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ABSTRACT 

Fiber-reinforced polymer (FRP) bars have proven to be an excellent alternative to steel bars in many concrete 

structures such as parking garages and overpasses that are susceptible to harsh environments and consequently 

corrosion of steel reinforcement. In these structures, FRP reinforced concrete (FRP-RC) continuous beams are 

common members.  Moment redistribution in FRP-RC continuous beams has not been well established yet because 

of the different characteristics of FRP bars such as linear-elastic stress-strain relationship and lower modulus of 

elasticity compared to conventional steel. Recent studies showed that redistribution of internal forces in Glass (G) 

FRP-RC continuous beams with a rectangular section is possible. However, no attention was given to continuous 

beams with a T-section.  Therefore, this study aims at investigating the ability of GFRP-RC continuous beams with a 

T-section to redistribute the moment between the critical sections. In this paper, test results of three large-scale GFRP-

RC T-beams are presented. The beams were 6,000-mm long and continuous over two equal spans of 2,800 mm each. 

The sections had an overall depth of 300 mm, an effective flange width of 600 mm, a flange thickness of 100 mm, 

and a web width of 200 mm. The test variables included the assumed moment redistribution percentage and the 

arrangement of shear reinforcement. It was observed that the beam with less stirrup spacing showed better performance 

in achieving the assumed percentage of moment redistribution and in carrying higher ultimate load compared to its 

counterparts with larger stirrup spacing.  
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1. INTRODUCTION 

Fiber reinforced polymer (FRP) bars are being increasingly used in reinforced concrete (RC) structures, especially 

those in harsh weathering regions because of their effectiveness in avoiding deterioration of concrete caused by 

corrosion. FRP reinforced concrete (FRP-RC) continuous T-beam is one of the common structural elements in RC 

structures such as, parking garages, overpasses, and marine structures. For such type of beams, both the deformability 

and the moment redistribution are desirable and advantageous features that improve the overall performance and the 

utilization of full capacity of the sections along the beam. Since, FRP bars, unlike conventional steel, exhibit linear-

elastic response of stress-strain relationship until failure; it raises the concern of deformability and consequently 

moment redistribution.  However, several studies were conducted to investigate the moment redistribution of 

rectangular continuous beams. El-Mogy et al. (2010 and 2011) reported that approximately 23% moment 

redistribution was observed without any adverse effect on the beam performance. Also, closer spacing of stirrups, 

while maintaining the same transverse reinforcement ratio, was found to increase the moment redistribution. 

Mahmoud and El-Salakawy (2014 and 2016) also observed the moment redistribution in shear-critical GFRP-RC 

rectangular beams with different concrete strength, longitudinal reinforcement ratio and transverse reinforcement 

ratio. The authors also found that increasing stirrup diameter, while maintaining the same spacing, had little effect on 

moment redistribution. Moreover, Kara and Ashour (2013) developed a numerical technique, and studied moment-

curvature and moment redistribution. The authors concluded that under-reinforced FRP-RC beams could not 

redistribute bending moment and that the critical sections, once reached their capacity, were not able to redistribute 

bending moments.  
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However, in addition to the fact of linearity of stress-strain response of FRP bars, T-shaped section in continuous 

beams draws further research attention because of interaction between the mid-span with higher stiffness and the 

middle support region with comparatively lower stiffness at the post-cracking stage. Scholz (1993) explored the 

significant effect of variation of stiffness on neutral axis-to-depth ratio and thus, moment redistribution in steel-RC 

continuous beams. In contrast to the stiffness variation, the mid-span region, at the pre-cracking stage, has lower 

section modulus while the region over middle support has higher section modulus. Also, the neutral axis-to-depth ratio 

at mid-span being lower than that of middle support region counteracts the influence of stiffer mid-span in 

redistributing moments. Santos et al. (2013) tested seven small-scale GFRP-RC T-beams to study the effect of 

reinforcement ratio and confinement on the moment redistribution. The authors concluded that higher reinforcement 

ratio at mid-span, and higher confinement at middle support zone increased the moment redistribution. In this study, 

the possibility and the extent of moment redistribution of large-scale continuous concrete beams with T-section are 

investigated.  

