assess non-excluded candidate parents and
identify the most likely parent for each parent-offspring pair (based on the frequencies of the
shared alleles, and heterozygosity of the parental genotypes). Unlike other methods, which fit
population model parameters (and characterize confidence in the parameter value estimates) by
optimization, parentage methods are based on simple Mendelian inheritance rules rather than on
a formal population model; instead of optimization, the confidence in the identification of a
specific parent-offspring pair in CERVUS is assessed by comparison to simulations that use
empirical allele frequencies from the sampled populations.

Although methods like CERVUS are designed to assign parentage and identify parent-
offspring pairs, some studies that identify the same parent(s) for more than one offspring can
thus also identify full- or half-sibling pairs, including siblings that were collected in different
population samples. This is a significant but largely untapped strength of parentage methods:
they provide the only individual- or population-based genetic approach that can quantify
migration specifically caused by advection of offspring away from their parents (e.g., a
planktonic cohort of sibling larvae that disperses away from the parental population in an ocean
current), and distinguish this from migration caused by diffusion of siblings away from each
other (e.g., spread of siblings of the same cohort or different cohorts due to spatial or temporal
variation in current speed and direction). Both advection and diffusion in the plankton contribute
to observed levels of migration and gene flow, but the two modes of dispersal have different
ecological and evolutionary consequences (Palmer and Strathmann 1981) on both small
(Grosberg 1991) and large spatial scales (Largier 2003).

Parentage methods (especially those that use exclusion to screen out most candidate
parent-offspring pairs) also have a significant weakness: they may be sensitive to the effects of
genotyping errors that cause non-parental alleles to be observed in true offspring of a parent
(e.g., so-called stuttering of microsatellite allele sizes; Bonin et al. 2004); conversely, as the size
of studies grow, a large number of pair-wise comparisons can cause unrelated individuals to
share alleles by chance. A counter-intuitive effect of the sensitivity to genotyping error is that the
number of mistakes in parentage assignment may increase with the number of sampled loci in
assignment methods based on exclusion (because non-parental alleles observed in offspring may
be sufficient to mistakenly exclude a true parent-offspring pair), in contrast to other individual-
or population-based methods where confidence in clustering or population assignment should
increase with the number of loci sampled (Sobel et al. 2002). Genotyping errors can be included
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in probabilistic models for identifying parent-offspring pairs (Kalinowski et al. 2007), but
decreasing the sensitivity of the models to genotyping error also decreases the accuracy with
which true parent-offspring pairs may be distinguished from other genetic similarities between
individuals (Christie 2009). This sensitivity to genotyping errors may impose a significant
limitation on the use of some parentage methods in genome-scale studies of larval dispersal and
gene flow.

Improved understanding of larval dispersal and gene flow

Here we highlight several areas of advancement since Palumbi’s (1995) review, especially those
areas that have benefited from the application of new coalescent population models or
individual-based methods.

Biological correlates of larval dispersal: planktonic larval duration

Because most marine larvae cannot be followed directly in the plankton, ecologists have long
searched for useful proxies for dispersal potential. One common and accessible proxy — the
duration of the planktonic larval stage (PLD) — can be estimated by rearing larvae in the
laboratory or by observing calibrated growth marks (such as daily increments in growth of fish
otoliths) in larvae collected from the plankton. Estimates of dispersal potential based on PLD
vary among species from several minutes to several years (Strathmann and Strathmann 2007).
Palumbi (1995) reviewed the early evidence for variation in PLD. He asked whether PLD
covaries with (and statistically accounts for) realized dispersal measured as differentiation itself
(e.g., Fsr) or as a pattern of increased differentiation among populations separated by larger
geographic distances known as isolation-by-distance (IBD), in which the strength of IBD is
characterized by the slope of a regression of Fst against geographic distance between pairs of
populations (Slatkin 1993; Rousset 1997). This definition of IBD among populations in a
stepping-stone model of multiple habitat patches is slightly different from Wright’s (1943)
original definition of IBD among individuals in a single habitat patch in which typical dispersal
distances are less than the dimensions of the habitat (what Wright called “local inbreeding in a
continuous area”). However, the two definitions share a similar concept of limited or localized
dispersal leading to greater genetic differences on larger spatial scales.

