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Abstract

In cooperative breeding systems individuals invest in the reproductive success of

others. In this paper, we study the emergence of cooperative breeding systems in

which reproductively active breeders receive investment from reproductively non-active

helpers. Our goal is to understand how the division of an investment between male and

female components of breeder fitness (i.e. the helper sex-allocation strategy) influences

the emergence of cooperative breeding itself. Using mathematical models, we arrive

at expressions for the inclusive-fitness advantage of helpful behaviour that generalize

previous work. These expressions assume an ecologically stable environment, and that

breeders make evolutionarily stable sex-allocation decisions. We find that, when breed-

ers are extremely resource limited, the sex-allocation strategy used by a helper can be

a key determinant in the success of helpful alleles. This finding, however, is restricted

to cases in which helpers have access to intermediate levels of resources. Surprisingly,

when helpers can make only a small investment in a recipient the division of the in-

vestment matters only very little to advantage of help. By contrast when resources

are extremely abundant, we obtain the unsurprising result that the manner in which

resources are allocated has little influence on the emergence of help. When breeders

have access to intermediate levels of resources we find increasing relatedness can, in

certain cases, inhibit the emergence of help. We also find that increasing the amount of

resources available to a breeder can impede help as well. Both of these counter-intuitive

results are mediated by evolutionary responses in breeder sex allocation.
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Introduction

In a cooperative-breeding system, certain individuals promote the reproductive success of

their neighbours, sometimes incurring large personal fitness costs as a result. In extreme

cases, reproductive skew is high, and helpful individuals must postpone or even forgo their

own reproduction to attend to offspring produced by a dominant breeder or breeding pair

(Griffin and West, 2003).

Helping among cooperatively breeding individuals is known to influence the evolution of

other social traits. In particular, sex allocation – the manner in which resources are divided

between male and female components of reproductive fitness – is known to be affected by

help (Emlen et al., 1986; Pen and Weissing, 2000a; Griffin et al., 2005; Wild, 2006). This

influence is commonly observed as a sex-ratio bias in cooperatively breeding species, with

investment favouring the more helpful sex.

Although the effect of helpful behaviour on sex allocation is quite well understood, the

same cannot be said for the effect that sex allocation has on the emergence of helpful

behaviour. What little we do know about the influence sex allocation has on helping in

cooperative-breeding systems has come from studies by Taylor (1992) and Johnstone and

Cant (2008). Using kin-selection models, both sets of authors outlined mathematical condi-

tions for the advantage of helping among reproductively active neighbours. Sex allocation

decisions did not factor into the conditions they developed, simply because any increase (resp.

decrease) in investment made in a given sex was balanced by a decrease (resp. increase) in

the reproductive value of that sex. Importantly, Johnstone and Cant (2008) did find that
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sex-specific patterns of dispersal could influence the emergence of helping. Consequently,

changes to sex allocation could influence helping indirectly by changing evolutionarily stable

dispersal rates (e.g. see Wild and Taylor, 2004).

At first glance, then, it might seem reasonable to expect sex allocation to play only

an indirect role in the emergence of cooperative breeding. However, none of the work that

could support such an expectation (i.e., Taylor, 1992; Johnstone and Cant, 2008) allowed the

donor itself to influence the allocation of its investment. Given that donor and recipient can

have different social-evolutionary perspectives in general (e.g. as in social insects: Trivers

and Hare, 1976), it seems more reasonable to expect sex allocation could be “tuned” to

maximize the donor’s incentive to help. In other words, a direct role for sex allocation in the

emergence of help ultimately appears plausible, despite the conclusions of previous studies.

In order to outline how sex allocation might directly influence the emergence of coopera-

tive breeding systems, we generalized two recent models (Wild and Koykka, 2014) to include

variable investment in male/female components of reproductive success and inbreeding. Our

models assume a high-degree of reproductive skew, in the sense that they track the invasion

of an allele that leads one individual to delay its own chance at reproduction in order to

improve the reproductive success of another.

As expected, we can easily identify a direct role for sex allocation in the emergence of

cooperative breeding. Specifically, we find that conditions for the advantage of help can

be made more/less stringent by altering the way in which a donor divides its investment

between the male and female components of recipient fitness. More importantly, we show

why one should expect such dependence to occur: selection on breeder allocation implies

that maximum advantage is achieved by a helper who allocates its resources like resource-
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unlimited breeders. Finally, we evaluate how competition among kin can alter this basic

result, and the consequences of following what parent does for the emergence of help.