2. EXPERIMENTAL PROGRAM 

2.1 Test Specimens 

Three large-scale continuous beams with T-section were constructed and tested to failure. The test beams were 6,000 

mm long and continuous over two equal spans of 2,800 mm each. All beams were reinforced with GFRP bars and 

stirrups. The test parameters included the assumed percentage of moment redistribution and the arrangement of shear 

reinforcement.  Figure 1 shows the dimensions, reinforcement arrangement, and internal instrumentation of the tested 

beams.  
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Figure 1: Dimensions, details of reinforcement and internal instrumentation of test beams. 

 

The information reported in this paper is part of an ongoing research project in which a steel-RC control beam was 

constructed to carry a design load of 155 kN. Accordingly, GFRP-RC beam B1 was designed following the Canadian 

standard CSA/S806-12 (CSA 2012) to meet that design load without any moment redistribution. Then, both beam B2 

and B3 were provided with longitudinal reinforcements to satisfy an assumed percentage of moment redistribution of 

15% from the middle support to the mid-span section of each beam.  

Table 1: Reinforcement Details of Tested Beams 

Beam Longitudinal reinforcement Transverse reinforcement 

Top bars over middle-support Bottom bars at mid-span 
Stirrup diameter 

(mm) 

Spacing 

(mm) Bars  𝜌 𝜌𝑏⁄  Bars  𝜌 𝜌𝑏⁄  

B1 3 No. 16 4.73 2 No. 16 1.05 No. 13 75 

B2 2 No. 16 3.27 2 No. 16 1.10 No. 13 75 

B3 2 No. 16 3.10 2 No. 16 1.04 No. 10 45 
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In all beams, both the hogging and the sagging moment regions were over-reinforced (ratio (𝜌 𝜌𝑏⁄ ) with reinforcement 

ratio provided, 𝜌 to balanced reinforcement ratio, 𝜌𝑏 of more than 1, as given in Table 1) to have favourable 

compression-controlled failure. However, the required transverse reinforcement (stirrups) was achieved by using 13 

mm-diameter stirrup with spacing of 75 mm in beam B1 and B2. Also, based on previous studies (El-Mogy et al. 

2011, Mahmoud and El-Salakawy 2016), it was concluded that using smaller diameter-stirrup rather larger diameter-

stirrup, while maintaining the same shear reinforcement ratio, has pronounced effect on moment redistribution. As 

such, 10 mm-diameter stirrups with spacing of 45 mm, while maintaining almost same ratio of transverse 

reinforcement, were chosen for beam B3 to study the effect of stirrup-spacing. The spacing of stirrups was maintained 

within the minimum spacing requirements as required by CSA/S806-12 standard (1.4 times the longitudinal 

reinforcement diameter, 1.4 times the maximum aggregate size, or 30 mm). The beam flange was reinforced with No. 

10 to satisfy the requirement of minimum reinforcement in the transverse direction. 

2.2 Material Properties 

Normal weight, ready-mixed concrete with a target 28-day compressive strength of 40 MPa was used to cast all beams. 

Maximum size of aggregate used in concrete mix was 20 mm. On the day of testing, at least five cylinders of standard 

size (100 mm × 200 mm) were tested to determine the average concrete compressive strength. The average 

compressive strength of beams B1, B2 and B3 were 44, 42, and 45 MPa, respectively.  

Sand-coated GFRP bars were used as longitudinal and transverse reinforcement. The characteristic design values, 

according to CSA/S806-12 (CSA 2012), were determined from the material certificate received from the 

manufacturer. The mechanical properties of the reinforcement are summarized in Table 2. 

