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Abstract

In a cluster randomized trial studying a primary outcome patients are sometimes exposed to

competing events. These are risks that alter the probability of the primary outcome occurring.

Traditional methods of estimating the cumulative incidence for an outcome and its associated

confidence interval under competing risks do not account for the effect of clustering. This may

cause incorrect estimation of confidence intervals because outcomes among patients from the

same center are correlated. This thesis compared six nonparametric methods of confidence

interval construction for cumulative incidence, four of which account for clustering effect,

under competing risks via simulation study. Over the range of examined scenarios, if the

clustering effect is mild (i.e. ICC = 0.01), estimators not accounting for clustering never have

significantly worse coverage than those that do. However, in cases with a large clustering

effect (i.e. ICC = 0.05), using confidence interval estimators accounting for clustering should

be considered.

Keywords: Competing Risks; Clustering; Cumulative Incidence Function.
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Chapter 1

Introduction

1.1 The Competing Risks Setting
Competing risks data occur whenever study subjects are at risk of experiencing one of

several mutually exclusive events (Kalbfleisch and Prentice, 2002). This situation contrasts

with the classical setting of survival data where subjects are assumed to experience only one

type of event or where an event is composite (e.g. the event is death due to any cause).

Methodology to analyze competing risks data goes back at least to 1776 when Daniel

Bernoulli estimated the increase in life expectancy due to the elimination of smallpox mortality

(Dietz and Heesterbeek, 2002). A brief summary of clinical and methodological questions that

motivated the development of competing risks theory is provided by Birnbaum (1979). Prior to

Kalbfleisch and Prentice (1980), most competing risks methodology used latent failure models

that required specifying the degree of dependence between the hypothetical failure times of

each competing risk. Such assumptions cannot be checked from the data, which only contains

the failure time and the type of failure. Kalbfleisch and Prentice (1980) argued in favour of

modeling based on directly estimable quantities from observed data alone. In this thesis, all

modeling and estimation will follow this strategy.

In clinical studies with time-to-event data, one of the main interests is estimating the cu-

mulative distribution function of a particular event, i.e. P(T ≤ t), the probability of the event

1



Chapter 1. Introduction 2

T occurring by time t (Satagopan, 2004). In the traditional survival setting, when there is

only one type of event and patients are followed until they experience it or are censored, an

estimator of P(T ≤ t) can be obtained using the Kaplan-Meier method (Kaplan and Meier,

1958). The Kaplan-Meier method can also be applied in a competing risks setting to determine

the cumulative distribution by treating outcomes other than the risk of interest as censored.

This is not always advisable. Indeed, several articles have been recently published cautioning

against this strategy in the statistical analysis of survival data both in medical (Bakoyannis and

Touloumi 2012, Koller et al. 2010, Wolkewitz 2014) and epidemiological research (Ander-

sen, 2011). The main reason is that use of the traditional methods of survival analysis, such

as the Kaplan-Meier method, for competing risks data, could lead to inconsistent estimators

of the probability of experiencing the event. Such methods consistently estimate cumulative

distribution under the assumption of the independence of the competing risks. This is not al-

ways an unreasonable assumption. There may sometimes be valid reasons to assume risks are

independent. For example, when patients who enter a study at different times are administra-

tively censored, we need not assume this alters their probability of experiencing an outcome

of clinical interest. But there are many situations in which such an independence assumption

is unreasonable. Consider for example, a trial interested in an event such as death due to a

cancer occurring mostly in elderly patients. If patients enrolled in the trial die from some other

chronic disease (e.g. stroke), it would be inappropriate to still use the Kaplan-Meier estimator

and treat these deaths as censored, as the censoring is likely informative since both cancer and

stroke incidence increase with age. To treat death from illnesses caused by aging as censoring

would underestimate the probability of experiencing the event of interest (Wolkewitz, 2014).

There are also examples where treating a competing risk as censoring can underestimate the

probability of survival. Moeschberger (1995) points out as an example of this, the competing

risk of patients who drop out of a study and move because they have been experiencing success

with the therapy.

Just as one wishes to estimate the cumulative distribution function in the traditional survival
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setting, in the competing risks setting one wishes to estimate the cumulative incidence function

(CIF) of a particular risk. If there are k possible event types, the cumulative incidence for risk

i is defined as Fi(t) = P(T ≤ t,R = i), where T denotes the random variable for the time to the

first event and R is a random variable specifying the event type that occurred ranging from 1 to

k. A nonparametric cumulative incidence estimator which accounts for competing events was

proposed by Kalbfleisch and Prentice (1980).

Pocock (2007) observes that in the reporting of results from time-to-event studies, displays

of statistical uncertainty in plots of Kaplan-Meir curves are often absent. This may lead to

the over interpretation of treatment difference. Thus it should be encouraged when reporting

the results of a study where competing risks data are analyzed to have not only an estimate

of the cumulative incidence function, but also a value of the precision of the estimate. For

example, in a study on contraceptive use in developing countries, the competing risks examined

were three possible reasons for stopping contraceptives. It was of interest to estimate the

risk of, and a confidence interval for, each of the reasons of discontinuation one year after

administration of the contraceptive (Choudry, 2002). Methods for estimating the variance of

an estimate of the cumulative incidence (and thus for specifying confidence intervals) have

existed since at least Aalen (1978). However, only relatively recently have simulation studies

been conducted comparing the performance of variance estimators for the cumulative incidence

function (Choudry 2002, Braun and Yuan 2007, Iljon 2013). Iljon (2013) states that previous

work has not addressed the question of one-arm estimation because researchers usually focus

on comparing two treatment arms using tests that do not require estimation of cumulative

incidence.

Moreover, the methods developed to estimate the variance of the cumulative incidence

function assume that there is no correlation in the event times of observations, which may not

always be the case. Consider the following scenarios:

1. Antibiotic Treatment for Pneumonia in Stroke patients: Patients from different cen-

tres are cluster randomized to be given antibiotics and standard treatment or standard
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treatment alone. Patients were followed until they are discharged from hospital or expe-

rience the competing risk death (Kalra et al., 2015).

2. Bone Marrow Transplantation for Leukemia: Patients with Leukemia from different

transplantation centres received a bone marrow transplant. Patients were followed until

the development of graft versus host disease (GVHD), the primary outcome, or death

from another cause, the competing event (Zhou et al., 2012).

3. Hormonal Therapy for Prostate Cancer: Patients from different centres are followed

until death from prostate cancer, the primary outcome, or death from another cause, the

competing event (Messing et al., 1999).

In cases where patients come from different centers, as in the examples above, there will

likely be a correlation in response between patients from the same center. This is because

individuals from the same center are more likely to be treated by the same clinician, or be from

the same geographical area, and thus share environmental and lifestyle factors. For binary and

quantitative outcomes, the degree of similarity among responses within a cluster, known as

within-cluster correlation, can be measured by a parameter called the intracluster correlation

coefficient (ICC) (Donner and Klar, 2000). For binary and quantitative outcomes, unbiased

ICC estimators are easily derived using analysis of variance (ANOVA). This may not be true

for time-to-event data however. Kalia (2015) showed ANOVA ICC estimators for time-to-event

data are negatively biased for clustered outcomes.

Clustering effects are also of significant concern in cluster randomized trials when intact

social units (e.g. hospitals, communities), called clusters, are randomized into treatment arms.

The results of this thesis are particularly important for cluster randomized trials with competing

risks endpoints, such as the antibiotic treatment for pneumonia in stroke patients trial described

in Kalra et al. (2015).

Adjustments to competing risks methods have been made to account for clustering in the

case of regression (Zhou et al., 2012), and at least one variance estimator for the cumulative
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incidence function in a clustered setting has been developed (Chen et al., 2008). But very little

has been written on how to estimate the variance of the cumulative incidence function when

outcomes are clustered, and no study has been performed comparing methods of confidence

interval construction in a clustered competing risks setting. This is despite the extension of

the Consort statement (Campbell et al., 2012) to cluster randomized trials which stresses the

importance of reporting 95% confidence intervals for summary measures of primary outcomes

such as means, risks, and rates.

1.2 Focus of Thesis
We are concerned with confidence interval estimation of a cumulative incidence function

constructed for one sample under clustering. While parametric methods exist to estimate the

cumulative incidence function and confidence intervals, both in the presence and absence of

clustering, parametric estimators require possibly incorrect assumptions about the underlying

survival distribution. Thus the focus of this thesis will be limited to nonparametric methods of

estimation. Confidence interval estimates for a point in time on the cumulative incidence func-

tion will be constructed from a point estimate and variance estimate for the cumulative inci-

dence function. We focus on 95% intervals because these are frequently reported and Campbell

et al. (2012) recommend their reporting.

We will estimate Fi(t), the cumulative incidence function for risk i, using the nonparametric

estimator described by Kalbfliesh and Prentice (1980). It has the advantage of always being

less than the complement of the Kaplan-Meier estimator (1-KM) (Pintelle, 2006).

1.3 Objectives of Thesis
This thesis has two goals:

1. To compare methods of nonparametric variance estimation and methods of confidence

interval construction based on robust variance estimators for the cumulative incidence

function assuming clustered competing risks data. This comparison is based on a simu-

lation study. Bias of variance estimators will also be compared. The confidence interval
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estimators will be compared on coverage, percentage missed left and right of the interval,

and interval length. Parameter values for the data generated for the simulation study will

be informed by the example datasets: e.g. number of competing risks, the cluster size

and number of clusters, and the degree of within-cluster correlation.

2. To apply methods of confidence interval construction to the analysis of the Bone Marrow

Transplantation (Zhou et al., 2012) and Hormonal Therapy for Prostate Cancer (Messing

et al., 1999) datasets introduced above.

1.4 Organization of Thesis
This thesis includes six chapters. This first chapter provides the rationale and thesis ob-

jectives introducing the key competing risks challenges for clustered data. Additional context

and background for methods compared in the simulation study is provided in Chapter 2. Chap-

ter 3 outlines the design of the simulation study while the results of the simulation study are

described in Chapter 4. These results are illustrated in Chapter 5 using data from the trials

introduced in Section 1.1. Thesis results are summarized in Chapter 6, where the limitations of

this study and possible future research topics also are discussed.



Chapter 2

Literature Review

2.1 Introduction
This chapter describes in more detail the estimator for the cumulative incidence and asso-

ciated variance estimators to be compared via simulation study in Chapter 4. Including this

introductory section, there are six sections in this chapter. Section 2.2 describes the specific

study design to which the methods will be applied, while Section 2.3 introduces the mathemat-

ical notation used in the thesis. Next, Section 2.4 presents estimators of cumulative incidence

and variance estimators used to construct confidence intervals through the transformations de-

scribed in Section 2.5. Finally, Section 2.6 summarizes the chapter.

2.2 Thesis Setting
The aim of this thesis is to compare methods of confidence interval construction for the

one sample cumulative incidence function using competing risks data from patients treated

at different centers. Only administrative censoring is assumed to occur and between center

differences are assumed to vary at random (i.e. within-center times are positively correlated).

For the remainder of this thesis we will, for clarity of presentation, examine only estimating

the cumulative incidence function of the first risk (i.e. study outcome of interest), and will be

examining scenarios where there is a study outcome and one competing event. The discussion

is generalizable to more than one competing risk and to the cumulative incidence function of

7
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any event. Moreover, we make no assumptions about the dependence of the competing risks or

degree of correlation between responses from the same cluster. That is, our focus is limited to

nonparametric estimation of variance. We will exclude ANOVA estimators of variance which

attempt to estimate intracluster correlation as these have been found to be biased for time-to-

event data (Kalia, 2015).

2.3 Notation
Denoting the number of clusters in a study C, we let the number of subjects in cluster c be

Nc at study entry, for c ∈ {1, ...,C}. The total sample size at study entry is denoted N and thus,

N = N1 + ...+ NC .

For i ∈ {1, ...,Nc}, the time-to-event and censoring variables for the ith subject from cluster c

is denoted: (tci, δci), where tci is the time at which an event is observed or the observation is

censored; δci = 1 if the study outcome occurred, δci = 2 if the competing event occurred, and

δci = 0 if the event was censored.

Let M denote the number of unique event-times when subjects failed from either cause. All

subjects are assumed to enter the study at the same time, prior to random assignment, denoted

t0 = 0. Let t1 < t2 < ... < t j < ... < tM be the unique observed times at which (possibly more than

one) failure occurs.

For j ∈ {1, ...M}, c ∈ {1, ...C}, and i ∈ {1, ...Nc}, let d1ci(t j) = 1 if subject i of cluster c fails at

time t j of the study outcome and d1ci(t j) = 0 otherwise; d2ci(t j) = 1 if subject i of cluster c fails

at time t j of the competing risk and d2ci(t j) = 0 otherwise; nci(t j) = 1 if subject i of cluster c is

still at risk at (or immediately before) time t j and nci(t j) = 0 otherwise.

Then at time t j the number of failures from the study outcome is d1 j =
∑C

c=1
∑NC

i=1 d1ci(t j); the

number of failures from the competing risk is d2 j =
∑C

c=1
∑NC

i=1 d2ci(t j); the number of failures

of any type at time t j is d j = d1 j + d2 j; and the number of individuals still at risk is n j =∑C
c=1

∑NC
i=1 nci(t j).

Also note, the number of observations in the study is N =
∑C

c=1
∑NC

i=1 nci(t0), the total number

of failures from the study outcome, d1 =
∑M

j=1
∑C

c=1
∑NC

i=1 d1ci(t j), while the total number of
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failures from the competing risk, d2 =
∑M

j=1
∑C

c=1
∑NC

i=1 d2ci(t j). Note M ≤ d1 + d2 ≤ N.

2.4 Competing Risks Estimators

2.4.1 Estimating the Cumulative Incidence Function

In the absence of competing risks, the cumulative distribution function is defined as P(T ≤

t) = 1− S (t), where S (t) is the survival function. An estimator of the cumulative distribution

function is 1-KM, where KM is the Kaplan-Meier survival estimator. We discussed in Chapter

1 that this estimator may be inappropriate in the presence of competing risks.

In a competing risks setting, the cumulative incidence function for the study outcome is

defined as F1(t) = P(T ≤ t,R = 1), where T is a random variable for the time to the first event

and R is a discrete random variable specifying the type of event that occurred. R = 1 denotes

the event of interest occurred, and R = 2 denotes the competing event occurred. Unlike a setting

where there are no competing risks, the cumulative incidence function does not converge to 1

as t→∞, but instead, F1(∞) = P(R = 1).

