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The two-spotted spider mite Tetranychus urticae is one of 
the most significant mite pests in agriculture, feeding on 
more than 1,100 plant hosts, including model plants Arabi-
dopsis thaliana and tomato, Solanum lycopersicum. Here, 
we describe timecourse tomato transcriptional responses to 
spider mite feeding and compare them with Arabidopsis in 
order to determine conserved and divergent defense re-
sponses to this pest. To refine the involvement of jasmonic 
acid (JA) in mite-induced responses and to improve tomato 
Gene Ontology annotations, we analyzed transcriptional 
changes in the tomato JA-signaling mutant defenseless1 
(def-1) upon JA treatment and spider mite herbivory. Over-
lay of differentially expressed genes (DEG) identified in 
def-1 onto those from the timecourse experiment estab-
lished that JA controls expression of the majority of genes 
differentially regulated by herbivory. Comparison of 
defense responses between tomato and Arabidopsis high-
lighted 96 orthologous genes (of 2,133 DEG) that were re-
cruited for defense against spider mites in both species. 
These genes, involved in biosynthesis of JA, phenylpropa-
noids, flavonoids, and terpenoids, represent the conserved 
core of induced defenses. The remaining tomato DEG sup-
port the establishment of tomato-specific defenses, indicat-
ing profound divergence of spider mite–induced responses 
between tomato and Arabidopsis. 

Plants and herbivores have co-evolved over millions of years, 
resulting in a myriad of plant-herbivore interactions. Herbivores 

have evolved various levels of specialization to their hosts and 
differ in types of feeding damage they cause, while plants 
range in their ability to restrict herbivore performance, contrib-
uting to the diversity and complexity of plant-herbivore inter-
actions. Generally, plants employ two lines of defenses, consti-
tutive and inducible, to deter herbivory. Constitutive defenses, 
such as trichomes and the presence of certain toxins, are a pri-
mary line of protection against a broad spectrum of potential 
attackers (Howe and Jander 2008). However, the lack of speci-
ficity and high energy cost of constitutive defenses are believed 
to have led to the evolution of inducible defenses that are trig-
gered in response to the detection of a specific attacker (e.g., 
pathogen, fungus, herbivore) (Schwachtje and Baldwin 2008; 
Steppuhn et al. 2008). Inducible defenses against herbivores 
include the synthesis of a wide range of species-specific toxic 
plant secondary metabolites (e.g., phenylpropanoids, flavo-
noids, anthocyanins, alkaloids, terpenoids, glucosinolates), and 
anti-nutritive enzymes and proteins (e.g., proteinase inhibitors, 
amino acid catabolizing enzymes, polyphenol oxidases, and 
peroxidases) (Campos et al. 2014; Howe and Jander 2008; 
Mithofer and Boland 2012; Santamaria et al. 2013). In addi-
tion to these direct inducible defenses, plants also emit com-
plex cocktails of volatiles that attract predators of herbivores 
as indirect defense responses (Clavijo McCormick et al. 2012; 
Mithofer and Boland 2012). Despite the diversity of plant-her-
bivore interactions, jasmonic acid (JA) has been identified as 
the major regulator of plant defense responses to herbivory 
(Campos et al. 2014). 

The two-spotted spider mite Tetranychus urticae is a piercing-
sucking herbivore that can feed on more than 1,100 plant species 
(Migeon and Dorkeld 2006-2014). In the last several years, T. 
urticae has become a model chelicerate herbivore, with its 
genome sequenced (Grbic et al. 2011) and a number of tools 
and protocols for genomic and genetic studies developed 
(Dearden et al. 2002; Dermauw et al. 2013; Khila and Grbic 
2007; Grbic et al. 2007, 2011; Van Leeuwen et al. 2012, 2013). 
Taking advantage of these tools, we previously reported the 
reciprocal whole-genome responses between Arabidopsis tha-
liana and T. urticae. This study highlighted JA as a key regula-
tor and JA-dependent biosynthesis of indole glucosinolates as 
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the main functional output of the Arabidopsis defenses induced 
by spider mite feeding (Zhurov et al. 2014). To understand the 
evolution and diversity of plant-herbivore interactions, we 
have expanded our analysis of plant–spider mite interactions to 
include tomato (Solanum lycopersicum) as a complementary 
system to study defense responses induced by spider mite 
feeding. 

Spider mites are an economically important pest of cultivated 
tomatoes (Jeppson et al. 1975; Zhang 2003). Several studies of 
tomato–spider mite interactions highlighted the importance of 
constitutive defenses, such as chemical content and density of 
glandular trichomes, in defense against spider mites in wild to-
mato relatives (Glas et al. 2012). For example, acylsugars, pres-
ent in trichomes of Solanum pennellii (Blauth et al. 1998; 
Mirnezhad et al. 2010; Mutschler et al. 1996; Resende et al. 
2002; Salinas et al. 2013), methyl ketones from Solanum hir-
sutum (Antonious et al. 2014), and terpenoids from Solanum 
habrochaites (Bleeker et al. 2012) confer high levels of resis-
tance against spider mites. Studies of induced tomato defenses 
to spider-mite herbivory identified the importance of JA and 
suggested roles for salicylic acid (SA) and ethylene (ET) in the 
regulation of tomato induced defenses (Ament et al. 2004; 
Kant et al. 2004;  Li et al. 2002a; Li et al. 2004). Expression 
levels of the JA biosynthetic enzymes lipoxygenase D (LOXD) 
and allene oxide synthase 1 (AOS1), proteinase inhibitors (PI), 
leucine amino peptidase (LAP), threonine deaminase (TD), 
and polyphenol oxidases (PPO) have been identified as highly 
reproducible markers of JA-dependent induced defense re-
sponses in tomato, pointing to the importance of defense pro-
teins that reduce the quality of the plant diet or the activity of 
digestive enzymes in the herbivore gut (Chen et al. 2005; 
Chung and Felton 2011; Fowler et al. 2009; Gatehouse 2011; 
Gonzales-Vigil et al. 2011; Green and Ryan 1972; Kessler and 
Baldwin 2002; Zhu-Salzman et al. 2008). Other well-charac-
terized tomato induced defenses include emission of volatiles, 
such as TMTT (E,E-4,8,12-trimethyl-1,3,7,11-tridecatetraene) 
and MeSA (methyl salicylate) (Kant et al. 2004, 2008), that 
play an important role in the attraction of the spider mite preda-
tor Phytoseiulus persimilis (Ament et al. 2004; Dicke et al. 
1998). Despite being useful markers of herbivory, expression 
of these marker genes fails to provide a comprehensive under-
standing of tomato defense response to spider mite. 

The completion of tomato genome sequencing (Sato et al. 
2012) enables a genome-wide analysis of induced tomato tran-
scriptome responses upon spider mite herbivory. We employed 
the newly developed EUTOM3 whole genome exon array to 
monitor early transcriptional changes occurring in tomato 
leaves in the first 24 h following spider mite attack and have 
compared them with defense responses triggered by spider 
mite feeding on Arabidopsis. 