The sections that follow describe our models and results in three parts. The first part

details the population dynamics that underlie our evolutionary argument. In the second part

we determine the evolutionarily stable (ES) sex-allocation strategy used by a breeder in the

absence of help. And in the third part we develop the conditions for the advantage of help

offered to a breeder with ES sex allocation.

Population Dynamics

Although we extend Wild and Koykka (2014), the population dynamics that underlie our

model follow theirs closely. We begin by considering a population whose individuals do not

engage in any form of helpful behaviour. These individuals are diploid, sexual, and (for

mathematical convenience) simultaneous hermaphrodites.

There are two different kinds of individuals in a genetically monomorphic population:

breeders and floaters. Breeders are reproductively active individuals. Each breeder is as-

sociated with one breeding territory, and no two breeders share territories. By contrast,

floaters are not reproductively active, though they are reproductively capable. Floaters are

not associated with any breeding territory.

We census the population at discrete, evenly-spaced points in time. Let F (t) and B(t)

denote the number of floaters and breeders, respectively, censused at the beginning of time

step t. Following census, each breeder produces one viable oocyte with probability p~. If

viable, the oocyte is fertilized by some breeder in the population. With probability φ self-
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fertilization occurs, and with probability 1 − φ fertilization is accomplished by a uniform

random breeder in the population. The resulting offspring becomes either a breeder or

a floater in the next time step depending on the specific model scenario (No Territory

Inheritance or Territory Inheritance, described below).

Each breeder survives from one time step to the next with probability sb. When a breeder

survives, it retains its breeding territory, and any offspring produced by that breeder dis-

perses to become a floater. When a breeder dies, one of two things can occur. In our No

Territory Inheritance (NTI) Model, we assume that offspring dispersal precedes all breeder

mortality events. In this case offspring cannot fill a vacancy left by a dead parent; instead,

offspring disperse to become floaters, and vacated territories simply vanish. In our Terri-

tory Inheritance (TI) Model, we assume that all breeder mortality events precede offspring

dispersal. In this case, an offspring will fill a vacancy left by a dead parent rather than

dispersing to become floaters. Territory inheritance is an important incentive for helping in

cooperative-breeding systems (Stacey and Ligon, 1991). More importantly (as the reader

will see) the TI model will allow us to consider the effects of competition among kin, whereas

the NTI model will not.

Floaters survive from one season to the next with probability sf . A fraction of the

floaters that survive become breeders; the remaining fraction stay in the floater class. The

probability that a surviving floater becomes a breeder is modelled as 1/(1 + aB(t)) for some

constant a > 0, which is essentially Beverton-Holt density dependent competition (Britton,

2003). This is a decreasing function of the number of breeders B(t), and so reflects an

important kind of ecological constraint faced by cooperative breeders (Emlen, 1982a,b).

The size of the population in the long-run is determined by a particular combination of
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parameters. This combination is called the basic reproduction number (R0), and in this model

it describes the expected number of newly established breeding territories produced on an

established breeding territory when population densities are low. For the NTI Model we have

R0 = p~sf/(1− sb), and for the TI Model we have R0 = p~sfsb/((1− sb)(1− p~)) (Wild and

Koykka, 2014). It can be shown that, when R0 < 1, the population tends to extinction over

time, but when R0 > 1 the numbers of breeders and floaters in the population, respectively,

tend to positive steady-state values (Wild and Koykka, 2014, see Appendix A). We disregard

the marginal case R0 = 1, here, and assume that R0 > 1.

Breeder’s ES Sex Allocation

In this section we use the population dynamics above to develop an inclusive-fitness argument

for the ES sex-allocation strategy used by a breeder in the absence of help. Our results

hold for both the NTI Model and the TI Model, and they can be verified using more formal

invasion analyses (Courteau and Lessard, 2000, see Appendices C-F). We use the population

dynamic models (seen in Appendix A) to determine whether sex allocation strategies are

evolutionarily stable. Alongside this more formal approach, the inclusive-fitness argument

is used to explain the invasion condition biologically.

We treat the sex-allocation strategy used by a breeder as a continuous trait. The trait

determines the fraction of resources a breeder devotes to reproduction through male function,

and is controlled at a single autosomal locus. There are two alleles at the locus in question,

namely resident and mutant, with additive effects on the trait. Additivity allows us to think

of a resident as having one sex-allocation strategy, α, and of a mutant as having another
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sex-allocation strategy, β (Taylor and Frank, 1996)

We suppose that each breeder has kb resources (e.g., measured in terms of calories) to

allocate to either male or female reproductive function. Allocation to female function costs

c~ (e.g., measured as calories per unit of function), and allocation to male function costs c|.