The cumulative incidence function may be written in terms of the subhazards of the study

outcome and competing risk (denoted λ1(t) and λ2(t) respectively). For i = 1,2, the subhazard

for risk i, the instantaneous event rate, is defined as:

λi(t) = lim
∆→0

P[t ≤ T < t +∆|T ≥ t,R = i]
∆

(2.1)

The overall survival function, that is, the probability of being event free from any cause,

can then be written as:

S (t) = exp
[
−

∫ t

0

(
λ1(v) +λ2(v)

)
dv

]
(2.2)

And the cumulative incidence function of the event of interest is:

F1(t) =

∫ t

0
λ1(u)S (u)du (2.3)
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Klein and Andersen (2005) note that the cause specific hazard and the cumulative incidence

function require no assumptions about the dependence structure of the competing risks and that

both can be estimated from the observed data, as opposed to being modeled from unverifiable

assumptions. Because the focus of this thesis is on nonparametric methods of estimation, we

will not discuss the model-based methods of estimating competing risks. For model-based

methods of estimating competing risks see, for example, Chapter 4 of Birnbaum (1979).

As shown in equation (2.3) the cumulative incidence can be written in terms of S (t), the

event-free probability of survival, and λ1(t) the subhazard of risk 1, so an estimator for the

cumulative incidence is given by an estimator for each function.

The formal derivation of these estimators is based on Aalen (1978) and Aalen and Johnson

(1982). However, Pintelle (2006) and Gooley (1999) both provide heuristic justifications. That

is, the Kaplan-Meier estimator can be used to estimate survival, and d1 j/n j can be used to

estimate the hazard of the study outcome at time t j. Substituting these estimators into equation

(2.3) gives the following estimator for the cumulative incidence for the first competing risk:

F̂1(t j) =

j∑
p=1

d1p

np
Ŝ (tp−1) (2.4)

where

Ŝ (t j) =

j∏
p=1

(
1−

d1p + d2p

np

)
(2.5)

and we define Ŝ (t0) = 1.

This estimator is consistent when there is no clustering and it is the nonparametric maxi-

mum likelihood estimator (Pintelle 2006; Section 4.2.2). The estimator is also available in stan-

dard statistical software (the R package “cmprsk”, SAS 9.4 under “PROC phreg”, and STATA

14.0 under “stcompet”). Chen et al. (2008) show that F̂1(t) remains consistent for clustered

event times, using the results of Speikerman and Lin (1998), as the number of clusters grows

large, for a fixed cluster size. Since the three examples motivating this thesis presented in the

introduction all have a large number of clusters relative to cluster size, we should not have

too much concern about the bias of the point estimator in calculating confidence intervals for
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our purposes. However, it is well known that the Kaplan-Meier estimator is biased under cen-

soring, and thus the estimator shown in equation (2.4) is also biased, but Chen et al. (2008)

showed the bias of this estimator is under < 0.02 absolute bias, under wide ranges of clustering

and for cumulative incidence values between 0.1 to 0.5.

2.4.2 Variance Estimators Under Independence

Braun and Yuan (2007) performed a simulation study comparing six variance estimators

for the cumulative incidence function where times to event were independent. Estimators

were classified into two groups: those derived by counting process theory developed by Aalen

(1978), and those based on the multinomial distribution. Explicit formulas of two estimators

of each type are provided by Pintelle (2006; Section 4.2.4).

A variance estimator of the cumulative incidence function at time t j (i.e. F̂1(t j)) derived

using counting process theory is:

v̂arcp(F̂1(t j)) =

j∑
p=1

[F̂1(t j)− F̂1(tp)]2 dp

(np−1)(np−dp)

+

j∑
p=1

Ŝ (tp−1)2 d1p(np−d1p)

(np−1)n2
p

−2
j∑

p=1

[F̂1(t j)− F̂1(tp)]Ŝ (tp−1)
d1p(np−d1p)

np(np−dp)(np−1)

(2.6)

while a variance estimator derived using a multinomial approach is:

v̂armult(F̂1(t j)) =

j∑
p=1

[F̂1(t j)− F̂1(tp)]2 dp

np(np−dp)

+

j∑
p=1

Ŝ (tp−1)2 d1p(np−d1p)

n3
p

−2
j∑

p=1

[F̂1(t j)− F̂1(tp)]Ŝ (tp−1)
d1p

n2
p

(2.7)

.
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Equation (2.7) reduces to Greenwood’s formula for the variance of the survival function

when there are no competing risks (Pintelle, 2006). We notice only a slight difference in the

three terms on the right hand side of equations (2.6) and (2.7). The first and second terms of

equation (2.6) will always be greater than the first and second term in equation (2.7). This is

because 1/(np − 1) is replaced by 1/(np) whenever it is found. This is also true of the third

term, but in equation (2.6) there is the added multiplicand (np − d1p)/(np − dp). This term is

always less than or equal to 1. These opposing scalar effects mean there is no statement we can

make comparing the third terms of equations (2.6) and (2.7), and thus about the equations in

general.

Past research comparing variance estimators favors those based on the counting processes

method for the following reasons:

1. The simulation study by Braun and Yuan (2007) found that the counting process esti-

mator given in equation (2.6) slightly overestimated the true variance of the cumulative

incidence, and the multinomial estimator slightly underestimated the true variance (both

estimations were within 6% of the empirical variance over all the scenarios they con-

sidered). Braun and Yuan (2007) denote these respectively as the Gray and Gaynor

estimators.

2. The computing packages SAS 9.4 and R 3.2.0 (package “cmprsk”) have implementations

of a counting processes estimator. Indeed, Braun and Yuan (2007) note the estimator

given in equation (2.7) is the only one available for general use.

However, because neither is computationally intensive, we will include both in our simula-

tion study.

2.4.3 Extending Williams’ Linearized Variance Estimator

In this section we derive a variance estimator for the cumulative incidence function. We

will use a Taylor series linearized values approach (i.e. delta method), which is meant to ac-

count for clustered data. Williams (1995) uses such an approach to derive a variance estimator
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for the Kaplan-Meier estimator applied to clustered time-to-event data. We will derive an anal-

ogous variance estimator for the cumulative incidence estimator given in (2.4) under clustered

competing risks.

Williams (1995) used a robust variance estimator derived in two steps:

1. Calculating Taylor series linearized values for each cluster.

2. Applying a variance estimator accounting for clustering to these calculated values.

For the first step, Williams (1995) uses a technique developed by Woodruff (1971), which

approximates a complex non-linear function (such as the Kaplan-Meier estimator or cumulative

incidence estimator in Section 2.3.1) with a linear function based on a first order Taylor series

expansion. This linear approximation is then used to estimate the variance of the non-linear

function. When data are clustered, the variance of the Kaplan-Meier estimator Ŝ (t j) is given by

first calculating a linearized value of Ŝ (t j) for each individual observation. Then, by linearity,

the linearized values are accumulated by cluster.

In the second step, a between-cluster variance estimator uses the linearized values for each

cluster to calculate the variance, by a cluster level variance estimator, as shown in equation

(2.8).

Williams (2000) shows that this cluster level variance estimator is unbiased for clustered

data for a linear statistic regardless of the setting, under the assumption that the C clusters

were selected independently from a hypothetical infinite population of clusters. Rao and Colin

(1991) show the between-cluster variance estimator is consistent when the number of clusters

grows to infinity, for a fixed cluster size, when used with the Taylor series linearization of a

non-linear statistic.

Applying the method used by Williams on the Kaplan-Meier estimator for clustered sur-

vival data to the cumulative incidence estimator in a clustered competing risks setting results in

the formula for the variance estimator given in equation (2.8). The derivation of this estimator
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is found in Appendix A and its formula is:

v̂arlin(F̂1(t j)) =
C

C−1

C∑
c=1

(zc[F̂1(t j)]− z̄[F̂1(t j)])2 (2.8)

where

z̄[F̂1(t j)] =

C∑
c=1

zc[F̂1(t j)]/C

and zc[F̂1(t j)] are the linearized values of F̂1(t j) accumulated for cluster c defined in Appendix

A.

This variance estimator has the advantage that it does not require any knowledge of the

within-cluster correlation structure. Chen et al. (2008) attain a robust variance for the cumu-

lative incidence function that accounts for within-cluster correlation based on William (1995),

but the details of his derivation were not provided, nor an explicit formula for the variance esti-

mator given. It is expected, but unknown if the estimator we derive is algebraically equivalent

to the one given by Chen et al. (2008).

It is worth noting, Williams (2000) remarks that the Taylor series linearization approach

used with a between-cluster variance estimator is closely related to the generalized estimating

equation (GEE) robust variance approach of Liang and Zeger (1986) and, in some situations,

the two approaches are the same when assuming working independence. The GEE approach

attempts to improve estimation by including assumptions about the within-cluster correlation

structure in the estimating equations. We forgo the inclusion of a GEE approach in the present

study.

2.4.4 Bootstrap Variance Estimators
The bootstrap is a general method introduced by Efron (1979) that can be used to estimate

variance for any study outcome. Several different bootstrap algorithms have been developed.

The bootstrap method we consider is nonparametric, so it has the advantage of making weak

distributional assumptions.

Efron (1981) applied a nonparametric bootstrap to obtain a variance estimator of KM(t).

This paper, samples with replacement from typical survival data of the form: (t1, ε1), . . . (ti, εi),
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. . . (tn, εn), where εi = 1 if the event occurred εi = 0 if the event was censored, and ti is the time

of the event or censoring. Bootstrap samples, (t∗1, ε
∗
1), . . . (t∗i , ε

∗
i ), . . . (t∗n, ε

∗
n) are then obtained and

the Kaplan-Meier formula is applied to find a point estimate for each bootstrap sample. Then

the variance is estimated by determining the sample variance of the Kaplan-Meier estimates

across the bootstrap samples.

Bootstrap algorithms that account for clustering have been proposed by Davison and Hinck-

ley (1997), and their performance has been studied when applied to clustered survival data

by Xiao and Abrahamowicz (2010). Xiao and Abrahamowicz (2010) report the results of a

simulation study comparing two bootstrap methods of estimating the variance of Cox model

regression coefficients. They also constructed and compared Wald based confidence intervals

for estimated hazard ratios.

The two bootstrap approaches of estimating variance differed in how they built their boot-

strap samples. If there were C clusters, the first method builds a bootstrap sample by resampling

with replacement from these C clusters, and including those observations from the sampled

clusters in the bootstrap sample. For example, suppose there were 3 clusters and we sampled

clusters 1, 2, and 1. Then the bootstrap sample would include all the observations from cluster

1 twice, the observations from cluster 2 once, and no observations from cluster 3.

The second method however, resamples both at the cluster and individual level. One first

obtains C clusters by sampling with replacement, then for each sampled cluster, c, one samples

with replacement from the Nc observations, to obtain the final bootstrap sample. Thus the

second method is computationally more demanding than the first.

Xiao and Abrahamowicz (2010) found for both cases, non-informative right censoring does

not affect the large sample properties of either bootstrap estimator. They calculated Wald based

confidence intervals from each estimator. They found the second approach resulted in more

conservative coverage. We will include both methods of constructing bootstrap samples in

our simulation study. Xiao and Abrahamowicz (2010) did not notice a difference in perfor-

mance between 100 and 500 bootstrap resamples so we will generate 200 bootstrap resamples,
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B1, . . . ,B200. Denoting the cumulative incidence estimator for bootstrap sample i at a particular

point t, F̂1(t)i, our bootstrap variance estimators will be:

v̂arboot(F̂1(t)) =
1

199

200∑
i=1

[F̂1(t)i– ¯̂F1(t)i]2 (2.9)

where

¯̂F1(t)i =

200∑
i=1

F̂1(t)i

200

.

When the first method of resampling is used, we will denote the estimator v̂arboot1(F̂1(t))

and when the second method of resampling is used, we will denote our estimator v̂arboot2(F̂1(t)).

One limitation of all bootstrap estimators is that they give different results with each anal-

ysis. Differences should be small with 200 samples however.

2.4.5 Jackknife Variance Estimator

Quenouille (1949) developed the Jackknife method to correct the bias of estimators, but it

was named and first used to calculate variance by Tukey (1956). Like nonparametric bootstrap

methods it makes no distributional assumptions, but unlike the bootstrap, it is not computation-

ally intensive.

Jackknife variance estimation is similar to bootstrap estimation in that the variance is calcu-

lated from point estimates applied to samples taken from an original dataset. Jackknife samples

select portions of the data from the sample. The Jackknife has also been applied to estimate

variance in settings where data is clustered (Gladen, 1979). In clustered data, with C clusters,

there are C Jackknife samples, each including C−1 of the available clusters.

The Jackknife has also been used to obtain variance estimates in correlated survival data.

Again, a theme in reviewing the literature on variance estimation of correlated survival data is

that much attention has been paid to the estimation of the variance of the regression coefficients

from the Cox model. For example, Lipsitz et al. (1994) derive variance estimates for these

coefficients using a Jackknife method. For the simulation study described in Chapter 3, we
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use “a delete a group” Jackknife approach, described in Lipsitz et al. (1994) appropriate for

clustered data. The estimator is described below.

Let F̂1(t j)−c be the estimator of F1(t j) using all the data except for that from cluster c. Then

the Jackknife variance estimator for F̂1(t j) is:

v̂ar jack(F̂1(t j)) =
C−1

C

C∑
c=1

(F̂1(t j)−c− F̂1(t j))2 (2.10)

2.5 Confidence Interval Estimates

We will limit attention to Wald based procedures for simplicity. As mentioned in the intro-

duction, we estimate 95% confidence interval estimates from the variance estimators described

above. Two methods of confidence interval construction will be considered.

