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4 
Introduction 5 
“We have to remember that what we observe is not nature in itself but nature exposed to our method of 6 
questioning.” Werner Heisenberg (1958) 7 

8 
One of the major hallmarks of marine species is that many produce large numbers of 9 

small pelagic larvae that drift in the ocean for varying periods of time.  For these species, 10 
establishing the degree to which different populations are connected by larval dispersal is a 11 
fundamental goal for larval ecologists interested in understanding the influence of planktonic 12 
processes and larval supply on ecological and evolutionary processes within populations.  13 
Assessing and predicting local population and community dynamics, spread of invasive species, 14 
patterns of local adaptation, spread of advantageous alleles, maintenance of local biodiversity, 15 
sustainability of fisheries, and effective marine reserve design, all require some knowledge of 16 
rates and patterns of larval exchange among populations. 17 

However, the tiny size of most marine larvae and the variable length of time they spend 18 
in the plankton present obvious and significant obstacles for identifying the geographic origins 19 
and destinations of dispersing larvae.  The fate of marine larvae in the plankton may be likened 20 
to a black box (Buston and D’Aloia 2013): for any local population we can estimate its 21 
contribution to the pool of individuals in the planktonic darkness (many dispersing larvae), and 22 
its harvest of individuals that emerge into the light (fewer settling larvae), but we cannot easily 23 
describe the processes that affect the destination of larvae that disperse from a particular source, 24 
or the source of larvae that settle or recruit into a particular destination.  25 

As with the study of all unobservable processes, the methods of inquiry will determine, to 26 
some extent, the apparent properties of the process.  For example, not long ago, observations of 27 
marine larvae far offshore (Scheltema 1986) combined with widespread genetic homogeneity at 28 
allozyme loci (Buroker 1983; Saunders et al. 1986; Rosenblatt and Waples 1986), led many 29 
marine ecologists to the reasonable conclusion that marine larvae regularly travelled vast 30 
distances, such that many marine populations were likely well mixed on spatial scales of 31 
thousands to tens of thousands of kilometers (Palumbi 1992).  When Palumbi (1995) reviewed 32 
the evidence for associations between variation in larval dispersal potential (such as among 33 
species with long or short pelagic larval duration) and the geographic distribution of genetic 34 
variation, nearly all comparative studies analyzed small numbers of populations and loci 35 
(typically allozymes and mtDNA) with a limited number of analytical approaches.  In the 36 
intervening years, the size of data sets and the diversity of methods of analysis have grown 37 
dramatically, and significant progress has been made towards understanding the scope and scale 38 
of larval dispersal.  Many tools have been used, but much of this progress has come from using 39 
genetic methods.  In this chapter, we describe some of the most commonly used analytical 40 
genetic approaches and then discuss how these methods have improved our understanding of 41 
larval dispersal.  42 
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43 
Genetic approaches to the study of larval dispersal 44 

Rates and patterns of larval dispersal have been studied using a wide variety of methods, 45 
including direct observations of larval movement (e.g., Gerrodette 1981; Olson 1985; Knowlton 46 
and Keller 1986), mark-and-recapture (e.g., Jones et al. 1999; Thorrold et al. 2001), natural 47 
environmental markers (e.g., DiBacco and Levin 2001), oceanographic modeling (Largier 2003; 48 
Siegel et al. 2003), hybrid zones (e.g., Gilg and Hilbish 1996), and the expansion of geographic 49 
ranges caused by anthropogenic introductions (e.g., Kinlan et al. 2005) or by climate change 50 
(e.g., Sunday et al. 2015).  Techniques that employ artificial tags (i.e., to otoliths or calcified 51 
structures) or that estimate dispersal from inferred parent-offspring relationships may be 52 
considered direct measurements of net dispersal, but these methods do not necessarily measure 53 
larval dispersal alone, but instead some combination of larval and adult movement. We consider 54 
only direct observations of advection or diffusion of individual larvae in the plankton as yielding 55 
direct measurements of larval dispersal.  Although direct observations give immediate insight 56 
into dispersal, they are limited to species with large, short-lived larvae that can be followed on 57 
small spatial scales. Indirect methods based on experimental or natural marking of larvae are 58 
similarly limited to species with larval structures that can be marked and that are retained in 59 
adults, and they share with direct observations some other important limitations (especially the 60 
inability to infer average effective rates of dispersal integrated over longer periods of time into 61 
the ecological or geological past).  Consequently, indirect methods that use genetic data have 62 
become the most widely used approach for inferring patterns of larval dispersal. 63 

Although many methods have been developed to infer patterns of larval dispersal from 64 
genetic data, we think a more useful and important categorization of genetic approaches is based 65 
on the theoretical framework used to infer patterns of larval dispersal. The oldest and most 66 
familiar framework is based on data in the form of allele frequencies and gene genealogies in 67 
explicit population genetic models. These population models include one or more parameters 68 
that represent migration (m), the proportion of individuals or gene copies (i.e., alleles or 69 
haplotypes) in a population that are new immigrants each generation (and that successfully 70 
reproduce), and use a diverse range of assumptions and calculations, and either optimization (i.e., 71 
maximum likelihood) methods or simulations to find the best estimate of migration and other 72 
model parameter values fitted to the genetic data. When combined with an estimate of the 73 
effective population size (Ne or simply N), the product of the two parameters together can be 74 
used to characterize the population migration rate (Nm), usually interpreted as the number of 75 
immigrant individuals (i.e., organisms) per generation or the number of immigrant gene copies 76 
(2Nm, for diploid loci) per generation (Wright 1969). Because these population-based estimates 77 
represent the number of gene copies moving between populations, Nm is often called gene flow 78 
(Slatkin 1987, 1993; but see Mallet 2001). 79 

The second, newer framework for these approaches is based on data in the form of 80 
multilocus genotypes for individual organisms without specifying a demographic model without 81 
explicit parameters that represent migration or gene flow. Instead, these individual-based 82 
approaches use multivariate clustering, similarity measures, or inferred parentage to assign 83 
sampled individuals to groups (i.e., nominal populations consisting of similar genotypes, or 84 
families consisting of parents, offspring, and siblings). Simple Mendelian inheritance rules or 85 
population parameters are used to identify the most-likely number of groups or clusters that 86 
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minimizes within-group differences (e.g., Pritchard et al. 2000; Wilson and Rannala 2003), or to 87 
assign individuals to likely families including parent-offspring pairs or groups of siblings (e.g., 88 
Marshall et al. 1998; Wang 2004). These individual-based approaches infer larval dispersal from 89 
counts of migrant individuals, including individuals that are strongly clustered with individuals 90 
from a different sample, and individuals that have a high likelihood of being closely related to 91 
parents or siblings in a different sample. 92 

One of the most important distinctions between population-based methods and 93 
individual-based methods is the timescale over which they provide information about migration.  94 
All population-based approaches assume that the spatial distribution of alleles, the frequency of 95 
alleles in populations, and the structure of gene genealogies evolve slowly, and that this long 96 
timescale has an important effect on the observed patterns of genetic similarity or differences 97 
among populations. Therefore, population-based approaches estimate migration and gene flow as 98 
the time-averaged cumulative effects of variation in larval dispersal, larval retention, population 99 
growth, and other demographic or ecological processes integrated over relatively long 100 
evolutionary timescales (on the order of hundreds to thousands of generations).  Individual-based 101 
approaches also make an important but different assumption about the temporal scale of genetic 102 
variation that can be used to detect migration. Strong allele- or genotype-sharing between 103 
members of the same genetic cluster or members of the same family is expected to be rapidly 104 
broken down by random mating with local mates (from other clusters or families) after 105 
migration. Consequently, recombination among immigrant and local alleles will degrade the 106 
signal of group membership or family identity among the descendants of an immigrant after one 107 
or a few generations. Counts of immigrants based on such approaches can only identify new 108 
migrants or their recent descendants on short ecological timescales, on the order of one or two 109 
generations (e.g., Wilson and Rannala 2003). A corollary of this limitation is that individual-110 

      based methods may not easily distinguish between recent immigrants that reach sexual maturity 
and reproduce (and contribute to gene flow) and those that do not. 112 