RESULTS AND DISCUSSION 

Tomato response to spider mite feeding. 
Induced transcriptional responses of tomato upon spider 

mite feeding. In order to understand genome-wide tomato tran-
scriptional responses to spider mite herbivory, a microarray 
study was designed to capture early changes in gene expres-
sion following T. urticae attack in timecourse and feeding-site 
scenarios. We used reference tomato and mite strains whose 
genomes were sequenced as representatives of their species, 
‘Heinz 1706’ tomato variety and a London strain of T. urticae 
(maintained on beans and, thus, nonadapted to tomato). In the 
timecourse experiment, the terminal leaflet of the third leaf of 
three-week-old tomato plants was infested with 100 adult 
female spider mites and tissue was collected at 0, 1, 3, 6, 12, 
and 24 h postinfestation (hpi), while, in the feeding site (FS) 

experiment, the terminal leaflet was saturated with hundreds of 
mites that were allowed to feed for 1 hpi, following an experi-
mental design described by Zhurov and associates (2014). 
RNA extracted from these samples was hybridized to the Affy-
metrix EUTOM3 tomato exon array. We detected 2,133 differ-
entially expressed genes (DEG) in at least one timepoint as 
compared with noninfested control plants at an absolute fold 
change (FC) > 2 and a Benjamini-Yekutieli (BY) false discov-
ery rate (FDR) adjusted P value < 0.01, using the Bioconductor 
package limma (Benjamini and Yekutieli 2001; Smyth 2004) 
(Fig. 1; Supplementary Dataset S1). In the FS samples, we de-
tected 1,936 DEG relative to the non-infested control at the 
cut-offs described above. Since the London spider mite strain 
was previously used for studies of Arabidopsis-mite interac-
tion following the same timecourse and similar experimental 
design (Zhurov et al. 2014), we could perform a direct com-
parison between responses of these two plant species to the 
same herbivore. Approximately 50% of the DEG identified in 
the timecourse experiment and in the FS sample have putative 
bidirectional best hit (BBH) orthologues in Arabidopsis (the 
establishment of the BBH orthologues between tomato and 
Arabidopsis is discussed below and is available in Supplemen-
tary Dataset S2) (Overbeek et al. 1999). Of the 2,133 DEG, 
1,062 were up-regulated and 1,047 were down-regulated in at 
least one timepoint, with an additional 24 genes showing both 
significant up- and downregulation during the course of the 
experiment (Fig. 1A and C). Equal distribution between up- 
and downregulated DEG in tomato contrasts with Arabidopsis 
responses that were largely represented by upregulation of 
gene expression (Zhurov et al. 2014). Tomato responses over-
lap considerably between different timepoints, with the great-
est number of unique DEG being detected at 3 hpi (Fig. 1A). 
Validation of microarray results by reverse transcription-quan-
titative polymerase chain reaction (RT-qPCR) indicates that 
our microarray analysis is reproducible in capturing gene ex-
pression changes induced by spider mite herbivory (Supple-
mentary Fig. S1). 

In a principal component analysis, the majority of variance 
in gene expression was due to the factor attributable to spider 
mite treatment and number of mites deposited on a plant (PC1, 
20% of total variation). The factor attributable to time postin-
festation (PC2) explained another 18% of the total variation in 
the data, reflecting a division between early and late responses, 
with early (1 and 3 hpi) and late timepoints (12 and 24 hpi) 
clustering together and the 6 hpi timepoint found midway 
between these clusters (Fig. 1B). 

Gene Ontology (GO) analysis. To characterize differentially 
regulated programs upon spider mite feeding, we wanted to 
identify GO categories enriched in DEG but found that the 
International Tomato Annotation Group (ITAG) GO annotation 
(Sato et al. 2012) associated with the tomato genome was lim-
ited in scope. Thus, we performed complete GO re-annotation 
of tomato proteins, using the Blast2GO workflow (Conesa et 
al. 2005). The Blast2GO annotation of the EUTOM3 micro-
array platform increased the number of annotated genes to 
22,966 (80% of genes interrogated by microarray) compared 
with 18,340 (64% of genes interrogated by microarray) anno-
tated by ITAG v.2.4 GO. The number of unique terms associ-
ated with genes represented on the microarray increased from 
1,965 to 5,668, and the mean number of GO terms associated 
with a gene increased to 6.1 from 1.3 terms per gene. Despite a 
substantial increase in the number of GO terms associated with 
genes, the mean average distance of term to the GO root only 
slightly decreased to 5.6 compared with 6.1 in the original 
annotation, indicating that the Blast2GO annotation also main-
tained the level of specificity of the original GO annotation. 
For example, terms pertinent for our study that were signifi-
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cantly improved include: GO:0009753 ‘response to jasmonic 
acid’—136 genes associated in the current annotation; 
GO:0009751 ‘response to salicylic acid’—57 genes; and 
GO:0010466 ‘negative regulation of peptidase activity’—19 

genes, in comparison with 0 genes associated with these terms  
in the original annotation. The GO:0009753 ‘response to 
jasmonic acid’ category was further augmented using results of 
our analysis of the transcriptional response of def-1 tomato 

Fig. 1. Microarray analysis of tomato response to spider mite herbivory. A, Number and directionality of differentially expressed genes (DEG) in tomato 
upon spider mite herbivory in timecourse samples and Venn diagram of lists of DEG. B, Principal component analysis of microarray expression data for 
timecourse (1 to 24 h) and feeding-site (FS) samples. C, Clustering analysis and heat map of expression measures of DEG detected in timecourse samples 
and expression graphs of individual DEG clusters.  
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plants to JA treatment (discussed below) and ultimately included 
274 tomato genes. The updated GO annotation is available as 
Supplementary Dataset S3. 

GO analysis of biological processes (BP) revealed that DEG 
detected in the timecourse experiment samples were enriched 
in genes involved in defense responses common to many biotic 
and abiotic stresses, including categories such as ‘response to 
jasmonic acid’, ‘response to wounding’, ‘negative regulation 
of peptidase activity’, ‘response to stress’, and ‘jasmonic acid 
biosynthetic process’ (Supplementary Dataset S4 includes a 
list of the top 50 GO BP). Cluster analysis of DEG expression 
indicated that the transcriptional response developed in stages, 
starting with the perception of spider mite attack, followed by 
metabolic reprogramming, and ultimately resulting in the es-
tablishment and maintenance of a defense response (Fig. 1C). 

Gene set enrichment analysis. In order to understand and 
visualize the dynamic development of tomato transcriptional 
response to spider mite attack, we performed gene set enrich-
ment analysis (GSA) using a parametric analysis of gene set 
enrichment (PAGE) algorithm (Kim and Volsky 2005) of the 
complete list of 2,133 DEG detected in the timecourse experi-
ment, using gene level statistics (log2 fold change, adjusted P 
value and t statistic) estimated by limma for each timepoint as 
an input. GO annotation was used to classify genes into sets 
with BP and cellular component (CC) ontologies treated sepa-
rately. The distinct changes in gene set regulation were ana-
lyzed as described in Varemo and associates (2013). 

A total of 60 gene sets based on the BP GO annotation were 
found to be significantly up- or downregulated in the 
timecourse samples (Fig. 2; Supplementary Fig. S2, for node 
labels for BP GO category terms can be found in). The identity 
of the gene sets at different timepoints highlights distinct 
stages of tomato responses to spider mite feeding. 

At 1 hpi, 26 BP GO-based gene sets associated with percep-
tion of the attack were detected as differentially regulated 
(FDR adjusted P value < 0.05) with processes related to pro-
tein phosphorylation, cell signaling, and response to wounding 
being the most strongly upregulated and processes related to 
anabolism being suppressed. Closer examination of the iden-
tity of the kinases present in the ‘protein phosphorylation’ gene 
set reveals that they comprise mostly of receptor-like kinases 
(RLK). Certain gene sets showed transient upregulation exclu-
sively at 1 hpi, including those associated with perception of 
herbivory and signal transduction, programmed cell death, and 
transport of metabolites and vesicles. In contrast, other gene 
sets remained differentially expressed throughout the full time-
course, such as ‘response to wounding’ and ‘response to jas-
monic acid stimulus’ that were up-regulated and anabolism-
related gene sets that were down-regulated. 