Several early and important comparative studies of congeneric marine gastropod species
with or without planktonic larvae established support for the specific and intuitive idea of an
inverse relationship between PLD and population genetic differentiation (e.g., Berger 1973,
Snyder and Gooch 1973, Gooch 1975), and the for the general idea that PLD can be used as a
proxy for realized or typical larval dispersal distances (Crisp 1978). Other comparative genetic
studies of related and co-distributed molluscs (e.g., Hoagland 1986; Kyle and Boulding 2000;
Collin 2001), fishes (e.g., Waples 1987; Doherty et al. 1995), echinoderms (e.g., McMillan et al.
1992; Arndt et al. 1998), corals (Hellberg 1996), and crustaceans (e.g., Duffy 1993) provide
additional evidence of a strong negative correlation between PLD and population genetic
differentiation.

However, a steady accumulation of counterexamples cast some doubt on the generality of
this pattern (Burton 1983; Palumbi 1995). Some of the exceptions are more difficult to evaluate
given that they are generally not comparative studies of either closely-related or co-distributed
taxa, but are instead studies of population structure in single species that revealed unexpectedly
high or low genetic differentiation relative to the authors’ expectations based on PLD estimates
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(Saunders et al. 1985; Watts et al. 1990; France et al. 1992; Todd and Lambert 1993; Planes
1993; Wares et al. 2001; Taylor and Hellberg 2003; Rocha et al. 2005; Baums et al. 2006;
Bowen et al. 2006; Marko et al. 2007). Several literature reviews and meta-analyses have
attempted to resolve this issue, but have come to substantially different conclusions, with some
studies reporting a strong relationship between PLD and metrics of population differentiation
(Bohonak 1999; Siegel 2003; Shanks et al. 2003) and others reporting a much weaker
relationship (Bradbury et al. 2008; Ross et al. 2009; Weersing and Toonen 2009; Kelly and
Palumbi 2010; Selkoe and Toonen 2011; Riginos et al. 2011).

Several factors may account for this uncertain or contentious relationship between PLD
and population genetic differentiation. First, although meta-analyses of large numbers of studies
have great power, they also confound variation in the biology of the study organisms with
variation in the methodological approaches and shortcomings of the individual studies (Selkoe
and Toonen 2011; Dawson 2014). Sample sizes, spatial scales of sampling, biogeographic
region, genetic marker choice, and the metric of realized larval dispersal (especially the choice of
Fsr versus the IBD slope) can affect the apparent relationship between PLD and population
genetic differentiation (Weersing and Toonen 2009; Selkoe and Toonen 2011).

Second, the strength of early comparative studies lay in phylogenetically-controlled
comparisons of co-distributed taxa. However, these studies focused on comparisons between
species with relatively large, qualitative differences in dispersal potential (i.e., planktonic larvae
versus non-planktonic larvae). Although species that lack planktonic larvae are relevant to
predictions about the effect of PLD on dispersal, a strongly bimodal distribution of PLD (with
one mode at zero for species without a planktonic larva) biases the perceived strength of the
overall relationship between time spent in the plankton and genetic differentiation (Bay et al.
2006; Ross et al. 2009; Weersing and Toonen 2009; Kelly and Palumbi 2010; Riginos et al.
2011).

Third, the use of PLD as a proxy for dispersal potential is itself fraught with difficulty.
Laboratory measures of PLD do not easily account for seasonal and annual variation (especially
in temperature and food availability) in nature. The capabilities of some larvae to greatly extend
their time in the plankton, by the uptake of dissolved organic matter (e.g., Moran and Manahan
2004) or by developmental arrest (e.g., Pradillon et al. 2001), and the abilities of other larvae to
enhance or limit their advection by active swimming (e.g., Kough et al. 2014) or by orientation
to physical and chemical cues in the ocean (e.g., Mouritsen et al. 2013), may also contribute to a
mismatch between laboratory measurements of PLD, actual time spent in the plankton, and the
realized effects of larval duration on dispersal and gene flow.

Lastly, Fsr-based metrics of realized dispersal invoke Wright’s Island Model
assumptions. Are these assumptions justified, or would other measures of migration and gene
flow (e.g., McGovern et al. 2010; Crandall et al. 2012) more closely reflect the dispersal
capabilities of larvae? Most of these assumptions are difficult to test. The assumption of a drift-

migration equilibrium is supported by (but not a requirement for) observations of significant IBD
in a system of populations (Wares 2002). Gene flow and genetic drift are also more likely to be
near equilibrium at small spatial scales between neighboring populations (Slatkin 1993; Hellberg
1995). Consistent with that view, Selkoe and Toonen (2011) found a stronger relationship
between realized dispersal distances (the IBD slope) and PLD when analyzing Fstr measured on
relatively small spatial scales (<650 km). It was surprising, then, that the relationship between
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PLD and Fst was not improved by analyzing only datasets with significant IBD (Selkoe and
Toonen 2011).