With the recent incorporation of individual-based approaches into the genetic toolkit of 113 
larval biologists, researchers can potentially compare counts of immigrant individuals to 114 
historical patterns of gene flow inferred from more complex population-based approaches. In 115 
cases where both approaches give similar estimates of genetic connectivity, larval dispersal may 116 
have been consistently high (or low) over both long and short (recent) timescales, and those 117 
concordant measures of dispersal on both timescales may give reliable insight into the strength 118 
(or weakness) of population connectivity (e.g., Pinsky et al. 2016).  Numerous factors can 119 
potentially explain contradictory results from these two approaches (e.g., Palstra et al. 2007), 120 
such as natural year-to-year variability, recent changes in larval dispersal caused by human 121 
impacts (and an opportunity for conservation ecologists to mitigate that change), genotyping 122 
errors, or violation of assumptions of either method.  Distinguishing among these hypotheses 123 
may be difficult and will likely require repeated studies.   124 

As with other approaches to the study of larval dispersal, those that use genetic 125 
techniques have strengths and weaknesses, and the choice of methods will depend on what a 126 
researcher wants to know about larval dispersal: an understanding of migration rates over 127 
relatively long evolutionary timescales (population-based methods) or documentation of 128 
extremely recent migration events (individual-based methods).  In the next section, we briefly 129 
discuss the theory and practice of studying larval dispersal of marine species using genetic data 130 
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in either population- or individual-based methods. We then highlight some specific areas of 131 
progress in applying both individual- and population-based methods, and consider how those 132 
approaches give concordant or discordant insight into genetic and demographic connectivity 133 
based on larval dispersal among marine populations. 134 

135 

How to estimate larval dispersal from genetics 136 

Population-based Methods 137 

The use of genetic methods to estimate larval dispersal requires a realistic model of the processes 138 
that cause allele frequency changes and the evolution of allelic differences between populations. 139 
The primary processes are mutation, genetic drift, and natural selection.  By contrast, gene flow 140 
is a homogenizing evolutionary force that slows, erodes, or prevents the buildup of genetic 141 
difference between populations.  Most of the population genetic theory that has been developed 142 
to understand the movement of genes and individuals does so by focusing on the interaction 143 
between gene flow (which introduces alleles to populations) and genetic drift (which eliminates 144 
alleles from populations). Because genetic drift is a stochastic evolutionary force caused by 145 
random mating in a finite-sized population, it will work randomly and independently in different 146 
populations, such that, in the absence of gene flow between populations, genetic drift is expected 147 
to cause allele frequencies to diverge. Given sufficient time (generations), drift will cause the 148 
fixation of different alleles in different populations, meaning that different alleles will reach a 149 
frequency of 1.0 in each of the individual populations. 150 

Neutral genetic markers. To concentrate exclusively on gene flow and genetic drift, 151 
population geneticists focus on neutral polymorphisms: allelic differences that are expected to 152 
have no (or few) direct effects on fitness. To focus on neutral loci, population geneticists can 153 
study genes or nucleotide sites that appear to have few functional constraints, such as 154 
microsatellite loci, anonymous DNA, and synonymous 3rd codon polymorphisms in protein-155 

       coding DNA (e.g., Karl and Avise 1992).  One important consideration in identifying candidate 
neutral polymorphisms is their possible linkage to other polymorphisms under selection. More 157 
importantly, however, population geneticists can identify neutral polymorphisms for analysis 158 
using data from multiple, unlinked genetic loci.  Unlike migration and genetic drift, natural 159 
selection is expected to cause idiosyncratic patterns of differentiation at individual loci, such that 160 
loci affected by selection can be identified and potentially excluded as outliers with respect to a 161 
larger sample of loci from across the genome (Schopf 1974; Koehn et al. 1976; Johnson and 162 
Black 1984).  The important corollary of this idea is that similar spatial patterns of differentiation 163 
across multiple loci are best explained by the action of gene flow and genetic drift, forces that are 164 
expected to affect all loci across the genome in the same way.  The statistical power for 165 
identifying outlier loci (influenced by selection) has increased significantly as data from very 166 
large numbers of loci can now be gathered and analyzed, potentially within the framework of a 167 
linkage map (e.g., Bradbury et al. 2013). 168 

Classical Population Genetics. With respect to estimates of dispersal and gene flow, an 169 
important point of departure for classical population genetic methods is the Hardy-Weinberg 170 
Equilibrium (HWE) principle: in the absence of any evolutionary forces acting on a genetic 171 
locus, allele frequencies at that locus will remain constant over time.  This deterministic theory 172 
also predicts that, for a locus with two alleles A and a with frequencies p and q, respectively, the 173 
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proportion of AA homozygotes, aa homozygotes, and Aa heterozygotes is expected to be p2, q2, 174 
and 2pq, respectively.  Deviations from the expected genotype proportions in natural populations 175 
provide evidence that at least one force of evolution is influencing allele frequencies.  In the 176 
absence of selection, Hardy-Weinberg deviations can be caused by several processes that lead to 177 
non-random mating among individuals, and can provide insight into the genetic structure of 178 
populations and, potentially, patterns gene flow. 179 

For example, consider a neutral genetic locus in two isolated populations (Fig. 1).  180 
Because there is no larval dispersal (and no gene flow) between eastern and western populations, 181 
genetic drift has caused allele frequencies to diverge, such that they have become fixed for 182 
different alleles. In this situation, the HWE Principle provides a null model of high gene flow by 183 
predicting that, if eastern and western individuals were freely exchanging migrants and 184 
completely interbreeding with one another, half of the individuals (i.e., 2pq) should be 185 
heterozygotes.  Although an extreme example, any divergence in allele frequencies between 186 
populations will result in a deficit of heterozygotes compared to expected HWE genotypic 187 
proportions under the null model of high gene flow between populations.   188 

Detection of heterozygote deficiencies forms the basis for the most common measure of 189 
population genetic divergence, Wright’s (1978) FST = (HT – HS)/ HT, the difference between the 190 
expected HWE heterozygosity for the “total” population (HT) and the average expected 191 
heterozygosity among “subpopulations” or individual populations (HS) scaled by HT. Other 192 
measures of genetic differentiation have been developed, but are like FST in that they describe 193 
how genetic variation is partitioned among populations or samples from different geographic 194 
locations (e.g., Excoffier et al. 1992).  Genetic differentiation measured as FST and its analogs 195 
can also be used to infer the rate of gene flow among populations; in the simplest case, FST = 196 
1/(4Nm + 1) under a set of assumptions known collectively as Wright’s (1951) “island model.”  197 
The island model assumes many equally-sized populations (each of size N) in which a fixed 198 
proportion (m) of every population are immigrants each generation, and that m is relatively 199 
small.  The model also assumes each population has been separated for long enough that gene 200 
flow among populations and genetic drift within populations have reached an evolutionary 201 
equilibrium. An important consequence of these assumptions is that FST can only be used to 202 
estimate the compound parameter Nm, a useful parameter for understanding the impact of gene 203 
flow on allele frequencies, but of less value in understanding the demographic impact of 204 
migration (see below). 205 

Because many real populations likely do not conform to island-model assumptions 206 
(Whitlock and McCauley 1999; Beerli and Felsenstein 1998; Neigel 2002), estimates of Nm from 207 
FST are now rare in the literature (Marko and Hart 2011).  However, understanding the 208 
theoretical relationship between Nm and FST highlights several important facts.  First, Wright’s 209 
equation FST = 1/(4Nm + 1) demonstrates that a single migrant per generation has the same 210 
impact on allele frequencies in a large population as a single migrant per generation has in a 211 
small population.  This counter-intuitive result is explained by the fact that, in a large population, 212 
the relatively small impact of a single migrant on allele frequencies is opposed by relatively 213 
weak genetic drift; by contrast, in a small population, a single migrant has a much larger effect 214 
on allele frequencies, but the impact of gene flow in a small population is opposed by much 215 
stronger genetic drift.  Second, the relationship between FST and Nm emphasizes how little gene 216 
flow is necessary to keep allele frequencies similar among populations (Fig. 2) and how difficult 217 
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it can be to precisely measure migration when Nm > 10 migrants per generation, especially 218 
considering that the error associated with estimates of FST is often as large as the estimate itself 219 
when FST is small (Waples 1998).  This “gene flow problem” (Waples 1998) makes real 220 
population differentiation very difficult to distinguish from random noise in marine species with 221 
high gene flow, and makes gene flow that is sufficient to homogenize allele frequencies very 222 
difficult to distinguish from panmixia (i.e., all individuals are potential mating partners).  223 

Coalescent Population Genetics. Rather than modeling how allele frequencies are 224 
expected to change moving forward in time, coalescent population genetics focuses on the 225 
genealogical history (i.e., a gene tree) for a sample of gene copies moving backward in time: if 226 
two individual gene copies have the same common ancestor in a previous generation, those two 227 
copies are said to have coalesced.  The earliest applications of coalescent theory were used to 228 
make inferences about demographic parameters for a single population, but the theoretical 229 
framework of the coalescent has been expanded to incorporate other demographic parameters. 230 
For example, gene flow between populations can be estimated with gene trees by inferring the 231 
rate at which gene copies in one population coalesce in an ancestor in another population (Nath 232 
and Griffiths 1993; Beerli and Felsenstein 1999; Nielsen and Wakeley 2001).   233 

