
Efficient High Throughput Sequencing
Data Compression and Genotyping
Methods for Clinical Environments

by

Ibrahim Numanagić

M.Sc., Simon Fraser University, 2013
B.Sc., University of Sarajevo, 2011

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Sciences

c© Ibrahim Numanagić 2016
SIMON FRASER UNIVERSITY

Fall 2016

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.

Approval

Name: Ibrahim Numanagić

Degree: Doctor of Philosophy (Computing Science)

Title: Efficient High Throughput Sequencing Data
Compression and Genotyping Methods for Clinical
Environments

Examining Committee: Chair: Binay Bhattacharya
Professor

S. Cenk Sahinalp
Senior Supervisor
Professor

Arrvindh Shriraman
Supervisor
Associate Professor

Faraz Hach
Supervisor
Research Associate

Leonid Chindelevitch
Internal Examiner
Assistant Professor
School of Computing Science

Benjamin J. Raphael
External Examiner
Adjunct Associate Professor
Computer Science
Brown University

Date Defended: December 5, 2016

ii

Abstract

The rapid development of high throughput sequencing (HTS) technologies has made a con-
siderable impact on clinical and genomics research. These technologies offer a time-efficient
and cost-effective means for genotyping many pharmaceutical genes affecting the drug re-
sponse (also known as ADMER genes), which makes HTS a good candidate for assisting
the drug treatment and dosage decisions. However, challenges like data storage and trans-
fer, as well as accurate genotype inference in the presence of various structural variations,
are still preventing the wider integration of HTS platforms in clinical environments. For
these reasons, this thesis presents fast and efficient methods for HTS data compression and
accurate ADMER genotyping.

First we propose a novel compression technique for reference-aligned HTS data, which uti-
lizes the local assembly technique to assemble the donor genome and eliminate the redun-
dant information about the donor present in the HTS data. Our results show that we can
achieve significantly better compression rates over currently used methods, while providing
fast compression speeds and random access capability on the compressed archives. We also
present a companion benchmarking framework with the aim to evaluate the performance
of different HTS compression tools in a fair and reproducible manner.

In the second part, we investigate the genotyping of CYP2D6 gene. Although this gene is
involved in the metabolism of 20–25% of all clinically prescribed drugs, accurate genotype
inference of CYP2D6 presents a significant challenge for various genotyping platforms due
to the presence of structural rearrangements within its region. Thus, we introduce the first
computational tool which is able to accurately infer a CYP2D6 genotype from HTS data by
formulating such problem as an instance of integer linear programming. Finally, we show
how to extend the proposed algorithm to other genes which harbour similar structural re-
arrangements, like CYP2A6, and to other HTS sequencing platforms, like PGRNseq. We
demonstrate the accuracy and effectiveness of the proposed algorithms on large set of sim-
ulated and real data samples sequenced by both Illumina and PGRNseq platforms.

Keywords: High Throughput Sequencing; Data Compression; Genotyping; CYP2D6 ;
CYP2A6 ; PGRNseq

iii

=

iv

Acknowledgements

First and foremost, let me start by expressing my deepest gratitude to my senior supervisor,
Dr. S. Cenk Sahinalp, for his extensive support, guidance and patience during last five years
of my studies. I would also like to extend my thanks to Dr. Faraz Hach for all his help and
support, and for coming up and leading many projects I have worked on during my PhD
studies. I would also like to thank Dr. Arrvindh Shriraman for his valuable comments and
suggestions.

This work would not be possible without the people in SFU Computational Biology lab,
who were wonderful colleagues during my stay there. I would particularly like to mention
all the people with whom I collaborated and whose help was essential in many projects
I participated in: Yen-Yi Lin, Phuong Dao, Pınar Kavak, Alexander Gawronski, Ermin
Hodžić, Nilgun Donmez and Can Koçkan. And special thanks goes to my colleague Salem
Malikić, with whom I worked extensively during my studies, and whose suggestions and
proof-reading made this manuscript much more pleasant to read.

Regarding DeeZ and benchmarking projects, I would like to thank James K. Bonfield for
his valuable suggestions and comments, and Claudio Alberti for initiating the benchmarking
project. I’d also like to mention Jan Voges and Dr. Marco Mattavelli who notably improved
the quality of the benchmarking manuscript. As for Cypiripi, I would especially like to thank
late Dr. David A. Flockhart, who came up with the project proposal, and also Dr. Victoria
M. Pratt and Dr. Todd C. Skaar from Indiana University School of Medicine. Moreover,
I would like to acknowledge Dr. Steve Scherer and Dr. Xiang Qin from Baylor College
of Medicine, who provided us a large set of real-data samples, and who thoroughly tested
Cypiripi.

I would also like to thank Dr. Benjamin J. Raphael, Dr. Leonid Chindelevitch and Dr.
Martin Ester for finding the time to examine this work, and for providing valuable remarks
which significantly improved the quality of this thesis. Finally, I would like to Vanier Canada
Graduate Scholarships for providing me an ample funding during my studies.

Last but not the least, I am thankful to my wonderful family for their unlimited support
during my studies. This includes my dear wife Jianqiao Li, my parents Hazim and Šahza,
and my siblings Ishak, Kerima and Sadik. That is why this thesis is dedicated to them.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Contributions . 4
1.2 Thesis organization . 6

2 Background on Sequence Compression 7
2.1 Sequence File Formats . 8

2.1.1 FASTQ . 8
2.1.2 SAM and BAM . 9

2.2 General Overview of Compression Strategies 10
2.2.1 Data transformations . 10
2.2.2 Probabilistic modelling . 12
2.2.3 Coding techniques . 13

2.3 FASTQ Compression Tools . 15
2.3.1 General FASTQ tools . 16
2.3.2 Reordering tools . 18
2.3.3 Alignment tools . 19

2.4 SAM Compression Tools . 21
2.4.1 Reference-based Tools . 22

2.5 Conclusion . 23

vi

3 Reference-based Compression by Local Assembly 24
3.1 Methods . 26

3.1.1 Reads and CIGAR strings . 28
3.1.2 Read Names . 29
3.1.3 Quality Scores . 29
3.1.4 Mapping Locations . 30
3.1.5 Other Features . 30

3.2 Results . 30
3.2.1 Quality scores . 35

3.3 Conclusion . 37

4 Comparison of High Throughput Sequencing Data Compression Tools 38
4.1 Summary of Available Tools . 39
4.2 Criteria for Dataset and Tool Selection . 40

4.2.1 General Criteria . 40
4.2.2 Tool Selection Criteria . 41
4.2.3 Dataset Selection Criteria . 43
4.2.4 Data set files . 45

4.3 Results . 47
4.3.1 Experimental Setup . 47
4.3.2 FASTQ . 47
4.3.3 SAM . 49

4.4 Conclusion . 73

5 Background on ADMER Genotype Inference 74
5.1 Few Examples of ADMER Genes . 75

5.1.1 CYP2D6 Gene . 75
5.1.2 CYP2A6 Gene . 76

5.2 Genotyping Platforms . 78
5.2.1 PCR-based Methods . 78
5.2.2 Sequencing-based Methods . 80

5.3 Computational HTS Genotyping Methods 81
5.4 Conclusion . 83

6 Exact genotyping of CYP2D6 gene using high throughput sequencing
data 85
6.1 Methods . 88

6.1.1 Library preparation . 88
6.1.2 Read alignment . 90
6.1.3 Filtering . 91

vii

6.1.4 Combinatorial optimization . 93
6.2 Results . 96

6.2.1 Simulations . 97
6.2.2 Real data . 100

6.3 Conclusion . 101

7 Exact genotyping of ADMER genes using PGRNseq sequencing data 102
7.1 Methods . 104

7.1.1 Read Mapping . 104
7.1.2 Copy number estimation . 105
7.1.3 Protein identification . 112
7.1.4 Genotype refining . 113
7.1.5 Complexity . 114

7.2 Results . 115
7.2.1 Experimental data . 115
7.2.2 Discussion . 118
7.2.3 Novel alleles . 121

7.3 Conclusion . 121

8 Conclusion 122
8.1 Future Work . 123

Bibliography 125

Appendix A DeeZ Materials 143

Appendix B Compression Benchmarking Materials 145

Appendix C Cypiripi Materials 148

viii

List of Tables

Table 2.1 Effect of field decoupling on Gzip and bzip2’s performance 16

Table 3.1 Compression ratios provided by all tested tools 33
Table 3.2 Time and memory usage needed for compression and decompression . 34
Table 3.3 Random access performance for three tools which support it 36

Table 4.1 A summary of evaluated HTS compression tools 42
Table 4.2 Performance of ADAM and Goby on MiSeq E.coli dataset 43
Table 4.3 A summary of random access performance for SAM/BAM tools . . . 51
Table 4.4 A summary of the performance of evaluated HTS compression tools . 52
Table 4.5 Performance of FASTQ tools on various FASTQ fields 59
Table 4.6 Time and memory performance of FASTQ tools 62
Table 4.7 Performance of SAM tools on various SAM fields 65
Table 4.8 Time and memory performance of SAM/BAM tools 69
Table 4.9 A summary of compression performance on paired-end FASTQ libraries 72

Table 5.1 Correlation between the CYP2D6 enzyme activity and ethnicity . . . 76
Table 5.2 Correlation between the CYP2A6 enzyme activity and ethnicity . . . 78

Table 6.1 Cypiripi performance for the first three simulation groups 98
Table 6.2 Cypiripi performance for the last two simulation groups 99
Table 6.3 Cypiripi predictions for the real data set 100

Table 7.1 CYP2D6 genotyping performance on 96 PGRNseq samples 115
Table 7.2 CYP2D6 genotyping performance on 21 Illumina WGS sample 118
Table 7.3 CYP2A6 genotyping performance on 11 PGRNseq samples 119

Table B.1 A summary of evaluated HTS compression tools 146
Table B.2 A summary of problems observed in HTS compression tools 147

ix

List of Figures

Figure 2.1 Sample FASTQ record . 8
Figure 2.2 Sample SAM file . 9
Figure 2.3 An example BWT construction . 11

Figure 3.1 DeeZ approach for draft contig editing 27
Figure 3.2 Quality score footprint in compressed files 31

Figure 4.1 Visualised performance of HTS compression tools 56

Figure 5.1 Possible CYP2D6 configurations . 77
Figure 5.2 Possible CYP2A6 configurations . 79

Figure 6.1 Five known CYP2D6 gene arrangements 87
Figure 6.2 Graphical representation of the Cypiripi framework 89
Figure 6.3 Ambiguous reads mapping to the CYP2D8 92
Figure 6.4 The ambiguous case of equally likely CYP2D6 genotypes 95

Figure 7.1 PGRNseq coverage rescaling . 107
Figure 7.2 PGRNseq coverage normalization 109
Figure 7.3 CEPH 1463 Family Tree . 120

x

Chapter 1

Introduction

The introduction of high throughput sequencing (HTS) technologies in 2005 [118] made a
considerable impact on clinical and genomics research [117]. Compared to the traditionally
used Sanger sequencing [158], HTS technologies provide significantly faster operation at
lower costs [117, 149], and require a smaller amount of DNA sample needed for sequenc-
ing [36]. The first commercially available HTS sequencer, Roche/454 Genome Sequencer
[118], offered almost 100-fold increase in the amount of sequencing data produced in a day
compared to previous instruments [55]. Later developments, including Illumina Genome
Analyzer [13], Illumina HiSeq X, ABI SOLiD [121] and many others [149], kept lowering
the cost of sequencing while providing the higher throughput [162, 117]. With the recent
introduction of Illumina HiSeq X, the cost of whole human genome sequencing with the
coverage of 30× dropped below $1000 mark [182, 80], reaching the target set up by Na-
tional Human Genome Research Institute (NHGRI) in 2001 [160]. It is expected that the
cost of sequencing will decrease even further in the coming years [127].

The sharp drop in sequencing cost made it possible to have HTS machines widely present
at university core facilities and even in individual labs [149]. So far, HTS technologies
have been successfully used for de novo assembly of the underlying genomes [54, 155],
genomic and structural variation detection [92, 123], transcriptome characterization [126,
34], cancer analysis [103, 76] and disease discovery [187, 19]. High throughput of HTS
machines, combined with their increased robustness, contributed to the launch of large-scale
genomic discovery projects operating on large populations [149]. These projects include but
not limited to 1000 Genomes Project [3], Genome 10k Project [69], ENCODE Project [41],
The Cancer Genome Atlas (TCGA) [171] and Human Microbiome Project [79].

All of the factors mentioned above indicate that HTS technologies have an important role
to play in clinical environments, particularly when coupled with large databases obtained
from population-wide studies [36]. In clinical settings, HTS can be used to obtain patient’s
genomic data within a short time (currently it can be done in less than two days [58]). Such
sequencing data can be used to obtain clinically important genomic variants that can assist

1

medical decision making [185, 8, 55]. This makes HTS a great tool for wider adoption of
precision medicine, which is an approach to prevent and treat the disease by taking into
account the individual variability in genes, environment and lifestyle [144]. The importance
of precision medicine was emphasized by Precision Medicine Initiative [26] announced by
President of USA [2].

One of the earliest applications of precision medicine was pharmacogenomics, a study
of how genetic makeup of individuals affects various drug treatments [7]. Genes involved in
the absorption, distribution, metabolism, excretion and response of the drugs are commonly
known as ADMER genes. Variations in those genes can affect drug dosing decisions; one
such example is the impact of VKORC1 (which regulates vitamin K essential for the blood
clotting) and CYP2C9 (responsible for metabolizing non-steroidal anti-inflammatory drugs)
genotypes on the Warfarin dosage [173]. Other widely known ADMER genes for which
the correlation between the genotype and the drug dosage has been established include
CYP2D6 (a Codeine metabolizer [90]) and CYP2A6 (involved in oxidation of nicotine
and cotinine [78]). Moreover, it is currently estimated that the metabolism of 20–25% of
clinically prescribed drugs is, at least in part, dependent on CYP2D6 genotype [81]. Thus,
the accurate detection of ADMER genotypes, in particular the CYP2D6 ’s genotype, can
significantly impact the treatment decisions.

Several platforms for ADMER gene genotyping have been introduced, including allele-
specific primer extension assays, liquid bead arrays and TaqMan genotyping assays [175].
However, there have been reported several discrepancies among genotypes produced by
these platforms [143, 45]. Furthermore, discoveries of the novel alleles and variations usually
require the extension of existing kits by construction and addition of novel primers, because
the existing ones can cause poor or no amplification for novel alleles [48]. Another obstacle
for these methods is the presence of various genomic recombinations involving the targeted
ADMER gene. For example, both CYP2D6 and CYP2A6 are subject to gene duplication
and deletion, and in some cases, they form a hybrid gene structure with the evolutionary
related pseudogenes CYP2D7 and CYP2A7, respectively [94, 48, 136, 46]. Even the use
of Sanger sequencing, notwithstanding its cost and speed, cannot detect the copy number
variation or other rearrangements unless that information is known in advance [48].

Many of the challenges described above can be resolved by HTS sequencing and spe-
cialized downstream analysis tools [5, 73, 4]. The introduction of cost-effective PGRNseq
sequencing platform [59], designed specifically to target the set of 84 functionally diverse
ADMER genes, provides further evidence for this claim. In spite of that, integration of HTS
technologies into the standard clinical pipeline is not yet straightforward task [36, 7, 33].
Sheer volumes of data generated by a typical HTS sequencing experiment introduces a
significant challenge for the underlying computational infrastructure [167, 91]. As an exam-
ple, typical HTS sequencing experiment with 40× coverage performed on the whole human
genome produces approximately 120 GB of raw nucleotide data, without even counting the

2

accompanying auxiliary information (e.g. base quality scores). The total amount of data
generated for a single individual can easily exceed 1 TB [9]. Thus storage, transport and
analysis of HTS data pose a major technological challenge, in particular for clinical lab-
oratories [110, 134]. Even if clinical samples are stored and manipulated on cloud, mere
transfer and access to the data causes a significant bottleneck [110].

One way of mitigating the storage and data transfer challenges is data compression [75].
Currently, majority of raw HTS data is stored in Gzip or bzip2 file formats [66], which are
implementations of popular Lempel-Ziv 77 and Burrows Wheeler Transform schemes [192,
18]. These formats are designed for general purpose data compression, and they are not able
to efficiently exploit the inherent properties of sequencing data, such as limited alphabet,
genome repeat structure and so on. Specialized tools and formats, tailored specifically for
the raw HTS data in the FASTQ file format [140, 25], have shown that better compression
rates can be obtained over Gzip or bzip2. Examples include SCALCE [66], DSRC [30, 157],
Quip [85], Orcom [60] and Fqzcomp [16].

Another obstacle in the analysis of HTS data is the read alignment. Present-day HTS
technologies produce short DNA fragment reads typically ranging from 35 to 300 basepairs
(bp) per fragment [149]. The lack of long read fragments is compensated by high genomic
coverage (reaching up to 200×) and low error rates (usually less than 1% per base) [80, 35].
Newer technologies, like Pacific Biosciences Single-molecule real-time (SMRT) sequencing
[39] or Oxford Nanopore [180], provide significantly longer reads whose length is measured in
kilobases. However, these reads are characterized by much higher error rates (15%–25% per
base) compared to the currently dominating Illumina technology [149]. Regardless of the
sequencer, resulting HTS reads are either used to assemble the original genome, or aligned to
the reference genome. De novo assembly is computationally intensive problem [125, 22], and
it is usually done only in the cases where the reference genome is missing. Read alignment
is more lightweight compared to the assembly [7], although still carrying a substantial
computational overhead. One issue with the read alignment is the existence of large repeat
regions within the genome, which makes the alignment of the short reads originating from
these repeat regions ambiguous. In the case of human genome, approximately 5% of the
100bp reads are ambiguously aligned [56]. Various tools have been developed to efficiently
deal with the read alignment and to mitigate the issues described above. Well known
aligners include Bowtie [100, 99], BWA [106], GEM [116], mrfast [4] and mrsfast [65, 68].

The output of read aligner is usually stored in SAM file format [174], and is further
passed to various downstream analysis tools. The SAM file format provides a plain-text
human readable file that includes raw reads, as well as the extra information including
read’s mapping loci, mapping quality and other alignment details [107]. This means that
the size of SAM file can easily exceed the size of raw FASTQ file. Thus, efficient SAM
compression scheme is desired to lower the burden of data storage. Because the SAM file
records are usually sorted by their mapping loci, an important feature to be desired of a

3

SAM compression scheme is the random access, which allows instant retrieval of the region
of interest. For example, if one is to analyze CYP2D cluster in the human genome, it would
be more practical to access and transfer only the reads spanning the 30 KB-long CYP2D
cluster than to transfer, decompress and search all 3 GB of the human genome. Current
de facto SAM compression standard is BAM file format, which is an extension of Gzip file
format that supports random access at the expense of larger file size [107].

The last step of HTS data analysis pipeline consists of dedicated downstream analysis
tools used for extracting the desired information from aligned data. In the case of ADMER
genotyping, variation calling tools, such are Samtools [107] or GATK [120, 32] are used
to detect various small nucleotide variants (SNV) in the region of interest and to assess
a correct genotype. Many ADMER gene variants are characterized by single nucleotide
polymorphisms (SNP) or short insertions/deletions (indels) [166], hence accurate SNV call-
ing is usually enough for proper genotyping. However, ADMER genes prone to significant
structural variations (e.g. HLA, CYP2D6 and CYP2A6) cannot be accurately genotyped
by simple analysis of SNVs [59, 176]. Common reason is that it is not clear whether a
read mapping to the gene actually originates from that particular gene, or from the highly
similar region in the genome (usually belonging to the adjacent pseudogene). Moreover,
popular variant calling tools are not able to detect fusions or similar genomic rearrange-
ments. Finally, the short length of HTS reads further complicates the issue of finding the
rearrangement spots in highly homologous regions.

1.1 Contributions

In this thesis, we focus on two previously mentioned computational problems encountered in
clinical environments which utilize HTS technologies: (i) reference-aligned data compression
and retrieval, and (ii) genotype inference of highly polymorphic ADMER genes. We consider
the read alignment problem to be largely addressed in the current literature [64, 100, 4, 106,
116, 65]. By addressing the problems of compression and genotyping, we believe that we can
remove some of the major obstacles preventing the efficient integration of HTS technologies
into the clinical pipelines which aid the drug prescription decisions tailored for individual
patient.

More specifically, we present the following contributions regarding the HTS data com-
pression:

• We introduce DeeZ [67], a SAM/BAM file compression tool which provides signifi-
cantly improved compression rates over commonly used BAM file format, while pro-
viding random access capability to the underlying data. DeeZ achieves this by en-
coding differences between the donor and reference genome only once. By default,
these differences are redundantly encoded in multitude of the read fragments align-
ing to them. Redundancy elimination is done by implicitly assembling the donor

4

genome from the available reads. DeeZ also separates various SAM fields in different
compression streams, and applies a unique compression method for each stream. Ran-
dom access is achieved by partitioning the input file into the small blocks. We show
that the compression performance of DeeZ matches the performance of state-of-the-
art arithmetic coding methods, while providing fast compression times and random
access capabilities.

• We present a comprehensive framework for evaluating the performance of various
HTS compression tools [131]. This framework comes with a large community-chosen
dataset designed specifically to stress test a compression tool on variety of sequencing
technologies and species. We have used this framework to evaluate the performance of
currently available compression tools, and to gain insight about the kinds of compres-
sion techniques that are the most suitable for a particular data type. The proposed
framework was developed as a part of the effort initiated by Moving Picture Experts
Group (MPEG) to standardize genomic compression formats and methods.

Furthermore, we present fast genotyping methods for genes affecting the drug metabolism
which are located in the unstable regions of the genome. Our contributions can be summa-
rized as follows:

• We introduce Cypiripi [132], the first computational tool for exact CYP2D6 genotype
inference by using HTS data with uniform coverage. Cypiripi employs integer linear
programming to model and solve the genotyping problem. It is able to properly detect
various genomic recombinations, such are gene duplications, deletions and fusions with
evolutionary related CYP2D7 pseudogene. We show that the algorithm performs well
on extensive set of simulations designed to cover the majority of known variations and
recombinations. Furthermore, Cypiripi’s genotype predictions for publicly available
CEPH Trio samples match the previously validated calls for those individuals.

• Finally, we provide an extension of Cypiripi, dubbed Cypiripi++, designed to work
with PGRNseq and other non-uniform coverage HTS data [59]. Furthermore, Cypi-
ripi++ introduces the generalized genotyping model which allows the genotype in-
ference for other ADMER genes. We utilize this model to genotype CYP2A6 gene,
making Cypiripi++ the only HTS computational tool which is able to deal with var-
ious CYP2A6 rearrangements. By significantly improving the copy number detec-
tion algorithm, Cypiripi++ is also the only tool capable of finding the non-functional
CYP2D6*68 allele in CEPH Trio samples. We show that Cypiripi++ is able to suc-
cessfully infer various structural variations and correct genotypes on the large set of
real data PGRNseq and Illumina samples.

5

In addition to the contributions listed above, we also developed (but did not include
in this thesis) ORMAN [29], a computational tool which is able to optimally resolve the
ambiguously aligned RNA-Seq reads while preserving the novel isoforms.

1.2 Thesis organization

This thesis is divided in two parts. The focus of the first part is HTS data compression, and
this part consists of Chapters 2, 3 and 4. In Chapter 2, we describe HTS data file formats,
introduce the commonly used compression techniques, and survey the currently available
HTS compression tools. Chapter 3 introduces DeeZ, our SAM/BAM file compression tool.
Chapter 4 describes our HTS data compression benchmarking framework, and includes the
thorough evaluation of the state-of-the-art HTS compression methods.

The second part of the thesis focuses on genotyping of pharmaceutically important genes
using HTS sequencing. This part consists of Chapters 5, 6 and 7. In Chapter 5, we first
introduce the CYP2D6 and CYP2A6 genes, and then proceed with the formal definition
of the genotyping problem and a short survey of the currently used genotyping techniques.
Chapter 6 describes Cypiripi, a novel method based on Integer Linear Programming which
accurately infers the CYP2D6 genotype. Chapter 7 continues by introducing Cypiripi++,
a generalized extension of Cypiripi designed to work with sequencing data of non-uniform
coverage and with other ADMER genes, such is CYP2A6.

Finally, Chapter 8 provides the summary and conclusion of our contributions, and
presents some directions for future work.

6

Chapter 2

Background on Sequence
Compression

The astronomical growth of data generated by the high throughput sequencing (HTS) plat-
forms introduced a major challenge for the computational infrastructure. Data storage,
transfer and analysis have become a major obstacle for many labs and clinics worldwide.
These challenges have almost signalled the end of Sequence Read Archive (SRA), the world’s
largest sequence library [91]. Even worse, it is predicted that expected growth of the se-
quencing data will surpass Moore’s law predictions [23]. As an example, current Illumina
HiSeq sequencer generates almost a terabyte of data for a single Human sample with 150×
coverage. In such circumstances, efficient sequence compression techniques emerge as a
major approach for mitigating the storage and transfer challenges.

Although the major sequencing technologies operate in a different fashion, the final
result of their software pipelines is a series of short DNA fragments (called reads) and their
respective quality control values (knows as quality scores). In addition, each read might be
associated with unique read identifier (or read name). This data is presented in FASTQ file
format [140, 25], which emerged as a de facto standard for raw sequencing data.

After the sequencing process, short read fragments from FASTQ file are usually aligned
to the reference genome of the underlying organism, if such genome exists [100, 4, 106, 116,
65]. The result of the alignment is usually a file in a Sequence Alignment/Map (SAM) file
format [107, 174] which stores, in addition to the read sequences and associated quality
values, alignment information for each read. This alignment information might consist of
mapping loci, chromosome identifier, alignment recovery strings and so on. It should be
mentioned that in most cases, SAM files are significantly larger than FASTQ files due to
the extra overhead generated by the alignment process.

As a final step in the data processing pipeline, SAM files are used as an input to the
variant callers or other downstream analysis tools [120, 32, 28, 73]. Results of the down-
stream analysis tools are usually presented in a Variant Call Format (VCF) file format [28].

7

Figure 2.1: Sample FASTQ record. Read identifier is “read1”.

@read1 HS25_09827:2:2109:10656:40243
AAATTGCCTCCAATAGAAACCAGAGTTGCCTGATTACTATCAGCAC
+read1 HS25_09827:2:2109:10656:40243
HGHHGHHGGGHFHGFJHGGJHHIFGGJGIHEGGIFGHGJGJIGGGH

Variant call files are usually significantly smaller than their FASTQ or SAM counterparts,
and for that reason, we will not deal with the compression of VCF files in this thesis.

In the following sections, we aim to (i) give a quick overview of FASTQ and SAM files, (ii)
provide a survey of most important compression algorithms used in sequence compression,
and (iii) examine the current state-of-the-art compression tools which operate on HTS data.

2.1 Sequence File Formats

2.1.1 FASTQ

FASTQ is a simple plain-text format describing a set of DNA/RNA read fragments. Over
the past years, the FASTQ file format emerged as the de facto standard for the storage
of unmapped HTS data [140, 25]. Each read block in a FASTQ file consists of four fields
(separated by newline characters), containing read identifier (preceded by @ character),
nucleotide sequence, read comment (preceded by + character) and read quality score in-
formation, respectively. By convention, anything after the first whitespace character in
the read identifier field is also considered as a comment, and the string occurring before a
whitespace character uniquely identifies the read. A sample FASTQ read block is presented
in Figure 2.1.

Quality string Q, consisting of quality values for each nucleotide within the read, is
encoded in a Phred format [42]. If the probability of incorrect assignment of the nucleotide
b is p, the Phred score q(p) is calculated as

q(p) = −10blog10 pc.

In most observed FASTQ files, comment fields are either empty or a copy of the read
identifier fields, and they are rarely (if ever) used; thus, the majority of FASTQ compression
tools discards them. Read identifiers generated by the sequencing machine, which usually
contain a technical information about the underlying sequencing process (e.g. flow cell
identifier or tile information) are also either moved to the comment section or discarded.
This is the case for majority of the samples submitted to the Sequence Read Archive.

If the sequencer is able to produce paired-end reads, FASTQ files usually come in the
library format, where the library consists of two FASTQ files representing the reads from

8

Figure 2.2: Sample SAM file with two comment lines (preceded by @), and three records.

@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001 163 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;

the first and second strand, respectively. In this configuration, identifiers of the k-th read
from first file must correspond to the identifiers of the k-th read from the second file within
the library.

It is also important to note that the order of the read blocks within a FASTQ file is
not important. In the case of paired-end libraries, the only requirement which must hold is
that a one-to-one mapping between the reads within the different library files is preserved.

2.1.2 SAM and BAM

The SAM file format [107, 174] is a tab-delimited plain-text representation of the sequences
aligned to an arbitrary reference genome. It includes all the data from the FASTQ file,
accompanied by additional alignment information for every read, including (but not limited
to) mapping position within the reference genome and edit operations necessary to align a
sequence to the reference (also known as CIGAR strings). The format is precisely defined
in the SAM Format Specification [174]. It suffices to say that information for every read
is stored in a single tab-separated line, where each column of the line corresponds to some
mapping property (as shown in Figure 2.2). SAM files are typically sorted by their mapping
loci, but sorting is not requirement for a valid SAM file.

As can be seen, both FASTQ and SAM files consist of different data fields, such are
sequences, qualities, mapping loci and so on. Members of each field share similar properties
between themselves, and those properties are very often unique for a particular field. For
example, the sequence stream usually consists only of the symbols A, C, T, G and N, while
the mapping loci stream usually consists of an increasing sequence of integers. Exploiting
the properties of such streams can significantly improve the compression rates. Since those
streams are interleaved within SAM or FASTQ files, compressing those files via general
purpose tools (such are Gzip, bzip2 and 7-Zip [97, 163, 139]) produces suboptimal results
since those tools cannot differentiate between the different fields; they simply treat FASTQ
or SAM files as plain-text files. Thus almost every dedicated FASTQ or SAM compression
tool handles the different fields separately in order to boost the compression rates.

9

2.2 General Overview of Compression Strategies

In the most general sense, data compression is “art of reducing the number of bits needed
to store or transmit the data” [114]. It can be viewed as a combination of various trans-
formations, probabilistic modelling techniques and encoding strategies [114]. Here, we will
present a short overview of techniques commonly used for data compression.

2.2.1 Data transformations

Data transformations usually consist of deduplication techniques, which aim to exploit
repetitions within an input stream. Those techniques include run length encoding [156] and
the popular dictionary-based Lempel-Ziv schemes [192, 193]. Another widely used technique
is the Burrows-Wheeler Transform (BWT) [18], which aims to group together symbols with
similar context.

Run length encoding (RLE) [156] is a simple transformation in which a series of con-
secutive and identical symbols is replaced with the symbol and a number of its occurrences.
For example, the string “AAAA” may be encoded as “A4”.

Move-to-front encoding (MTF) [14] is a technique based on the premise that the
most recent symbol is most likely to occur at a given point in time [114]. It maintains a
queue of alphabet symbols (initially ordered alphabetically), and associates to each symbol
a rank equal to its position in the queue. At any given time, each symbol from the input
is uniquely represented by its rank. After processing the symbol, MTF moves the symbol
to the front of the alphabet queue, and updates the ranks accordingly. For example, the
string “BBA” is encoded as 101 as follows. The initial queue consists of “AB”, so the rank
of “B” is initially 1. “B” gets moved to the front of the queue after the encoder encounters
it, and its rank becomes 0 while the rank of “A” becomes 1. For data with appropriate
local correlations, MFT is able to reduce entropy.

Lempel-Ziv 77 (LZ-77) [192] schemes replace repeated substrings in the input stream
with pointers to their previous occurrences. For example, the string “ABRACADABRA”
might be encoded as “ABRACAD(−7, 4)”, where the pointer (−7, 4) has the meaning “step
back 7 characters and copy 4 bytes from there”. LZ-like schemes keep track of a dictionary
consisting of previously seen substrings in order to detect the repetitions. Such a dictionary
is often limited to the fixed amount of previously seen characters, which is in practice usually
implemented as a fixed “sliding” window of a size between 16 and 32 kB (although some
implementations might allow even 4 GB window sizes).

There are various implementations of LZ-77, usually differing from each other in the size
of the dictionary and the method used for encoding the pointers. Most commonly used im-

10

Figure 2.3: An example BWT construction for the string “BANANA”. Symbol $ denotes
the end of the string, and it is lexicographically the smallest symbol in the alphabet.

BANANA$
ANANA$B
NANA$BA
ANA$BAN
NA$BANA
A$BANAN
$BANANA

ANANA$B
ANA$BAN
A$BANAN
BANANA$
NANA$BA
NA$BANA
$BANANA

BANANA$ BNN$AAA

cyc
lic

sh
ift

so
rt

plementations are Gzip and zlib [97, 51], which are based on the DEFLATE implementation
of LZ-77 [96]. 7-Zip [139] is based on the LZMA variant, while Microsoft’s CAB file format
is based on LZX [114]. While compression schemes based on LZ-77 vary in compression
time and memory usage, decompression is almost universally fast [114].

Due to the abovementioned properties, LZ-77 is ideal for highly repetitive data where
similar records are grouped together. This inspired a group of FASTQ compression tools
to reorder the reads within a FASTQ file in a way that similar reads get close to each other
[138, 60, 66].

Lempel-Ziv-Welch (LZW) [193, 183], a popular extension to the LZ-78 scheme, ex-
plicitly constructs a dynamic dictionary, maintained in a simple index structure. Initially
the dictionary is comprised of single symbols, each with a codeword equal to the symbol’s
lexicographic rank in the alphabet. In each iteration of LZW compression, the longest
prefix of the uncompressed portion of the input data is identified and replaced by its code-
word. This prefix is extended by the next symbol of the input data and the resulting string
is inserted in the dictionary with the codeword equal to the number of dictionary entries
(after the update). The decompression emulates the steps of compression, extending the
dictionary in the same manner in each step.

LZW is the basis of UNIX compress program and the GIF image format.

Burrows Wheeler Transform (BWT) [18] is an example of context sorting trans-
formation, in which a characters with similar context are grouped together [114]. This
transformation (i) constructs the set of all cyclic shifts (or rotations) of the input string
s, (ii) sorts them lexicographically, and (iii) outputs the last character of each rotation in
a sorted order. The output of step (iii) is called BWT of a string s. Example of BWT
transformation is shown in Figure 2.3.

Consider BWT transformation of a long English text frequented with the word “the”.
Sorting the rotations of this text will group rotations starting with the prefix “he” together.
Last character of such rotation (and thus the part of BWT) will usually be “t”, with a small

11

chance of possible exceptions (e.g. “brahe” might result in “b” being the part of BWT)
[184]. Thus, BWT of such string will contain a long runs of character “t”. This property
makes BWT an ideal candidate for either RLE or MFT encoding.

A typical example of the tool implementing BWT for the compression purposes is bzip2
[163], which divides the input into blocks of size k (where k is usually 900 KB), and applies
BWT with MTF on each block. bzip2 generally provides a better compression than Gzip,
but such an improvement comes with a significant speed overhead.

2.2.2 Probabilistic modelling

The problem of compressing sequencing data and metadata is not fundamentally different
from any other data compression problem where the statistical properties of the source are
not known [114]. A probabilistic model in this context is comprised of probability values
associated with observations on the input data, e.g. the observed frequencies of symbols
in the input, given preceding combinations of symbols. At any given point, this model
can provide a probability distribution for the next symbol in the input data. An entropy
encoding scheme can use this distribution to efficiently encode this symbol. The more
accurate the model (i.e. predictions) would be, the lower the entropy is and the smaller
the encoded output becomes. If, for example, the model predicts the next symbol with
probability p, the theoretical encoding requires log2 1/p bits [164]. One well known entropy
encoding scheme is the (dynamic) Huffman coding [77], which always emits a whole number
of bits for each input symbol and thus is optimal only when the symbol probabilities follow
“inverse power of two” distribution; the alternative Arithmetic [153] and ANS coding [37]
schemes are able to approach the theoretical entropy limit.

Probabilistic models can either be static or dynamic. Static models use the whole input
to estimate a probability distribution in advance, and require a separate encoding of such
a distribution for decompression. This approach requires to send such a distribution to the
decoder as a separate side information. Dynamic models start with a predefined distribution
(usually i.i.d.), and keep updating (learning) it with new symbols appearing in the input
data stream. They do not require extra information to be stored or transmitted, since both
encoder and decoder start with the same distribution and keep “learning” from the input
data in the same fashion.

Probabilistic models can also be ranked based on their context and complexity. A model
which uses no context to predict the next symbol is considered to be an order-0 model.
Such a model typically works with the unconditional probabilities of all input symbols.
Higher, order-k models typically use the preceding k symbols to predict the next symbol,
effectively building an order-k Markov chain with αk states, where α is the size of the input
alphabet. Higher-order models offer better prediction, but come with higher computational
and memory demands, as the number of states grows exponentially with the size of the
context.

12

Extensions to probabilistic modelling include context mixing [114] techniques which
combine probability distributions of various models into a single mixed distribution. This
approach is used by current state-of-the-art compression tools, notably by the PAQ family
[115]. Unfortunately, context mining techniques have very high memory usage, and come
with substantial computational overhead.

2.2.3 Coding techniques

Unary coding encodes a number n with n occurrences of 1-bit, followed by a single zero
bit. For example, 4 is encoded as 11110.

Elias Gamma/Omega Coding [40] is used when the largest possible value in the
stream is not known in advance. The Gamma Code represents a number n as a sequence
of blog2 nc zero bytes followed by the binary representation of n. For example, the Gamma
Code for 14 is 0001110.

One can iteratively apply Elias Gamma Coding on the value of blog2 nc to further reduce
the number of bits used. The resulting code obtained after log∗2 n iterations is called Elias
Omega Code for the number n.

Delta Coding stores the differences of consecutive elements within the sequence. For
example, sequence 1, 2, 3, 5, 6 can be encoded as 1, 1, 1, 2, 1 (i.e. 1, 2− 1, 3− 2, 5− 3, 6− 5).

Golomb and Rice Coding [57, 150] are designed for alphabets whose symbol frequen-
cies follow a (two-sided) exponential distribution. Golomb codes use a tunable parameter
m to divide the input value n into two parts: q = bn/mc and r = n mod m. The value of
q is encoded via unary coding. If r ≤ 2b −m, where b = dlog2me, r is encoded as binary
number with b− 1 bits; otherwise, r + 2b −m is encoded as binary number with b bits.

The Rice Code is a restriction of the Golomb code in which the parameter m can only
be a power of two. This has the advantage that q and r can be computed using bitwise
operators.

Entropy Coders

Entropy coding is used for the input source which has a known statistical model. Here we
highlight three examples.

Huffman Coding [77] uses a binary tree in order to generate a prefix-free code book for
the input symbols. A prefix-free code ensures that no code is prefix of another code in the
code book.

The binary tree is constructed as follows. Create a leaf node ns for each symbol s in the
input alphabet Σ, and associate it with a weight ws (usually correlated to the estimated

13

probability of symbol s). Insert all newly created nodes into the min-heap. Keep removing
two nodes ns1 and ns2 from the heap, and create the parent node m for nodes ns1 and ns2

of weight ws1 + ws2 . Add node m to the heap, and continue the procedure until the heap
is empty. Finally, each symbol s is encoded as a path from the root of the tree to the leaf
node ns, where right turn in the path is encoded with 1, and left one with 0.

Huffman codes perform best when the probability distribution resembles an exponential
distribution with power of 2, since it requires the code lengths to have a whole number of
bits.

Arithmetic Coding [153, 152] is a computational technique which uses a given sta-
tistical model to achieve an almost optimal encoding of the input. It is able to reach the
entropy of the data based on the given model with at most 2 redundant bits [159].

Arithmetic coding assumes that the input symbols are ordered, and that each symbol s
has the probability ps at the given time (which might vary over the time). It also requires
the availability of the cumulative probability distribution; i.e. the value of C(s) =

∑
s′<s ps′

for every s. In its purest form, arithmetic coding keeps shrinking the interval [a, b) (initially
[0, 1)) into [a + (b − a) × C(s), a + (b − a) × [C(s) + ps]). At the end, any number in the
final interval represents the arithmetic code of the input.

In practice, the finite precision of modern computers necessitates some adjustments to
the original algorithm. Mainly, arithmetic coders have to re-normalize the intervals by
rounding their boundaries and multiplying them by some constant c if they become too
small. Renormalization often incurs a slight penalty on the compression rate.

Asymmetric Numeral Systems (ANS) [37] are recent alternatives to arithmetic cod-
ing with the same theoretical guarantees for the final code lengths [114]. Unlike an arith-
metic coder, which maintains two variables a and b for the coding interval, an ANS coder
requires only a single variable x to be kept during coding and decoding processes.

ANS maintains two functions, a coder C : Σ×N→ N and a decoder D : N→ Σ×N.
The function D must be an inverse of C: C(D(x)) = x must hold for any x. In order to
avoid unbounded growth of x, both C and D must maintain the invariant that x ∈ I =
{L,L+ 1, . . . , bL− 1} where L ∈ N and b is the integer not smaller than 2. If this property
is observed, the coder will keep writing x mod b and dividing x with b until x is a member
of I. Decoder will follow an analogous inverse process.

It has been shown that as long as the precursor set Is = {x | C(s, x) ∈ I} is b-unique
(i.e. of the form k, k + 1, . . . , bk − 1), both encoder and decoder will stay synchronized [37].
In practice, values of L = 223 − 1 and b = 28 are commonly used.

Since coding and decoding are inverse operations, they must be executed in the reverse
order. In practice, this means that the coder usually encodes an input string from the end

14

towards the beginning, while decoder outputs the data in the original order. For this reason,
dynamic models for ANS coders are not suitable for data streams.

Efficient ANS implementations can utilize look-up tables for significant speed-up, since
ANS needs to keep only a single variable for the state. Additionally, ANS allows easy
interleaving of multiple ANS streams without any extra overhead [53]. On systems with
multiple processor pipelines, interleaving can be exploited to speed up both coding and
decoding processes.

Detailed information on the above mentioned and other general lossless compression
methods are available through several excellent references in the literature [114, 159].

2.3 FASTQ Compression Tools

FASTQ files are typically compressed with the general purpose tools Gzip and bzip2 [97, 163]
tools. Another widely used file format is National Center for Biotechnology Information’s
(NCBI) SRA [91], which uses the LZ-77 scheme to store the metadata. Unfortunately, more
information about it is not available since it is purely designed for internal NCBI use.

Specialized FASTQ compression tools initially apply some sort of data transformation
(read identifier tokenization or 2-bit nucleotide encoding) followed by statistical modelling
and entropy coding. Examples of such approaches are DSRC and DSRC2 [30, 157], FQC
[38], Fqzcomp and Fastqz [16], Slimfastq [43], and LFQC [130].

Because the read order within a FASTQ file is not important, reordering of the reads in a
manner which brings the similar reads together can significantly boost the compression rates
[66]. This is especially true if the underlying genome is repetitive, or if the coverage of the
data is high; in such cases, schemes like LZ-77 can benefit significantly from the improvement
of data locality. Tools like SCALCE [66], Orcom [60], Mince [138], and BEETL [27] use
this approach as a preprocessing step in order to improve the compression performance.

Another approach is to replace each sequence with a pointer to the underlying reference
genome, if such genome is present. LW-FQZip [189] is one such example, and it relies on
sequence mapping to obtain a list of pointers. If the reference genome is not available, it can
be constructed from the data by assembling the reads into contigs, usually by employing de
Bruijn graphs to perform the assembly. Subsequently, a read can be represented as a pointer
to an assembled contig, or as a path within a de Bruijn graph. Tools which use assembly
for data compression are Quip [85], Leon [12], k-Path [89] and KIC [190]. In general, both
sequence assembly and mapping are computationally intensive tasks. However, in order to
keep running times reasonable, these tools use specialized versions of these methods which
sacrifice biological accuracy for speed, while still providing high compression rates.