Given these conflicting results, it seems fair to ask: does planktonic larval duration
predict the scale and magnitude of marine larval dispersal as estimated from measures of
population genetic differentiation? Clearly, species that lack planktonic larvae typically show
much stronger patterns of population genetic differentiation than species with planktonic larvae.
However, the overall quantitative relationship between PLD and genetic differentiation is much
less strong, probably because dispersal potential of planktonic larvae is difficult to estimate from
laboratory PLD, Fsr is sometimes a poor proxy for gene flow, and Fgr itself is sensitive to the
overall level of polymorphism of the genetic markers (e.g., Meirmans and Hedrick 2010), and
because many other factors probably affect the realized dispersal of marine larvae.

One proposed solution to that unsatisfying conclusion is to ask the same question in a
more specific and restricted form. Evidence of a fundamental mechanistic relationship between
PLD and realized dispersal is most often clear in comparisons between co-distributed species
that have occupied the same seascape for the same amount of time (as measured by similarly
aged coalescents), so that genetic drift has had the same opportunity to cause the evolution of
population differentiation proportional to PLD differences among species (Dawson 2014;
Dawson et al. 2014). Focusing only on such synchronously diverging and co-distributed taxa
may give the clearest view of the mechanistic relationship between PLD and Fsr. Unfortunately,
this approach is less useful for interpreting population differentiation in studies of single or
idiosyncratic species (lacking a co-distributed species of a similar coalescent age for
comparison), for which population genetic structure may be important and interesting but for
which a comparative context is unavailable for interpreting the geographic extent or magnitude
of differentiation relative to PLD.

A second proposed solution is to ask the question in a broadly expanded form that
includes PLD plus the many other factors that influence realized dispersal, such as the regional
oceanography or “seascape” (e.g., Barshis et al. 2012; Sunday et al. 2014; Liggins et al. 2015),
habitat availability (e.g., Crandall et al. 2012), population size and fecundity (e.g., Saenz-
Agudelo et al. 2010; Dawson et al. 2014), temperature (e.g., Kelly and Eernisse 2007; Bradbury
et al. 2008), adult behavior during spawning (e.g., Carson et al. 2010), and larval behavior in the
plankton (e.g., Gerlach et al. 2007). This multifactorial approach seems promising. For
example, numerous studies have reported highly variable genetic differentiation on small spatial
scales, much less than the expected geographic scale of larval dispersal. This pattern is in some
ways the opposite of IBD, and has been dubbed “chaotic genetic patchiness” (Johnson and Black
1982; David et al. 1997 Selkoe et al. 2010; Cornwell et al. 2016). One proposed cause of such
patterns is strong temporal variation in both the sources of planktonic larvae and in availability
of recruitment sites among destination populations (Johnson and Black 1984). A second
proposed cause of such patterns is high variation in reproductive success among broadcast-
spawning adults, leading to low genetic diversity within cohorts of offspring (relative to diversity
among all adults) and strong differentiation among cohorts (Hedgecock 1994; Hedgecock and
Pudovkin 2011). This type of sweepstakes reproduction (with few winners, and many losers) can
reduce local genetic effective population size within each reproductive event and may promote
population differentiation. However, migration of larvae — and especially the diffusion of larvae
from a single cohort away from each other — should lead to the homogeneous sharing of
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offspring of the sweepstakes ‘winners’ among many populations, and should prevent the
evolution of genetic differentiation among populations with overlapping generations derived
from multiple cohorts of larvae (Hedgecock 1994). Broquet et al. (2013) used simulations to
show that a simple additional factor — a small reduction in diffusion, or a small tendency for
larvae to aggregate and to disperse together — could produce strong local population
differentiation that was quantitatively like empirical measures of chaotic patchiness in nature
(also see Eldon et al. 2016). Broquet et al. (2013) conceded that aggregation and collective
dispersal of cohorts seems unlikely, but is consistent with greater than expected kinship among
some larvae and new recruits (Selkoe et al. 2006; Hedgecock et al. 2007; Iacchei et al. 2013;
Ottman et al. 2016; Sewlyn et al. 2016), and could be readily tested using data from the
quantification of dispersal kernels (Fig. 3) using individual-based methods.