It follows that a breeder using strategy X = α, β is able to “purchase” kb(1 − X)/c~ units

of female reproductive function, and kbX/c| units of male reproductive function.

Until now, the probability with which a breeder produced a viable oocyte has been

treated as a constant, p~. In addition, all breeders had been assumed to compete on

an equal basis for (non-self) fertilizations; a breeder’s relative competitive ability is p|.

Now, we treat p~ and p| as a function of kb(1 − X)/c~ and kbX/c|, respectively. We

consider two different paradigms for the functional forms of these reproductive functions,

namely diminishing returns and logistic. In the diminishing returns paradigm, each unit of

investment in reproductive function does less than the previous unit. Mathematically,

p~ ≡ p~(X) = 1− exp

{
−kb
c~

(1−X)

}
and p| ≡ p|(X) = 1− exp

{
−kb
c|
X

}
.

In the logistic paradigm, p~ and p| have regions of increasing and then diminishing rates of

return on investment. Mathematically,

p~(X) =

[
1 +

(
1

ε~
− 1

)
e−kb(1−X)/c~

]−1

and p|(X) =

[
1 +

(
1

ε|
− 1

)
e−kbX/c|

]−1

,

where p~(1) = ε~ and p|(0) = ε| (i.e., no resources are allocated towards either female

or male reproductive function, respectively). A comparison of the diminishing returns and

logistic paradigms can be seen in Figure 1. Fig 1

Following Shaw and Mohler (1953), if W (X,α) is the fitness of an X-strategist in a
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population otherwise fixed for the resident strategy, then

W (X,α) = rb,~
p~(X)

p~(α)
+ rb,|(1− φ)

p|(X)

p|(α)
, (X = α, β) (1)

where rb,~ = (1 + φ)/2 and rb,| = 1/2 express the relatedness between a breeder and its

reproductive output through female and male function, respectively (Appendix B). The

term (1− φ) appears in equation 1, because a breeder can only achieve reproductive success

through male function when another breeder reproduces via outcrossing (probability 1−φ).

The mutant strategy will invade whenever W (β, α) > W (α, α) = 1. However, it is enough

to focus on W (β, α) when determining the ES breeder trait, α∗. If α∗ (between zero and

one) is an ES trait, then in the diminishing returns paradigm

∂W (β, α)

∂β

∣∣∣∣
β=α=α∗

= −rb,~
(
kb
c~

)
1− p~(α∗)
p~(α∗)

+ rb,|(1− φ)

(
kb
c|

)
1− p|(α∗)

p|(α)
= 0 , (2)

and in the logistic paradigm

∂W (β, α)

∂β

∣∣∣∣
β=α=α∗

= −rb,~
(
kb
c~

)
(1− p~(α∗)) + rb,|(1− φ)

(
kb
c|

)
(1− p|(α∗)) = 0 , (3)

(Taylor, 1996; Hamilton, 1964). In general, we must solve equations (2) and (3) numeri-

cally. We have also verified that in the diminishing returns paradigm solutions to (2) are

evolutionarily stable – using the population dynamic models – in the sense that they cannot

be invaded by rare mutants (Maynard Smith and Price, 1973), and in the sense that they

are evolutionary attractors (see Appendices D and E) (Christiansen, 1991; Courteau and

Lessard, 2000).

In the logistic paradigm the strategy α∗ that satisfies equation (3) is only ES when

1

c~

(
p~(α

∗)− 1

2

)
+

1

c|

(
p|(α∗)− 1

2

)
> 0 .
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We are guaranteed that α∗ is ES when both p~ and p| are in the region of diminishing

returns—above the dashed line in Figure 1. When both p~ and p| are in the region of

increasing rates of return on investment, α∗ is not evolutionarily stable, leading to an evo-

lutionary branching point—below the dashed line in Figure 1 . From here on out we will Fig 1

assume that p~ and p| follow the diminishing returns paradigm.

In general we must resort to numerical solution of equation (2), but we can find solutions

for particular cases. For example, when the cost of investing in male and female reproductive

function is the same (c~ = c| = c), we find

α∗ =
c

kb
log

{
φ+

√
φ2 + (1− φ2)ekb/c

1 + φ

}
. (4)

When breeders are extremely resource limited (kb → 0+), we find

α∗ =
1− φ

2
, for all c~ and c| (5)

which is Hamilton’s (1967) well known local mate competition result. Finally, when resources

are in extreme abundance (kb →∞) we find

α∗ =
c|

c| + c~
, (6)

which leads to p~(α
∗) = p|(α∗) = 1− exp{−kb/(c| + c~)}, essentially Fisher’s (1930) result

for the advantage of equal production of the sexes. These results are proven in Appendices

D.4 (equation 5) and D.5 (equation 6) .