Both FASTQ and SAM consist of different data fields, where each field consists of
data sharing similar properties (e.g. the sequence field consists only of DNA nucleotides,
while mapping loci usually are composed of a non-decreasing set of integers). General

15

purpose tools, like Gzip and bzip2 [97, 163], treat both SAM or FASTQ as simple plain-
text files and produce suboptimal compression rates because they are not able to exploit the
underlying data schemata. Simple field decoupling can bring the data with similar properties
together, and improve Gzip’s (or any other algorithm’s) performance significantly, as shown
in Table 2.1. For that reason, almost every dedicated FASTQ or SAM compression tool
handles different fields separately.

Table 2.1: Effect of field decoupling on Gzip and bzip2’s performance with FASTQ files.

Mode Plain Separated Gain
Sample SRR870667
pigz 6.94 GB 6.19 GB 752 MB
pbzip2 5.58 GB 5.45 GB 131 MB
Sample ERR174310
pigz 18.60 GB 16.19 GB 2,406 MB
pbzip2 14.89 GB 14.12 GB 762 MB
Sample ERR174324
pigz 305.69 GB 266.01 GB 40 GB
pbzip2 257.72 GB 229.55 GB 28 GB

Majority of FASTQ tools also use the tokenization scheme for read identifiers, since
majority of read identifiers share the common parts. For example, SRA identifiers usually
follow the format SRAsample.1, SRAsample.2 etc. Tokenization scheme will separate the
sample identifier (in this case, SRAsample) from the ordinary number, and encode it only
once. After the separation, increasing sequence of ordinary numbers can be efficiently
encoded via delta encoding.

2.3.1 General FASTQ tools

All of the tools mentioned in this section retain the ordering of reads within the input
FASTQ file.

DSRC and DSRC2 [30, 157] are FASTQ compression tools optimized for industrial
use. As such, they boast easy-to-use interface and high throughput of the data. DSRC2
uses advanced read identifier tokenization schemes to boost the read identifier compression
rate. Bases are compressed either with a Huffman coder, or with a statistical model of an
order up to 9 in conjunction with an arithmetic coder. Quality scores are compressed via
either run length encoding, Huffman coding or a statistical model of an order up to 6 which
is fed into another arithmetic coder.

FQC [38] aims to provide both lossless and lossy strategy for long time archival of FASTQ
files. It encodes the variable parts of read identifiers via delta encoding. Sequences are
encoded via 2/8 encoding (i.e. each nucleotide is replaced with 2 bits), while quality scores

16

are simplified with run length encoding. Finally, processed identifiers and sequences are
compressed with LZMA algorithm. Quality scores are compressed with PPM coder [24].

FQC also supports the lossy encoding of FASTQ files. In that case, read identifiers are
discarded, and quality scores alphabet is shrank by applying a binning-like scheme, where
the similar quality scores are replaced with a single value (e.g. quality scores in the range
33–38 are replaced with the value of 36).

LFQC’s [130] key contribution is the advanced read name tokenization scheme. For
separate fields, it uses PAQ family of general purpose compression tools [115] to achieve
high compression rates. The use of PAQ family as a back engine for compression greatly
increases LFQC’s CPU overhead.

Fqzcomp and Fastqz [16], originally developed for SequenceSqueeze competition (which
they won) [72], use advanced statistical model mixing to achieve very high compression rates.
Read identifiers are tokenized and the tokens are encoded with different coders (which con-
sist of either delta or arithmetic coders). Quality scores are encoded by very advanced
content mixing model which takes into account the correlations between current and pre-
vious symbols. Fzqcomp’s model predicts qi, an i-th quality score within the read, in a
context consisting of:

1. qi−1,

2. max(qi−2, qi−3),

3. 1 if qi−2 = qi−3; 0 otherwise,

4. min(7, b1
8
∑i

j=2 max(0, qj−2 − qj−1)c), and

5. min(7, b i
8c)

Sequences are modelled via order-k model, and subsequently encoded via arithmetic
coder. For high values of k and high coverage of the data, the encoder can properly learn
the underlying reference genome, since context of k nucleotides can uniquely identify the
next nucleotide. Fastqz can also make use of reference genome in order to perform the fast
hash-based mapping and boost even more the compression rate. Both tools do not support
encoding of the read comments.

Slimfastq [43] is a robust industry-oriented reimplementation of Fqzcomp. Compared
to Fqzcomp, it provides more stability and support for non-standard FASTQ files.

17

2.3.2 Reordering tools

Due to the fact that sequencers output the reads in a random fashion, order of the records
within a FASTQ file is completely arbitrary. The main idea behind the tools in this section is
that much better compression rates can be achieved by grouping the similar reads together.
The boosting is caused by the fact that many reads are either the same or highly similar
because they come from the same loci or because the genome is highly repetitive.

Note that some alignment software compute statistics on the input FASTQ data with
the assumption that this data is randomly distributed, as it is when produced by the
sequencing instruments. While it is true that the order is arbitrary and one random order
is as meaningless as another random order, removing this “original” randomness can lead
to incorrectly computed statistics (e.g. insert size distributions). Therefore, it may be
necessary to shuffle any reordered data prior to alignment.

ReCoil [188] construct a similarity graph G between the reads. G is undirected weighted
graph with nodes representing the reads. Two nodes are connected with an edge if they
share a common k-mer; number of common k-mers represents the weight of an edge. In-
memory construction of G is impractical due to the size of typical HTS data set; thus,
ReCoil constructs G by externally sorting the list of tuples (k-mer, read ID) based on
k-mer content. Then, a list of edges is created by connecting the reads with a common
k-mer.

Afterwards, ReCoil calculates the Maximum Spanning Tree (MST) T of G in external
memory fashion via Kruskal’s algorithm [95], in order to catch the highest similarities
between the reads. The final ordering of the reads is obtained by selecting an arbitrary
node of T as its root, and traversing the T in a breadth-first fashion. Each read is encoded
in differential fashion with respect to its parent read.

SCALCE [66] uses core substrings as a measure of similarity in order to group the similar
reads together. Those core substrings are generated via Locally Consistent Parsing (LCP).
They are further used to cluster the reads into a different bins, where each bin corresponds
to the single core substring. Each read within a bin is cyclically shifted based on the
position of a core substring, and subsequently each bin is sorted lexicographically based
on the shifted reads. Reads are then encoded via 2/8 encoding and compressed via Gzip.
Quality scores are encoded via order-3 arithmetic coding model, and read names are just
passed to Gzip as-is. SCALCE also supports paired-end libraries, but it does not support
compression of the read comments.

Orcom [60] cluster the input reads into the different buckets as follows. For every read,
its minimizer, defined as lexicographically smallest k-mer within the read, is used as its
bucket. The underlying intuition is that two highly similar reads should share the common

18

minimizers. In order to avoid the uneven distribution of the reads within different buckets,
Orcom restricts the definition of minimizers only to those k-mers which do not contain any
triplet (AAA, CCC, TTT or GGG) or letter N. After bucketing, reads in each bucket are
sorted lexicographically starting from the position of their minimizer. Furthermore, Orcom
exploits common overlaps between the reads by encoding such overlaps only once. This is
done by maintaining a set M of m previous reads, and trying to match the prefix of the
current read with some of the suffixes in M . At the end, nucleotides, overlaps, minimizer
positions and other metadata is encoded either via PPM [24] or arithmetic encoder.

Orcom does most of the clustering in-memory in order to minimize the interference of
the I/O layer. By doing so, it achieves very high data throughput. Orcom does not support
compression of read identifiers and quality scores.

Mince [138] also uses minimizer-based bucketing in order to improve the locality of the
reads, but its bucketing criteria is different from the one used in Orcom. Read is assigned
to the bucket if the bucket’s k-mer is present in the read, and if the intersection of read’s
k-mers and a set of k-mers formed by the reads already in the bucket is maximal. Since
bucketing process is performed in a greedy manner, Mince repeats the bucketing for a reads
which have fallen within a very small buckets (usually of size 1) in order to achieve a more
balanced bucketing load. Buckets are sorted in the same way as in Orcom, and compressed
via Lzip [6], an LZMA-based general purpose compression tool. Mince does not support
compression of quality scores, read identifiers and comments.

BEETL [27] uses a generalized version of BWT in order to group the similar nucleotides
together. Afterwards, such BWT can be compressed via general purpose compression
schemes, such are RLE, LZ-77 or bzip2.

Generalized BWT operates on a set of strings S = {s1, . . . , sn} (in the case of HTS
data, elements of S represent the reads). Initially, it appends the character $i to si, where
$i is always lexicographically smaller than any symbol in the set S. Then, for every si, it
generates a list of its rotations, and sorts the list of all rotations lexicographically. Last
column of such sorted list is the generalized BWT of the set S. This construction requires
a large amount of memory for a large set S; for this reason, BEETL does this in external
fashion [10].

2.3.3 Alignment tools

Tools in this category aim to align the FASTQ reads to the reference genome, which can
be either user-provided or constructed from the reads via assembly. Then, reads can be
encoded as simple pointers to the reference genome, with additional list of mismatches if
the alignment is not perfect. Most of the mapping or assembly techniques used in this
section are designed to perform extremely fast on a large set of reads. The results of such

19

fast techniques are usually suboptimal from the biological point of view, but good enough
for compression purposes.

Quip [85] heavily relies on statistical modelling and arithmetic coding to compress the
nucleotides and quality scores. Precisely, nucleotides are modelled with an order-12 Markov
chain, while qualities use order-3 statistical model.

One unique feature of Quip is that it can also assemble a small reference genome from
the first k reads (by default 1 million) and align subsequent reads to the assembled contigs.
By doing so, the whole read can be replaced with the position on the contig (if the read is
aligned). Assembly is based on a de Bruijn graphs, where a probabilistic structure called a
Bloom filter is used to report the count of each k-mer within a de Bruijn graph G. Bloom
filters have a tendency to inflate the count of a particular k-mer (or reporting it as a present,
even it if is not), but the probability of such events is low [44].

k-Path [89] construct a de Bruijn graph G of k-mers from the reference, and tries to
encode each read as a path within G. The paths within G are encoded via arithmetic
coding, where probability distribution of edges depends whether a such edge encodes a
substring in the user-provided reference genome or not. For example, if an edge v → w in
G encodes 3-mer ACT, probability of such edge will be much higher if ACT exists in the
reference genome. The beginnings of such paths are stored separately in a trie representation
and encoded via LZ-77.

k-Path is mainly designed for encoding a RNA-Seq data, since the transcoded part
of the reference is much smaller than the whole genomic reference. It does not support
compression of read identifiers and quality scores.

Leon [12] uses assembly to construct the reference genome and map reads to it. It does
this implicitly by constructing a de Bruijn graph G from the reads, and by encoding each
read as a path within G. In order to avoid the excessive memory requirements required for
a full-blown de Bruijn graph, Leon uses a Bloom filter to store nodes of G [44], similarly to
Quip. Graph edges of the node v in G can be queried via Bloom filters by simply testing
all the four successors of the k-mer represented by the node v.

Leon encodes only the starting k-mer for each read, followed by the read’s branching
information (mapping) within G. All encoded symbols are compressed via order-0 arith-
metic coder. Leon supports lossless and lossy quality score compression and uses zlib [51] to
compress the qualities. It compresses the read identifiers by applying a differential coding
to them, and passes the result to order-0 arithmetic coder.

KIC [190] also constructs a de Bruijn graph G for assembly purposes. It initially counts
the abundance of 11-mers within the FASTQ file, sorts the 11-mers by their count, and

20

constructs the assembly contigs by extending each 11-mer to its neighbouring 11-mer as
long as such 11-mer has the count above the threshold t (by default, t = 3). The count of
visited nodes will be decreased in order to avoid getting stuck in some of the G’s cycles.
Homopolymers and simple repeats are not used as 11-mers. Reads are then mapped to the
assembled contigs and encoded as a position within a contig.

Sequence mappings and other FASTQ fields are subsequently encoded with Gzip or XZ
implementation of LZMA scheme [102].

LW-FQZip [189] uses an user-provided reference genome to perform a lightweight map-
ping of the reads. Reference is indexed by taking note of all k-mers starting with CG. A
k-mer within the read which contains the most occurrences in the reference index is se-
lected as read’s anchor. Then, a local alignment is performed between a reference and a
read around the position of the anchor. For each read, only the mapping data (position
and edit operation) is encoded. If read cannot be aligned, it is stored verbatim. Read iden-
tifiers are encoded with delta encoding, while quality scores are encoded with run length
encoding. Final streams are compressed with LZMA-based compression tools such are Lzip
[6] or 7-Zip [139].

2.4 SAM Compression Tools

The current de facto standard for SAM files compression is Binary Alignment/Map (BAM)
file format. BAM files are stored in a Blocked Gzip Format (BGZF), which is an extension
of a Gzip format. In BGZF, every Gzip/DEFLATE block is independent, having no LZ ref-
erences back to previous blocks. Such encoding produces a slightly lower compression rates
compared to Gzip, but allows random access to the records within BAM files. Compressed
quality scores represent the major portion of BAM file [107].

BAM file format originated from Samtools [107] suite, which is still the most widely tool
used for SAM and BAM processing. In addition to Samtools, few other tools also use BAM
as their output format. Notable examples include Picard [17], a Java implementation of
BAM standard which ships with optimized Intel Deflater for faster encoding and decoding
speeds, and Sambamba [169], which is a heavily parallelized implementation of Samtools
for faster encoding and decoding purposes.

All BAM tools support arbitrary ordered SAM files as input, and do not require a
reference during the compression or decompression. None of them decouples the different
fields during the compression.

Another popular alternative to SAM is the CRAM file format [172], which is a reference-
based format that separates different fields and applies a variety of compression techniques
on each of them. CRAM is implemented in Cramtools [75], Scramble [15] and recently also
Samtools [107] and Picard [17].

21

In SAM format, reads harbouring the same short nucleotide variation (SNV) are redun-
dantly encoded in an independent manner. Tools like CBC [133] and TSC [178] encode
such variations separately in order to decrease the redundancy. Similarly to CRAM, they
use a variety of compression techniques on each SAM field.

Finally, both Quip [85] and sam_comp [16] employ highly optimized statistical models
for various SAM fields, which puts them among the best performing tools in terms of pure
compression ratio.

2.4.1 Reference-based Tools

Cramtools [75] is a reference-based SAM compression tool which decouples the different
SAM fields in a separate streams and applies the variety of compression techniques to each
stream. For example, mapping loci is encoded with delta coding, and the result of delta
coding is stored as a Golomb code, while read and deletion lengths are encoded with Gamma
or Huffman codes. Golomb coding is used extensively in the CRAM file format because of
its simplicity and speed [133]. Original implementation discarded all quality scores except
those for which the associated bases participated in genomic variations. Such quality scores
were encoded with Huffman encoding.

CRAM was designed as a replacement for SAM/BAM, and thus supports many use-cases
featured in Samtools, such are random access, BAM slicing etc.

Scramble [15] is a C-based implementation of CRAM file format which boasts high
parallelism, much lower CPU and memory requirements, and higher compression rates. It
keeps quality scores and encodes them with an order-1 statistical model powered by ANS
coding. It also tries to estimate on the fly the optimal compression technique for every
stream, based on the input data statistics. Unlike Cramtools, Scramble can also compress
the reads without the reference, at the cost of lower compression ratio (because reference
is generated on the fly and stored with the reads). Many of the Scramble’s improvements
became part of the new CRAM standard [172].

Statistical modelling tools

Quip [85] also supports compression of the SAM files, and uses the same models as
described in the FASTQ section. Additionally, Quip can utilize user-provided reference for
higher compression rates. Quip does not provide random access.

sam_comp [16] is an extension of Fqzcomp, and contains the same read identifier, se-
quence and quality score models for SAM files. It uses context modelling to encode the
remaining SAM fields. sam_comp does not support compression of paired-end information
and optional fields. sam_comp also does not provide random access

22

CBC [133] uses statistical modelling for different streams, and encodes them subse-
quently with the help of either PPM or arithmetic coder. Important feature of CBC is
that its model is able to detect common structural variations shared between the reads (e.g.
common SNPs or indels), and to exploit the redundancy shared across those variations.

TSC [178] is a modular SAM compression framework, where different modules can be
employed for encoding or decoding of different SAM fields or a combinations of fields,
respectively. Most of the SAM streams are compressed via zlib. Currently, the focus
of the software lies on the low memory compression of the nucleotide sequences. The
nucleotide sequence compression algorithm uses a sliding window to exploit the redundancies
introduced by the high coverage depth and shared structural variations in a similar fashion
as CBC. It uses block-based compression in order to ensure random access to the compressed
data.

2.5 Conclusion

In this chapter, we have presented an overview of the existing tools and techniques used for
the compression of HTS sequencing data, in particular for the compression of FASTQ and
SAM file formats.

FASTQ compression methods can be divided into three groups. The first group relies
on various coding schemes in order to encode the reads. Tools from this group offer the
most time-efficient way to compress the HTS data, but come with the comparatively lower
compression rates. Methods from the second group exploit the similarity between the reads
and the reference genome, either by the use of statistical learning, or by explicitly aligning
the reads to the reference. This group provides significantly improved compression rates,
at the expense of higher computational requirements. Finally, tools from the third group
reorder the input reads in order to exploit the similarity between the reads themselves.
These tools also have good compression performance, but may require significant amount
of memory for read reordering.

SAM compression methods can be categorized based on whether they use a reference
genome or not. While methods which do not require a reference offer lower compression
rates, they are more convenient for data transfer and archival since they do not require any
external dependencies. Another characterization of SAM compression tools can be made
based on the utilization of higher-order statistical models. While such models offer the
best performance in terms of data compression, their high memory overhead prevents the
efficient implementation of random access schemes.

Finally, it should be noted that in the case of both FASTQ and SAM file formats,
auxiliary information (such are quality scores and read identifiers) accounts for the major
portion of the compressed file, regardless of the underlying compression technique.

23

Chapter 3

Reference-based Compression by
Local Assembly

Recent advances in high throughput sequencing (HTS) technologies caused a burst in gen-
erated sequencing data volume [13, 121, 145, 39]. The new Illumina NextSeq platform,
for example, generates more than a hundred gigabytes of (uncompressed) sequence data
per run for about USD $1000. As HTS data rapidly grows in size, data management and
storage have become major logistical obstacles for adopting HTS platforms. As a result,
several computational tools [66, 93, 27, 188, 30, 157, 170, 85, 16] have been developed for
efficient storage of the raw sequencing data. Unfortunately, the size of sequencing data can
grow significantly during downstream analysis, particularly after mapping the reads to the
reference genome. The standard approach to store mapped reads is in SAM/BAM [107, 174]
file formats. The SAM file format provides a plain-text human readable file that not only
includes the raw reads but also information about their mapping loci, mapping quality,
mate mapping, etc. Some of these fields are mandatory and some are tool specific. Natu-
rally, such extra information increases the size of the original raw sequencing data, putting
additional burden on storage and data transfer. The BAM file format is the Lempel-Ziv
(BGZF) compressed version of the SAM file format with some additional information to
provide random access. Although BAM file format is offering a better way to store the SAM
format, its compression performance is no better than the general purpose Gzip because it
does not handle specific field properties separately.

One alternative to the BAM file format is offered by the CRAM file format of the
Cramtools and Scramble [75, 15], which aims to provide a better compression ratio. One
drawback of Cramtools and Scramble is that they are not lossless: they modify some of the
fields of the SAM file format during compression and would not reconstruct them exactly
during decompression, which may have effects in further downstream analysis. In addition,
Cramtools and Scramble compression (similar to Samtools) does not exploit common fea-
tures of reads mapped to the same loci that differ from the reference genome, missing some

24

opportunity for improved compression. As depicted in Figure 3.1, a single nucleotide vari-
ant (SNV) in a specific loci supported by multiple reads will be encoded separately for each
read by Cramtools. As importantly, Cramtools require significantly higher computational
resources than Samtools or many other compression methods.

There are additional compression tools that are based on arithmetic coding (AC) and
other data modelling methods, such as Quip [85] and sam_comp [16]. While these tools
provide superior compression ratios to Samtools, they again have limited utility as they do
not provide random access capability. This can be a major drawback in analyzing large
SAM files, as it necessitates the decompression of the whole file (requiring large memory
and running time) and manual search of the region of interest.

To address the challenges faced in compression of mapped read data, we present DeeZ,
a SAM/BAM file compression tool, which:

1. provides (much) better compression ratio than Samtools, and

2. provides random access capability.

DeeZ’s compression performance, which is on par with the state-of-the-art arithmetic coding
tools, is a result of its improved redundancy encoding of mapped reads.

The key observation employed by DeeZ is that the vast majority of the nucleotide
differences between each read and its mapping locus on the reference genome, is shared
with other reads mapped to the same locus. DeeZ aims to lower the cost of representing
differences between reads and their mapping locus through “collective” encoding. More
specifically, DeeZ obtains the “consensus” of the reads mapped to a specific locus (implicitly
“assembling” the donor genome by the use of mapping information provided in a SAM file),
and only encodes the differences between the consensus (i.e. implicitly assembled) contigs
and the reference genome once. Since there is no difference between the consensus contigs
and the reads with the exception of mapping errors or highly allelic regions, DeeZ only
encodes the positional information of each read within the relevant contig. Moreover, DeeZ
uses a unique compression method for each field of the SAM record in order to exploit its
specific properties. For example, read names are tokenized and compressed by the use of
delta encoding, while quality scores are (by default) encoded using an order-2 arithmetic
coding.

DeeZ provides random access capability by encoding the input SAM/BAM file in a
block-by-block manner. Additional features of DeeZ include support for fast flag statistics
of a SAM file, and location based read sorting ability (as per Samtools).

DeeZ is available for download at http://sfu-compbio.github.io/deez.

25

http://sfu-compbio.github.io/deez

3.1 Methods

The key observation used by DeeZ, especially for low error sequencing technologies such
as Illumina, is that the vast majority of the nucleotide differences between each read, and
the locus on the reference genome it is mapped to, is shared with other reads mapping to
the same locus. If our goal is simply to compress the sequence content of a set of reads by
encoding the nucleotide differences of each read and the locus it maps to, the only additional
information we would need to store is the mapping locus of the read, which, collectively can
be compressed very efficiently by the use of run length encoding. As a result, the number of
bits used to encode the differences between each read and its mapping loci would dominate
the overall encoding.

DeeZ aims to lower the cost of representing differences between reads and their mapping
locus through a “collective” encoding. The reads mapped to a particular genome region
are locally assembled into contigs and for each read DeeZ only encodes the particular locus
of each read within the contig (in case there are some rare read errors or complex allelic
differences, additional information is encoded), and encodes the differences between the
contig and the reference genome once. Such a saving is especially noticeable on a high-
coverage data set, where a single difference (SNV or indel) between the donor genome and
the reference will not be redundantly encoded in every read that includes that difference;
see Figure 3.1.

DeeZ represents the donor genome based on the limited assembly of the mapped reads
as follows. First, DeeZ partitions the reads into blocks according to their mapping loci,
where each block contains a fixed number of reads (the default setting is 1 million—which,
on a 40× coverage data set, corresponds to about 25 KB of genome). Then DeeZ processes
each block independently from the others and constructs a contig which:

1. covers all of the reads that map to the block, and

2. has the fewest number of edit operations with respect to the reads mapping to the
block.

In order to achieve this, DeeZ starts with a draft contig, which satisfies property (1) but
not (2)—this contig happens to be the substring of the reference genome which covers all
reads mapping to the given block. Then, DeeZ edits the draft contig in a manner that the
number of edit operations between the contig and the reads is minimized, as follows.

Given a draft contig Z, we say potential mutation Mi(x)Z (in the donor genome) sub-
stitutes Z[i] with x, where x can represent either a single nucleotide, single nucleotide
deletion or insertion. We say that there is “substantial evidence” for Mi(x)Z if and only
if the number of the read mappings supporting Mi(x)Z is larger than that supporting any
other Mi(y)Z for y 6= x or that supporting no mutation at all. Once DeeZ identifies all
potential mutations with substantial evidence, it edits the draft contig Z to include all such

26

Figure 3.1: DeeZ approach for draft contig editing. Each common mutation supported by
the reads is encoded in the resulting contig. The CIGAR strings of mappings are provided
on the right side of each read (= represents a match, X a mismatch and D a deletion). After
modifying the underlying contig, the originally complex CIGAR strings become simple (only
a sequence of = symbols), which boosts the compression significantly.

27

mutations and obtain contigW . Note that a block deletion can be represented as a sequence
of single nucleotide deletions.

Theorem 1. Given the reference genome and the set of read mappings, a contigW obtained
by DeeZ satisfies both properties (i) and (ii).

Proof. It is trivial to observe that W satisfies (i). To prove that it satisfies (ii), let f(W)
denote the number of edit operations necessary to map the reads from the block to contig
W . Suppose that there is another contigW ′, for which f(W ′) < f(W) and f(W ′) ≤ f(W ′′)
for every other contig. Then, W ′ 6= W and there should exist a position i on the draft
contig Z such that if xW and x′W are respectively the nucleotide or indel in W and W ′ that
corresponds to Z[i], then xW 6= x′W . ObviouslyMi(xW)Z has more support thanMi(x′W)Z ;
otherwise, the DeeZ would have replaced Z[i] with x′W . But this means that by replacing
x′W with xW in W ′, one would end up with a new contig W ′′ for which f(W ′) > f(W ′′),
implying a contradiction.

Thus, by applying the above procedure on the draft contig, DeeZ is able to obtain the
optimal contig W which satisfies the above two properties. Since the mapping information
and the draft contig are known in advance, this procedure requires linear time and can be
performed very fast in practice (unlike typical de novo assembly tasks). In addition, DeeZ’s
block-based design enables one to instantly seek any region in the genome and extract all
reads mapping to the region without having to decompress the entire data set.

DeeZ is currently designed to work with both SAM and BAM files. Typical SAM
files contain large amounts of additional metadata in addition to the basic read alignment
(mapping) information. Such metadata is stored in a different field of the “SAM record”,
as described in the SAM file reference document [174]. DeeZ groups each field of the SAM
file in a separate stream and compresses it independently for each stream. For most fields
LZ-77 [192] (Gzip) is used as the compression method of choice since (i) it is fast, and (ii)
it has a small overhead as it does not require any a priori information about the data set
for decompressing a block at any position in the file. In contrast, AC usually needs a priori
model information (i.e. context) from previously compressed blocks, in order to decompress
each given block; such a model needs to be represented for each block independently in
order to provide random access capability. Although AC-based tools above perform some
kind of implicit assembly themselves, they do it by constructing complex genome models
with a large memory footprint and thus are unable to support random access capability.

3.1.1 Reads and CIGAR strings

In the SAM file format CIGAR strings describe the read alignment information needed
to correctly map the read to the reference genome (Figure 3.1). DeeZ internally modifies
the CIGAR strings to reflect the changes on the edited contigs and to accommodate indels

28

precisely (since original CIGAR string does not display the insertion details). DeeZ also
stores the differences between the resulting contigs and draft contigs (i.e. the reference
genome) for accurate reconstruction of the read contents. With these changes, the need
of storing reads vanishes completely, since we can reconstruct each read from the resulting
contig, its differences from the draft contig and read’s corresponding CIGAR string. Note
that, because of this encoding scheme DeeZ uses the reference genome for decompression
purposes as well. We do not consider this as an obstacle, since only one reference genome
is required for whole family of samples from the same species.

DeeZ uses plain LZ-77 to compress unaligned reads, after initially applying 2/8 encoding
on them. These reads are not used during the local assembly step, since their mapping
locations are unknown.

3.1.2 Read Names

Most sequencers produce unique read identifiers, subsequently referred to as read names,
which contain, in addition to the unique read ID, information about the sequencing process
and sequencing hardware. This means that many read names share significant amount of
information. Thus, we divide each read name into tokens, and compare each token with the
token at the same position in the previously processed read name. A new token is encoded
only if it differs from the previously processed token. In this way, we are able to significantly
decrease the size of read name stream, which is one of the main space consumers in the
original SAM file.

3.1.3 Quality Scores

The quality scores are the main obstacle in compression of any next-generation sequencing
(NGS) data, due to their higher variability and larger alphabet [179], especially compared
to the remainder of a SAM file (for a detailed discussion, please refer to the Results section).
Thus, for each quality score string, we first preprocess it by stripping the trailing sequence
of usually low quality values at the end of the string, as proposed in [16]. By doing this,
we can decrease the length of quality score string while being able to easily reconstruct
it during the decompression phase. After that, we pass the string to the simple order-2
arithmetic coder. While more effective schemes for quality score compression exist (e.g.
[16]), we found that such schemes require keeping track of various context lengths and build
complex models. These context models require high amount of metadata for each block,
which are constructed in reference to the previously processed blocks; as a result, in order
to decompress the quality score string of a particular block, the entire set of previously
processed blocks may need to be decompressed. For users in need of high compression
ratios but not random access capability (for quality scores), DeeZ provides the option of
using the AC model from sam_comp [16]. In such cases, the users can still seek through

29

the compressed file, but the quality scores will be not available (although the quality scores
can still be obtained by performing full decompression of the compressed file). In addition
to this scheme, DeeZ also provides a lossy quality compression scheme as proposed earlier
by the SCALCE compression tool [66], which can improve the compression factor by an
order of magnitude without any significant impact on a typical downstream analysis.

3.1.4 Mapping Locations

We use delta encoding for compressing mapping locations. In the high coverage samples,
delta encoding will represent the mapping location of each read with a small integer (usually
either 0 or 1), making the data highly suitable for a further order-0 arithmetic encoding.

3.1.5 Other Features

For all streams, unless otherwise stated, we use the simple Lempel-Ziv 77 (LZ-77) scheme
to perform the compression on processed data. This is mainly because our preprocessing
and grouping of the SAM fields is designed to increase a locality of reference for each
stream, which causes a huge performance boost for LZ-77. In addition, LZ-77 provides both
fast compression and decompression with little overhead, which allows fast block seeking
through the compressed file. By default, DeeZ will use multiple threads for significantly
improving compression and decompression speed (especially the arithmetic coding part,
which is an order of magnitude slower than LZ-77 family of algorithms, particularly during
decompression).

DeeZ stores the flag statistics of the mapped reads for easy and fast retrieval, and
supports reading BAM files as well. Finally, DeeZ supports sorting of the input SAM file
with respect to the mapping loci in case the file is unsorted.

3.2 Results

We present how DeeZ compares against other tools on bacterial (Pseudomonas aeruginosa)
RNA-Seq data as well as Human HiSeq and RNA-Seq libraries.

The following data sets were used for evaluating the performance of DeeZ:

• Pseudomonas aeruginosa RNA-Seq library (51bp, sequenced at 700×)

• E.coli DH10B MiSeq sample (150bp, file MiSeq_Ecoli_DH10B_110721_PF)

• Human K562_cytosol_LID8465 RNA-seq sample (75bp, accession ID: ERX283488)

• Human NA12878 HiSeq DNA sample (100bp, sequenced at 40×, file NA12878_S1)

P.aeruginosa data set was mapped with BWA 0.7 mapper, in order to produce a valid
SAM file. Other data sets were pre-mapped and publicly available as mapped BAM files. All

30

Figure 3.2: Quality score footprint in compressed files in comparison to other fields (measured on Human HiSeq dataset). Note that
different tools internally organize the fields in different manner, thus the difference between chart sections.

9.4%

14.7%

61.1%

7.2%
6.1%

DeeZ Field Distribution (Size: 61.3 GB)

Read names

Sequence

Flags & qualities

Quality scores

Index

Paired-end data

Optional fields

14.1%

22.1%

41.9%

10.8%

9.2%

DeeZ+Lossy Field Distribution (Size: 40.7 GB)

Read names

Sequence

Flags & qualities

Quality scores

Index

Paired-end data

Optional fields

13.8%

18.8%

66.0%

sam_comp Field Distribution (Size: 51.2 GB)

Read names

Sequence

Flags & qualities

Quality scores

7.5%

38.9%
48.7%

Quip Field Distribution (Size: 76.4 GB)

Read names

Mapping data

Optional fields

Quality scores

Measured on Human HiSeq dataset

31

data files are valid SAM files with the header and a significant number of unmapped reads
(around 1%). The SAM files were sorted by the mapping location coordinate, contained
paired-end information, and included several optional fields.

We compared DeeZ with the following compression tools:

1. Gzip v1.3.12

2. Samtools v0.1.19

3. Cramtools v2.0 [75]

4. Scramble v1.13.7

5. Quip v1.1.6

6. sam_comp v0.7 and v0.8

7. Goby v2.3.4

Samtools is the current standard tool for creating and compressing SAM files. Quip
is primarily a FASTQ file compression tool with additional support for compressing SAM
files. sam_comp is an arithmetic coding based compression tool, not able to compress
SAM headers, paired-end information and optional fields. sam_comp and Quip support
multiple modes: (i) normal mode, where reads are compressed using arithmetic coding with
a specialized context model, and (ii) reference-based mode, where only differences between
the reads and the reference are encoded.

Cramtools and Scramble are reference-based compression tools which implement CRAM
file format. They are not lossless, i.e. certain fields in the SAM file format are either changed
or deleted by Cramtools or Scramble.

Note that in all of the experiments, each tool was run in its default mode, unless oth-
erwise stated. When possible, we chose the options that forces each tool to compress in
a lossless fashion as many SAM fields as possible (since some of them discard or modify
some fields by default). We provide detailed invocation parameters for each tool in the
Appendix A.

Since sam_comp does not support compressing all fields, we compare it only with DeeZ
with the option of compressing those fields which sam_comp supports. The compression
and timing results are provided in tables 3.1 and 3.2.

32

Table 3.1: Compression ratios provided by all tested tools. File sizes are reported in megabytes. One megabyte equals 1024 × 1024
bytes.

P.aeruginosa RNA-Seq E.coli MiSeq Human RNA-Seq Human HiSeq
Tool RA Lossless Size Ratio Size Ratio Size Ratio Size Ratio
Original size 19,008 1.00 5,321 1.00 72,398 1.00 437,589 1.00
Gzip N Y 3,210 5.92 1,279 4.16 12,236 5.92 99,180 4.41
Samtools Y Y 3,340 5.69 1,341 3.97 13,119 5.52 106,596 4.11
Cramtools N3 N 3,967 4.79 N/A N/A 9,898 7.31 74,564 5.87
Scramble Y N N/A N/A 1,406 3.79 10,063 7.19 75,784 5.77
Goby Y N N/A N/A N/A N/A 11,757 6.16 N/A N/A
Quip (non-reference based) N Y 2,561 7.42 1,049 5.07 10,601 6.83 78,221 5.59
Quip (reference-based) N Y 2,181 8.72 1,135 4.69 8,271 8.75 61,905 7.07
DeeZ Y Y 1,921 9.89 831 6.40 8,010 9.04 62,808 6.97
DeeZ (partial random access2) P2 Y 1,828 10.40 788 6.76 7,615 9.51 58,879 7.43
DeeZ (lossy quality scores) Y N 1,343 14.15 513 10.36 5,157 14.04 41,701 10.49
sam_comp1 (non-reference based) N N 1,473 12.91 668 7.96 6,781 10.68 52,389 8.35
sam_comp1 (reference based) N N N/A N/A 678 7.85 6,724 10.77 51,733 8.46
DeeZ (sam_comp fields only) Y N 1,623 11.71 720 7.39 7,136 10.14 54,435 8.04
DeeZ (sam_comp fields only, P N 1,531 12.41 677 7.86 6,746 10.73 50,536 8.66

partial random access2)

1 sam_comp v0.8 was used to compress P.aeruginosa and Human RNA-Seq data set. In other cases, sam_comp v0.7 was used. 2 Quality scores are compressed
via sam_comp model and thus are not randomly accessible—the other fields are. 3 Although CRAM file format supports indexing, Cramtools does not provide
random access interface. Scramble, C implementation of CRAM specification, does support random access.

33

Table 3.2: Time and memory usage needed for compression and decompression. All figures are in (H:)MM:SS format. All sizes are in
megabytes, unless otherwise specified.

Compression Decompression Compression Decompression
Time Memory Time Memory Time Memory Time Memory

P.aeruginosa RNA-Seq E.coli MiSeq
Gzip 13:35 4 02:15 4 04:44 4 00:45 4
Samtools 14:25 11 02:59 11 04:53 11 00:54 11
Cramtools1,2 59:07 >1,120 21:22 >1,120 N/A N/A N/A N/A
Scramble1 N/A N/A N/A N/A 06:54 166 02:06 89
Goby2,5 N/A N/A N/A N/A N/A N/A N/A N/A
Quip3 (non-reference based) 14:53 653 16:57 680 05:32 664 05:53 689
Quip3 (reference based) 14:54 654 17:20 681 05:51 665 05:45 689
DeeZ 12:01 1,350 10:39 1,512 03:49 1,866 04:09 1,880
DeeZ (partial random access) 13:27 1,777 12:20 2,048 04:34 2,285 05:01 2,297
sam_comp4 (non-reference based) 13:05 474 N/A N/A 04:45 334 05:35 334
sam_comp4 (reference based) N/A N/A N/A N/A 04:43 338 05:24 338

Human RNA-Seq Human HiSeq
Gzip 0:47:24 4 08:35 4 7:31:42 4 2:12:10 4
Samtools 0:53:13 11 10:59 11 6:49:42 11 2:11:33 11
Cramtools1,2 2:30:29 >1,220 52:02 >1,220 14:18:38 >1,330 5:28:58 >1,330
Scramble1 0:36:04 1,997 11:28 1,989 6:36:41 417 1:59:39 162
Goby2,5 5:02:57 >8,600 5:25:09 >8,600 > 1 day N/A N/A N/A
Quip3 (non-reference based) 1:00:31 846 57:30 870 6:45:12 731 7:24:07 748
Quip3 (reference based) 0:56:10 1,918 57:04 1,942 8:34:38 1,805 7:27:23 1,822
DeeZ 1:18:10 2,202 48:42 2,074 5:49:48 2,129 6:34:26 2,615
DeeZ (partial random access) 1:27:22 2,681 54:51 2,579 6:50:33 2,532 7:42:04 3,216
sam_comp4 (non-reference based) 0:51:12 474 56:30 474 6:03:46 334 N/A N/A
sam_comp4 (reference based) 0:50:29 717 56:54 717 6:00:33 576 N/A N/A

1 Cramtools and Scramble decompressed SAM file was missing 1 GB in the first dataset, 4 GB in the third and 17 GB in the fourth data set. 2 Cramtools and
Goby are written in Java, and thus the virtual memory usage is heavily affected by the Java runtime (JRE). On our test machine, JRE was using around > 10
GB of virtual memory. Thus, in those cases we opted to report residential memory usage, which, although being less accurate than the virtual memory usage,
provides better insight in the memory usage of Java tools. 3 Quip decompressed SAM file was missing 1 GB in the fourth data set. 4 sam_comp v0.7 was able
to decompress only E.coli dataset. sam_comp v0.8 succeeded in decompressing the Human RNA-Seq dataset. 5 Goby successfully compressed only RNA-Seq
dataset. HiSeq dataset compression took more than one day, and thus we decided to omit its results due to the time constraints.

34

As it can be seen from the tables, DeeZ outperforms all of the above mentioned tools,
with exception of sam_comp, whose compression performance is comparable to DeeZ. How-
ever not only does sam_comp not provide random access ability but it also does not com-
press all fields in the SAM file format (see Table 3.3 for random access performance of DeeZ
in comparison to the only other two methods that provide this capability: Samtools and
Scramble). In addition, we were not able to decompress any of the files compressed with
sam_comp (with the exception of E.coli MiSeq dataset). Note that in the HiSeq data set
Quip performs slightly better than DeeZ with the default settings due to its use of high-
order AC compression for quality scores, which is well suited for a large file. However, Quip
does not provide random access ability either.

For users in need of high compression ratios but not random access capability (for quality
scores), DeeZ provides the option of using the AC model from sam_comp [16]. With this
quality model, DeeZ outperforms Quip on this data set, while still providing partial random
access ability (all fields except quality scores).

DeeZ also provides the fastest compression speed in the bacterial RNA-Seq and the
human HiSeq data sets. In the human RNA-Seq data set, DeeZ compression speed is
lower due to properties of RNA-Seq mapping on eukaryotic genomes; this is due to many
mappings being located on exon/intron junctions. Reads mapping to junctions cause DeeZ
spend more time analyzing and editing draft contigs1.

DeeZ’s decompression speed is also on par with or better than its competitors with
the exception of Samtools and Scramble. This is due to the LZ-77 decompression scheme
employed by Samtools and Scramble being much faster than AC decompression, which
DeeZ employs for compressing the quality scores. This issue is especially acute in the whole
chromosome retrieval task in Table 3.3, where decompression of quality scores dominates
the time for random access. In case the quality scores are not needed for an fast random
access task, the performance of DeeZ gets improved.

3.2.1 Quality scores

Quality scores usually consume the largest portion of a compressed file, due to their high
entropy compared to other fields of a SAM file. Figure 3.2 depicts the size distribution
of various SAM fields for Quip, sam_comp and DeeZ in their default settings; as can be
seen, even with powerful AC methods, quality scores typically occupy more than half of the
file size. As a result, DeeZ provides an optional lossy quality transformation as described
earlier [66]. In this way, DeeZ is able to significantly decrease the compressed file size in
its default mode (without even using an advanced model), as well as the portion of the
file occupied by the quality scores without significantly impacting standard downstream
analyses.

1Obviously the running times may vary due to I/O utilization and caching. Up to 25% variation between
two runs of the same method, on the same machine and same data set is possible.

35

Table 3.3: Random access performance for three tools which support it. All figures are
in (MM:)SS format. Second table indicates the index size (in megabytes) and additional
preprocessing (i.e. index building) times needed for Samtools and Scramble.

Human RNA-Seq Human HiSeq
Time # records Time # records

chr5
Samtools 60 9,116,311 08:26 71,141,857
Scramble 63 9,116,311 08:19 71,141,857
DeeZ 119 9,116,311 16:30 71,141,857
DeeZ (without qualities) 84 9,116,311 13:54 71,141,857

chrY:10,000–20,000
Samtools 1 26 1 759
Scramble 1 26 3 759
DeeZ 5 26 14 759
DeeZ (without qualities) 3 26 7 759

chr14:107,349,000–107,349,540
Samtools 1 0 1 0
Scramble 5 0 1 0
DeeZ 1 0 3 0
DeeZ (without qualities) 1 0 3 0

(a) Random access performance

Human RNA-Seq Human HiSeq
Time Size Time Size

Samtools 04:04 5.51 30:10 8.63
Scramble 02:55 0.39 05:10 2.03

(b) Index statistics

36

3.3 Conclusion

In this chapter, we have presented a novel compression tool, named DeeZ, which uses local
assembly to improve the compression performance of SAM/BAM files. DeeZ offers high
compression rates (up to 50% over commonly used BAM file format), while requiring low
computational resources and providing features such as random access. As the rate of HTS
data increase surpasses the Moore’s law predictions [23], DeeZ can reduce the burden of
data storage and transfer by efficient compression and representation of aligned HTS data.

There are still some challenges that we aim to address in future. One of them is to in-
corporate more complex events into the assembly procedure. In its current iteration, DeeZ
only considers single nucleotide variations during the local assembly stage in order to avoid
the high computational overhead. Further investigation is needed to ascertain whether
the detection of insertions, large deletions and other structural variations significantly im-
proves the compression. Another important concern to be considered is the compression
of long reads with high error rates (e.g. reads generated by PacBio or Oxford Nanopore
technologies). DeeZ is currently optimized for technologies with low error rates. Thus its
performance on data sets where error rates are high might be suboptimal. Furthermore, re-
ordering schemes like those proposed in SCALCE [66] can be utilized for further improving
the compression of unaligned reads.