At 3 hpi, only seven gene sets were detected as distinctly 
up- or downregulated, despite the highest number of DEG de-
tected at this timepoint (1,166 DEG). Upregulated GO BP 
categories corresponding to responses to JA stimulus and 
wounding, and downregulated categories corresponding to 
chloroplast relocation and photosystem II assembly were simi-
larly detected as differentially regulated in all other samples, 
indicating that these constitute the core defense programs. The 
low number of DEG sets relative to the high number of DEG 
detected at this timepoint is likely due to the shifting of tran-
scriptional responses from initial perception and signaling at 1 
hpi towards production of defense compounds against herbi-
vore detected at 6 hpi onwards. 

In later timepoints, distinct transcriptional reprogramming 
was established with 10, 41, and 32 gene sets detected as dif-
ferentially regulated at 6, 12, and 24 hpi, respectively. The 
gene sets overlapped considerably; all 10 gene sets detected at 
6 hpi were stably differentially regulated at later timepoints as 

well, and 12- and 24-hpi samples shared 29 gene sets. These 
results demonstrated that, while stable activation of responses 
to wounding and JA and suppression of anabolic processes oc-
cur in tomato very early upon spider mite herbivory, defense 
responses marked by secondary metabolite production and 
activation of proteinase inhibitors are established gradually at 
6 to 12 hpi and are maintained at 24 hpi. 

GSA based on CC GO classification identified 17 gene sets 
throughout the timecourse. Early transcriptional responses 
were associated with cellular components responsible for per-
ception and transcriptional reprogramming at 1 and 3 hpi and 
were followed by gene sets associated with cellular compo-
nents involved in defense responses in 6- to 24-hpi samples 
(e.g., endoplasmic reticulum, Golgi apparatus, vacuole), consis-
tent with BP categories enriched at these timepoints (Supple-
mentary Fig. S3). 

Induced transcriptional response at the FS. In order to 
robustly capture early and local responses, we also performed 
a FS experiment as described above. A total of 1,936 DEG 
were detected relative to the non-infested control, and 758 
DEG were detected relative to tomato response at 1 hpi in the 
timecourse scenario at the cut-offs described above (Supple-
mentary Dataset S5). Transcriptional response in the FS sample 
demonstrated a considerable degree of overlap with both the 
response at 1 hpi and responses that were detected in the later 
timepoints (Fig. 3A). GSA based on BP GO terms implicated 
45 DEG sets in the FS sample (Fig. 3B). Differentially regu-
lated gene sets in the FS sample demonstrated significant over-
lap with gene sets enriched in the timecourse sample. In all 
pair-wise comparisons, a substantial number of gene sets de-
tected at the individual timepoints overlapped with FS DEG 
sets (Fig. 3C). At 1 hpi, 16 of 25 gene sets overlapped with 45 
FS gene sets; at 3 hpi, five of seven; at 6 hpi, six of 10; at 12 
hpi, 11 of 41; and at 24 hpi, nine of 32, indicating that i) to-
mato defense responses to spider mite herbivory is robustly 
established as early as 1 hpi, and ii) tomato defense responses 
to spider mite herbivory at later timepoints capture early 
responses as well, probably due to continuous mite feeding. 
Further analysis of 758 DEG detected between 1 hpi and FS 
samples by GSA revealed that BP associated with responses to 
JA, wounding, chitin, and fungus were enhanced under the FS 
scenario, while processes associated with anabolism were down-
regulated to a greater extent (Fig. 3D). Hierarchical clustering 
analysis demonstrated an enhancement of the response for the 
majority of the 758 DEG detected between 1 h and FS samples 
(irrespective of the directionality of the response) (Fig. 3E; 
Supplementary Dataset S6). 

Analysis of transcriptional responses  
of def-1 plants to JA treatment and spider mite herbivory. 

In tomato, JA signaling has been shown to be essential for 
the proper expression of a number of defense-related genes 
against spider mites (Ament et al. 2004; Kant et al. 2004; Li et 
al. 2002a; Li et al. 2004; Sarmento et al. 2011). Despite our 
improved GO annotation of the tomato genes by Blast2GO, 
well-known markers of JA responses such as LOXD, PI-I, PI-
II, LAP, TD, and PPO were absent from the ‘response to 
jasmonic acid stimulus’ category, indicating that homology-
based approaches for gene function prediction are biased to-
wards establishing similarity with model organisms (e.g., Arabi-
dopsis) and require additional functional experiments for de-
termination of species-specific functions. Thus, to determine 
the extent of JA regulation of tomato defense responses to spi-
der mite herbivory, we performed an assay using the JA signal-
ing mutant def-1 (cv. Castlemart). def-1 has normal basal lev-
els of JA but fails to induce its accumulation in response to 
wounding and herbivory (Howe et al. 1996). To identify genes 
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Fig. 2. Gene set enrichment analysis of biological processes for differentially expressed genes (DEG) detected in tomato timecourse samples upon spider 
mite herbivory. A to E, Union parametric analysis of gene set enrichment (PAGE) network based on Biological Processes (BP) Gene Ontology (GO)
annotation with significantly enriched up- and downregulated gene sets in timecourse samples. Nodes represent gene sets, edges indicate the overlap in genes 
belonging to connected gene sets. Gene sets: blue = downregulated, red = upregulated, gray = not detected as differentially regulated. Size corresponds to 
number of genes in a given gene set (five to 186), labels indicate BP GO category identification. The color (gray to red) and width of the edges correspond to 
an overlap size (1 to 79). 
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whose expression is regulated by JA, def-1 plants were sprayed 
with exogenous JA. We tested a range of JA concentrations 
and determined that a 1 mM JA solution is sufficient to repro-
ducibly induce several known JA markers (Supplementary Fig. 
S4). We also infested def-1 plants with 100 adult female spider 
mites to identify genes induced by spider mite feeding inde-
pendently of an increase in JA levels. For each experiment, tis-
sue was collected 24 h post-treatment. We found 1,324 and 
225 genes to be differentially expressed by 1 mM JA and spi-
der mite treatments, respectively, at the absolute FC > 2 and 
Benjamini-Hochberg (BH) FDR (Benjamini and Hochberg 
1995) adjusted P < 0.05 relative to mock-sprayed and non-
infested plants, respectively (Supplementary Dataset S7). 
These experimentally derived JA-responsive genes were used 
to re-annotate the BP GO category GO:0009753 ‘response to 
jasmonic acid stimulus’. Based on limma estimated log-odds 
ratio (B) of being differentially expressed for known JA mark-
ers detected in JA-sprayed samples, an additional 129 DEG 
that demonstrated log-odds ratio (B) > 10 were included in this 
GO category, increasing the total number of tomato genes 
within the GO:0009753 ‘response to jasmonic acid stimulus’ 
to 274. 