For intermediate values of kb, numerical solution of (2) shows that equations (5) and

(6) provide bounds on the ES sex-allocation strategy, α∗ (Figure 2). Like the expression in Fig 2

equation (4), numerically determined values of α∗ decrease with increasing self-fertilization

rates, φ. This relationship between α∗ and φ makes good sense: an increased self-fertilization

10



rate implies that opportunities for breeders to compete for, and subsequently achieve, re-

productive success through male function become more limited, and so investment in male

function becomes more wasteful. Numerically determined values of α∗ also vary with costs

c~ and c|. Specifically, ES investment in one sex increases as the relative cost of that sex

decreases. Again, we see that the ES strategy shies away from wasteful investment.

Emergence of Helpful Behaviour

Change in Inclusive-Fitness Due to Help

Having established our understanding of a breeder’s ES sex-allocation strategy, we are ready

to investigate the emergence of helping. We consider a population that has achieved a steady

state, and has settled on the ES sex allocation strategy for breeders, α∗. Unlike the previous

section, we will have to analyse the NTI Model and the TI Model separately. The results of

the analyses are verified using population-genetic models in Appendix F.

We assume that helping is controlled by an autosomal locus that also controls natal

dispersal. This new helping/dispersal locus is independent of the locus determining sex

allocation, and has two alleles (again labelled mutant and resident). The resident allele

results in no change to an offspring’s dispersal behaviour. By contrast, the mutant allele

causes an offspring to delay dispersal for one time step with some small probability. During

the delay, a philopatric mutant offspring will help its associated breeder (i.e., its parent), but

that same offspring’s survival is not guaranteed (it survives the time step with probability

sh).
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A helper aids a breeder by increasing the breeder’s reproductive success. We assume that

a helper has kh resources that can be allocated to a breeder’s male or female reproductive

function. If γ is the fraction of a helper’s resources allocated to a breeder’s male reproductive

function, then with help a breeder’s ability to compete for fertilizations changes from p|(α∗)

to q|(α∗, γ) = 1− exp{−(kbα
∗+ khγ)/c|}. Similarly, with help the probability with which a

breeder produces a viable oocyte changes from p~(α
∗) to q~(α

∗, γ) = 1− exp{−(kb(1−α∗) +

kh(1− γ))/c~}.

To calculate the inclusive-fitness change (Taylor, 1992) of a mutant individual, call it ∆w,

we fix attention on a newborn individual who decides to remain on its natal territory and help

its parent for one season only. The calculation, itself, breaks the focal newborn’s inclusive

fitness into into direct and indirect components (Brown, 1987). Direct components describe

changes to an individual’s survival, as well as changes to its production of descendant kin.

Indirect components describe changes to an individual’s production of non-descendant kin.

We will begin with indirect benefits, then move on to direct costs and benefits.

For the NTI model we find that, by delaying dispersal to help, the mutant (a) receives an

indirect inclusive-fitness benefit due to increased breeder reproductive success, (b) receives

a direct benefit when it inherits its parent’s territory (the name “No Territory Inheritance”

refers to the fact that the dispersive resident phenotype is unable to inherit a parent’s

territory), and (c) pays a direct cost in the event that it dies before attempting to breed.

Mathematically,
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NTI Model:

∆w = p~(α
∗)

(
rh,~

q~(α
∗, γ)− p~(α∗)
p~(α∗)

+ rh,|(1− φ)
q|(α∗, γ)− p|(α∗)

p|(α∗)

)
︸ ︷︷ ︸

(a) indirect benefit

+ sh(1− sb)
(
p~(α

∗)

1− sb
− 1

)
︸ ︷︷ ︸

(b) direct benefit

− (1− sh)︸ ︷︷ ︸
(c) direct cost

, (7)

where rh,~ = (1 + φ)2/4 expresses the relatedness between a helper and its parent’s repro-

ductive output via female function, and where rh,| = (1 + φ)/4 expresses the relatedness

between a helper and its parent’s reproductive output via male function. When ∆w is posi-

tive (resp. negative) helping confers a net advantage (resp. disadvantage), and the mutant

invades (resp. is eliminated). Equation (7) generalizes one presented in Pen and Weissing

(2000b) (their equation 25), and in Wild and Koykka (2014) (their equation 3.1).