 

Table 2: Properties of Reinforcing Materials 

Material 

type 

Bar designation Diameter 

(mm) 

Tensile strength 

(MPa) 

Elastic modulus 

 (GPa) 

 Strain (%) 

GFRP 

No. 10 9.5 1,770 65 2.7 

No.10 (bent) 9.5 1,350a 52a 2.6 a 

No.13 (bent) 12.7 1,330a 53a 2.5a 

No.16 15.9 1,680 65 2.6 

Note: a Straight portion property. 

 

 

Three load cells were used at supports to measure the reactions during the test. Also, linear variable displacement 

transducers (LVDTs) were placed at quarters and mid-point of both spans (Fig. 2) to measure deflection. Moreover, 

PI-gauges were attached to record the crack width at critical sections; one at middle support and one at each mid-span. 

The internal instrumentation consisted of nine electrical strain gauges (Fig. 1) attached to the longitudinal 

reinforcement, and three concrete strain gauges attached to the extreme compression side of concrete.  

A 1000-kN MTS hydraulic machine was used to apply concentrated load on a stiff steel spreader beam that, in turn, 

delivered the load to the mid-point of both spans.  The applied load on each span was then evenly transferred to the 

beam through another spreader beam that was placed across the beam flange. Loading was applied at a rate of 10 

kN/min and equal load on both spans was maintained throughout the test. Readings of all instrumentations were 

acquired and stored using a data acquisition (DAQ) system.  
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Figure 2: Experimental set up for test specimens.  

3. TEST RESULTS 

3.1 Cracking Behaviour and Mode of Failure 

All beams showed similar cracking behaviour until failure. The first flexural crack in all beams formed in the sagging 

moment region in both spans followed by vertical flexural crack over the middle support. The cracking load at sagging 

region of all beams ranged between 19 and 25 kN, while that at hogging region varied from 35 to 38 kN. This behaviour 

was observed because of lower section modulus of the sagging moment region compared to that of the hogging 

moment region. The majority of flexural cracks initiated at a load up to 50-60% of failure load and those, once initiated, 

propagated towards the compression zone as loading was continuing. Approaching failure, few diagonal tension cracks 

developed in the interior shear span. Also, it was noted that the hogging moment regions in all beams had small number 

of wider cracks in contrast to large number of narrower cracks in sagging moment region. In addition, there was a 

longitudinal crack observed along each flange-web interface of both spans in all beams. Due to such longitudinal 

cracking, the composite behaviour of T-section at mid-span was significantly reduced and the beam moved towards 

the behaviour of a rectangular section. 

 
Figure 3: Cracking pattern of tested beams 

 

In all beams, concrete crushing initiated at hogging moment region (spalling of concrete can be seen in Fig. 4) before 

the beams reached failure by concrete crushing at sagging moment region. This was evident since the concrete strains 
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at middle support section reached the ultimate crushing strain as described in the next section, while the strains in 

longitudinal bars (Fig. 5) were well below the characteristic design values.  

 

 
Figure 4: Failure mode of tested beams 

3.2 Strain in Reinforcement and Concrete 

The load-strain relationship for both concrete and longitudinal reinforcement at the hogging and the sagging moment 

regions are plotted in Fig. 5. The strain values in concrete over middle support were higher than or very close to the 

crushing strain, 3,500 micro-strains, specified in the CSA-S806-12. On the other hand, after the cracks took place 

along the interface of web and flange in the sagging moment region, the flange substantially got relieved from resisting 

the applied load, which is indicated by the lower measured strain in the concrete at the mid-span section. 

   

Figure 5: Variation of strain in GFRP bars with load 
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It is also worth mentioning that all beams, after concrete strains reached the maximum at middle support section, 

continued to resist more loads until failure took place at mid-span. In contrast to concrete strains, the strain values in 

reinforcing bars at mid-span sections, especially at higher stage of loading, were higher than that at middle support 

sections in all beams. This was due to the lower amount of longitudinal reinforcement in mid-span section of beam 

B1 whereas, in case of beam B2 and B3, higher moment due to redistribution resulted in higher strains. 

