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ABSTRACT 

This paper presents the results of experimental and analytical investigations on the structural performance of high 

performance reinforced concrete (HPC) columns subjected to monotonic axial loading. Reinforced columns made of 

self-consolidating concrete (SCC), engineered cementitious composite (ECC) and ultra-high performance concrete 

(UHPC) were tested to failure under axial loading. The test variables included concrete strength and length/slenderness 

of columns (classified as short and long columns). The UHPC and ECC columns demonstrated excellent ductility and 

higher energy absorbing capacity compared to their SCC counterparts. UHPC columns also illustrated higher ultimate 

load capacity compared to both ECC and SCC columns. The efficiency of UHPC and ECC columns was also judged 

based on strength and ductility ratio compared to their SCC counterparts. Existing models and other Code based 

equations were used to predict the axial load capacity as a part of analytical investigation. The predictions suggested 

the need for the modification of existing models/Code based equations for UHPC and ECC columns.  

1. INTRODUCTION 

Civil infrastructure constitutes a major proportion of Canada’s wealth and thus, it behooves the scientific community 

and relevant industries to develop new, cost-effective construction materials with superior qualities that exceed the 

performance of currently available materials.  During the last decades, tremendous progress has been made on the 

high performance concretes (HPCs). Such HPC technology involves the family of highly durable fiber reinforced 

engineered cementitious composite (ECC) and ultra-high strength/performance concrete (UHSC/UHPC).   

 

Compared to traditional concrete, UHPC demonstrated advantages such as outstanding mechanical properties, 

ductility and durability (Acker and Behloul 2004, Hossain et al. 2011, Hossain et al. 2014; Mak et al. 2011). UHPC’s 

higher compressive strength, improved toughness and increased damage tolerance and high strain capacity made these  

materials very attractive to use in heavily loaded components and civil infrastructures (Tawfik et al, 2014, Blais and 

Couture 1999, Hajar et al.  2004, Bierwagen and Abu-Hawash 2005, Hossain et al. 2012).   

 

UHPC is characterized by high strength with moderate ductility while ECC materials commonly have high ductility, 

tight crack width and low to high strength. Poly-vinyl alcohol (PVA) fiber successfully used in the production of 

moderate strength ECC. ECC shows strain hardening behavior after the first crack, and demonstrates a strain capacity 

300 to 500 times greater than conventional concrete. Even at large deformation, crack widths of ECC remain less than 

60 μm (Li, 2003; Li & Kanda, 1998; Fischer et al. 2002). The multiple micro-cracking behavior and high strain 

hardening characteristic of ECC components under tension and flexure with relatively low reinforcing fibers contents 

(less than 2% by volume) makes it an ideal material for structural applications (Fischer and Li, 2003; Sahmaran et al. 

2010; Shahman and Li 2009; Li 1998; Li et al.2001).  
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This paper presents the result of experimental and analytical studies on the performance of SCC, UHPC and ECC 

columns under axial loading. As part of the experimental program, six columns with different lengths were constructed 

with three different type of materials such as SCC, ECC and UHPC. The analytical study examines the axial load 

capacities of SCC, ECC and UHPC columns calculated based on existing standards/equations for normal and high 

performance concretes. 

2. EXPERIMENTAL PROGRAM 

2.1 Description of test specimens 

As part of the experimental study, six column with three different concrete materials (SCC, ECC and UHPC) were 

constructed based on design as per CSA A23.3-14 standard. To study the effect of different materials on column axial 

load capacity, the cross section of the columns was kept constant at 160 mm x 120 mm while the heights were changed 

from 540 mm for short column to 1060 mm for long column. The longitudinal reinforcement consisted of 4-15M 

reinforcing bars (𝑑𝑏 = 16𝑚𝑚 𝑎𝑛𝑑 𝐴𝑠 = 800𝑚𝑚2) while the transverse reinforcement consisted of 6M bars (𝑑𝑏 =
6𝑚𝑚 − 𝑏𝑎𝑟 𝑑𝑖𝑎𝑚𝑡𝑒𝑟 𝑎𝑛𝑑 𝐴𝑣 = 60𝑚𝑚2 − 𝑏𝑎𝑟 𝑎𝑟𝑒𝑎) with total of 2 legs of transverse bars in perpendicular 

direction of the column cross section. The detail designs for each type of columns are shown in figure1.  

