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ABSTRACT  

While the National Building Code of Canada (NBCC) provides engineers with suitable snow loading guidelines for 

structural design, the strict application of the code may not lead to an optimized structural design. Generalizations 

have been made to ensure the applicability of the code to the majority of potential structures within Canada, which 

result in conservative estimates in certain situations.  In particular, the interaction between region-specific prevailing 

wind directionality, climate and roof orientation are not accounted for. However, the development of advanced 

physical and numerical snow simulation approaches allows for the investigation of building-specific variables that 

affect snow loading.  The Finite Area Element (FAE) process simulates the hour-by-hour accumulation and 

depletion of snow on a specific building design.  This tool provides detailed quantification of the probabilistic snow 

loading accounting for region-specific long term meteorological conditions and building-specific variables such as 

roof size, exposure to prevailing winds, thermal capacity and local aerodynamics.  While providing a detailed 

assessment of the snow loads, a full FAE assessment can be both time consuming and relatively costly for many 

applications.  This parametric analysis approach has been developed using a variety of simple building geometries to 

provide an approach to assess the relative impacts of many of the key variables needed to inform a design.  This 

paper describes the physical and numerical models used for the parametric simulation of snow loads, and discusses 

their application to structures within Canada. 
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1. INTRODUCTION 

Snow loading guidelines are provided in many building codes and standards, and are meant to be conservative to 

cover a wide range of possible design scenarios. Alternative methods for characterizing design snow loads for a 

specific building geometry and meteorological climate are accepted by most building codes and standards, for 

example the National Building Code of Canada (NBCC) and the America Society of Civil Engineers (ASCE) 

standard.  Such methods include the use of water flume wind and snow simulations and wind tunnel based finite 

area element modelling, which have been shown to provide reliable snow load estimates (Gamble 1992 and Irwin 

1983).  

 

Of the snow loads recommended by the NBCC, roof surcharge snow loads tend to be the most significant and have a 

large impact on the overall design of the structural system.  This paper investigates the relationship between roof 

step orientation of a typical building and the local meteorological climate to provide snow load reduction 

coefficients that can be reliably applied to reduce roof step snow surcharge loads.  
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2. PARAMETRIC ROOF STEP SIMULATION MODEL 

2.1 Model Description 

The dependence of snow surcharges on both meteorological climate and building orientation was analyzed using 

three typical building models featuring roof steps of 3 m, 9 m and 30 m height.  Each model has identically sized 

large upper and lower roofs, as shown in Figure 1.  The effect of building orientation was evaluated by rotating each 

building for 16 equally incremented compass directions relative to the meteorological climate. The geometry and 

intent of this model is similar to the scale model building used by Tsuchiya et al, 2002.  

 

Three corresponding numerical FAE models were created to simulate the hour-by-hour deposition, drifting, and 

melting of snow and absorption of rain and melt water into a snow pack within a grid system that divides the roof 

into a large number of finite areas. 1:300 physical scale models of the three roof step models were instrumented and 

tested within a boundary layer wind tunnel using a standard suburban wind velocity and turbulence profile to obtain 

the required aerodynamic flow patterns.  Entire winters were simulated on an hour-by-hour basis, including the 

cumulative effects of successive storms, drifting events and melting periods. Specific methodology and applications 

of the FAE method are described in: Irwin and Gamble 1988 and Gamble et al. 1992.  

 
Figure 1: Plan and elevation views of the parametric model buildings. Dimensions are given in full-scale 

millimeters. Dark blue circles indicate the location of wind tunnel sensors.  

2.2 Directional Sensitivity of Building Orientation to Meteorological Climate 

Meteorological data from 25 cities across Canada were processed using the three roof step FAE models for each of 

the 16 equally incremented building orientations for a total of 1200 unique snow load design scenarios.  The area 

averaged snow load within the roof step was determined on an hour-by-hour basis and used to determine each peak 

annual maxima within the meteorological data set under investigation, and the 1 in 50 year mean recurrence snow 

load derived using a Fisher-Tippet Type 1 fit. This simulation and analysis process was completed for each of the 16 

building orientations and for each roof step height. The building orientation which exhibited the largest load was 

used to normalize each of the remaining test orientations. The normalized snow load values were plotted to 

determine the relative sensitivity of the building to the climate.  For comparison purposes, key examples of 

representative meteorological climates are presented, including London, Toronto, Quebec City and Vancouver.     

 

The left image in Figure 2 presents the normalized snow load for each of the 16 building orientations investigated 

based on meteorological data recorded at London International Airport for each of the three building roof step 

heights. Each cardinal direction presented represents the direction in which the roof step is facing; for example, a 

data point for the north direction corresponds to a north facing roof step, where the lower roof is on the north side 

and upper roof on the south side of the step. The right image presents the directional distribution of frequency of 

winds (blowing from) from October through May for the same meteorological data.   