First, we can estimate a 1−α confidence interval for the cumulative incidence function of

event of interest, F1(t), based on the consistency and asymptotic normality of the cumulative

incidence estimator in Section 2.3.1 as:

F̂1(t)±1.96
√

v̂ar(F̂1(t)) (2.11)

We will denote this method as the linear confidence interval method, following the termi-

nology of the confidence interval options of PROC LIFETEST in SAS 9.2. It has the advan-

tage of being simple to construct and well-known. However, it may provide values outside the

possible range of F(t), [0,1]. Thus we will also consider the method of confidence interval

construction developed by Kalbfleisch and Prentice (1980) termed the log-log method. Here,

the confidence interval will be given by F̂1(t)exp[±A], where A is:

A =
1.96

√
v̂ar(F̂1(t))

F̂1(t) log(F̂1(t))
(2.12)
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2.6 Summary
This literature review shows relatively little work has been done on nonparametric methods

of variance estimation for the cumulative incidence in clustered competing risks data. Along

with two existing methods of variance estimation for the cumulative incidence function, we

have chosen four nonparametric methods of variance estimation used for correlated survival

data and extended them to the clustered competing risks setting. The six variance estimators in

Table 2.1 along with confidence intervals constructed from them will be compared via simula-

tion study. The design of this study is described in Chapter 3 and the results are presented in

Chapter 4.
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Table 2.1: Variance Estimators

Notation Variance Estimator

v̂armult(F̂1(t j)) Multinomial Based Estimator

v̂arcp(F̂1(t j)) Counting Processes Based Estimator

v̂arlin(F̂1(t j)) Linearized Estimator

v̂ar jack(F̂1(t j)) Jackknife Estimator

v̂arboot1(F̂1(t j)) Bootstrap 1 Estimator

v̂arboot2(F̂1(t j)) Bootstrap 2 Estimator



Chapter 3

Design of the Simulation Study

3.1 Introduction
In this chapter we describe the design of the simulation study, making sure to include all the

relevant components discussed by Burton et al. (2006). There are seven sections in this chapter,

including this introduction. Section 3.2 justifies selection of parameters for the generation of

data used in the simulation study. Then Section 3.3 outlines the study design while Section 3.4

and 3.5 describe the model and method by which datasets are generated. Section 3.6 describes

the criteria used to evaluate the methods of confidence interval construction and finally, Section

3.7 briefly summarizes the key elements of study design.

3.2 Parameters
The simulated datasets are designed to replicate an arm from a cluster randomized trial

where patients from different centers are followed for 5 years until one of two competing

events occurs or they are administratively censored due to trial completion. That is, all clusters

and subjects are recruited prior to random assignment. This is done for simplicity of data gen-

eration and to avoid potential for selection bias. We are interested in estimating the cumulative

incidence of the event of interest at study completion along with variances and 95% confidence

intervals. Where possible, values for parameters will be motivated by data from the two studies

mentioned in the Introduction: bone marrow transplant data discussed by Zhou et al. (2012)

20
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and prostate cancer data described by Messing et al. (1999). The parameters specified to gener-

ate the simulated datasets are: the cumulative incidence, the hazard rate for the event of interest

and for the competing risk, the percentage of patients censored, the intracluster correlation co-

efficient (ICC), the number of patients enrolled in the study, the size of each cluster. We will

generate datasets based on concrete values for these parameters and calculate the cumulative

incidence at 5 years.

The cumulative incidence is determined by specifying the hazards of the event and com-

peting risk and the percentage of censoring. Based on our choices for these parameters, the

simulation was conducted for cumulative incidence values of approximately: 0.25, 0.33, 0.37,

0.4, 0.54, and 0.6.

The hazard of a patient experiencing any event is determined by the percentage of events

censored, fixing the sum of the hazards of the study outcome and the competing event. In

specifying hazard rates of the event of interest and the competing risk, we wish to model

scenarios where, like our motivating datasets described in the introduction, the event of interest

occurs more often than the competing event. A constant hazard rate for both risks is also

assumed. This may not be a large disadvantage; Chen et al. (2008) conducted a simulation

study examining the bias of a cumulative incidence estimator under clustering and found the

results with time varying hazards didn’t significantly differ from those with fixed hazards. The

ratio of patients experiencing the event of interest to the competing risk is between 1 and 3 in

both motivating datasets and is completely determined by the ratio of their hazards. We will

consider scenarios where the ratio is either 1, 2, or 3.

Attention is limited to administrative censoring, that is, censoring due to not all patients

experiencing an event at 5 years when the cumulative incidence is calculated. We assume that

all clusters and patients within clusters are enrolled prior to the start of the study. We adjusted

the range of the censoring variable so that the percentage of observations censored is on average

20% or 50%.

Small values of the ICC are usually observed in cluster randomized trials where patients
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are from different centers (Donner and Klar 2000). Recall an ICC = 0 indicates no intracluster

correlation while an ICC = 1 means total dependence between responses from the same cluster.

Thus we considered ICC values of 0.01, 0.05 and as a check an ICC of 0 as well.

We are interested in scenarios where there are either 400 or 100 patients enrolled in a

study. In the motivating studies described in the Introduction, because the diseases are rare

in the general population, the number of patients recruited per center is low and the number

of centers is high. For simplicity, we considered cases where the same number of patients is

recruited from each cluster. For the case when 100 patients are enrolled, cluster sizes of 5,

10, and 20 are chosen. This will give us scenarios where there are 5, 10, and 20 clusters from

which patients are recruited. For the case when 400 patients are enrolled, cluster sizes of 10,

40, and 80 will be used. This will give scenarios where there are 5, 10, and 40 clusters from

which patients are recruited.

The values of the parameters to be investigated are summarized in Table 3.1. Using these

parameter values there are 3×2×3×2×3 = 3322 = 108, scenarios to investigate.

3.3 Simulation Procedures

For each scenario, 1000 independent datasets were generated and each of the methods of

variance construction are applied to each dataset. The estimated cumulative incidence and the

estimated variance estimators for each dataset were stored.

In the exceptional case that a dataset has only censored data (i.e. when there are no events

in a dataset), it will be replaced. The probability of this happening is less than (1/2)100 because

the probability of an individual observation being censored is less than 1/2.

The simulation study was conducted using R version 3.2.0 (R Core Team, 2015). The

generation of random numbers was done using the “runif”, “rbin”, “rexp”, and “rgamma”

functions from the base package. A starting seed was specified for each scenario to ensure that

scenarios are independent of each other and can be replicated. To further aid in replication, the

code used for data generation and calculating estimators is provided in Appendix B.
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Table 3.1: Simulation Parameters

Parameter Definition Values Unique No.

of Parameters

F1(t) Cumulative incidence 0.25, 0.33, 0.37, 0.4, 0.54, 0.6 -

λ1/λ2 Ratio of the hazard of outcome 1, 2, 3 3

vs. competing event

P Percentage of 20%, 50% 2

observations censored

ρ Intracluster correlation coefficient 0, .01, .05 3

N Number of patients recruited 400, 100 2

s Cluster size 5, 10, 20 (100 patients case) 3

10, 40, 80 (400 patient case)

C Number of clusters 5, 10, 20 (100 patients case) -

5, 10, and 40 (400 patient case)

t Time confidence interval 5 years (trial completion) -

is determined
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3.4 Modeling the Data
We will model the clustering effect using a shared gamma frailty model. The relationship

between the ICC and the frailty parameter is given by Jeong and Jung (2006). For our purposes,

it suffices to note that given C clusters, frailties v1, ...,vC generated from a single-parameter

gamma distribution with shape ρ and scale 1/ρ, model a within cluster correlation of ρ. Thus

we generate C frailties v1, ...,vC from the model shown in Equation (3.1).

f (v;ρ) =
vρ−1eρv

Γ(ρ)(1/ρρ)
v > 0, ρ > 0 (3.1)

Then for each cluster c, independent event times follow an exponential distribution with

hazard vc(λ1 +λ2), conditional on the shared frailty.

3.5 Data Generation Procedure
Some investigators simulate competing risks data using a latent failure time model (e.g.

Illjon (2013), Braun and Yuan (2007)). As described in the Introduction, we use only ob-

servable quantities for the analysis of competing risks, to minimize model assumptions. Thus

we prefer the approach of Beyersmann (2009) over the latent failure approach. Beyersmann

(2009)’s approach is described in our data generation algorithm below.

The data are generated so observations from the same cluster are correlated. The procedure

for data generation based on the specified parameters is as follows:

1. Generate frailties, v1, ...,vC , from a single-parameter gamma distribution with shape ρ

and scale 1/ρ, which implies a within cluster correlation with the ICC, ρ.

2. We wish to generate data so that at time t = 5 years on average P percent experience

neither event (i.e are censored). To do this, we must determine a value for the hazard

of experiencing either event (i.e. λ1 + λ2). Because we have a fixed time t = 5, a fixed

probability that P percentage of events are greater than 5, and event times follow an

exponential distribution, we can determine a value for λ1 +λ2. Then we can determine

values of λ1 and λ2 based on the ratio we specified for λ1/λ2.
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3. For each cluster c generate s event times from an exponential distribution with hazard

vc(λ1 +λ2). We now have observations (tc1, ..., tcNc) where tci is the time of the event, for

i ∈ {1, ...,Nc}.

4. After event times are generated for each cluster, assign to each event time an asso-

ciated risk δc1, ..., δcNc , where these can either take the value 1 or 2 to indicate the

time is associated with the event or the competing risk respectively. These are gener-

ated from a binomial random variable, with the event assigned probability λ1/(λ1 +λ2)

and the competing event assigned probability λ2/(λ1 + λ2). We now have observations

(tc1, δc1), ..., (tcNc , δcNc).

5. If a time tci exceeds 5, replace its value with 5 and replace the value for δc1 with 0, to

indicate it has been administratively censored.

6. Return observations (tc1, δc1), ..., (tcNc , δcNc) for c ∈ {1, ...,C}.

3.6 Evaluation Criteria
The primary purpose of the simulation study is to evaluate the confidence interval estima-

tors constructed from the variance estimators described in Section 2.3, but we will also test the

performance of the variance estimators, as these are the variable component of the different

methods of confidence interval construction.

3.6.1 Criteria to Assess Variance Estimators
Following Braun and Yuan (2007) and Chen et al. (2008), we compare the mean variance

of each estimator to the empirical variance.

3.6.1.1 Percentage Bias of Estimated Variance

Given 1000 simulated datasets, and the prespecified time t = 5, we obtain estimators of the

cumulative incidence (F̂1(t)i)1000
i=1 . The empirical variance will be given by the formula:

EMV :=
1000∑
i=1

[F̂1(t)i−
¯̂F1(t)i]2/999 (3.2)
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where ¯̂F1(t)i =
∑1000

i=1
F̂1(t)i
1000 .

The percentage bias is then approximated by the percentage difference between the empir-

ical variance and the mean of a variance estimator over the different simulations. It is given

by:

[ 1
1000

∑1000
i=1 v̂ar(F̂1(t)i)]−EMV

EMV
(3.3)

We consider a percentage bias of magnitude over 15% to be a poor performance by a

variance estimator.

3.6.2 Criteria to Assess Confidence Interval Estimators

We evaluate the confidence interval estimators on coverage and width. The latter is done by

examining the width of the estimated confidence intervals, and the former by whether the true

value of the cumulative incidence was in the confidence interval or missed to the left or right

of the interval. Because the confidence interval estimators are for the cumulative incidence

function, which in general is bounded by [0,1], if we estimate a lower bound below 0 or an

upper bound above 1 they will be truncated to 0 or 1 respectively. This will have to be done

with the linear method of confidence interval construction only, not the log-log method, which

always gives results within these bounds.

3.6.2.1 Coverage

The confidence interval estimators will be examined by determining the proportion of times

the confidence interval contained the true value of the cumulative incidence function at the

specified point in time. The true value of the cumulative incidence function will be given by

F1(t) =

∫ t

u=0
λ1S (u)du (3.4)

where S (t) = exp
(
−

∫ t
u=0(λ1 +λ2)du

)
.

For a given scenario, variance estimator and method of confidence interval construction, let

[Li,Ui] be the the confidence interval estimator for dataset i for i = 1, ...,1000. The proportion
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of times F1(t) is in the confidence interval is:

#{F1(t) ∈ [Li,Ui] : i = 1, ...,1000}
1000

(3.5)

A better performance is, all things equal, indicated by the proportion being closer to 95%.

More specifically, following the method of Bradley (1978), we consider coverage outside the

bounds set by 0.95± 1.96
√

0.95× (0.05/1000), which is approximately between 93.5% and

96.5% to be poor.

We also consider the proportion of times the true value of the cumulative incidence function

misses to the left and to the right. These are respectively:

#{F1(t) < [Li,Ui] : i = 1, ...,1000}
1000

(3.6)

and

#{F1(t) > [Li,Ui] : i = 1, ...,1000}
1000

(3.7)

It is preferable to have symmetry in proportion of misses to the left and right.

3.6.2.2 Width

To assess the precision of the confidence interval estimators we calculate their average

length over the simulated datasets. This is:

1
1000

1000∑
i=1

(Ui−Li) (3.8)

The shorter the length of an estimator, the more precise the estimator will be. It is expected

that methods that account for clustering, due to this, will have greater coverage but also greater

width. If two estimators perform similarly in coverage, but one has a shorter width on average,

it is be preferred.
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3.7 Summary
The simulation study to be performed compares six variance estimators of the cumulative

incidence, listed in Table 2.1, and the twelve confidence interval estimators built from these

variance estimators. It compares them over a range of scenarios described in Section 3.2. The

scenarios are motivated by the datasets described in Chapter 1 and analyzed in detail in Chapter

5.

Data will be simulated by the method given by Beyersmann (2009) to limit attention only

to the modeling of observable quantities.

The variance estimators are compared on their percentage bias and the methods of confi-

dence interval construction are compared on their coverage and width.



Chapter 4

Results of the Simulation Study

4.1 Introduction
Section 4.2 provides general remarks about the simulation and describes the manner in

which the results are presented. Section 4.3 discusses the percentage bias performance of the

variance estimators while Section 4.4 discusses the performance of the confidence interval

estimators. Section 4.5 summarizes the main findings of this chapter and Section 4.6 contains

tables of the simulation results.

4.2 Description of Simulation Results
Recall that 1000 replications were performed for each of the 108 scenarios distinguished

by the parameters listed in Table 3.1. For each scenario, the cumulative incidence and the six

variance estimators summarized in Table 2.1 were estimated. These variance estimators were

the Multinomial Based Estimator, Counting Processes Based Estimator, Linearized Estimator,

Jackknife Estimator, a cluster-sample Bootstrap Estimator, and a two-step Bootstrap Estimator.

They are denoted Mult, CP, Lin, Jack, Boot1, and Boot2 respectively and are described in

Chapter 2.