DEG detected in def-1 by exogenous JA application were 
approximately equally split between up- (770) and downregu-
lated (572) 24 h after treatment (Supplementary Fig. S5). Over-
all, based on GO enrichment analysis, this treatment closely 
resembled tomato response to herbivore attack, reinforcing the 
fact that JA signaling was identified as a major regulator of 
defense responses (Ament et al. 2004; Li et al. 2002a; Li et al. 
2004; Schweighofer et al. 2007; P. J. Zhang et al. 2009; Zheng 
et al. 2007; Zhurov et al. 2014). Biological processes associ-
ated with plant defense response were represented by upregu-
lated DEG, and processes associated with anabolism and 
growth were represented by downregulated DEG (Supplemen-
tary Dataset S8). DEG detected in def-1 after spider mite her-
bivory were mainly up- (207) rather than down-regulated (17). 
Based on GO analysis, these DEG represent a subset of genes 
inducible by JA signaling (‘response to jasmonic acid’ BP 

category), suggesting that some of these genes can be induced 
redundantly with or without an increase in JA concentration. 
In addition, the GO category ‘salicylic acid biosynthetic pro-
cess’, reported to be activated later in the tomato defense re-
sponse to spider mite herbivory (Kant et al. 2004), was also 
enriched, suggesting that evolutionary conserved antagonistic 
cross-talk between JA and SA signaling pathways (Thaler et 
al. 2012) may not be fully functional in def-1 plants. 

Comparison of the DEG identified in def-1 with the DEG 
detected in the 24-hpi timecourse sample allowed us to clas-
sify the latter genes in different categories reflecting their de-
pendency on JA. A total of 322 genes were differentially regu-
lated by both spider mite feeding on ‘Heinz 1706’ and by JA 
treatment of def-1, indicating that JA is sufficient to regulate 
their expression. Additionally, 39 genes were differentially 
regulated by spider mite attack in both ‘Heinz 1706’ and def-1 
but not by JA treatment of def-1; thus, their expression is regu-
lated by factors associated with mite herbivory independently 
of JA regulation. The majority of DEG, 503 genes, were differ-
entially regulated by spider mite feeding on ‘Heinz 1706’ but 
not by either JA or spider mite treatments of def-1 plants. These 
genes likely require the coordinated action of the JA and some 
other pathways activated upon spider mite feeding. Finally, 48 
genes were differentially regulated by all three treatments. Thus, 
the expression of approximately 95% of DEG detected at 24 h 
upon spider mite feeding in ‘Heinz 1706’ are dependent on JA, 
indicating that this hormone has a pivotal role in establishing 
tomato defense responses against mite herbivory. 

Overview of tomato defense responses. 
Having determined genome-wide transcriptional responses 

in both tomato and Arabidopsis upon feeding by the same 
London strain of spider mites and within the same response 
time frame (this work; Zhurov et al. 2014), we can compare 
the complexity and conservation in spider mite–induced DEG 
between these plant species. Out of 2,133 tomato genes that 
are differentially expressed upon mite herbivory, 1,092 have 
Arabidopsis orthologues, and 360 of 841 Arabidopsis time-

 

Fig. 3. Analysis and comparison of FS and timecourse differentially expressed genes (DEG). A, Venn diagram of DEG detected in feeding site (FS) samples 
1 h postinfestation (hpi) and 3 to 24 hpi. B, Gene set enrichment analysis of biological processes (BP) for DEG detected in tomato FS samples upon spider 
mite herbivory. Nodes represent gene sets, edges indicate overlap in genes belonging to connected gene sets. Gene sets: blue = downregulated, red = upregu-
lated, gray = not detected as differentially regulated. Size corresponds to the number of genes in a given gene set (five to 131). Labels are the BP Gene Ontol-
ogy (GO) category identification. Color (gray to red) and width of edges correspond to an overlap size (1 to 86). C, Venn diagram of BP GO categories 
detected as differentially regulated by gene set enrichment analysis in FS and timecourse samples. D, Gene set enrichment analysis of BP for DEG detected 
between tomato FS and 1-h samples upon spider mite herbivory. Nodes represent gene sets, edges inidicate overlap in genes belonging to connected gene 
sets. Color is as in B, size corresponds to number of genes in a given gene set (five to 38). Labels are BP GO category identification. Color (gray to red) and 
width of edges correspond to an overlap size (1 to 10). E, Clustering analysis and heat map of expression measures of DEG detected between tomato FS and 
1-h samples upon spider mite herbivory and expression graphs of individual DEG clusters.  

 

Fig. 4. Analysis of phylogenetic relationships of differentially expressed genes (DEG) detected in tomato and Arabidopsis transcriptional responses to spider 
mite herbivory. 
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course DEG (Zhurov et al. 2014) have tomato counterparts. Of 
these DEG, only 96 are induced by spider mite herbivory in both 
species (Fig. 4). The most prominent class of conserved core set 
of DEG is associated with JA biosynthesis and signaling (LOX3, 
LOX6, AOS, OPR3, OPCL1, ACX1, JMT, JAZ1, JAZ8, MYC2) 

(Supplementary Dataset S9). In addition, several genes involved 
in the perception (receptor kinases) and Ca2+-signaling, bio-
synthesis of secondary metabolites (phenylpropanoids, flavo-
noids and isoprenoids), cell-wall modification, and endoplas-
mic reticulum (ER) stress are also present. It is striking that 
the remainder of DEG that represent one-to-one orthologous 
pairs and are, thus, assumed to have the same function in both 
species (996 differentially expressed in tomato and 264 in 
Arabidopsis) are induced in only one of the species, indicating 
profound divergence of species-specific transcriptional re-
sponses to spider mite herbivory. In tomato, a hallmark of this 
group of orthologous genes is a subset of downregulated DEG 
associated with anabolism processes. These genes potentially 
reflect a greater shift from growth to defense in tomato relative 
to Arabidopsis, which may be associated with different life 
history patterns between these species. The GO analysis of up-
regulated orthologous DEG (433 in tomato and 215 in 
Arabidopsis) demonstrates both conservation at the level of 
biological programs (such as further recruitment of genes to 
support the JA signaling cascade) and a divergence of responses 
(such as biosynthesis of various secondary metabolites). While 
the majority of DEG possess a degree of similarity (2,041 to-
mato DEG have Arabidopsis homologues and 789 Arabidopsis 
DEG have tomato homologues), there is a subset of DEG 
unique to respective responses (92 in tomato and 52 in Arabi-
dopsis [Fig. 4]). About half of these species-specific DEG are 
uncharacterized. However, in Arabidopsis, four defensin-like 
(DEFL) genes are differentially expressed in response to spider 
mite. DEFL gene families are expanded in Arabidopsis and are 
known to be recruited for a multitude of biological functions, 
including defense (Nguyen et al. 2014; Penninckx et al. 1996; 
Silva et al. 2014; Silverstein et al. 2005, 2007). On the other 
hand, in tomato, five PI lacking Arabidopsis homologues are 
differentially expressed. Thus, although JA is a conserved sig-
naling hormone mediating responses to spider mite herbivory, 
the majority of plant defenses against spider mites are ulti-
mately manifested as species (or at least plant family) -specific. 

In order to highlight specific pathways that underlie tomato 
responses to spider mite herbivory, we combined annotations 
from Blast2GO analysis, the GOMapMan (Ramsak et al. 
2014) and relevant literature to associate DEG with individual 
defense-related pathways. 

Defense responses conserved  
between tomato and Arabidopsis. 

Perception of spider mite herbivory. RLK play a critical role 
in the establishment of defense responses, as they are involved 
in the initial perception of extracellular elicitors originating 
from spider mites (herbivory-associated molecular patterns 
[HAMPs]) or damaged tissue resulting from mite feeding (dam-
age-associated molecular patterns [DAMPs]). The mechanism 
by which either spider mites, tissue damage, or both are recog-
nized by the plant is currently unknown. Following the para-
digm of plant-pathogen interaction in which RLK involved in 
the perception of pathogen derived elicitors (PAMPs) are tran-
scriptionally induced early upon PAMP recognition (Postel et 
al. 2010; Yamaguchi and Huffaker 2011), we reasoned that our 
data might include potential receptors involved in detection of 
spider mite feeding. A total of 82 RLK (identified based on the 
GOMapMan annotation) were differentially expressed in a time-
course sample upon spider mite attack (Fig. 5; Supplementary 
Dataset S10), a number of which were induced within the first 
3 h of tomato response in a pattern expected from candidate 
receptors of spider mite feeding (including both HAMP and 
DAMP elicitors). 