37

Chapter 4

Comparison of High Throughput
Sequencing Data Compression
Tools

Current trends in high throughput sequencing (HTS) data generation indicate that the
storage, transmission and I/O bandwidth costs will soon surpass the costs of sequencing
and will become the main bottleneck in genomics as well as its applications to precision
medicine. One way to reduce the burden of HTS data on storage, I/O bandwidth and
transmission is the use of high-performance compression methods, developed specifically
for HTS data.

In the last 25 years the Moving Picture Experts Group (MPEG), also known as the
ISO/IEC JTC1/SC29/WG11 committee, has developed a methodology that has yielded
compression standards extensively adopted by the digital media industry. A growing number
of experts in genome data processing have joined MPEG experts in a working group, to
explore how data compression expertise from the multimedia world can integrate specific
bioinformatics expertise and improve the performance of existing genomic data compression
tools. In addition, ISO Technical Committee 276 (Biotechnology) Working Group 5 (Data
Processing and Integration) has joined the effort with its specific biotechnology expertise.
The ultimate goal of this working group is to design and specify genomic data compression
and transport technology by means of an open standard and interoperability among systems.

As a first step towards developing an open standard, MPEG and ISO TC 276 has now
issued a call to the international community to jointly evaluate the effectiveness of available
compression methods on a common set of genome data. For this purpose, the MPEG HTS
compression working group compiled a HTS data set with a wide spectrum of characteristics
for ensuring statistically meaningful results: raw (FASTQ) and aligned (SAM/BAM) data
with both deep and shallow coverage; fixed length and variable length reads obtained by
sequencing technologies from leading manufacturers (Illumina, Pacific Biosciences, Oxford

38

Nanopore, Ion Torrent); genome, exome and transcriptome data from various organisms
(Homo Sapiens, Bacteria, Plants, Insects); several sample types (metagenomic, cancer cell
lines) as well as simulated human data are included in the final dataset of size of 4 TB.
The dataset was reviewed and approved by all members of the MPEG HTS compression
working group for benchmarking purposes. It is expected that the dataset will grow further
to accommodate future technologies and additional requirements.

As members of the MPEG HTS compression working group, we have conducted a
comparative study of all available lossless HTS compression tools on the MPEG bench-
marking data set, expanding significantly some of the recent comparative studies and sur-
veys [52, 72, 31]. We developed an open-source, publicly available framework specifically
tailored for HTS compression evaluation, placing a special emphasis on fairness and repro-
ducibility of the benchmarking process (https://github.com/sfu-compbio/compression
-benchmark). Together with the data diversity provided by the MPEG benchmarking data
set, this framework is also suitable for the review and comparison of future tools.

4.1 Summary of Available Tools

We aimed to evaluate all available approaches used for HTS data compression. These
include both industry-scale tools as well as research-oriented prototypes. For each tool,
its compression performance, running times, memory usage, and parallelization capabilities
were measured. Most HTS data is maintained either as raw sequencing information in
a FASTQ file, or as reference-aligned (mapped) data in SAM or BAM file formats. The
FASTQ and SAM schemata describe different data fields with similar properties (e.g. the
sequence field consists only of DNA nucleotides, while mapping loci are usually represented
as a non-decreasing sequence of integers), generating large files. It is common to use general
purpose compression tools on these files, which treat them as simple plain-text and thus
produce suboptimal compression rates because they are not able to exploit the underlying
data schemata. All sequencing compression tools are built on a standard set of general
compression algorithms, which are surveyed in the Chapter 2.

FASTQ files are typically compressed with general purpose Gzip and bzip2 tools. Se-
quence archives commonly use NCBI’s SRA file format, which is loosely based upon the
LZ-77 scheme. Specialized FASTQ compression tools initially perform a form of trans-
formation (read identifier tokenization or 2-bit nucleotide encoding) followed by statistical
modelling and entropy coding. Examples of such approaches are DSRC2 [157], FQC [38],
Fqzcomp and Fastqz [16], Slimfastq [43] and LFQC [130].

Because the read order within a FASTQ file is arbitrary, reordering the reads in a manner
which brings the similar reads together can significantly boost the compression rates [66].
This is especially true if the underlying genome is repetitive, or if the coverage of the data
is high; in such cases, schemes like LZ-77 can benefit significantly from the improvement of

39

https://github.com/sfu-compbio/compression-benchmark
https://github.com/sfu-compbio/compression-benchmark

data locality. Tools like SCALCE [66], Orcom [60], Mince [138], and BEETL [27] use this
approach as a preprocessing step in order to improve the compression performance.

Alternative approaches aim to achieve compression by replacing each read with a pointer
to the underlying reference genome, provided such a reference genome is available. LW-
FQZip [189] is one such example which relies on sequence mapping to obtain a list of
pointers. If the reference genome is not available, it can be constructed de novo by assem-
bling the reads into contigs, usually through the use of de Bruijn graphs. Subsequently,
a read can be represented as a pointer to an assembled contig, or as a path within a de
Bruijn graph. Primary tools that use assembly for data compression are Quip [85], Leon
[12], k-Path [89] and KIC [190]. Note that both sequence mapping and assembly are com-
putationally intensive tasks; as a result, most of the above mentioned tools sacrifice speed
for maintaining high compression rates.

SAM files are mostly stored in their compressed equivalent, the BAM file format [174].
Commonly used tools for BAMmanipulation are Samtools [107], Picard [17], and Sambamba
[169]. All BAM-based tools support arbitrary ordering of the reads and do not require a
reference during compression or decompression. None of them treat various streams in a
BAM file differently.

An alternative to the SAM file format is CRAM [172], a reference-based format that
separates different fields in the reads and applies a variety of compression techniques on
each. CRAM is implemented in Cramtools [75], Scramble [15] and recently also Samtools
[107] and Picard [17].

In both SAM and CRAM, reads harbouring the same sequence variant are encoded
independently. This implies that the same variant is redundantly encoded across the reads.
For that reason, DeeZ, a newer alternative [67], implicitly assembles the underlying donor
genome in order to encode these variants only once. A similar path is followed by CBC
[133] and TSC [178]. All of these tools treat SAM fields in a separate manner, and apply a
variety of compression techniques on each field.

Finally, Quip [85] and sam_comp [16] employ highly optimized statistical models for
various SAM fields, which puts them among the best performing tools in terms of pure
compression rate. The full description of the evaluated tools is available in the Chapter 2.

4.2 Criteria for Dataset and Tool Selection

4.2.1 General Criteria

Our goal in this study was to evaluate the majority of the available FASTQ and SAM com-
pression tools in terms of (but not limited to) their compression performance, computational
resources and correctness. In order to provide reproducible results and meaningful com-
pression metrics, this section describes the benchmarking framework used by the authors
both in terms of environment and genomic data used.

40

The following general criteria were used for the evaluation purposes:

Fairness and Reproducibility One important aspect of reviewing any set of software
tools is the robustness and reproducibility of results. We wish this to be more than a
review of current tools, but to also act as a framework for reviewing subsequent tools.
In order to be as fair as possible, we have fully automated the benchmarking process
by developing an open-source, freely available framework specifically tailored for NGS
compression evaluation. All crashes were timely reported to the authors. Also, all
output files were compared with the original files to check for mismatches or bugs.
All crashes and mismatches are documented in Appendix B.

Data Diversity The data selected covers a variety of cases, both deep and shallow cover-
age, fixed length short reads (Illumina-style) and variable length long reads (PacBio-
style), small and large genomes, and multiple sequencing experiment types (WGS,
RNA-seq).

Format Compatibility We aim to investigate only those tools whose primary aim is to
compress either FASTQ or SAM files. In this way, the performance and accuracy of
each tool can be evaluated unambiguously.

Basic Capabilities Every tool has to provide a compression and fully functional decom-
pression step in a reasonable time. Additional capabilities (e.g. random access,
reference-free encoding, BAM slicing) were acknowledged but not evaluated in the
detail.

Losslessness We limit ourselves to only lossless compression, accepting that controlled
loss of data is appropriate in many cases but is outside the scope of this thesis. The
slight exception to this rule is that we evaluate the tools which store the primary
information losslessly (sequence, identifiers, qualities), but lose or change some of the
derived data (e.g. FASTQ read order, comments, or SAM optional fields). All such
cases are explicitly mentioned where appropriate.

4.2.2 Tool Selection Criteria

We aim to evaluate all available approaches used for HTS data compression. These include
both industry-scale tools as well as research-oriented prototypes. A summary of the tools
tested can be found in Table 4.1 and Appendix B.

While there are many other tools designed for storing the reads in both aligned and
unaligned fashion, their main purpose is not compression per se, but a complete replacement
of FASTQ or SAM schema with a special support for a particular use-cases (e.g. Hadoop
compatibility etc.). For reference purposes, we have evaluated two tools from the latter
category, ADAM [119] and Goby [20], and presented their perspectives in the Table 4.2.

41

Table 4.1: A summary of evaluated tools and their capabilities.

SAM Random Reference Unsorted Statistics Comments
access required SAM

Samtools 3 No 3 3
Sambamba 3 No 3 3
Picard 3 No 3 3

Cramtools 3 Yes 3
Scramble 3 Optional 3 3 Non-reference based encoding

recommended for unsorted SAM
DeeZ 3 Optional 3
CBC 7 Yes
TSC 3 No
Quip 7 Optional Reorders optional fields
sam_comp 7 Optional Does not support paired-end and

optional fields
FASTQ Random Reference Reordering Comments

access required
DSRC2 7 No
Fastqz 7 Optional No comments
Fqzcomp 7 No No comments
Slimfastq 7 No
FQC 7 No
LFQC 7 No
SCALCE 7 No 3 No comments
Orcom 7 No 3 Reads only
Mince 7 No 3 Reads only
BEETL 3 No 3 Reads only
LW-FQZip 7 Yes
Quip 7 No No comments
Leon 7 No No comments
k-Path 7 Yes Reads only
KIC 7 No

42

Compared to the other compression tools, their compression performance is significantly
lower. Thus, we decided not to evaluate these tools in this benchmark.

Table 4.2: Performance of ADAM and Goby on MiSeq E.coli dataset. ADAM does not
directly support SAM decompression.
The leftmost column indicates the overall compressed size. Middle column indicates the
compression and decompression times relative to Samtools, with lower being better. The
last column indicates the memory usage in MBs.

Sample DH10B
Coverage 490×

Original 5,733

1.00 6.10Samtools 1,440 1.00 6.20
2.83 4,450.1ADAM 1,218 N/A N/A
2.18 3,031.30Goby 1,447 3.74 2,785.60

4.2.3 Dataset Selection Criteria

Investigations on the possibility to start an activity of formal standardization of genomic
data representation is currently ongoing within ISO/IEC JTC1/SC29/Work Group 11, the
Moving Picture Experts Group (MPEG) [82, 84]. One of the working items of this activity
is the definition of a scientifically meaningful collection of genomic data samples including
(i) both raw (FASTQ) and aligned (SAM) data, (ii) data from the most utilized sequencing
technologies, (iii) data at different read depths (coverage), (iv) various types of experiments,
and (v) various types of organisms.

Using a wide test bed covering various data characteristics can help identify specialized
tools that perform very well on specific data types or fields in comparison to the more generic
compression tools that perform uniformly on most samples or fields. It can also help us
evaluate the robustness of algorithms that rely on statistical models for data sources. If a
model utilized by a compression tool is too specific to a given data type, it may provide poor
compression ratios on samples with different statistical properties (e.g. due to a different
sequencing technology used to produce the data). Additionally, some tools are able to
support both FASTQ and BAM file formats and (for some application scenarios) may thus
be preferable to others with better compression ratios, but supporting only one format.

The selection of the data corpus was chosen to fit the following criteria without excessive
duplication.

File format We have both FASTQ and SAM data sets. We could have used the same
samples for both, requiring either that the FASTQ is aligned to produce the SAM file
or the FASTQ file extracted from the SAM. Both of these have problems: producing

43

a SAM from FASTQ is very costly in CPU time and it is problematic to produce
the exact same data every time due to regularly fluctuating software releases and the
inherent stochastic nature of some alignment algorithms. Producing FASTQ from
SAM is possible, but requires the data to be sorted back into the original (unknown)
order as it came off the sequencing instruments. Given the wealth of public data, we
instead chose to simply select datasets natively available in either FASTQ or SAM
file format.

Genome size A small genome size lends itself well to observation of repeated fragments
when using a small memory size (for example in an LZ style algorithm or de novo
assembly). Larger genomes typically make these approaches less useful or require
large amounts of CPU and memory. Therefore, our data set accounts for both small
and large genomes.

Depth Sequence depth is defined as the average number of times each genomic location is
covered by an aligned sequence fragment. Deep data offers good compression through
redundancy. On data sorted by genomic location (typical for SAM) or with a small
genome size, deep data offers easily observed DNA sequence redundancy. Shallow
data will make redundancy less significant, in turn giving an advantage to reference
based compression strategies.

Library type Sequencing libraries typically produce DNA fragments either singly or in
pairs. Paired reads have common sequence names and typically the DNA fragments
belonging to common pair align within a short distance of each other. Testing both
types of data is useful to observe whether tools can take advantage of the partial
redundancy in paired-end sequencing.

Instrument types The distribution of quality values, sequencing error rates, auxiliary
tags present in SAM, lengths of DNA fragments and even whether the lengths are
fixed or variable all differ between sequencing instruments. While the sequencing data
sets are currently dominated by Illumina instruments, this may not always be the case
and we need to observe whether software has been over-tuned for compressing only
one type of data. Even within the Illumina data sets there is considerable variation as
older instruments use approximately 40 distinct quality values while the newer HiSeq
series quantize these to 8 values.

Experimental factors Other differences we wanted to capture included whole genome se-
quencing versus exome or RNA-Seq experiments with highly variable sequence depth,
data from unknown or mixed genomes, and cancer samples where the rate of mutation
is far higher than expected, both between sequences and the reference and potentially
between different sequences themselves. Latter cases will have an impact on reference
based compression and the robustness of deduplication techniques.

44

Used elsewhere Where possible, use data sets that have been previously used in papers.

4.2.4 Data set files

The initial dataset compiled by MPEG is composed of approximately 2.4 TB of human,
human microbiome (metagenomic), bacterial and plant genome and transcriptome sequence
data. In addition to normal human genome sequence data, genomic data from cancer cell
lines is also included; see below for more details.

Note that since we started this study, the MPEG dataset has grown to approximately 4.5
TB, now including additional data types representing alternative sequencing technologies
such as Oxford Nanopore, other species such as mouse or chimpanzee, and human genome
sequences representing family members. Here we report our results on the initial MPEG
dataset, since it was infeasible to rerun all the tools we tested (many of which required
long running times for compression and decompression) every time a new data sample was
introduced.

More samples are expected to be added to the MPEG dataset in near future. Subse-
quently, additional experiments will be carried out within the MPEG working group during
the formal standardization activity, once the data set is complete and all candidate com-
pression technologies are submitted for consideration [83].

Given the large size of the MPEG dataset we selected a subset for our benchmarks as
follows:

SRR554369 FASTQ; paired short reads; Illumina GAIIx; 50× total depth; bacteria P.aeru-
ginosa. Chosen as a small genome (6–7 MB) with medium depth. This dataset
was used as a test set for LW-FQZip compression tool [189]. Available at ftp:

//ftp.sra.ebi.ac.uk/vol1/fastq/SRR554/SRR554369/.

SRR327342 FASTQ; paired short reads; Illumina GAII; 175× total depth; yeast S.cere-
visiae. Chosen as a small genome (12 MB) with high depth. This dataset was also
used as a test set for LW-FQZip compression tool [189]. Available at ftp://ftp.sr
a.ebi.ac.uk/vol1/fastq/SRR327/SRR327342/.

MH0001.081026 / ERA000116 FASTQ; paired short reads; Illumina GA; unknown
depth; Human gut metagenome. Chosen as a dataset with mixed species and unknown
references. Available at ftp://ftp.era.ebi.ac.uk/vol1/ERA000/ERA000116/fast

q/MH0001_081026_clean.1.fq.gz and ftp://ftp.era.ebi.ac.uk/vol1/ERA000/ER
A000116/fastq/MH0001_081026_clean.2.fq.gz

SRR1284073 FASTQ; single variable length long reads; PacBio; 140× depth; bacteria
E.Coli. An example of a small genome (4.7 MB) covered by variable length long
reads, but with low quality and a higher error rate. This is used as a test set for the

45

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR554/SRR554369/
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR554/SRR554369/
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR327/SRR327342/
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR327/SRR327342/
ftp://ftp.era.ebi.ac.uk/vol1/ERA000/ERA000116/fastq/MH0001_081026_clean.1.fq.gz
ftp://ftp.era.ebi.ac.uk/vol1/ERA000/ERA000116/fastq/MH0001_081026_clean.1.fq.gz
ftp://ftp.era.ebi.ac.uk/vol1/ERA000/ERA000116/fastq/MH0001_081026_clean.2.fq.gz
ftp://ftp.era.ebi.ac.uk/vol1/ERA000/ERA000116/fastq/MH0001_081026_clean.2.fq.gz

Jabba error correction tool [122]. Available at ftp://ftp.sra.ebi.ac.uk/vol1/fa
stq/SRR128/003/SRR1284073/.

SRR870667 FASTQ; paired short reads; Illumina GAIIx; 35× total depth; plant T.cacao.
This is the only plant genome in the corpus, with a medium sized genome (estimated
345 MB).

ERR174310 FASTQ; paired short reads; Illumina HiSeq 2000; 13× total depth; H.sapiens
(NA12877) individual. This represents a common instrument, depth and organism.
Available at ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR174/ERR174310/.

ERP001775 FASTQ; paired short reads; Illumina; 120× depth; entire H.sapiens individ-
ual (NA12878) from the Illumina Platinum Genomes set. Due to the size, only fast
tools are tested with this data.

DH10B SAM; paired short reads; Illumina MiSeq; 420× depth; bacteria E.Coli. Chosen
for deep Illumina coverage of a small genome. Used in the DeeZ paper [67]. Avail-
able at ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/

DH10B/MiSeq_Ecoli_DH10B_110721_PF.bam.

9827_2#49 / ERR317482 SAM; paired short reads; Illumina HiSeq 2000; 2× depth;
H.sapiens. Extreme low uniform coverage of a large genome. Used in the Scramble
[15] and Paridaens [137] papers. Available at ftp://ftp.sra.ebi.ac.uk/vol1/ER

A242/ERA242167/bam/9827_2%2349.bam.

sample-2-12 / ERR303541 SAM; single variable length long reads; IonTorrent; 0.6×
depth; H.sapiens. A single-ended run with variable mid-length reads. This is amplicon
sequencing so has large variations in sequence depth across the genome. Available
at ftp://ftp.sra.ebi.ac.uk/vol1/ERA229/ERA229587/bam/sample-2-12_sorted

.bam.

K562.LID8465 SAM; paired short reads; Illumina; 6× depth; H.sapiens. An RNA-Seq
experiment with variable depth Illumina data. Available at http://www.ebi.ac.uk/
arrayexpress/files/E-MTAB-1728/K562_cytosol_LID8465_TopHat_v2.bam.

dm3 SAM; single variable length long reads; PacBio; 75×; bacteria D.melanogaster. Rep-
resents PacBio reads on a medium sized genome (168 MB). These are uncorrected
reads, so they have low base accuracy and correspondingly complex and lengthy
CIGAR strings. Available at http://bergmanlab.ls.manchester.ac.uk/data/tr

acks/dm3/dm3PacBio.bam.

HCC1954.mix1.n80t20 SAM; paired short reads; Illumina-like simulated data set; 30×
depth; H.sapiens. This is an artificially mixed cancer cell line, used as part of the

46

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR128/003/SRR1284073/
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR128/003/SRR1284073/
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR174/ERR174310/
ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/DH10B/MiSeq_Ecoli_DH10B_110721_PF.bam
ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/DH10B/MiSeq_Ecoli_DH10B_110721_PF.bam
ftp://ftp.sra.ebi.ac.uk/vol1/ERA242/ERA242167/bam/9827_2%2349.bam
ftp://ftp.sra.ebi.ac.uk/vol1/ERA242/ERA242167/bam/9827_2%2349.bam
ftp://ftp.sra.ebi.ac.uk/vol1/ERA229/ERA229587/bam/sample-2-12_sorted.bam
ftp://ftp.sra.ebi.ac.uk/vol1/ERA229/ERA229587/bam/sample-2-12_sorted.bam
http://www.ebi.ac.uk/arrayexpress/files/E-MTAB-1728/K562_cytosol_LID8465_TopHat_v2.bam
http://www.ebi.ac.uk/arrayexpress/files/E-MTAB-1728/K562_cytosol_LID8465_TopHat_v2.bam
http://bergmanlab.ls.manchester.ac.uk/data/tracks/dm3/dm3PacBio.bam
http://bergmanlab.ls.manchester.ac.uk/data/tracks/dm3/dm3PacBio.bam

TCGA cancer variant calling benchmark. This has a much higher degree of sequence
variants than usual and was chosen as a good stress test for reference based compres-
sion tools. Available at https://cghub.ucsc.edu/datasets/benchmark_download

.html (GeneTorrent is needed to download this sample).

NA12878.PB SAM; single variable length long reads; PacBio; 15× depth; H.sapiens.
The widely sequenced NA12878 sample using variable length PacBio reads. Hav-
ing the same sample sequenced with two very different instruments offers a good
test bed for related work too, including evaluation of lossy compression. Available
at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_

na12878_pacbio/si/NA12878.pacbio.bwa-sw.20140202.bam.

NA12878.S1 / ERR194146 SAM; paired short reads; Illumina HiSeq 2000; 50× depth;
H.sapiens. See NA12878.PB for justification. Available at ftp://ftp.sra.ebi.ac

.uk/vol1/ERA172/ERA172924/bam/NA12877_S1.bam. Due to the size, only fast tools
are tested with this data.

4.3 Results

4.3.1 Experimental Setup

We have evaluated all of the tools on a dedicated machine with 6 AMD Opteron 8439 SE
processors (each with 4 cores and 2.8 GHz clock rate) and 256 GB of memory. The machine
was used only for benchmarking purposes during this study. In order to account for network
interference, we performed all of the experiments on local storage. Caching side effects were
minimized by clearing the cache before each invocation.

In order to evaluate the scalability of compression tools, we have evaluated all of the
tools supporting multi-threading on configurations of 1, 4 and 8 working threads. Single-
threaded mode is used as a reference, because many tools still do not exhibit parallelism
efficiently. Because some tools do not allow single-threaded mode to be used (parallelism
is hard-coded), we have forced every tool in single-threaded mode to use only one core via
cpubind utility.

In addition to scalability, we have measured compression rations, memory usage, CPU
load and decompression performance. Performance of separate fields was also measured,
as long as it was available. Every tool was also tested for accuracy: does it decompress
FASTQ or SAM file same as original, and if not, what are the differences.

4.3.2 FASTQ

An overview of our results is presented in the Table 4.4. Multi-threaded performance and
memory usage are presented in Table 4.6. Graphical overview of the results is given in

47

https://cghub.ucsc.edu/datasets/benchmark_download.html
https://cghub.ucsc.edu/datasets/benchmark_download.html
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_pacbio/si/NA12878.pacbio.bwa-sw.20140202.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_pacbio/si/NA12878.pacbio.bwa-sw.20140202.bam
ftp://ftp.sra.ebi.ac.uk/vol1/ERA172/ERA172924/bam/NA12877_S1.bam
ftp://ftp.sra.ebi.ac.uk/vol1/ERA172/ERA172924/bam/NA12877_S1.bam

Figure 4.1. The performance on paired-end libraries is presented in Table 4.9. Per-field
statistics are presented in Table 4.5.

Some of the available tools achieve significant gains over Gzip and bzip2, both in terms
of compression rate and speed. The best compression rates are offered by tools that reorder
reads, which are especially effective for sequence compression. Alternatives such as LFQC
may also provide good compression rates, but come with a high running time overhead. It
should be noted that reordering based tools also perform very well in terms of speed. Their
memory usage is slightly higher but not unreasonable and can be user-configured in most
cases.

Table 4.6 shows the performance of tools when used in a multi-threaded environment.
Many tools significantly improve their performance through parallelization, even though
the performance improvement is not always proportional to the number of processors. The
best trade-off between the number of processors and running time is typically achieved with
four threads. Memory usage (with a few exceptions) is reasonable for most of the tools
evaluated. Similar conclusions hold for SAM compression tools as well.

An additional observation is that the majority of the available tools are optimized for
Illumina-style short, fixed-length reads—as can be seen, many tools do not provide an option
to compress long, variable length read collections, such as PacBio data.

Special cases

For ERP001775 sample (with almost 1 TB of data), we have evaluated only those tools
whose running time was reasonable, and which provided the reasonable compression rates
(this decision was based on their performance on other samples). These tools were run with
four threads, if it was possible—otherwise, single thread was used.

k-Path does not work properly if single-threaded mode is specified. Quip uses hard-coded
multi-threading (with four threads); single-threaded mode was obtained by using cpubind.
Fqzcomp, Fastqz, Slimfastq, FQC, LFQC, LW-FQZip and BEETL do not currently support
parallelism. Mince was not tested in single-threaded mode on SRR870667 and ERR174310
samples due to the long running time. LFQC was not tested on ERR174310 due to the long
running time.

Discussion

As can be seen from Table 4.4, the best sequence compression is obtained by reordering
tools, in particular Orcom, Mince and SCALCE. However, note that Mince and Orcom do
not support full FASTQ compression. Best tools which support whole FASTQ compression
are LFQC, SCALCE and Slimfastq. However, LFQC’s slow compression and decompression
speed makes it impractical on any large dataset (e.g. decompression speed is on average
300× slower than Gzip’s decompression speed).

48

Current state-of-the-art in quality score compression is Fqzcomp and its successor Slim-
fastq, whose probabilistic model offers the best performance on quality score data. As for
read identifiers, tools which use probabilistic models, such are LFQC (based on PAQ), Quip
and Slimfastq, again provide the best compression rates.

Note that the majority of arithmetic coding tools, such are Fqzcomp, Slimfastq, Quip
and LFQC have rather high decompression times. Moreover, they usually do not exhibit
parallelism in their current iterations. On the other side, reordering tools provide reasonable
compression and decompression times. All evaluated tools (with the exception of Orcom,
Mince and k-Path on large data sets) use reasonable amount of memory.

Taking everything into the consideration, reordering tools such are SCALCE or Orcom
can be recommended as the best tools for FASTQ compression. If user prefers to keep the
original ordering of FASTQ file, Slimfastq clearly presents the most adequate choice for
FASTQ archival.

4.3.3 SAM

Detailed results are presented in the Table 4.4. Multi-threaded performance and memory
usage are presented in Table 4.8. Graphical overview of the results is given in Figure 4.1.
Per-field statistics are presented in Table 4.7.

Please note that we use Samtools as a reference point for BAM file format and Scramble
as a reference point for CRAM file format. Other tools’ implementation of these formats
are mentioned separately if needed.

It is possible to obtain better compression rates than that achieved by Samtools, even
with the simple use of Gzip. However, unlike Samtools, Gzip does not provide random
access capability. Among the available tools, only CRAM family, DeeZ and TSC provide a
random access facility. Interestingly, Scramble and DeeZ are able to improve sam_comp and
Quip in most of the cases, both in terms of compression rate and speed, while additionally
providing random access capability. Scramble is also able to decompress files faster than
Samtools in most of the cases.

Special cases

For NA12878.S1 sample (around 600 GB of data), we have evaluated only those tools whose
running time was reasonable, and which provided the reasonable compression rates (this
decision was based on their performance on other samples). These tools were run with four
threads, if it was possible.

Scramble, Cramtools, as well as Samtools can compress to CRAM file format. We
used Cramtools to test CRAM v2 specification, while Scramble was used for CRAM v3
specification of the format.

49

KIC does not work properly if single-threaded mode is specified. Quip uses hard-coded
multi-threading (with four threads); single-threaded mode was obtained by using cpubind.
Samtools, Picard, Cramtools, TSC and sam_comp do not currently exhibit parallelism.

We have evaluated two versions of TSC—v1.2 for samples 9827.2.49, K652.LID8465 and
HCC1954, and v1.4/v1.5 for samples DH10B, dm3 and sample-2-1 (v1.5 contains minor
bugfixes over v1.4). This is due to the fact that v1.5 was not able to timely compress
human samples. On the other hand, v1.2 does not support variable length reads.

Discussion

Based on results presented in the Table 4.4, overall winners are DeeZ and Scramble. DeeZ
clearly offers the best compression rates (especially in bzip2 mode), while Scramble offers the
best compression and decompression times. Both tools support multi-threading, and with 4
threads they are faster than Samtools both in compression and decompression. Furthermore,
both tools support random access, and there is almost no reason to choose BAM over either
DeeZ or Scramble. Similar to FASTQ tools, all evaluated tools use reasonable amount of
memory.

As for quality scores, sam_comp provides the best compression rates since its model
is based on Fqzcomp’s quality score model. However, other models (e.g. those used by
Scramble and DeeZ), which are conceptually simpler and faster in practice, offer reasonable
compression rates in most of the cases, which makes them “good enough” for everyday use.

Random access

We also evaluated the random access performance on NA12878.S1 dataset for the tools
which support random access. Three regions were picked as a random access performance
indicator: (i) region within chr14 with no records, (ii) region within chrY with less than
2000 records, and (iii) whole chr22 region. Details are shown in the Table 4.3. For each
region, we evaluated the following random access traits: (i) time necessary to decompress
the requested region, (ii) number of seeks within compressed file, and (iii) number of bytes
read from compressed file. Last two traits were obtained with the help of io_trace tool
(https://github.com/jkbonfield/io_trace). We also included the index size for each
file format.

As can be seen from the Table 4.3, all tools provide reasonable random access capa-
bilities. It is interesting to note that Samtools (BAM), Scramble (CRAM) and DeeZ have
different block sizes, ranging from few hundreds of records per block in BAM file format, to
one million of records per block in the case of DeeZ. Larger block sizes require slightly longer
decompression time in order to fetch smaller regions, but provide a smaller index size (and
vice versa). Decompression of larger regions generally follows the observed decompression
performance on whole files.

50

https://github.com/jkbonfield/io_trace

Table 4.3: A summary of random access performance for SAM/BAM tools which support
it. If possible, all tools were run with 4 threads.

Tool Index Size Time (s) Seeks Bytes read (KB)
chr14:107349000-107349540

Scramble 2.61 64 32,290 129,164
Samtools 8.35 0 3 25
Sambamba 8.35 0 6 123
DeeZ 0.65 1 9 687

chrY:10000-20000
Scramble 2.61 1 2 520
Samtools 8.35 0 3 180
Sambamba 8.35 0 119 419
DeeZ 0.65 5 10 45,275

Time (m:s) Seeks Bytes read (MB)
chr22

Scramble 2.61 0:27 2 811
Samtools 8.35 1:53 3 1,367
Sambamba 8.35 0:25 555,240 1,367
DeeZ 0.65 1:55 27 705

51

Table 4.4: A summary of evaluated tools and their performance in a single-thread mode. (a) For each FASTQ tool and sample, the left two
columns indicate the overall compressed size, and the sequence-only compressed size, respectively. Right column indicates the compression and
decompression times relative to Gzip (pigz), with lower being better. The last three rows show the performance of sequence-only tools. In the
ERR174324 sample, all tools were run with four threads, with the exception of pigz and Slimfastq. (b) For SAM tools, we only report here the
overall size of the compressed data. Last row denotes sam_comp, which does not support all SAM fields. In the NA12878.S1 sample, all tools were
run with four threads, with the exception of Samtools and sam_comp. sam_comp does not support all SAM fields, thus its performance was not
compared to other tools.
Legend: Dark green colour indicates the best tool in the given category (compression ratio or time), while light green indicates second best tool.
Analogously, orange denotes second worst tool, while magenta indicates the worst performance. Missing data points (either due to the crashes or
compatibility issues) are marked with N/A.

52

Sample SRR554369 SRR327342 MH0001.081026 SRR1284073 SRR870667 ERR174310 ERP001775
Organism P.aeruginosa S.cerevisiae H.sapiens Gut E.coli T.cacao H.sapiens H.sapiens
Technology Illumina GAIIx Illumina GAII Illumina GA PacBio Illumina GAIIx HiSeq HiSeq
Coverage 25× 80× Unknown 140× 20× 7× 120×

550 3,881 1,880 1,309 22,944 53,869 2,717,029
Original

165 947 512 649 7,463 20,966 1,059,387
158 1.00 1,020 1.00 501 1.00 547 1.00 6,943 1.00 18,597 1.00 305,690 1.00

pigz
48 1.00 277 1.00 149 1.00 188 1.00 2,108 1.00 5,982 1.00 104,927 1.00

125 1.19 831 1.45 390 1.29 463 0.74 5,577 0.99 14,887 0.81 242,834 0.21
pbzip2

44 5.97 251 6.85 139 6.35 176 6.99 1,879 3.61 5,473 2.83 95,969 1.23
105 0.22 668 0.26 312 0.24 4,761 0.21 13,214 0.20

DSRC2
41 2.11 257 3.09 128 1.91

N/A
1,865 1.39 5,239 1.22

N/A

95 0.71 595 0.70 287 0.80 4,246 0.70 11,598 0.67
DSRC2 (extra)

39 11.81 230 11.33 125 12.96
N/A

1,636 6.25 4,773 5.78
N/A

89 0.34 559 0.37 280 0.41 4,028 0.33 11,320 0.32
Fqzcomp

37 N/A 203 7.54 120 N/A
N/A

1,556 N/A 4,623 3.29
N/A

94 0.39 589 0.39 286 0.41 4,228 0.35 11,673 0.34
Fqzcomp (extra)

41 N/A 234 7.50 128 N/A
N/A

1,796 N/A 5,167 3.47
N/A

10,955 3.45
Fastqz N/A N/A N/A N/A N/A

4,312 N/A
N/A

94 0.55 507 0.47 266 0.54 4,280 0.51 11,045 0.47 178,092 0.49
Slimfastq

30 11.46 149 9.55 104 11.32
N/A

1,416 5.80 4,426 4.76 77,629 5.94
76 1.05 494 1.18 268 1.39 413 0.98 3,912 1.16 11,409 1.22

FQC
N/A 11.78 N/A 12.87 N/A 17.07 N/A 12.12 N/A 5.93 N/A 5.74

N/A

69 18.63 490 18.54 266 21.06 407 18.03 2,412 14.46
LFQC

17 315.41 129 310.81 103 339.93 156 386.25 N/A N/A
N/A N/A

(a) FASTQ tools (part 1)

53

Sample SRR554369 SRR327342 MH0001.081026 SRR1284073 SRR870667 ERR174310 ERP001775
Organism P.aeruginosa S.cerevisiae H.sapiens Gut E.coli T.cacao H.sapiens H.sapiens
Technology Illumina GAIIx Illumina GAII Illumina GA PacBio Illumina GAIIx HiSeq HiSeq
Coverage 25× 80× Unknown 140× 20× 7× 120×

550 3,881 1,880 1,309 22,944 53,869 2,717,029
Original

165 947 512 649 7,463 20,966 1,059,387
76 0.77 487 0.63 297 0.80 421 0.67 3,699 0.60 10,827 0.59 161,067 0.57

SCALCE
17 9.05 68 8.23 71 12.17 161 9.78 998 4.89 3,017 4.57 28,452 1.94

117 1.13 790 0.60 5,038 2.27
LW-FQZip

45 5.62 320 5.16
N/A N/A

1,735 2.50
N/A N/A

89 0.50 537 0.53 272 0.47 420 0.36 3,914 0.48 11,312 0.46 184,051 0.38
Quip

37 10.70 181 11.53 114 11.37 159 10.59 1,462 5.57 4,556 5.22 79.771 4.64
87 3.43 544 2.92 291 3.91 479 2.81 4,518 4.15 13,623 3.43 220,397 1.13

Leon
19 16.84 89 16.70 87 14.84 N/A 34.31 1,360 10.91 4,739 9.67 83,539 4.66
95 5.81 613 7.29 307 4.73 451 9.40 4,498 6.50 13,006 6.25

KIC
32 6.65 188 7.72 122 6.35 N/A 9.37 1,594 3.44 4,915 3.33

N/A

0.50 0.46 0.87 0.83 0.66 0.12
Orcom

11 1.51 36 0.91 51 1.87
N/A

825 1.22 1,798 0.83 6,921 0.23
4.12 2.82 2.46 4.44 4.38

BEETL
23 36.81 117 30.24 114 31.02

N/A
1,200 22.11 3,912 20.95

N/A

4.52 4.26 5.19 2.42 2.57
Mince

10 2.38 37 2.24 50 3.25
N/A

685 0.86 1,955 0.90
N/A

2.03 1.73 13.04 2.29 3.22
k-Path

14 30.08 45 20.19 62 149.57
N/A

660 15.39 2,088 16.57
N/A

(a) FASTQ tools (part 2)

54

Sample DH10B 9827.2.49 sample-2-1 K562.LID8465 dm3 NA12878.PB HCC1954 NA12878.S1
Organism E.coli H.sapiens H.sapiens H.sapiens D.melangoster H.sapiens H.sapiens H.sapiens
Technology MiSeq HiSeq IonTorrent RNASeq PacBio PacBio Cancer Cell HiSeq
Coverage 420× 2× 0.6× 6× 75× 15× 30× 50×
Original 5,579 21,059 5,924 75,915 30,081 126,545 427,028 589,083

1,336 0.77 6,021 1.55 1,378 1.48 12,785 1.06 12,315 1.39 52,914 1.37 119,839 1.40 113,462 0.13
pigz

0.63 0.82 0.49 0.70 0.79 0.70 0.91 0.60
1,074 1.65 5,243 1.93 1,127 4.04 10,251 3.57 9,717 0.72 43,128 0.94 100,280 1.62 89,598 0.46

pbzip2
3.16 3.39 3.72 2.46 2.93 3.94 3.23 0.59

1,407 1.00 6,499 1.00 1,469 1.00 13,757 1.00 12,853 1.00 57,090 1.00 131,566 1.00 121,710 1.00
Samtools

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1,425 1.42 6,517 1.04 1,474 1.82 13,818 1.48 12,837 0.74 57,316 0.55 132,861 1.18

Picard
2.76 1.52 2.10 2.44 1.09 1.00 1.91

N/A

1,407 1.05 6,499 0.93 1,469 1.12 13,757 1.05 12,859 2.48 57,090 0.93 131,566 1.39 121,710 0.13
Sambamba

1.08 1.13 0.97 0.97 1.92 1.12 1.12 0.53
1,066 0.93 3,778 1.42 1,170 2.12 10,344 1.70 7,577 0.93 38,266 1.01 95,442 1.28

Cramtools
1.71 1.67 4.93 2.00 2.05 2.39 1.50

N/A

863 0.23 3,297 0.29 1,030 0.62 9,261 0.38 6,551 0.14 34,425 0.31 82,041 0.27 66,632 0.10
Scramble

0.76 0.66 1.58 0.67 0.58 0.84 0.71 0.50
899 0.29 4,236 1.18 1,113 0.45 9,839 0.43 10,562 0.21 44,843 0.46 86,914 0.37 72,407 0.10

Scramble without reference
0.74 0.63 1.06 0.78 1.14 1.54 0.79 0.47

851 0.76 3,262 0.62 998 1.50 8,611 1.27 6,469 0.17 33,921 0.48 80,094 0.60
Scramble with bzip2

0.89 0.66 1.72 0.81 0.67 1.63 0.82
N/A

823 0.56 3,221 0.78 1,028 1.81 8,120 0.92 6,681 0.51 34,639 0.64 78,473 0.91 62,966 0.26
DeeZ

3.90 2.46 5.51 3.35 1.77 1.86 2.94 1.00
730 0.91 2,734 1.23 918 3.49 7,266 2.01 6,585 0.71 34,172 1.22 74,509 1.66 53,497 0.41

DeeZ with bzip2
10.11 5.60 9.86 7.91 4.86 6.67 6.39 1.90

1,105 2.21 7,939 0.80 1,193 2.55 20,864 3.17 8,397 3.14 45,452 1.46 164,627 0.50
TSC

9.05 2.24 6.75 6.27 6.46 6.43 2.65
N/A

1,103 0.67 4,419 0.94 1,230 1.15 11,186 1.19 9,024 0.44 42,642 0.67 98,303 0.83 97,165 0.44
Quip

10.69 7.81 4.43 8.27 7.52 9.87 9.05 2.18
803 0.67 8,743 1.17 6,461 0.41 64,493 0.43

Quip with reference
10.06

N/A N/A
8.20 7.19

N/A N/A
2.20

700 0.68 2,649 0.76 891 1.20 7,023 0.71 8,356 0.51 32,670 0.59 42,522 0.62 53,263 0.37
sam_comp

3.36 2.95 6.54 3.56 5.49 5.42 3.25 2.00

(b) SAM tools

55

Figure 4.1: Visualised single-threaded and 4-threaded performance of FASTQ and SAM tools’ compression rate and compression
speed. Centre of the coordinate system represents the Gzip’s (pigz) or Samtools’ performance. On the x-axis, left side represents the
compression gain over pigz (Samtools), while right side denotes the compression loss, measured in multiples of pigz’s (Samtools’) size.
For example, 1.5 on the left side in the SAM plot indicates that the compression ratio is 1.5× higher than Samtools. On the y-axis,
upper part indicates the slowdown, while lower part indicates speed-up. Each point represents the performance of one tool on one
sample; shaded polygon represents the performance of one tool across the all samples. For each such polygon, its centroid (representing
average performance of the tool) is shown as a large point in the middle.

56

(a) FASTQ tools

57

(b) SAM tools

58

Table 4.5: Performance of FASTQ tools on various FASTQ fields. Left side shows size in MB, while right side shows the compression
ratio. 1 MB is calculated as 109 bytes. Colour codes are described in Table 4.4.