The performance of these variance estimators and the confidence intervals formed from

them was evaluated as described in Section 3.6. First, the percentage bias of the variance

estimators was calculated. Then, for both the linear and log-log methods of confidence interval

29
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construction, and each of the six variance estimators, coverage, left and right misses, and mean

confidence interval width were calculated. Recall from Section 3.3 that we would resimulate a

dataset in the event that it contained only censored observations, as this would make the use of

a cumulative incidence estimator impossible. This simulation had no occurrence of a dataset

containing only censored observations and thus no resimulation was needed.

All simulation results are presented at the end of this chapter in Section 4.6. The simulation

results for the percentage bias of the variance estimators are presented in Tables 4.1 to 4.6.

While we discuss both the linear and log-log methods of confidence interval construction in

this chapter, only the coverage of the confidence intervals (including left and right misses)

formed using the log-log method are presented. These are given in Tables 4.7 to 4.12. The

reason we do not present the tables for the linear method of confidence interval construction is

given in Section 4.4. We also present in Tables 4.13 to 4.18, the average width of the log-log

estimators.

Thus in Section 4.6, where we present the results of the simulation, there are three sets of

tables for the 108 scenarios: one set for the percentage bias results, one set for the coverage of

the log-log interval estimators, and one set for the width of the log-log interval estimators. For

readability, each set of results is presented in six tables containing 18 scenarios (6x18=108),

organized as follows: the first three tables are simulations where the total sample size was 100,

the latter three where the total sample size was 400. For a fixed total sample size, each table

presents the results for those scenarios where the ICC was 0, 0.01, or 0.05 respectively.

Thus a table contains, for a fixed total sample size and ICC, the results for the 18 scenarios

created by taking all possible values of the remaining parameters of data generation. These

were the value of the cumulative incidence at t = 5 (i.e. F1(5)), the number of clusters C, the

percentage of observations censored, and the ratio of the hazards of the event of interest and

the competing risk (i.e. λ1/λ2).

Finally, we note one particularity of the results. Despite the Linearized and Jackknife vari-

ance estimators not being algebraically equivalent, in this simulation their average percentage
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biases were indistinguishable and their coverage performance were identical regardless of use

of the linear or log-log method of confidence interval construction.

4.3 Percentage Bias Results
This section discusses the the percentage bias simulation results of the variance estimators.

These results are displayed in the tables Table 4.1 to Table 4.6. In these tables, those cases

where a method had above 15% absolute bias were bolded.

We first examine the number of scenarios in which a variance estimator has the lowest ab-

solute percentage bias. The Linearized and Jackknife variance estimators achieved the lowest

absolute percentage bias the most number of times, in 54 of the 108 scenarios, while the Count-

ing Process estimator achieved it the second most at 43. The Multinomial estimator achieved

it under 10 times and the Bootstrap 1 estimator 14 times. Bootstrap 2 never had the lowest

percentage bias.

Next we examine the percentage of scenarios for which an estimator has absolute percent-

age bias ≤ 15%. The Linearized and Jackknife estimator satisfy this 100% of the time. The

Counting Processes estimator 81% and Bootstrap 1 at 69%, and Multinomial estimator 44% of

times. Bootstrap 2 never achieves absolute bias under 15%.

We now consider the influence varying each parameter has on the absolute percentage bias

of each variance estimator. As the ICC, ρ, increases the bias of Multinomial and Counting

Process estimators increase, which is to be expected as these estimators do not account for

clustering. The Linearized, Jackknife, and Bootstrap 1 estimators all have no noticeable change

in bias, while the bias of the Bootstrap 2 estimator decreases as clustering increases.

As N, the total sample size, increases from 100 to 400, the Multinomial and Counting Pro-

cess estimators increase in percentage bias, while other estimators show no noticeable change.

This is likely due to an increase in the clustering effect, as those cases when N = 400 generally

have larger clusters.

As F1(5) increases only the bias in the Multinomial estimator increases, other estimators

seem to be unaffected.
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As the number of clusters C increases, the absolute percentage bias generally decreases for

all but the Bootstrap 2 estimator. The bias for the Linearized and Jackknife estimators, seems

unaffected by the number of clusters increasing.

The percentage censored changing from 20% to 50%, appears not to have an effect except to

decrease the mean absolute percentage bias for the Multinomial estimator. Changing the ratio

of the hazards of the event of interest and competing risk has no clear effect on the percentage

bias results.

4.4 Confidence Interval Results
This section discusses the performance of the confidence intervals formed from the variance

estimators. First we compare the performance of the linear and log-log methods of confidence

interval construction. Because the log-log method provides better coverage, we will consider in

greater detail the coverage and width performance of the confidence interval estimators using

the log-log method.

The coverage of the log-log confidence intervals for all scenarios are displayed in Table 4.7

to Table 4.12. In these tables, as discussed in Section 3.6.2.1, those cases where the coverage

was approximately between 93.5% and 96.5% were thought to have good coverage. Instances

outside this range are bolded.

4.4.1 Difference Between Linear and Log-Log Methods of Confidence In-

terval Construction

We compared the size of the difference in overall coverage between the linear and log-log

confidence interval methods, for each of the 108 scenarios and 6 variance estimators. Thus

there were 6×108 = 648 total comparisons of coverage performance. The difference in cover-

age between them exceeds 2% only 19 times in total (approx 3% of the cases). In no case did

the difference in coverage between the linear and log-log exceed 3%.

For each method of variance estimation, we compared the number of scenarios where a

variance estimator had acceptable coverage (i.e. between 93.5% and 96.5%) when a confidence
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interval is constructed using the linear versus using the log-log method. This nearly always

increased when the log-log method was used; increasing by 8 for the Multinomial estimator,

by 4 for the Linearized and Jackknife estimator and by 5 when Bootstrap 1 is used. The number

of scenarios with acceptable coverage decreased by 1 when Bootstrap 2 is used. Because of

it’s better performance, we only present tables of coverage and width for the log-log method

of confidence interval construction.

4.4.2 Confidence Interval Performance

We now examine in greater detail, for only the log-log method of confidence interval con-

struction, the performance of the different confidence interval estimators.

In 77 of 108 scenarios the Counting Process method provided coverage in our acceptable

range. It is the only method that had acceptable coverage in over 50% of the scenarios. Of

course, a third of our scenarios had no clustering effect whatsoever. Indeed, in scenarios with

ICC of 0.05, it often performs significantly worse than Bootstrap 2.

Thus we will consider the influence varying the parameters ICC, sample size, number of

clusters, and the value of the cumulative incidence has on the coverage of each variance esti-

mator.

When the ICC is 0 the Counting Process estimator should clearly be preferred over the

other estimators. Although when F1(5) is smaller, the Multinomial estimator has slightly bet-

ter coverage. As the ICC, ρ, increases from 0 to 0.01, there is no great difference between

coverage in any of the estimators. However as the ICC increases from 0.01 to 0.05, the number

of scenarios with good coverage drops for both the Multinomial and Counting Processes esti-

mators, which is to be expected, as these do not account for clustering. Even when ρ= 0.05, the

Linearized, Jackknife and Bootstrap 1 estimators never achieve the required number of clusters

and sample size to outperform the Counting Processes estimator when the sample size is 100.

However, when the sample size N = 400 and ρ = 0.05, these estimators sometimes offer better

coverage than Counting Process estimator. The Bootstrap 2 performs well in 4 scenarios where

the rest of the estimators preformed poorly. All these scenarios are when ρ = 0.05, N = 400,
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and C = 5. This suggests that in scenarios where there is a small number of large clusters and

heavy clustering, the Bootstrap 2 may be the preferred estimator.

When the number of clusters C is less than or equal to 10, the Linearized, Jackknife and

Bootstrap 1 estimators rarely have acceptable coverage, but when they are above 10, they have

good coverage a number of times comparable to the Counting Process method, even under no

clustering.

For estimators accounting for clustering there was no noticeable pattern that increasing the

value of F1(5) had on coverage performance. However the Multinomial estimator performed

better for lower values of F1(5) and the Counting Process estimator performed better for higher

values.

The coverage of the confidence interval estimators varied significantly. As such, differ-

ences in left and right misses between estimators is not as valuable a consideration as if the

performance of estimators was closer.

The average width of estimators corresponds with the coverage performance of the esti-

mators. As expected, increasing the number of clusters does not change the average width of

a confidence interval estimators not account for clustering. The width of the Bootstrap 2 had

the widest average width over all scenarios, whose coverage was also always the largest. The

Bootstrap 1 width was always lower than the Linearized and Jackknife widths.

4.5 Summary of Simulation Results
This simulation study found that the percentage bias of the Linearized and Jackknife esti-

mators was lowest, but this did not correspond to their having good confidence interval cov-

erage. This is perhaps because we examined many scenarios with a number of clusters C too

small for their asymptotic performance to be noticeable.

The log-log method of confidence interval construction is to be preferred to the linear

method.

The Counting Process estimator was clearly the best performer under no clustering and

minimal clustering of 0.01. It even performs well when ICC = 0.05 when the sample size
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is 100. However, under clustering of 0.05 and a sample size of 400, methods accounting for

clustering showed better coverage. With a sample size of 400 and a low number of large

clusters (i.e. 5 clusters of 40 patients each), the Bootstrap 2 method performs the best.

4.6 Simulation Results
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Table 4.1: Percentage Bias for Variance Estimators Applied to Simulated Data

Sample Size = 100, ICC = 0

Percentage Bias of Variance Estimator

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 20 0.5 1 -10 -5 -7 -7 -12 64

10 1 7 5 5 -5 91

5 0 6 4 4 -17 83

0.33 20 2 -5 1 3 3 -2 77

10 -11 -6 -7 -7 -16 68

5 -6 -1 -2 -2 -21 73

0.37 20 3 1 6 6 6 1 85

10 -6 -1 -2 -2 -12 77

5 2 7 8 8 -14 87

0.40 20 0.2 1 -15 4 3 3 -2 80

10 -23 -5 -6 -6 -16 69

5 -20 -1 -2 -2 -22 72

0.53 20 2 -18 4 1 1 -4 79

10 -14 9 9 9 -2 95

5 -18 3 3 3 -18 79

0.60 20 3 -14 9 8 8 3 89

10 -20 1 0 0 -10 81

5 -21 0 0 0 -20 74
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Table 4.2: Percentage Bias for Variance Estimators Applied to Simulated Data

Sample Size = 100, ICC = 0.01

Percentage Bias of Variance Estimator

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 20 0.5 1 -12 -7 -7 -7 -11 62

10 -14 -10 -8 -8 -17 63

5 -2 4 10 10 -12 85

0.33 20 2 -3 2 2 2 -3 79

10 -4 2 4 4 -7 84

5 -4 1 6 6 -15 81

0.37 20 3 -4 1 1 1 -4 77

10 -10 -5 -3 -3 -12 72

5 -9 -5 2 2 -18 71

0.40 20 0.2 1 -22 -5 -6 -6 -10 65

10 -18 1 2 2 -9 82

5 -21 -3 -1 -1 -21 70

0.53 20 2 -27 -8 -10 -10 -15 59

10 -20 0 3 3 -8 81

5 -25 -5 -1 -1 -20 68

0.60 20 3 -25 -5 -7 -7 -12 63

10 -17 5 7 7 -3 89

5 -19 2 7 7 -14 81
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Table 4.3: Percentage Bias for Variance Estimators Applied to Simulated Data

Sample Size = 100, ICC = 0.05

Percentage Bias of Variance Estimator

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 20 0.5 1 -2 3 6 6 1 82

10 -6 -1 5 5 -6 82

5 -21 -16 -6 -6 -24 54

0.33 20 2 -15 -10 -6 -6 -10 59

10 -13 -8 0 0 -10 71

5 -18 -14 6 6 -16 66

0.37 20 3 -7 -2 2 2 -3 74

10 -10 -5 7 7 -4 81

5 -27 -23 -4 -4 -24 49

0.40 20 0.2 1 -15 3 5 5 -1 80

10 -18 0 2 2 -8 80

5 -28 -11 -4 -4 -24 60

0.53 20 2 -18 2 5 5 0 81

10 -21 -1 5 5 -6 81

5 -35 -19 -7 -7 -26 50

0.60 20 3 -25 -7 -4 -4 -9 65

10 -33 -17 -11 -11 -20 53

5 -37 -21 -3 -3 -22 50
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Table 4.4: Percentage Bias for Variance Estimators Applied to Simulated Data

Sample Size = 400, ICC = 0

Percentage Bias of Variance Estimator

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 40 0.5 1 -13 -9 -8 -8 -10 72

10 -8 -4 -6 -6 -15 78

5 2 6 10 10 -13 91

0.33 40 2 0 4 6 6 3 96

10 0 4 4 4 -7 94

5 -6 -2 -5 -5 -24 73

0.37 40 3 -4 0 0 0 -2 86

10 -4 0 0 0 -11 87

5 0 4 3 3 -18 84

0.40 40 0.2 1 -19 -2 -2 -2 -4 83

10 -14 3 4 4 -6 93

5 -17 0 -1 -1 -20 79

0.53 40 2 -20 -1 0 0 -3 86

10 -21 -2 -4 -4 -14 82

5 -24 -5 -6 -6 -25 68

0.60 40 3 -18 2 1 1 -2 90

10 -19 1 3 3 -8 90

5 -25 -8 -10 -10 -28 63



Chapter 4. Results of the Simulation Study 40

Table 4.5: Percentage Bias for Variance Estimators Applied to Simulated Data

Sample Size = 400, ICC = 0.01

Percentage Bias of Variance Estimator

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 40 0.5 1 -6 -2 0 0 -3 85

10 -12 -8 -3 -3 -12 77

5 -19 -16 -3 -3 -22 60

0.33 40 2 -3 1 3 3 0 90

10 -12 -8 3 3 -7 82

5 -25 -22 -9 -9 -27 50

0.37 40 3 0 3 6 6 3 96

10 -10 -6 2 2 -8 82

5 -21 -18 0 0 -20 61

0.40 40 0.2 1 -19 -2 -2 -2 -4 84

10 -23 -7 -3 -3 -12 77

5 -20 -4 5 5 -16 79

0.53 40 2 -23 -5 -5 -5 -7 79

10 -24 -6 -1 -1 -11 80

5 -25 -7 8 8 -14 77

0.60 40 3 -17 3 4 4 2 93

10 -25 -7 4 4 -7 83

5 -34 -18 -6 -6 -25 55
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Table 4.6: Percentage Bias for Variance Estimators Applied to Simulated Data

Sample Size = 400, ICC = 0.05

Percentage Bias of Variance Estimator

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 40 0.5 1 -11 -8 -2 -2 -5 78

10 -27 -24 -4 -4 -14 59

5 -39 -37 3 3 -17 44

0.33 40 2 -8 -4 6 6 3 89

10 -34 -31 1 1 -10 57

5 -51 -49 3 3 -17 32

0.37 40 3 -7 -3 7 7 4 91

10 -31 -28 10 10 0 67

5 -55 -54 -1 -1 -20 25

0.40 40 0.2 1 -16 0 5 5 2 91

10 -39 -27 -13 -13 -22 49

5 -41 -29 6 6 -15 53

0.53 40 2 -19 -1 6 6 3 91

10 -42 -29 -5 -5 -15 54

5 -51 -40 2 2 -18 40

0.60 40 3 -21 -3 6 6 3 88

10 -44 -31 1 1 -9 56

5 -56 -46 5 5 -16 37



Chapter 4. Results of the Simulation Study 42

Ta
bl

e
4.