The primary advantage of coalescent gene flow estimators is that they often employ a 234 
much more realistic model of gene flow and population history than Wright’s Island model 235 
(Beerli and Felsenstein 1999).  Most coalescent gene flow estimators use a Bayesian statistical 236 
framework, in which a posterior distribution is estimated for each demographic parameter by 237 
simultaneously “sampling” (searching among) tree topologies and parameter values.  Coalescent 238 
methods typically use computationally intensive Markov Chain Monte Carlo (MCMC) samplers, 239 
in which small random changes are repeatedly applied to gene trees.  The likelihood of each gene 240 
tree and parameter estimate is calculated at each step in the search until the search converges on 241 
a sample of highly likely gene trees and associated parameter estimates.  This capability to 242 
calculate likelihoods for multiple individual parameter values (including those associated with 243 
gene flow and other demographic processes) is an important source of the increased realism of 244 
coalescent gene flow estimators, in contrast to the insights gained from single summary statistics 245 
(such as FST). Either Nm or m can be estimated with coalescent samplers, but estimates of m are 246 
typically scaled by mutation and can only be converted into demographically meaningful values 247 
with an estimate (or assumption) about the mutation rate of the markers. 248 

Coalescent methods have important limitations (Marko and Hart 2011).  First, despite 249 
lacking several of the unrealistic assumptions of Wright’s Island model, each coalescent 250 
estimator has an underlying demographic model that still makes some assumptions about the 251 
history and structure of the sampled populations that may or may not match reality.  Second, 252 
given the high among-locus variance in the coalescent, robust and consistent answers from 253 
coalescent estimators require data from multiple loci (Karl et al. 2012).  Third, even with high-254 

        performance computing clusters, it is impractical to apply coalescent methods that use MCMC 
samplers to genomic datasets consisting of thousands of individual Single Nucleotide 256 
Polymorphisms (SNPs) in which each SNP has its own gene tree (although many population 257 
genetic questions often do not require thousands of loci).  Lastly, coalescent theory is based on 258 
mathematical approximations that assume that effective population size is large and that 259 
migration rates are low.  So, like FST, coalescent methods are not expected to perform well when 260 
Nm is very large (>10) or when N is very small (<100).   261 
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Approximation Methods.  A less computationally-intensive alternative, Approximate 262 
Bayesian Computation (ABC) methods (Beaumont 2002; Lopes and Beaumont 2009; Csilléry et 263 
al. 2010) estimate posterior distributions of demographic parameters from simulated data sets 264 
and summary statistics (e.g., number of alleles, genetic diversity, genetic distances) rather than 265 
from samples of likely gene trees.  Instead of assuming a single demographic model (as with Nm 266 
from FST and from coalescent estimators), ABC typically starts by simulating data under several 267 
alternative demographic models (e.g., with and without migration) and then either accepting or 268 
rejecting models by comparing summary statistics for each simulated data set to the observed 269 
values.  The posterior distributions for demographic parameters of interest are then approximated 270 
from the distribution of parameters values from the accepted models (like model selection and 271 
model averaging approaches used in some coalescent methods based on likelihoods).  Like other 272 
population-based methods, even though the posterior for m is estimated in demographic 273 
quantities in most ABC methods, the value of m depends on the priors for mutation rates used in 274 
the simulations.  Because ABC methods do not make full use of sequence data (i.e., the 275 
coalescent), they typically do not provide estimates of demographic parameters as precise as 276 
those from MCMC methods (Beaumont et al. 2002).  However, the practical advantages of ABC 277 
lie in the capability to consider very large genome-wide data sets and to make direct comparisons 278 
among complex demographic models defined by the investigator (e.g., Rougemont et al. 2016).  279 
Alternatively, when estimating migration rates between two or more populations, the joint site 280 
frequency spectrum (SFS) can also be used instead of summary statistics.  The SFS is more 281 
informative than any single summary statistic (all summary statistics can be calculated from 282 
allele frequencies, but allele frequencies cannot be calculated from summary statistics) and is 283 
advantageous in that increasing the number of SNPs or individuals does not proportionally 284 
increase the computational time, but greatly increases the power of the analysis (Excoffier et al. 285 
2013).  Another relatively new computationally efficient approach for inferring demographic 286 
parameters (including migration) combines diffusion approximation (e.g., Fisher 1922; 287 
Kolmogorov 1931; Kimura 1964) of the expected SFS under alternative demographic models 288 
with maximization of the similarity between the observed SFS and the simulated SFS across 289 
simulated parameter values in the demographic model (Gutenkunst et al. 2009). 290 
Individual-based Methods 291 

In contrast to population-based methods, the rate or direction of ongoing dispersal can be 292 
estimated by the classification of individual genotypes as immigrants (or the recent descendants 293 
of immigrants). This approach has great appeal because these insights into the dispersal history 294 
of individual organisms provide estimates of net dispersal and therefore come closer to the kind 295 
of direct insight into connectivity that would be gained from direct observations of larval 296 
movements in the plankton. Here we focus on three methods and their implementation that have 297 
been used by empiricists studying marine larvae. All three of these methods use transient, short-298 
lived effects of immigration on inter-individual genetic variation to detect recent or ongoing 299 
migration events. This feature also sets the individual-based methods apart from population-300 
based methods that draw inferences from allele frequencies, coalescent times, or other population 301 
genetic variables that are associated with changes in genetic variation on long timescales. Thus, 302 
individual-based methods give insights into connectivity among populations that are 303 
complementary to the results from population-based methods, but like population-based 304 
methods, they have their own distinctive limitations on those insights (e.g., Jones et al. 2005; 305 
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Planes et al. 2009; Christie et al. 2010; Harrison et al. 2012; Saenz-Agudelo et al. 2012; Pusack 306 
et al. 2014).  307 

 Clustering Individuals from Different Samples. The most intuitively appealing individual-
based methods use clustering of individual genotypes from multiple samples (e.g., from several 

geographic locations) into one or more genetically similar groups; immigrants can then be 310 
identified as genotypes from one sample that are more confidently clustered with genotypes from 311 
some other sample or location.  Clustering methods can potentially be used to estimate 312 
immigration (m) by dividing the number of immigrant genotypes identified in a population 313 
sample by the size of that sample, if the number of genetic clusters is known and correctly 314 
specified.   315 

The most widely cited clustering method is the suite of algorithms in the program called 316 
STRUCTURE described by Pritchard et al. (2000). Such clustering methods are sometimes 317 
described as making fewer assumptions about demographic structure and history in comparison 318 
to population-based methods (Pearse and Crandall 2004). In the case of STRUCTURE, each 319 
cluster of genetically similar individuals is assumed to have its own demographic history in 320 
which genotypes at a single locus are in HWE (due to random mating in a large population), and 321 
alleles at different loci are expected to be in linkage equilibrium (due to recombination and 322 
independent assortment). Optimization by MCMC is used to find the individual assignments to 323 
clusters that minimize linkage disequilibrium (LD) and maximize HWE within each cluster. 324 
Thus, although clustering and other individual-based methods do not directly estimate migration 325 
rates or population size in an explicit population model, some of those model parameters enter 326 
the individual-based methods under the guise of the quantities to be optimized in the search for 327 
immigrant genotypes. 328 

Under these assumptions, recent immigration events are expected to cause both transient 329 
LD among loci (by adding unusual combinations of alleles at different loci) and deviations from 330 
HWE for single loci (by adding unusual genotypes). These effects are expected to be short-lived 331 
because random mating and recombination will break up linkage groups and restore HWE within 332 
one or a few generations after each immigration event. Consequently, STRUCTURE results are 333 
sensitive mainly to the genetic signal from recent or ongoing immigration. In the original 334 
STRUCTURE model, first-generation immigrant individuals could be identified as those 335 
multilocus genotypes from one geographic region (or destination) that had a high probability of 336 
assignment to a cluster that was common in a different geographic region (or source). In 337 
subsequent versions of the model, recent descendants of immigrants could also be identified as 338 
those individuals with an admixture of alleles characteristic of both the source and destination 339 
populations (Falush et al. 2003). 340 