Estimates of dispersal distances

Given that few generalities can be made about larval dispersal from large meta-analyses, the
attention of some marine ecologists has shifted towards understanding how far individual larvae
travel between fertilization and metamorphosis, and to characterizing the frequency distribution
of those dispersal distances. That frequency distribution is also known as the dispersal kernel
(Largier 2003; Botsford et al. 2009), and it is expected to be related to many of the most
important ecological and evolutionary quantities associated with pelagic larval development.

Isolation-by-distance. One approach to measuring characteristic larval dispersal distances
has used parameter estimates from population-based methods such as Fst. However, this fixation
index is an unreliable measure of genetic differentiation in species with high gene flow (Fig. 2;
Waples 1998). The IBD slope is likely a better proxy for realized dispersal in high-dispersal
marine species (Palumbi 2003) because there should be no relationship between Fst and
geographic distance if error associated with Fgr is as large as the estimates of Fgr.

In an influential study, Kinlan and Gaines (2003) used a population genetic simulation of
larval dispersal (from Palumbi 2003) to characterize the relationship between variation in
simulated dispersal distance and variation in the resulting IBD slope among simulated
populations. They then applied that function to estimate dispersal distances from empirical
studies of IBD patterns among population genetic samples of marine organisms. Kinlan and
Gaines (2003) used this simulation approach to circumvent the difficulties in obtaining direct
estimates of larval dispersal distances for species with prolonged planktonic development and
large population sizes (Cowen and Sponaugle 2009). As with Palumbi (2003), they inferred
surprisingly short dispersal distances of only approximately 0.01-100 km per generation, and
proposed that a large part of that extraordinary variation was related to PLD and other intrinsic
biological differences in dispersal potential among marine animal species.

Many other marine animals have geographic ranges that greatly exceed the dispersal
distances estimated from IBD patterns. A plausible mechanism leading to that difference is
stepping-stone migration (Kimura and Weiss 1964) over many generations of short-distance
dispersal events that link far-flung populations (e.g., Planes and Fauvelot 2002). Crandall et al.
(2012) reviewed examples of IBD, and noted that genetic evidence for stepping-stone migration
(and its implications for larval dispersal) is rare relative to many examples of spatial genetic
variation that are more consistent with the effects of recent range expansion, rare long-distance
dispersal events, or other nonequilibrium processes. Crandall et al. (2012) used a clever

14



comparative approach to distinguish the effects of stepping-stone gene flow from the
contributions of other processes to population genetic variation. They sampled mtDNA
population variation across Indo-Pacific island archipelagos for neritid snails in which adults of
some species live in marine habitats, but adults of some other species have evolved to live only
in freshwater streams on high islands. Both types of species have swimming planktonic marine
larvae, and adults of both types can live on high islands (in freshwater or marine habitats), but
the two types of species differ in their opportunities for stepping-stone gene flow: species with
marine adults can disperse between high islands over several generations by using the marine
habitats of low atolls as stepping stones; in contrast, amphidromous species can only disperse
between high islands directly in a single generation (because adults are unable to live on atolls
that lack freshwater habitats). By using a coalescent population-based method to model
migration rates independent of other population model parameters, Crandall et al. (2012) showed
that stepping-stone dispersal led to greater gene flow between high islands for one marine
species but not for amphidromous species. A physical circulation model of ocean currents
provided important context for that comparison: in some cases, high islands were connected by
strong currents that allowed direct dispersal between populations of both marine and
amphidromous species; only in cases without a strong direct oceanographic connection did the
two types of species differ in migration rates (due to their different abilities to make use of
stepping-stone dispersal via atolls).