 

 
a) Long column             b) Short column     c) Cross section of columns 

 

Figure 1: Column design details (dimensions in mm) 

 

2.2 Material properties 

The UHPC developed with water to cementitious material ratio of 0.22 and a steel fiber content of 9% by mass of dry 

material. It consisted of general purpose cement and silica fume as the cementing material, water, natural grain silica 

sand of 110 micrometer nominal size, steel fibers and a polycarboxylate-based high range water reducer. The material 

proportions are shown in table 1.The steel fibers used in this mix design are 0.4 mm in diameter and 14 mm in length 

with a tensile strength of 2160 MPa, modulus of elasticity of 210 GPa, and melting point higher than 800°C. For 

casting UHPC, weighted dry materials except the steel fibers were introduced to shear mixer and mixed for 2 minutes. 

After that again 75% of the water was added to the mixer and mixed for another 2 minutes. The remaining water and 

the HRWR was added gradually and mixed for another 2 minutes for the development of a uniform and consistent 

mix. At the end the steel fibers were added to the mix until all fibers were dispersed with mortar mixture. 

 

The ECC mix has a water/cementitious material ratio of 0.30, PVA fiber content of 1% fibers/kg of dry material. It 

consists of general purpose cement and fly ash (FA) as the cementing material, water, natural grain silica sand with 

110 micrometer nominal size, Polyvinyl Alcohol (PVA) fibers and a polycarboxylate-based high range water reducer 

(HRWR) as shown in Table1. The PVA fibers are 39 microns in diameter, 8 mm in length, a tensile strength of 1620 

MPa, modulus of elasticity of 42.8 GPa, and has a melting point of 225°C. For casting ECC, weighted solid contents 

except for the PVA fibers were introduced into the shear mixture and mixed for 1 minutes. After that 75% of the water 
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was added to 50% HRWR and mixed together then the mix of water and HRWR was added gradually to the mixer 

and mixed for additional 2 to 3 minutes. Then the remaining water and HRWR was introduced again with same 

procedure to the mix, and mixed for another 2 minutes for the development of a uniform and consistent mortar mixture. 

Lastly, the PVA fibers were added to the mortar for another 3 minutes of stirring until all fibers were dispersed with 

mortar mixture. A commercial SCC mixture made of 10 mm maximum size coarse aggregates, crushed sand, Portland 

cement and admixtures was used.  

 

 

Table 1: Mix design of UHPC and ECC 

Mixture  

Ingredients per 1 part of Cement  

w/b 
Cement Fly Ash (FA) 

Silica 

Sand 

PVA 

kg/m
3
 

HRWR 

kg/m
3
 

UHPC 1 0.25 1.10 164 26 0.22 

Mixture Cement Silica Fume 
Silica 

Sand 

Steel fiber 

kg/m
3
 

HRWR 

kg/m
3
 

w/b 

ECC 1 1.2 0.80 26 5.4 0.27 

*w: water; c: cement; b: binder 

 

 