Although STRUCTURE can be thought of as a method to “let the data define the 341 
populations” (Pearse and Crandall 2004), an important assumption of STRUCTURE is that the 342 
the total sample consists of one or more genetically discrete clusters each of which is internally 343 
homogeneous, and that the true number of clusters (K) is known and specified by the researcher. 344 
In other words, K is not a model parameter value estimated from the data by optimization, but 345 
rather a variable in the optimization algorithm. Incorrectly specifying K can lead to errors in 346 
assignment, and thus errors in inferring dispersal from the distribution of clusters among 347 
different geographic locations. The limitations on inferring both number of clusters and 348 
assignment of genotypes to clusters in the same optimization are well known (Pritchard et al. 349 
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2000), and several heuristic solutions to estimating K have been proposed (Evanno et al. 2005; 350 
Kalinowski 2011; Puechemaille 2016). 351 

A second important limitation of the STRUCTURE method is the assumption that gene 352 
flow is low (Pritchard et al. 2000) and immigrants are rare. This assumption is inherent in all 353 
individual-based methods (and like the assumptions underlying population-based methods), 354 
which depend on the occurrence of recognizable clusters or differentiated populations that could 355 
be the source of distinctive immigrant genotypes. This leads to the surprising expectation that as 356 
the true migration rate (and the expected occurrence of immigrants in population samples) 357 
increases, the sensitivity of individual-based methods to count immigrants and quantify 358 
migration rates may greatly decline. Given this constraint, can clustering methods be used to 359 
discover ecologically meaningful gene flow, or can these methods discover only gene flow that 360 
is trivially low? Simulations (e.g., Waples and Gagiotti 2006) suggest that there may be 361 
“situations where Nm is high enough that a realistic population sample would contain enough 362 
immigrants to shed light on immigration patterns, yet where there remained enough 363 
differentiation between populations to endow genetic assignment methods with adequate power 364 
for F0 [first-generation] immigrant detection” (Paetkau et al. 2004).  It seems uncertain whether 365 
such situations are common among systems of marine animal populations. However, this 366 
sensitivity to the homogenizing effects of long-term gene flow suggests caution in the 367 
interpretation of individual-based estimates of ongoing gene flow when those estimates are high 368 
(Saenz-Agudelo et al. 2009; Lowe and Allendorf 2010). 369 

Assigning Immigrant Individuals to Source Populations. This second approach includes 370 
some of the same model parameters from population-based methods (including the migration 371 
rate, m), but estimates those model parameters by identifying recent immigrants and their 372 
population of origin (rather than by characterizing long-term rates of gene flow). The most 373 
widely used of these methods is called BayesAss (Wilson and Rannala 2003). Each sampling 374 
location is assumed to constitute a population that may include some first-generation immigrants 375 
from one or more source populations, as well as recent (second or third generation) descendants 376 
of immigrants; allele and genotype frequencies at each locus can vary among populations (and to 377 
vary away from HWE conditions); and different pairs of populations may exchange migrants at 378 
different rates. Unlike clustering methods, BayesAss starts with the assignment (Paektau et al. 379 
1995) of each individual genotype to the sample where that genotype’s expected frequency is the 380 
greatest (based on the observed distributions of alleles).  Then, like clustering methods, the fit of 381 
the model to multilocus genotype assignments is evaluated by maximum likelihood, and 382 
optimization is used to find the most likely values of m that can account for the number and 383 
source of immigrant genotypes (or descendants of recent immigrants one or two generations into 384 
the past). As with clustering methods, the assignment tests are sensitive only to recent 385 
immigration because additional generations of mating with non-immigrant genotypes will erode 386 
the signal of immigrant ancestry beyond the second-generation descendants of immigrants. 387 

A significant limitation of this assignment approach may be its ability to resolve complex 388 
patterns of migration among a biologically realistic (large) number of populations (Faubet et al. 389 
2007; Mardulyn et al. 2008).  Meirmans (2014) showed that estimates of migration rates from 390 
BayesAss analyses may be biased by computational limitations on the ability to optimize model 391 
parameter values (migration rates into many populations) from limited data (small numbers of 392 
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individuals and loci).  In general, the quality of BayesAss results improves with larger samples 393 
of organisms and deeper sampling of genomes, but declines with larger numbers of populations. 394 

Assigning Individuals to Families. A third – and conceptually distinct – approach to 395 
counting migration events includes the fewest population model parameters. This approach uses 396 
genealogical methods to infer parent-offspring relationships among sampled genotypes, and 397 
infers migration from the discovery of close family members in different population samples. 398 
One highly cited method is called CERVUS; the original version was designed to assign 399 
paternity to offspring given genotype data for those offspring and their known mothers (Marshall 400 
et al. 1998); extensions of the method allowed for the effects of genotyping errors, and for more 401 
accurate assignment of parentage given only genotypes of offspring and candidate parents (and 402 
without a known maternal or paternal genotype; Kalinowski et al. 2007). Some candidate parents 403 
can be excluded by allelic mismatches with offspring genotypes; like clustering and assignment 404 
methods, CERVUS then uses likelihood scores to assess non-excluded candidate parents and 405 
identify the most likely parent for each parent-offspring pair (based on the frequencies of the 406 
shared alleles, and heterozygosity of the parental genotypes). Unlike other methods, which fit 407 
population model parameters (and characterize confidence in the parameter value estimates) by 408 
optimization, parentage methods are based on simple Mendelian inheritance rules rather than on 409 
a formal population model; instead of optimization, the confidence in the identification of a 410 
specific parent-offspring pair in CERVUS is assessed by comparison to simulations that use 411 
empirical allele frequencies from the sampled populations. 412 

Although methods like CERVUS are designed to assign parentage and identify parent-413 
offspring pairs, some studies that identify the same parent(s) for more than one offspring can 414 
thus also identify full- or half-sibling pairs, including siblings that were collected in different 415 
population samples. This is a significant but largely untapped strength of parentage methods: 416 
they provide the only individual- or population-based genetic approach that can quantify 417 
migration specifically caused by advection of offspring away from their parents (e.g., a 418 
planktonic cohort of sibling larvae that disperses away from the parental population in an ocean 419 
current), and distinguish this from migration caused by diffusion of siblings away from each 420 
other (e.g., spread of siblings of the same cohort or different cohorts due to spatial or temporal 421 
variation in current speed and direction). Both advection and diffusion in the plankton contribute 422 
to observed levels of migration and gene flow, but the two modes of dispersal have different 423 
ecological and evolutionary consequences (Palmer and Strathmann 1981) on both small 424 
(Grosberg 1991) and large spatial scales (Largier 2003). 425 

Parentage methods (especially those that use exclusion to screen out most candidate 426 
parent-offspring pairs) also have a significant weakness: they may be sensitive to the effects of 427 
genotyping errors that cause non-parental alleles to be observed in true offspring of a parent 428 
(e.g., so-called stuttering of microsatellite allele sizes; Bonin et al. 2004); conversely, as the size 429 
of studies grow, a large number of pair-wise comparisons can cause unrelated individuals to 430 
share alleles by chance. A counter-intuitive effect of the sensitivity to genotyping error is that the 431 
number of mistakes in parentage assignment may increase with the number of sampled loci in 432 
assignment methods based on exclusion (because non-parental alleles observed in offspring may 433 
be sufficient to mistakenly exclude a true parent-offspring pair), in contrast to other individual- 434 
or population-based methods where confidence in clustering or population assignment should 435 
increase with the number of loci sampled (Sobel et al. 2002). Genotyping errors can be included 436 
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in probabilistic models for identifying parent-offspring pairs (Kalinowski et al. 2007), but 437 
decreasing the sensitivity of the models to genotyping error also decreases the accuracy with 438 
which true parent-offspring pairs may be distinguished from other genetic similarities between 439 
individuals (Christie 2009). This sensitivity to genotyping errors may impose a significant 440 
limitation on the use of some parentage methods in genome-scale studies of larval dispersal and 441 
gene flow. 442 

Improved understanding of larval dispersal and gene flow 443 

Here we highlight several areas of advancement since Palumbi’s (1995) review, especially those 444 
areas that have benefited from the application of new coalescent population models or 445 
individual-based methods. 446 