7:
C

ov
er

ag
e

of
lo

g-
lo

g
C

on
fid

en
ce

In
te

rv
al

s

Sa
m

pl
e

Si
ze

=
10

0,
IC

C
=

0

Pe
rc

en
ta

ge
C

ov
er

ag
e

of
C

on
fid

en
ce

In
te

rv
al

F
1(

5)
C

Pe
r.

C
en

.
λ

1/
λ

2
M

ul
t

C
P

L
in

Ja
ck

B
oo

t1
B

oo
t2

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

0.
25

20
0.

5
1

3
94

4
2

96
2

2
94

4
2

94
4

3
93

4
0

99
1

10
2

95
3

1
97

2
3

92
4

3
92

4
4

91
5

1
99

1

5
3

94
4

2
97

2
6

87
7

6
87

7
7

84
9

0
99

1

0.
33

20
2

3
94

4
2

95
4

2
94

4
2

94
4

3
93

4
0

99
1

10
3

93
4

3
94

4
4

91
5

4
91

5
5

89
6

1
98

1

5
3

94
3

2
95

3
6

88
6

6
88

6
8

84
8

0
99

1

0.
37

20
3

2
95

3
2

96
3

2
95

3
2

95
3

2
94

3
1

99
1

10
3

95
3

2
95

3
3

92
5

3
92

5
4

91
5

1
99

1

5
2

95
3

1
96

3
5

88
6

5
88

6
6

86
7

0
98

2

0.
40

20
0.

2
1

4
93

4
2

96
2

3
94

3
3

94
3

3
94

3
0

99
1

10
5

92
3

2
96

2
5

92
4

5
92

4
5

90
5

1
99

1

5
4

92
4

2
96

2
5

88
7

5
88

7
6

85
9

0
99

1

0.
53

20
2

4
93

4
2

96
3

3
94

4
3

94
4

3
93

4
0

99
1

10
3

94
3

2
97

1
3

93
4

3
93

4
4

92
4

0
99

1

5
4

92
4

2
95

2
5

87
8

5
87

8
7

83
10

1
98

1

0.
60

20
3

3
93

4
2

96
3

2
95

3
2

95
3

3
94

3
0

99
1

10
4

92
5

2
95

3
3

92
5

3
92

5
4

91
5

0
99

1

5
4

91
4

3
95

3
5

87
8

5
87

8
7

83
10

0
99

1



Chapter 4. Results of the Simulation Study 43

Ta
bl

e
4.

8:
C

ov
er

ag
e

of
lo

g-
lo

g
C

on
fid

en
ce

In
te

rv
al

s

Sa
m

pl
e

Si
ze

=
10

0,
IC

C
=

0.
01

Pe
rc

en
ta

ge
C

ov
er

ag
e

of
C

on
fid

en
ce

In
te

rv
al

F
1(

5)
C

Pe
r.

C
en

.
λ

1/
λ

2
M

ul
t

C
P

L
in

Ja
ck

B
oo

t1
B

oo
t2

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

0.
25

20
0.

5
1

4
92

4
2

95
3

4
93

4
4

93
4

4
92

4
1

99
1

10
3

92
5

3
95

3
4

90
6

4
90

6
5

88
7

1
99

1

5
3

94
4

1
97

2
7

87
6

7
87

6
8

85
8

1
98

1

0.
33

20
2

3
95

2
2

96
2

2
95

3
2

95
3

2
94

3
1

99
1

10
3

94
3

1
96

3
3

93
4

3
93

4
4

92
5

0
99

1

5
2

94
4

1
95

4
5

88
6

5
88

6
7

85
8

0
98

2

0.
37

20
3

2
95

3
2

95
3

2
95

4
2

95
4

2
94

4
0

99
1

10
3

94
3

3
94

3
4

91
5

4
91

5
4

90
6

1
99

1

5
3

94
3

3
94

3
7

87
6

7
87

6
8

85
7

1
98

1

0.
40

20
0.

2
1

4
91

5
2

95
4

3
93

4
3

93
4

3
93

4
1

99
1

10
2

93
5

1
96

3
3

93
4

3
93

4
4

91
5

0
99

1

5
4

92
5

1
95

3
5

87
8

5
87

8
6

84
10

0
99

1

0.
53

20
2

4
91

5
2

95
3

3
93

5
3

93
5

4
91

5
1

98
1

10
4

92
4

2
95

3
3

93
5

3
93

5
3

92
5

0
99

1

5
4

92
4

3
95

3
5

87
7

5
87

7
6

85
9

0
99

1

0.
60

20
3

4
91

5
2

94
4

2
94

4
2

94
4

3
93

4
0

99
1

10
2

92
6

1
95

4
2

93
5

2
93

5
2

92
6

0
99

1

5
4

92
5

2
95

3
5

89
7

5
89

7
6

86
8

0
99

1



Chapter 4. Results of the Simulation Study 44

Ta
bl

e
4.

9:
C

ov
er

ag
e

of
lo

g-
lo

g
C

on
fid

en
ce

In
te

rv
al

s

Sa
m

pl
e

Si
ze

=
10

0,
IC

C
=

0.
05

Pe
rc

en
ta

ge
C

ov
er

ag
e

of
C

on
fid

en
ce

In
te

rv
al

F
1(

5)
C

Pe
r.

C
en

.
λ

1/
λ

2
M

ul
t

C
P

L
in

Ja
ck

B
oo

t1
B

oo
t2

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

0.
25

20
0.

5
1

3
93

4
2

96
2

2
94

4
2

94
4

3
93

5
0

99
1

10
2

93
5

1
96

2
3

93
5

3
93

5
3

91
5

0
99

1

5
4

90
7

3
93

4
5

87
8

5
87

8
6

84
10

1
97

2

0.
33

20
2

4
94

3
3

95
3

4
92

4
4

92
4

4
92

4
1

98
1

10
3

94
3

2
95

3
3

93
4

3
93

4
4

91
5

0
99

1

5
3

92
4

2
94

4
4

89
8

4
89

8
7

84
10

1
98

1

0.
37

20
3

2
94

4
2

95
4

2
95

3
2

95
3

3
93

4
0

99
1

10
1

95
4

1
95

4
3

93
4

3
93

4
3

92
6

0
99

1

5
3

91
6

3
92

6
5

88
7

5
88

7
7

84
9

1
98

2

0.
40

20
0.

2
1

3
93

4
1

96
3

1
95

4
1

95
4

2
94

4
0

99
1

10
2

92
6

1
95

4
2

92
6

2
92

6
3

90
7

0
99

1

5
4

90
6

2
94

4
6

87
7

6
87

7
7

85
9

0
98

1

0.
53

20
2

3
93

5
1

95
3

1
94

5
1

94
5

1
94

5
0

99
1

10
3

91
6

2
95

4
2

92
6

2
92

6
2

91
7

0
98

1

5
5

89
6

3
92

5
5

88
7

5
88

7
6

84
9

0
98

2

0.
60

20
3

3
90

7
2

93
5

2
93

5
2

93
5

2
93

5
0

99
1

10
3

89
8

2
92

7
2

91
7

2
91

7
3

89
8

0
97

3

5
4

86
10

3
90

7
5

87
9

5
87

9
6

83
11

0
97

3



Chapter 4. Results of the Simulation Study 45

Ta
bl

e
4.

10
:C

ov
er

ag
e

of
lo

g-
lo

g
C

on
fid

en
ce

In
te

rv
al

s

Sa
m

pl
e

Si
ze

=
40

0,
IC

C
=

0

Pe
rc

en
ta

ge
C

ov
er

ag
e

of
C

on
fid

en
ce

In
te

rv
al

F
1(

5)
C

Pe
r.

C
en

.
λ

1/
λ

2
M

ul
t

C
P

L
in

Ja
ck

B
oo

t1
B

oo
t2

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

0.
25

40
0.

5
1

3
94

3
3

94
3

3
93

4
3

93
4

3
93

4
0

99
1

10
2

95
4

2
95

4
4

92
4

4
92

4
4

91
5

0
99

1

5
2

96
3

2
96

3
4

89
7

4
89

7
7

86
8

0
99

1

0.
33

40
2

2
95

3
2

96
3

3
95

3
3

95
3

3
95

3
0

99
1

10
2

95
3

1
96

3
3

92
4

3
92

4
4

91
5

0
99

0

5
3

95
3

2
95

3
5

87
8

5
87

8
7

84
9

1
98

1

0.
37

40
3

3
94

3
3

95
2

3
94

3
3

94
3

3
94

3
1

99
1

10
2

95
3

2
96

2
3

92
5

3
92

5
4

90
6

0
99

1

5
2

96
3

2
96

2
5

89
6

5
89

6
7

86
8

0
99

1

0.
40

40
0.

2
1

3
92

5
2

94
4

2
93

4
2

93
4

3
93

5
0

99
1

10
4

93
3

2
96

2
4

93
4

4
93

4
4

92
4

1
99

0

5
3

93
4

2
95

3
6

87
7

6
87

7
7

84
9

1
99

1

0.
53

40
2

4
92

4
2

95
3

2
95

3
2

95
3

3
94

3
0

99
0

10
4

92
4

3
94

3
5

91
4

5
91

4
5

89
5

1
99

1

5
3

92
4

2
95

4
6

87
7

6
87

7
8

83
9

0
98

2

0.
60

40
3

4
93

3
2

96
2

2
95

3
2

95
3

2
95

3
0

10
0

0

10
5

92
3

3
96

2
4

93
3

4
93

3
5

92
4

1
99

0

5
5

90
5

3
93

4
7

85
8

7
85

8
9

82
9

1
98

1



Chapter 4. Results of the Simulation Study 46

Ta
bl

e
4.

11
:C

ov
er

ag
e

of
lo

g-
lo

g
C

on
fid

en
ce

In
te

rv
al

s

Sa
m

pl
e

Si
ze

=
40

0,
IC

C
=

0.
01

Pe
rc

en
ta

ge
C

ov
er

ag
e

of
C

on
fid

en
ce

In
te

rv
al

F
1(

5)
C

Pe
r.

C
en

.
λ

1/
λ

2
M

ul
t

C
P

L
in

Ja
ck

B
oo

t1
B

oo
t2

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

0.
25

40
0.

5
1

2
95

3
2

95
3

2
95

3
2

95
3

3
94

4
0

99
0

10
3

94
3

3
94

3
3

92
5

3
92

5
4

90
6

1
98

1

5
4

92
4

4
92

4
6

87
7

6
87

7
8

83
9

1
98

1

0.
33

40
2

3
94

3
2

95
3

3
94

3
3

94
3

3
94

3
0

99
0

10
2

94
4

2
94

4
3

92
5

3
92

5
5

90
6

1
99

1

5
4

91
6

3
92

6
5

88
7

5
88

7
7

85
8

1
97

2

0.
37

40
3

2
95

3
2

96
2

2
96

2
2

96
2

2
96

2
0

10
0

0

10
2

95
3

2
95

3
3

93
4

3
93

4
4

92
5

1
99

1

5
3

92
5

3
93

5
5

88
7

5
88

7
7

85
9

1
98

1

0.
40

40
0.

2
1

4
93

4
3

95
3

3
94

3
3

94
3

3
94

3
1

99
1

10
4

91
5

3
93

4
3

93
4

3
93

4
4

91
5

1
99

1

5
4

92
4

3
94

3
6

89
6

6
89

6
6

86
8

1
99

1

0.
53

40
2

3
91

6
2

94
4

3
94

4
3

94
4

3
93

4
0

99
1

10
4

91
5

2
94

5
4

91
5

4
91

5
4

89
7

0
99

1

5
3

91
6

2
93

5
5

88
7

5
88

7
7

85
8

0
98

1

0.
60

40
3

3
93

4
1

96
3

1
96

3
1

96
3

2
96

3
0

99
1

10
3

92
5

2
95

3
4

92
5

4
92

5
4

91
5

0
99

1

5
5

90
5

3
94

3
7

87
6

7
87

6
9

83
8

2
98

1



Chapter 4. Results of the Simulation Study 47

Ta
bl

e
4.

12
:C

ov
er

ag
e

of
lo

g-
lo

g
C

on
fid

en
ce

In
te

rv
al

s

Sa
m

pl
e

Si
ze

=
40

0,
IC

C
=

0.
05

Pe
rc

en
ta

ge
C

ov
er

ag
e

of
C

on
fid

en
ce

In
te

rv
al

F
1(

5)
C

Pe
r.

C
en

.
λ

1/
λ

2
M

ul
t

C
P

L
in

Ja
ck

B
oo

t1
B

oo
t2

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

L
ef

t
W

ith
in

R
ig

ht
L

ef
t

W
ith

in
R

ig
ht

0.
25

40
0.

5
1

3
93

4
3

93
4

2
93

5
2

93
5

2
93

5
0

99
1

10
3

92
5

3
92

5
3

91
6

3
91

6
4

90
7

1
98

1

5
4

89
8

4
89

8
5

88
7

5
88

7
6

85
10

1
97

3

0.
33

40
2

3
93

4
2

94
4

2
95

3
2

95
3

2
94

4
0

99
1

10
5

89
7

4
89

7
3

92
5

3
92

5
3

90
7

1
98

2

5
7

83
10

6
84

10
6

88
7

6
88

7
7

85
8

2
95

3

0.
37

40
3

2
94

4
2

95
3

2
95

3
2

95
3

2
94

4
0

99
1

10
3

89
8

3
89

7
2

92
6

2
92

6
3

91
6

1
98

1

5
9

79
12

9
81

11
6

87
7

6
87

7
8

84
8

2
95

3

0.
40

40
0.