 

It is apparent that roof steps facing towards the northeast through southeast directions are most heavily loaded with 

snow. However, roof steps oriented facing towards the south-southeast through north directions are not likely to 

accumulate as large of a snow load, and large reductions to building code recommendations may be applicable. This 
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is expected to be primarily due to the lack of winds of significant strength and low frequency from the north through 

northeast and southeast through southwest directions as indicated in the wind rose in Figure 2. 

 

These simulations reveal that roof steps of greater heights result in greater reductions in snow accumulations for 

westerly facing roof steps.  The trends in the data remain similar for other building orientations. This is due to strong 

westerly winds downwashing from the exposed building roof step face and scouring snow from the lower roof.  

Increasing the height of the step increases the strength of this downwashing and scouring wind flow.  

 
Figure 2: Left: Load reduction factors due to building orientation and meteorological climate sensitivity.  Illustrated 

are buildings with 3 m, 9 m and 30 m roof step heights. Right: Directional distribution (%) of winter winds (blowing 

from) from October through May.  Data recorded at London International Airport from 1953 through 2009. 

 

A distinctly different trend in sensitivity to buiding orientation was observed for the meteorological climate in 

Toronto. As shown in Figure 3, the meteorological climate around Toronto resulted in a more uniform distribution 

of strong winds over the course of the winter and a therefore more uniform snow load within roof step zones. This 

results in less sensitivity of building orientation to the climate and lower directionality reduction factors. However, 

reductions of up to 60% are seen for roof steps facing towards the north.  Similar to what was observed in the 

London meteorological data set, higher roof steps result in a reduced windward snow accumulation on the lower 

roof. However, these snow load reductions are somewhat limited as the relatively infrequent winds from the east are 

responsible for the redistribution of snow from the upper roof into the roof step region. 

 
Figure 3: Left: Load reduction factors due to building orientation and meteorological climate sensitivity.  Data 

recorded at Toronto International Airport from 1953 through 2015. 



STR-940-4 

 

Upon reviewing wind data from a region with a highly directional wind climate such as that found at Quebec City 

International Airport (right image in Figure 4), a designer may assume that large reduction ratios would occur for 

roof steps that are not aligned in directions downwind of prevailing wind directions. However, the interactions 

between wind speed, frequency and a snow pack cannot be simplistically reviewed in this fashion as evidenced by 

the results of the parametric simulation for data from Quebec City International Airport (see left image in Figure 4). 

A comparison between the Quebec City and London wind data sets indicate that greater reductions should be present 

for Quebec City; however this is not necessarily the case as even relatively infrequent directions still contribute to a 

large amount of snow scour and subsequent deposition on the lower roof surface.  This is a due to the relationship 

between the driftable state, availability of snow to drift, and the movement of snow with wind speed.   

 
Figure 4: Left: Load reduction factors due to building orientation and meteorological climate sensitivity.  Data 

recorded at Quebec City International Airport from 1953 through 2014. 

 

A disconnect between prevailing wind directionality and the resulting load sensitivity is apparent when 

meteorological data from Vancouver International Airport was reviewed (Figure 5).  This is due to the relatively low 

frequency of strong winds during the winter,  snowfall events consisting of wet snow with low driftability and the 

relatively short period of time that snow is present on the roof due to frequent melting periods. As a result, reduction 

factors based on building orientations are likely to be limited, as is the likelihood for large roof step surcharges. 

 
Figure 5: Left: Load reduction factors due to building orientation and meteorological climate sensitivity.  Data 

recorded at Vancouver International Airport from 1953 through 2012. 
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3. APPLICATION  

The following sections illustrate the application of step surcharge reduction factors previously determined to a 

model with complex geometry that is representative of features that are encountered in practise. Illustrated below are 

NBCC code calculations and loads parametrically modified using reduction factors obtained for Toronto and 

Quebec City.  Lastly, the loads derived using the parametric analysis are compared against load derived using the 

detailed FAE simulation process.   

 

The Snow Accumulation and Precipitation Calibration Experiment (SPACE) model, as illustrated in Figure 6, 

features complex but common geometries that allow for evaluation of building aerodynamics and snow simulation 

methods.  Key building geometries have been included in the geometric design of the building such as a mechanical 

penthouse on a projecting tower, multiple roof steps and a large central arched roof. A detailed description and 

resulting water flume snow drifting simulations of the SPACE model can be seen in Brooks et al, 2015.  

 

 
Figure 6: Plan and elevation views of the SPACE model building. Dimensions are provided in full-scale meters 

(Brooks et al 2015). 