This example has several interesting implications. First, it shows that careful dissection of
multiple factors (including ocean currents and adult habitat requirements) may often be needed
to reveal the specific circumstances that lead to a correlation between genetic differentiation and
geographic distance, and to estimate the contribution of stepping-stone larval dispersal to the
direction and magnitude of gene flow. Second, the neritid example suggests that coalescent
population models (rather than summary statistics such as Fsr from Wright’s Island Model) may
be needed to estimate migration rates from genetic data in a complex biogeographical setting
where many other processes also affect larval movements in the plankton. Third, the example
illustrates a potentially important limitation on the use of individual-based methods and dispersal
kernels to understand larval migration, gene flow, and population structure. Because individual-
based methods detect only the effects of ongoing or recent immigration over one or a few
generations, they may be inherently incapable of capturing a complete view of larval migration if
stepping-stone dispersal over many generations is an important mechanism linking far-flung
parts of a metapopulation. Distant populations in a stepping-stone model may show little genetic
connectivity on short time scales (measured by individual-based methods), but may show
substantial connectivity on longer time scales (measured by population-based methods),
especially if stepping-stone gene flow is episodic and influenced by temporally varying patterns
of ocean circulation. In this sense, the characterization of dispersal kernels from data using
clustering methods or assignment tests (see below) may be a necessary but insufficient basis for
linking larval biology and dispersal to ecological or evolutionary processes, and may require the
addition of population-based methods that integrate the effects of gene flow over many
generations via stepping-stone migration.

Dispersal kernels. In contrast to the IBD approach that uses population-based methods, a
second approach to measuring characteristic larval dispersal distances is the dispersal kernel or
the frequency distribution of distances between parents and their offspring. This distribution can
be characterized using individual-based methods to identify and count immigrants, assign them
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to source populations, and describe the frequency distribution of larval dispersal distances. An
elegant example from a coral reef fish illustrates both the promise and the limits of this approach.
D’Aloia et al. (2014) used microsatellite polymorphisms and mitochondrial DNA sequences to
characterize population genetic variation in the neon goby Elacatinus lori from several
populations sampled on the continuous barrier reef system and on isolated atolls along ~150 km
of the coast of Belize in the western Caribbean. Adults of this species live in large sponges where
males brood developing embryos; hatched larvae leave the sponge (and the parents) to spend
three weeks or more in the plankton before recruiting to a new sponge host. Despite the potential
for long-distance larval dispersal during that long planktonic period, population differentiation
(e.g., mtDNA Fsr up to 0.46) was strong on both small (< 20 km) and large spatial scales;
differentiation was especially strong between atolls and the barrier reef; and there appeared to be
little evidence of IBD.

To better understand those patterns, D’ Aloia et al. (2015) then intensively sampled >10°
single-locus microsatellite genotypes from thousands of E. lori adults and newly recruited
offspring along a 41 km transect of the barrier reef. The parentage method in CERVUS identified
120 parent-offspring pairs, which allowed D’ Aloia et al. (2015) to characterize the dispersal
kernel from that high-resolution frequency distribution: the most common dispersal distance was
<1 km, the mean distance (estimated by model-fitting; Fig. 3) was <3 km, and the largest
distance traveled by any offspring was only ~16 km. Many (24) offspring were members of 11
different full- or half-sib families, including eight families in which siblings diffused away from
each other and were advected different distances away from their parents; two families in which
siblings were advected the same distance from the parent(s) (without diffusion away from each
other); and one family in which all siblings recruited to the same location with the parent (and
without advection or diffusion). A single family included both the longest observed dispersal
distance from the parent (16.4 km) for one of the half-sibs, as well as the modal dispersal
distance from the parent (0.8 km) for the other half-sib. That variation within and among families
suggests that advection (away from parents), diffusion (away from siblings), and local retention
of larvae all contribute to patterns of larval dispersal and gene flow in E. lori.

Additional modeling (D’Aloia et al. 2015) suggested that population genetic
differentiation along the barrier reef was caused by a form of isolation-by-distance among
mating groups (associated with different host sponges) that were separated by distances greater
than a few kilometers, like Wright’s (1943) original definition of IBD. Although D’Aloia et al.
(2014) emphasized a lack of isolation-by-distance among populations, a relatively strong pattern
of IBD was evident among the barrier reef populations only (Fig. 4), and that pattern was
consistent with the expected effects of short-distance larval dispersal along the continuously
distributed barrier reef habitat. In contrast, D’ Aloia et al. (2015) argued that populations on atolls
are demographically isolated from the barrier reef (and from each other) by deeper water and the
absence of stepping stones (the host sponge species) in the intervening habitat. That
interpretation was supported by the absence of IBD on any geographic scale for pairwise
differentiation among atoll populations or between atolls and the barrier reef (Fig. 4).