2
1

2
92

7
1

94
5

1
94

5
1

94
5

1
93

5
0

99
1

10
4

87
9

3
89

8
3

90
7

3
90

7
4

88
8

1
97

2

5
4

86
10

3
88

9
4

87
9

4
87

9
5

83
12

1
97

3

0.
53

40
2

2
91

8
1

93
6

1
93

6
1

93
6

2
93

6
0

99
1

10
4

85
11

2
88

10
3

89
8

3
89

8
3

88
9

0
97

3

5
6

82
12

4
86

11
4

88
8

4
88

8
6

85
10

1
96

3

0.
60

40
3

2
90

8
1

93
5

1
93

6
1

93
6

1
93

7
0

99
1

10
4

83
12

3
88

9
2

91
7

2
91

7
2

90
8

0
97

3

5
6

79
15

3
85

12
4

89
8

4
89

8
5

86
10

1
95

4



Chapter 4. Results of the Simulation Study 48

Table 4.13: Width of log-log Confidence Intervals

Sample Size = 100, ICC = 0

Average Length of Confidence Interval

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 20 0.5 1 0.164 0.168 0.164 0.164 0.160 0.218

10 0.163 0.168 0.162 0.162 0.154 0.221

5 0.163 0.168 0.156 0.156 0.140 0.216

0.33 20 2 0.178 0.183 0.183 0.183 0.179 0.240

10 0.178 0.183 0.178 0.178 0.169 0.241

5 0.178 0.183 0.171 0.171 0.153 0.237

0.37 20 3 0.183 0.188 0.186 0.186 0.181 0.245

10 0.183 0.188 0.183 0.183 0.173 0.248

5 0.183 0.188 0.176 0.176 0.158 0.243

0.40 20 0.2 1 0.173 0.191 0.188 0.188 0.183 0.249

10 0.173 0.191 0.185 0.185 0.175 0.252

5 0.173 0.191 0.179 0.179 0.160 0.247

0.53 20 2 0.174 0.195 0.191 0.191 0.186 0.254

10 0.174 0.196 0.191 0.191 0.181 0.258

5 0.174 0.196 0.183 0.183 0.164 0.252

0.60 20 3 0.171 0.193 0.189 0.189 0.185 0.252

10 0.171 0.193 0.186 0.186 0.176 0.255

5 0.172 0.193 0.181 0.181 0.162 0.250



Chapter 4. Results of the Simulation Study 49

Table 4.14: Width of log-log Confidence Intervals

Sample Size = 100, ICC = 0.01

Average Length of Confidence Interval

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 20 0.5 1 0.163 0.168 0.166 0.166 0.162 0.219

10 0.163 0.167 0.164 0.164 0.155 0.220

5 0.164 0.168 0.162 0.162 0.145 0.220

0.33 20 2 0.178 0.183 0.181 0.181 0.177 0.240

10 0.178 0.183 0.180 0.180 0.171 0.242

5 0.178 0.183 0.176 0.176 0.157 0.239

0.37 20 3 0.183 0.187 0.185 0.185 0.180 0.245

10 0.183 0.188 0.185 0.185 0.176 0.249

5 0.183 0.188 0.183 0.183 0.164 0.246

0.40 20 0.2 1 0.173 0.191 0.188 0.188 0.183 0.249

10 0.172 0.191 0.187 0.187 0.177 0.253

5 0.172 0.191 0.181 0.181 0.162 0.247

0.53 20 2 0.174 0.195 0.191 0.191 0.186 0.254

10 0.174 0.196 0.193 0.193 0.183 0.260

5 0.174 0.195 0.187 0.187 0.168 0.255

0.60 20 3 0.172 0.193 0.189 0.189 0.184 0.251

10 0.172 0.193 0.191 0.191 0.181 0.257

5 0.172 0.193 0.187 0.187 0.167 0.253
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Table 4.15: Width of log-log Confidence Intervals

Sample Size = 100, ICC = 0.05

Average Length of Confidence Interval

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 20 0.5 1 0.163 0.167 0.167 0.167 0.163 0.220

10 0.163 0.167 0.168 0.168 0.159 0.223

5 0.163 0.167 0.166 0.166 0.149 0.221

0.33 20 2 0.178 0.183 0.185 0.185 0.181 0.241

10 0.178 0.182 0.185 0.185 0.176 0.244

5 0.178 0.182 0.189 0.189 0.169 0.246

0.37 20 3 0.183 0.188 0.189 0.189 0.184 0.247

10 0.183 0.187 0.193 0.193 0.183 0.254

5 0.183 0.187 0.196 0.196 0.175 0.253

0.40 20 0.2 1 0.173 0.191 0.190 0.190 0.185 0.249

10 0.173 0.190 0.188 0.188 0.178 0.252

5 0.173 0.191 0.186 0.186 0.166 0.250

0.53 20 2 0.175 0.196 0.196 0.196 0.191 0.258

10 0.175 0.196 0.196 0.196 0.186 0.261

5 0.175 0.195 0.196 0.196 0.176 0.260

0.60 20 3 0.173 0.193 0.194 0.194 0.189 0.255

10 0.173 0.193 0.195 0.195 0.184 0.259

5 0.173 0.193 0.202 0.202 0.181 0.261
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Table 4.16: Width of log-log Confidence Intervals

Sample Size = 400, ICC = 0

Average Length of Confidence Interval

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 40 0.5 1 0.083 0.085 0.084 0.084 0.083 0.116

10 0.083 0.085 0.082 0.082 0.077 0.114

5 0.083 0.085 0.081 0.081 0.072 0.112

0.33 40 2 0.090 0.092 0.092 0.092 0.091 0.126

10 0.090 0.092 0.090 0.090 0.085 0.125

5 0.090 0.092 0.086 0.086 0.076 0.121

0.37 40 3 0.093 0.095 0.094 0.094 0.093 0.129

10 0.093 0.094 0.092 0.092 0.087 0.128

5 0.093 0.095 0.088 0.088 0.079 0.124

0.40 40 0.2 1 0.087 0.096 0.095 0.095 0.094 0.130

10 0.087 0.096 0.094 0.094 0.089 0.130

5 0.087 0.096 0.090 0.090 0.080 0.126

0.53 40 2 0.088 0.098 0.098 0.098 0.096 0.133

10 0.088 0.098 0.094 0.094 0.089 0.132

5 0.088 0.098 0.091 0.091 0.081 0.128

0.60 40 3 0.086 0.096 0.095 0.095 0.094 0.131

10 0.086 0.096 0.094 0.094 0.089 0.131

5 0.087 0.096 0.090 0.090 0.080 0.126
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Table 4.17: Width of log-log Confidence Intervals

Sample Size = 400, ICC = 0.01

Average Length of Confidence Interval

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 40 0.5 1 0.083 0.085 0.085 0.085 0.084 0.116

10 0.083 0.085 0.084 0.084 0.080 0.116

5 0.083 0.085 0.085 0.085 0.076 0.115

0.33 40 2 0.090 0.092 0.092 0.092 0.091 0.126

10 0.090 0.092 0.095 0.095 0.090 0.128

5 0.090 0.092 0.094 0.094 0.084 0.125

0.37 40 3 0.093 0.095 0.095 0.095 0.094 0.129

10 0.093 0.095 0.096 0.096 0.091 0.130

5 0.093 0.094 0.098 0.098 0.088 0.130

0.40 40 0.2 1 0.087 0.096 0.096 0.096 0.094 0.131

10 0.087 0.096 0.096 0.096 0.091 0.131

5 0.087 0.096 0.094 0.094 0.084 0.129

0.53 40 2 0.088 0.098 0.098 0.098 0.096 0.134

10 0.088 0.098 0.098 0.098 0.092 0.134

5 0.088 0.098 0.099 0.099 0.088 0.133

0.60 40 3 0.087 0.096 0.096 0.096 0.095 0.131

10 0.087 0.096 0.099 0.099 0.094 0.134

5 0.087 0.096 0.097 0.097 0.087 0.131
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Table 4.18: Width of log-log Confidence Intervals

Sample Size = 400, ICC = 0.05

Average Length of Confidence Interval

F1(5) C Per. Cen. λ1/λ2 Mult CP Lin Jack Boot1 Boot2

0.25 40 0.5 1 0.083 0.084 0.086 0.086 0.085 0.116

10 0.083 0.084 0.092 0.092 0.087 0.121

5 0.082 0.084 0.101 0.101 0.090 0.124

0.33 40 2 0.090 0.092 0.096 0.096 0.095 0.128

10 0.090 0.092 0.108 0.108 0.102 0.137

5 0.090 0.092 0.122 0.122 0.110 0.144

0.37 40 3 0.093 0.094 0.099 0.099 0.097 0.132

10 0.093 0.094 0.114 0.114 0.108 0.142

5 0.092 0.094 0.130 0.130 0.116 0.150

0.40 40 0.2 1 0.088 0.096 0.097 0.097 0.095 0.131

10 0.088 0.096 0.101 0.101 0.096 0.135

5 0.087 0.096 0.109 0.109 0.098 0.138

0.53 40 2 0.089 0.098 0.101 0.101 0.100 0.136

10 0.088 0.098 0.110 0.110 0.104 0.142

5 0.088 0.098 0.120 0.120 0.108 0.146

0.60 40 3 0.087 0.097 0.100 0.100 0.099 0.134

10 0.087 0.096 0.114 0.114 0.108 0.144

5 0.087 0.096 0.127 0.127 0.113 0.150



Chapter 5

Examples

5.1 Introduction
This chapter illustrates the use of confidence interval estimators for the cumulative inci-

dence function, evaluated by simulation in Chapter 4. The data used in this chapter come from

two multicentre studies with competing risks outcomes, which were highlighted in the Intro-

duction. The first dataset is from a prospective and observational study (Zhou et al., 2012) and

the second dataset is the control arm of an individually randomized trial (Messing et al., 1999).

Data from the control arm of a cluster randomized trial with competing risks outcomes

would be the ideal but we were unable to obtain such a dataset. Nevertheless, analysis of the

datasets here still provides insight into the performance of the estimators compared previously.

Section 5.2 and 5.3 provide context and statistical analysis for the data from each respec-

tive study. In the first study, patients with leukemia undergoing bone marrow transplant are

followed until the occurrence of graft versus host disease. In the second study, patients in re-

mission from prostate cancer having nodal metastasis were randomized to either immediately

receive hormonal therapy or to only receive therapy after the disease progressed sufficiently.

For purposes of illustration, attention is limited only to estimating the incidence of death from

prostate cancer in the control arm of the study. Section 5.4, the final section, summarizes what

can be learned about the variance and confidence interval estimators from these applications.
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5.2 Bone Marrow Transplantation Dataset

5.2.1 Background

The bone marrow transplantation data we will use for illustration are a random subsample

of 400 patients from a dataset analyzed by Zhou et al. (2012). These data are obtained from

the R package “crrSC”.

Data are from a bone marrow transplant registry kept by the European Blood and Bone

Marrow Transplant Group (EBMT). The EBMT is a working group where greater than 450

transplant centres volunteer to once a year report stem cells transplantations and follow-up.

Bone marrow transplantation, a common treatment for leukemia, has a possible side effect

known as graft versus host disease and occurs following a bone marrow graft when the graft

cells (from the donor) attack the host cells. It can lead to a quicker death than leukemia itself

(Klingebiel and Schlegel, 1998). The data follows patients in remission from leukemia re-

cruited between January 1, 1994 and December 31, 2004, followed until July 2008. Follow-up

begins from the time of the bone marrow graft to the occurrence of either the event of interest,

graft versus host disease (GVHD), or the competing risks of death (from any cause) or cancer

relapse without GVHD. Events were administratively censored at July 2008.

Details on the inclusion criteria of the study subjects can be found in Katashian et al.

(2006), the most important being: patients must be above 16, in full remission from acute

myeloid leukemia, and that centers with only one patient were excluded (the reason for this

was not given). Katashian et al. (2006) also notes that patient populations are very different

across the centers, and that patients from the same center may share traits. Thus clustering

effects may cause underestimation of variance estimates should one incorrectly assume inde-

pendence of patients from the same center.

5.2.2 Descriptive Summary of Data

The data has three variables: time of event (in days), event indicator (GVHD, death without

GVHD, or censored) and the center ID.
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Figure 5.1: Number of Patients per Center in EBMT Dataset

Zhou et al. (2012) analyzed data for 2996 patients from 244 centers. The random sample

we analyze has 400 patients from 153 centers. Figure 5.1 is a chart displaying the number of

patients recruited per center. Unlike the dataset analyzed by Zhou et al. (2012), our random

subsample contains centers with only one patient. The mean number of patients per center was

approximately 2.6, and the median was 2.

There were 194 patients with an occurrence of GVHD (48.5%), 74 experienced a compet-

ing risk (18.5%), and 132 patients were censored (33%). The median length of follow-up was

approximately six months while the maximum follow-up was approximately 14 years. Unlike

our simulated data in Chapter 4, patients entered the population at different times and thus

patients could be censored at different lengths of follow-up.

5.2.3 Confidence Interval Estimation of the Cumulative Incidence

For illustration we graph estimates of the cumulative incidence for all times annually up to

the last occurrence of GVHD which happens approximately after 7 years follow-up. Because

a clinician may be particularly interested in GVHD cumulative incidence rates for GVHD

within the first 5 years, Table 5.1 presents these values and compares the associated confidence

intervals formed by the estimators described in Chapter 4 using the log-log method.
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Figure 5.2: Cumulative Incidence of Graft Versus Host Disease Accounting for Competing

Events due to Death or Relapse and associated 95% log-log Counting Process Confidence

Intervals at Years 1 to 5

Figure 5.2 shows the cumulative incidence function for GVHD, estimated using Formula

2.4, with the associated 95% log-log Counting Process confidence interval. Following Pocock

(2007), we include the number of patients still at risk in our graph. We chose to provide the

log-log Counting Process confidence interval because it performed well under similar scenarios

in our simulation study, though, as we see from Table 5.1, the choice of the Counting Process

estimator does not make much difference. We see the cumulative incidence estimate sharply

rises over the first year, until it reaches above 0.4, where over half the population is no longer

at risk, then gradually increases from then until year 7 from approximately 0.4 to 0.6.