We further hypothesized that if plants perceive conserved 
elicitors associated with spider mite feeding, they will be rec-

Fig. 5. Heat map of log2 fold changes of receptor-like kinases detected as
differentially expressed in response to mite herbivory or jasmonic acid 
(JA) treatment in Heinz 1706 and def-1 tomato plants. 
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ognized by RLK that are conserved across plant species and 
will be induced by spider mite herbivory in both tomato and 
Arabidopsis. We identified eight such RLK, six of which 
encode leucine-rich repeat (LRR)-RLK whose function has 
not been tested in either tomato or Arabidopsis. However, two 
of them encode characterized receptors SUPPRESSOR OF 
BIR1-1 (SOBIR1) and LYSM-CONTAINING RECEPTOR-LIKE 
KINASE 4 (LYK4). Tomato expresses two homologues of 
AtSOBIR1, named SlSOBIR1 (Solyc06g071810, whose tran-
scripts are elevated during the first 3 h of mite feeding) and 
SlSOBIR1-like (Solyc03g111800, transiently induced by spider 
mite feeding during the first hour) (Fig. 5). SOBIR1 genes en-
code a LRR-RLK, proposed to act as a co-receptor in com-
plexes containing LRR-receptor-like proteins (RLP) (Liebrand 
et al. 2013, 2014), suggesting that LRR-RLP may play an 
important role in the recognition of spider mite feeding. LYK4, 
on the other hand, encodes an RLK with a peptidoglycan-bind-
ing LysM extracellular domain, shown to be involved in chitin-
triggered signaling (Wan et al. 2012). Intriguingly, the arthropod 
exoskeleton is composed of chitin, raising the possibility that 
carbohydrate patterns may be recognized as spider mite con-
served elicitor. 

Jasmonic acid. A prominent role of JA in regulating 
defenses against spider mites has been described for several 
plants (Ament et al. 2004; Li et al. 2002a; Li et al. 2004; 
Schweighofer et al. 2007; P. J. Zhang et al. 2009; Zheng et al. 
2007; Zhurov et al. 2014), indicating that regulatory 
mechanisms leading to mite-induced defense programs are 
broadly conserved across plant species. Consistently, we found 
that genes encoding JA biosynthetic enzymes were induced by 
mite feeding in our dataset (Fig. 6). These biosynthetic 
enzymes are encoded by gene families and, in general, only 
some genes within these families were induced by mite 
herbivory. For example, out of 22 tomato LOX genes present in 
the GOMapMan annotation (Ramsak et al. 2014), only three 
were induced. The expression of LOXD was up-regulated 
throughout the timecourse, consistent with its previous 
characterization as an early herbivory responsive gene (Heitz 
et al. 1997; Yan et al. 2013). Interestingly, LOXD expression 
also increased when def-1 plants were challenged with spider 
mites, suggesting that the initial increase in expression of some 
of the JA biosynthetic genes could be triggered in a JA-
independent way. In contrast to LOXD, the expression of 
LOXA increased at later timepoints in both ‘Heinz 1706’ and 
def-1 plants treated with JA, suggesting that its expression is 
controlled by a JA-regulated positive feedback loop consistent 
with a previous report (Beaudoin and Rothstein 1997)). Three 
AOS genes showed upregulation in our dataset. AOS1 expres-
sion is rapidly and continuously upregulated from 1 to 24 h. 
The def-1 microarray dataset indicates that expression of this 
gene is both JA sufficient and JA independent, as previously 
reported (Howe et al. 2000). AOS2 is also transiently upregu-
lated at 12 h, likely as a result of a JA positive feedback loop 
(our data; Howe et al. 2000). Unsurprisingly, the root-specific 
AOS3 gene (Itoh et al. 2002) is not detected. Allene oxide 
cyclase expression shows significant upregulation starting at 6 
h after spider mite attack. Three OPDA (12-oxophytodienoate) 
reductase genes were identified in tomato (OPR1, OPR2 and 
OPR3); however, only OPR3, shown to participate in JA bio-
synthesis (Strassner et al. 2002), had increased expression at 
12 hpi in our dataset. 

Like JA biosynthesis, perception and JA signaling are de-
pendent on conserved proteins that are part of the ubiquitin-
proteasome system (COI1) and transcriptional regulators (JAZ) 
(Chini et al. 2007; Feys et al. 1994; Li et al. 2004; Sheard et al. 
2010; Thines et al. 2007; Xie et al. 1998). Twelve putative JAZ 
genes have been identified in tomato (Ishiga et al. 2013), seven 

of which were up-regulated upon mite feeding in a JA-depend-
ent way (e.g., being induced both by mite feeding on ‘Heinz 
1706’ and upon JA treatment of def-1 plants). In Arabidopsis, 
the COI1-JAZ pathway regulates the expression of AtMYC2, a 
bHLH transcription factor (Kazan and Manners 2013). Two 
AtMYC2 homologues, JAMYC2 and JAMYC10 (Boter et al. 
2004), were also induced by spider mite feeding (Fig. 6). 

Expression levels of several genes have been used as mark-
ers of JA responses in tomato. These include the JA biosyn-
thetic enzymes LOXD and AOS1, PI-I and PI-II, LAP, TD, and 
PPO. As expected, all of these marker genes were induced by 
spider mite feeding (in ‘Heinz 1706’) and JA (in def-1 mutant 
plants). They belong to clusters 1 (PI, LAP, TD, PPO) and 6 
(LOXD, AOS1) of expression patterns shown in Figure 1, 
which contain 465 and 263 genes with similar expression pat-
terns, respectively. This extensive list of coexpressed genes 
that are stably up-regulated after 12 hpi supports the establish-
ment of the tomato defense and will be an invaluable resource 
for future investigation of tomato-pest interaction. 

Ethylene. ET is synthesized from S-adenosine methionine 
through the sequential action of enzymes 1-aminocyclopro-
pane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase 
(ACO). ACS enzymes are often regulated at post-transcrip-
tional levels (Chae et al. 2003; Oetiker et al. 1997); thus, it was 
not unexpected to find that only a single putative ACS gene 
(Solyc08g079750) showed altered expression out of the eight 
ACS genes annotated in the tomato genome (Lincoln et al. 
1993; Nakatsuka et al. 1998; Olson et al. 1995; Rottmann et al. 
1991; Shiu et al. 1998; Yip et al. 1992). Of the annotated 14 
ACO genes, 11 were differentially regulated, including charac-
terized ACO1, ACO2, and ACO5 (Blume and Grierson 1997; 
Nakatsuka et al. 1998; Sell and Hehl 2005) that were up-regu-
lated at various timepoints and duration during the initial 24 h 
of tomato response to spider mite feeding. 