Biological correlates of larval dispersal: planktonic larval duration 447 
Because most marine larvae cannot be followed directly in the plankton, ecologists have long 448 
searched for useful proxies for dispersal potential. One common and accessible proxy – the 449 
duration of the planktonic larval stage (PLD) – can be estimated by rearing larvae in the 450 
laboratory or by observing calibrated growth marks (such as daily increments in growth of fish 451 
otoliths) in larvae collected from the plankton.  Estimates of dispersal potential based on PLD 452 
vary among species from several minutes to several years (Strathmann and Strathmann 2007).  453 
Palumbi (1995) reviewed the early evidence for variation in PLD. He asked whether PLD 454 
covaries with (and statistically accounts for) realized dispersal measured as differentiation itself 455 
(e.g., FST) or as a pattern of increased differentiation among populations separated by larger 456 
geographic distances known as isolation-by-distance (IBD), in which the strength of IBD is 457 
characterized by the slope of a regression of FST against geographic distance between pairs of 458 
populations (Slatkin 1993; Rousset 1997). This definition of IBD among populations in a 459 
stepping-stone model of multiple habitat patches is slightly different from Wright’s (1943) 460 
original definition of IBD among individuals in a single habitat patch in which typical dispersal 461 
distances are less than the dimensions of the habitat (what Wright called “local inbreeding in a 462 
continuous area”). However, the two definitions share a similar concept of limited or localized 463 
dispersal leading to greater genetic differences on larger spatial scales. 464 

Several early and important comparative studies of congeneric marine gastropod species 465 
with or without planktonic larvae established support for the specific and intuitive idea of an 466 
inverse relationship between PLD and population genetic differentiation (e.g., Berger 1973, 467 
Snyder and Gooch 1973, Gooch 1975), and the for the general idea that PLD can be used as a 468 
proxy for realized or typical larval dispersal distances (Crisp 1978).  Other comparative genetic 469 
studies of related and co-distributed molluscs (e.g., Hoagland 1986; Kyle and Boulding 2000; 470 
Collin 2001), fishes (e.g., Waples 1987; Doherty et al. 1995), echinoderms (e.g., McMillan et al. 471 
1992; Arndt et al. 1998), corals (Hellberg 1996), and crustaceans (e.g., Duffy 1993) provide 472 
additional evidence of a strong negative correlation between PLD and population genetic 473 
differentiation.   474 

However, a steady accumulation of counterexamples cast some doubt on the generality of 475 
this pattern (Burton 1983; Palumbi 1995).  Some of the exceptions are more difficult to evaluate 476 
given that they are generally not comparative studies of either closely-related or co-distributed 477 
taxa, but are instead studies of population structure in single species that revealed unexpectedly 478 
high or low genetic differentiation relative to the authors’ expectations based on PLD estimates 479 
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(Saunders et al. 1985; Watts et al. 1990; France et al. 1992; Todd and Lambert 1993; Planes 480 
1993; Wares et al. 2001; Taylor and Hellberg 2003; Rocha et al. 2005; Baums et al. 2006; 481 
Bowen et al. 2006; Marko et al. 2007).  Several literature reviews and meta-analyses have 482 
attempted to resolve this issue, but have come to substantially different conclusions, with some 483 
studies reporting a strong relationship between PLD and metrics of population differentiation 484 
(Bohonak 1999; Siegel 2003; Shanks et al. 2003) and others reporting a much weaker 485 
relationship (Bradbury et al. 2008; Ross et al. 2009; Weersing and Toonen 2009; Kelly and 486 
Palumbi 2010; Selkoe and Toonen 2011; Riginos et al. 2011).   487 

Several factors may account for this uncertain or contentious relationship between PLD 488 
and population genetic differentiation.  First, although meta-analyses of large numbers of studies 489 
have great power, they also confound variation in the biology of the study organisms with 490 
variation in the methodological approaches and shortcomings of the individual studies (Selkoe 491 
and Toonen 2011; Dawson 2014).  Sample sizes, spatial scales of sampling, biogeographic 492 
region, genetic marker choice, and the metric of realized larval dispersal (especially the choice of 493 
FST versus the IBD slope) can affect the apparent relationship between PLD and population 494 
genetic differentiation (Weersing and Toonen 2009; Selkoe and Toonen 2011).  495 

Second, the strength of early comparative studies lay in phylogenetically-controlled 496 
comparisons of co-distributed taxa. However, these studies focused on comparisons between 497 
species with relatively large, qualitative differences in dispersal potential (i.e., planktonic larvae 498 
versus non-planktonic larvae).  Although species that lack planktonic larvae are relevant to 499 
predictions about the effect of PLD on dispersal, a strongly bimodal distribution of PLD (with 500 
one mode at zero for species without a planktonic larva) biases the perceived strength of the 501 
overall relationship between time spent in the plankton and genetic differentiation (Bay et al. 502 
2006; Ross et al. 2009; Weersing and Toonen 2009; Kelly and Palumbi 2010; Riginos et al. 503 
2011). 504 

Third, the use of PLD as a proxy for dispersal potential is itself fraught with difficulty. 505 
Laboratory measures of PLD do not easily account for seasonal and annual variation (especially 506 
in temperature and food availability) in nature. The capabilities of some larvae to greatly extend 507 
their time in the plankton, by the uptake of dissolved organic matter (e.g., Moran and Manahan 508 
2004) or by developmental arrest (e.g., Pradillon et al. 2001), and the abilities of other larvae to 509 
enhance or limit their advection by active swimming (e.g., Kough et al. 2014) or by orientation 510 
to physical and chemical cues in the ocean (e.g., Mouritsen et al. 2013), may also contribute to a 511 
mismatch between laboratory measurements of PLD, actual time spent in the plankton, and the 512 
realized effects of larval duration on dispersal and gene flow. 513 

Lastly, FST-based metrics of realized dispersal invoke Wright’s Island Model 514 
assumptions.  Are these assumptions justified, or would other measures of migration and gene 515 
flow (e.g., McGovern et al. 2010; Crandall et al. 2012) more closely reflect the dispersal 516 

 capabilities of larvae?  Most of these assumptions are difficult to test. The assumption of a drift-
 migration equilibrium is supported by (but not a requirement for) observations of significant IBD 

in a system of populations (Wares 2002). Gene flow and genetic drift are also more likely to be 519 
near equilibrium at small spatial scales between neighboring populations (Slatkin 1993; Hellberg 520 
1995).  Consistent with that view, Selkoe and Toonen (2011) found a stronger relationship 521 
between realized dispersal distances (the IBD slope) and PLD when analyzing FST measured on 522 
relatively small spatial scales (<650 km).  It was surprising, then, that the relationship between 523 
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PLD and FST was not improved by analyzing only datasets with significant IBD (Selkoe and 524 
Toonen 2011).  525 

Given these conflicting results, it seems fair to ask: does planktonic larval duration 526 
predict the scale and magnitude of marine larval dispersal as estimated from measures of 527 
population genetic differentiation?  Clearly, species that lack planktonic larvae typically show 528 
much stronger patterns of population genetic differentiation than species with planktonic larvae.  529 
However, the overall quantitative relationship between PLD and genetic differentiation is much 530 
less strong, probably because dispersal potential of planktonic larvae is difficult to estimate from 531 
laboratory PLD, FST is sometimes a poor proxy for gene flow, and FST itself is sensitive to the 532 
overall level of polymorphism of the genetic markers (e.g., Meirmans and Hedrick 2010), and 533 
because many other factors probably affect the realized dispersal of marine larvae.    534 

One proposed solution to that unsatisfying conclusion is to ask the same question in a 535 
more specific and restricted form.  Evidence of a fundamental mechanistic relationship between 536 
PLD and realized dispersal is most often clear in comparisons between co-distributed species 537 
that have occupied the same seascape for the same amount of time (as measured by similarly 538 
aged coalescents), so that genetic drift has had the same opportunity to cause the evolution of 539 
population differentiation proportional to PLD differences among species (Dawson 2014; 540 
Dawson et al. 2014).  Focusing only on such synchronously diverging and co-distributed taxa 541 
may give the clearest view of the mechanistic relationship between PLD and FST. Unfortunately, 542 
this approach is less useful for interpreting population differentiation in studies of single or 543 
idiosyncratic species (lacking a co-distributed species of a similar coalescent age for 544 
comparison), for which population genetic structure may be important and interesting but for 545 
which a comparative context is unavailable for interpreting the geographic extent or magnitude 546 
of differentiation relative to PLD. 547 