Comparable patterns of spatial genetic variation have been found in other Elacatinus
species (Taylor and Hellberg 2003, 2006), and similar dispersal kernels have been found in a
handful of other studies that used individual-based genetic methods to characterize dispersal
distances (e.g., clownfish; Buston et al. 2012; Almany et al. 2016; Pinsky et al. 2016). These
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results seem important because they suggest that realized dispersal distances of many coral reef
fish may be considerably shorter than expected (Kinlan and Gaines 2003; Cowen & Sponaugle
2009; Shanks 2009). They implicate larval behaviour in the plankton (e.g., swimming activity,
orientation, vertical migration) and stepping-stone gene flow between habitat patches that are
separated by distances less than the typical larval dispersal distance (e.g., Crandall et al. 2012) as
critically important factors that mediate the relationship between potential and realized dispersal
over both short timescales (reflected in the dispersal kernel) and over long timescales (reflected
in population model parameters such as pairwise population Fgr).

This detailed treatment of a specific example from gobies illustrates both the potential
importance of individual-based genetic methods and the limits on their application for
understanding marine larval dispersal. In a pilot study focused on a single E. lori population
from a 0.5 km section of barrier reef, D’Aloia et al. (2013) were able to assign almost 5% of
offspring to parents; when the geographic scale of the study was extended to capture the full
dispersal kernel, the assignment rate was reduced by about half (D’Aloia et al. 2015), in spite of
the large sample size of adults and offspring (>7000), because the broader study area included
many more individuals of which a smaller proportion were sampled, genotyped, and assigned to
families. That difference suggests that it may be realistic to use parentage (or other individual-
based) methods to characterize dispersal kernels only on the smallest spatial scales in small
populations of organisms with long-lived adults. For example, Stockwell et al. (2016) sampled
thousands of SNP loci from Indo-Pacific parrotfish (Scarus niger) collected at several population
locations in the Philippines separated by >100 km. They discovered convincing evidence of
larval dispersal and gene flow on that larger spatial scale (two pairs of siblings in different
populations, identified using an assignment method for identifying family members called ML-
RELATE; Kalinowski et al. 2006). That discovery suggests that the method can in principle be
applied to widely separated populations connected by planktonic larval dispersal on scales much
greater than observed in species like E. lori. However, the low assignment rates for S. niger
individuals grouped into families (~2%) implies that a vast collecting and genotyping effort
might be needed to find large numbers of sibling pairs (and dispersal distances) and to fully
characterize the dispersal kernel to the same precision achieved by D’Aloia et al. (2015; Fig. 3).
Moreover, such studies can provide only individual snapshots of the dispersal kernel; accounting
for temporal or spatial variation in the frequency distribution of dispersal distances would require
spatial replication and temporal repetition. Those sampling constraints seem to put the dispersal
kernel for S. niger and many other species (with broad geographic ranges, extensive larval
dispersal, and large populations subject to spatial and temporal variation in dispersal) out of the
reach of individual-based methods, even for studies like that of Stockwell et al. (2016) that use
automated high-throughput genomic data collection.

Consequences of larval dispersal: genetic connectivity versus demographic connectivity

The distinction between population- and individual-based methods, including the diversity of
specific parameters that each may estimate (e.g., Nm versus m), has become increasingly
important for marine ecologists, who have emphasized understanding patterns of marine
“connectivity” (Fig. 5) via larval dispersal to resolve fisheries and conservation problems such as
the design of effective networks of marine protected areas (MPAs; Gaines et al. 2010, Fig. 1). In
this context, it is useful to distinguish among several types of connectivity that reflect different
population processes and can be estimated from genetic data under different model assumptions.

17



First, marine ecologists and resource managers are typically interested in characterizing
demographic connectivity, the degree to which population persistence or growth rates are
affected over ecological timescales by larval dispersal among populations (Waples 1998;
Waples and Gaggioti 2006; Lowe and Allendorf 2010). How much dispersal is necessary to
provide significant demographic linkage among individual populations is not well understood
and highly context-dependent. One proposed standard is that a migration rate of ~10% (i.e., m =
0.1) is needed to maintain demographic synchrony (similar population dynamics and growth
rates) among separate populations linked by dispersal (Hastings 1993; Waples and Gaggiotti
20006).