Average concrete compressive strength (𝑓𝑐
′) obtained by testing three 100mm x 200mm concrete cylinders at 28-days, 

as per ASTM C39 (2003) and ASTM C109 (2011) is summarized in table 2. The four-point bending test was 

performed on the concrete prism specimens at 28-days according to ASTM c78 (2010). The four-point bending test 

was performed using a closed-loop controlled servo-hydraulic system under displacement condition at a loading rate 

of 0.005 mm/s. The total span length of the flexural specimens was 304.8mm. Typical load/flexural stress-mid span 

deflection responses of SCC/ECC/UHPC and flexural strength are presented in figure 2 and table 2, respectively. The 

properties of reinforcing steels were obtained based on tension test performed on three randomly selected samples for 

each bar size. The 15M longitudinal steel reinforcement had average yield strength (𝑓𝑦) of 478 MPa and 6M transverse 

steel reinforcement had average yield strength of 429 MPa. Sample of stress-strain curves for steel reinforcement are 

shown in figure 3 with yield stress and strain values are summarized in table 3. 

 

 

Table 2: Concrete compressive and flexural/tensile strength 

 SCC UHPC ECC 

Concrete compressive strength 

(MPa) at 28 days 
50.6 136 63.5 

Flexural  strength (MPa) at 28 days 5.9 15.7 5.1 

 

  

 
 

Figure 2: Flexural stress-displacement responses of SCC, ECC and UHPC 
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Figure 3: Stress-strain/deformation responses of steel bars 

 

Table 3: Properties of steel reinforcement 

Rebar Size (mm) Yield strain (Micro-Strain) Yield stress (𝑓𝑦) MPa 

15 mm 2310 478 

6 mm ** 429 

 

 

2.3 Instrumentation and testing 

All specimens were tested under monotonic axial loading using MTS machine. Figure 4 shows the test setup. In order 

to measure the horizontal displacement, one LVDT was placed in the mid-span of each sample to record the data 

during the loading as shown in figure 4. To measure the strain in concrete and steel reinforcement, two strain gauges 

were also attached - one to the surface of concrete and one to the middle of longitudinal steel reinforcement in each 

sample, as shown in figure 4b. 

 

   
a) LVDT position             b) Steel strain gauge         c) Concrete strain gauge 

Figure 4: Column test setup and LVDT/strain gauges positions 
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3. RESULT AND DISCUSSION 

3.1 Experimental results 

Figures 5a and 5b present the experimental load-vertical displacement of all long and short column specimens tested 

in this study, respectively. UHPC long column had more than 1100kN load capacity which was higher than short ECC 

and SCC columns with 900kN and 585kN load-capacity, respectively. Short UHPC column showed 100% and 200% 

increase in axial load-capacity compared to ECC and SCC short columns, respectively. UHPC column showed higher 

vertical displacement compared to its ECC and SCC counterparts by 60% and 100%, respectively.  

 

 
a) Long Column vertical displacement        b) Short Column vertical displacement 

Figure 5: Axial load- displacement responses of SCC, ECC and UHPC columns 

 

 
a) Long Column horizontal displacement     b) Short Column horizontal displacement 

Figure 6: SCC/ECC and UHPC columns - load-horizontal/lateral displacement responses 

 

Figures 6a and 6b compare the load-horizontal/lateral displacement responses of columns. The horizontal 

displacement was recorded with a LVDT positioned in the middle of the column height shown in figure 4a. All tested 

samples indicated a very low lateral deflection at mid-height of columns; the highest value obtained was 3 mm. None 

of the tested columns failed due to buckling.  

 

Comparative load-strain responses of concrete and longitudinal steel reinforcement for long and short columns are 

presented in figure 7. Strains were recorded with two strain gauges attached at the mid-height of the column on 

concrete surface and to the longitudinal steel reinforcement as shown in figures 4b and 4c.   
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a) Long column steel strain                b) Long column concrete strain 

 

 
    c) Short Column steel strain            d) Short Column concrete strain  

 

Figure 7: comparative concrete and longitudinal steel reinforcement’s strains of SCC/ECC and UHPC columns 

Longitudinal reinforcement for both short and long ECC columns were yielded as shown in figures 7a and 7c. 

Summary of axial load-capacity, vertical and horizontal displacement, concrete and steel reinforcement strains are 

presented in table 4. 