A second proposed solution is to ask the question in a broadly expanded form that 548 
includes PLD plus the many other factors that influence realized dispersal, such as the regional 549 
oceanography or “seascape” (e.g., Barshis et al. 2012; Sunday et al. 2014; Liggins et al. 2015), 550 
habitat availability (e.g., Crandall et al. 2012), population size and fecundity (e.g., Saenz-551 
Agudelo et al. 2010; Dawson et al. 2014), temperature (e.g., Kelly and Eernisse 2007; Bradbury 552 
et al. 2008), adult behavior during spawning (e.g., Carson et al. 2010), and larval behavior in the 553 
plankton (e.g., Gerlach et al. 2007).  This multifactorial approach seems promising.  For 554 
example, numerous studies have reported highly variable genetic differentiation on small spatial 555 
scales, much less than the expected geographic scale of larval dispersal.  This pattern is in some 556 
ways the opposite of IBD, and has been dubbed “chaotic genetic patchiness” (Johnson and Black 557 
1982; David et al. 1997 Selkoe et al. 2010; Cornwell et al. 2016). One proposed cause of such 558 
patterns is strong temporal variation in both the sources of planktonic larvae and in availability 559 
of recruitment sites among destination populations (Johnson and Black 1984). A second 560 
proposed cause of such patterns is high variation in reproductive success among broadcast-561 

 spawning adults, leading to low genetic diversity within cohorts of offspring (relative to diversity 
among all adults) and strong differentiation among cohorts (Hedgecock 1994; Hedgecock and 563 
Pudovkin 2011). This type of sweepstakes reproduction (with few winners, and many losers) can 564 
reduce local genetic effective population size within each reproductive event and may promote 565 
population differentiation. However, migration of larvae – and especially the diffusion of larvae 566 
from a single cohort away from each other – should lead to the homogeneous sharing of 567 
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offspring of the sweepstakes ‘winners’ among many populations, and should prevent the 568 
evolution of genetic differentiation among populations with overlapping generations derived 569 
from multiple cohorts of larvae (Hedgecock 1994).  Broquet et al. (2013) used simulations to 570 
show that a simple additional factor – a small reduction in diffusion, or a small tendency for 571 
larvae to aggregate and to disperse together – could produce strong local population 572 
differentiation that was quantitatively like empirical measures of chaotic patchiness in nature 573 
(also see Eldon et al. 2016). Broquet et al. (2013) conceded that aggregation and collective 574 
dispersal of cohorts seems unlikely, but is consistent with greater than expected kinship among 575 
some larvae and new recruits (Selkoe et al. 2006; Hedgecock et al. 2007; Iacchei et al. 2013; 576 
Ottman et al. 2016; Sewlyn et al. 2016), and could be readily tested using data from the 577 
quantification of dispersal kernels (Fig. 3) using individual-based methods. 578 
Estimates of dispersal distances 579 

Given that few generalities can be made about larval dispersal from large meta-analyses, the 580 
attention of some marine ecologists has shifted towards understanding how far individual larvae 581 
travel between fertilization and metamorphosis, and to characterizing the frequency distribution 582 
of those dispersal distances.  That frequency distribution is also known as the dispersal kernel 583 
(Largier 2003; Botsford et al. 2009), and it is expected to be related to many of the most 584 
important ecological and evolutionary quantities associated with pelagic larval development. 585 

Isolation-by-distance. One approach to measuring characteristic larval dispersal distances 586 
has used parameter estimates from population-based methods such as FST. However, this fixation 587 
index is an unreliable measure of genetic differentiation in species with high gene flow (Fig. 2; 588 
Waples 1998).  The IBD slope is likely a better proxy for realized dispersal in high-dispersal 589 
marine species (Palumbi 2003) because there should be no relationship between FST and 590 
geographic distance if error associated with FST is as large as the estimates of FST. 591 

In an influential study, Kinlan and Gaines (2003) used a population genetic simulation of 592 
larval dispersal (from Palumbi 2003) to characterize the relationship between variation in 593 
simulated dispersal distance and variation in the resulting IBD slope among simulated 594 
populations. They then applied that function to estimate dispersal distances from empirical 595 
studies of IBD patterns among population genetic samples of marine organisms. Kinlan and 596 
Gaines (2003) used this simulation approach to circumvent the difficulties in obtaining direct 597 
estimates of larval dispersal distances for species with prolonged planktonic development and 598 
large population sizes (Cowen and Sponaugle 2009). As with Palumbi (2003), they inferred 599 
surprisingly short dispersal distances of only approximately 0.01-100 km per generation, and 600 
proposed that a large part of that extraordinary variation was related to PLD and other intrinsic 601 
biological differences in dispersal potential among marine animal species. 602 

Many other marine animals have geographic ranges that greatly exceed the dispersal 603 
distances estimated from IBD patterns. A plausible mechanism leading to that difference is 604 
stepping-stone migration (Kimura and Weiss 1964) over many generations of short-distance 605 
dispersal events that link far-flung populations (e.g., Planes and Fauvelot 2002). Crandall et al. 606 
(2012) reviewed examples of IBD, and noted that genetic evidence for stepping-stone migration 607 
(and its implications for larval dispersal) is rare relative to many examples of spatial genetic 608 
variation that are more consistent with the effects of recent range expansion, rare long-distance 609 
dispersal events, or other nonequilibrium processes.  Crandall et al. (2012) used a clever 610 
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comparative approach to distinguish the effects of stepping-stone gene flow from the 611 
contributions of other processes to population genetic variation. They sampled mtDNA 612 
population variation across Indo-Pacific island archipelagos for neritid snails in which adults of 613 
some species live in marine habitats, but adults of some other species have evolved to live only 614 
in freshwater streams on high islands. Both types of species have swimming planktonic marine 615 
larvae, and adults of both types can live on high islands (in freshwater or marine habitats), but 616 
the two types of species differ in their opportunities for stepping-stone gene flow: species with 617 
marine adults can disperse between high islands over several generations by using the marine 618 
habitats of low atolls as stepping stones; in contrast, amphidromous species can only disperse 619 
between high islands directly in a single generation (because adults are unable to live on atolls 620 
that lack freshwater habitats). By using a coalescent population-based method to model 621 
migration rates independent of other population model parameters, Crandall et al. (2012) showed 622 
that stepping-stone dispersal led to greater gene flow between high islands for one marine 623 
species but not for amphidromous species. A physical circulation model of ocean currents 624 
provided important context for that comparison: in some cases, high islands were connected by 625 
strong currents that allowed direct dispersal between populations of both marine and 626 
amphidromous species; only in cases without a strong direct oceanographic connection did the 627 
two types of species differ in migration rates (due to their different abilities to make use of 628 
stepping-stone dispersal via atolls). 629 

This example has several interesting implications. First, it shows that careful dissection of 630 
multiple factors (including ocean currents and adult habitat requirements) may often be needed 631 
to reveal the specific circumstances that lead to a correlation between genetic differentiation and 632 
geographic distance, and to estimate the contribution of stepping-stone larval dispersal to the 633 
direction and magnitude of gene flow. Second, the neritid example suggests that coalescent 634 
population models (rather than summary statistics such as FST from Wright’s Island Model) may 635 
be needed to estimate migration rates from genetic data in a complex biogeographical setting 636 
where many other processes also affect larval movements in the plankton. Third, the example 637 
illustrates a potentially important limitation on the use of individual-based methods and dispersal 638 
kernels to understand larval migration, gene flow, and population structure. Because individual-639 

         based methods detect only the effects of ongoing or recent immigration over one or a few 
generations, they may be inherently incapable of capturing a complete view of larval migration if 641 
stepping-stone dispersal over many generations is an important mechanism linking far-flung 642 
parts of a metapopulation. Distant populations in a stepping-stone model may show little genetic 643 
connectivity on short time scales (measured by individual-based methods), but may show 644 
substantial connectivity on longer time scales (measured by population-based methods), 645 
especially if stepping-stone gene flow is episodic and influenced by temporally varying patterns 646 
of ocean circulation. In this sense, the characterization of dispersal kernels from data using 647 
clustering methods or assignment tests (see below) may be a necessary but insufficient basis for 648 
linking larval biology and dispersal to ecological or evolutionary processes, and may require the 649 
addition of population-based methods that integrate the effects of gene flow over many 650 
generations via stepping-stone migration. 651 

Dispersal kernels. In contrast to the IBD approach that uses population-based methods, a 652 
second approach to measuring characteristic larval dispersal distances is the dispersal kernel or 653 
the frequency distribution of distances between parents and their offspring. This distribution can 654 
be characterized using individual-based methods to identify and count immigrants, assign them 655 
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to source populations, and describe the frequency distribution of larval dispersal distances. An 656 
elegant example from a coral reef fish illustrates both the promise and the limits of this approach. 657 
D’Aloia et al. (2014) used microsatellite polymorphisms and mitochondrial DNA sequences to 658 
characterize population genetic variation in the neon goby Elacatinus lori from several 659 
populations sampled on the continuous barrier reef system and on isolated atolls along ~150 km 660 
of the coast of Belize in the western Caribbean. Adults of this species live in large sponges where 661 
males brood developing embryos; hatched larvae leave the sponge (and the parents) to spend 662 
three weeks or more in the plankton before recruiting to a new sponge host. Despite the potential 663 
for long-distance larval dispersal during that long planktonic period, population differentiation 664 
(e.g., mtDNA FST up to 0.46) was strong on both small (< 20 km) and large spatial scales; 665 
differentiation was especially strong between atolls and the barrier reef; and there appeared to be 666 
little evidence of IBD.  667 