By contrast, biogeographers and population geneticists have emphasized the degree to
which larval dispersal affects evolutionary processes within populations and evolutionary
divergence among them (Lowe and Allendorf 2010). These effects can include both positive
(e.g., preventing inbreeding depression) and negative consequences (e.g., preventing the fixation
of locally adapted alleles via gene swamping) of gene flow. Wright (1951) concluded that Nm>1
was sufficient to prevent the harmful effects of inbreeding and genetic drift within populations.
As a consequence, many population geneticists have used this one-migrant-per-generation
(OMPG) “rule” as a threshold value defining genetic connectivity, the amount of gene flow
necessary to homogenize allele frequencies among populations over evolutionary timescales.
However, close inspection of the relationship between Fst and Nm (Fig. 2) reveals that much
greater gene flow (Nm >10) is necessary to prevent divergence in allele frequencies. The
confusion in the literature over the OMPG rule and the expected effects of gene flow led Lowe
and Allendorf (2010) to recognize three distinct levels of genetic connectivity: drift connectivity
(gene flow that prevents divergence in allele frequencies, Nm >10); inbreeding connectivity
(gene flow that prevents the harmful loss of genetic diversity, Nm >1); and adaptive connectivity
(gene flow that is sufficiently high to promote the spread of adaptive alleles, Nm >0.1).

The differences among population- and individual-based genetic methods for analyzing
larval dispersal have obvious parallels with these distinctions between demographic connectivity
(focused on per capita migration rates, m) and genetic connectivity (focused on gene flow, Nm),
as well as implications for the choice of methods to meet different study objectives or
goals. Clustering and assignment methods characterize migration distances between populations,
and parentage methods characterize migration distances away from parents; if sampling is
sufficiently intensive, those methods can estimate the migration rate as the proportion of
migrants entering a destination population (m) through the identification of migrant individuals,
but not necessarily the evolutionary impact of immigration in the destination population (Nm)
unless the effective population size is known. Therefore, almost by definition, individual-based
methods have the potential to characterize demographic connectivity on short (ecological)
timescales (Christie et al. 2010); few give insight into effective population size, such that
individual-based methods offer little insight into genetic connectivity on longer (evolutionary)
timescales.

By contrast, most population-based methods (F,, and coalescent methods) provide
estimates of the compound parameter Nm (the number of migrants per generation), which
provides insight into the evolutionary impact of larval dispersal. This is an important limitation
because estimates of Nm provide little insight into demographic connectivity unless N or the
population growth rate is known (Lowe and Allendorf 2010). This shortcoming of population-
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based methods may often be moot for some marine species with large population sizes because
Nm can be most reliably estimated when it is small (Nm < 10), and for many marine species with
large population sizes, Nm < 10 implies m << (.1 and is likely to be demographically
insignificant. The same cannot be said for cases in which Nm > 10, because population-based
methods have little power to distinguish drift connectivity from strong demographic connectivity
(Fig. 2). However, even in cases where Nm can be reasonably interpreted in the context of
demographic connectivity (or if m can be calculated with a known mutation rate), the parameter
estimates from most population-based methods are time-averaged over long (evolutionary)
timescales, and may not be similar to present-day migration rates, particularly for species whose
populations may be declining or growing, or whose distributions may be fragmented and rapidly
changing in response to anthropogenic effects.

Conclusions

For the last 20 years, population-based genetic approaches have been the go-to analytical
methods for studying marine connectivity, whereas the development and use of individual-based
methods is in its infancy. Do the differences among the two classes of methods and their
variants matter for genetic analyses of larval migration? Population-based methods have proven
to be most useful for identifying very strong genetic breaks that often reflect a long-term lack of
both genetic and demographically significant connectivity among populations, and genetic data
can provide crucial complementary data for ecological studies that find evidence of demographic
asynchrony (Peterson et al. 1996; Marko and Barr 2007). However, if gene flow is high,
population-based methods are not expected to return clear and reliable answers about either
genetic or demographic connectivity. Individual-based methods may have greater potential and
show considerable promise to uncover evidence of demographic connectivity among
populations, but, like population-based methods, are not expected to perform well when
migration rates are high (Waples and Gaggioti 2006; Paetkau et al. 2004; Lowe and Allendorf
2010) and rely fundamentally on intensive sampling of all potential source and sink populations.
In short, genetic methods can provide strong inferences about either an absence of (either genetic
or demographic) connectivity or high genetic connectivity, but they are, at present, less useful for
demonstrating strong demographic connectivity.