3.3 Load-Deflection Response 

For each beam, maximum deflections measured at both spans were very similar. Therefore, the average of both span 

deflections was reported for each test beam. As mentioned earlier, cracks first formed in the sagging moment regions 

followed by cracking in the hogging moment region. However, it can be seen that, in load-deflection behaviour 

demonstrated in Fig. 6, cracking at mid-span had little effect on increasing deflection at early stage of loading. 

Significant change in the flexural stiffness of the beams took place once cracks formed over the middle support that 

resulted in increasing the mid-span deflection rapidly. Overall, load-deflection behaviour of all beams in post-cracking 

stage was approximately linear until signs of concrete spalling were observed. Afterwards, some nonlinearity of load-

deflection relationship was noted near failure, which can be attributed to the nonlinearity of concrete at middle support 

region and the formation of diagonal cracks within the span. 

 
Figure 6: Load-deflection behaviour of tested beams 

 

All beams not only reached the target design load of 155 kN (Fig. 6) but also carried additional load of 28-43% the 

design load. The deflections of all beams, measured at design load level, were similar, while at failure load, the 

deflection of beam B3 was slightly higher compared to both B1 and B2. However, a little stiffer response of beam B1 

stemmed from lower strain of reinforcing bars (Fig. 5) because of higher reinforcement ratio over middle support. It 

can also be noted in Fig. 6 that beam B3, in comparison to its counterpart B2, not only carried 12% more load but also 

experienced 17% more deflection before failure. This superior performance could be possible due to the smaller 

spacing of stirrups (45 mm) in beam B3 compared to larger spacing of stirrups (75 mm) in beam B2. 

3.4 Moment Redistribution 

Formation of cracks in the sagging moment region before the hogging moment region slightly reduced the flexural 

stiffness of the sagging moment region and thus, reversed insignificant amount of load towards the middle support. 

However, cracking of the hogging moment region caused the section to rotate substantially over middle support, and 

resulted in load redistribution from hogging region to sagging region. The end reactions against the applied load on 

each span (P) of all beams were plotted in Fig. 7, and compared with the elastic end reaction of 0.3125P. The 

experimental end reactions of all beams in the post-cracking stage were higher than that calculated based on elastic 

theory. This finding obviously showed that the load, especially in beam B2 and B3, significantly redistributed from 

hogging to sagging region. 
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Figure 7: Comparison of end reactions of tested beams 

 

The failure loads along with the experimental and the theoretical moments are also shown in Fig. 8. Beam B1, designed 

for no moment redistribution, redistributed 4.8% moment at design load (155 kN) level and was able to reach 5.7% at 

failure load. Beam B2, at design load, could achieve 8.1% moment redistribution; however, at failure load, the beam 

exhibited 14.8% moment redistribution which is slightly less than the assumed value. On the other hand, beam B3 

could successfully attain the target percentage of moment redistribution even at design load. The percentage of 

moment redistribution, achieved by beam B3, was 15.2 and 17.4% at design load and failure load, respectively. This 

better performance of beam B3 in redistributing moments can be attributed to rotational capability that was enhanced 

by confinement provided by the stirrups with smaller spacing. 
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Figure 8: Moment redistribution of tested beams 

 

4. CONCLUSIONS 

Based on the test results discussed in this paper, the following conclusions can be drawn: 

1. All tested beams experienced compression-controlled failure and were able to carry further load even after 

concrete spalling was noticed at the hogging moment region. The smaller stirrup spacing enabled beam B3 to 

carry more load as well as to undergo more deflection compared to its counterpart with larger stirrup spacing.  

2. The longitudinal crack developed at the web-flange interface in mid-span region caused the failure of the beams 

before reaching their full capacity as T-section. 
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3. All beams exhibited moment redistribution from hogging to sagging moment region. Beam B1 designed for 

elastic moments reached 5.7% moment redistribution before it failed. Beam B2 and B3 could successfully meet 

the target redistribution of moments that they were designed for. Beam B2 achieved 14.8% moment 

redistribution while beam B3 demonstrated maximum 17.4% before failure.  
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