The signaling cascade downstream of ET synthesis involves 
perception by ER-localized receptors (Nr, ETR1-6), signaling 
by CTR1, and EIN2 leading to activation of the plant-specific 
transcription factor EIN3 (and other EIN3-like [EIL] transcrip-
tion factors). EIN3 and other EIL transcription factors directly 
regulate a second tier of transcriptional regulators termed ET 
response factors (ERF) that regulate the expression of ET-
responsive genes (Merchante et al. 2013). Several ERF genes 
have been characterized in tomato, including Pti4, Pti5, Pti6 
(Gu et al. 2002; Zhou et al. 1997), Sl-ERF2 (Pirrello et al. 
2006; Z. Zhang et al. 2009), TERF1 (Huang et al. 2004), 
TSRF1 (Zhang et al. 2008), JERF1 (Zhang et al. 2004), JERF3 
(Wang et al. 2004), and ERF1-4 (Tournier et al. 2003). The ex-
pression of most of the early ET signaling components (CTR1, 
EIN2, EIN3) did not change in our experiment. Of the 20 
annotated tomato AP2/ERF genes, a subset was differentially 
regulated. However, as downstream ET components showed 
both up- and downregulation (Fig. 6B), it is difficult to assess 
the importance ET may have in the regulation of spider mite 
defense in tomato. Further experiments using ET mutants and 
ET treatments should help understand the importance of this 
hormone in tomato defense against spider mites. 

Salicylic acid. SA is a master regulator of plant responses 
against biotrophic pathogens. Reciprocal antagonism between 
SA and JA has been described in at least 17 different species 
(Thaler et al. 2012) and is exploited by both pathogens and 
herbivores to manipulate plant defense responses (Bhavsar et 
al. 2007; Diezel et al. 2009; El Oirdi et al. 2011; Howe and 
Jander 2008; Musser et al. 2002). In tomato, exogenous 
application of SA has been shown to reduce JA biosynthesis 
and to inhibit defense responses against caterpillar herbivory 
(Chandok et al. 2004; Thaler et al. 2002, 2010). However, 
Kant and associates (2004) reported increased expression of 
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Fig. 6. Heat map of log2 fold changes of genes involved in plant hormone biosynthetic and signaling cascades and their downstream targets or markers in 
response to mite herbivory or jasmonic acid (JA) treatment in Heinz 1706 and def-1 tomato plants. A, JA biosynthesis, signaling, and response. B, Ethylene 
(ET) biosynthesis, signaling, and response. C, Salicylic acid (SA) biosynthesis, signaling, and response. In schemes of cascades, compounds are shown in 
dark red, proteins and enzymes in black, black arrows represent direct (solid) or indirect (dashed) biochemical transformations, red arrows indicate activa-
tion, and blue arrows indicate inactivation. 

http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645
http://apsjournals.apsnet.org/action/showImage?doi=10.1094/MPMI-09-14-0291-FI&iName=master.img-041.jpg&w=483&h=645


Vol. 28, No. 3, 2015 / 353 

  

Fig. 7. Heat map of log2 fold changes of genes involved in biosynthesis of secondary metabolites such as A, phenylpropanoids, B, flavonoids, and C, isopre-
noids detected as differentially expressed in response to mite herbivory or jasmonic acid (JA) treatment in Heinz 1706 and def-1 tomato plants. 
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both JA and SA marker genes at 1 and 4 days following spider 
mite herbivory, suggesting that mites can trigger both SA and 
JA pathways simultaneously. However, of SA biosynthetic 
genes, only three phenylalanine ammonia-lyase (PAL) genes 
were induced by mite feeding (Fig. 6C). These genes encode 
enzymes that are not specific for SA biosynthesis, as they also 
support the biosynthesis of phenylpropanoids, metabolites ex-
pected to accumulate upon mite herbivory (Fig. 7A). Thus, 
induction of PAL gene expression may not be sufficient to pre-
dict accumulation of SA. In addition, none of the genes encod-
ing SA signaling proteins nor commonly used SA markers 
(PR1, PR2, PR5, NPR1, subtilisin, chitinases) (Kant et al. 2004; 
Nachappa et al. 2013; Uehara et al. 2010) were differentially 
expressed when spider mites were feeding on ‘Heinz 1706’ 
plants, suggesting that mite feeding did not induce accumula-
tion of SA within the first 24 hpi. 

However, several genes associated with the GO category 
‘salicylic acid biosynthetic process’, and a few SA markers 
(PR1 [Solyc09g007010], subtilisin-like protease [Solyc08-
g079870], and two chitinases [Solyc05g050130, Solyc02g-
082920]) were induced upon mite feeding on def-1 plants (Fig. 
6C). Furthermore, some of the SA marker genes were down-
regulated in def-1 plants treated with JA, suggesting that JA-
induced pathways in wild-type plants can suppress spider 
mite–dependent SA responses. Observed differences in tomato 
responses to spider mite feeding described in our study and 
those performed by Kant and associates (2004) could be due to 
different timing of the responses, origin of the spider mite 
strains, differences between tomato cultivars and experimental 
set-ups, individually or in combination, used in assays. While 
Kant and associates (2004) used a tomato-adapted strain of 
spider mites, our experiments were performed with tomato non-
adapted mites (London strain). 

Phenylpropanoids and flavonoids. Our microarray dataset 
predicts an increased production of phenylpropanoids and fla-
vonoids following spider mite infestation, as genes encoding 
several key enzymes involved in phenylpropanoid biosynthe-
sis, such as PAL, cinnamate-4-hydroxylase, and 4-coumarate-
CoA ligase, were up-regulated following mite attack (Fig. 7). 
A total of 76 DEG were predicted to encode enzymes involved 
in the biosynthesis of phenylpropanoids and flavonoids based 
on the GOMapMan annotation (Ramsak et al. 2014). These 
biosynthetic pathways are well conserved between different 
plant species. In Arabidopsis, 44 genes are associated with the 
phenylpropanoid pathway, each one of which has a predicted 
tomato homologue, including 24 one-to-one orthologues at all 
enzymatic steps. 

Compounds involved in indirect defenses. The homoterpene 
TMTT and MeSA constitute the most abundant volatiles pro-
duced by tomato in response to spider mite herbivory (Ament 
et al. 2004, 2006). Isoprenoids are synthesized by two path-
ways. One is the mevalonate pathway, which operates in the 
cytosol of higher plants, and the other is the nonmevalonate 
pathway, which is localized in chloroplasts (Kuzuyama 2002). 
Genes encoding enzymes acting in both of these pathways 
have been induced in tomato upon spider mite feeding (Fig. 7). 
Even though geranylgeranyl pyrophosphate synthase 1 has 
been suggested as the key regulator of TMTT accumulation 
(Ament et al. 2006), its expression levels did not change in 
response to spider mite attack. However, genes encoding other 
enzymes involved in terpenoid biosynthesis, such as mevalo-
nate diphosphate decarboxylase (Solyc11g007020), DOXP-
synthase (Solyc11g010850), and geranyllinalool synthase 
(Solyc03g006550) were up-regulated by spider mite attack, 
consistent with reported induced production of terpenoid-based 
volatiles (Ament et al. 2004, 2006). Similarly, upregulation of 
salicylic acid carboxyl methyltransferase genes following mite 

attack is also consistent with a predicted increase in MeSA 
production (Ament et al. 2004). 

Other tomato defense responses. 
JA-induced defense proteins that target herbivore digestive 

physiology. Commonly used markers of tomato induced de-
fenses are LAPA1 and LAPA2, LeARG1 and LeARG2, TD2, 
and PPO, which encode proteins that act in the pest gut to 
reduce amino acid availability from ingested plant tissues. 
Arabidopsis does not have genes encoding PPO and TD2 
(Chen et al. 2007; Tran et al. 2012) nor JA-inducible LAPA 
genes that have been recruited for defense in tomato (Bartling 
and Nosek 1994). These enzymes impact herbivores’ digestive 
physiology within an alkaline pH range that is characteristic of 
lepidopteran midgut (Chen et al. 2004, 2007; Chung and 
Felton 2011; Fowler et al. 2009; Gonzales-Vigil et al. 2011; Gu 
et al. 1999) and have been shown to be ineffective against pests 
with acidic guts, such as the Colorado potato beetle (Felton et 
al. 1992; Gonzales-Vigil et al. 2011). Spider mites are expected 
to have acidic gut content (Carrillo et al. 2011; Erban and 
Hubert 2010), and thus, even though LAPA1 and LAPA2, 
LeARG1 and LeARG2, TD2, and PPO were used as useful 
markers of mite-induced tomato defenses, these defense com-
pounds may have little or no effect on spider mite herbivory. 