 

 

Table 4: Summery of load-displacement and strain developments 

Column 

Type 

Concrete 

Type 

Maximum 

Axial Load 

(kN) 

Maximum 

Vertical 

Displacement 

(mm) 

Maximum 

Horizontal 

Displacement 

(mm) 

Concrete 

Strain (Micro 

Strain) 

Steel 

Strain 

(Micro 

Strain) 

Long 

Column 

SCC 515.19 12.64 1.59 1228 yielded 

ECC 876.81 6.53 1.38 1199 yielded 

UHPC 1165.25 15.29 0.96 1123 1124 

Short 

Column 

SCC 584.63 6.87 1.54 2971 1327 

ECC 797.91 9.39 1.54 2903 yielded 

UHPC 1678.1 9.12 2.95 4556 yielded 

 

 

The displacement ductility index (DI) for different column types and materials defined by the ratio of the displacement 

at 80% of ultimate load in post-peak descending part of the load-displacement curve to yield displacement at 80% of 

ultimate load pre-peak ascending part of the curve. Both ECC and UHPC- short and long column had shown higher 

ductility compared to their SCC counterparts. The summery of the ductility index for each column and the comparison 

between ECC/UHPC columns to their SCC counterparts are presented in table 5. 
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Table 5: ductility of long and short columns 

Column 

Type 

Concrete 

Type 

Ductility Index 

(DI) 

Ductility ratio with 

respect to SCC 

column 

Long 

Column 

SCC 1.21 1 

ECC 1.30 1.065 

UHPC 1.42 1.168 

Short 

Column 

SCC 1.24 1 

ECC 1.28 1.036 

UHPC 1.26 1.017 

 

 

Comparison of failure modes of different columns exhibited that SCC columns (both short and long) failed due to 

severe concrete spalling at the top and bottom. However, ECC and UHPC long and short columns had shown multiple 

cracking development with ECC columns showing more multiple micro cracking as shown in figure 8. Localized 

failure of SCC columns at the top and bottom indicated that SCC columns failed to distribute the load to whole column 

length while ECC/UHPC columns were able to distribute the load. This can be attributed to the better confining 

capacity of the ECC and UHPC columns mainly due to the presence of fiber.   

 

 
Figure 8: Crack patterns for ECC and UHPC columns under axial loading 

 

3.2 Analytical studies 

The axial load capacity of columns was calculated by using Codes and existing equations.  The axial load capacity of 

SCC and ECC columns was calculated based on equation 5 as per CSA Standard A23.3-04 standard (CSA 2010). 

However, equation 5 based on CSA A23.3-04 has limitations for concrete compressive strength𝑓𝑐
, ≤ 80 𝑀𝑃𝑎. 

Therefore, the UHPC column axial load capacity was calculated based on equations 1 to 4 as per Hossain (2014). 

Results of axial load calculations for columns are summarized in table 6. 

 

The axial load bearing capacity (𝑁𝑅𝑑) of centrically loaded UHPC-column can be determined from concrete (Ncd) and 

steel (Nsd) contributions according to the following equations: 

 

[1]  𝑁𝑅𝑑 = 𝑁𝑐𝑑 + 𝑁𝑠𝑑            

 

[2]  𝑁𝑅𝑑 = 𝑓𝑐𝑑. (𝐴𝑔 − 𝐴𝑠) + 𝑓𝑦. 𝐴𝑠          

 

Where𝐴𝑔: concrete gross cross section;𝐴𝑠: longitudinal reinforcement cross-section and 𝑓𝑐𝑑 can be obtained from 

equation 3. 
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[3]  𝑓𝑐𝑑 =
0.85.𝑓𝑐𝑘

𝛾𝑐.𝛾𝑐
,             

 

𝑓𝑐𝑘: Characteristic concrete compression strength, actual compressive strength resulted from experimental test. The 

safety factor 𝛾𝑐is chosen 1.5 for in-situ concrete members and 

 