Sample SRR554369 SRR327342 MH0001.081026 SRR1284073 SRR870667 ERR174310 ERP001775
Original 165 1.00 947 1.00 512 1.00 649 1.00 7,463 1.00 20,966 1.00 368,183 1.00
pigz 48 0.29 277 0.29 149 0.29 188 0.29 2,108 0.28 5,982 0.29 104,927 0.28
pbzip2 44 0.27 251 0.27 139 0.27 176 0.27 1,879 0.25 5,473 0.26 95,969 0.26
DSRC2 41 0.25 257 0.27 128 0.25 N/A 1,865 0.25 5,239 0.25 N/A
DSRC2 (extra) 39 0.24 230 0.24 125 0.24 N/A 1,636 0.22 4,773 0.23 N/A
Fqzcomp 37 0.22 203 0.21 120 0.23 N/A 1,556 0.21 4,623 0.22 N/A
Fqzcomp (extra) 41 0.25 234 0.25 128 0.25 N/A 1,796 0.24 5,167 0.25 N/A
Slimfastq 30 0.18 149 0.16 104 0.20 N/A 1,416 0.19 4,426 0.21 77,629 0.21
LFQC 17 0.10 129 0.14 103 0.20 156 0.24 N/A N/A N/A
SCALCE 17 0.10 68 0.07 71 0.14 161 0.25 998 0.13 3,017 0.14 28,452 0.08
LW-FQZip 45 0.27 320 0.34 N/A N/A 1,735 0.23 N/A N/A
Quip 37 0.22 181 0.19 114 0.22 159 0.25 1,462 0.20 4,556 0.22 79,771 0.22
Leon 19 0.11 89 0.09 87 0.17 N/A 1,360 0.18 4,739 0.23 83,539 0.23
KIC 32 0.19 188 0.20 122 0.24 N/A 1,594 0.21 4,915 0.23 N/A
Orcom 11 0.06 36 0.04 51 0.10 N/A 825 0.11 1,798 0.09 6,921 0.02
BEETL 23 0.14 117 0.12 114 0.22 N/A 1,200 0.16 3,912 0.19 N/A
Mince 9.98 0.06 37 0.04 50 0.10 N/A 685 0.09 1,955 0.09 N/A
k-Path 14 0.08 45 0.05 62 0.12 N/A 660 0.09 2,088 0.10 N/A

(a) Read sequences

59

Sample SRR554369 SRR327342 MH0001.081026 SRR1284073 SRR870667 ERR174310 ERP001775
Original 165 1.00 947 1.00 512 1.00 649 1.00 7,463 1.00 20,966 1.00 368,183 1.00
pigz 65 0.39 426 0.45 184 0.36 309 0.48 3,027 0.41 8,639 0.41 133,526 0.36
pbzip2 57 0.35 400 0.42 167 0.33 283 0.44 2,724 0.37 7,428 0.35 112,046 0.30
DSRC2 57 0.35 389 0.41 168 0.33 N/A 2,699 0.36 7,489 0.36 N/A
DSRC2 (extra) 49 0.30 344 0.36 145 0.28 N/A 2,350 0.31 6,253 0.30 N/A
Fqzcomp 48 0.29 334 0.35 143 0.28 N/A 2,292 0.31 6,288 0.30 N/A
Fqzcomp (extra) 48 0.29 333 0.35 142 0.28 N/A 2,253 0.30 6,097 0.29 N/A
Slimfastq 60 0.36 334 0.35 145 0.28 N/A 2,733 0.37 6,287 0.30 94,662 0.26
LFQC 48 0.29 341 0.36 147 0.29 250 0.39 2,290 0.31 N/A N/A
SCALCE 52 0.32 349 0.37 150 0.29 260 0.40 2,362 0.32 6,738 0.32 102,336 0.28
LW-FQZip 63 0.38 435 0.46 N/A N/A 3,001 0.40 N/A N/A
Quip 48 0.29 334 0.35 142 0.28 259 0.40 2,249 0.30 6,284 0.30 95,949 0.26
Leon 64 0.39 429 0.45 184 0.36 N/A 3,018 0.40 8,533 0.41 130,578 0.35
KIC 56 0.34 384 0.41 163 0.32 N/A 2,626 0.35 7,394 0.35 N/A

(b) Quality scores

60

Sample SRR554369 SRR327342 MH0001.081026 SRR1284073 SRR870667 ERR174310 ERP001775
Original 107 1.00 963 1.00 405 1.00 4.72 1.00 3,871 1.00 10,900 1.00 189,618 1.00
pigz 14 0.13 99 0.10 41 0.10 0.82 0.17 528 0.14 1,570 0.14 27,555 0.15
pbzip2 12 0.11 71 0.07 32 0.08 0.68 0.14 421 0.11 1,223 0.11 21,531 0.11
DSRC2 6.23 0.06 21 0.02 16 0.04 N/A 197 0.05 486 0.04 N/A
DSRC2 (extra) 6.22 0.06 21 0.02 17 0.04 N/A 260 0.07 572 0.05 N/A
Fqzcomp 4.79 0.04 21 0.02 16 0.04 N/A 179 0.05 408 0.04 N/A
Fqzcomp (extra) 4.79 0.04 21 0.02 16 0.04 N/A 179 0.05 408 0.04 N/A
Slimfastq 3.79 0.04 23 0.02 17 0.04 N/A 128 0.03 323 0.03 5,699 0.03
LFQC 3.62 0.03 21 0.02 16 0.04 0.26 0.05 122 0.03 N/A N/A
SCALCE 6.78 0.06 70 0.07 77 0.19 0.57 0.12 341 0.09 1,074 0.10 20,544 0.11
LW-FQZip 8.61 0.08 35 0.04 N/A N/A 302 0.08 N/A N/A
Quip 4.89 0.05 21 0.02 16 0.04 0.28 0.06 203 0.05 472 0.04 8,326 0.04
Leon 4.06 0.04 26 0.03 20 0.05 N/A 139 0.04 355 0.03 6,263 0.03
KIC 7.14 0.07 41 0.04 22 0.05 N/A 278 0.07 697 0.06 N/A

(c) Read identifiers

61

Table 4.6: Time and memory performance of FASTQ tools for 1, 4 and 8 threads. For each tool, first row shows its compression
performance, while second row shows its decompression performance. Time is measured as a fraction of Gzip’s performance (in this
case, pigz in single-threaded mode). Memory performance is presented in MBs.

62

Sample SRR554369 SRR327342 MH0001.081026 SRR1284073 SRR870667 ERR174310 ERP001775
Threads 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4

1.00 0.25 0.13 1.00 0.26 0.15 1.00 0.27 0.13 1.00 0.26 0.13 1.00 0.26 0.15 1.00 0.26 0.14 1.00 0.27
pigz

1.00 0.92 0.81 1.00 0.92 0.98 1.00 0.89 0.99 1.00 1.00 0.93 1.00 0.78 0.85 1.00 0.78 0.70 1.00 0.96
1.19 0.30 0.16 1.45 0.37 0.21 1.29 0.33 0.17 0.74 0.19 0.10 0.99 0.26 0.15 0.81 0.21 0.12 N/A 0.21

pbzip2
5.97 1.70 0.89 6.85 2.75 0.95 6.35 1.50 0.80 6.99 1.75 0.97 3.61 1.06 0.83 2.83 1.10 0.81 N/A 1.23

0.22 0.06 0.03 0.26 0.06 0.04 0.24 0.06 0.04 N/A N/A N/A 0.21 0.06 0.05 0.20 0.06 0.04 N/A N/A
DSRC2

2.11 0.59 0.35 3.09 0.63 0.34 1.91 1.03 1.03 N/A N/A N/A 1.39 0.79 0.78 1.22 0.70 0.54 N/A N/A
0.71 0.37 0.38 0.70 0.20 0.11 0.80 0.25 0.16 N/A N/A N/A 0.70 0.17 0.09 0.67 0.17 0.09 N/A N/A

DSRC2 (extra)
11.81 6.00 6.05 11.33 3.06 1.67 12.96 5.07 3.99 N/A N/A N/A 6.25 1.60 0.84 5.78 1.49 0.75 N/A N/A
0.34 0.37 0.41 N/A 0.33 0.32 N/A

Fqzcomp
N/A 7.54 N/A N/A N/A 3.29 N/A
0.39 0.39 0.41 N/A 0.35 0.34 N/A

Fqzcomp (extra)
N/A 7.50 N/A N/A N/A 3.47 N/A
N/A N/A N/A N/A N/A 3.45 N/A

Fastqz
N/A N/A N/A N/A N/A N/A N/A
0.55 0.47 0.54 N/A 0.51 0.47 0.49

Slimfastq
11.46 9.55 11.32 N/A 5.80 4.76 5.94
1.05 1.18 1.39 0.98 1.16 1.22 N/A

FQC
11.78 12.87 17.07 12.12 5.93 5.74 N/A
18.63 18.54 21.06 18.03 14.46 N/A N/A

LFQC
315.41 310.81 339.93 386.25 N/A N/A N/A

0.77 0.49 0.46 0.63 0.41 0.38 0.80 0.49 0.46 0.67 0.29 0.19 0.60 0.30 0.27 0.59 0.32 0.29 N/A 0.57
SCALCE

9.05 3.19 2.14 8.23 2.86 1.86 12.17 4.31 3.09 9.78 4.26 2.38 4.89 1.64 1.16 4.57 1.62 1.14 N/A 1.94

1.13 0.60 N/A N/A 2.27 N/A N/A
LW-FQZip

5.62 5.16 N/A N/A 2.50 N/A N/A
0.50 0.41 0.53 0.45 0.47 0.47 0.36 0.32 0.48 0.41 0.46 0.38 N/A 0.38

Quip
10.70 7.32 11.53 8.33 11.37 9.21 10.59 10.08 5.57 4.07 5.22 3.84 N/A 4.64
3.43 1.03 0.70 2.92 0.86 0.55 3.91 1.15 0.72 2.81 0.90 0.81 4.15 1.18 0.73 3.43 1.02 0.65 N/A 1.13

Leon
16.84 6.51 4.27 16.70 6.92 4.24 14.84 5.67 3.88 34.31 11.45 11.39 10.91 4.33 2.64 9.67 4.00 2.53 N/A 4.66
N/A 5.81 6.17 N/A 7.29 7.71 N/A 4.73 4.92 N/A 9.40 9.34 N/A 6.50 6.19 N/A 6.25 6.53 N/A N/A

KIC
N/A 6.65 8.32 N/A 7.72 7.22 N/A 6.35 7.03 N/A 9.37 9.65 N/A 3.44 3.47 N/A 3.33 3.37 N/A N/A

0.50 0.19 0.15 0.46 0.12 0.08 0.87 0.23 0.14 N/A N/A N/A 0.83 0.21 0.13 0.66 0.16 0.09 N/A 0.12
Orcom

1.51 0.49 0.27 0.91 0.24 0.13 1.87 0.53 0.28 N/A N/A N/A 1.22 0.32 0.24 0.83 0.26 0.25 N/A 0.23
4.12 2.82 2.46 N/A 4.44 4.38 N/A

BEETL
36.81 30.24 31.02 N/A 22.11 20.95 N/A
4.52 1.72 1.13 4.26 1.57 1.04 5.19 2.46 2.01 N/A N/A N/A N/A 2.42 1.35 N/A 2.57 1.42 N/A N/A

Mince
2.38 2.00 2.03 2.24 1.98 1.93 3.25 2.91 3.46 N/A N/A N/A N/A 0.86 0.87 N/A 0.90 0.91 N/A N/A
N/A 2.03 1.89 N/A 1.73 1.64 N/A 13.04 13.69 N/A N/A N/A N/A 2.29 2.20 N/A 3.22 3.00 N/A N/A

k-Path
N/A 30.08 29.92 N/A 20.19 20.55 N/A 149.57 150.72 N/A N/A N/A N/A 15.39 15.14 N/A 16.57 16.50 N/A N/A

(a) Time performance

63

Sample SRR554369 SRR327342 MH0001.081026 SRR1284073 SRR870667 ERR174310 ERP001775
Threads 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4

5.80 5.90 7.80 5.80 5.90 7.90 5.70 5.70 8.00 5.70 5.70 10.10 5.80 5.90 10.60 5.70 7.50 8.70 5.90 9.50
pigz

5.90 5.90 6.00 5.90 5.90 6.00 5.70 5.70 5.80 5.70 5.70 5.70 5.80 5.90 5.90 5.70 5.70 5.70 5.90 5.80
10.40 37.30 70.80 11.40 39.30 74.20 11.40 37.70 71.50 10.60 38.40 74.30 12.00 40.30 74.20 12.00 39.70 75.90 N/A 41.00

pbzip2
5.90 24.60 46.40 5.90 25.30 46.70 5.70 25.10 46.30 5.70 27.40 49.90 5.80 25.70 48.10 5.70 27.40 48.50 N/A 27.00

17.00 170.70 153.60 17.60 165.10 139.50 18.60 170.50 170.30 N/A N/A N/A 17.40 165.20 158.00 20.00 186.40 358.80 N/A N/A
DSRC2

15.90 119.90 237.30 19.70 139.40 257.10 19.90 137.80 257.30 N/A N/A N/A 20.70 140.30 285.80 29.40 208.00 400.20 N/A N/A
417.40 751.70 754.10 451.40 2,721.60 4,892.30 434.70 2,325.90 2,669.50 N/A N/A N/A 437.40 2,622.90 5,235.90 485.60 2,706.30 5,346.00 N/A N/A

DSRC2 (extra)
367.20 789.60 790.40 405.90 2,794.00 4,464.40 398.70 2,468.50 2,764.50 N/A N/A N/A 374.30 3,103.30 5,923.10 392.50 3,015.60 6,009.90 N/A N/A
77.50 79.50 79.50 N/A 75.50 77.50 N/A

Fqzcomp
N/A 65.40 N/A N/A N/A 65.40 N/A

326.50 328.50 328.60 N/A 326.50 330.50 N/A
Fqzcomp (extra)

N/A 314.40 N/A N/A N/A 318.40 N/A
N/A N/A N/A N/A N/A 1,527.30 N/A

Fastqz
N/A N/A N/A N/A N/A N/A N/A
79.00 79.00 79.00 N/A 79.00 79.00 79.00

Slimfastq
78.90 78.90 78.90 N/A 78.90 78.90 78.90
428.10 682.90 682.20 681.40 683.80 682.70 N/A

FQC
66.30 120.30 322.20 67.60 274.80 163.00 N/A

2,120.10 3,762.10 3,648.40 3,258.90 3,762.50 N/A N/A
LFQC

2,014.70 3,328.20 3,327.80 2,824.60 N/A N/A N/A

1,381.70 1,381.00 1,400.30 2,923.70 2,921.60 2,939.30 2,431.60 2,520.70 2,538.80 1,897.90 1,899.60 1,932.00 5,295.50 5,296.40 5,313.00 5,322.10 5,321.20 5,335.60 N/A 5,327.40
SCALCE

1,008.90 1,047.60 1,118.00 1,007.00 1,054.70 1,117.70 1,006.00 1,054.70 1,103.90 1,009.30 1,057.50 1,121.40 1,007.60 1,054.50 1,104.40 1,006.90 1,055.40 1,104.20 N/A 1,055.90

197.60 191.90 N/A N/A 687.20 N/A N/A
LW-FQZip

22.00 103.10 N/A N/A 674.20 N/A N/A
391.00 389.20 393.00 393.60 395.90 394.90 632.50 632.30 396.60 397.80 399.00 398.60 N/A 403.30

Quip
387.30 387.30 391.40 391.40 391.90 393.90 636.70 636.70 388.40 387.50 389.60 390.40 N/A 394.80
72.80 208.50 392.20 104.90 268.70 446.20 90.10 165.20 300.80 1,642.20 2,747.60 3,101.30 629.70 1,131.20 1,762.30 3,253.60 3,400.40 3,658.40 N/A 3,651.90

Leon
64.00 135.50 217.00 69.10 131.10 216.80 47.20 94.20 154.10 1,691.90 2,752.50 2,755.20 505.10 602.60 730.70 2,898.00 2,898.90 2,990.90 N/A 3,154.70
N/A 1,932.80 1,968.50 N/A 2,028.70 1,964.30 N/A 1,939.10 1,962.80 N/A 2,108.10 2,108.60 N/A 2,094.60 2,124.80 N/A 2,127.90 2,160.40 N/A N/A

KIC
N/A 841.50 836.60 N/A 864.10 866.60 N/A 866.80 874.00 N/A 922.20 916.30 N/A 877.40 912.90 N/A 912.30 917.70 N/A N/A

403.00 768.80 768.00 396.40 1,519.20 1,420.10 440.10 1,370.80 1,393.80 N/A N/A N/A 453.00 1,230.20 1,884.30 527.20 4,851.80 2,635.30 N/A 20,892.90
Orcom

11.40 67.10 124.30 25.10 131.40 214.70 24.00 77.30 124.30 N/A N/A N/A 701.30 1,892.70 2,954.00 547.00 2,715.90 4,530.80 N/A 42,584.10
7.40 7.70 7.70 N/A 7.70 7.70 N/A

BEETL
27.90 224.40 169.30 N/A 1,093.10 3,246.90 N/A

1,142.20 1,168.60 1,200.50 4,800.80 4,825.80 4,956.20 5,684.10 5,710.80 5,845.70 N/A N/A N/A N/A 23,654.70 24,139.00 N/A 68,147.40 69,341.40 N/A N/A
Mince

242.60 242.60 242.60 242.60 242.60 242.60 242.60 242.60 242.60 N/A N/A N/A N/A 242.60 242.60 N/A 242.60 242.60 N/A N/A
N/A 2,264.10 2,264.30 N/A 6,381.00 6,846.30 N/A 46,909.50 37,332.00 N/A N/A N/A N/A 33,195.40 36,339.50 N/A 85,477.10 84,725.00 N/A N/A

k-Path
N/A 1,539.20 1,528.80 N/A 3,979.10 4,131.40 N/A 47,391.20 47,521.70 N/A N/A N/A N/A 25,558.00 25,834.10 N/A 53,502.10 51,020.30 N/A N/A

(b) Memory performance

64

Table 4.7: Performance of SAM tools on various SAM fields. Left side shows size in MB, while right side shows the compression ratio.
Colour codes are described in Table 4.4. (a) Read sequences include SEQ, CIGAR, RNAME and POS fields. (b) Quality scores include
only QUAL field. (c) Read identifiers consist of QNAME. (d) Auxiliary fields consist of all other SAM fields, including the optional
fields. 1 MB is calculated as 109 bytes.

Sample DH10B 9827.2.49 sample-2-1 K562.LID8465 dm3 NA12878.PB HCC1954 NA12878.S1
Original 2,290 1.00 6,429 1.00 2,203 1.00 22,935 1.00 17,497 1.00 57,660 1.00 107,915 1.00 185,637 1.00
pigz 57 0.03 1,098 0.17 65 0.03 484 0.02 4,848 0.28 15,272 0.26 8,626 0.08 9,848 0.05
pbzip2 80 0.03 1,351 0.21 57 0.03 635 0.03 3,826 0.22 13,889 0.24 11,814 0.11 14,945 0.08
Samtools 54 0.02 1,198 0.19 79 0.04 480 0.02 4,846 0.28 15,543 0.27 9,066 0.08 10,315 0.06
Cramtools (CRAM v2) 45 0.02 218 0.03 62 0.03 568 0.02 1,532 0.09 7,952 0.14 6,543 0.06 N/A
Scramble (CRAM v3) 18 0.01 136 0.02 38 0.02 154 0.01 1,367 0.08 6,753 0.12 4,071 0.04 3,567 0.02
Scramble without reference 51 0.02 975 0.15 97 0.04 543 0.02 4,978 0.28 15,574 0.27 7,587 0.07 7,697 0.04
Scramble with bzip2 18 0.01 132 0.02 33 0.02 142 0.01 1,361 0.08 6,680 0.12 4,057 0.04 N/A
DeeZ 20 0.01 144 0.02 34 0.02 187 0.01 1,575 0.09 7,303 0.13 4,112 0.04 3,566 0.02
DeeZ with bzip2 20 0.01 138 0.02 34 0.02 184 0.01 1,554 0.09 7,241 0.13 3,903 0.04 3,018 0.02
TSC 26 0.01 1,132 0.18 46 0.02 663 0.03 2,400 0.14 15,228 0.26 8,604 0.08 N/A
Quip 367 0.16 1,538 0.24 226 0.10 3,620 0.16 3,932 0.22 13,087 0.23 25,387 0.24 41,813 0.23
Quip with reference 68 0.03 N/A N/A 1,177 0.05 1,369 0.08 N/A N/A 9,141 0.05
sam_comp 21 0.01 122 0.02 38 0.02 256 0.01 3,347 0.19 9,383 0.16 3,716 0.03 2,782 0.01

(a) Read sequences and their mapping information

65

Sample DH10B 9827.2.49 sample-2-1 K562.LID8465 dm3 NA12878.PB HCC1954 NA12878.S1
Original 1,976 1.00 5,646 1.00 1,930 1.00 18,732 1.00 12,307 1.00 44,123 1.00 95,182 1.00 159,860 1.00
pigz 876 0.44 3,027 0.54 976 0.51 7,428 0.40 5,941 0.48 25,802 0.58 38,942 0.41 61,576 0.39
pbzip2 773 0.39 2,835 0.50 902 0.47 6,756 0.36 5,618 0.46 24,692 0.56 36,681 0.39 53,021 0.33
Samtools 876 0.44 3,027 0.54 976 0.51 7,428 0.40 5,941 0.48 25,800 0.58 38,969 0.41 61,575 0.39
Cramtools (CRAM v2) 892 0.45 3,065 0.54 986 0.51 7,588 0.41 6,007 0.49 25,805 0.58 39,750 0.42 N/A
Scramble (CRAM v3) 714 0.36 2,673 0.47 868 0.45 6,444 0.34 5,140 0.42 23,202 0.53 33,376 0.35 50,498 0.32
Scramble without reference 714 0.36 2,674 0.47 871 0.45 6,446 0.34 5,562 0.45 24,769 0.56 33,382 0.35 50,519 0.32
Scramble with bzip2 714 0.36 2,673 0.47 868 0.45 6,444 0.34 5,067 0.41 23,202 0.53 33,376 0.35 N/A
DeeZ 713 0.36 2,685 0.48 875 0.45 6,555 0.35 5,069 0.41 23,150 0.52 33,517 0.35 50,322 0.31
DeeZ with bzip2 631 0.32 2,241 0.40 794 0.41 5,750 0.31 4,996 0.41 22,938 0.52 31,011 0.33 42,255 0.26
TSC 884 0.45 2,728 0.48 990 0.51 6,664 0.36 5,944 0.48 25,836 0.59 34,283 0.36 N/A
Quip 634 0.32 2,361 0.42 788 0.41 5,994 0.32 5,029 0.41 22,821 0.52 30,831 0.32 43,814 0.27
Quip with reference 634 0.32 N/A N/A 5,994 0.32 5,029 0.41 N/A N/A 43,814 0.27
sam_comp 619 0.31 2,230 0.39 779 0.40 5,685 0.30 4,990 0.41 22,895 0.52 30,779 0.32 41,851 0.26

(b) Quality scores

66

Sample DH10B 9827.2.49 sample-2-1 K562.LID8465 dm3 NA12878.PB HCC1954 NA12878.S1
Original 234 1.00 1,779 1.00 297 1.00 9,169 1.00 110 1.00 1,983 1.00 32,073 1.00 63,358 1.00
pigz 64 0.27 306 0.17 91 0.31 1,734 0.19 15 0.13 231 0.12 5,720 0.18 9,460 0.15
pbzip2 56 0.24 270 0.15 66 0.22 1,281 0.14 11 0.10 179 0.09 4,884 0.15 8,050 0.13
Samtools 68 0.29 320 0.18 92 0.31 1,803 0.20 15 0.14 243 0.12 5,959 0.19 9,873 0.16
Cramtools (CRAM v2) 70 0.30 311 0.17 94 0.32 1,772 0.19 16 0.14 241 0.12 6,064 0.19 N/A
Scramble (CRAM v3) 65 0.28 288 0.16 93 0.31 1,655 0.18 16 0.14 230 0.12 5,760 0.18 9,291 0.15
Scramble without reference 65 0.28 288 0.16 93 0.31 1,655 0.18 16 0.14 230 0.12 5,760 0.18 9,291 0.15
Scramble with bzip2 59 0.25 275 0.15 69 0.23 1,345 0.15 14 0.12 199 0.10 4,955 0.15 N/A
DeeZ 44 0.19 203 0.11 77 0.26 925 0.10 13 0.12 200 0.10 4,853 0.15 6,516 0.10
DeeZ with bzip2 41 0.17 192 0.11 57 0.19 919 0.10 11 0.10 168 0.08 4,239 0.13 6,078 0.10
TSC 67 0.29 542 0.30 93 0.31 2,034 0.22 15 0.14 234 0.12 10,309 0.32 N/A
Quip 55 0.24 262 0.15 67 0.23 1,019 0.11 27 0.25 499 0.25 5,745 0.18 7,768 0.12
Quip with reference 55 0.24 N/A N/A 1,019 0.11 27 0.25 N/A N/A 7,768 0.12
sam_comp 55 0.24 275 0.15 65 0.22 1,013 0.11 19 0.17 373 0.19 7,538 0.24 8,074 0.13

(c) Read identifiers

67

Sample DH10B 9827.2.49 sample-2-1 K562.LID8465 dm3 NA12878.PB HCC1954 NA12878.S1
Original 921 1.00 6,527 1.00 1,284 1.00 22,121 1.00 149 1.00 22,466 1.00 180,549 1.00 161,234 1.00
pigz 118 0.13 608 0.09 61 0.05 1,078 0.05 37 0.25 4,126 0.18 49,809 0.28 10,107 0.06
pbzip2 84 0.09 463 0.07 38 0.03 806 0.04 27 0.18 3,827 0.17 41,071 0.23 8,535 0.05
Samtools 117 0.13 555 0.09 56 0.04 1,012 0.05 35 0.24 4,177 0.19 48,972 0.27 9,536 0.06
Cramtools (CRAM v2) 57 0.06 174 0.03 27 0.02 391 0.02 20 0.14 4,239 0.19 42,979 0.24 N/A
Scramble (CRAM v3) 64 0.07 178 0.03 30 0.02 639 0.03 20 0.14 4,153 0.18 38,323 0.21 2,896 0.02
Scramble without reference 67 0.07 276 0.04 50 0.04 820 0.04 23 0.15 4,183 0.19 39,723 0.22 4,499 0.03
Scramble with bzip2 59 0.06 161 0.02 27 0.02 538 0.02 20 0.13 3,761 0.17 37,255 0.21 N/A
DeeZ 46 0.05 187 0.03 41 0.03 452 0.02 24 0.16 3,985 0.18 35,989 0.20 2,575 0.02
DeeZ with bzip2 38 0.04 162 0.02 32 0.03 411 0.02 24 0.16 3,824 0.17 35,354 0.20 2,144 0.01
TSC 129 0.14 3,537 0.54 63 0.05 11,501 0.52 38 0.26 4,154 0.18 111,421 0.62 N/A
Quip 47 0.05 257 0.04 72 0.06 553 0.02 25 0.17 6,029 0.27 36,337 0.20 3,767 0.02
Quip with reference 47 0.05 N/A N/A 553 0.02 25 0.17 N/A N/A 3,767 0.02

(d) Auxiliary fields

68

Table 4.8: Time and memory performance of SAM/BAM tools for 1, 4 and 8 threads. For each tool, first row shows its compression
performance, while second row shows its decompression performance. Time is measured as a fraction of Samtools’ performance. Memory
performance is presented in MBs.

69

Sample DH10B 9827.2.49 sample-2-1 K562.LID8465 dm3 NA12878.PB HCC1954 NA12878.S1
Threads 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4

0.77 0.12 0.08 1.55 0.22 0.13 1.48 0.19 0.09 1.06 0.18 0.11 1.39 0.22 0.12 1.37 0.22 0.13 1.40 0.40 0.23 N/A 0.13
pigz

0.63 0.26 0.26 0.82 0.46 0.46 0.49 0.24 0.24 0.70 0.71 0.69 0.79 0.57 0.56 0.70 0.84 0.86 0.91 0.73 0.95 N/A 0.60
1.65 0.41 0.22 1.93 0.47 0.26 4.04 0.89 0.47 3.57 0.81 0.43 0.72 0.19 0.11 0.94 0.25 0.14 1.62 0.59 0.38 N/A 0.46

pbzip2
3.16 0.94 0.27 3.39 0.74 0.56 3.72 0.88 0.25 2.46 0.95 0.82 2.93 0.64 0.52 3.94 0.89 0.66 3.23 0.86 0.68 N/A 0.59

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Samtools

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.42 1.04 1.82 1.48 0.74 0.55 1.18 N/A

Picard
2.76 1.52 2.10 2.44 1.09 1.00 1.91 N/A
1.05 0.12 0.09 0.93 0.15 0.11 1.12 0.18 0.15 1.05 0.16 0.14 2.48 0.25 0.13 0.93 0.14 0.09 1.39 0.32 0.22 N/A 0.13

Sambamba
1.08 0.15 0.16 1.13 0.52 0.54 0.97 0.14 0.15 0.97 0.77 0.72 1.92 0.47 0.39 1.12 0.52 0.52 1.12 0.69 0.86 N/A 0.53

0.93 1.42 2.12 1.70 0.93 1.01 1.28 N/A
Cramtools (CRAM v2)

1.71 1.67 4.93 2.00 2.05 2.39 1.50 N/A
0.23 0.08 0.08 0.29 0.14 0.14 0.62 0.31 0.29 0.38 0.16 0.16 0.14 0.09 0.08 0.31 0.19 0.19 0.27 0.12 0.12 N/A 0.10

Scramble (CRAM v3)
0.76 0.18 0.19 0.66 0.49 0.51 1.58 0.78 0.83 0.67 0.65 0.63 0.58 0.48 0.48 0.84 0.73 0.64 0.71 0.42 0.43 N/A 0.50
0.29 0.08 0.09 1.18 0.12 0.12 0.45 0.18 0.21 0.43 0.16 0.16 0.21 0.10 0.09 0.46 0.22 0.20 0.37 0.11 0.11 N/A 0.10

Scramble without reference
0.74 0.19 0.19 0.63 0.50 0.52 1.06 0.21 0.21 0.78 0.68 0.68 1.14 0.51 0.41 1.54 0.61 0.58 0.79 0.44 0.44 N/A 0.47
0.76 0.09 0.09 0.62 0.14 0.14 1.50 0.30 0.30 1.27 0.18 0.16 0.17 0.09 0.09 0.48 0.20 0.19 0.60 0.11 0.11 N/A N/A

Scramble with bzip2
0.89 0.19 0.18 0.66 0.61 0.58 1.72 0.74 0.75 0.81 0.78 0.77 0.67 0.41 0.40 1.63 0.54 0.54 0.82 0.43 0.43 N/A N/A

0.56 0.24 0.20 0.78 0.36 0.34 1.81 0.92 0.88 0.92 0.45 0.42 0.51 0.16 0.16 0.64 0.20 0.20 0.91 0.30 0.27 N/A 0.26
DeeZ

3.90 1.11 1.22 2.46 0.84 0.78 5.51 1.96 1.79 3.35 1.39 1.23 1.77 0.57 0.59 1.86 0.71 0.70 2.94 0.97 0.90 N/A 1.00
0.91 0.41 0.40 1.23 0.60 0.60 3.49 1.30 1.26 2.01 0.73 0.70 0.71 0.19 0.19 1.22 0.28 0.28 1.66 0.41 0.39 N/A 0.41

DeeZ with bzip2
10.11 2.75 2.68 5.60 1.71 1.60 9.86 3.03 2.90 7.91 2.04 1.97 4.86 1.41 1.39 6.67 1.77 1.72 6.39 1.70 1.52 N/A 1.90
2.21 0.80 2.55 3.17 3.14 1.46 0.50 N/A

TSC
9.05 2.24 6.75 6.27 6.46 6.43 2.65 N/A

0.67 0.47 0.94 0.61 1.15 0.96 1.19 0.69 0.44 0.31 0.67 0.34 0.83 0.44 N/A 0.44
Quip

10.69 3.30 7.81 2.23 4.43 3.37 8.27 2.43 7.52 2.29 9.87 2.86 9.05 2.09 N/A 2.18
0.67 0.46 N/A N/A N/A N/A 1.17 0.69 0.41 0.22 N/A N/A N/A N/A N/A 0.43

Quip with reference
10.06 2.98 N/A N/A N/A N/A 8.20 2.41 7.19 1.54 N/A N/A N/A N/A N/A 2.20
0.68 0.76 1.20 0.71 0.51 0.59 0.62 0.37

sam_comp
3.36 2.95 6.54 3.56 5.49 5.42 3.25 2.00

(a) Time performance

70

Sample DH10B 9827.2.49 sample-2-1 K562.LID8465 dm3 NA12878.PB HCC1954 NA12878.S1
Threads 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4

5.80 5.80 8.00 5.60 5.80 8.20 5.80 5.90 8.10 5.80 5.90 9.90 5.60 5.80 8.20 5.60 5.80 8.90 5.80 5.70 8.10 N/A 5.90
pigz

5.80 5.90 5.90 5.70 5.90 5.90 5.90 5.90 5.90 5.80 6.00 6.00 5.70 5.90 5.90 5.70 5.90 5.90 5.80 5.70 5.70 N/A 5.90
12.40 39.90 74.70 12.10 39.30 75.20 12.10 40.10 74.30 11.30 39.90 75.40 12.00 41.90 76.70 12.00 41.10 78.00 11.40 68.20 91.20 N/A 45.80

pbzip2
5.80 25.20 47.90 5.70 27.20 48.60 5.90 25.70 48.80 5.80 25.10 47.50 5.70 26.20 49.40 5.70 27.10 51.40 5.80 111.80 127.00 N/A 65.50

5.80 5.70 5.90 5.80 5.70 5.70 5.80 5.80
Samtools

5.80 5.70 5.90 5.80 5.70 5.70 5.80 5.80
633.50 636.60 600.80 635.00 629.40 624.40 653.20 N/A

Picard
591.40 694.40 1,041.00 718.00 677.50 750.30 690.00 N/A
5.80 13.50 24.60 9.00 16.10 23.50 5.90 11.30 22.30 8.10 18.10 26.80 16.40 24.60 31.60 12.40 19.00 30.50 7.90 15.60 24.70 N/A 14.80

Sambamba
5.80 13.30 32.10 11.10 22.00 40.40 9.00 19.00 37.60 11.30 20.20 41.80 41.00 75.70 115.60 76.50 115.40 189.10 11.30 19.40 42.40 N/A 19.70

2,107.20 5,109.60 4,974.30 5,332.60 12,266.60 10,342.80 11,398.90 N/A
Cramtools (CRAM v2)

6,730.50 8,227.30 10,155.70 7,641.10 10,998.70 11,526.00 11,160.00 N/A
39.00 309.50 288.60 279.10 1,052.90 1,418.80 288.80 1,101.60 1,577.80 582.20 810.50 1,048.90 3,102.80 6,826.70 6,704.00 2,594.70 13,517.80 12,469.70 280.20 1,042.80 1,418.00 N/A 1,143.90

Scramble (CRAM v3)
13.20 184.90 396.10 87.40 579.70 547.50 139.50 755.10 928.60 521.40 619.20 713.90 87.60 839.80 1,398.80 454.30 1,397.90 2,504.10 90.50 854.00 1,067.30 N/A 595.00
36.20 297.80 358.10 40.20 347.00 312.50 50.80 412.00 345.10 28.00 206.00 210.60 3,100.70 8,159.00 8,041.40 2,250.50 7,692.90 9,007.00 42.30 431.40 457.10 N/A 384.70

Scramble without reference
14.70 242.10 456.20 13.60 190.40 454.70 13.40 210.10 448.50 16.00 240.90 509.80 48.60 970.50 1,800.70 77.70 1,268.40 2,065.70 17.00 432.90 858.10 N/A 275.80
43.50 299.60 562.80 283.20 1,049.10 1,406.60 295.80 1,183.90 1,636.30 584.30 830.20 1,099.60 3,102.80 8,261.40 8,856.00 2,596.90 17,614.50 16,426.80 286.00 1,057.90 1,450.20 N/A N/A

Scramble with bzip2
14.40 158.20 318.20 88.10 501.40 554.00 132.70 730.00 930.70 519.50 617.80 753.80 88.90 790.70 1,385.60 454.20 1,226.00 2,716.40 91.40 794.10 1,077.80 N/A N/A

1,697.30 1,745.50 1,775.10 2,751.00 2,886.30 2,822.10 3,997.90 4,022.50 4,078.50 2,440.50 2,426.40 2,397.80 2,763.30 3,004.80 3,130.40 3,394.10 3,706.00 3,683.20 2,495.20 2,452.10 2,444.60 N/A 2,269.20
DeeZ

3,120.70 4,793.00 6,774.60 4,004.90 5,504.80 8,444.90 3,435.40 5,011.20 7,394.20 4,303.90 5,086.70 7,736.10 4,549.20 5,466.10 6,682.80 7,683.40 8,604.30 9,711.40 3,085.60 5,113.40 8,593.10 N/A 5,642.90
2,110.30 2,198.20 2,213.10 3,169.20 3,312.00 3,273.10 4,422.90 4,489.30 4,488.50 2,862.80 2,880.20 2,886.50 3,167.60 3,450.50 3,549.20 3,871.70 4,082.70 4,167.50 2,835.00 2,876.90 2,894.10 N/A 2,566.80

DeeZ with bzip2
3,378.00 5,255.50 6,843.50 4,411.00 5,681.90 8,334.80 3,867.20 5,746.00 7,910.30 4,725.80 5,303.20 8,258.70 5,005.50 5,856.50 7,144.10 8,210.00 9,017.00 10,183.00 3,499.90 6,055.60 8,902.10 N/A 6,391.10

14.80 16.40 14.30 1,598.30 263.90 131.60 16.30 N/A
TSC

16.50 13.70 18.60 1,586.10 325.20 108.60 13.70 N/A

396.10 395.20 608.40 606.50 453.60 449.20 580.60 583.20 1,049.90 1,047.40 905.60 905.40 597.70 601.60 N/A 465.40
Quip

395.40 395.40 600.50 600.60 447.90 449.90 576.80 576.80 982.10 979.40 792.40 793.70 593.90 594.00 N/A 459.20
396.10 396.70 N/A N/A N/A N/A 1,665.30 1,668.00 1,096.30 1,096.20 N/A N/A N/A N/A N/A 1,549.10

Quip with reference
395.70 394.00 N/A N/A N/A N/A 1,662.40 1,662.50 1,031.50 1,016.50 N/A N/A N/A N/A N/A 1,544.90
434.40 700.50 699.60 697.50 482.40 700.60 700.20 701.10

sam_comp
436.10 698.60 699.20 698.60 482.10 699.60 700.70 699.00

(b) Memory performance

71

Table 4.9: A summary of FASTQ tools’ compression performance on paired-end libraries.
Only those tools which support paired-end libraries were evaluated.
The left two columns indicate the overall compressed size, and the sequence-only compressed
size, respectively. Right column indicates the compression and decompression times relative
to Gzip (pigz), with lower being better. The last row shows the performance of sequence-
only tools.

Sample SRR554369 SRR327342 MH0001.081026 SRR870667 ERR174310
Organism P.aeruginosa S.cerevisiae H.sapiens Gut T.cacao H.sapiens
Technology Illumina GAIIx Illumina GAII Illumina GA Illumina GAIIx HiSeq
Coverage 105× Unknown Unknown 65× 25×

1,100 8,122 3,761 41,050 107,738Original 330 2,075 1,024 12,576 41,931
318 1.00 2,229 1.00 1,075 1.00 12,308 1.00 36,695 1.00pigz 96 1.00 605 1.00 299 1.00 3,550 1.00 11,962 1.00
251 1.19 1,825 1.41 850 1.33 9,858 1.07 29,302 0.80pbzip2 89 6.12 550 6.80 279 6.10 3,160 3.59 10,950 3.08
210 0.21 1,505 0.26 698 0.25 8,293 0.23 25,988 0.20DSRC2 83 2.15 568 3.22 256 2.06 3,143 1.45 10,479 1.25
190 0.71 1,333 0.71 637 0.81 7,411 0.71 22,784 0.68DSRC2 (extra) 78 12.01 503 11.48 251 12.71 2,752 6.23 9,551 5.96
180 0.35 1,254 0.37 624 0.41 7,007 0.34 22,245 0.31Fqzcomp 73 N/A 445 7.39 240 N/A 2,611 N/A 9,252 3.38
188 0.39 1,321 0.39 635 0.42 7,377 0.36 22,911 0.34Fqzcomp (extra) 82 N/A 514 7.64 256 N/A 3,025 N/A 10,334 3.59

21,496 3.45Fastqz N/A N/A N/A N/A 8,633 N/A
185 0.54 1,137 0.48 596 0.54 7,300 0.52 21,694 0.47Slimfastq 60 11.62 323 9.93 209 10.94 2,365 5.82 8,860 4.89
154 1.04 1,105 1.23 604 1.51 6,797 1.20 22,382 1.22FQC N/A 12.16 N/A 13.42 N/A 18.66 N/A 6.34 N/A 5.87
164 0.59 1,159 0.54 716 0.69 6,683 0.57 22,744 0.54SCALCE 45 9.23 221 8.44 198 11.71 1,851 4.86 7,548 2.39
236 1.10 1,748 0.60 8,773 2.16LW-FQZip 91 5.60 639 5.25 N/A 3,470 2.56 N/A

181 0.49 1,200 0.54 607 0.49 6,837 0.50 22,247 0.46Quip 74 10.97 393 11.95 229 11.00 2,448 5.74 9,114 5.39
176 3.61 1,222 2.66 657 3.66 7,822 3.93 26,798 3.55Leon 38 16.95 194 17.02 180 14.22 2,239 10.49 9,492 9.90
192 5.75 1,370 7.40 684 5.32 7,862 6.74 25,551 6.19KIC 64 6.89 410 7.88 246 7.38 2,674 3.60 9,831 3.30

3.42 3.60 5.97 2.48 3.00Mince 31 2.03 169 1.56 175 2.36 1,300 0.72 6,058 0.68

72

4.4 Conclusion

Our evaluation of all compression tools currently available in the literature on a wide variety
of data sets resulted in no overall winner that can perform well on each data type and under
every performance measure we used. We conclude that an integrated solution that chooses
the specific approach which performs the best on the input data type(s) with respect to
the performance measure most important for the specific application would yield the best
outcome, both for raw and aligned sequence data. It is interesting to note that many of
the tools we benchmarked improve not only the compression rate but also the compression
time of the most commonly used methods, i.e., Gzip/pigz for FASTQ files, and Samtools
for SAM/BAM files. Although this is not always the case for decompression time, the time
necessary for decompressing Gzip-compressed FASTQ files and Samtools-compressed SAM
files, is insignificant (1/100 or less) in comparison to the most commonly used downstream
analysis pipelines, e.g. for read mapping in FASTQ files, and for variant calling in SAM files,
respectively. In fact, future integration of some of the best performing compression tools
we tested with commonly used variant calling pipelines such as GATK (which produces
multiple BAM files during execution) may significantly improve the overall running time of
GATK due to smaller data footprint and thus improved locality of reference.

The decision of MPEG to issue a Call for Proposals soliciting the submission of tech-
nology for genomic data processing and storage is aimed to develop a standard compressed
file format in the coming years. Such a standard will likely integrate the best features of
the tools and formats evaluated in this study. The potential impact of an international
standard for genomic data compression would be ground-breaking in terms of both sys-
tems interoperability and efficiency, enabling population-wide scaling of existing genomic
applications.

73

Chapter 5

Background on ADMER Genotype
Inference

Precision medicine—a concept that takes the individual variability into account when de-
ciding treatment of the patient—has been recently reintroduced as a viable approach for
development of better prevention and treatment methods [26, 144]. This has been in a large
way caused by the recent advancements in high throughput sequencing (HTS) technology,
which allows sequencing of patient’s genome in a time-efficient and cost-effective way.

One of the first applications of precision medicine, pharmacogenomics, focuses on study-
ing the genetic makeup of patient’s genome in order to assess the patient’s response to the
various drugs. This study is necessary because response to a large number of clinically
prescribed drugs is significantly impacted by the individual’s genetic makeup [61]. For ex-
ample, while some patients show a good response to a medication, the same treatment might
either fail in others, or cause serious side effects, including the death of the patient [112]. It
is recommended to perform accurate genotyping prior to treatment decisions that include
drugs sensitive to the allelic composition of genes involved in their metabolism in order
to avoid adverse effects [21]. Based on the inferred genotypes, physicians can accordingly
adjust the drug selection and dosage.

Common subject of such studies are genes involved in the absorption, distribution,
metabolism, excretion and response of the drugs, also known as ADMER genes. One
prominent member of ADMER gene family is CYP2D6 gene, which is involved in the
metabolism of 20–25% of all clinically prescribed drugs in the human body.

Efficient computational tools are necessary in order to extract the accurate genotype
information of various ADMER genes from HTS data. In most of the cases, detection of
small single nucleotide variations (SNVs) is enough to properly identify the correct genotype;
however, in the case of CYP2D6 and CYP2A6, one needs to overcome several obstacles such
are high sequence similarity, genetic recombinations with evolutionarily related pseudogenes,
and high copy number variation among individuals.