The PI gene family in tomato. PI act as antidigestive and de-
fensive compounds by interacting with their target proteases in 
the arthropod gut (Benchabane et al. 2010; Bode et al. 2013; 
Carrillo et al. 2011; Ortego 2012; Santamaria et al. 2012; 
Schluter et al. 2010). In tomato, two serine PI (PI-I and PI-II) 
were shown to be consistently induced by spider mite attack 
(Kant et al. 2004, 2008; Li et al. 2002b). We identified a total 
of 95 PI genes in the tomato genome that can be classified into 
eight families based on their inhibition specificity to serine-, 
cysteine-, aspartyl-, and metalloproteases (Supplementary Data-
set S11). This is in contrast to 38 PI that are annotated in 
Arabidopsis, demonstrating a great expansion of this class of 
proteins in the tomato genome. Of 95 tomato PI genes, 25 were 
differentially expressed upon spider mite feeding compared 
with only one in Arabidopsis (Fig. 8A; Supplementary Table 
S1). Tomato PI genes are among the most highly induced DEG 
in our dataset, suggesting that they represent one of the major 
tomato defense response outputs upon spider mite herbivory. 
These PI were also induced by JA in def-1 plants, demonstrat-
ing that JA is sufficient to coordinately regulate their 
expression. Phylogenetic analysis of tomato and Arabidopsis 
PI showed that defense response to spider mite attack is 
limited to genes belonging to tomato-specific expansions in I3 
and I13 families (Fig. 8B and C). All but one of the induced PI 
lack an Arabidopsis BBH orthologue, indicating that they 
define tomato-specific members within expanded families that 
have acquired novel transcriptional regulation by JA and have 
been recruited for defense. 

Conclusions. 
Our study, focused on early genome-wide transcriptional 

responses of tomato (cv. Heinz 1706) to herbivory by the two-
spotted spider mite Tetranychus urticae (London strain), iden-
tified 2,133 DEG that defined gradual establishment of tomato 
responses to spider mite feeding within the first 24 h of inter-
action. In addition, the role of JA in the establishment of 
tomato defense responses against spider mites was tested by 
treating a tomato mutant defective in JA synthesis (def-1) with 
JA or by mites. The study highlighted the importance of JA as 
a regulator of mite-induced defenses, since differential expres-
sion of approximately 95% of DEG at 24 h required JA, rein-
forcing the conserved role of JA in regulating plant defenses 
against a broad spectrum of plant-associated organisms (Ament 
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et al. 2004; Campos et al. 2014; De Geyter et al. 2012; Li et al. 
2002b; Li et al. 2004; Schweighofer et al. 2007; P. J. Zhang et 
al. 2009; Zheng et al. 2007; Zhurov et al. 2014). The promi-
nent role of JA in regulation of plant defenses triggered by a 
myriad of herbivores results in majorly overlapping responses 
within a plant species, indicating that induced defenses may 
lack herbivore specificity. In particular, tomato defenses tar-
geting herbivore digestive physiology are expected to vary in 

their effectiveness due to the heterogeneity of herbivore gut 
environments. 

The previous study of Arabidopsis responses to spider mite 
attack in a similar timecourse experiment allowed us to com-
pare tomato and Arabidopsis transcriptional changes upon spi-
der mite feeding. Indole glucosinolates, secondary metabolites 
characteristic for cruciferous plants, were identified as major 
defense compounds in Arabidopsis against mites (Zhurov et al. 

Fig. 8. Lineage-specific expansion of I3 and I13 peptidase inhibitor families in tomato is associated with antiherbivory function. A, Heat map of log2 fold 
changes of proteinase inhibitors (PI) genes in response to mite herbivory or jasmonic acid (JA) treatment in Heinz 1706 and def-1 tomato plants. B and C,
Unscaled cladograms of peptide sequences of I3 and I13 PI from tomato and Arabidopsis. PI highlighted in red are up-regulated in response to spider mite 
attack. Node labels are Shimodaira Hasegawa–like approximate likelihood ratio test (SH-aLRT) values. PI sequences from Aquilegia coerulia were used as 
outgroups. 
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2014), while the syntheses of defense proteins that target her-
bivore digestive physiology appear as a prominent part of 
tomato-induced defenses upon mite herbivory. Even though 
the concept of diversification of plant defenses against herbi-
vores has been postulated (Agrawal 2007; Berenbaum and 
Zangerl 2008; Mithofer and Boland 2012), our study identified 
the striking magnitude of differential transcriptional responses 
of Arabidopsis and tomato to the same herbivore. Thus, despite 
the conservation of the JA core signaling pathway, this analysis 
points to the profound evolutionary divergence of JA-regulated 
downstream defense responses between tomato and Arabidop-
sis contributing to future analysis of the evolution of plant 
chemical diversity. Gene duplication is considered to be one of 
the major sources of plant chemical diversification (Kroymann 
2011; Ober 2010). Several tomato defense genes against herbi-
vory (e.g., TD2, PPO, PI) arose from gene duplication, followed 
by the acquisition of transcriptional regulation by JA. System-
atic analysis of genes recruited for defense within the species-
specific family expansions would determine how widespread 
this pattern might be. Identification of coexpressed gene clus-
ters, integration of tomato metabolomic and transcriptomic 
responses, and functional analysis of individual DEG will, in 
the future, lead to the identification of tomato-specific defense 
compounds used to deter spider mite herbivory. 

MATERIALS AND METHODS 

Plant and mite rearing. 
Tetranychus urticae (London strain) was mass reared on pot-

ted bean plants (Phaseolus vulgaris ‘California Red Kidney 
Bean’, Stokes) in a climate room with diurnal and night tem-
peratures fluctuating between 26 and 20°C, 60% ± 20% rela-
tion humidity, and with a photoperiod of 16 h of light and 8 h 
of dark. To obtain cohorts of adult females of similar age, 100 
female mites were placed on separated leaves two weeks be-
fore the experiment, allowing them to lay eggs for 24 h, after 
which they were removed. The offspring of the synchronized 
population was used for the infestation experiment. Potted to-
mato plants (cv. Heinz 1706 and def-1 [cv. Castlemart]) were 
grown under growth-chamber conditions with a 25°C-light and 
22°C-dark cycle, 50 to 70% relative humidity, and a photo-
period of 16 h of light and 8 h of dark. 

Tomato response  
to spider mite attack microarray experiment. 