The 95% confidence interval estimates obtained at 1 to 5 years of follow up are given in

Table 5.1. We present the confidence intervals calculated using the log-log confidence interval

method because it performed better than the linear confidence interval method in our simulation

study, although applied to the present data, their difference did not exceed the second decimal

place. Only Bootstrap 2 is slightly wider than other intervals, it being wider by at most 4%.

Other intervals preform nearly always identically.
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Table 5.1: Comparison of 95% log-log Confidence Interval Methods for Cumulative

Incidence at 1 to 5 Years

t No. at Risk F(t) Multi CP Lin Jack Boot1 Boot2

1 145 0.42 [0.37, [0.37, [0.36, [0.36, [0.36, [0.35,

0.47] 0.47] 0.47] 0.47] 0.47] 0.49]

2 111 0.46 [0.41, [0.41, [0.40, [0.40, [0.40, [0.39,

0.51] 0.51] 0.51] 0.51] 0.52] 0.52]

3 88 0.49 [0.44, [0.43, [0.43, [0.43, [0.43, [0.42,

0.54] 0.54] 0.54] 0.54] 0.54] 0.55]

4 65 0.51 [0.46, [0.46, [0.46, [0.46, [0.46, [0.44,

0.56] 0.56] 0.56] 0.56] 0.56] 0.58]

5 50 0.52 [0.47, [0.47, [0.47, [0.47, [0.46, [0.46,

0.57] 0.57] 0.57] 0.57] 0.58] 0.59]

5.3 Hormonal Therapy for Prostate Cancer Dataset

5.3.1 Background

The second dataset we consider is from a randomized trial conducted by the Eastern Coop-

erative Oncology Group of the United States testing the effectiveness of early hormonal therapy

for the treatment of prostate cancer (Messing et al., 1999). It was conducted to determine if

early hormonal therapy prolonged the survival of men with prostate cancer. Earlier intervention

had not been thought to do so. The study participants were 98 men recruited between 1988 and

1993, having undergone prostatectomy and diagnosed as free of prostate cancer but as having

residual cancer cells due to nodal metastases. They were randomized to either immediately

receive hormonal therapy or to only receive therapy after the disease progressed sufficiently.

Patients were followed from the date of randomization to the date of either death from prostate
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Figure 5.3: Number of Patients per Centre in Immediate Arm of ECOG Dataset

cancer, death due to another reason, or censoring. For purposes of illustration, we will estimate

the cumulative incidence of death due to prostate cancer for the immediate treatment group and

associated 95% confidence intervals.

5.3.2 Descriptive Summary of Data

The 98 patients were recruited from 43 centers. 32% died due to prostate cancer, 14% died

from another cause, and 53% of patients were censored. The minimum follow-up time was 1.3

years, the median follow up time was 10.6 years, and the maximum follow-up time was 14.5

years.

Only 47 patients from 28 centers were recruited from the immediate treatment arm. Other

summary statistics for the immediate treatment arm are similar, with the minimum follow up

time being 2.1 years, median follow-up time being 11.2 years, and maximum follow-up time

14.5 years. Figure 5.3 is a histogram of the number patients recruited from each hospital for

the immediate treatment arm. In the immediate treatment arm, 34% of patients were the only

one from their centre. The mean number of patients per center was approximately 1.7, and the

median was 1.
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Table 5.2: Comparison 95% log-log Confidence Interval Methods for Cumulative Incidence

of Death due to Prostate Cancer at 10 Years

t No. at Risk F(t) Multi CP Lin Jack Boot1 Boot2

10 34 0.13 [0.05, [0.05, [0.05, [0.05, [0.04, [0.04,

0.24] 0.24] 0.26] 0.26] 0.26] 0.27]

5.3.3 Confidence Interval Estimation of the Cumulative Incidence

For illustration we graph estimates the cumulative incidence for all times up to 14 years.

Because a clinician may be interested in the cumulative incidence at 10 years for death due

to prostate cancer with immediate treatment, we will present a table with this rate and the

associated confidence intervals formed by the estimators we studied in Chapter 4.

Figure 5.4 shows the cumulative incidence of death due to prostate cancer in the immediate

treatment arm. As before, the cumulative incidence is estimated using Formula 2.4, with the

associated 95% log-log Counting Process confidence interval. We also follow Pocock (2007),

and include the number patients still at risk in our graph. We see the cumulative incidence

estimate remains much lower than in our previous example, with the maximum value being

under 0.2.

To compare the performance of the different confidence interval estimators, the 95% con-

fidence interval estimates obtained at 10 years of follow up are given in Table 5.2. As in the

previous example, we present the confidence intervals calculated using the log-log method,

which is advantageous here because the cumulative incidence estimates are near 0. Indeed, us-

ing the linear confidence interval method would require truncating lower range of the Bootstrap

2 at 0. The Linearized, Jackknife, and Bootstrap 1 methods are wider than the Multinomial and

Counting Process methods by 2%, and narrower than Bootstrap 2 by 1%.
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Figure 5.4: Cumulative Incidence of Death due to Prostate Cancer in the Immediate

Treatment Arm Accounting for Other Causes of Death and Associated 95% log-log Counting

Processes Confidence Interval at Year 10

5.4 Summary

The application of the methods of confidence interval estimation to the two datasets here

shows a much lower difference in the application these methods than the results of the simula-

tion study would suggest.

Of course, this is not to be unexpected, because the examples do not cover as wide a range

of scenarios as the simulation study. Furthermore, as both datasets were used for illustrative

purposes only, and did not arise from a cluster randomized trial, the data is likely much less

affected by clustering than data coming from an arm in a cluster randomized trial. This may

also account for the similarity in performance between the different estimators.

In the analysis of the first EBMT dataset, because the data is a random sample of a much

larger original dataset, we have some justification to think our analysis on this sample will be

similar to analysis done on the full dataset. However, an important difference between this

subset and the original data must be kept in mind: in the original dataset, centers with only one
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patient were excluded, but in the random sample, 65 of the 153 centers have only one patient.

Also, in the second ECOG dataset, 34% of patients were the only one from their center. The

effect of singleton clusters on the similarity of results of the confidence interval estimators,

especially those which account for clustering, will be discussed in the next chapter.



Chapter 6

Discussion

6.1 Introduction
This final chapter outlines the results of this thesis and contextualizes its findings within

past and future research. Including this introduction the chapter contains five sections. Section

6.2 compares the results of our simulation study to similar simulation studies. The key findings

of the thesis are presented in Section 6.3. Section 6.4 looks at the limitations of this work and

opportunities for future research, and Section 6.5 summarizes this chapter.

6.2 Comparison to Previous Studies
One of the main goals of this simulation study was to determine how, for cluster random-

ized trials with competing risks endpoints, clustering affects the performance of traditional

confidence interval estimators and if estimators accounting for clustering would provide better

coverage. Results from Chapter 4 showed clustering does negatively affect the performance

of the traditional Multinational and Counting Process estimators. They also show under heavy

clustering estimators accounting for clustering have better coverage.

We will contextualize our results by comparing them with other studies looking at similar

problems. One common feature of the papers we compare our study to is, if they looked

at clustering, their simulations modeled much higher levels of correlation between subjects

from the same cluster than we did. This is often because the setting for their simulations
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was sometimes different than cluster randomized trials of patients from different centers. We

modeled smaller values because small values of the ICC are observed in cluster randomized

trials with patients from different centers (Donner and Klar, 2000).

First we compare our results to two papers comparing variance estimators for the cumula-

tive incidence under competing risks with no clustering. Both included a Multinomial estimator

and a Counting Processes based estimator. The first, Braun and Yuan (2007), found the Count-

ing Process estimator given in Equation 2.6 slightly overestimated the empirical variance of

the cumulative incidence, and the Multinomial estimator slightly underestimated the empirical

variance. In our simulation study, when there was no clustering, that is, when the ICC, ρ = 0,

our bias results confirm this pattern - the bias of the Counting Process estimator was always

above that of the Multinomial estimator, and positive in the majority of cases. The Multinomial

estimator was positive in only 5 of the 36 scenarios when ICC = 0. Illjon (2013), comparing

the Counting process and Multinomial estimator, made similar conclusions to Braun and Yaun

(2007).

Next we compare our results to two simulations looking at clustered survival data, but out-

side the context of competing risks. Williams (1995) conducted a simulation study comparing

the Greenwood estimator for the survival function to a Linearized variance estimator for the

survival function. This Linearized estimator was meant to account for the clustering in the

survival data. Motivated partly by a repeated measurement study, Williams considers ICCs of

0.5, 0.3 and 0.1. These were much larger than what were examined in our study, where when

clustering existed, it was generated using an ICC of either 0.01 and 0.05. He presented results

for scenarios where cluster sizes were 5 and 15 and the number of clusters was 50, finding

the Linearized estimator had significantly better coverage than Greenwood’s estimator. The

scenario that most closely matched his in our study on the parameters of sample size, number

of clusters, and ICC was when when the sample size was 400, the number of clusters was 40,

and ICC = 0.05. In these scenarios, like Williams, our Linearized estimator always performed

better than the Multinomial estimator (which is the extension of Greenwood’s formula to the
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competing risk setting). However, in scenarios with a smaller number of clusters or lower

clustering, no estimator was definitively superior .

The second paper looking at clustered survival data we compare our results to is a sim-

ulation by Xiao and Abrahamowicz (2010). They performed a simulation applying the two

bootstrap methods we considered to study the coverage of confidence intervals for covariate

effect estimates in the Cox model. They only considered scenarios with a sample size of 2000

with 50 clusters each of size 40. Like us, they found the two-step bootstrap performed very

poorly when the ICC = 0 (The one scenario they considered with ICC = 0 has its coverage

at above 99%). All the other scenarios they considered had an ICC above 0.07. Our results

were similar to theirs for Bootstrap 1 in the scenarios when the total sample size was 400, ICC

= 0.05, and the number of clusters was 40. When the number of clusters was 10 or lower,

in our simulation study, Bootstrap 1 generally had poor coverage. Bootstrap 2 however, did

not perform as well for us as it did for them in these scenarios. This may be attributable to

the smaller sample size we considered. It is also possible that the poor performance of our

Bootstrap 2 estimator may be due to a low number of bootstrap replications. We used 200

replications, but Booth and Sarkar (1998) suggest a minimum of 800 replications. Although,

Xiao and Abrahamowicz (2010) used 100 and 500 and did not notice a change in the accuracy

of their estimators.

Caution should be taken in comparing the results of the previous two studies to ours be-

cause, not only were the methods of data generation different, but the settings did not include

competing risks.

Finally we compare our results with Chen et al. (2008). They obtained a robust variance

estimator for the cumulative incidence function that accounted for within-cluster correlation

and performed a simulation study assessing the bias of this variance estimator. Their setting

was exactly ours: competing risks with clustering. Their robust estimator was similar to the

Linearized estimator we considered. Like them, we found that the bias performance of the

Linearized estimator was better than any other method. However, because they did not study
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confidence intervals based on this estimator, and the good bias performance of the Linearized

estimator did not carry over to good performance of confidence interval coverage in many of

the scenarios we considered, we cannot comment of the confidence interval performance of

their estimator compared to ours.

6.3 Key Findings

Our simulation study confirmed the results of Braun and Yuan (2007), that when no cluster-

ing exists, the Counting Processes based estimator has lower bias than the Multinomial based

estimator. We also found confidence intervals based on the Counting Process estimator gener-

ally had better coverage than those based on the Multinomial estimator.

When the clustering effect was small (i.e. ICC = 0.01), we found a disadvantage to using

any of estimators accounting for clustering we studied, compared to the Counting Process esti-

mator. Coverage of these was poorer especially in scenarios with a smaller number of clusters,

but the Linearized, Jackknife, and Bootstrap 1 had comparable performance in scenarios with

above 20 clusters.

This may be because, as noted by Donner and Klar (2000), there is an inverse relationship

between the sample size from a cluster and the degree of intracluster correlation. If only a small

sample of cluster members are included in studies randomizing large clusters then the degree

of variance inflation may be quite small. Thus the benefit of having an estimator accounting for

clustering may not be noticed when the size of the sample from a cluster is small, especially

when the number of clusters has not reached a sufficient number to perform as well as they

would asymptotically.

This is consistent with our results in cases where ICC = 0.05, and the largest sizes of

patients from a cluster (80 patients), the Bootstrap 2 estimator preforms best, while the Count-

ing Processes estimator performs poorly. And in cases where ICC = 0.05 and there were 40

clusters, the Linearized, Jackknife, and Bootstrap 1 estimators matched or outperformed the

Counting Process estimator.
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6.4 Limitations and Future Research
As mentioned in Chapter 3, the focus of this thesis was limited to:

• Administrative censoring, that is, censoring due to not all patients experiencing an event

when the cumulative incidence is calculated

• All patients being accrued prior to follow-up beginning

• Fixed hazard rates for both competing events over time

• Clusters of equal size

Thus, future simulation studies examining wider types of right censoring may produce

more insight into the performance of these estimators in a less idealized scenario. It may also

be beneficial if future studies examined different kinds of patient and cluster accrual. In all

our scenarios, both clusters and patients within clusters were assumed to be enrolled prior to

randomization. However, cluster randomized trials can proceed with recruitment of clusters

well beyond the study start date, and allow patient accrual up to the study end.

One question of practical importance that arose during Chapter 5, where we applied our

methods to two example datasets, was that some cluster randomized trials may have clusters

with only one patient, and a wide range of cluster sizes. A future simulation study examin-

ing the effect of differences in cluster sizes on confidence interval estimates would aid future

researchers.

Furthermore, our approach of data generation described in Chapter 3 - using a gamma

frailty model to simulate clustering and Beyersmann’s approach to simulate competing risks -

is one of many possible options. Burton (2006) notes that the method of data generation can

affect the simulation results. Researchers would benefit from studies considering different data

generation procedures.

A final technical question raised by the simulation which would be a subject for future

research is the reason for the similarity between the performance of Linearized and Jackknife
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estimators.