74

In this chapter, we will: (i) provide a short overview of few important ADMER genes,
and (ii) survey the commonly used ADMER genotyping platforms.

5.1 Few Examples of ADMER Genes

Many genes with observed clinical effect are categorized according to the star-allele nomen-
clature [154], which was originally devised for the genes residing in Cytochrome P450 (CYP).
In such nomenclature, *1 allele is designated as a reference sequence with which polymor-
phic sites are compared. It should be noted that this sequence might not be the most
common allele found in every ethnicity. Unique numbers (e.g. *3) are assigned to each
novel allele which harbours the aminoacid substitution, or which affects the transcription,
splicing or translation process. In case of non-functional nucleotide changes, additional let-
ter is attached to the allele name (e.g. *3B). All alleles having the same unique number but
different non-functional variations are called sub-alleles of the unique allele (e.g. *3A and
*3B are both sub-alleles of *3 allele). Genes following this nomenclature are catalogued in
the publicly available database maintained by Karolinska Institute [166].

5.1.1 CYP2D6 Gene

Cytochrome P450 2D6 (CYP2D6) is one of the most widely studied genes for which the
correlation between the allelic makeup and drug response has been established. Currently,
the metabolism of 20–25% clinically prescribed drugs depends, at least in part, on CYP2D6
genotype [81]. These include antidepressants (e.g. Prozac, Paxil, Zoloft), antipsychotics
(Haldol, Risperdal), anticancer drugs (Tamoxifen), opioids (Codeine) and many others [88,
81, 74].

CYP2D6 is highly polymorphic gene for which more than 100 different alleles have
been reported so far. The information about the known alleles is available at CYP2D6
allele nomenclature website [166], which contains detailed up-to-date information about
each allele. The CYP2D6 database also includes information on the impact of genotype on
the activity of the encoded enzyme for more than 50 known alleles. This list is not final,
since novel alleles are regularly being found in the studies.

Based on their enzyme activity, the set of known CYP2D6 alleles can be divided into
four categories: poor (corresponding to no enzyme activity), intermediate (decreased en-
zyme activity), extensive (normal activity) and ultra-rapid (high activity) metabolizers [48].
Thus, the allelic configuration of CYP2D6 might seriously affect the patient’s response to
the drug: for example, patients with a decreased enzyme activity will likely have the low
response to pain killer codeine. In the case of codeine, ultra-rapid enzyme activity can even
have fatal consequences [113]. The correlation between the CYP2D6 phenotypes and ethnic
differences is given in Table 5.1.

75

Table 5.1: Correlation between the CYP2D6 enzyme activity and ethnic differences [81].

Allele Mutation Enzyme Activity Allele Frequencies
CYP2D6*2×N Gene duplication Increased Caucasians (1–5%)

Black Africans (0–2%)
Ethiopians (2%)
Saudi Arabians (10–16%)

CYP2D6*4 Splicing Defect Inactive Caucasians (12–21%)
Black Africans (1%)
Ethiopians (2%)
Saudi Arabians (1–4%)

CYP2D6*5 Gene deletion No enzyme Caucasians (2–7%)
Black Africans (6%)
Ethiopians (4%)
Saudi Arabians (1–3%)

CYP2D6*10 Aminoacid Unstable Caucasians (1–2%)
substitution Black Africans (51%)

Ethiopians (6%)
Saudi Arabians (3–9%)

CYP2D6*17 Aminoacid Altered affinity Caucasians (0%)
substitution for substrates Black Africans (0%)

Ethiopians (20–35%)
Saudi Arabians (3–9%)

Most of the known CYP2D6 variants are characterized by single nucleotide polymor-
phisms (SNPs) and short insertions or deletions (indels). However, in addition to CYP2D6,
the human genome contains two pseudogenes CYP2D7 and CYP2D8, which are evolution-
arily related to CYP2D6 [88]. The presence of highly homologous gene units in CYP2D6
and CYP2D7 facilitates crossovers and formation of large gene conversions, deletions, du-
plications and multiplications [94, 48]. Such configurations are listed in Figure 5.1.

In addition to genomic recombinations and high allelic variability, CYP2D6 also exhibits
extensive copy number variation. Although the gene might be completely absent in some
cases, individuals with 14 copies have been discovered [81]. Owing to such circumstances,
accurate and cost-effective CYP2D6 genotyping largely remains a hard problem, despite its
clinical significance.

5.1.2 CYP2A6 Gene

Cytochrome P450 2A6 (CYP2A6) is another ADMER gene whose allelic makeup affects
the metabolism of several clinically used pharmaceuticals [148]. So far, this gene has been
associated with the coumarin, a naturally occurring compound present in some plants, and
SM-12502, a novel platelet-activating factor receptor antagonist [148]. However, CYP2A6 is
the primarily known as the chief metabolizer of nicotine and its oxidized metabolite cotinine
[70]. Around 80% of nicotine is converted to cotinine, and this reaction is largely facilitated
by CYP2A6. Further cotinine metabolism is almost completely mediated by CYP2A6.
Several studies have linked the CYP2A6 ’s genetic makeup with lower risk of smoking [141],

76

Figure 5.1: Possible CYP2D6 configurations showing: (i) standard CYP2D6*1 allele and
related pseudogenes CYP2D7 and CYP2D8 (case 1); (ii) CYP2D6 variations harbouring
one or more SNVs (case 2); (iii) CYP2D6 deletion or copy number variation (cases 3 and
4); (iv) hybrid crossovers with CYP2D7 (case 5), and (v) various tandem arrangements
between CYP2D6 and CYP2D7 (cases 6, 7 and 8). Image adapted from [176].

CYP2D7 CYP2D8CYP2D6*1 REP7REP6 SP
AC

ER

CYP2D7 CYP2D8CYP2D6*2 REP7REP6 SP
AC

ER

CYP2D7 CYP2D8CYP2D6*1 REP7REP6 SP
AC

ER

CYP2D6*1REP6

CYP2D7 CYP2D8REPD SP
AC

ER

CYP2D8REP6 CYP2D6*13

CYP2D8REP6 CYP2D6*13CYP2D6*1REP6

CYP2D7 CYP2D8CYP2D6*4 REP7REP6 SP
AC

ER

REP7 SP
AC

ER

CYP2D6*68

CYP2D7 CYP2D8REP7 SP
AC

ER

REP6 CYP2D6*83 CYP2D6*1REP6 CYP2D6*1REP6

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

decreased cigarette consumption in adults and adolescents [161] and increased cessation
[63].

Similarly to CYP2D6, CYP2A6 is highly polymorphic gene with more than 40 reported
variants. The CYP2A6 variants are publicly listed in the up-to-date CYP2A6 allele nomen-
clature database [166] This database also includes information about the enzyme activity
for more than 20 known alleles. Enzyme activity of CYP2A6 alleles can also be divided into
four categories: none, decreased, normal and ultra-rapid activity. There is substantial vari-
ation in CYP2A6 phenotype based on the ethnic origin, and such correlation is illustrated
in Table 5.2.

While majority of CYP2A6 alleles are characterized by SNVs, presence of highly homol-
ogous pseudogene CYP2A7 promotes the existence of various structural variations similar
to those occurring between the CYP2D6 and CYP2D7. These variations include whole
CYP2A6 deletion, CYP2A6 duplication and crossovers with CYP2A7 [135, 148]. Typi-
cal CYP2A6 configurations are shown in Figure 5.2. Because of structural variations and
high sequence homology with CYP2A7 (more than 95%), accurate and efficient CYP2A6
genotyping also represents a significant challenge [181].

77

Table 5.2: Correlation between the CYP2A6 enzyme activity and ethnic differences [47].

Allele Mutation Enzyme Activity Allele Frequencies
CYP2A6*1A Normal Spaniards (66.5%)

Japanese (42.4%)
Chinese (43.2%)

CYP2A6*1B CYP2A7 gene conversion Increased Spaniards (30%)
in 3’ flanking region Japanese (37.5%)

Chinese (40.6%)
CYP2A6*2 Aminoacid Inactive Spaniards (3%)

substitution Japanese (0%)
Chinese (0%)

CYP2A6*3 Gene deletion No enzyme Spaniards (0%)
Japanese (0%)
Chinese (0.7%)

CYP2A6*4 Gene deletion Altered affinity Spaniards (0.5%)
substitution for substrates Japanese (20.1%)

Chinese (15.1%)

5.2 Genotyping Platforms

Genotyping, or genotype inference, is the process of investigating the genetic constitution of
an individual by examining the individual’s DNA sequence and comparing it to the reference
sequence.

5.2.1 PCR-based Methods

Polymerase Chain Reaction (PCR) is a DNA amplifying technique [124]. It requires a DNA
sample containing the target sequence of interest to be amplified, and a two small DNA se-
quences, called primers, to be attached to the target. The target DNA helix is first split into
the two strands, and PCR primers are attached to the newly formed strands. Afterwards,
the remainder of each strand is completed with matching dNTPs (deoxynucleoside triphos-
phates, or blocks containing one of the nucleotides) with the help of appropriate enzyme
(e.g. Taq polymerase). This process can be continued as long as necessary, wherein the
amount of DNA is doubled at each step. The final result of this process is the amplification
of the DNA sequence falling between the primers.

The following genotyping methods use PCR in order to identify various SNPs of interest:

Amplification refractory mutation system PCR (ARMS-PCR) [129] uses primers
specifically designed to overlap at the target SNP location. If they do not match the SNP
(meaning that SNP is not present), nucleotides with a mismatched 3’-residue will not func-
tion as primers in the PCR under the appropriate conditions. As a result, the ARMS-PCR
will produce desired results only if the primers attach themselves to the SNP for which they
were designed for.

78

Figure 5.2: Possible CYP2A6 configurations showing: (i) standard CYP2A6*1 allele
(orange) and related pseudogene CYP2A7 (blue); (ii) CYP2A7 conservation in 3’ flanking
region of CYP2A6 ; (iii) CYP2A6 gene duplication; (iv) CYP2A6 deletion (denoted as
CYP2A6*4); and (v) hybrid crossover with CYP2A7. Image adapted from [148].

CYP2A7 CYP2A6*1A

CYP2A7 CYP2A6*1B

CYP2A7 CYP2A6 CYP2A6

CYP2A7

 CYP2A7 CYP2A6*34

CYP2A6*4

1.

2.

3.

4.

5.

Primer extension approach relies on the primers that attach themselves to the target
DNA immediately upstream of the SNP nucleotide (i.e. a nucleotide next to the primer’s
end will be a SNP nucleotide). Afterwards, special fluorescently labelled dNTPs (or dNTPs
with other kind of detectable signal) will attach themselves to the SNP nucleotide [62]. At
the end of the process, allelic configuration of the sample is estimated from the amount
of remaining fluorescent labels usually by the application of mass spectrometry. Primer
extension is suitable for high throughput analysis, and many SNPs can be genotyped at
once by this technology.

Commercial technologies which rely on primer extension include SNPstream assays [11],
iPLEX ADME PGx panels and Illumina’s Infinitum assays. While these technologies pro-
vide high sample throughput and low operating costs, they come with low flexibility for
incorporation of new assays [175].

TaqMan assays [71] use special primers which can amplify the region containing the
targeted SNP. In addition to these primers, TaqMan assays come with the allele-specific
probes, containing a fluorophore and quencher molecules attached to their 5’ and 3’ ends,
respectively. If the allele-specific probe links to the SNP (thus confirming the allele’s exis-
tence), it will get degraded by Taq polymerase, an agent which is used to link the dNTPs
to the DNA strand. This degradation will result in fluorophore’s separation from quencher
molecule, which will generate a noticeable signal. TaqMan probes can also be used for
multiple SNP detections in a single run, as long as SNPs are far enough from each other
(since separate allele-specific probe is required for each SNP).

79

TaqMan ADME assays are widely used for SNP genotyping, mostly due to their sim-
plicity and high sample throughput. However, TaqMan assays are often inconsistent,
and they cannot detect various structural variations, including the copy number change
[175, 146, 143, 45, 151].

DNA Microarrays

DNA microarrays are collection of small DNA primers containing various SNVs attached to
the single chip. Typically, a microarray chip contains a set of primers describing all allelic
configurations of the targeted gene. Chips can be designed to target multiple genes at once.
Initially, the messenger RNA (mRNA) is extracted from the sample being analyzed. It is
then coloured, converted to the cDNA, and attached to the chip. cDNA will bind to the
primers which are matching its nucleotides, and each binding will be marked with cDNA’s
colour. Unbound cDNA fragments will eventually get discarded. Finally, the picture of
chip is taken and processed via image processing software in order to detect the allelic
composition of the sample [98].

Typical examples of microarray-based assays include Affymetrix DMETPlus arrays,
Roche AmpliChip CYP450 and Illumina VeraCode ADME panels. However, these tech-
nologies cannot efficiently detect copy number variations [175].

It should be noted that all of the abovementioned methods require in advance knowledge
of the allele-specific SNVs, since special primers need to be constructed for each queried
SNV.

5.2.2 Sequencing-based Methods

Sanger sequencing [158], the current Food and Drug Administration’s (FDA) gold
standard for sequencing [175], is capable of producing long reads (in range of 650–800bp)
with reasonable error rates. However, such approach is usually too costly, labour-intensive
and time-consuming. Additionally, Sanger sequencing is not able to adequately determine
large indels or copy number variants [109, 48, 175].

HTS whole genome (WGS) and whole exome (WES) sequencing provide the
most comprehensive method for obtaining the individual’s genetic variation. While WGS
platforms are able to capture the whole individual’s genome, WES only covers the expressed
genes in the genome. Both WGS and WES provide high throughput and high coverage
of the data. Additionally, WGS can be used to detect the novel SNVs and previously
unknown allelic variants, thanks to its low error rates. Nevertheless, short read lengths and
platform-specific biases [35] introduce significant challenges in the interpretation of WGS
data. Furthermore, many existing WES methods do not cover non-coding regions, which
makes WES somewhat impractical for pharmacogenomical purposes [111].

80

For the reasons described above, cheaper (but more error-prone) PCR and microarray
based methods are still the most popular technologies for genotype inference of ADMER
genes (and CYP2D6 in particular) [48].

PGRNseq sequencing [59] is the recently introduced custom-capture panel designed
to sequence 84 ADMER genes in a HTS fashion. This sequencing technology uses Illumina
HiSeq 2000 platform for sequencing, and produces reads covering around 968 kilobases of the
genome with the average depth of coverage of 500×. Currently, the cost of PGRNseq is ten
times lower than WGS and two to three times lower than WES. However, PGRNseq is still
prone to the data interpretation ambiguities, particularly with the presence of structural
variants in the genes like CYP2D6 and CYP2A6.

Detailed information about the various genotyping methods is available in the literature
[146, 175, 98].

5.3 Computational HTS Genotyping Methods

The high coverage of HTS data, together with its low cost, offers a feasible genotyping
strategy for many pharmaceutical genes. Here we will present a few common techniques
which are used to infer genotypes from HTS data.

The first step in the genotype analysis consists of short read alignment to the reference
genome. This is typically done with aligners like BWA [106], Bowtie [100, 99] or mrsfast
[65, 68]. After the alignment, a simple but crude approach for SNP calling would consist
of analyzing the aligned bases at the SNP loci as follows. All bases with low sequencing
or mapping quality are discarded, assuming that they represent the sequencing artefacts.
If the percentage of one base goes below the predefined threshold, the evidence supporting
that base is discarded (e.g. if we have 50 bases supporting G and only 2 bases supporting
C at the SNP loci, chances are that C is the result of sequencing error; thus, all bases
containing C are discarded). Finally, all locations which still show the evidence of variation
are called as SNPs.

Probabilistic modelling

A more sophisticated way of genotyping uses Bayesian likelihoods to estimate the genotypes
[108]. Such estimator computes the posterior probability P (G | D) for each genotype G,
and selects the genotype which maximizes the posterior. Posterior is calculated as:

P (G | D) = P (G)P (D | G)
P (D) ,

where D denotes the input data. Since P (D) is constant for given D, it is effectively ignored
in the calculation. P (G) is prior probability of genotype G, and it is influenced by zygosity

81

of the reference, as well as the correlation between the individual being analyzed and sample
in which the individual belongs. In a naïve implementation, if we assume that genotype G
consists of the allele having a single SNP taking values A1 and A2 at loci l, P (D | G) can
be estimated as:

P (D | G) =
∏

b∈pileup(l)
P (b | G),

where
P (b | G) = 1

2P (b | A1) + 1
2P (b | A2).

In this estimation, pileup(l) represents the set of bases covering the loci l from the reads
which map over l. Naïve model can estimate P (b | A) as e(b)/3 if b 6= A, or as 1 − e(b) if
b = A, where e(b) describes the sequencing error rate of the nucleotide b (usually obtained
from the quality score).

Samtools [107, 105] assumes data independence across the different loci. It also assumes
that all variants in the sample are biallelic. The estimator for likelihood L(G) of the
genotype G is roughly given as:

L(G) = 1
mk
×
∏

b=A1

[(m− P (G)) e(b) + P (G) (1− e(b))]

×
∏

b=A2

[(m− P (G)) (1− e(b)) + P (G)e(b)] ,

where m denotes the ploidy of the sample (usually 2 for haploid samples) and k denotes
the number of bases covering the allelic site.

In practice, Samtools uses a slightly modified version of the abovementioned equation
which also takes into the account various error dependencies [105].

Genome Analysis Toolkit (GATK) [120, 32] is a full-scale MapReduce framework
for HTS data analysis. One of the framework’s key components is the variant caller and
genotype estimator.

Before genotype estimation is conducted, GATK applies the following filtering and align-
ment improving steps:

1. Local realignment. Due to the common misalignments occurring in the presence of
indels, GATK performs a multiple sequence realignment around the potential indel
sites in order to refine the alignments.

2. Duplicate marking. GATK tries to eliminate all of the molecular or PCR duplicates
from the mapping.

82

3. Base quality recalibration. In this step, base qualities (i.e. error rates e(b))
are corrected based on the neighbouring quality scores and the sequencing-specific
information (e.g. machine cycle, tile information etc.).

Genotype is estimated via expectation-maximization (EM) algorithm which uses the
similar likelihood calculation as in Samtools [104].

Constellation [176] is a CYP2D6 genotyping framework which is able to report both
genotypes and phenotypes described in the CYP2D6 database [166]. It uses GSNAP [186]
and GATK [120] for initial mapping, read realignment and SNV calling. Afterwards, it
constructs the list of all possible diplotypes Di occurring in CYP2D locus, and calculates
the similarity score between the output of GATK SNP caller, V , and each diplotype Di as
follows.

Let X = V ∩Di be the set of variants shared by V and Di, Y = V \Di a set of variants
unique to V , and Z = Di\V a set of variants unique to Di. Let pred denote the event when
the variant is predicted, and pres the event when the variant is present. Define sensitivity
of the variant as

sens = P (pred | pres),

and specificity as
spec = P (¬pred | ¬pres).

The final score determining the likelihood of Di as genotype is given as:

score(Di) =
(sens

1− spec

)|X|
×
(1− sens

spec

)|Y |
×
(1− spec

sens

)|Z|
,

where |X|, |Y | and |Z| denote the cardinality of the sets X, Y and Z, respectively. Finally,
Di with the highest score is selected as the sample’s genotype.

At the time of writing, Constellation is not publicly available for download.

5.4 Conclusion

In this chapter, we presented an overview of the few pharmaceutically important genes,
namely CYP2D6 and CYP2A6, whole allelic makeup can impact the drug treatment deci-
sions. Afterwards, we listed some common techniques and platforms used for genotyping of
such genes.

Genotyping can be done either by the use of specialized PCR or microarray based assays,
or by sequencing of the genomic region of interest. While specialized assays offer fast and
cost-effective genotyping, they are limited to the specific set of genes and variations, produce
inconsistent results, and are not able to deal with various structural variations involving the
target genes. Sequencing methods provide a possible solution to those issues, but require

83

novel computational methods to be developed in order to accurately interpret the often
ambiguous sequencing data.

84

Chapter 6

Exact genotyping of CYP2D6 gene
using high throughput sequencing
data

Response to a large number of clinically prescribed drugs varies significantly among indi-
viduals. While some patients show a good response to a medication, the same treatment
might fail in others or cause serious side effects which can even result in the death of the
patient [112]. In many cases an individual’s genetic makeup has been recognized as one of
the potential causes of treatment failures [61]. In order to avoid adverse effects, it is rec-
ommended to perform accurate genotyping prior to treatment decisions that include drugs
sensitive to the allelic composition of genes involved in their metabolism [21]. Drug dosage
and selection can then be adjusted based on the inferred genotypes.

Cytochrome P450 2D6 (CYP2D6) is one of the most widely studied genes for which
the correlation between the allelic makeup and therapy response has been established. It is
currently estimated that metabolism of 20–25% of clinically prescribed drugs is, at least in
part, dependent on CYP2D6 genotype [81]. These include antidepressants, antipsychotics,
anticancer drugs, opioids and many others [191, 81].

CYP2D6 is highly polymorphic gene with more than 100 different allelic variants re-
ported up to date. The information about the known alleles is publicly available at CYP2D6
allele nomenclature website (http://www.cypalleles.ki.se/cyp2d6.htm) which contains
detailed information on the sequence variants characterizing each allele. The website also in-
cludes information on the impact of genotype on the activity of the encoded enzyme for more
than 50 known alleles. Based on their enzyme activity, the set of known CYP2D6 alleles
is divided into four categories: poor (PM), intermediate (IM), extensive (EM) and ultra-
rapid (UM) metabolizers corresponding to “none”, “decreased”, “normal” and “ultra-rapid”
activity, respectively [50]. As genotyping techniques improve and more studies including
large cohorts of individuals with different ethnic backgrounds are conducted, the existing

85

http://www.cypalleles.ki.se/cyp2d6.htm

database will expand to include novel alleles and more detailed, more accurate information
on genotype-phenotype associations for known alleles.

Most of the known CYP2D6 variants are characterized by single nucleotide polymor-
phisms and short insertions/deletions (indels). However, in addition to CYP2D6, the hu-
man CYP2D locus contains two pseudogenes CYP2D7 and CYP2D8, closely located and
evolutionarily related to CYP2D6 [88]. The presence of highly homologous gene units in
CYP2D6 and CYP2D7 facilitates crossing-over and formation of large gene conversions,
deletions, duplications and multiplications [94]. Figure 6.1 depicts all of the known CYP2D
gene arrangements.

CYP2D6 also exhibits extensive copy number variation. While the gene might be com-
pletely absent in some individuals, others who carry as many as 14 copies have been dis-
covered [81].

Due to its clinical significance and the prevalence of genotypes resulting in altered pheno-
types, several CYP2D6 genotyping platforms have been introduced. These usually include
allele-specific primer extension assays, liquid bead arrays and TaqMan genotyping assays.
However, several discrepancies among genotypes produced by these platforms have been
reported [143, 45]. Also, discoveries of some of the novel alleles and variations necessitate
the extension of existing kits by construction and addition of novel primers thereby in-
creasing the time and cost required for genotype inference. The sensitivity of primers to
sequence variation in primer binding sites can result in incorrect genotype assignment [49].
Furthermore, some of the techniques are incapable of detecting several alleles [45]; they
can also produce ambiguous readouts or incorrect estimates for individuals carrying hybrid
genes [49, 94]. Another issue with some of the available approaches is their inability to
differentiate between duplicated and non-duplicated alleles in samples with a duplication
signal and heterozygosity [94].

Recently introduced high throughput sequencing (HTS) technologies represent a promis-
ing, time-efficient, cost-effective and potentially high-accuracy alternative to currently used
genotyping techniques. In a single machine run, a typical HTS sequencing platform, like
Illumina HiSeq 2000, generates billions of short DNA fragments/reads. Although these
reads are substantially shorter than those generated by Sanger sequencing (75–250bp vs
650–800bp), their higher coverage provides improved indel and SNP detection accuracy. In
addition, because leading HTS platforms (in particular Illumina) provide uniform sequence
coverage, the copy number of a genomic region of interest can be estimated by compar-
ing the expected and observed coverage in a given genomic region. Furthermore, the use
of paired-end reads can facilitate fine-grained inference of the origin of sequence variants
commonly observed in both CYP2D6 and CYP2D7.

86

Figure 6.1: Five known CYP2D6 gene arrangements. The reference strand of human genome was used in all cases. Various number,
including zero, of CYP2D6 copies is allowed within the parenthesis. (a) CYP2D6 non-duplicated arrangement consisting one copy of each
of CYP2D6, CYP2D7 and CYP2D8. Purple rectangle represents CYP2D6 untranslated region. This region contains several variations
important for the detection of some CYP2D6 alleles; (b) typical CYP2D6 duplication arrangement; (c) the deletion arrangement,
indicating the absence of CYP2D6 (denoted as *5 allele); (d) CYP2D6/2D7 fusions (*13 family of alleles) lacking CYP2D7. Variable
number of copies of CYP2D6 gene might precede fusion alleles; (e) CYP2D7/2D6 fusion cases with presence of CYP2D7. Variable
number of copies of CYP2D6 gene might precede fusion alleles in this case as well.

()*

CYP2D7 CYP2D8CYP2D6

CYP2D6 CYP2D7 CYP2D8

CYP2D7 CYP2D8

CYP2D8 2D7 2D6

CYP2D6 CYP2D7 2D7 2D6

*5 (deletion)

*13-likee.g. *2A

e.g. *4N, *61e.g. *4-like

a.

b.

c.

d.

e.

()*CYP2D6

()*CYP2D6

42,123,000 42,149,70042,140,000chr22:hg38

CYP2D8

87

Despite rapid advances in HTS technologies, no available computational tool is capable
of resolving the CYP2D6 genotype. A computational tool to solve this important problem
needs to address many obstacles emerging from extensive allelic variation and sequence
similarity between genes present at the CYP2D locus. Although this locus is unique in the
human genome, the high degree of similarity among CYP2D genes results in an abundance
of reads with multiple mapping locations. This can significantly complicate copy number
analysis and accurate genotyping. As a large number of SNPs and indels that define some
of CYP2D6 alleles can also occur in the pseudogene CYP2D7, detailed analysis of obtained
variation signals is necessary. Failing to do so might result in inaccurate CYP2D6 geno-
type assignment caused by improper interpretation of variations originating from CYP2D7,
mistakenly assigned to CYP2D6.

In this work, we present Cypiripi, the first algorithm for automatic CYP2D6 genotype
inference from genomic HTS data. Cypiripi is able to properly resolve complicated configu-
rations, including fusions between CYP2D6 and CYP2D7 genes, as well as both CYP2D6
and CYP2D7 deletions and duplications. We demonstrate that Cypiripi is highly accurate
through extensive experiments involving both simulated and real datasets.

6.1 Methods

Cypiripi consists of the following main steps (Figure 6.2):

1. Library preparation step, where a library containing the complete set of relevant
variations occurring in CYP2D locus is constructed;

2. Read alignment step, where each HTS read is aligned to the library of gene variants
from the CYP2D locus determined in the library preparation step;

3. Filtering step, where alleles with sequence variations that lack appropriate read sup-
port are removed from further consideration;

4. Combinatorial optimization step, where the genotype, consisting of the composition
of CYP2D6 allelic variants and their copy numbers, is inferred by using Integer Linear
Programming (ILP).

6.1.1 Library preparation

In this step, we construct a library containing the information about currently available
variations occurring within CYP2D locus. These include SNPs, indels and details about
recombination events occurring between CYP2D6 and CYP2D7. Due to the nature of
the problem being solved, we mainly focus on variations that define the currently known
CYP2D6 alleles.

88

Figure 6.2: Graphical representation of the steps employed by our framework.

1. Library
preparation

CYP2D6 library
generation

CYP2D7 library
generation

Sequence
 generation2. Alignment

mrsfast for CYP2D6-
like sequences

mrfast for CYP2D7-
like sequences

mrfast for CYP2D8
and its surroundings

3. Filtering

Removal of
variations with low

coverage

Resolving CYP2D7
variations

Removal of alleles
without expressed

variations

4. Solving
Obtaining the copy
number for CYP2D6

and CYP2D7

Removal of reads
originating from

CYP2D7

CYP2D6 genotype
resolving

Removal of CYP2D8
reads

Variations occurring in CYP2D6 have been extracted from the most recent update
(December 2014) of the database at the CYP2D6 allele nomenclature website. The corre-
sponding information is stored in the simple text file and any subsequent changes in online
database can be easily incorporated in our tool by a straightforward modification of this
file.

CYP2D7 library reconstruction is harder due to the fact that there is no basepair level
characterization available for CYP2D7 alleles. In order to be able to differentiate CYP2D7
from CYP2D6, we used 10 available CYP2D7 sequences from GenBank and other sources:

1. M33387
(http://www.ncbi.nlm.nih.gov/nuccore/M33387)

2. NW_003315971.2
(http://www.ncbi.nlm.nih.gov/nuccore/NW_003315971.2)

3. NT_187682.1
(http://www.ncbi.nlm.nih.gov/nuccore/NT_187682.1)

89

http://www.ncbi.nlm.nih.gov/nuccore/M33387
http://www.ncbi.nlm.nih.gov/nuccore/NW_003315971.2
http://www.ncbi.nlm.nih.gov/nuccore/NT_187682.1

4. NC_000022.11
(http://www.ncbi.nlm.nih.gov/nuccore/NC_000022.11)

5. AC_000154.1
(http://www.ncbi.nlm.nih.gov/nuccore/AC_000154.1)

6. NC_018933.2
(http://www.ncbi.nlm.nih.gov/nuccore/NC_018933.2)

7. ENSG00000205702.2
(http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000205702)

8. hg19 reference genome
(chr22:42536214–42540575)

9. hg38 reference genome
(chr22:42140203–42144549)

10. NA12878 Assembly, Maternal Chromosome
(22:42534697–42539033)

11. NA12878 Assembly, Paternal Chromosome
(22:42534225–42538562).

These sequences were aligned with Clustal [101] in order to obtain a consensus alignment
for CYP2D7 gene. This consensus was aligned to the CYP2D6 reference allele, and the set
of differences between those two consensus sequences were used as markers for identifying
CYP2D7 presence, and for generating CYP2D7 reference sequence. These markers were
also used for proper description of the fusion and conservation alleles (i.e. alleles involving
a portion—e.g. a whole exon—of a CYP2D6 allele, swapped with the similar sequence
portion of a CYP2D7 allele). Note that those markers are not intended to be authoritative,
since there might exist uncatalogued CYP2D7 alleles which do not contain any of those
markers. Our formulation takes that into consideration, and uses only markers which have
sufficient support to infer the presence of CYP2D7 (e.g. insertion of T at loci 137 indicates
with high probability that CYP2D7 region is present).

Our method does not require a database with CYP2D8 variants for the reasons described
below.

6.1.2 Read alignment

We established the uniqueness of CYP2D gene sequences by searching for the entire human
genome (excluding the CYP2D locus) regions with high sequence similarity to the CYP2D
genes by BLAT [87]. No subsequence of length > 60bp from any one of the CYP2D genes
can be found in the remainder of the human genome within an edit distance of 6.

90

http://www.ncbi.nlm.nih.gov/nuccore/NC_000022.11
http://www.ncbi.nlm.nih.gov/nuccore/AC_000154.1
http://www.ncbi.nlm.nih.gov/nuccore/NC_018933.2
http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000205702

As the length of the reads generated by current HTS technologies usually exceeds 60bp,
each of the reads that can be aligned (with only a few differences) to CYP2D6 genes must
originate from the CYP2D cluster. Thus, in order to extract the reads originating from
CYP2D genes it is sufficient to map all of the reads against this set and discard those
that cannot be aligned successfully. This alignment is performed by our in-house developed
mrfast and mrsfast family of multi-mapping tools [4, 65, 68]. For each of the successfully
aligned reads, we keep the details about the genes and locations it can be aligned to, and
variants in the library it supports. Alignment details respectively for CYP2D6, CYP2D7
and CYP2D8 are given below.

In order to perform an alignment of the reads against all possible CYP2D6 alleles,
we constructed each allele at basepair resolution. For that we combined information from
CYP2D6 reference sequence M33388 (http://www.ncbi.nlm.nih.gov/nuccore/181303)
and CYP2D6 variant database we constructed in the previous step. The alignment was
then performed using mrsfast, allowing at most 2 mismatches per read.

Due to the lack of a comprehensive list of sequence variants commonly observed in
CYP2D7, there could be SNVs or short indels not represented in the consensus sequence we
constructed. In order to account for such variants and possible sequencing errors we set the
maximum number of errors (mismatches and indels—i.e. edit distance) to 5. The alignment
of reads was performed by mrfast, which allows mismatches as well as indels. Since reads
originating outside of the CYP2D locus have an edit distance more than 5 to any CYP2D
gene, any read aligning with the consensus sequence should be originating from the CYP2D
locus.

Although CYP2D8 is evolutionarily related to CYP2D6 and CYP2D7, its sequence
composition is significantly different from that of the other two. In addition, there are
no recombination events involving CYP2D6 and CYP2D8. As a result, we assume that
CYP2D8 is always located downstream of CYP2D7 (considering 5’ to 3’ orientation in the
human reference genome) and that, the vast majority of the reads originating from this gene
are not mappable to the other two genes. However, there are two 0.5kb flanking regions
at CYP2D8 boundaries that can give rise to some reads mappable to CYP2D6 and/or
CYP2D7 (Figure 6.3). Such reads can interfere with copy number and other key estimates
for CYP2D6 and CYP2D7. It is therefore important to filter out such reads. We thus
perform an alignment of the reads against CYP2D8 gene and its surroundings by using the
CYP2D8P reference sequence M33387 (http://www.ncbi.nlm.nih.gov/nuccore/M33387)
by the use of mrfast, with edit distance 5. Reads falling into the abovementioned flanking
regions around CYP2D8 are marked for filtering, as described in the next step.

6.1.3 Filtering

After the first two steps we obtain a set of reads mappable to at least one of the CYP2D
genes together with the details about the exact locations they align to and the sequence

91

http://www.ncbi.nlm.nih.gov/nuccore/181303
http://www.ncbi.nlm.nih.gov/nuccore/M33387

Figure 6.3: The coverage of the reads mappable to the CYP2D6 and/or CYP2D7 genes
is depicted in grey on the flanking regions of CYP2D8 (blue strip). Only two small 0.5 KB
regions on the sides accept CYP2D6 and/or CYP2D7 reads.

CYP2D8

0.5 KB 0.5 KB4.5 KB

variants they support. In addition, for each variant we have information about the number
of reads supporting it. In order to remove false positives and lower the search space for
the combinatorial optimization step, we perform several read, variation and allele filtering
steps with the details below.

CYP2D8 read filtering: Since we know the regions in the CYP2D6 and CYP2D7 to
which some of CYP2D8 reads can map to, we can use the surroundings of these regions
to find out the excess coverage generated by such reads. After finding excess coverage, we
remove the reads in order to “flatten” the coverage of the region with its surroundings.

Variation filtering: Sequencing errors can result in support for sequence variants that do
not exist in the underlying genome. For example, assume that our library contains the SNP
G>A at genomic position p. Also, assume that the underlying genome does not contain this
SNP. In principle, a sequencing error occurring at position p may result in some support
for nucleotide A instead of G. Due to the low sequencing error in the data we use, it is very
unlikely that read support for non-existing variants will be significant. We therefore filter
out all potential sequence variants that have support lower than user-specified parameter
η.

CYP2D7 variation filtering: It is of great importance for our method to detect all
variation coming from the CYP2D7 reads which are falsely aligned to some of the CYP2D6
alleles. This is particularly important due to the fact that many key sequence variants used
for CYP2D6 allele identification might also occur in CYP2D7. For example, c.1661 G>C
is commonly found both in CYP2D7 and many of the CYP2D6 alleles. It is usually not
clear whether this variant is associated with CYP2D7 or CYP2D6 or both. Commonly,
CYP2D7 -specific variants are found within the close vicinity (usually within the 100bp) of
the shared variants. This helps with the detection of the origin of shared variations by using
only read alignment information. Unfortunately, in some cases, CYP2D7 -specific variants
are not present in the vicinity of shared variants (within a distance comparable to the read
length). Unresolved shared variants can falsely indicate the existence of specific CYP2D6

92

alleles, which, in reality may not be present in the sequenced genome. For example, c.3853
G>A is shared by both CYP2D6*27 and CYP2D7 ; the closest CYP2D7 -specific variation
is more than 100bp away from this locus. Relying solely on this information, we cannot
decide whether it is *27, or, *1 (the wild type allele) together with a CYP2D7 harbouring
this variation, that is present. Fortunately, this problem is resolved through the use of
paired-end sequencing with a fragment length of 300bp or more, whose span would help
detect CYP2D7 -specific variants.

Allele filtering: About 60% of the CYP2D6 alleles from the database are easily distin-
guishable from other alleles by at least one unique variant in their characterization. Each
CYP2D6 allele whose unique variants are not supported after previous filtering steps are
removed from further consideration. Unfortunately, the absence of a comprehensive list of
CYP2D7 variants prevents us from applying this stringent filtration rule to the CYP2D7
gene.

6.1.4 Combinatorial optimization

The goal of the combinatorial optimization step is to find a genotype which best describes
the set of reads remaining after previous read filtering steps. The optimal genotype is
supposed to match the observed read coverage as closely as possible, as explained below.

Notation

Let L denote the set of variants from CYP2D6 and CYP2D7 variation library that have
non-zero read support after previous filtering steps.

Consider an arbitrary variant w ∈ L. Assume that w starts at position j in the CYP2D6
reference sequence. In addition to the reads supporting w, there might also exist some
reads spanning location j and not supporting any variation from L at location j. Since
our optimization step also requires the number of such reads to be available, in order to
detect the wildtype (*1) and other alleles without any variation at location j, we introduce
the notion of a neutral SNP variation denoted by n(w), defined as the special type of
“variation” that preserves the reference nucleotide at location j. To illustrate this, consider
the following example where w denotes the c.1661 G>C in CYP2D6. Since this SNP starts
at position 1661, the corresponding n(w) in this case is defined to be c.1661 G>G. Neutral
SNP variation n(w) is harboured by all alleles that do not harbour any variation starting
at j.

Now we define a set V of all variants (including neutral SNPs) as:

V =
⋃

w∈L

w ∪
⋃

w∈L

n(w).

93

Let coverage of v ∈ V be the number of unfiltered reads supporting v, and be denoted
by cov(v).

Let Vi denote the set of variations defining the i-th allele. Clearly Vi ⊆ V .

Formulation

The problem is formulated as an instance of integer linear programming (ILP), and solved
using IBM CPLEX optimization software. In order to formulate the problem, we use the
assumption that the average coverage of the HTS experiment is uniform, and that its value
is the user-provided parameter λ.

Define ai as an integer variable denoting the number of copies of the i-th CYP2D6
allele in the given sample. Let a = (a1, . . . , aN), where N denotes the number of different
alleles. We assume that the total number of copies of CYP2D6 is upper bounded by a given
parameter c. In this study we set c = 20 which is greater than the maximum number of
CYP2D copies found so far in a single individual (see Chapter 6 introduction). In order to
incorporate this into our ILP we add the constraint 0 ≤ ai ≤ 20 for each i.

The expected coverage of variation vj is given as a function of a and λ as follows:

λ
∑

i

δji · ai.

where δji = 1 if vj ∈ Vi. Otherwise, we set δji = 0.
The difference between the expected and obtained coverage for variation vj , denoted as

ej , is then given by:
ej = cov(j)− λ

∑
i

δji · ai.

The value of each ej is bounded by ε, where ε is user-defined parameter.

|ej | ≤ ε for each j (6.1)

Our goal is to set the values for ai so that the sum of absolute values of all ei is minimized.
Thus, we define our objective function as:

min
a

∑
j

|ej |. (6.2)

Note that the performance of this model highly depends on the accuracy of CYP2D6
database, in particular the choice of V and Vi for any i. For this reason, any allele which is
not present in the database will be assigned a closest allele from the database in the optimal
solution.

We use a two-stage approach to solve the genotyping problem. In the first stage, we
use previously described ILP formulation to obtain the copy number for CYP2D6 and

94

Figure 6.4: The ambiguous case where two genotypes *6C/*34 (yellow) and *2D/*6B
(green) are equally likely. Key c.2850 C>T and c.4180 G>C are too distant to be resolved
with the currently available HTS data.

*34

*6C

*2D
2850 C>T

4180G>C

 *6B

1707delT

1976G>A

A34 [A6C ⌘ A2D [A6B

CYP2D7, without making any decision about CYP2D6 genotypes. Based on this, we
can remove the CYP2D7 reads and estimate the exact coverage at each location. Since
the removal of CYP2D7 reads also removes the support for many shared variations, we
perform an additional round of filtering in order to further reduce the number of potential
false positives. Finally, we invoke a slightly modified version of the abovementioned ILP
formulation in order to detect specific CYP2D6 genotypes, as described below.

In the end, we are only left with the reads (assumed to be) originating from the CYP2D6
gene. Assume that at this stage some v ∈ V has non-zero coverage. Denote by A the set of
CYP2D6 alleles harbouring v. The existence of reads supporting v is now a clear indication
for the existence of at least one allele from the set A in the sample being analyzed. Thus,
in addition to the above constraints, we add the following constraint for each v that has
non-zero coverage: ∑

i∈A

ai ≥ 1.

After the optimal solution for this extended ILP is found we report the final genotype
consisting of all alleles i such that ai > 0 in the optimal solution. The copy number of each
included allele i is set to ai.

Although they are extremely unlikely, there are very few cases where discerning between
different CYP2D6 genotypes is theoretically infeasible using typical HTS data. In these
cases, the proposed ILP has more than one optimal solution resulting in at least 2 different
but equally likely genotypes. These cases occur when there are two sets of alleles, denoted
A1 and A2, satisfying the following conditions:

1. The union of variations defining alleles from A1 is identical to the union of variations
defining alleles from A2.

2. Ambiguous variations from those sets are not close enough to be covered by the
paired-end reads originating from only one allele.

95

One simple example for this is shown in Figure 6.4. In this figure, the presence of
depicted SNPs can signal the genotype combination of either *34/*6C or *2D/*6B. Since
key SNPs for discerning these two possibilities are more than 1000bp apart, we cannot
resolve this ambiguity using typical paired-end read data.

Note that we can enumerate all possible optimal solutions by using the API interface
provided by the solver. If this interface is not available, we can obtain alternate optimal
solutions by adding the additional set of constraints that makes the current solution in-
feasible. For example, if the optimal solution is a1 = 2, we can find additional optimal
solutions by solving two instances of the abovementioned problem: one with the additional
constraint a1 < 1, and one with the constraint a1 > 1. As long as the value of the objec-
tive function remains the same, this process can be recursively applied for any additional
optimal solution.

In such cases we report all of the most likely genotypes together with a warning that
there is ambiguity in the inferred genotype. If these genotypes result in different phenotypes,
further sample analysis is required. With the help of upcoming advances in HTS technologies
and the increase in read lengths and insert sizes, we expect to resolve this problem in the
near future.

6.2 Results

The first set of validated CYP2D6 genotypes have recently been made available [45] for
publicly available HTS data from 1000 Genomes Project Phase I collection [1]. Unfortu-
nately, none of these samples are suitable for our purposes as they are either sequenced at
very low coverage (2–5×) or have very short read length (36bp). Our method requires a
minimum coverage of 10× per strand in order to successfully filter out the noise originating
from sequencing errors. Furthermore reads longer than 60bp can ensure unambiguous map-
ping, as described in the filtering step of the Methods section. As a result, proper CYP2D6
genotype data for publicly available HTS experiments with reasonable coverage and read
length is not yet available.

In order to evaluate the performance of Cypiripi, we custom designed benchmark data
consisting of the following:

1. Simulation data: Cypiripi was evaluated on 71 simulated datasets designed to reflect
known CYP2D6 genotypes [94], including theoretically possible but highly unlikely
cases;

2. Real data: Cypiripi was evaluated on publicly available CEPH 1463 trio (mother,
father and son) sequenced by Illumina HiSeq 2000 platform with average coverage of
100× per chromosome.