In the spider mite feeding timecourse scenario, 100 T. urticae 
adult females were applied on a terminal leaflet of leaf 3 of 
21- to 24-day-old tomato plants and were allowed to feed for 
1, 3, 6, 12, or 24 h in an experimental design described previ-
ously (Zhurov et al. 2014). In the FS scenario, the terminal 
leaflets were covered with hundreds of mites that were allowed 
to feed for 1 h. Leaves whose terminal leaflet was inoculated 
by mites were harvested and used for RNA extraction. Three 
biological replicates representing two plants each were gener-
ated per treatment. Spider mites remained localized within the 
inoculated leaves without a need to restrain their movement. 
Experimental and control plants were kept in the same growth 
room. Total RNA was prepared using the RNeasy plant RNA 
extraction kit (Qiagen, Venlo, The Netherlands). RNA was hy-
bridized to the EUTOM3 whole-genome exon microarray 
according to manufacturer’s specifications (Affymetrix, Santa 
Clara, CA, U.S.A.). Analysis was performed using the Biocon-
ductor framework (Gentleman et al. 2004). An initial data-
quality assessment was conducted using arrayQualityMetrics 
(Kauffmann et al. 2009). Expression measures were computed 
using Robust Multi-array Average (RMA) on the complete 
data set (Irizarry et al. 2003). Detection of DEG was per-

formed using limma with adjusted (BY) P values (Benjamini 
and Yekutieli 2001; Smyth 2004). Clustering of mean expres-
sion measures of DEG was performed using k-means cluster-
ing with k = 8, followed by ordering of gene clusters by hier-
archical clustering with average linkage of k-means cluster 
centers. R session random seed was 25845159. Sample clus-
tering was performed by hierarchical clustering with average 
linkage. Centered Pearson’s correlation was used as a distance 
metric in all cases. 

def-1 response to spider mite attack  
and JA treatment microarray experiment. 

For the JA treatment, 24- to 28-day-old plants were sprayed 
with either a control (mock) 0.5% (vol/vol) ethanol and water 
or a 1 mM JA (Sigma-Aldrich, St. Louis) solution in 0.5% 
(vol/vol) ethanol and water. This concentration was chosen be-
cause it induced the most robust accumulation of the JA 
marker gene TOMWIPII (Sarmento et al. 2011) in ‘Heinz 
1706’ plants treated with varying concentrations of JA. For 
mite infestation, 100 Tetranychus urticae (London strain) adult 
females were applied to the terminal leaflet of leaves 3 and 4 
of 28-day-old plants. Three biological replicates representing 
two plants each were generated per treatment. Total RNA was 
prepared using the RNeasy plant RNA extraction kit (Qiagen). 
Analysis was performed using the Bioconductor framework 
(Gentleman et al. 2004). An initial data quality assessment was 
conducted using arrayQualityMetrics (Kauffmann et al. 2009). 
Expression measures were computed using RMA on the com-
plete data set (Irizarry et al. 2003). Detection of DEG was per-
formed using limma with adjusted (BH) P values (Benjamini 
and Hochberg 1995; Smyth 2004). 

GO re-annotation of tomato genome. 
GO re-annotation of tomato proteins using the Blast2GO 

workflow (Conesa et al. 2005) was performed as follows. We 
performed blastp (Altschul et al. 1997) searches of the ITAG 
v.2.3 release of tomato protein sequences against a local copy 
of the National Center for Biotechnology Information nonre-
dundant database (release 2013-10-20). InterProScan v.5.1-
44.0 (Hunter et al. 2012; Jones et al. 2014) was performed 
locally against PANTHER data v.8.1 (Mi et al. 2005). Results 
were integrated into the GO annotation using Blast2GO v.2.7.0 
and local copy of the 2013-10 releases of Blast2GO and GO 
associations databases, using default stringency and Annex 
annotation augmentation (Myhre et al. 2006).  

GO annotation of gene lists. 
We have used topGO with the Fisher’s test statistic and 

“weight01” algorithm (Alexa et al. 2006) to generate a list of 
the top 50 Biological Process GO annotations and annotation 
lists of genes that were detected as differentially expressed. 
The lists were further filtered by applying a cut-off of 0.05 to 
Fisher’s weighted P values. 

Gene set enrichment analysis. 
Gene set enrichment analysis was performed using a custom 

version of Bioconductor package piano (Varemo et al. 2013). 
Log2 fold changes, P and t values obtained using limma were 
used as input gene level statistics for the analysis. Following 
comparison of implemented gene set analysis methods, a 
PAGE algorithm (Kim and Volsky 2005) was utilized. GO an-
notation was used to classify genes into sets with biological 
process and molecular function and cellular component ontol-
ogies treated separately. We limited analysis to gene sets that 
had at least five genes associated with them and used an 
adjusted (BH) P value cut-off of 0.05 to determine significance 
of distinct up- or downregulation of a gene set. 
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Establishment of bidirectional best hit orthologues  
between tomato and Arabidopsis. 

To determine one-to-one orthologues using the BBH ap-
proach (Overbeek et al. 1999), reciprocal blastp (Altschul et al. 
1997) searches were conducted using the ITAG v.2.3 release of 
tomato and the TAIR10 release of Arabidopsis protein se-
quences. Output files were further processed to retain BBH 
pairs with E < 10–4. 

Genome-wide identification  
of tomato PI and phylogenetic analysis. 

Initially, the MEROPS database (Rawlings et al. 2014) of 
proteinases and their inhibitors was used to establish the PI 
families present in plants by looking for the distribution of 
each family in the different groups and then, blastp (Altschul 
et al. 1997) searches for PI were performed in the publicly 
available tomato and Arabidopsis genome databases. Blast 
searches were made in a recurrent way. First, a complete 
amino acid plant sequence from data banks corresponding to a 
protein of the family was used. Then, the obtained tomato or 
Arabidopsis protein sequences were used to search for PI in 
the tomato or Arabidopsis genome, respectively. 

The obtained I3 and I13 PI family amino acid sequences 
were aligned using MUSCLE v.3.8.31 with the default param-
eters (Edgar 2004). Alignments were further processed using 
the Gblocks v.0.91b server, allowing for smaller blocks and 
less strict flanking positions (Castresana 2000). The final 
block alignments contained 53 amino acid positions for I13 
and 42 amino acid positions for I3 PI families. Phylogenetic 
tree reconstruction was performed using PhyML (v. 20120412) 
(Guindon et al. 2010) with the LG amino acid substitution 
model (Le and Gascuel 2008). The approximate likelihood-
ratio test, based on a Shimodaira-Hasegawa-like procedure, 
was used as a statistical test for nonparametric branch support 
(Anisimova and Gascuel 2006). The resulting trees were 
visualized using Dendroscope (Huson et al. 2007), with Aqui-
legia caerulea used as an outgroup. 

Real-time RT-qPCR and data analysis. 
Total RNA was extracted using RNeasy plant mini kit, in-

cluding DNase treatment (Qiagen). Total RNA (2 g) was 
reverse transcribed using the Maxima first strand cDNA syn-
thesis kit for RT-qPCR (Thermo Fisher Scientific, Waltham, 
MA, U.S.A.). qPCR reactions were performed in triplicate for 
each biological replicate, using Maxima SYBR Green/ROX 
qPCR Master Mix (Thermo Fisher Scientific). The RT-qPCR 
was performed on an Agilent Mx3005P qPCR instrument 
(Agilent Technologies, Santa Clara, CA, U.S.A.). Primer se-
quences and amplification efficiencies (E) are listed in Supple-
mentary Table 2. ACTIN (Solyc03g078400.2.1) was used as a 
reference gene. Threshold cycle (Ct) values of technical repli-
cates were averaged to generate the Ct of a biological replicate. 
For plotting, the expression value for each target gene (T) was 
normalized to the reference gene (R), and the normalized rela-
tive quantity (NRQ) was calculated as follows. NRQ = (1 + 
ER)CtR/(1 + ET)CtT. For statistical analysis, NRQ values were 
log2-transformed and analysis of variance (ANOVA) was used 
to assess the significance of the main effect (JA concentration) 
(Rieu and Powers 2009). ANOVA was followed by Tukey’s 
honestly significant difference test. 
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