6.5 Summary
This thesis examined simulated data modeling cluster randomized trials with competing

risks endpoints. It found heavy clustering (ICC = 0.05) can affect the coverage of traditional

confidence interval estimators not accounting for clustering. Under small amounts of clustering

(ICC = 0.01), especially with a sample size of 100 patients, large numbers of clusters, and few

patients per cluster, methods of confidence interval estimation for the cumulative incidence not

accounting for clustering perform comparably to those that do. In cases with there is heavy

clustering (ICC = 0.05), methods accounting for clustering can perform better.
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Appendix A

Derivation of Linearized Variance

Estimator

The following appendix presents a derivation of a Taylor series estimator for the variance

of the cumulative incidence function using the linearized value approach by Woodruff (1971).

This derivation is analogous to the derivation the variance for the survival function in Williams

(1995). Refer to Section 2.3 for the definition of notations.

Recall, the estimator we use for the cumulative incidence function for the first competing

risk is:

F̂1(t j) =

j∑
l=1

d1l

nl

l−1∏
p=1

(1−
d1p + d2p

np
)

Now, it is possible to consider F̂1(t j) as a function of the dil’s and nl’s. For every l = 1... j

there is an associated d1l, d2l, and nl. Thus the function has a domain that is a subset of R3 j,

and can be written as:

F̂1(t j) : R3 j −→ R

(d11,d21,n1, ...,d1l,d2l,nl, ...,d1 j,d2 j,n j) 7−→ F̂1(t j)
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We now take the partial derivatives of this function. Let ql = d1l/nl. The partial derivative

with respect to d1l, for l = 1... j is:

F̂1(t j)
∂d1l

=
1
nl

Ŝ (tl−1) +
∑

l<l′≤t j

d1l′

nl′

Ŝ (tl′−1)
ql

(−
1
nl

)

The partial derivative with respect to d2l, for l = 1... j is:

F̂1(t j)
∂d2l

=
∑

l<l′≤t j

d1l′

nl′

Ŝ (tl′−1)
ql

(−
1
nl

)

The partial derivative with respect to nl, for l = 1... j is:

F̂1(t j)
∂nl

= −(
d1l

n2
l

)Ŝ (tl−1) +
∑

l<l′≤t j

d1l′

nl′

Ŝ (tl′−1)
ql

(
d1l + d2l

n2
l

)

Thus the linearized value of F̂1(t j), with respect to the kth observation in cluster c is given

below.

zck[F̂1(t j)] =

j∑
l=1

F̂1(t j)
∂d1l

d1ck(tl) +
F̂1(t j)
∂d2l

d2ck(tl) +
F̂1(t j)
∂nl

nck(tl)

And using the Woodruff (1971) linearization approach, the linearized value of F̂1(t j), with

respect to cluster c becomes:

zc[F̂1(t j)] =

Nc∑
k=1

zck[F̂1(t j)]

Then applying the cluster variance estimator discussed in Williams (1995) and Williams

(2000), to these linearized cluster values, we obtain the following variance estimator for the

cumulative incidence:

var(F̂1(t j)) =

C∑
c=1

(C/(C−1))(zc[F̂1(t j)]− z̄[F̂1(t j)])2 (A.1)

where

z̄[F̂1(t j)] =

C∑
c=1

zc[F̂1(t j)]/C
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R Code

B.1 Data Generation
#gen.data.beyer.admin is a function

#simulating clustered competing risks data using a gamma frailty model

#to generate cluster hazards and Beyersmann’s method to assign

#an event to a generated time.

#s = Cluster size

#N = Number of events

#ICC = Intracluster correlation coefficient

#lambda = Vector containing hazards for the two competing risks

#per.cen = Percentage censored

#(Only administrative censoring is considered)

gen.data.beyer.admin <- function(lambda, per.cen, ICC, s, N) {

events<-s
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C<-N/s #C is the number of clusters

#Generating frailties for the k clusters

if (ICC == 0)

{frailties<-rep(1, times = C)

} else {frailties<-rgamma(C, shape = 1/ICC, scale = ICC)

}

#Hazards for the ith cluster and jth competing risk.

#Rows are clusters, columns are hazards

hazards<-outer(frailties, lambda)

#ccds = name of generated data frame

ccds <-NULL

#Generating ccds

for (h in 1:C) {

#Generating Failure Times

gentimes<-rexp(events, rate = hazards[h,1]+hazards[h,2])

#Assigning a risk to failure times

risk <-rbinom(events,1, hazards[h,1]/(hazards[h,1]+hazards[h,2]))

risk <- replace(risk, risk==0, 2)

#Generating the point of administrative censoring

len.of.stud<-qexp((1-per.cen), rate = (lambda[1]+lambda[2]))
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#Censoring failure times to account for administrative censoring

risk <- replace(risk, len.of.stud <= gentimes, 0)

gentimes <- sapply(1:events,

function(i)

if (risk[i] == 0)

{len.of.stud}

else gentimes[i])

gentimes<- cbind(gentimes, risk, rep(h,events))

ccds <- rbind(ccds,gentimes)

}

#Resimulating data if all events are censored

if (all(risk == 0))

{gen.data.beyer.admin(lambda, per.cen, ICC, s, N)

warning("All events are censored, resimulating.")

} else {return(ccds)

}

}

B.2 Code for Cumulative Incidence and Variance Estima-

tors
#Loading the "parallel" package.

library(parallel)

#This document contains the code for the cumulative incidence function

#and six variance estimators of the cumulative incidence.
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#The input for every function here is a dataframe containing

#clustered competing risk observations

#and a time at which the function is to be calculated.

#The dataframe’s first column specifies a time,

#the second a status associated with the time,

#and the third a cluster.

#cif calculates the cumulative incidence.

cif<-function(crd, t) {

df <- aggregate(crd[,2], list(crd[,1]),

function(status) c(sum(status==1), sum(status==2),

sum(status==0)))

df<-setNames(df, c("times", "status"))

#unqiue events times

times <- df$times

#d1

d1 <- df$status[,1]

#d2

d2 <- df$status[,2]

#censored

c <- df$status[,3]
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#number remaining

n <- rev(cumsum(rev(d1+d2+c)))

df<-cbind(times, d1,d2,n)

df<-subset(df, df[,1]<=t)

#warning if no events occour before the time we wish to calculate

if(nrow(df)==0) {warning("No values below t")}

df2<-subset(df, df[,2]>=1|df[,3]>=1)

#warning if no competing risk or censoring occours

if(nrow(df2)==0) {warning("No competing risk or censoring occours")

return(df)}

df<-df2

times<-df[,1]

d1<- df[,2]

d2<- df[,3]

n <- df[,4]

q <- 1-((d1+d2)/n)

#survival function

s <- cumprod(q)

sm1 <- c(1,s[-length(s)])

#cif values

f <- cumsum((d1/n)*sm1)
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#returning the value at the desired time

if(t >= tail(times,1)) {

return( tail(f,1))

}

else {

return(f[which(tail(times[times <= t], 1) == times)])

}

}

#ci.cp.lin function calculating the Multinomial, Counting Process,

#and Linearzed estimators.

ci.cp.lin<-function(crd, t) {

df <- aggregate(crd[,2], list(crd[,1]),

function(status) c(sum(status==1), sum(status==2),

sum(status==0)))

df<-setNames(df, c("times", "status"))

#unqiue events times

times <- df$times

#d1

d1 <- df$status[,1]

#d2

d2 <- df$status[,2]

#censored

c <- df$status[,3]
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#number remaining

n <- rev(cumsum(rev(d1+d2+c)))

df<-cbind(times, d1,d2,n)

df<-subset(df, df[,1]<=t)

#warning if no events occour before the time we wish to calculate

if(nrow(df)==0) {warning("No values below t")}

df2<-subset(df, df[,2]>=1|df[,3]>=1)

#warning if no competing risk or censoring occours

if(nrow(df2)==0) {warning("No competing risk or censoring occours")

return(df)}

df<-df2

times<-df[,1]

lf<-length(times)

d1<- df[,2]

d2<- df[,3]

d<- d1+d2

n <- df[,4]

q <- 1-((d1+d2)/n)

#survival function

s <- cumprod(q)

sm1 <- c(1,s[-length(s)])

#cumulative incidence
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f <- cumsum((d1/n)*sm1)

ftj<-tail(f,1)

#multivariate variance

mult.var <- (sum((ftj-f[1:lf])ˆ2 * (d1[1:lf]/

(n[1:lf]*(n[1:lf]-d1[1:lf]))))

+ sum(sm1[1:lf]ˆ2 * ((d1[1:lf]*(n[1:lf]-d1[1:lf]))/(n[1:lf]ˆ3)))

- 2 * sum((ftj-f[1:lf])* sm1[1:lf] * (d1[1:lf]/(n[1:lf]ˆ2))))

#counting process variance

cpvar <- (sum((ftj-f[1:lf])ˆ2 * (d[1:lf]/((n[1:lf]-1)

*(n[1:lf]-d[1:lf]))))

+ sum(sm1[1:lf]ˆ2 * ((d1[1:lf]*(n[1:lf]-d1[1:lf]))

/(n[1:lf]ˆ2*(n[1:lf]-1))))

- 2 * sum((ftj-f[1:lf])* sm1[1:lf]

*((d1[1:lf]*(n[1:lf]-d1[1:lf]))

/(n[1:lf]*(n[1:lf]-d[1:lf])

*(n[1:lf]-1)))))

#Derivative of cif with respect to d1

Dd1 <- unlist(sapply(1:lf-1,

function(i) {(((1/n[i])*(sm1[i])) +

(-1/(q[i]*n[i]))*

sum(((d1*sm1)/n)[(i+1):lf]))}))

#Derivative of cif with respect to d2

Dd2 <- unlist(sapply(1:lf-1,
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function(i) {(-1/(q[i]*n[i]))*

sum(((d1*sm1)/n)[(i+1):lf])}))

#Derivative of cif with respect to n

Ddn <- unlist(sapply(1:lf-1,

function(i) {((-d1[i]/(n[i]ˆ2))*(sm1[i]) +

((d[i])/(q[i]*(n[i]ˆ2)))*

sum((((d1*sm1)/n)[(i+1):lf])))}))

fDd1 <- c(Dd1, ((1/n[lf])*(sm1[lf])))

fDd2 <- c(Dd2, 0)

fDn <- c(Ddn, (-d1[lf]/(n[lf]ˆ2))*(sm1[lf]))

zg<-NULL

clusters<-as.integer(levels(factor(crd[,3])))

C<-length(clusters)

for (g in clusters) {

g.obs<-subset(crd, crd[,3] == g)

n.g<-sapply(1:lf, function(i) c(sum(g.obs[,1]==times[i]

& g.obs[,2]==1),

sum(g.obs[,1]==times[i]
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& g.obs[,2]==2),

sum(g.obs[,1]>=times[i])))

n.g<-t(n.g)

zg<-c(zg, sum(fDd1*n.g[,1], fDd2*n.g[,2], fDn*n.g[,3]))

}

zhat <- mean(zg)

#the linearized variance

linvar <- (C/(C-1)) * sum((zg-zhat)ˆ2)

c(ftj, mult.var, cpvar, linvar)

}

#jackknife calculates the Jackknife variance estimator

jackknife <- function(crd,t) {

#finding clusters

clusters<-as.integer(levels(factor(crd[,3])))

#defining number of clusters

C<-length(clusters)

#estimating the value of the cif at time t

cift <- cif(crd, t)

#the jackknife estimator

((C-1)/C)*sum(sapply(1:C,
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function(i) {

fmc<-subset(crd, crd[,3] != clusters[i])

(cif(fmc, t)

-cift)ˆ2}

))

}

#clust.boot calculates the onesample cluster bootstrap estimator Boot1

clust.boot <- function(crd, t) {

#finding clusters

clusters<-as.integer(levels(factor(crd[,3])))

#defining number of clusters

C<-length(clusters)

#this subfunction creates a bootstrap sample and applies the

#cumulative incidence function to this sample at time t

bootrep.clustsam<-function(crdf) {

bootsamp<-NULL

bootclustsamp<-sample(clusters, C, TRUE)

for(i in 1:C) {

samp<-subset(crdf, crdf[,3] == bootclustsamp[i])

bootsamp<-rbind(bootsamp, samp)

}

if (all(bootsamp[,2] == 0))

{bootrep.clustsam(crdf)

} else {cif(bootsamp, t)

}
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}

# Calculate the number of cores

no_cores <- detectCores() - 1

# Initiate cluster

cl <- makeCluster(no_cores)

clusterExport(cl, c("crd", "C", "clusters", "bootrep.clustsam",

"cif", "t", "ac.pt"), envir = environment())

num_boot_rep <- 200

#performs bootstrap sample

bootrepsamp<-parSapply(cl, 1:num_boot_rep, function(x) bootrep.clustsam(crd))

stopCluster(cl)

#estimate of variance

sum((bootrepsamp-mean(bootrepsamp))ˆ2)/(num_boot_rep-1)

}

#Bootstrap Calculates the Two-sample cluster bootstrap estimator Boot2

bootstrap <- function(crd, t) {

#finding clusters

clusters<-as.integer(levels(factor(crd[,3])))

#defining number of clusters

C<-length(clusters)
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#this subfunction creates a bootstrap sample and applies the

#cumulative incidence function to this sample at time t

bootrep<-function(crdf) {

bootsamp<-NULL

bootclustsamp<-sample(clusters, C, TRUE)

for(i in 1:C) {

samp<-subset(crdf, crdf[,3] == bootclustsamp[i])

lsam<-length(samp[,1])

samp[sample.int(lsam, replace =TRUE),]

bootsamp<-rbind(bootsamp, samp[sample.int(lsam, replace =TRUE),])

}

if (all(bootsamp[,2] == 0))

{bootrep(crdf)

} else {cif(bootsamp, t)

}

}

#Calculate the number of cores

no_cores <- detectCores() - 1

#Initiate cluster

cl <- makeCluster(no_cores)

clusterExport(cl, c("crd", "C", "clusters", "bootrep", "cif",

"t", "ac.pt"), envir = environment())

num_boot_rep <- 200

#performs bootstrap sample

bootrepsamp<-parSapply(cl, 1:num_boot_rep, function(x) bootrep(crd))
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stopCluster(cl)

#estimate of variance

sum((bootrepsamp-mean(bootrepsamp))ˆ2)/(num_boot_rep-1)

}
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