To better understand those patterns, D’Aloia et al. (2015) then intensively sampled >105 668 
single-locus microsatellite genotypes from thousands of E. lori adults and newly recruited 669 
offspring along a 41 km transect of the barrier reef. The parentage method in CERVUS identified 670 
120 parent-offspring pairs, which allowed D’Aloia et al. (2015) to characterize the dispersal 671 
kernel from that high-resolution frequency distribution: the most common dispersal distance was 672 
≤1 km, the mean distance (estimated by model-fitting; Fig. 3) was <3 km, and the largest 673 
distance traveled by any offspring was only ~16 km. Many (24) offspring were members of 11 674 
different full- or half-sib families, including eight families in which siblings diffused away from 675 
each other and were advected different distances away from their parents; two families in which 676 
siblings were advected the same distance from the parent(s) (without diffusion away from each 677 
other); and one family in which all siblings recruited to the same location with the parent (and 678 
without advection or diffusion). A single family included both the longest observed dispersal 679 
distance from the parent (16.4 km) for one of the half-sibs, as well as the modal dispersal 680 
distance from the parent (0.8 km) for the other half-sib. That variation within and among families 681 
suggests that advection (away from parents), diffusion (away from siblings), and local retention 682 
of larvae all contribute to patterns of larval dispersal and gene flow in E. lori. 683 

Additional modeling (D’Aloia et al. 2015) suggested that population genetic 684 
differentiation along the barrier reef was caused by a form of isolation-by-distance among 685 
mating groups (associated with different host sponges) that were separated by distances greater 686 
than a few kilometers, like Wright’s (1943) original definition of IBD. Although D’Aloia et al. 687 
(2014) emphasized a lack of isolation-by-distance among populations, a relatively strong pattern 688 
of IBD was evident among the barrier reef populations only (Fig. 4), and that pattern was 689 
consistent with the expected effects of short-distance larval dispersal along the continuously 690 
distributed barrier reef habitat. In contrast, D’Aloia et al. (2015) argued that populations on atolls 691 
are demographically isolated from the barrier reef (and from each other) by deeper water and the 692 
absence of stepping stones (the host sponge species) in the intervening habitat. That 693 
interpretation was supported by the absence of IBD on any geographic scale for pairwise 694 
differentiation among atoll populations or between atolls and the barrier reef (Fig. 4). 695 

Comparable patterns of spatial genetic variation have been found in other Elacatinus 696 
species (Taylor and Hellberg 2003, 2006), and similar dispersal kernels have been found in a 697 
handful of other studies that used individual-based genetic methods to characterize dispersal 698 
distances (e.g., clownfish; Buston et al. 2012; Almany et al. 2016; Pinsky et al. 2016). These 699 
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results seem important because they suggest that realized dispersal distances of many coral reef 700 
fish may be considerably shorter than expected (Kinlan and Gaines 2003; Cowen & Sponaugle 701 
2009; Shanks 2009). They implicate larval behaviour in the plankton (e.g., swimming activity, 702 
orientation, vertical migration) and stepping-stone gene flow between habitat patches that are 703 
separated by distances less than the typical larval dispersal distance (e.g., Crandall et al. 2012) as 704 
critically important factors that mediate the relationship between potential and realized dispersal 705 
over both short timescales (reflected in the dispersal kernel) and over long timescales (reflected 706 
in population model parameters such as pairwise population FST). 707 

This detailed treatment of a specific example from gobies illustrates both the potential 708 
importance of individual-based genetic methods and the limits on their application for 709 
understanding marine larval dispersal. In a pilot study focused on a single E. lori population 710 
from a 0.5 km section of barrier reef, D’Aloia et al. (2013) were able to assign almost 5% of 711 
offspring to parents; when the geographic scale of the study was extended to capture the full 712 
dispersal kernel, the assignment rate was reduced by about half (D’Aloia et al. 2015), in spite of 713 
the large sample size of adults and offspring (>7000), because the broader study area included 714 
many more individuals of which a smaller proportion were sampled, genotyped, and assigned to 715 
families. That difference suggests that it may be realistic to use parentage (or other individual-716 

          based) methods to characterize dispersal kernels only on the smallest spatial scales in small 
populations of organisms with long-lived adults. For example, Stockwell et al. (2016) sampled 718 
thousands of SNP loci from Indo-Pacific parrotfish (Scarus niger) collected at several population 719 
locations in the Philippines separated by >100 km. They discovered convincing evidence of 720 
larval dispersal and gene flow on that larger spatial scale (two pairs of siblings in different 721 
populations, identified using an assignment method for identifying family members called ML-722 

          RELATE; Kalinowski et al. 2006). That discovery suggests that the method can in principle be 
applied to widely separated populations connected by planktonic larval dispersal on scales much 724 
greater than observed in species like E. lori. However, the low assignment rates for S. niger 725 
individuals grouped into families (~2%) implies that a vast collecting and genotyping effort 726 
might be needed to find large numbers of sibling pairs (and dispersal distances) and to fully 727 
characterize the dispersal kernel to the same precision achieved by D’Aloia et al. (2015; Fig. 3). 728 
Moreover, such studies can provide only individual snapshots of the dispersal kernel; accounting 729 
for temporal or spatial variation in the frequency distribution of dispersal distances would require 730 
spatial replication and temporal repetition. Those sampling constraints seem to put the dispersal 731 
kernel for S. niger and many other species (with broad geographic ranges, extensive larval 732 
dispersal, and large populations subject to spatial and temporal variation in dispersal) out of the 733 
reach of individual-based methods, even for studies like that of Stockwell et al. (2016) that use 734 
automated high-throughput genomic data collection. 735 

Consequences of larval dispersal: genetic connectivity versus demographic connectivity 736 

The distinction between population- and individual-based methods, including the diversity of 737 
specific parameters that each may estimate (e.g., Nm versus m), has become increasingly 738 
important for marine ecologists, who have emphasized understanding patterns of marine 739 
“connectivity” (Fig. 5) via larval dispersal to resolve fisheries and conservation problems such as 740 
the design of effective networks of marine protected areas (MPAs; Gaines et al. 2010, Fig. 1). In 741 
this context, it is useful to distinguish among several types of connectivity that reflect different 742 
population processes and can be estimated from genetic data under different model assumptions. 743 
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First, marine ecologists and resource managers are typically interested in characterizing 744 
demographic connectivity, the degree to which population persistence or growth rates are 745 
affected over ecological timescales by larval dispersal among populations (Waples 1998; 746 
Waples and Gaggioti 2006; Lowe and Allendorf 2010).  How much dispersal is necessary to 747 
provide significant demographic linkage among individual populations is not well understood 748 
and highly context-dependent.  One proposed standard is that a migration rate of ~10% (i.e., m = 749 
0.1) is needed to maintain demographic synchrony (similar population dynamics and growth 750 
rates) among separate populations linked by dispersal (Hastings 1993; Waples and Gaggiotti 751 
2006).   752 

 By contrast, biogeographers and population geneticists have emphasized the degree to 753 
which larval dispersal affects evolutionary processes within populations and evolutionary 754 
divergence among them (Lowe and Allendorf 2010). These effects can include both positive 755 
(e.g., preventing inbreeding depression) and negative consequences (e.g., preventing the fixation 756 
of locally adapted alleles via gene swamping) of gene flow. Wright (1951) concluded that Nm>1 757 
was sufficient to prevent the harmful effects of inbreeding and genetic drift within populations.  758 
As a consequence, many population geneticists have used this one-migrant-per-generation 759 
(OMPG) “rule” as a threshold value defining genetic connectivity, the amount of gene flow 760 
necessary to homogenize allele frequencies among populations over evolutionary timescales.  761 
However, close inspection of the relationship between FST and Nm (Fig. 2) reveals that much 762 
greater gene flow (Nm >10) is necessary to prevent divergence in allele frequencies.  The 763 
confusion in the literature over the OMPG rule and the expected effects of gene flow led Lowe 764 
and Allendorf (2010) to recognize three distinct levels of genetic connectivity: drift connectivity 765 
(gene flow that prevents divergence in allele frequencies, Nm >10); inbreeding connectivity 766 
(gene flow that prevents the harmful loss of genetic diversity, Nm >1); and adaptive connectivity 767 
(gene flow that is sufficiently high to promote the spread of adaptive alleles, Nm >0.1). 768 