3.1 Comparison of NBCC Recommended and Parametrically Modified Design Snow Loads 

Figure 7 illustrates the three-dimensional distribution of snow as recommended by the NBCC (left) and as modified 

by the reduction factors determined using the simplified building roof step model and the FAE (right).  These loads 

are the 1 in 50 year mean recurrence snow loads based on meteorological data from Toronto, Ontario.  The height of 

the snow accumulation is based on an NBCC recommended density of 3.0 kN/m3. Any abrupt changes in the 

geometry of the NBCC recommended snow loads have been smoothed through interpolation during modelling.  

 

The roof snow loads shown in Figures 7 and 8 illustrate where differences in the volume of snow within roof step 

zones are present between code and those parametrically modified.  As can be seen, some of the wind directions 

have seen appreciable reductions in depth, where others oriented in more sensitive directions relative to the 

meteorological climate remained unfactored.  
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Figure 7: Left: Three dimensional representation of 1 in 50 year design snow loads as recommended by the NBCC. 

Right: NBCC recommendations factored using roof step surcharge reduction relationships derived using the 

simplified building roof step model.  Presented snow loads are based on meteorological data from Toronto, Ontario. 

 

 
Figure 8: Left: Three dimensional representation of 1 in 50 year design snow loads as recommended by the NBCC. 

Right: NBCC recommendations factored using roof step surcharge reduction relationships derived using the 

simplified building roof step model.  Presented snow loads are based on meteorological data from Quebec City, 

Quebec. 

3.2 Comparison of Parametrically Modified Snow Loads and FAE Snow Loads 

Since the building roof step parametric model is representative of a simple building roof step geometry in isolation, 

a detailed FAE simulation of the SPACE model was conducted to compare the loads recommended by the 

parametrically modified NBCC loads to a current, state of the art analysis method.  

 

Using the FAE simulation method required detailed wind flow velocity information. This information was obtained 

through the boundary layer wind tunnel testing of a 1:300 scale model (left image in Figure 9).  Velocity data 

(magnitude and direction) were measured with a high degree of spatial resolution using 253 surface velocity vector 

(SVV) sensors, as described in Gamble et al 1992 (right image in Figure 9). A standard suburban wind and 

turbulence profile was used. 
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Figure 9: Photograph of the SPACE wind tunnel model within a boundary layer wind tunnel (left) and example of 

measured wind velocity vectors for winds from the north (right). 

 

As can be seen in Figures 10 and 11, the parametrically modified code loads appear larger than those derived using 

the detailed FAE simulation process. This indicates that the code loads, and resulting parametrically modified roof 

step loads do provide a degree of conservatism, as is desirable for a method that does not relay on detailed physical 

and numerical modelling. 

 

The total snow load on the building including area averaged and roof step surcharges was calculated for each 

analysis method for a building located in both Toronto and Quebec City based on an assumed snow density of 3 

kN/m3, and is presented in Table 1.  The difference in total snow load for each of the analysis methods is also 

provided for comparison purposes. 

 

 
Figure 10: Left: NBCC recommendations factored using the reduction factor relationships derived using the 

simplified building roof step model.  Right: Snow loads derived using the detailed FAE simulation process. 

Presented snow loads are based on meteorological data from Toronto, Ontario. 
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Figure 11: Left: NBCC recommendations factored using the reduction factor relationships derived using the 

simplified building roof step model.  Right: Snow loads derived using the detailed FAE simulation process. 

Presented snow loads are based on meteorological data from Quebec City, Quebec. 

 

 

Table 1: Total Area Averaged and Step Surcharge Snow Load 

 

4. SUMMARY OF FINDINGS 

A parametric simulation of snow accumulation and depletion was conducted for 25 sites across Canada using simple 

roof step model geometries with heights of 3 m, 9m and 30 m. The resulting directional sensitivies of roof step 

orientation to structural snow loads were demonstrated using different meteorological data sets.  Conclusions drawn 

from this work include: 

 

1. The strict application of NBCC recommended roof step surcharge snow loads are often conservative, depending 

on the meteorological climate, because there are often directional sensitivities due prevailing wind directions 

and other climatic factors.    

2. Parametric reduction factors applied to roof step surcharge loads, as illustrated within this paper, allow 

designers to refine the predicted code design snow loads to allow for a more efficient structural system. 

3. A comparison of NBCC and parametrically adjusted loads to FAE simulated snow loads on a detailed building 

indicates that, for the example geometry and climates investigated in this paper, the parametric refinement 

method does include conservatism as is desirable for a method that does not rely on detailed physical and 

numerical modelling.  
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 NBCC Code Snow 

Load (kN) 

Parametric NBCC 

Snow Load (kN) 

FAE Snow Load 

(kN) 

Toronto 15490 13264 8612 

Quebec City 39881 35523 21273 
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