96

6.2.1 Simulations

Five sets of simulations, each covering a unique class of CYP2D6 allelic arrangement, were
created for evaluating the performance of Cypiripi. Those arrangements were constructed
with the aim of covering all possible allelic combinations, including copy number changes and
fusion events, as depicted in Figure 6.1. Within each set, we simulated several individuals
with the set’s specific allelic arrangement. The sets are defined as follows:

a) diploid case where both maternal (M) and paternal (P) chromosomes have the allele
of the same type (e.g. *1/*1);

b) diploid case where both chromosomes contain one allele each and the alleles are dif-
ferent (e.g. *1/*3A);

c) both chromosomes contain a common tandem duplication or deletion event (e.g.
5×*2X/5×*2X or *5/*5); note that *5 allele describes a CYP2D6 deletion;

d) both chromosomes contain a common variety of different alleles (e.g. *1E *14B *2X
*14A for every chromosome);

e) both chromosomes contain a CYP2D7 fusion or conservation event (e.g. *13A/*13A
or *4A *68A/*4A *68A).

Note that Cypiripi reports the total number of alleles found in an individual genome
without making distinction between chromosomes (e.g. *1/*1 will be reported as 2×*1).

Also note that set (d) is quite unrealistic, since such cases with large number of distinct
variants are yet to be observed. We include these samples in order to show the generality
of the method, and to evaluate its ability to cope with complex cases which could be
encountered in the future. Sets (c) and (e), on the other hand, were specifically designed
to reflect some of the previously discovered and validated genotypes [94].

For every sample, we separately constructed the sequences of maternal and paternal
chromosomes, based on chromosome 22 of human reference genome, version hg38. We have
inserted in each chromosome the corresponding CYP2D6 gene within the coordinates of
chr22:42,122,966–42,132,410. We have also replaced CYP2D7 with some of the randomly
selected CYP2D7 genes mentioned in the Chapter 6.1, in order to account for CYP2D7
variability between different individuals. In the case of fusions and duplications, we have
followed the guide from [94], as depicted in Figure 6.1.

Simulated reads were generated by using simNGS (http://www.ebi.ac.uk/goldman-s
rv/simNGS/) simulator, which is capable of accurately simulating Illumina HiSeq 2000 ma-
chine parameters (details in the Appendix C), including substitution and indel rate. We
have generated 101bp paired-end library with the average insert size of 400. Paired-end

97

http://www.ebi.ac.uk/goldman-srv/simNGS/
http://www.ebi.ac.uk/goldman-srv/simNGS/

coverage per chromosome was around 20×, totalling average coverage of 40× per individ-
ual. Although the current standard is approaching 200× per individual, we opted for lower
coverage in order to show the robustness of the method.

Table 6.1: Cypiripi performance for the first three simulation groups. Correctly identified
alleles are shown in green, while incorrect estimates are reported in red colour. In case of
mismatches, red colour is also applied to the second column items in order to pinpoint the
problematic allele. Unless otherwise specified, genotypes are given for both maternal and
paternal chromosome in the format M/P. For ambiguous cases, all optimal genotypes are
reported (e.g. 26th sample).

Set (a) Set (b)
Diploid cases with the same allele Diploid cases with different alleles

λ = 20, η = 8 λ = 20, η = 8
ID Allele M/P Result ID Allele M/P Result
01 *1/*1 3/3 20 *6D/*55 3/3
02 *15/*15 3/3 21 *65/*53 3/3
03 *4M/*4M 3/3 22 *39/*73 3/3
04 *6A/*6A 3/3 23 *101/*45A 3/3
05 *27/*27 3/3 24 *2H/*1 3/3
06 *40/*40 3/3 25 *2B/*30 3/3
07 *10A/*10A 3/3 26 *6B/*2D 3/3or *6C/*34
08 *2K/*2K 3/3 27 *44/*2G 3/3
09 *2X/*2X 3/3 28 *71/*4M 3/3
10 *9/*9 3/3 29 *18/*62 3/3
11 *103/*103 3/3 30 *1C/*1B 3/3
12 *105/*105 3/3 31 *32/*25 3/3
13 *21B/*21B 3/3 32 *46h1/*105 3/3
14 *20/*20 3/3 33 *4C/*84 *4E/3
15 *3B/*3B 3/3 34 *6C/*72 3/3
16 *28/*28 3/3 35 *28/*9 3/3
17 *1E/*1E 3/3 36 *3A/*8 3/3
18 *4G/*4G 3/3 37 *35X/*85 3/3
19 *38/*38 3/3 38 *2K/*3B 3/3

Set (c)
Duplication and deletion events

λ = 20, η = 10
ID Allele M/P Result ID Allele M/P Result
39 2×*35X/2×*35X 3/3 47 4×*2X/4×*2X 3/3
40 2×*4A/2×*4A 3/3 48 4×*1/4×*1 3/3
41 2×*9X/2×*9X 3/3 49 5×*2X/5×*2X 3/3
42 2×*10A/2×*10A 3/3 50 5×*1/5×*1 3/3
43 2×*2X/2×*2X 3/3 51 8×*2X/8×*2X 3/7×*2X
44 2×*1/2×*1 3/3 52 8×*1/8×*1 3/3
45 3×*2X/3×*2X 3/3 53 8×*17/8×*17 3/3
46 3×*1/3×*1 3/3 54 *5/*5 (deletion) 3/3

All simulation results are shown in Tables 6.1 and 6.2. Cypiripi performed extremely
well, providing 100% correct genotype for majority of the cases (62 out of 71). In 4 out of 9

98

Table 6.2: Cypiripi performance for the last two simulation groups. For set (d), where both
chromosomes have the same allelic combination, we only show content of one chromosome
for the sake of brevity. Results for set (d) are still reported for each chromosome separately.
The rest of the table is organized as Table 6.1.

Set (d)
Multiple copies of various types (both chromosomes reported once)

λ = 20, η = 8
ID Allele M/P Result
55 *4C *14A *75 *74 *37 *21B *20 3/*4K,3
56 *24 *4L *71 *103 *18 *70 *14A 3/*4E,3
57 *54 *46h2 3/3
58 *2D *65 *86 *43 *73 *25 *4K 3/4K,3and one *86 missing
59 *1E *14B *2X *14A *35A *45A *48 *14A,3/*2X,3
60 *37 *26 *4G 3/3
61 *103 *22 *2D 3/3

Set (e)
Fusions and conservations with CYP2D7

λ = 20, η = 8
ID Allele M/P Result
62 *13A/*13A 3/3
63 *1 *13A/*1 *13A 3/3
64 *13C/*13C 3/3
65 *13D *2A/*13D *2A 3/3

66 *2A/*2A 3/3
67 2×*1 *13H/2×*1 *13H 3/3or 2D7/2D7
68 *36S/*36S 3/3

69 *82/*82 3/3
70 *4A *68A/*4A *68A 3/3
71 *10A *57/*10A *57 3/*10D *57

remaining cases, Cypiripi reports an allele belonging to the same family as the correct allele
(e.g. *4E and *4C from sample 33 belong to the same family *4). Copy number estimation
was not in agreement with the ground truth in only two cases (samples 51 and 58), both
having very large CYP2D6 copy number (16 and 14, respectively). In these two cases the
inferred copy number was lower by one compared to the ground truth. In all other cases,
copy number was identified properly. Sample 26 contains ambiguous genotype described in
Methods section, and in this case Cypiripi reported both genotypes as equally likely.

All samples from Tables 6.1 and 6.2 contained two copies of CYP2D7 (one for maternal
and for paternal chromosome), excluding the samples containing *13 allele (because all *13
fusions imply the removal of CYP2D7). The number of CYP2D7 genes was estimated
correctly in all samples.

Cypiripi has a special mode to detect and resolve fusion cases. The main difference
consists of less stringent filtering used for samples containing fusions and conservations,
since such alleles contain the same set of uncertain variations as CYP2D7. It is important
to stress, as can be seen from the set (e) in the Table 6.2, that Cypiripi is able to successfully

99

handle various fusion cases. The only problematic case is misdetection of *13F and *13H as
CYP2D7. Unfortunately, these fusions occur at the end of exon 9, preserving majority of
CYP2D7 and just a small portion of CYP2D6*1. Since all CYP2D7 -specific variations are
present in *13F and *13H, Cypiripi might detect either CYP2D7 or *13F/H. Due to the
fact that all *13 alleles encode the poor metabolizer as does CYP2D7, the corresponding
phenotype is still accurately assigned based on the reported genotype.

We set the filtering threshold parameter η to be 0.4× λ. Higher values perform better
when the copy number is very high. Thus, we used η = λ/2 for the set (c).

It is worth mentioning that Cypiripi is a highly optimized and efficient tool. It requires
only few minutes for a simple sample with two CYP2D6 copies, and no more than 10
minutes on any other sample we evaluated on Intel Xeon 3.50 GHz CPU. This makes it
ideal choice for clinical environments where the speed is of high importance.

6.2.2 Real data

In order to evaluate the performance of Cypiripi on real data sets, we used the family
trio from CEPH 1463 pedigree. This trio consists of mother, father and son with high
coverage Illumina HiSeq 2000 sequencing data publicly available for each of its members
(http://www.illumina.com/platinumgenomes/). In addition to the sequencing data, the
highly confident SNPs for NA12878 (mother), which belongs to this trio, were identified
[194]. The analysis of these SNPs confirmed the presence of two CYP2D6 copies. The
first copy was validated as CYP2D6*3A and the obtained signal allows for the validation
of second copy up to the allelic family level (CYP2D6*4). A genotype inferred by Cypiripi
is in the agreement with both of these results. Namely, it was able to accurately identify
the existence of CYP2D6*3A and reported the second copy as CYP2D6*4M.

Cypiripi reported *4M/*4M as a genotype for both father and son (Table 6.3). Although
we don’t have ground truth about CYP2D6 genotypes for these two individuals, these
predictions are in the strong agreement with Mendelian laws of inheritance.

Table 6.3: Cypiripi predictions for the real data set. NA12878 predictions are coloured
in green due to the fact that they match the highly confident SNP calls from [194]. Since
the validated predictions are not available for the other two samples, predictions of their
genotypes are coloured black.

Real data samples
CEPH 1463 trio

ID Identified
NA12877 (father) *4M/*4M
NA12878 (mother) *3A/*4M
NA12882 (son) *4M/*4M

100

http://www.illumina.com/platinumgenomes/

The coverage parameter λ for those samples was set to 100, with the exception of
NA12877, whose measured coverage was lower and was equalling 90. The η was, as it was
the case with the simulated samples, set to 0.4× λ.

6.3 Conclusion

In this chapter we have presented the first computational framework to exactly characterize
the clinically important CYP2D6 gene and its variations by using HTS data only. Our
framework, which we call Cypiripi, is able to cope with many of the issues presented by
the existing (non HTS based) approaches for CYP2D6 genotyping, such as their inability
to perform accurate copy number estimation, CYP2D7 variant characterization and fusion
detection.

In addition, Cypiripi’s highly optimized running time makes it an ideal choice for clinical
settings where speed is of high importance. The algorithmic basis of Cypiripi, a gene-
agnostic integer linear program (ILP), can be easily extended to other unique gene clusters
with similar properties.

It should be noted that there remain some challenges that we aim to investigate in
follow-up work. For example, genotyping when the available set of sequence variants can be
described by more than one set of genotypes is problematic. This technology-bound issue
can be resolved by the use of paired-end reads in some cases but may require the availability
of longer reads for the resolution of other cases. In addition, exact characterization of novel
genotypes within the CYP2D locus is a further goal to be investigated.

As the cost of Whole Genome Sequencing (WGS) plummets and approaches the cost of
exome sequencing, we will be able to perform detailed sequence analysis of several clinically
important loci across the human genome by using standard coverage HTS data. This can
reduce both the time and cost required for genomic analysis and address many of the
limitations of existing (non-HTS based) techniques.

As whole genome sequencing makes its way into the clinic, it is providing economical and
efficient means to identify many pharmacogenomical variants that can be used to provide
personalised medication options. By the use of a proper computational framework such as
Cypiripi, decision support systems to assist physicians for prescribing specific medications
can benefit from fast and accurate genotyping based on HTS.

101

Chapter 7

Exact genotyping of ADMER
genes using PGRNseq sequencing
data

The advances in DNA sequencing over the past two decades made it possible to explore the
human genome at unprecedented detail. The whole genome sequencing (WGS) is nowadays
routinely performed in less than a day, and the recently introduced Illumina HiSeq X HTS
sequencer pushed the cost of WGS under $1000 dollars per sample. Furthermore, Illumina-
style WGS data offers high coverage depth, uniform read distribution and low error rates,
all of which are useful for genotyping purposes. However, WGS is still considered costly
and time-consuming compared to the commonly used targeted genotyping panels. Whole
exome sequencing (WES) provides cheaper alternative to WGS, but in its current iteration
it is not able to sequence non-coding regions. This makes WES unsuitable for genotyp-
ing of pharmacogenes, where variations in the non-coding regions can significantly affect
phenotype [111].

Targeted genotyping platforms, like Affymetrix DMET+ arrays and the Illumina ADME
assays, are able to detect the common set of predefined variations and genotypes. However,
rare variations are common across the sites which impact the drug response [128]. Thus,
Pharmacogenomics Research Network (PGRN), with the help of three large-scale sequenc-
ing centres (Department of Genome Sciences at University of Washington, The Genome
Institute at Washington University, and the Human Genome Sequencing Center at Baylor
College of Medicine), recently developed a sequencing panel named PGRNseq [59]. This
panel targets 84 genes of pharmacogenomical interest (also known as ADMER genes), in-
cluding genes encoding drug-metabolizing enzymes, drug transporters and drug targets.
For each of these genes, PGRNseq sequences at least its exonic region and few kilobases
upstream and downstream of gene’s UTR region. In addition, PGRNseq keeps backwards
compatibility with previous DMET+ and ADME assays by targeting all single nucleotide

102

variations (SNV) included in those panels. In total, more than 960 KB of genome is cov-
ered by PGRNseq. PGRNseq is itself based on Illumina HiSeq 2000 platform, and provides
low error rates while maintaining very high depth of coverage (average of 500× per chro-
mosome). Most importantly, PGRNseq is significantly cheaper than WES or WGS. For
example, PGRNseq is up to ten times cheaper compared to WGS. Thus, PGRNseq offers a
competitively priced platform for clinical genotyping of targeted genes while providing all
benefits of standard WGS sequencing.

However, PGRNseq also inherits some of the problems that come with WGS, which
include short read length and data interpretation issues. Genotype inference for AD-
MER genes harbouring various structural rearrangements, like CYP2D6 and CYP2A6, still
presents a major challenge. In order to assist the analysis of such structural variants, the
second iteration of PGRNseq covers the whole genic clusters which contain those two genes
(e.g. for CYP2D6, the whole 30 KB CYP2D cluster which includes CYP2D6 and pseudo-
genes CYP2D7 and CYP2D8 is sequenced). Additional obstacle introduced by PGRNseq
is non-uniformity of the coverage, which, despite its depth, further complicates detection of
structural rearrangements.

These issues are especially relevant since CYP2D6 is itself involved in metabolism of 20–
25% of clinically prescribed drugs [81]. Structural variations of CYP2D6, which include the
gene deletion, duplications and fusions with neighbouring CYP2D7 can significantly affect
the CYP2D6 enzyme activity [136]. Cytochrome P450 2A6 (CYP2A6) also metabolizes
several clinically used drugs, but more importantly, it is the principle metabolizer of nicotine
and its by-product cotinine. It has been suggested that CYP2A6 ’s genotype is correlated
with lower smoking risks, decreased cigarette consumption [161] and increased cessation [63].
Similar to CYP2D6, CYP2A6 is highly polymorphic with more that 50 alleles observed
so far [166], and it also harbours various gene duplications and crossovers with highly
homologous neighbouring pseudogene CYP2A7. For these reasons, proper genotyping of
CYP2D6 and CYP2A6 can predict the patient’s response to some drugs, as well as shed
some light on patient’s smoking behaviour.

So far, no available computational tool is capable of inferring CYP2D6 and CYP2A6
genotypes from PGRNseq data. Previous CYP2D6 genotyping tools, like Cypiripi [132]
and Constellation [176], are either designed for uniform coverage WGS data, or are not able
to properly detect some structural rearrangements (e.g. both Cypiripi and Constellation
are not able to detect non-functional *68 allele in CEPH 1463 samples). Moreover, neither
of these tools provides support for CYP2A6 genotyping.

In this chapter we present Cypiripi++, a significant improvement upon our previous tool
Cypiripi. Cypiripi++ is able to properly genotype CYP2D6 and CYP2A6 on both PGRNseq
and Illumina WGS data. Moreover, Cypiripi++’s modular design allows easy inclusion of
other ADMER genes, while still being able to deal with various gene duplications, fusions
and deletions. By evaluation Cypiripi++ on large selection of real data WGS and PGRNseq

103

samples, we show that it can be used as a fast and accurate tool for CYP2D6 and CYP2A6
genotyping.

7.1 Methods

Cypiripi++ consists of the following steps:

Read alignment and mutation detection step: where HTS reads are aligned to the
reference genome and SNVs present in target gene region are identified;

Copy number detection step: where the copy number of each region is determined and,
if present, various structural variations are identified;

Protein identification step: where all major allelic configurations which affect aminoacid
selection (and thus the final protein product) are established; and

Genotype refinement step: where the supporting set of non-functional SNVs is used to
rank each allelic configuration found in the previous three steps.

Final genotype is obtained by choosing the set of allelic configurations with the best
ranking score. In case of multiple configurations with the same score, all will be reported
as equally likely genotypes.

In addition to HTS data in SAM/BAM file format, the input to Cypiripi++ also con-
tains a database having the information about the gene to be genotyped. This information
includes list of alleles, their functional and non-functional mutations, as well as the informa-
tion about the possible structural variations. For CYP2D6 and CYP2A6 genes considered
in this work, we constructed the corresponding databases by using the data from The Hu-
man Cytochrome P450 Allele Nomenclature Database (http://www.cypalleles.ki.se/)
and cross-validating it with dbSNP [165].

7.1.1 Read Mapping

The common practice is to map reads to the reference genome by following the “best
practices workflow” [177], usually involving BWA read aligner [106] and Genome Analysis
Toolkit (GATK) [120]. We have used this workflow for all evaluated samples. However,
Cypiripi++ is not limited to this mapping framework, and accepts any valid SAM/BAM
file which contains the region of the targeted gene. GATK pipeline is recommended since
it performs the local indel realignment [32], which improves the detection of various small
indels.

104

http://www.cypalleles.ki.se/

7.1.2 Copy number estimation

As we have already discussed in Chapter 5, CYP2D6 is prone to copy number variations
including gene deletions, duplications as well as multiplications. High sequence homology
between CYP2D6 and related pseudogene CYP2D7 also results in the formation of gene
conversions producing hybrid genes where one part of the gene originating from CYP2D6
fuses with the other one originating from CYP2D7. In many cases the existence of these
structural variations has a substantial impact on the resulting protein products and therefore
their accurate characterization is highly important for the proper phenotype predictions.
For the illustration purposes, in this section we will focus only on CYP2D6. Nevertheless,
all models and calculations described below apply to other genes as well, including CYP2A6.

In Chapter 6, we showed how the above problem can be solved by using reads obtained
from the sequencing technology which provides the data of uniform coverage (e.g. Illumina
HiSeq), assuming that the depth of coverage is provided as user-defined parameter. How-
ever, this approach is not suitable for data generated by PGRNseq platform where coverage
is highly non-uniform across regions and its depth is usually not known in advance.

By analyzing 96 samples sequenced by PGRNseq platform, we have observed that the
depth of coverage usually follows the same shape across different samples as illustrated in
Figure 7.1. In order to characterize this shape for PGRNseq data of an arbitrary sample
S, we first consider the PGRNseq data for NA19686 individual. It is known that CYP2D6
genotype of this individual consists of two reference *1 alleles. We introduce the function

Bg : {1, 2, . . . , |g|} → R,

where g and |g| denote the gene of interest (in our case CYP2D6, CYP2D7 or CYP2D8)
and its length, respectively. The value of Bg(i) equals to the sum of coverage depths of
both chromosomal copies for i-th nucleotide of gene g in NA19686.

Sequencing experiments generating data for S and NA19686 are not necessarily equiv-
alent in terms of depth of coverage. Consequently, we need an appropriate rescaling of
function Bg in order to obtain the function of reference coverage depth for the sequencing
experiment of sample S. Analogously to Bg, we define this function as

Rg : {1, 2, . . . , |g|} → R.

Intuitively, Rg(i) represents a depth of coverage for i-th nucleotide of NA19686 sequenced
under the same conditions as the sample S. As Bg and Rg follow the same shape we can
estimate Rg as

Rg(i) = η ×Bg(i), ∀i ∈ {1, 2, . . . , |g|}

where η is the ratio of sequencing depths of the two experiments.

105

In order to estimate η, we use Bg and depth of observed coverage function for sample
S, here denoted as Cg and defined analogously to Rg and Bg. Using region q of stable copy
number that is not involved in any structural variations we can estimate η as

η = Cg(q)
Bg(q) ,

where Cg(q) and Rg(q) are obtained by summing all values of Cg(i) and Rg(i), respectively,
for any i falling into the region q.

One of the regions from CYP2D locus having this property is the region of CYP2D8
containing exons 4, 5 and 6. Using this region as q in the above formula leads to proper
estimate of η that is later used for computing the reference coverage depth function Rg

for sample S. Note that above Rg and Cg are not necessarily identical due to the possible
presence of structural variations in sample S. Example of rescaling is given in Figure 7.1.

Due to the existence of rearrangement events, we cannot directly work on estimating
copy number of regions as large as the whole genes. Namely, in the case of hybrid gene it is
impossible to define the exact number of CYP2D6 and CYP2D7 whole-gene copies as only
a portion of each gene is involved in the corresponding fusion event. This motivates us to
consider a copy number status of smaller regions that would allow proper characterization
and detection of these complicated cases. For this purpose, let g and h stand for CYP2D6
and CYP2D7, respectively, and assume that we split g and h into regions r1, r2, . . . , rn

and r′1, r
′
2, . . . , r

′
n, respectively. In order to characterize rearrangement configurations, we

introduce a binary vector v consisting of 2n entries which is defined as follows:

v[i] =


0, if i ≤ n and ri is not present in a given configuration

0, if i > n and r′i is not present in a given configuration ,

1, otherwise.

(7.1)

Considering CYP2D locus at the single chromosome, note that the most frequent case
where one copy of each of CYP2D6 and CYP2D7 is present can be simply represented as
a vector v having all entries equal to 1. Deletion case can be represented as a vector v
consisting of n zeroes followed by n ones, whereas multiplication case containing k copies
of CYP2D6 without hybrid genes can be represented as a sum of [1, 1, . . . , 1] and k − 1
vectors [1, 1, . . . , 1, 0, 0, . . . , 0], where the first n entries of the last vector are equal to 1 and
the remaining n entries are equal to 0. Some examples considering CYP2D locus on both
autosomes and covering some more complicated cases including hybrid genes are shown in
Figure 7.2.

Let M = {vm} be a set of possible configurations constructed from CYP2D6 online
database. For each region r = [a, b], denote by c[r] its observed coverage in a normalized

106

Figure 7.1: Example of PGRNseq coverage rescaling for some sample S. Red line indicates the coverage of sample S, Cg, while dashed
black line indicates NA19686 coverage Bg. Purple dashed line indicates rescaled Rg = η ×Bg. Purple shade denotes the region q from
CYP2D8. Identical regions are regions are shaded in orange colour.

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5

in
tr

on
4

ex
on

4
ex

on
3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D6
0

500

1000

1500

2000

2500

3000

P
G

R
N

-S
eq

Bg

Cg

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5
in

tr
on

4
ex

on
4

ex
on

3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D7 CYP2D8
0

500

1000

1500

2000

2500

3000

q ⌘ = Cg(q)

Bg(q)
= 1.48

0

500

1000

1500

2000

2500

3000

R
es

ca
le

d
P

G
R

N
-S

eq

Cg

0

500

1000

1500

2000

2500

3000

Rg = ⌘ ⇥ Bg

107

form calculated as follows:
c[r] = 2×

∑
a≤i≤bCg(i)∑
a≤i≤bRg(i) .

Factor 2 is included to account for both autosomes present in the real data sets.
Our goal is to find a setMopt ⊆M such that the difference between the observed coverage

and the coverage formed by Mopt is minimal. We can model this problem as binary integer
programming as follows: let vm be a binary variable which is 1 if and only if vm ∈ M is
included in Mopt. We aim to minimize

min
∑

r

|Er|+ λ, (7.2)

subject to:

Er = c[r]−
∑

vm∈M

vm[r]× vm for each region r ∈ {r1, . . . , rn, r
′
1, . . . , r

′
n}.

In Equation (7.2), λ indicates the control variable. We set λ = 0.1
∑

m∈F vm, where F
represents a set of indices i such that vi is hybrid gene configuration. We introduce this
term in order to avoid various ambiguities caused by fusion rearrangements.

Although we use binary variables in the Equation (7.2), multiple copies of one allele can
be easily modelled as a set of multiple binary variables. The same reasoning is used in the
models described below for the sake of explanation.

Various sequencing errors and misalignments can introduce some variance during the
calculation of coverage vector c across the samples. We have noticed that the effect of such
variance does not impact the abovementioned model as long as the depth of coverage is
greater than 20×. However, this does not hold for few regions in CYP2D6 and CYP2D7
which are identical (e.g. intron 7 or exon 8). Cypiripi++ does not include these regions in
the analysis performed above, because many misaligned reads originating from these regions
significantly affect the accuracy of c[r]. Impact of the misaligned reads is clearly visible in
the Figure 7.2, where the identical regions are shaded with orange colour. There are only a
few alleles having breakpoints in these regions. However, in these cases Cypiripi++ will still
identify the presence of fusion events and predict the correct phenotype. For example, allele
CYP2D6*13G1 with the breakpoint in intron 7 will be detected as CYP2D6*13E that is
having a breakpoint in exon 5. Both of these alleles represent a non-functional fusion with
CYP2D7.

There might be multiple rearrangements Mopt which minimize Equation (7.2). Cypi-
ripi++ will try to detect a genotype for each such optimal rearrangement, and pick the
rearrangement whose genotype is most likely based on the subsequent steps.

108

Figure 7.2: PGRNseq coverage normalization for three CYP2D6 gene arrangements. For each case, first row indicates the rescaled PGRNseq
coverage, while the second row indicates normalized coverage (i.e. Cg/Rg). Regions coloured with red denote deletion of CYP2D6, while green-
coloured regions indicate duplication. Identical regions are shaded in orange colour. (i) Normal arrangement consisting one copy of each of CYP2D6
and CYP2D7 on both chromosomes. (ii) CYP2D6 deletion on one chromosomal copy; (iii) one copy of CYP2D6*1 accompanied by CYP2D7/2D6
fusion (*68 allele) with the breakpoint in intron 1 on one chromosomal copy. Note the changes in vector c which describes each copy number
structure. In the last example, set of vectors v which most closely describe vector c is given under the figure.

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5

in
tr

on
4

ex
on

4
ex

on
3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D6
0

500

1000

1500

2000

2500

3000

R
es

ca
le

d
P

G
R

N
-S

eq

Rg

Cg

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5
in

tr
on

4
ex

on
4

ex
on

3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D7

0

1

2

3

4

5

N
or

m
al

iz
ed

P
G

R
N

-S
eq

Cg

Rg

0

1

2

3

4

5

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5

in
tr

on
4

ex
on

4
ex

on
3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D6
0

500

1000

1500

2000

2500

3000

R
es

ca
le

d
P

G
R

N
-S

eq

Rg

Cg

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5
in

tr
on

4
ex

on
4

ex
on

3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D7

0

1

2

3

4

5

N
or

m
al

iz
ed

P
G

R
N

-S
eq

Cg

Rg 0

1

2

3

4

5

CYP2D7 (gene h)CYP2D6 (gene g)

c = [2, 2, … 2, 2, 2, … 2]

(i) Regular case

(ii) Deletion

CYP2D6 CYP2D7

CYP2D7

CYP2D6 CYP2D7

(iii) Fusion and duplication

CYP2D7

CYP2D6 CYP2D7

CYP2D6 CYP2D6*68CYP2D6

c = [1, 1, … 1, 2, 2, … 2]

c = [2, 2, … 2 , 3, 3, 3, 3, … 3, 2, 2] =

 
 
(v1) [1, 1, … 1 , 1, 1, 1, 1, … 1, 1, 1] (regular) +
(v2) [1, 1, … 1 , 1, 1, 1, 1, … 1, 1, 1] (regular) +
(v3) [0, 0, … 0 , 1, 1, 1, 1, … 1, 0, 0] (*68 fusion in intron 1)

(i) Regular case

109

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5

in
tr

on
4

ex
on

4
ex

on
3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D6
0

500

1000

1500

2000

2500

3000

R
es

ca
le

d
P

G
R

N
-S

eq

Rg

Cg

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5
in

tr
on

4
ex

on
4

ex
on

3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D7

0

1

2

3

4

5

N
or

m
al

iz
ed

P
G

R
N

-S
eq

Cg

Rg

0

1

2

3

4

5

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5

in
tr

on
4

ex
on

4
ex

on
3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D6
0

500

1000

1500

2000

2500

3000

R
es

ca
le

d
P

G
R

N
-S

eq

Rg

Cg

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5
in

tr
on

4
ex

on
4

ex
on

3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D7

0

1

2

3

4

5

N
or

m
al

iz
ed

P
G

R
N

-S
eq

Cg

Rg 0

1

2

3

4

5

CYP2D7 (gene h)CYP2D6 (gene g)

c = [2, 2, … 2, 2, 2, … 2]

(i) Regular case

(ii) Deletion

CYP2D6 CYP2D7

CYP2D7

CYP2D6 CYP2D7

(iii) Fusion and duplication

CYP2D7

CYP2D6 CYP2D7

CYP2D6 CYP2D6*68CYP2D6

c = [1, 1, … 1, 2, 2, … 2]

c = [2, 2, … 2 , 3, 3, 3, 3, … 3, 2, 2] =

 
 
(v1) [1, 1, … 1 , 1, 1, 1, 1, … 1, 1, 1] (regular) +
(v2) [1, 1, … 1 , 1, 1, 1, 1, … 1, 1, 1] (regular) +
(v3) [0, 0, … 0 , 1, 1, 1, 1, … 1, 0, 0] (*68 fusion in intron 1)

(ii) Deletion

110

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5

in
tr

on
4

ex
on

4
ex

on
3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D6
0

500

1000

1500

2000

2500

3000

R
es

ca
le

d
P

G
R

N
-S

eq

Rg

Cg

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5
in

tr
on

4
ex

on
4

ex
on

3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D7

0

1

2

3

4

5

N
or

m
al

iz
ed

P
G

R
N

-S
eq

Cg

Rg

0

1

2

3

4

5

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5

in
tr

on
4

ex
on

4
ex

on
3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D6
0

500

1000

1500

2000

2500

3000

R
es

ca
le

d
P

G
R

N
-S

eq

Rg

Cg

ex
on

9
ex

on
8

ex
on

7
ex

on
6

ex
on

5
in

tr
on

4
ex

on
4

ex
on

3

in
tr

on
2

ex
on

2

in
tr

on
1

ex
on

1

CYP2D7

0

1

2

3

4

5

N
or

m
al

iz
ed

P
G

R
N

-S
eq

Cg

Rg 0

1

2

3

4

5

CYP2D7 (gene h)CYP2D6 (gene g)

c = [2, 2, … 2, 2, 2, … 2]

(i) Regular case

(ii) Deletion

CYP2D6 CYP2D7

CYP2D7

CYP2D6 CYP2D7

(iii) Fusion and duplication

CYP2D7

CYP2D6 CYP2D7

CYP2D6 CYP2D6*68CYP2D6

c = [1, 1, … 1, 2, 2, … 2]

c = [2, 2, … 2 , 3, 3, 3, 3, … 3, 2, 2] =

 
 
(v1) [1, 1, … 1 , 1, 1, 1, 1, … 1, 1, 1] (regular) +
(v2) [1, 1, … 1 , 1, 1, 1, 1, … 1, 1, 1] (regular) +
(v3) [0, 0, … 0 , 1, 1, 1, 1, … 1, 0, 0] (*68 fusion in intron 1)

(iii) Fusion and duplication

111

7.1.3 Protein identification

One of the major goals of genotyping is an accurate phenotype prediction. For non-reference
alleles (i.e. all alleles except CYP2D6*1), this problem can be reduced to detecting all of the
variations that alter the final protein product. These include codon-changing SNPs, indels
within the coding regions, some SNPs in the splicing regions and many others. We name
any such variation functional mutation, and all other variations non-functional mutations.
The set of functional mutations is already established in the CYP2D6 allele database.

Cypiripi++ will first identify all protein products which can be produced by alleles in the
database. Proteins which are not in agreement with the copy number configuration obtained
from the previous step will get excluded. Each remaining protein can be represented as a
set Pi of the associated functional mutations mj .

Let us assign every remaining protein product Pi a binary variable pi. This variable is
set to 1 if and only if protein Pi is encoded by some of the alleles present in the genotype
of our sample. For each functional mutation mj present at the loci j, we can calculate

Emj = 2× Cg(mj)
Rg(j) −

∑
i:mj∈Pi

pi,

where Cg(mj) denotes the observed coverage of mutation mj .
We need to enforce that each expressed functional mutation is included in some protein.

This can be achieved by adding the following constraint:

∑
i:mj∈Pi

pi ≥ 1 for each expressed functional mutation mj .

Our objective is to select a set of proteins which most closely match the observed set of
functional mutations. More formally, we aim to minimize:

min
∑
mj

∣∣∣Emj

∣∣∣ . (7.3)

In order to avoid the presence of alleles which contain non-expressed functional muta-
tions, we require that

∑
i:mj∈Pi

pi ≤ 0 if Cg(mj) = 0.

This model can also produce multiple optimal solutions. Due to the short length of the
PGRNseq reads (100bp) and short insert size (around 300bp), Cypiripi++ is not able to
precisely resolve the cases where one set of distant mutations (i.e. mutations that cannot
be spanned by read pairs) describes multiple protein products. Each such optimal protein
product will be passed to the refiner step, where the final verdict will be made.

112

7.1.4 Genotype refining

From the biological standpoint, all proteins identified in the previous step can represent a
correct (possibly not yet observed) solution. However, we found that proteins which do not
form the correct solution can be eliminated by using non-functional variants from the allele
database as a supporting evidence. We will call the inclusion of non-functional variations
in the genotyping process as genotype refining.

The refining model is similar to the one used in the protein identification step. Let Ai

denote the set of all mutations describing the i-th allele in the database. For each Ai, let
us introduce the binary variable ai controlling its presence in the final solution.

We also introduce a binary variable ei,j for every allele Ai and for every mj ∈ Ai. This
variable is set if and only if mj is assigned to Ai during the optimization step. We also
include a binary variable fi,j for any mj /∈ Ai, whose value is set to 1 if and only if allele
Ai harbours mutation mj in the optimal genotype. The role of variables e and f is to
model the variability of non-functional mutations by allowing any allele to either lack some
mutation specified in its definition, or to include some non-functional mutation not present
in the database. This is grounded in the observation that many alleles examined in the
real data samples are having some additional non-functional mutations not present in the
database description of the allele. Clearly, both ei,j and fi,j are set to 1 only if ai is also
set to 1.

In this model, we again try to minimize the difference of observed and expected coverage.
In a similar manner to the protein identification step, this difference can be expressed as

Emj = 2× Cg(mj)
Rg(j) ×

 ∑
i: mj∈Ai

aiei,j +
∑

i: mj /∈Ai

aifi,j

 for all mutations mj .

We would also like to minimize the number of both missing and additional non-functional
variations, in order to match the database data as closely as possible. Thus, the objective
function is written as:

min
∑
mj

∣∣∣Emj

∣∣∣+∑
i

ai

α ∑
j: mj∈Ai

(1− ei,j) + β
∑

j: mj /∈Ai

fi,j

 , (7.4)

where α and β denote the penalty scores for missing and additional mutations. In our
experiments, we used α = 4 and β = 1, because it is more likely for allele to include some
additional mutation than to lack an observed one.

We enforce that each allele is assigned all of its functional mutations as follows. Let Fi

be the set of functional mutations for allele Ai. Clearly, Fi ⊆ Ai, and this requirement can

113

be expressed by the following constraint:

ai ×

|Fi| −
∑

j: mj∈Fi

ei,j

 = 0 for each allele Ai,

where |Fi| denotes the cardinality of set Fi.
We ascertain that no variation is over-expressed (i.e. allele must follow the copy number

prediction at each step), and that no functional mutation can be included by fi,j (thus
modifying the allele’s protein product) with the additional sentinel constraints.

Finally, the set of protein products for which the Equation 7.4 gives the lowest score
is selected as the final genotype. If multiple optimal solutions are found by the refiner,
Cypiripi++ will report all of them as equally likely. One such example is *68+*4/*5, where
both *68+*4/*5 and *68/*4 will have the same score. However, in this case phenotype
prediction is not affected by such ambiguity.

7.1.5 Complexity

All of the models mentioned above can be expressed as the instances of the following, more
general problem:

Problem 1. Given a multiset of m-dimensional vectors X = {x1, . . . ,xn}, and a target
vector y = [y1, . . . , ym], find a minimal multi-subset X ′ ⊆ X such that

n∑
i=1

∣∣∣∣∣∣y[i]−
∑

x∈X′

x[i]

∣∣∣∣∣∣ ,
is minimized.

We can form a decision version of the Problem 1 by asking for a multi-subset X ′ such
that

y[i] =
∑

x∈X′

x[i] for every i, (7.5)

if such subset exists.

Theorem 2. Problem 1 is NP-hard.

Proof. As long as the decision version of Problem 1 is NP-complete, Problem 1 will be NP-
hard. So we will prove that the decision version of Problem 1 is NP-complete by reducing
the subset sum problem to it. Subset set problem is known to be NP-complete [86].

Consider a set S = {s1, . . . , sn} of integers, and sum s, which both describe the sub-
set sum problem. Subset sum is trivially expressed as the instance of the Problem 1 by

114

setting xi = [si] and y = [s] in the Equation (7.5). Clearly, any X ′ ⊆ X which satisfies
Equation (7.5) also implies

s = y[1] =
∑

x∈X′

x[1] =
∑

i:si∈S′

si,

for some S′ ⊆ S, and vice versa. Thus, the decision version of Problem 1 is NP-complete.

Subset sum problem has a pseudo-polynomial dynamic programming solution of the
complexity O(ns). Similar dynamic programming can be devised for the decision version of
Problem 1. In any instance of our interest, xj consist only of integers, and y[i] ≥ 0 for any
i. The adapted pseudo-polynomial dynamic programming solution will have the worst-case
complexity of O(nTm), where T represents the maximum possible value of y[i] for any i.
However, note that instances described in the previous three sections are specialized versions
of Problem 1 because of additional constraints introduced in their models. These constraints
can significantly reduce the search space, and make the abovementioned problems solvable
in practice.

7.2 Results

7.2.1 Experimental data

We have evaluated Cypiripi++ on 96 Coriell samples spanning 32 different family trios and
multiple ethnic backgrounds. All samples were provided by Baylor College of Medicine.
They were all sequenced on PGRNseq v2 platform with the average coverage of 600×.
Genotypes of the sequenced samples contain many different CYP2D6 and CYP2A6 alleles,
including those with various types of structural variations. Genotypes of all samples were
validated with PCR-based genotyping panels. Cypiripi++’s performance on those samples
is shown in Table 7.1.

Table 7.1: CYP2D6 genotypes inferred by Cypiripi++ on the set of 96 PGRNseq samples.
Please refer to the discussion section for detailed explanation of the footnotes. F stands for
father, M for mother, and C for child.