Clearly, no single approach will always tell a complete story of realized dispersal and
connectivity. Comparing results from different analyses may generate insights or reveal
problems inherent in any single approach, particularly for predicting marine connectivity and its
implications for fisheries management or the design of networks of MPAs in a rapidly changing
environment. However, even though individual- and population-based estimates of connectivity
can be inferred from the same data, direct comparisons of migration rates over evolutionary
timescales to migration on more recent ecological timescales have been rare (e.g., Pusack et al.
2014; D’Aloia et al. 2015; Pinsky et al. 2016), possibly because gene flow is often too high to
expect informative population-based results on the spatial scale at which individual-based
methods are most often applied (but see Pinsky et al. 2016), and because the types of genetic
markers that are best for individual-based methods (microsatellites and SNPs, but see
Rougemont et al. 2016) are also not ideal for some of the most powerful population-based
methods (DNA sequences). In addition to inferences about larval dispersal from genetic data,
direct measurements of the impacts of dispersal on demographic processes are likely crucial for
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demonstrating meaningful demographic connectivity for the purposes of resource management
(Waples 1998; Lowe and Allendorf 2010). The complementary combination of these methods
seems likely to illuminate both the scope and scale of larval dispersal in marine systems.

Summary

» Genetic data can be used to characterize the scale or magnitude of connectivity via larval
dispersal in the plankton as the per capita migration rate (m), the rate of gene flow (Nm),
or counts of immigrant individuals.

» Population-based methods infer average effective rates of connectivity on long time
scales (hundreds to thousands of generations), and those estimates will influenced by
many processes (including larval dispersal).

+ Individual-based methods based on clustering or assignment of individual genotypes to
populations or families are suitable for estimating connectivity on short timescales.

» The typical or characteristic larval dispersal distance for any one system of populations
may best be characterized by isolation-by-distance patterns (using population model
methods) or by the dispersal kernel (using parentage-based methods)

» Migration rates estimated from individual-based methods may be more relevant to
ecological studies of demographic connectivity (e.g., among demes in a network of
marine protected areas) compared to rates of gene flow estimated from population-based
methods.
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Fig. 1. A hypothetical example in which a large difference in allele frequency between two
populations results in a deficiency of heterozygotes if all individuals are assumed to be members
of a single population with p = 0.5 and q = 0.5. The eastern and western populations are
completely isolated by a strong northward flowing current that prevents larvae from being
exchanged between east and west. Expected heterozygosity for the total population is Hr = 2pq
= (.5 but the average expected heterozygosity for each of the two individual populations is Hg =
0. Therefore, Fst = (Ht - Hs)/Ht = 1.0. Adapted from Hartl and Clark (1997).
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Fig. 2. The relationship between Fsr and Nm based on Wright’s (1978) equation Fsy = 1/(4Nm +
1) that assumes Wright’s Island Model.
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Fig. 3. Frequency distribution of dispersal distances by larvae away from parents for 120 parent-
offspring pairs of the neon goby Elacatinus lori from the western Caribbean. The dispersal
kernel was estimated by fitting a negative exponential function to the frequency distribution,
with a best estimate of the decay parameter A=0.36; the inverse of the decay parameter is the
average dispersal distance (~2.8 km). Data and analysis from D’Aloia et al. (2015); larval goby
image from Smithsonian Belize Larval-Fish Group 2002, image ID C2-19.
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Fig. 4. Patterns of isolation-by-distance (IBD) in the neon goby Elacatinus lori from the western
Caribbean (D’Aloia et al. 2014) based on 13 microsatellite loci sampled for 20-30 adults from
five populations along a continuous barrier reef and five populations from isolated atolls.
Relatively strong IBD is detectable among barrier reef populations (open symbols; high
coefficient of determination R ~0.26) that are connected by stepping-stone gene flow. D’Aloia
et al. (2014) found no IBD among populations from atolls, or between atoll and barrier reef
populations (closed symbols; R*~0.0026).
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Fig. 5. Trends in the use of the keyword ‘connectivity’ in studies of marine larval dispersal and
gene flow; data are counts of citations that use different keyword combinations in searchable
fields of records in the Web of Science database for the years 1996 through 2015 in five-year
increments following the review by Palumbi (1995). Results are shown for two alternative
keyword searches using the terms ‘larva®’ or ‘dispersal’; in each alternative search the results for
items without ‘connectivity’ (closed symbols) are contrasted with results for items including
‘connectivity’ (open symbols). In both cases the use of ‘connectivity’ has dramatically increased

since 2005.
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