[4]  𝛾𝑐
, =

1

(1.1−
𝑓𝑐𝑘
500

)
            

 

As per CSA Standard A23.3-04 standard, the maximum axial load resistance of compression members is determined 

from equation 5: 

 

[5]  𝑃𝑟𝑜 = 𝛼1𝜑𝑐𝑓𝑐
,(𝐴𝑔 − 𝐴𝑠) + 𝜑𝑠𝑓𝑦𝐴𝑠          

 

Where 𝑃𝑟𝑜 is the axial load resistance at zero eccentricity; 𝛼1is the concrete stress block factor; 𝜑𝑐  is the resistance 

factor for concrete and 𝜑𝑠 is the resistance factor reinforcing bars. Values for 𝜑𝑐  𝑎𝑛𝑑 𝜑𝑠 are considered equal to 1. 

 

 

Table 6: Columns analytical axial load capacity 

Column Type Concrete Type Axial Load capacity 

from CSA 2004 

(kN) 

Axial Load 

capacity from 

Hossain (kN) 

Long Column SCC 1092 ------ 

ECC 1252 ------ 

UHPC ------ 1556.4 

Short Column SCC 749 ------ 

ECC 1252 ------ 

UHPC ------ 1556.4 

 

 

3.3  Comparison of analytical and experimental results 

 

Analytical and experimental axial load capacities of columns are presented in table 7. Analytical load capacities of 

ECC and UHPC columns were higher compared to those obtained from experiments for all columns except UHPC 

short columns.  No definite conclusions can be drawn on the prediction performance of Code/existing equations. 

However, the UHPC short column axial capacity seemed to be predicted reasonably by the existing equation. The 

lower axial load capacity of SCC columns compared to that predicted by equation can be associated with the 

unexpected baring failure associated with localized stress concentration at the loading points. However, more tests 

should be conducted to study the performance of existing equations or modify the equations for better prediction of 

ECC/UHPC columns.   

 

 

Table 7: Analytical and experimental axial load capacities of columns  

Column Type Concrete Type Analytical Axial 

Load capacity (kN) 

 Experimental 

Axial Load 

capacity (kN) 

Ratio of 

experimental axial 

load to analytical 

axial load 

Long Column SCC 1092 515 0.48 

ECC 1252 877 0.7 

UHPC 1556 1165 0.75 

Short Column SCC 749 584 0.78 

ECC 1252 798 0.64 

UHPC 1556 1678 1.08 
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4. CONCLUSIONS 

The following conclusions are drawn from experimental and theoretical analyses: 

 

1. Both ECC and UHPC long and short columns had higher axial load capacity compared to SCC columns. 

Maximum axial load capacity of UHPC columns was 3 times higher (for short column) and 2 times higher (for 

long column) compared to their to SCC counterparts. Columns made of ECC showed increased axial load 

capacity compared to SCC columns - 36% higher for short columns and 70% for long columns.  

2. UHPC and ECC long and short columns had exhibited higher axial displacement compared to their SCC 

counterparts and hence showed better ductility characteristics. Lateral/horizontal displacement of all tested 

columns was negligible exhibiting no buckling failure.  

3. Both ECC and UHPC columns exhibited multiple crack formation all over the concrete columns. ECC columns 

exhibited more multiple micro-cracking behavior with tight crack width compared to UHPC/SCC columns. 

UHPC and ECC columns showed better load distribution capabilities through confinement effect of fiber 

compared to SCC  columns which  failed due to sever concrete spalling/bearing at the loading points. 

4. No definite conclusions can be drawn on the ability of theoretical/code based equations in predicting axial load 

capacity of ECC/UHPC columns although predicted axial load for UHPC short columns (by existing UHPC 

column equation) was close to experimental value. More experimental tests are needed to develop new or 

modify existing equations to predict axial strength of ECC/UHPC columns.  
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