Sample ID Family Ethnicity Gender CYP2D6 Cypiripi++

genotype prediction
HG00421 SH007 Chinese F *2/*10×N 3 (*2/*10+*10)
HG00422 SH007 Chinese M *2/*10 3 (*2/*10)
HG00423 SH007 Chinese C *10/*10×N 3 (*10/*10+*10)
HG00463 SH021 Chinese F *36+*10/*36+*10 3 (*36+*10/*36+*10)
HG00464 SH021 Chinese M *1/*36+*10 3 (*1/*36+*10)
HG00465 SH021 Chinese C *36+*10/*36+*10 3 (*36+*10/*36+*10)
HG00592 SH057 Chinese F *1/*10 3 (*1/*10)
HG00593 SH057 Chinese M *2/*36+*10 3 (*2/*36+*10)

115

HG00594 SH057 Chinese C *1/*2 3 (*1/*2)
HG01060 PR14 Puerto Rican F *1/*41 3 (*1/*41)
HG01061 PR14 Puerto Rican M *1/*4 3 (*1/*4)
HG01062 PR14 Puerto Rican C *1/*4 3 (*1/*4)
HG01190 PR40 Puerto Rican F *68+*4/*5 3 (*68+*4/*5)
HG01191 PR40 Puerto Rican M *2/*41 3 (*2/*41)
HG01192 PR40 Puerto Rican C *5/*41 3 (*5/*41)
HG01979 PEL027 Peruvian F *2/*68+*4 3 (*2/*68+*4)
HG01980 PEL027 Peruvian M *1/*2 3 (*1/*2)
HG01981 PEL027 Peruvian C *1/*2 3 (*1/*2)
HG02259 PEL042 Peruvian F *1/*2 3 (*1/*2)
HG02260 PEL042 Peruvian M *1/*1 3 (*1/*1)
HG02261 PEL042 Peruvian C *1/*2 3 (*1/*2)
NA06984 1328 European F *68+*4/*4 3 (*68+*4/*4)
NA06989 1328 European M *9/*9 3 (*9/*9)
NA12331 1328 European C *4/*9 3 (*4/*9)
NA07357 1345 European F *1/*6 3 (*1/*6)
NA07345 1345 European M *1/*1 3 (*1/*1)
NA07348 1345 European C *1/*6 3 (*1/*6)
NA10853 1349 European F *2/*41 3 (*2/*41)
NA10854 1349 European M *1/*4 3 (*1/*4)
NA11834 1349 European C *2/*4 3 (*2/*4)
NA10860 1362 European F *1/*4 3 (*1/*4+*4N)
NA10861 1362 European M *4/*2 3 (*4/*35) case (1)

NA11984 1362 European C *1/*2 3 (*1/*35) case (1)

NA11891 1377 European F *1/*1 3 (*1/*1)
NA11892 1377 European M *6/*41 3 (*6/*41)
NA10865 1377 European C *1/*41 3 (*1/*41)
NA12003 1420 European F *4/*2 3 (*4/*35) case (1)

or *4/*35
NA12004 1420 European M *2/*41 3 (*2/*41)
NA10838 1420 European C *2/*4 3 (*2/*4)
NA12155 1408 European F *1/*5 3 (*1/*5)
NA12156 1408 European M *1/*4 3 (*1/*4)
NA10831 1408 European C *4/*5 3 (*4/*5)
NA12272 1418 European F *1/*1 3 (*1/*1)
NA12273 1418 European M *1/*1 3 (*1/*1)
NA10837 1418 European C *1/*1 3 (*1/*1)
NA12342 1330 European F *4/*41 3 (*4/*41)
NA12343 1330 European M *1/*5 3 (*1/*5)
NA12336 1330 European C *5/*41 3 (*5/*41)
NA12399 1354 European F *1/*1 3 (*1/*1)
NA12400 1354 European M *1/*68+*4 3 (*1/*68+*4)
NA12386 1354 European C *1/*1 3 (*1/*1)
NA12750 1444 European F *2/*2 3 (*2/*2)

116

NA12751 1444 European M *1/*2 3 (*1/*2)
NA12740 1444 European C *1/*2 3 (*1/*2)
NA12801 1454 European F *4/*6 3 (*4/*6)
NA12802 1454 European M *2/*41 3 (*2/*41)
NA12805 1454 European C *2/*4 3 (*2/*4)
NA12891 1463 European F *68+*4/*41 3 (*68+*4/*41)
NA12892 1463 European M *2/*3 3 (*2/*3)
NA12878 1463 European C *3/68+*4 3 (*3/*68+*4)
NA18507 Y009 Yoruban F *2/*4×N 3 (*2/*4+*4)
NA18508 Y009 Yoruban M *2/*5 3 (*2/*5)
NA18506 Y009 Yoruban C *2/*5 3 (*2/*5)
NA18516 Y013 Yoruban F *1/*17 3 (*1/*17)
NA18517 Y013 Yoruban M *5/*10 3 (*5/*10)
NA18515 Y013 Yoruban C *1/*10 3 (*1/*10)
NA19128 Y077 Yoruban F *17/*17 3 (*17/*17)
NA19127 Y077 Yoruban M *2/*17 3 (*2/*17)
NA19129 Y077 Yoruban C *17/*17 3 (*17/*17)
NA19200 Y045 Yoruban F (*76)+*1/*5 3 (*1/*5) case (2)

or *1/*5
NA19201 Y045 Yoruban M *1/*17 3 (*1/*17)
NA19202 Y045 Yoruban C (*76)+*1/*1 3 (*1/*1) case (2)

NA19239 Y117 Yoruban F *13-like?/*17 3 (*15/*17) case (3)

or *15/*17
NA19238 Y117 Yoruban M *1/*17 3 (*1/*17)
NA19240 Y117 Yoruban C *13-like?/*17 3 (*15/*17) case (3)

NA19685 M011 Mexican-Am F *1/*2×2 3 (*1/*2+*2)
NA19684 M011 Mexican-Am M *1/*4 3 (*1/*4)
NA19686 M011 Mexican-Am C *1/*1 3 (*1/*1)
NA19771 M031 Mexican-Am F *2/*4 3 (*2/*4)
NA19770 M031 Mexican-Am M *1/*2 3 (*1/*2)
NA19772 M031 Mexican-Am C *2/*4 3 (*2/*4)
NA19789 M037 Mexican Am F *1/*1 3 (*1/*1)
NA19788 M037 Mexican Am M *2/*78+*2 3 (*2/*78+*2)
NA19790 M037 Mexican Am C *1/*78+*2 3 (*2/*78+*2)
NA19700 2367 AA F *4/*29 3 (*4/*29)
NA19701 2367 AA M *1/*17 3 (*1/*17)
NA19702 2367 AA C *4/*17 3 (*4/*17)
NA19818 2418 AA F *1/*17 3 (*1/*17)
NA19819 2418 AA M *2/*4×2 3 (*2/*4+*4)
NA19828 2418 AA C *2/*17 3 (*2/*17)
NA19834 2424 AA F *2/*2 3 (*2/*45) case (4)

NA19835 2424 AA M *1/*2 3 (*1/*45) case (4)

NA19836 2424 AA C *1/*2 3 (*1/*45) case (4)

NA19900 2425 AA F *3/*29 3 (*3/*29)
NA19901 2425 AA M *1/*1 3 (*1/*1)

117

NA19902 2425 AA C *1/*29 3 (*1/*29)

In addition to the PGRNseq samples, we have also evaluated Cypiripi++ on the samples
from the Platinum Genome project, which covers 17 individuals from CEPH 1463 family. All
those samples were sequenced with Illumina HiSeq 2000 WGS sequencer with the average
coverage of 50×. Furthermore, we included a few Illumina WGS samples from 1000 Genome
project with the coverage exceeding 20× and available validations. Predictions made by
Cypiripi++ on Illumina samples are shown in Table 7.2.

Table 7.2: CYP2D6 genotypes inferred by Cypiripi++ on the set of 21 Illumina WGS
samples. GF stands for grandfather, GM stands for grandmother, F stands for father, M
for mother, and C for child. Samples for which the validation is missing are marked with
N/A.

Sample ID Family Ethnicity Gender CYP2D6 Cypiripi++

genotype prediction
NA19239 Y117 Yoruban F *15/*17 3 (*15/*17) case (3)

NA19238 Y117 Yoruban M *1/*17 3 (*1/*17)
NA19240 Y117 Yoruban C *15/*17 3 (*15/*17) case (3)

NA19900 2425 AA F *3/*29 3 (*3/*29)
NA12889 1463 European GF *4/*41 3 (*4/*41)
NA12890 1463 European GM N/A *68+*4/*68+*4
NA12891 1463 European GF *41/*68+*4 3 (*41/*68+*4)
NA12892 1463 European GM *2/*3 3 (*2/*3)
NA12877 1463 European F *4/*68+*4 3 (*4/*68+*4)
NA12878 1463 European M *3/*68+*4 3 (*3/*68+*4)
NA12879 1463 European C N/A *3/*68+*4
NA12880 1463 European C N/A *68+*4/*68+*4
NA12881 1463 European C N/A *68+*4/*68+*4
NA12882 1463 European C *4/*68+*4 3 (*4/*68+*4)
NA12883 1463 European C N/A *3/*68+*4
NA12884 1463 European C N/A *4/*68+*4
NA12885 1463 European C N/A *68+*4/*68+*4
NA12886 1463 European C N/A *3/*4
NA12887 1463 European C N/A *4/*68+*4
NA12888 1463 European C N/A *4/*68+*4
NA12893 1463 European C N/A *3/*4

7.2.2 Discussion

As it can be seen from Table 7.1, Cypiripi++’s predictions match the validated genotypes
in most of the cases. Although we found several discrepancies between the predictions,
after further investigation we concluded that genotyping panels made either ambiguous or
incorrect calls. These cases are discussed below.

118

Table 7.3: CYP2A6 genotypes inferred by Cypiripi++ on the set of 11 PGRNseq samples.
F stands for father, M for mother, and C for child.

Sample ID Family Ethnicity Gender CYP2A6 Cypiripi++

genotype prediction
HG01190 PR40 Puerto Rican F *1/*1 3 (*1/*1)
NA07357 1345 European F *1/*1 3 (*1/*1)
NA07348 1345 European C *1/*1 3 (*1/*1)
NA10854 1349 European M *1/*1 3 (*1/*1)
NA12003 1420 European F *1/*1 3 (*1/*1)

or *1/*8
NA12156 1408 European M *1/*1 3 (*1/*1)
NA10831 1408 European C *1/*2 3 (*1/*2)
NA12878 1463 European C *1/*1 3 (*1/*1)
NA19239 Y117 Yoruban F *1/*17 3 (*1/*17)
NA19789 M037 Mexican Am F *1/*1 3 (*1/*1)
NA19819 2418 AA M *1/*1 3 (*1/*1)

For case (1), *35 allele is called as *2 for the samples NA10861, NA11984 and NA12003.
However, as reported by [142], NA12003 actually contains *35 allele instead of *2, and this
discrepancy is mostly due to the inability of TaqMan assays to properly genotype *35 allele
[151]. The similar happens in case (4) with samples NA19834, NA19835 and NA19836,
where we have SNP c.1716 G>A. This SNP differentiates alleles *2 and *45 and it is not
present in TaqMan assays [45]. Case (4) presents *15, another allele problematic for most of
the current genotyping platforms. For example, TaqMan assays often confuse it with other
alleles [151]. One of the reasons for this is c.137 insT, which defines *15 allele but is also
present in all *13 fusion alleles. However, [142] confirmed that NA19239’s actual genotype
contains *15, which matches our results as well. In case (2), copy number results for *13-
like fusion allele *76 are not clear for samples NA19200 and NA19202. However, additional
validation by [45] confirms that *76 is not present, which matches Cypiripi++’s prediction.
Furthermore, we could not find any evidence of increased coverage in CYP2D7 region, that
would be suggested by the existence of *76. All those cases suggest that Cypiripi++ pro-
vides more accurate genotyping results than currently used genotyping panels, especially
in the presence of recently discovered alleles. In the case of NA10860, Cypiripi detects *4
allele duplication, which PCR-based methods miss. We have cross-validated our prediction
by running Cypiripi++ on Illumina HiSeq X WGS NA10860 sample publicly available from
https://export.uppmax.uu.se/a2009002/opendata/HiSeqX_CEPH/. This sample was se-
quenced with approx. 28× depth of coverage (or 14× per chromosome). By simple coverage
analysis, it is clear that there are at least 3 copies of CYP2D6, since average coverage of
CYP2D6 region is 42×. Thus, we assume that the correct allele is indeed *1/*4+*4.

119

https://export.uppmax.uu.se/a2009002/opendata/HiSeqX_CEPH/

We have not observed any disagreements with Mendelian laws of inheritance when using
Cypiripi++ on PGRNseq data. This is in sharp contrast with previous PGRNseq data
analysis which relied on SNP callers to infer genotypes [59].

When it comes to Illumina WGS data, genotypes predicted by Cypiripi++ are in con-
cordance with genotypes validated in [176, 45, 142], as shown in Table 7.2. Although we do
not have genotype information for some members of CEPH 1463 family, we show that our
predictions are in full accordance with Mendelian laws of inheritance, as depicted in Figure
7.3.

Figure 7.3: CEPH 1463 Family Tree with the Cypiripi++ genotype predictions for
CYP2D6. Purple alleles indicate alleles inherited from mother, while black alleles indi-
cate alleles inherited from father side. Red sample IDs indicate the lack of validation. As
can be seen, all genotypes follow Mendelian laws of inheritance.

NA12889
*4/*41

NA12890
*68+*4/*68+*4

NA12891
*41/*68+*4

NA12892
*2/*3

NA12877
*4/*68+*4

NA12878
*68+*4/*3

NA12879
*68+*4/*3

NA12880
*68+*4/ 
*68+*4

NA12881
*68+*4/ 
*68+*4

NA12882
*4/*68+*4

NA12883
*68+*4/*3

NA12884
*4/*68+*4

NA12885
*68+*4/ 
*68+*4

NA12886
*4/*3

NA12888
*4/*68+*4

NA12893
*4/*3

CEPH 1463 Family Tree

NA12887
*4/*68+*4

We also include our predictions for CYP2A6 genotype on samples for which the vali-
dation is available. These results are shown in Table 7.3. As it can be seen, Cypiripi++

provides an accurate CYP2A6 genotype calls for all of the samples. Genotype validation
for these cases is available in [142].

In addition to its genotyping accuracy, Cypiripi++ has very low computational overhead.
In our experiments, each run required less than 10 seconds and fewer than 100 MB of
memory even for the high-coverage PGRNseq samples.

120

7.2.3 Novel alleles

In many samples we have observed that sub-alleles detected by Cypiripi++ are not present in
the online database. Similar observation was made by [147] regarding the CYP2D6*2 family
of sub-alleles. For example, c.843 T>G, associated with all recently discovered *4 sub-alleles
(e.g. *4M, *4N and *4P), is not associated with *4 alleles (e.g. *4A, *4B etc.) discovered
earlier. However, we have found multiple samples where the evidence strongly suggests
that *4A allele contains this SNP. This implies either the incomplete characterization of
*4A sub-allele, or the presence of novel *4 sub-alleles.

Since the lack of non-functional SNPs can affect the accurate genotype interpretation of
HTS-based tools (as already reported by [176]), Cypiripi++ ships with the updated database
which contains additional sub-alleles believed to exist in the wild. Further studies are needed
for complete characterization of those sub-alleles.

7.3 Conclusion

In this chapter, we have presented the first computational tool which is able to accurately
infer genotypes of CYP2D6, CYP2A6 and most of the other ADMER genes from PGRNseq
data. This tool, dubbed Cypiripi++, also supports Illumina WGS data and detects various
structural rearrangements occurring within the target gene regions. Fast execution and low
system requirements make Cypiripi++ highly suitable for clinical settings where speed is of
high importance.

There are still some challenges which need to be addressed in the future work. One
of them is exact characterization of novel alleles and sub-alleles, which is not yet possible
with current HTS technologies. However, this problem can be resolved with the use of
platforms which can provide long read lengths and additional metadata (e.g. haplotype
information). Other challenges to be resolved are integration of the error model which
describes the variance of coverage depth in the copy number estimation model, and detection
of fusion breakpoints in the completely identical regions. Currently, Cypiripi++ is not able
to precisely locate the fusion breakpoints in such regions (although it is able to detect the
presence of such fusion events).

Specialized HTS platforms, such are PGRNseq, are removing the last obstacles prevent-
ing the wider integration of HTS technologies in everyday clinical settings. Coupled with
fast and accurate genotyping frameworks, such are Cypiripi++, these platforms can assist
physicians in tailoring the prescription recommendations based on patient’s genetic makeup
and eventually lead to improved medical care.

121

Chapter 8

Conclusion

High throughput sequencing (HTS) platforms have made significant contributions to various
fields of genomic research. For these reasons, HTS technologies are starting to make foray
into clinical environments. One problem of particular clinical significance is the precise
genotype inference of pharmaceutically important genes. Specialized HTS technologies, like
PGRNseq, promise fast and cost-effective solutions for such problem. However, challenges
like the data storage and transfer, as well as the accurate data analysis of HTS data are
still preventing the wider integration of HTS platforms in clinical settings.

This thesis presents fast and efficient methods for HTS data compression, which sig-
nificantly improve over currently available compression schemes. It also introduces a first
computational method for clinical genotyping which uses HTS data to infer a genotype.
The ultimate goal of these methods is to ease the adoption of HTS technologies in clinical
environments.

First we have introduced DeeZ, a novel HTS data compression tool for read alignments
stored in SAM/BAM file formats. DeeZ uses local assembly to detect common variants
which are redundantly encoded by many reads, and significantly improves the compression
rate by encoding such variations only once. We have shown that DeeZ consistently pro-
vides the best compression rates among evaluated tools, achieving up to 50% improvement
over commonly used BAM file format. Furthermore, DeeZ is among fastest compression
tools, and unlike many other tools, it provides a random access to any record within the
compressed archive.

Then we presented a comprehensive framework designed for benchmarking the perfor-
mance of various HTS compression tools. This framework has been developed as a part
of Moving Picture Experts Group (MPEG) activity to explore the current landscape of
genomic data compression algorithms, and to design an open standard for storage and
transport of such data. The performance of more than 25 compression tools for both
FASTQ and SAM file formats have been evaluated on the large set of publicly available
samples. These samples were carefully selected by MPEG community to cover the wide

122

spectrum of technologies and species necessary for ensuring statistically meaningful results.
We have shown that significant improvements in both compression time and performance
can be made over the commonly used Gzip and BAM file formats. This study also provided
a further evidence that DeeZ offers the best compression rates for majority of SAM/BAM
files, making it the most optimal choice for SAM/BAM compression and archival.

In the second part of this thesis, we have discussed the accurate genotype inference
for pharmaceutically important genes (also known as ADMER genes), with the particular
emphasis on CYP2D6 and CYP2A6. These two genes are highlighted because they play sig-
nificant role in metabolism of more than 25% clinically important drugs, as well as smoking
habits. They also harbour various structural variations with the neighbouring and highly
homologous pseudogenes, which hinders the performance of various genotyping panels. We
show that HTS data can be used to infer the accurate genotype of CYP2D6 by introducing
Cypiripi, a first computational tool which can obtain CYP2D6 genotypes from the HTS
data with uniform coverage. Cypiripi models the genotyping problem as an instance of In-
teger Linear Programming. This model is able to detect copy number aberrations, deletions
and fusions with closely related pseudogene CYP2D7. We demonstrate the performance of
Cypiripi on large set of simulations designed to cover the majority of alleles observed in the
literature, and on the real data set covering the single family. Cypiripi’s performance met
our expectations by successfully estimating the genotype on all samples.

Finally, we relax the constraint that the coverage must be uniform, and show that
Cypiripi can be extended to work with specialized HTS technologies like PGRNseq which
target specific set of pharmacogenes with non-uniform coverage. The new tool, called
Cypiripi++, also improves the detection of various fusion alleles, and brings down the overall
running time and memory requirements. Cypiripi++ also brings the support for CYP2A6
gene. We have successfully used Cypiripi++ to identify correct genotypes of 96 subjects se-
quenced with PGRNseq. Furthermore, we used Cypiripi++ to genotype the whole extended
CEPH 1463 family, where all of observed genotypes were in concordance with Mendelian
laws of inheritance and previously reported validations.

8.1 Future Work

Recent focus on longer reads and higher depths of coverage in HTS technologies indicates
that the amount of generated data will grow even further in the near future. Thus, more
efficient compression algorithms which can deal with long reads will be necessary to accom-
modate such data. This is especially important because most long read technologies come
with high error rates, which severely affect the majority of compression schemes used for se-
quence compression. Another major obstacle faced by current compression methods is high
entropy of auxiliary data (e.g. quality scores or read identifiers), which currently accounts
for a major portion of compressed data regardless of the method being used. This problem

123

will require a study of various lossy compression schemes which can significantly decrease
the entropy of such data while minimizing the impact on the downstream analysis. Such
study is currently being conducted by MPEG as a part of Core Experiments on Genomic
Information.

Development of longer reads and barcoded sequencing also provides an opportunity for
the more accurate ADMER genotyping. Natural future directions would consist of utiliz-
ing longer reads and haplotype annotations for identifying novel alleles, resolving potential
ambiguities in genotype inference, and more precise discovery of various structural varia-
tions in regions of pharmaceutical importance. Moreover, integration of advanced coverage
bias models should be investigated for more fine-grained ambiguity resolution during the
genotyping process. Finally, the planned addition of wider set of ADMER genes to our
current pipeline (such are CYP2C9, CYP2B6, TMPT and VKORC1) will make Cypiripi
a single easy-to-use and cost-effective platform for general ADMER genotyping, which can
ultimately boost or even replace the various genotyping panels used for aiding drug pre-
scription and treatment decisions.

124

Bibliography

[1] An integrated map of genetic variation from 1,092 human genomes. Nature 491, 7422
(Nov. 2012), 56–65.

[2] President Obama’s Precision Medicine Initiative. whitehouse.gov (2015-01-
30). https://www.whitehouse.gov/the-press-office/2015/01/30/fact-sheet
-president-obama-s-precision-medicine-initiative.

[3] 1000 Genomes Project Consortium, Abecasis, G. R., Altshuler, D., Au-
ton, A., Brooks, L. D., Durbin, R. M., Gibbs, R. A., Hurles, M. E., and
McVean, G. A. A Map of Human Genome Variation from Population-Scale Se-
quencing. Nature 467, 7319 (Oct. 2010), 1061–1073.

[4] Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F.,
Hormozdiari, F., Kitzman, J. O., Baker, C., Malig, M., Mutlu, O., Sahi-
nalp, S. C., Gibbs, R. A., and Eichler, E. E. Personalized Copy-Number and
Segmental Duplication Maps using Next-Generation Sequencing. Nature Genetics 41,
10 (Oct. 2009), 1061–1067.

[5] Annala, M., Parker, B., Zhang, W., and Nykter, M. Fusion Genes and their
Discovery Using High Throughput Sequencing. Cancer Letters 340, 2 (Nov. 2013).

[6] Antonio Diaz Diaz. Lzip - LZMA lossless data compressor. http://www.nongnu
.org/lzip/lzip.html.

[7] Ashley, E. A. Towards Precision Medicine. Nature Reviews Genetics 17, 9 (Sept.
2016), 507–522.

[8] Ashley, E. A., Butte, A. J., Wheeler, M. T., Chen, R., Klein, T. E.,
Dewey, F. E., Dudley, J. T., Ormond, K. E., Pavlovic, A., Hudgins, L.,
Gong, L., Hodges, L. M., Berlin, D. S., Thorn, C. F., Sangkuhl, K.,
Hebert, J. M., Woon, M., Sagreiya, H., Whaley, R., Morgan, A. A.,
Pushkarev, D., Neff, N. F., Knowles, J. W., Chou, M., Thakuria, J.,
Rosenbaum, A., Zaranek, A. W., Church, G., Greely, H. T., Quake, S. R.,
and Altman, R. B. Clinical Evaluation Incorporating a Personal Genome. Lancet
375, 9725 (May 2010), 1525–1535.

[9] Bao, R., Huang, L., Andrade, J., Tan, W., Kibbe, W. A., Jiang, H., and
Feng, G. Review of Current Methods, Applications, and Data Management for the
Bioinformatics Analysis of Whole Exome Sequencing. Cancer Informatics 13, Suppl
2 (Sept. 2014), 67–82.

125

https://www.whitehouse.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative
https://www.whitehouse.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative
http://www.nongnu.org/lzip/lzip.html
http://www.nongnu.org/lzip/lzip.html

[10] Bauer, M. J., Cox, A. J., and Rosone, G. Lightweight BWT construction for
very large string collections. In Combinatorial Pattern Matching. Springer, 2011,
pp. 219–231.

[11] Bell, P. A., Chaturvedi, S., Gelfand, C. A., Huang, C. Y., Kochersperger,
M., Kopla, R., Modica, F., Pohl, M., Varde, S., Zhao, R., Zhao, X., Boyce-
Jacino, M. T., and Yassen, A. SNPstream UHT: Ultra-high throughput SNP
genotyping for pharmacogenomics and drug discovery. BioTechniques Suppl (June
2002), 70–72, 74, 76–77.

[12] Benoit, G., Lemaitre, C., Lavenier, D., Drezen, E., Dayris, T., Uricaru,
R., and Rizk, G. Reference-free compression of high throughput sequencing data
with a probabilistic de Bruijn graph. BMC Bioinformatics 16 (2015), 288.

[13] Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Mil-
ton, J., Brown, C. G., Hall, K. P., Evers, D. J., Barnes, C. L., Bignell,
H. R., Boutell, J. M., Bryant, J., Carter, R. J., Keira Cheetham, R., Cox,
A. J., Ellis, D. J., Flatbush, M. R., Gormley, N. A., Humphray, S. J., Irv-
ing, L. J., Karbelashvili, M. S., Kirk, S. M., Li, H., Liu, X., Maisinger,
K. S., Murray, L. J., Obradovic, B., Ost, T., Parkinson, M. L., Pratt,
M. R., Rasolonjatovo, I. M. J., Reed, M. T., Rigatti, R., Rodighiero,
C., Ross, M. T., Sabot, A., Sankar, S. V., Scally, A., Schroth, G. P.,
Smith, M. E., Smith, V. P., Spiridou, A., Torrance, P. E., Tzonev, S. S.,
Vermaas, E. H., Walter, K., Wu, X., Zhang, L., Alam, M. D., Anastasi,
C., Aniebo, I. C., Bailey, D. M. D., Bancarz, I. R., Banerjee, S., Bar-
bour, S. G., Baybayan, P. A., Benoit, V. A., Benson, K. F., Bevis, C.,
Black, P. J., Boodhun, A., Brennan, J. S., Bridgham, J. A., Brown, R. C.,
Brown, A. A., Buermann, D. H., Bundu, A. A., Burrows, J. C., Carter,
N. P., Castillo, N., Chiara E. Catenazzi, M., Chang, S., Neil Cooley, R.,
Crake, N. R., Dada, O. O., Diakoumakos, K. D., Dominguez-Fernandez,
B., Earnshaw, D. J., Egbujor, U. C., Elmore, D. W., Etchin, S. S., Ewan,
M. R., Fedurco, M., Fraser, L. J., Fuentes Fajardo, K. V., Scott Furey,
W., George, D., Gietzen, K. J., Goddard, C. P., Golda, G. S., Granieri,
P. A., Green, D. E., Gustafson, D. L., Hansen, N. F., Harnish, K., Hau-
denschild, C. D., Heyer, N. I., Hims, M. M., Ho, J. T., Horgan, A. M.,
Hoschler, K., Hurwitz, S., Ivanov, D. V., Johnson, M. Q., James, T.,
Huw Jones, T. A., Kang, G.-D., Kerelska, T. H., Kersey, A. D., Khreb-
tukova, I., Kindwall, A. P., Kingsbury, Z., Kokko-Gonzales, P. I., Kumar,
A., Laurent, M. A., Lawley, C. T., Lee, S. E., Lee, X., Liao, A. K., Loch,
J. A., Lok, M., Luo, S., Mammen, R. M., Martin, J. W., McCauley, P. G.,
McNitt, P., Mehta, P., Moon, K. W., Mullens, J. W., Newington, T.,
Ning, Z., Ling Ng, B., Novo, S. M., O’Neill, M. J., Osborne, M. A., Os-
nowski, A., Ostadan, O., Paraschos, L. L., Pickering, L., Pike, A. C.,
Pike, A. C., Chris Pinkard, D., Pliskin, D. P., Podhasky, J., Quijano,
V. J., Raczy, C., Rae, V. H., Rawlings, S. R., Chiva Rodriguez, A., Roe,
P. M., Rogers, J., Rogert Bacigalupo, M. C., Romanov, N., Romieu, A.,
Roth, R. K., Rourke, N. J., Ruediger, S. T., Rusman, E., Sanches-Kuiper,
R. M., Schenker, M. R., Seoane, J. M., Shaw, R. J., Shiver, M. K., Short,

126

S. W., Sizto, N. L., Sluis, J. P., Smith, M. A., Ernest Sohna Sohna, J.,
Spence, E. J., Stevens, K., Sutton, N., Szajkowski, L., Tregidgo, C. L.,
Turcatti, G., vandeVondele, S., Verhovsky, Y., Virk, S. M., Wakelin, S.,
Walcott, G. C., Wang, J., Worsley, G. J., Yan, J., Yau, L., Zuerlein, M.,
Rogers, J., Mullikin, J. C., Hurles, M. E., McCooke, N. J., West, J. S.,
Oaks, F. L., Lundberg, P. L., Klenerman, D., Durbin, R., and Smith, A. J.
Accurate Whole Human Genome Sequencing Using Reversible Terminator Chemistry.
Nature 456, 7218 (Nov. 2008), 53–59.

[14] Bentley, J. L., Sleator, D. D., Tarjan, R. E., and Wei, V. K. A Locally
Adaptive Data Compression Scheme. Commun. ACM 29, 4 (Apr. 1986), 320–330.

[15] Bonfield, J. K. The Scramble conversion tool. Bioinformatics (2014).

[16] Bonfield, J. K., and Mahoney, M. V. Compression of FASTQ and SAM Format
Sequencing Data. PLoS ONE 8, 3 (2013), e59190.

[17] Broad Institute. Picard Tools. http://broadinstitute.github.io/picard/.

[18] Burrows, M., and Wheeler, D. J. A block-sorting lossless data compression
algorithm. http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf.

[19] Buxbaum, J. D., Daly, M. J., Devlin, B., Lehner, T., Roeder, K., and
State, M. W. The Autism Sequencing Consortium: Large-Scale, High-Throughput
Sequencing in Autism Spectrum Disorders. Neuron 76, 6 (Dec. 2012), 1052–1056.

[20] Campagne, F., Dorff, K. C., Chambwe, N., Robinson, J. T., and Mesirov,
J. P. Compression of Structured High-Throughput Sequencing Data. PLoS ONE 8,
11 (Nov. 2013), e79871.

[21] Cavallari, L. H. Tailoring drug therapy based on genotype. Journal of Pharmacy
Practice 25, 4 (2012), 413–416.

[22] Chaisson, M. J., Huddleston, J., Dennis, M. Y., Sudmant, P. H., Malig,
M., Hormozdiari, F., Antonacci, F., Surti, U., Sandstrom, R., Boitano,
M., Landolin, J. M., Stamatoyannopoulos, J. A., Hunkapiller, M. W.,
Korlach, J., and Eichler, E. E. Resolving the Complexity of the Human Genome
Using Single-Molecule Sequencing. Nature 517, 7536 (Jan. 2015), 608–611.

[23] Check Hayden, E. Technology: The $1,000 genome. Nature 507, 7492 (Mar. 2014),
294–295.

[24] Cleary, J., and Witten, I. Data Compression Using Adaptive Coding and Partial
String Matching. IEEE Transactions on Communications 32, 4 (Apr. 1984), 396–402.

[25] Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L., and Rice, P. M. The
Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina
FASTQ variants. Nucleic Acids Research 38, 6 (Apr. 2010), 1767–1771.

[26] Collins, F. S., and Varmus, H. A New Initiative on Precision Medicine. New
England Journal of Medicine 372, 9 (Feb. 2015), 793–795.

127

http://broadinstitute.github.io/picard/
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

[27] Cox, A. J., Bauer, M. J., Jakobi, T., and Rosone, G. Large-scale compression
of genomic sequence databases with the Burrows-Wheeler transform. Bioinformatics
28, 11 (June 2012), 1415–1419.

[28] Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., De-
Pristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T.,
McVean, G., and Durbin, R. The variant call format and VCFtools. Bioinfor-
matics 27, 15 (Aug. 2011), 2156–2158.

[29] Dao, P., Numanagić, I., Lin, Y.-Y., Hach, F., Karakoc, E., Donmez, N.,
Collins, C., Eichler, E. E., and Sahinalp, S. C. ORMAN: Optimal Resolution
of Ambiguous RNA-Seq Multimappings in the Presence of Novel Isoforms. Bioinfor-
matics 30, 5 (Jan. 2014), 644–651.

[30] Deorowicz, S., and Grabowski, S. Compression of DNA sequence reads in
FASTQ format. Bioinformatics 27, 6 (2011), 860–862.

[31] Deorowicz, S., and Grabowski, S. Data compression for sequencing data. Algo-
rithms for Molecular Biology 8, 1 (2013), 1–13.

[32] DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R.,
Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M.,
McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibul-
skis, K., Gabriel, S. B., Altshuler, D., and Daly, M. J. A framework for vari-
ation discovery and genotyping using next-generation DNA sequencing data. Nature
Genetics 43, 5 (May 2011), 491–498.

[33] Dewey, F. E., Grove, M. E., Pan, C., Goldstein, B. A., Bernstein, J. A.,
Chaib, H., Merker, J. D., Goldfeder, R. L., Enns, G. M., David, S. P.,
Pakdaman, N., Ormond, K. E., Caleshu, C., Kingham, K., Klein, T. E.,
Whirl-Carrillo, M., Sakamoto, K., Wheeler, M. T., Butte, A. J., Ford,
J. M., Boxer, L., Ioannidis, J. P. A., Yeung, A. C., Altman, R. B., Assimes,
T. L., Snyder, M., Ashley, E. A., and Quertermous, T. Clinical Interpretation
and Implications of Whole-Genome Sequencing. JAMA 311, 10 (Mar. 2014), 1035–
1045.

[34] Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi,
A. M., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue, C., Mari-
nov, G. K., Khatun, J., Williams, B. A., Zaleski, C., Rozowsky, J., Röder,
M., Kokocinski, F., Abdelhamid, R. F., Alioto, T., Antoshechkin, I., Baer,
M. T., Bar, N. S., Batut, P., Bell, K., Bell, I., Chakrabortty, S., Chen,
X., Chrast, J., Curado, J., Derrien, T., Drenkow, J., Dumais, E., Du-
mais, J., Duttagupta, R., Falconnet, E., Fastuca, M., Fejes-Toth, K.,
Ferreira, P., Foissac, S., Fullwood, M. J., Gao, H., Gonzalez, D., Gor-
don, A., Gunawardena, H., Howald, C., Jha, S., Johnson, R., Kapranov,
P., King, B., Kingswood, C., Luo, O. J., Park, E., Persaud, K., Preall,
J. B., Ribeca, P., Risk, B., Robyr, D., Sammeth, M., Schaffer, L., See,
L.-H., Shahab, A., Skancke, J., Suzuki, A. M., Takahashi, H., Tilgner,
H., Trout, D., Walters, N., Wang, H., Wrobel, J., Yu, Y., Ruan, X.,
Hayashizaki, Y., Harrow, J., Gerstein, M., Hubbard, T., Reymond, A.,

128

Antonarakis, S. E., Hannon, G., Giddings, M. C., Ruan, Y., Wold, B.,
Carninci, P., Guigó, R., and Gingeras, T. R. Landscape of Transcription in
Human Cells. Nature 489, 7414 (Sept. 2012), 101–108.

[35] Dohm, J. C., Lottaz, C., Borodina, T., and Himmelbauer, H. Substantial Bi-
ases in Ultra-Short Read Data Sets from High-Throughput DNA Sequencing. Nucleic
Acids Research 36, 16 (Sept. 2008), e105.

[36] Dong, L., Wang, W., Li, A., Kansal, R., Chen, Y., Chen, H., and Li, X.
Clinical Next Generation Sequencing for Precision Medicine in Cancer. Current Ge-
nomics 16, 4 (Aug. 2015), 253–263.

[37] Duda, J. Asymmetric numeral systems: Entropy coding combining speed of Huffman
coding with compression rate of arithmetic coding. http://arxiv.org/abs/1311.
2540.

[38] Dutta, A., Haque, M. M., Bose, T., Reddy, C. V. S. K., and Mande, S. S.
FQC: A novel approach for efficient compression, archival, and dissemination of fastq
datasets. Journal of Bioinformatics and Computational Biology 13, 3 (June 2015),
1541003.

[39] Eid, J., Fehr, A., Gray, J., Luong, K., John Lyle, Otto, G., Peluso, P.,
Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Bidhan
Chaudhuri, Christians, F., Cicero, R., Clark, S., Dalal, R., Dewinter, A.,
Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Kevin
Hester, Holden, D., Kearns, G., Kong, X., Ronald Kuse, Lacroix, Y.,
Lin, S., Lundquist, P., Congcong Ma, Marks, P., Maxham, M., Murphy,
D., Park, I., Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson,
J., Tomaney, A., Travers, K., Trulson, M., Vieceli, J., Wegener, J., Wu,
D., Yang, A., Zaccarin, D., Zhao, P., Zhong, F., Korlach, J., and Turner,
S. Real-time DNA sequencing from single polymerase molecules. Science 323, 5910
(Jan. 2009), 133–138.

[40] Elias, P. Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory 21, 2 (Mar. 1975), 194–203.

[41] ENCODE Project Consortium. An Integrated Encyclopedia of DNA Elements
in the Human Genome. Nature 489, 7414 (Sept. 2012), 57–74.

[42] Ewing, B., and Green, P. Base-calling of automated sequencer traces using phred.
II. Error probabilities. Genome Research 8, 3 (Mar. 1998), 186–194.

[43] Ezra, J. GitHub - Infinidat/slimfastq: Fast, efficient, lossless compression of fastq
files. https://github.com/Infinidat/slimfastq.

[44] Fan, L., Cao, P., Almeida, J., and Broder, A. Z. Summary Cache: A Scalable
Wide-area Web Cache Sharing Protocol. IEEE/ACM Trans. Netw. 8, 3 (June 2000),
281–293.

[45] Fang, H., Liu, X., Ramírez, J., Choudhury, N., Kubo, M., Im, H., Konkash-
baev, A., Cox, N., Ratain, M., Nakamura, Y., and others. Establishment of

129

http://arxiv.org/abs/1311.2540
http://arxiv.org/abs/1311.2540
https://github.com/Infinidat/slimfastq

CYP2D6 reference samples by multiple validated genotyping platforms. The Phar-
macogenomics Journal 14, 6 (2014), 564–572.

[46] Fernandez-Salguero, P., Hoffman, S. M., Cholerton, S., Mohrenweiser,
H., Raunio, H., Rautio, A., Pelkonen, O., Huang, J. D., Evans, W. E., and
Idle, J. R. A Genetic Polymorphism in Coumarin 7-Hydroxylation: Sequence of
the Human CYP2A Genes and Identification of Variant CYP2A6 Alleles. American
Journal of Human Genetics 57, 3 (Sept. 1995), 651–660.

[47] Frackiewicz, E. J., Shiovitz, T. M., and Jhee, S. S. Ethnicity in Drug Devel-
opment and Therapeutics. Cambridge University Press, Page 37, June 2011.

[48] Gaedigk, A. Complexities of CYP2D6 gene analysis and interpretation. Interna-
tional Review of Psychiatry 25, 5 (Oct. 2013), 534–553.

[49] Gaedigk, A., Jaime, L. K. M., Bertino Jr, J. S., Bérard, A., Pratt, V. M.,
Bradfordand, L. D., and Leeder, J. S. Identification of novel CYP2D7-2D6
hybrids: Non-functional and functional variants. Frontiers in Pharmacology 1 (2010).

[50] Gaedigk, A., Simon, S., Pearce, R., Bradford, L., Kennedy, M., and
Leeder, J. The CYP2D6 activity score: Translating genotype information into a
qualitative measure of phenotype. Clinical Pharmacology & Therapeutics 83, 2 (2007),
234–242.

[51] Gailly, J.-L., and Deutsch, P. ZLIB Compressed Data Format Specification
version 3.3. https://tools.ietf.org/html/rfc1950.

[52] Giancarlo, R., Rombo, S. E., and Utro, F. Compressive biological sequence
analysis and archival in the era of high-throughput sequencing technologies. Briefings
in Bioinformatics 15, 3 (2014), 390–406.

[53] Giesen, F. Interleaved entropy coders. http://arxiv.org/abs/1402.3392.

[54] Gnerre, S., Maccallum, I., Przybylski, D., Ribeiro, F. J., Burton, J. N.,
Walker, B. J., Sharpe, T., Hall, G., Shea, T. P., Sykes, S., Berlin, A. M.,
Aird, D., Costello, M., Daza, R., Williams, L., Nicol, R., Gnirke, A.,
Nusbaum, C., Lander, E. S., and Jaffe, D. B. High-Quality Draft Assemblies
of Mammalian Genomes from Massively Parallel Sequence Data. Proceedings of the
National Academy of Sciences of the United States of America 108, 4 (Jan. 2011),
1513–1518.

[55] Goldberg, B., Sichtig, H., Geyer, C., Ledeboer, N., and Weinstock, G. M.
Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities
for Next-Generation Sequencing in Infectious Disease Diagnostics. mBio 6, 6 (Dec.
2015).

[56] Goldfeder, R. L., Priest, J. R., Zook, J. M., Grove, E. M., Waggott,
D., Wheeler, M. T., Salit, M., and Ashley, A. E. Medical Implications of
Technical Accuracy in Genome Sequencing. Genome Medicine 8 (2016), 24.

[57] Golomb, S. Run-length encodings (Corresp.). IEEE Transactions on Information
Theory 12, 3 (July 1966), 399–401.

130

https://tools.ietf.org/html/rfc1950
http://arxiv.org/abs/1402.3392

[58] Goodwin, S., McPherson, J. D., and McCombie, W. R. Coming of age: Ten
years of next-generation sequencing technologies. Nature Reviews Genetics 17, 6 (June
2016), 333–351.

[59] Gordon, A. S., Fulton, R. S., Qin, X., Mardis, E. R., Nickerson, D. A., and
Scherer, S. PGRNseq: A Targeted Capture Sequencing Panel for Pharmacogenetic
Research and Implementation. Pharmacogenetics and Genomics (Jan. 2016).

[60] Grabowski, S., Deorowicz, S., and Roguski, L. Disk-based compression of data
from genome sequencing. Bioinformatics 31, 9 (May 2015), 1389–1395.

[61] Green, R. C., Rehm, H. L., and Kohane, I. S. Chapter 9 - Clinical Genome
Sequencing A2 - Ginsburg, Geoffrey S. InGenomic and Personalized Medicine (Second
Edition), H. F. Willard, Ed. Academic Press, 2013, pp. 102–122.

[62] Greenwood, A. D., and Burke, D. T. Single nucleotide primer extension: Quan-
titative range, variability, and multiplex analysis. Genome Research 6, 4 (Jan. 1996),
336–348.

[63] Gu, D. F., Hinks, L. J., Morton, N. E., and Day, I. N. The use of long PCR
to confirm three common alleles at the CYP2A6 locus and the relationship between
genotype and smoking habit. Annals of Human Genetics 64, Pt 5 (Sept. 2000), 383–
390.

[64] Hach, F. Scalable Mapping and Compression of High Throughput Genome Sequenc-
ing Data. Thesis, Applied Sciences: School of Computing Science, July 2013.

[65] Hach, F., Hormozdiari, F., Alkan, C., Hormozdiari, F., Birol, I., Eichler,
E. E., and Sahinalp, S. C. mrsFAST: A cache-oblivious algorithm for short-read
mapping. Nature Methods 7, 8 (2010), 576–577.

[66] Hach, F., Numanagić, I., Alkan, C., and Sahinalp, S. C. SCALCE: Boosting
Sequence Compression Algorithms Using Locally Consistent Encoding. Bioinformat-
ics 28, 23 (Jan. 2012), 3051–3057.

[67] Hach, F., Numanagić, I., and Sahinalp, S. C. DeeZ: Reference-Based Compres-
sion by Local Assembly. Nature Methods 11, 11 (Nov. 2014), 1082–1084.

[68] Hach, F., Sarrafi, I., Hormozdiari, F., Alkan, C., Eichler, E. E., and Sahi-
nalp, S. C. mrsFAST-Ultra: A compact, SNP-aware mapper for high performance
sequencing applications. Nucleic Acids Research 42, W1 (2014), W494–W500.

[69] Haussler, D., O’Brien, S. J., Ryder, O. A., Barker, F. K., Clamp, M.,
Crawford, A. J., Hanner, R., Hanotte, O., Johnson, W. E., McGuire,
J. A., Miller, W., Murphy, R. W., Murphy, W. J., Sheldon, F. H., Sin-
ervo, B., Venkatesh, B., Wiley, E. O., Allendorf, F. W., Amato, G.,
Baker, C. S., Bauer, A., Beja-Pereira, A., Bermingham, E., Bernardi, G.,
Bonvicino, C. R., Brenner, S., Burke, T., Cracraft, J., Diekhans, M.,
Edwards, S., Ericson, P. G., Estes, J., Fjelsda, J., Flesness, N., Gamble,
T., Gaubert, P., Graphodatsky, A. S., Marshall Graves, J. A., Green,
E. D., Green, R. E., Hackett, S., Hebert, P., Helgen, K. M., Joseph, L.,

131

Kessing, B., Kingsley, D. M., Lewin, H. A., Luikart, G., Martelli, P.,
Moreira, M. A., Nguyen, N., Orti, G., Pike, B. L., Rawson, D. M., Schus-
ter, S. C., Seuanez, H. N., Shaffer, H. B., Springer, M. S., Stuart, J. M.,
Sumner, J., Teeling, E., Vrijenhoek, R. C., Ward, R. D., Warren, W. C.,
Wayne, R., Williams, T. M., Wolfe, N. D., and Zhang, Y. P. Genome 10K:
A Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species. J.
Hered. 100 (2009), 659–674.

[70] Ho, M. K., and Tyndale, R. F. Overview of the pharmacogenomics of cigarette
smoking. The Pharmacogenomics Journal 7, 2 (Jan. 2007), 81–98.

[71] Holland, P. M., Abramson, R. D., Watson, R., and Gelfand, D. H. Detec-
tion of specific polymerase chain reaction product by utilizing the 5’—-3’ exonuclease
activity of Thermus aquaticus DNA polymerase. Proceedings of the National Academy
of Sciences of the United States of America 88, 16 (Aug. 1991), 7276–7280.

[72] Holland, R. C., and Lynch, N. Sequence squeeze: An open contest for sequence
compression. GigaScience 2 (Apr. 2013), 5.

[73] Hormozdiari, F., Hajirasouliha, I., Dao, P., Hach, F., Yorukoglu, D.,
Alkan, C., Eichler, E. E., and Sahinalp, S. C. Next-Generation Variation-
Hunter: Combinatorial Algorithms for Transposon Insertion Discovery. Bioinformat-
ics 26, 12 (June 2010), i350–i357.