The differences among population- and individual-based genetic methods for analyzing 769 
larval dispersal have obvious parallels with these distinctions between demographic connectivity 770 
(focused on per capita migration rates, m) and genetic connectivity (focused on gene flow, Nm), 771 
as well as implications for the choice of methods to meet different study objectives or 772 
goals.  Clustering and assignment methods characterize migration distances between populations, 773 
and parentage methods characterize migration distances away from parents; if sampling is 774 
sufficiently intensive, those methods can estimate the migration rate as the proportion of 775 
migrants entering a destination population (m) through the identification of migrant individuals, 776 
but not necessarily the evolutionary impact of immigration in the destination population (Nm) 777 
unless the effective population size is known.  Therefore, almost by definition, individual-based 778 
methods have the potential to characterize demographic connectivity on short (ecological) 779 
timescales (Christie et al. 2010); few give insight into effective population size, such that 780 
individual-based methods offer little insight into genetic connectivity on longer (evolutionary) 781 
timescales.  782 

By contrast, most population-based methods (FST and coalescent methods) provide 783 
estimates of the compound parameter Nm (the number of migrants per generation), which 784 
provides insight into the evolutionary impact of larval dispersal. This is an important limitation 785 
because estimates of Nm provide little insight into demographic connectivity unless N or the 786 
population growth rate is known (Lowe and Allendorf 2010).  This shortcoming of population-787 
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based methods may often be moot for some marine species with large population sizes because 788 
Nm can be most reliably estimated when it is small (Nm < 10), and for many marine species with 789 
large population sizes, Nm < 10 implies m << 0.1 and is likely to be demographically 790 
insignificant.  The same cannot be said for cases in which Nm > 10, because population-based 791 
methods have little power to distinguish drift connectivity from strong demographic connectivity 792 
(Fig. 2).  However, even in cases where Nm can be reasonably interpreted in the context of 793 
demographic connectivity (or if m can be calculated with a known mutation rate), the parameter 794 
estimates from most population-based methods are time-averaged over long (evolutionary) 795 
timescales, and may not be similar to present-day migration rates, particularly for species whose 796 
populations may be declining or growing, or whose distributions may be fragmented and rapidly 797 
changing in response to anthropogenic effects.  798 

799 

Conclusions 800 

For the last 20 years, population-based genetic approaches have been the go-to analytical 801 
methods for studying marine connectivity, whereas the development and use of individual-based 802 
methods is in its infancy.  Do the differences among the two classes of methods and their 803 
variants matter for genetic analyses of larval migration?  Population-based methods have proven 804 
to be most useful for identifying very strong genetic breaks that often reflect a long-term lack of 805 
both genetic and demographically significant connectivity among populations, and genetic data 806 
can provide crucial complementary data for ecological studies that find evidence of demographic 807 
asynchrony (Peterson et al. 1996; Marko and Barr 2007). However, if gene flow is high, 808 
population-based methods are not expected to return clear and reliable answers about either 809 
genetic or demographic connectivity.  Individual-based methods may have greater potential and 810 
show considerable promise to uncover evidence of demographic connectivity among 811 
populations, but, like population-based methods, are not expected to perform well when 812 
migration rates are high (Waples and Gaggioti 2006; Paetkau et al. 2004; Lowe and Allendorf 813 
2010) and rely fundamentally on intensive sampling of all potential source and sink populations.  814 
In short, genetic methods can provide strong inferences about either an absence of (either genetic 815 
or demographic) connectivity or high genetic connectivity, but they are, at present, less useful for 816 
demonstrating strong demographic connectivity.  817 

Clearly, no single approach will always tell a complete story of realized dispersal and 818 
connectivity.  Comparing results from different analyses may generate insights or reveal 819 
problems inherent in any single approach, particularly for predicting marine connectivity and its 820 
implications for fisheries management or the design of networks of MPAs in a rapidly changing 821 
environment.  However, even though individual- and population-based estimates of connectivity 822 
can be inferred from the same data, direct comparisons of migration rates over evolutionary 823 
timescales to migration on more recent ecological timescales have been rare (e.g., Pusack et al. 824 
2014; D’Aloia et al. 2015; Pinsky et al. 2016), possibly because gene flow is often too high to 825 
expect informative population-based results on the spatial scale at which individual-based 826 
methods are most often applied (but see Pinsky et al. 2016), and because the types of genetic 827 
markers that are best for individual-based methods (microsatellites and SNPs, but see 828 
Rougemont et al. 2016) are also not ideal for some of the most powerful population-based 829 
methods (DNA sequences).  In addition to inferences about larval dispersal from genetic data, 830 
direct measurements of the impacts of dispersal on demographic processes are likely crucial for 831 
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demonstrating meaningful demographic connectivity for the purposes of resource management 832 
(Waples 1998; Lowe and Allendorf 2010). The complementary combination of these methods 833 
seems likely to illuminate both the scope and scale of larval dispersal in marine systems. 834 

835 

Summary836 

• Genetic data can be used to characterize the scale or magnitude of connectivity via larval837 
dispersal in the plankton as the per capita migration rate (m), the rate of gene flow (Nm),838 
or counts of immigrant individuals.839 

• Population-based methods infer average effective rates of connectivity on long time840 
scales (hundreds to thousands of generations), and those estimates will influenced by841 
many processes (including larval dispersal).842 

• Individual-based methods based on clustering or assignment of individual genotypes to843 
populations or families are suitable for estimating connectivity on short timescales.844 

• The typical or characteristic larval dispersal distance for any one system of populations845 
may best be characterized by isolation-by-distance patterns (using population model846 
methods) or by the dispersal kernel (using parentage-based methods)847 

• Migration rates estimated from individual-based methods may be more relevant to848 
ecological studies of demographic connectivity (e.g., among demes in a network of849 
marine protected areas) compared to rates of gene flow estimated from population-based850 
methods.851 
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Fig. 1. A hypothetical example in which a large difference in allele frequency between two 1303 
populations results in a deficiency of heterozygotes if all individuals are assumed to be members 1304 
of a single population with p = 0.5 and q = 0.5.  The eastern and western populations are 1305 
completely isolated by a strong northward flowing current that prevents larvae from being 1306 
exchanged between east and west.  Expected heterozygosity for the total population is HT = 2pq 1307 
= 0.5 but the average expected heterozygosity for each of the two individual populations is HS = 1308 
0. Therefore, FST = (HT - HS)/HT = 1.0.  Adapted from Hartl and Clark (1997).1309 
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1311 
Fig. 2. The relationship between FST and Nm based on Wright’s (1978) equation FST = 1/(4Nm + 1312 
1) that assumes Wright’s Island Model.1313 
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1315 
Fig. 3. Frequency distribution of dispersal distances by larvae away from parents for 120 parent-1316 
offspring pairs of the neon goby Elacatinus lori from the western Caribbean. The dispersal 1317 

kernel was estimated by fitting a negative exponential function to the frequency distribution, 1318 
with a best estimate of the decay parameter λ=0.36; the inverse of the decay parameter is the 1319 
average dispersal distance (~2.8 km). Data and analysis from D’Aloia et al. (2015); larval goby 1320 
image from Smithsonian Belize Larval-Fish Group 2002, image ID C2-19. 1321 
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1323 

1324 

Fig. 4. Patterns of isolation-by-distance (IBD) in the neon goby Elacatinus lori from the western 1325 
Caribbean (D’Aloia et al. 2014) based on 13 microsatellite loci sampled for 20-30 adults from 1326 
five populations along a continuous barrier reef and five populations from isolated atolls. 1327 
Relatively strong IBD is detectable among barrier reef populations (open symbols; high 1328 
coefficient of determination R2 ~0.26) that are connected by stepping-stone gene flow. D’Aloia 1329 
et al. (2014) found no IBD among populations from atolls, or between atoll and barrier reef 1330 
populations (closed symbols; R2~0.0026). 1331 
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1335 
1336 
1337 

1338 
Fig. 5. Trends in the use of the keyword ‘connectivity’ in studies of marine larval dispersal and 1339 
gene flow; data are counts of citations that use different keyword combinations in searchable 1340 
fields of records in the Web of Science database for the years 1996 through 2015 in five-year 1341 
increments following the review by Palumbi (1995). Results are shown for two alternative 1342 
keyword searches using the terms ‘larva*’ or ‘dispersal’; in each alternative search the results for 1343 
items without ‘connectivity’ (closed symbols) are contrasted with results for items including 1344 
‘connectivity’ (open symbols). In both cases the use of ‘connectivity’ has dramatically increased 1345 
since 2005. 1346 