[74] Horn, J. R., and Hansten, P. D. Get to Know an Enzyme: CYP2D6. Pharmacy
Times (Tuesday, July 1, 2008). http://www.pharmacytimes.com/publications/i
ssue/2008/2008-07/2008-07-8624.

[75] Hsi-Yang Fritz, M., Leinonen, R., Cochrane, G., and Birney, E. Efficient
storage of high throughput DNA sequencing data using reference-based compression.
Genome Research 21, 5 (May 2011), 734–740.

[76] Huang, F. W., Hodis, E., Xu, M. J., Kryukov, G. V., Chin, L., and Gar-
raway, L. A. Highly Recurrent TERT Promoter Mutations in Human Melanoma.
Science (New York, N.Y.) 339, 6122 (Feb. 2013), 957–959.

[77] Huffman, D. A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the IRE 40, 9 (Sept. 1952), 1098–1101.

[78] Hukkanen, J., Jacob, P., and Benowitz, N. L. Metabolism and Disposition
Kinetics of Nicotine. Pharmacological Reviews 57, 1 (Mar. 2005), 79–115.

[79] Human Microbiome Project Consortium. Structure, Function and Diversity of
the Healthy Human Microbiome. Nature 486, 7402 (June 2012), 207–214.

[80] Illumina Inc. HiSeq XTMSeries of Sequencing Systems. http://www.illumina.c
om/documents/products/datasheets/datasheet-hiseq-x-ten.pdf.

[81] Ingelman-Sundberg, M. Genetic polymorphisms of cytochrome P450 2D6
(CYP2D6): Clinical consequences, evolutionary aspects and functional diversity. The
Pharmacogenomics Journal 5, 1 (2004), 6–13.

132

http://www.pharmacytimes.com/publications/issue/2008/2008-07/2008-07-8624
http://www.pharmacytimes.com/publications/issue/2008/2008-07/2008-07-8624
http://www.illumina.com/documents/products/datasheets/datasheet-hiseq-x-ten.pdf
http://www.illumina.com/documents/products/datasheets/datasheet-hiseq-x-ten.pdf

[82] ISO/IEC SC29 WG11 (MPEG) – Requirements. N15346 - Investigation on
genomic information compression and storage. (Geneva).

[83] ISO/IEC SC29 WG11 (MPEG) – Requirements. N15740 - Call for Evidence
(CfE) for Genome Compression and Storage. (Geneva).

[84] ISO/IEC SC29 WG11 (MPEG) – Requirements. N16145 - Database for Eval-
uation of Genomic Information Representation and Compression. (San Diego).

[85] Jones, D. C., Ruzzo, W. L., Peng, X., and Katze, M. G. Compression of
next-generation sequencing reads aided by highly efficient de novo assembly. Nucleic
Acids Research 40, 22 (Dec. 2012), e171.

[86] Karp, R. M. Reducibility among Combinatorial Problems. In Complexity of Com-
puter Computations, R. E. Miller, J. W. Thatcher, and J. D. Bohlinger, Eds., The
IBM Research Symposia Series. Springer US, 1972, pp. 85–103.

[87] Kent, W. J. BLAT—The BLAST-Like Alignment Tool. Genome Research 12, 4
(2002), 656–664.

[88] Kimura, S., Umeno, M., Skoda, R., Meyer, U., and Gonzalez, F. The
human debrisoquine 4-hydroxylase (CYP2D) locus: Sequence and identification of
the polymorphic CYP2D6 gene, a related gene, and a pseudogene. American Journal
of Human Genetics 45, 6 (1989), 889.

[89] Kingsford, C., and Patro, R. Reference-based compression of short-read se-
quences using path encoding. Bioinformatics 31, 12 (June 2015), 1920–1928.

[90] Kirchheiner, J., Schmidt, H., Tzvetkov, M., Keulen, J.-T. H. A., Lötsch,
J., Roots, I., and Brockmöller, J. Pharmacokinetics of Codeine and Its Metabo-
lite Morphine in Ultra-Rapid Metabolizers due to CYP2D6 Duplication. The Phar-
macogenomics Journal 7, 4 (Aug. 2007), 257–265.

[91] Kodama, Y., Shumway, M., and Leinonen, R. The Sequence Read Archive:
Explosive Growth of Sequencing Data. Nucleic Acids Research 40, Database issue
(Jan. 2012), D54–D56.

[92] Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F.,
Simons, J. F., Kim, P. M., Palejev, D., Carriero, N. J., Du, L., Taillon,
B. E., Chen, Z., Tanzer, A., Saunders, A. C. E., Chi, J., Yang, F., Carter,
N. P., Hurles, M. E., Weissman, S. M., Harkins, T. T., Gerstein, M. B.,
Egholm, M., and Snyder, M. Paired-End Mapping Reveals Extensive Structural
Variation in the Human Genome. Science 318, 5849 (Oct. 2007), 420–426.

[93] Kozanitis, C., Saunders, C., Kruglyak, S., Bafna, V., and Varghese, G.
Compressing Genomic Sequence Fragments Using SlimGene. Journal of Computa-
tional Biology 18, 3 (2011), 401–413.

[94] Kramer, W. E., Walker, D. L., O’Kane, D. J., Mrazek, D. A., Fisher,
P. K., Dukek, B. A., Bruflat, J. K., and Black, J. L. CYP2D6: Novel
genomic structures and alleles. Pharmacogenetics and Genomics 19, 10 (2009), 813.

133

[95] Kruskal, J. B. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society 7, 1 (1956),
48–50.

[96] L. Peter Deutsch. DEFLATE Compressed Data Format Specification version 1.3.
https://tools.ietf.org/html/rfc1951.

[97] L. Peter Deutsch. GZIP file format specification version 4.3. https://tools.ie
tf.org/html/rfc1952.

[98] LaFramboise, T. Single nucleotide polymorphism arrays: A decade of biological,
computational and technological advances. Nucleic Acids Research 37, 13 (July 2009),
4181–4193.

[99] Langmead, B., and Salzberg, S. L. Fast gapped-read alignment with Bowtie 2.
Nature Methods 9, 4 (Mar. 2012), 357–359.

[100] Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. Ultrafast
and Memory-Efficient Alignment of Short DNA Sequences to the Human Genome.
Genome Biology 10 (2009), R25.

[101] Larkin, M. A., Blackshields, G., Brown, N., Chenna, R., McGettigan,
P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R.,
and others. Clustal W and Clustal X version 2.0. Bioinformatics 23, 21 (2007),
2947–2948.

[102] Lasse Collin. XZ Utils. http://tukaani.org/xz/.

[103] Lawrence, M. S., Stojanov, P., Mermel, C. H., Garraway, L. A., Golub,
T. R., Meyerson, M., Gabriel, S. B., Lander, E. S., and Getz, G. Discovery
and Saturation Analysis of Cancer Genes across 21 Tumor Types. Nature 505, 7484
(Jan. 2014), 495–501.

[104] Li, H. Difference Between Samtools And Gatk Algorithms. https://www.biostars
.org/p/57149/.

[105] Li, H. A statistical framework for SNP calling, mutation discovery, association map-
ping and population genetical parameter estimation from sequencing data. Bioinfor-
matics 27, 21 (Nov. 2011), 2987–2993.

[106] Li, H., and Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 14 (2009), 1754–1760.

[107] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,
Marth, G., Abecasis, G., Durbin, R., and Subgroup, . G. P. D. P. The
Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 16 (2009), 2078–
2079.

[108] Li, H., Ruan, J., and Durbin, R. Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Research 18, 11 (Nov. 2008),
1851–1858.

134

https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
http://tukaani.org/xz/
https://www.biostars.org/p/57149/
https://www.biostars.org/p/57149/

[109] Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., Law,
M., Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., and
Law, M. Comparison of Next-Generation Sequencing Systems, Comparison of Next-
Generation Sequencing Systems. BioMed Research International 2012, 2012 (July
2012), e251364.

[110] Loeffelholz, M., and Fofanov, Y. The Main Challenges that Remain in Apply-
ing High-Throughput Sequencing to Clinical Diagnostics. Expert Review of Molecular
Diagnostics 15, 11 (2015), 1405–1408.

[111] Londin, E. R., Clark, P., Sponziello, M., Kricka, L. J., Fortina, P., and
Park, J. Y. Performance of exome sequencing for pharmacogenomics. Personalized
Medicine 12, 2 (2014), 109–115.

[112] Ma, Q., and Lu, A. Y. H. Pharmacogenetics, pharmacogenomics, and individual-
ized medicine. Pharmacological Reviews 63, 2 (June 2011), 437–459.

[113] Madadi, P., Koren, G., Cairns, J., Chitayat, D., Gaedigk, A., Leeder,
J. S., Teitelbaum, R., Karaskov, T., and Aleksa, K. Safety of codeine during
breastfeeding. Canadian Family Physician 53, 1 (Jan. 2007), 33–35.

[114] Mahoney, M. V. Data Compression Explained. http://mattmahoney.net/dc/dce
.html.

[115] Mahoney, M. V. Adaptive weighing of context models for lossless data compression.
https://repository.lib.fit.edu/handle/11141/154.

[116] Marco-Sola, S., Sammeth, M., Guigó, R., and Ribeca, P. The GEM Mapper:
Fast, Accurate and Versatile Alignment by Filtration. Nature Methods 9, 12 (Dec.
2012), 1185–1188.

[117] Mardis, E. R. A Decade/’s Perspective on DNA Sequencing Technology. Nature
470, 7333 (Feb. 2011), 198–203.

[118] Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Be-
mben, L. A., Berka, J., Braverman, M. S., Chen, Y.-J., Chen, Z., Dewell,
S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helge-
sen, S., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L. I., Jarvie,
T. P., Jirage, K. B., Kim, J.-B., Knight, J. R., Lanza, J. R., Leamon, J. H.,
Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B.,
McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., Nobile,
J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J.,
Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A.,
Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu,
P., Begley, R. F., and Rothberg, J. M. Genome Sequencing in Microfabricated
High-Density Picolitre Reactors. Nature 437, 7057 (Sept. 2005), 376–380.

[119] Massie, M., Nothaft, F., Hartl, C., Kozanitis, C., Schumacher, A.,
Joseph, A. D., and Patterson, D. A. ADAM: Genomics Formats and Processing
Patterns for Cloud Scale Computing. http://www.eecs.berkeley.edu/Pubs/TechR
pts/2013/EECS-2013-207.html.

135

http://mattmahoney.net/dc/dce.html
http://mattmahoney.net/dc/dce.html
https://repository.lib.fit.edu/handle/11141/154
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html

[120] McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K.,
Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and
DePristo, M. A. The Genome Analysis Toolkit: A MapReduce framework for an-
alyzing next-generation DNA sequencing data. Genome Research 20, 9 (Sept. 2010),
1297–1303.

[121] McKernan, K. J., Peckham, H. E., Costa, G. L., McLaughlin, S. F., Fu,
Y., Tsung, E. F., Clouser, C. R., Duncan, C., Ichikawa, J. K., Lee, C. C.,
Zhang, Z., Ranade, S. S., Dimalanta, E. T., Hyland, F. C., Sokolsky,
T. D., Zhang, L., Sheridan, A., Fu, H., Hendrickson, C. L., Li, B., Kotler,
L., Stuart, J. R., Malek, J. A., Manning, J. M., Antipova, A. A., Perez,
D. S., Moore, M. P., Hayashibara, K. C., Lyons, M. R., Beaudoin, R. E.,
Coleman, B. E., Laptewicz, M. W., Sannicandro, A. E., Rhodes, M. D.,
Gottimukkala, R. K., Yang, S., Bafna, V., Bashir, A., MacBride, A.,
Alkan, C., Kidd, J. M., Eichler, E. E., Reese, M. G., Vega, F. M. D. L.,
and Blanchard, A. P. Sequence and Structural Variation in a Human Genome
Uncovered by Short-Read, Massively Parallel Ligation Sequencing Using Two-Base
Encoding. Genome Research 19, 9 (Jan. 2009), 1527–1541.

[122] Miclotte, G., Heydari, M., Demeester, P., Rombauts, S., Van de Peer,
Y., Audenaert, P., and Fostier, J. Jabba: Hybrid error correction for long
sequencing reads. Algorithms for Molecular Biology 11, 1 (2016), 1–12.

[123] Mills, R. E., Pittard, W. S., Mullaney, J. M., Farooq, U., Creasy, T. H.,
Mahurkar, A. A., Kemeza, D. M., Strassler, D. S., Ponting, C. P., Web-
ber, C., and Devine, S. E. Natural Genetic Variation Caused by Small Insertions
and Deletions in the Human Genome. Genome Research 21, 6 (June 2011), 830–839.

[124] Mullis, K. B. The unusual origin of the polymerase chain reaction. Scientific
American 262, 4 (Apr. 1990), 56–61, 64–65.

[125] Myers, E. W. Toward Simplifying and Accurately Formulating Fragment Assem-
bly. Journal of Computational Biology: A Journal of Computational Molecular Cell
Biology 2, 2 (1995), 275–290.

[126] Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M.,
and Snyder, M. The Transcriptional Landscape of the Yeast Genome Defined by
RNA Sequencing. Science 320, 5881 (June 2008), 1344–1349.

[127] National Human Genome Research Institute (NHGRI). The Cost of Se-
quencing a Human Genome. https://www.genome.gov/27565109/The-Cost-of-S
equencing-a-Human-Genome.

[128] Nelson, M. R., Wegmann, D., Ehm, M. G., Kessner, D., St. Jean, P.,
Verzilli, C., Shen, J., Tang, Z., Bacanu, S.-A., Fraser, D., Warren, L.,
Aponte, J., Zawistowski, M., Liu, X., Zhang, H., Zhang, Y., Li, J., Li,
Y., Li, L., Woollard, P., Topp, S., Hall, M. D., Nangle, K., Wang, J.,
Abecasis, G., Cardon, L. R., Zöllner, S., Whittaker, J. C., Chissoe, S. L.,
Novembre, J., and Mooser, V. An abundance of rare functional variants in 202
drug target genes sequenced in 14,002 people. Science 337, 6090 (July 2012), 100–104.

136

https://www.genome.gov/27565109/The-Cost-of-Sequencing-a-Human-Genome
https://www.genome.gov/27565109/The-Cost-of-Sequencing-a-Human-Genome

[129] Newton, C. R., Graham, A., Heptinstall, L. E., Powell, S. J., Summers,
C., Kalsheker, N., Smith, J. C., and Markham, A. F. Analysis of any point
mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic
Acids Research 17, 7 (Apr. 1989), 2503–2516.

[130] Nicolae, M., Pathak, S., and Rajasekaran, S. LFQC: A lossless compression
algorithm for FASTQ files. Bioinformatics 31, 20 (Oct. 2015), 3276–3281.

[131] Numanagić, I., Bonfield, J. K., Hach, F., Voges, J., Ostermann, J., Al-
berti, C., Mattavelli, M., and Sahinalp, S. C. Comparison of high-throughput
sequencing data compression tools. Nature Methods (Dec. 2016).

[132] Numanagić, I., Malikić, S., Pratt, V. M., Skaar, T. C., Flockhart,
D. A., and Sahinalp, S. C. Cypiripi: Exact Genotyping of CYP2D6 Using High-
Throughput Sequencing Data. Bioinformatics 31, 12 (June 2015), i27–i34.

[133] Ochoa, I., Hernaez, M., and Weissman, T. Aligned genomic data compression
via improved modeling. Journal of Bioinformatics and Computational Biology 12, 6
(Dec. 2014), 1442002.

[134] Onsongo, G., Erdmann, J., Spears, M. D., Chilton, J., Beckman, K. B.,
Hauge, A., Yohe, S., Schomaker, M., Bower, M., Silverstein, K. A. T.,
and Thyagarajan, B. Implementation of Cloud Based Next Generation Sequencing
Data Analysis in a Clinical Laboratory. BMC Research Notes 7 (2014), 314.

[135] Oscarson, M., McLellan, R. A., Asp, V., Ledesma, M., Ruiz, M. L. B.,
Sinues, B., Rautio, A., and Ingelman-Sundberg, M. Characterization of a
novel CYP2A7/CYP2A6 hybrid allele (CYP2A6*12) that causes reduced CYP2A6
activity. Human Mutation 20, 4 (Oct. 2002), 275–283.

[136] Panserat, S., Mura, C., Gérard, N., Vincent-Viry, M., Galteau, M. M.,
Jacoz-Aigrain, E., and Krishnamoorthy, R. An Unequal Cross-over Event
within the CYP2D Gene Cluster Generates a Chimeric CYP2D7/CYP2D6 Gene
Which Is Associated with the Poor Metabolizer Phenotype. British Journal of Clinical
Pharmacology 40, 4 (Oct. 1995), 361–367.

[137] Paridaens, T., Panneel, J., De Neve, W., Lambert, P., and Van de Walle,
R. Leveraging CABAC for no-reference compression of genomic data with random
access support. In Data Compression Conference (DCC) (2016), IEEE Signal Pro-
cessing Society, pp. 625–625.

[138] Patro, R., and Kingsford, C. Data-dependent bucketing improves reference-free
compression of sequencing reads. Bioinformatics 31, 17 (Sept. 2015), 2770–2777.

[139] Pavlov, I. 7z Format. http://www.7-zip.org/7z.html.

[140] Pearson, W. R., and Lipman, D. J. Improved tools for biological sequence com-
parison. Proceedings of the National Academy of Sciences of the United States of
America 85, 8 (Apr. 1988), 2444–2448.

[141] Pianezza, M. L., Sellers, E. M., and Tyndale, R. F. Nicotine metabolism
defect reduces smoking. Nature 393, 6687 (June 1998), 750–750.

137

http://www.7-zip.org/7z.html

[142] Pratt, V. M., Everts, R. E., Aggarwal, P., Beyer, B. N., Broeckel, U.,
Epstein-Baak, R., Hujsak, P., Kornreich, R., Liao, J., Lorier, R., Scott,
S. A., Smith, C. H., Toji, L. H., Turner, A., and Kalman, L. V. Charac-
terization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes:
A GeT-RM Collaborative Project. The Journal of Molecular Diagnostics 18, 1 (Jan.
2016), 109–123.

[143] Pratt, V. M., Zehnbauer, B., Wilson, J. A., Baak, R., Babic, N., Bet-
tinotti, M., Buller, A., Butz, K., Campbell, M., Civalier, C., and others.
Characterization of 107 Genomic DNA Reference Materials for CYP2D6, CYP2C19,
CYP2C9, VKORC1, and UGT1A1: A GeT-RM and Association for Molecular Pathol-
ogy Collaborative Project. The Journal of Molecular Diagnostics 12, 6 (2010), 835–
846.

[144] Precision Medicine Initiative (PMI) Working Group. The Precision Medicine
Initiative Cohort Program – Building a Research Foundation for 21st Century
Medicine. Tech. rep.

[145] Pushkarev, D., Neff, N. F., and Quake, S. R. Single-molecule sequencing of
an individual human genome. Nature Biotechnology 27, 9 (Sept. 2009), 847–850.

[146] Ragoussis, J. Genotyping technologies for all. Drug Discovery Today: Technologies
3, 2 (2006), 115–122.

[147] Raimundo, S., Fischer, J., Eichelbaum, M., Griese, E. U., Schwab, M.,
and Zanger, U. M. Elucidation of the genetic basis of the common ’intermediate
metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics 10, 7 (Oct.
2000), 577–581.

[148] Raunio, H., Rautio, A., Gullstén, H., and Pelkonen, O. Polymorphisms of
CYP2A6 and its practical consequences. British Journal of Clinical Pharmacology 52,
4 (Oct. 2001), 357–363.

[149] Reuter, J. A., Spacek, D. V., and Snyder, M. P. High-Throughput Sequencing
Technologies. Molecular Cell 58, 4 (May 2015), 586–597.

[150] Rice, R., and Plaunt, J. Adaptive Variable-Length Coding for Efficient Compres-
sion of Spacecraft Television Data. IEEE Transactions on Communication Technology
19, 6 (Dec. 1971), 889–897.

[151] Riffel, A. K., Dehghani, M., Hartshorne, T., Floyd, K. C., Leeder, J. S.,
Rosenblatt, K. P., and Gaedigk, A. CYP2D7 Sequence Variation Interferes
with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping. Frontiers in Pharmacology 6
(2015), 312.

[152] Rissanen, J., and Langdon, Jr., G. Universal Modeling and Coding. IEEE Trans.
Inf. Theor. 27, 1 (Jan. 1981), 12–23.

[153] Rissanen, J. J. Generalized Kraft Inequality and Arithmetic Coding. IBM J. Res.
Dev. 20, 3 (May 1976), 198–203.

138

[154] Robarge, J. D., Li, L., Desta, Z., Nguyen, A., and Flockhart, D. A. The
star-allele nomenclature: Retooling for translational genomics. Clinical Pharmacology
and Therapeutics 82, 3 (Sept. 2007), 244–248.

[155] Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman,
S. D., Mungall, K., Lee, S., Okada, H. M., Qian, J. Q., Griffith, M.,
Raymond, A., Thiessen, N., Cezard, T., Butterfield, Y. S., Newsome, R.,
Chan, S. K., She, R., Varhol, R., Kamoh, B., Prabhu, A.-L., Tam, A., Zhao,
Y., Moore, R. A., Hirst, M., Marra, M. A., Jones, S. J. M., Hoodless,
P. A., and Birol, I. De Novo Assembly and Analysis of RNA-Seq Data. Nature
Methods 7, 11 (Nov. 2010), 909–912.

[156] Robinson, A. H., and Cherry, C. Results of a prototype television bandwidth
compression scheme. Proceedings of the IEEE 55, 3 (Mar. 1967), 356–364.

[157] Roguski, L., and Deorowicz, S. DSRC 2–Industry-oriented compression of
FASTQ files. Bioinformatics 30, 15 (Aug. 2014), 2213–2215.

[158] Sanger, F., Nicklen, S., and Coulson, A. R. DNA Sequencing with Chain-
Terminating Inhibitors. Proceedings of the National Academy of Sciences of the United
States of America 74, 12 (Dec. 1977), 5463–5467.

[159] Sayood, K. Introduction to Data Compression. Morgan Kaufmann Publishers, San
Francisco, 2000.

[160] Schloss, J. A. How to Get Genomes at One Ten-Thousandth the Cost. Nature
Biotechnology 26, 10 (Oct. 2008), 1113–1115.

[161] Schoedel, K. A., Hoffmann, E. B., Rao, Y., Sellers, E. M., and Tyn-
dale, R. F. Ethnic variation in CYP2A6 and association of genetically slow nicotine
metabolism and smoking in adult Caucasians. Pharmacogenetics 14, 9 (Sept. 2004),
615–626.

[162] Service, R. F. The Race for the $1000 Genome. Science 311, 5767 (Mar. 2006),
1544–1546.

[163] Seward, J. bzip2 and libbzip2. http://www.bzip.org/index.html.

[164] Shannon, C. E., and Weaver, W. The Mathematical Theory of Communication.
University of Illinois Press, Sept. 1998.

[165] Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski,
E. M., and Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic
Acids Res. 29 (Jan. 2001), 308–311.

[166] Sim, S. C., and Ingelman-Sundberg, M. The Human Cytochrome P450 (CYP)
Allele Nomenclature Website: A Peer-Reviewed Database of CYP Variants and their
Associated Effects. Human Genomics 4, 4 (Apr. 2010), 278–281.

[167] Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron,
M. J., Iyer, R., Schatz, M. C., Sinha, S., and Robinson, G. E. Big Data:
Astronomical or Genomical? PLoS Biology 13, 7 (July 2015), e1002195.

139

http://www.bzip.org/index.html

[168] Tange, O. GNU Parallel - The Command-Line Power Tool. ;login: The USENIX
Magazine 36, 1 (Feb. 2011), 42–47.

[169] Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J., and Prins, P. Sam-
bamba: Fast processing of NGS alignment formats. Bioinformatics 31, 12 (June
2015), 2032–2034.

[170] Tembe, W., Lowey, J., and Suh, E. G-SQZ: Compact encoding of genomic
sequence and quality data. Bioinformatics 26, 17 (2010), 2192–2194.

[171] The Cancer Genome Atlas Research Network, Weinstein, J. N., Collis-
son, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A., Ellrott,
K., Shmulevich, I., Sander, C., and Stuart, J. M. The Cancer Genome Atlas
Pan-Cancer Analysis Project. Nature Genetics 45, 10 (Oct. 2013), 1113–1120.

[172] The CRAM Format Specification Working Group. CRAM format specifica-
tion (version 3.0). http://samtools.github.io/hts-specs/CRAMv3.pdf.

[173] The International Warfarin Pharmacogenetics Consortium. Estimation of
the Warfarin Dose with Clinical and Pharmacogenetic Data. New England Journal
of Medicine 360, 8 (Feb. 2009), 753–764.

[174] The SAM/BAM Format Specification Working Group. Sequence Align-
ment/Map Format Specification. http://samtools.github.io/hts-specs/SAMv1.
pdf.

[175] Tremaine, L., Brian, W., DelMonte, T., Francke, S., Groenen, P., John-
son, K., Li, L., Pearson, K., and Marshall, J.-C. The Role of ADME Pharma-
cogenomics in Early Clinical Trials: Perspective of the Industry Pharmacogenomics
Working Group (I-PWG). Pharmacogenomics 16, 18 (Nov. 2015), 2055–2067.

[176] Twist, G. P., Gaedigk, A., Miller, N. A., Farrow, E. G., Willig, L. K.,
Dinwiddie, D. L., Petrikin, J. E., Soden, S. E., Herd, S., Gibson, M.,
Cakici, J. A., Riffel, A. K., Leeder, J. S., Dinakarpandian, D., and
Kingsmore, S. F. Constellation: A tool for rapid, automated phenotype assignment
of a highly polymorphic pharmacogene, CYP2D6, from whole-genome sequences. npj
Genomic Medicine 1 (Jan. 2016), 15007.

[177] Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del
Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D.,
Thibault, J., Banks, E., Garimella, K. V., Altshuler, D., Gabriel, S., and
DePristo, M. A. From FastQ data to high confidence variant calls: The Genome
Analysis Toolkit best practices pipeline. Current Protocols in Bioinformatics 11, 1110
(Oct. 2013), 11.10.1–11.10.33.

[178] Voges, J., Munderloh, M., and Ostermann, J. Predictive Coding of Aligned
Next-Generation Sequencing Data (Accepted for publication). In Data Compression
Conference (DCC) (2016). Accepted for publication.

[179] Wan, R., Anh, V. N., and Asai, K. Transformations for the compression of FASTQ
quality scores of next-generation sequencing data. Bioinformatics 28, 5 (2012), 628–
635.

140

http://samtools.github.io/hts-specs/CRAMv3.pdf
http://samtools.github.io/hts-specs/SAMv1.pdf
http://samtools.github.io/hts-specs/SAMv1.pdf

[180] Wang, Y., Yang, Q., and Wang, Z. The Evolution of Nanopore Sequencing.
Frontiers in Genetics 5 (2014), 449.

[181] Wassenaar, C. A., Zhou, Q., and Tyndale, R. F. CYP2A6 genotyping methods
and strategies using real-time and end point PCR platforms. Pharmacogenomics 17,
2 (Dec. 2015), 147–162.

[182] Watson, M. Illuminating the Future of DNA Sequencing. Genome Biology 15, 2
(2014), 108.

[183] Welch, T. A. A Technique for High-Performance Data Compression. Computer 17,
6 (June 1984), 8–19.

[184] Wikipedia, The Free Encyclopedia. Burrows–Wheeler transform. In Bur-
rows–Wheeler Transform. Mar. 2016. https://en.wikipedia.org/w/index.php?t
itle=Burrows%E2%80%93Wheeler_transform&oldid=707982608.

[185] Worthey, E. A., Mayer, A. N., Syverson, G. D., Helbling, D., Bonacci,
B. B., Decker, B., Serpe, J. M., Dasu, T., Tschannen, M. R., Veith, R. L.,
Basehore, M. J., Broeckel, U., Tomita-Mitchell, A., Arca, M. J., Casper,
J. T., Margolis, D. A., Bick, D. P., Hessner, M. J., Routes, J. M., Verbsky,
J. W., Jacob, H. J., and Dimmock, D. P. Making a Definitive Diagnosis: Suc-
cessful Clinical Application of Whole Exome Sequencing in a Child with Intractable
Inflammatory Bowel Disease. Genetics in Medicine: Official Journal of the American
College of Medical Genetics 13, 3 (Mar. 2011), 255–262.

[186] Wu, T. D., and Nacu, S. Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics 26, 7 (Apr. 2010), 873–881.

[187] Yang, Y., Muzny, D. M., Reid, J. G., Bainbridge, M. N., Willis, A., Ward,
P. A., Braxton, A., Beuten, J., Xia, F., Niu, Z., Hardison, M., Person, R.,
Bekheirnia, M. R., Leduc, M. S., Kirby, A., Pham, P., Scull, J., Wang, M.,
Ding, Y., Plon, S. E., Lupski, J. R., Beaudet, A. L., Gibbs, R. A., and Eng,
C. M. Clinical Whole-Exome Sequencing for the Diagnosis of Mendelian Disorders.
The New England Journal of Medicine 369, 16 (Oct. 2013), 1502–1511.

[188] Yanovsky, V. ReCoil - an Algorithm for Compression of Extremely Large Datasets
of DNA Data. Algorithms Mol Biol 6 (Oct. 2011), 23.

[189] Zhang, Y., Li, L., Yang, Y., Yang, X., He, S., and Zhu, Z. Light-weight
reference-based compression of FASTQ data. BMC Bioinformatics 16, 1 (June 2015).

[190] Zhang, Y., Patel, K., Endrawis, T., Bowers, A., and Sun, Y. A FASTQ
compressor based on integer-mapped k-mer indexing for biologist. Gene 579, 1 (Mar.
2016), 75–81.

[191] Zhou, S.-F. Polymorphism of human cytochrome P450 2D6 and its clinical signifi-
cance. Clinical Pharmacokinetics 48, 12 (2009), 761–804.

[192] Ziv, J., and Lempel, A. A Universal Algorithm for Sequential Data Compression.
IEEE Transactions on Information Theory 23, 3 (1977), 337–343.

141

https://en.wikipedia.org/w/index.php?title=Burrows%E2%80%93Wheeler_transform&oldid=707982608
https://en.wikipedia.org/w/index.php?title=Burrows%E2%80%93Wheeler_transform&oldid=707982608

[193] Ziv, J., and Lempel, A. Compression of Individual Sequences via Variable-Rate
Coding. IEEE Transactions on Information Theory 24, 5 (1978), 530–536.

[194] Zook, J. M., Chapman, B., Wang, J., Mittelman, D., Hofmann, O., Hide,
W., and Salit, M. Integrating human sequence data sets provides a resource of
benchmark SNP and indel genotype calls. Nature Biotechnology 32 (2014), 246–251.

142

Appendix A

DeeZ Materials

The following reference genomes were used:

• UCSC H.Sapiens hg19 (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZ
ips/chromFa.tar.gz)

• P.aeruginosa PAO1 chromosome
(http://www.ncbi.nlm.nih.gov/nuccore/110645304)

• E.Coli DH10B (https://raw.githubusercontent.com/allanroscoche/PathTree/m
aster/data/DH10B_WithDup_FinalEdit_validated.fasta)

The following parameters were used for the invocation of each tool:

Gzip Compression: gzip input.sam -c >input.gz;
Decompression: gzip -d input.gz -c >input_dc.sam

SAMtools v0.1.19 Compression: samtools view -bS input.sam >input.bam;
Decompression: samtools view -h input.bam >input.sam

Cramtools v2.0 Compression: java -Xmx8g -jar cramtools-2.0.jar cram -I
input.sam –capture-all-tags –input-is-sam -Q -n -R reference.fa
>input.cram;
Decompression: java -Xmx8g -jar cramtools-2.0.jar bam -I input.cram
–print-sam-header -R reference.fa >input_dc.sam

Scramble v1.13.7 Compression: scramble -I sam -O cram -r reference.fa
input.sam >input.scr;
Decompression: scramble -I cram -O sam -r reference.fa input.scr
>input_dc.sam

Quip v1.1.6 Compression: quip input.sam -c >input.qp;
Decompression: quip input.qp –output=sam -d -c >input_dc.sam.
Reference-based invocation included -r reference.fa parameter.

143

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz
http://www.ncbi.nlm.nih.gov/nuccore/110645304
https://raw.githubusercontent.com/allanroscoche/PathTree/master/data/DH10B_WithDup_FinalEdit_validated.fasta
https://raw.githubusercontent.com/allanroscoche/PathTree/master/data/DH10B_WithDup_FinalEdit_validated.fasta

sam_comp v0.7 and v0.8 Compression: sam_comp <input.sam >input.zam;
Decompression: sam_comp -d <input.zam >input_dc.sam.
Reference-based invocation included sam_comp -r reference.

Goby v2.3.4 Compression: java -Xmx8g -jar goby.jar -m stc
–preserve-all-mapped-qualities –preserve-all-tags
–preserve-soft-clips –preserve-read-names
-x AlignmentWriterImpl:permutate-query-indices=false
-x SAMToCompactMode:ignore-read-origin=false
-x MessageChunksWriter:codec=hybrid-1
-x AlignmentCollectionHandler:enable-domain-optimizations=true
-x MessageChunksWriter:compressing-codec=true -g reference.fa
-i input.sam -o input.goby;
Decompression: java -Xmx8g -jar goby.jar -m cts -g reference.fa
input.goby -o input_dc.sam.sam

DeeZ Compression: deez -r reference.fa input.sam -c >input.dz;
Decompression: deez -r reference.fa input.dz -c >input_dc.sam.
sam_comp mode included -q1 parameter.
Lossy quality mode included -l30 parameter.

144

Appendix B

Compression Benchmarking
Materials

145

Table B.1: A summary of evaluated tools and their versions.

Tool Version URL
pigz 2.3.3 http://zlib.net/pigz/pigz-2.3.3.tar.gz
bzip2 1.0.6 http://www.bzip.org/1.0.6/bzip2-1.0.6.tar.gz
pbzip2 1.1.12 https://launchpad.net/pbzip2/1.1/1.1.12/+download/pbzip2-1.1.12.tar.gz
Cramtools 0c89dd8 https://github.com/enasequence/cramtools.git
Scramble 1.14.6 http://sourceforge.net/projects/staden/files/io_lib/1.14.0/io_lib-1.14.0.tar.gz/download
Sambamba 0.6.0 https://github.com/lomereiter/sambamba/releases/download/v0.6.0/sambamba_v0.6.0_linux.tar.bz2
Samtools e2bb18f https://github.com/samtools/samtools
HTS Lib 897a34f https://github.com/samtools/htslib
sam_comp 0.7 http://sourceforge.net/projects/samcomp/files/latest/download
TSC 1.5 N/A
CBC d18afbb https://github.com/mikelhernaez/cbc
Picard 1.138 https://github.com/broadinstitute/picard/releases/download/1.138/picard-tools-1.138.zip
Quip 629f6fc https://github.com/dcjones/quip
DeeZ abc6dc8 (v1.9 beta 1) https://github.com/sfu-compbio/deez
Fqzcomp 4.6 http://sourceforge.net/projects/fqzcomp/files/latest/download
DSRC2 5eda82c https://github.com/lrog/dsrc
Fastqz 15 / 39b2bbc https://github.com/fwip/fastqz
Slimfastq f55ae88 https://github.com/Infinidat/slimfastq
BEETL 6c240ea https://github.com/BEETL/BEETL
ORCOM 6280813 https://github.com/lrog/orcom
LFQC 1.1 (b6bc1b8) https://github.com/mariusmni/lfqc
k-Path 0.6.3 http://www.cs.cmu.edu/~ckingsf/software/pathenc/kpath-0.6.3.tar.gz
Mince 3ddc3a1 https://github.com/Kingsford-Group/mince
LW-FQZip 1.02 http://csse.szu.edu.cn/staff/zhuzx/LWFQZip/LWFQZip-v1.02.zip
FQC 3.0c http://metagenomics.atc.tcs.com/Compression_archive/FQC/FQC_LINUX_64bit.tar.gz
Leon 1.0.0 http://gatb-tools.gforge.inria.fr/versions/src/leon-1.0.0-Source.tar.gz
SCALCE ef1bc4c (v2.8) https://github.com/sfu-compbio/scalce.git
SRA 2.5.2 http://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/2.5.2/sratoolkit.2.5.2-centos_linux64.tar.gz

146

http://zlib.net/pigz/pigz-2.3.3.tar.gz
http://www.bzip.org/1.0.6/bzip2-1.0.6.tar.gz
https://launchpad.net/pbzip2/1.1/1.1.12/+download/pbzip2-1.1.12.tar.gz
https://github.com/enasequence/cramtools.git
http://sourceforge.net/projects/staden/files/io_lib/1.14.0/io_lib-1.14.0.tar.gz/download
https://github.com/lomereiter/sambamba/releases/download/v0.6.0/sambamba_v0.6.0_linux.tar.bz2
https://github.com/samtools/samtools
https://github.com/samtools/htslib
http://sourceforge.net/projects/samcomp/files/latest/download
https://github.com/mikelhernaez/cbc
https://github.com/broadinstitute/picard/releases/download/1.138/picard-tools-1.138.zip
https://github.com/dcjones/quip
https://github.com/sfu-compbio/deez
http://sourceforge.net/projects/fqzcomp/files/latest/download
https://github.com/lrog/dsrc
https://github.com/fwip/fastqz
https://github.com/Infinidat/slimfastq
https://github.com/BEETL/BEETL
https://github.com/lrog/orcom
https://github.com/mariusmni/lfqc
http://www.cs.cmu.edu/~ckingsf/software/pathenc/kpath-0.6.3.tar.gz
https://github.com/Kingsford-Group/mince
http://csse.szu.edu.cn/staff/zhuzx/LWFQZip/LWFQZip-v1.02.zip
http://metagenomics.atc.tcs.com/Compression_archive/FQC/FQC_LINUX_64bit.tar.gz
http://gatb-tools.gforge.inria.fr/versions/src/leon-1.0.0-Source.tar.gz
https://github.com/sfu-compbio/scalce.git
http://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/2.5.2/sratoolkit.2.5.2-centos_linux64.tar.gz

Table B.2: A summary of crashes and incorrect output observed in some tools. Dark green
indicates perfect decompression. Light green indicates cosmetic changes in the output file (e.g. lack
of comments, different optional field order etc.). Orange indicates slightly higher level of corruption,
with a small impact to the original file (e.g. slightly modified paired-end information, different read
identifiers etc.). Magenta indicates either crash or completely corrupted output files.

Sample SRR554369 SRR327342 MH0001.081026SRR1284073 SRR870667 ERR174310 ERP001775
DSRC2 Does not

support vari-
able read
lengths

Not tested

Does not support comment fieldFqzcomp Crashes
during de-
compression

Invalid N
qualities

Crashes
during de-
compression

Does not
support vari-
able read
lengths

Crashes
during de-
compression

Invalid N
qualities

Not tested

Fastqz Crashes during compression: cannot read FASTQ files with comments Invalid out-
put

Not tested

Slimfastq Does not
support vari-
able read
lengths

FQC Not tested
Does not support FASTQ commentsLFQC Invalid out-

put
Decompression
too slow

Compression
too slow

Not tested

Does not support comment field and read identifier comments
Invalid N qualitiesSCALCE

Invalid out-
put

LW-FQZip Slight read
identifier
and com-
ment field
corruption

Slight read
identifier
and com-
ment field
corruption

Crashes dur-
ing compres-
sion

Does not
support vari-
able read
lengths

Slight read
identifier
and com-
ment field
corruption

Crashes dur-
ing compres-
sion

Not tested

Quip Does not support FASTQ comments
Does not support FASTQ commentsLeon Slightly

corrupted
output

KIC Not tested
Orcom Does not

support vari-
able read
lengths

BEETL Does not
support vari-
able read
lengths

Not tested

k-Path Does not
support vari-
able read
lengths

Not tested

Mince Does not
support
paired-end
library with
different
read sizes

Wrong result Does not
support vari-
able read
lengths

Not tested

(a) FASTQ tools

Sample DH10B 9827.2.49 sample-2-
1

K562.LID8465dm3 NA12878.PBHCC1954 NA12878.S1

RG, MD and NM tags are changed or ignored in the reference mode (with default parameters) Invalid
qualitiesScramble SAM comment is slightly modified and
CIGARs
are ignored

Picard SAM comment is slightly modified Not tested
Sambamba SAM comment is slightly modified
CBC Crashes during compression (authors working on the fix)

Slight, non-functional modifications to the paired-end information
Order of optional fields is changedQuip

Reference
mode can-
not handle
invalid
mappings

Reference
mode can-
not handle
invalid
mappings

Reference
mode can-
not handle
invalid
mappings

Reference
mode can-
not handle
invalid
mappings

RG, MD and NM tags are changed or ignored in the reference mode Not tested
SAM comment is slightly modifiedCramtools
Paired-end information is modified

sam_comp Paired-end information and optional fields are ignored

(b) SAM tools

147

Appendix C

Cypiripi Materials

The NA12878 assembly was accessed from http://sv.gersteinlab.org/NA12878_diploi
d/. The Illumina HiSeq runfile for simNGS was obtained from http://www.ebi.ac.uk/go
ldman-srv/simNGS/runfiles/101cycleHiSeq/s_3_4x.runfile.

simNGS was invoked as:

simLibrary -x [coverage] [fasta] | simNGS -o fastq -p paired [runfile]

Cypiripi was invoked as:

cypiripi -C [coverage] -T [eta] -r [library] -s [mapping.sam]

Fusion datasets were run with the addition of -F parameter.

148

http://sv.gersteinlab.org/NA12878_diploid/
http://sv.gersteinlab.org/NA12878_diploid/
http://www.ebi.ac.uk/goldman-srv/simNGS/runfiles/101cycleHiSeq/s_3_4x.runfile
http://www.ebi.ac.uk/goldman-srv/simNGS/runfiles/101cycleHiSeq/s_3_4x.runfile

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Contributions
	Thesis organization

	Background on Sequence Compression
	Sequence File Formats
	FASTQ
	SAM and BAM

	General Overview of Compression Strategies
	Data transformations
	Probabilistic modelling
	Coding techniques

	FASTQ Compression Tools
	General FASTQ tools
	Reordering tools
	Alignment tools

	SAM Compression Tools
	Reference-based Tools

	Conclusion

	Reference-based Compression by Local Assembly
	Methods
	Reads and CIGAR strings
	Read Names
	Quality Scores
	Mapping Locations
	Other Features

	Results
	Quality scores

	Conclusion

	Comparison of High Throughput Sequencing Data Compression Tools
	Summary of Available Tools
	Criteria for Dataset and Tool Selection
	General Criteria
	Tool Selection Criteria
	Dataset Selection Criteria
	Data set files

	Results
	Experimental Setup
	FASTQ
	SAM

	Conclusion

	Background on ADMER Genotype Inference
	Few Examples of ADMER Genes
	CYP2D6 Gene
	CYP2A6 Gene

	Genotyping Platforms
	PCR-based Methods
	Sequencing-based Methods

	Computational HTS Genotyping Methods
	Conclusion

	Exact genotyping of CYP2D6 gene using high throughput sequencing data
	Methods
	Library preparation
	Read alignment
	Filtering
	Combinatorial optimization

	Results
	Simulations
	Real data

	Conclusion

	Exact genotyping of ADMER genes using PGRNseq sequencing data
	Methods
	Read Mapping
	Copy number estimation
	Protein identification
	Genotype refining
	Complexity

	Results
	Experimental data
	Discussion
	Novel alleles

	Conclusion

	Conclusion
	Future Work

	Bibliography
	Appendix DeeZ Materials
	Appendix Compression Benchmarking Materials
	Appendix Cypiripi Materials