For the TI model, a mutant that delays dispersal in order to help its associated breeder

again (a) receives an indirect inclusive-fitness benefit due to increased breeder reproductive

success, (b) receives a direct benefit when it inherits its parent’s territory, and (c) pays a

direct cost in the event that it dies before attempting to breed. However, in the TI model

there is a fourth effect, namely (d) an indirect effect due to kin competition. This fourth

effect is felt when a helper displaces the offspring that would have inherited the parent’s

territory had the helper dispersed (recall that the “Territory Inheritance” model ensured

that offspring could inherit a territory rather than disperse). Mathematically,
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TI Model:

∆w = p~(α
∗)

(
rh,~

q~(α
∗)− p~(α∗)
p~(α∗)

((1− sh) + sbshvf ) + rh,|(1− φ)
q|(α∗)− p|(α∗)

p|(α∗)

)
︸ ︷︷ ︸

(a) indirect benefit

+ sh(1− sb)(vi − vf )︸ ︷︷ ︸
(b) direct benefit

− (1− sh)vf︸ ︷︷ ︸
(c) direct cost

− sh(1− sb)rh,~(p~(α∗)vi − q~(α∗)vf )︸ ︷︷ ︸
(d) indirect cost/benefit

, (8)

where vf = (1 − p~(α
∗))/sb is the reproductive value (sensu Fisher, 1930) of a resident

floater, and vi = p~(α
∗)/(1 − sb) is the reproductive value of a resident that inherits its

parent’s breeding territory. Equation (8) generalizes an expression presented by Wild and

Koykka (2014) (their equation 3.2).

It is instructive to ask, what sex-allocation strategy exhibited by a helper would maximize

the inclusive-fitness change due to helping? Applying elementary calculus to equations (7)

and (8), respectively (Appendix G), we find that helping is promoted to the greatest extent

when γ is equal to

γmax = min

{
c|

c| + c~
+

(
kh
c|

+
kh
c~

)−1

log

(
v|
v~

)
, 1

}
(9)

where v| = 1 is the reproductive value of success achieved through the breeder’s male

function, and v~ = 1 (NTI Model) or v~ = (1 − sh) + shvf (TI Model) is the reproductive

value of success achieved through the breeder’s female function. The minimum appears in

the expression for γmax because it does not make biological sense for helper sex allocation to

exceed one. From equation (9), we see that the advantage of helping is greatest when helpers

in the NTI Model behave as resource-unlimited breeders (compare to equation 6), and when

helpers in the TI Model behave as resource-unlimited breeders who reduce investment in
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female function because of kin competition (compare to equation 6, and notice that the

second term in 9 is positive). To be clear, we do not claim that γmax is the phenotype that

helpers necessarily exhibit. Rather, we include γmax here (i) to highlight the fact that the

allocation strategy that best promotes the emergence of helping is, in general, not α∗, and

(ii) to serve as a reference point later, thus eliminating the need to consider γ in numerical

exploration of the model.

Remarks on Resource Availability

Helper sex allocation, γ, plays only a minor role in the emergence of helping whenever re-

sources are in great abundance (either kb or kh large). In those cases, total investment in

reproductive success is large enough that marginal returns on these investments are sub-

stantially diminished, and so it makes intuitive sense that the pattern of investment matters

little to a helper’s inclusive fitness. In fact, when resources are abundant, the emergence of

helping is determined primarily by direct benefits (terms b-c in equations 7 and 8) and kin

competition (term d in equation 8).

When only breeders are resource limited (or the cost of raising offspring independently is

high), the expressions for the change in inclusive fitness due to help simplify. In this scenario,

both equation (7) and equation (8) become,

NTI Model and TI Model (kb → 0+):

∆w =

(
1 + φ

2

)2 [(
1− e−kh(1−γ)/c~

)
+
c|
c~

(
1− e−khγ/c|

)]
− (1− sh) (10)

where we have used R0 > 1 implies that sb must tend to 1 as kb becomes small (i.e. as

p~(α
∗) becomes small). Notice that only the indirect benefit of helping and the direct cost

15



of helping now feature in ∆w. When resources are scarce, population dynamics imply that

the positive and negative consequences of territory inheritance are negligible.

Turning our attention back to the indirect benefit and direct cost found in equation (10),

we can make two simple observations about the emergence of help in the low breeder-resource

limit. First, the emergence of helping is inhibited as the mortality of helpers (cost), 1−sh, is

increased. Second, the emergence of helping is promoted by an increase in either the rate of

self-fertilization (essentially, relatedness), φ, or the amount of resources invested by a helper

(essentially, the extent of the benefit), kh.

In addition to the two basic observations above, Figure 3 shows that the emergence of Fig 3

helping, as predicted by (10), is promoted as the cost of investing in female function, c~,

decreases. The effect of c~ makes sense in light of the fact that fitness gains through male

function are limited by oocyte availability: in order to achieve a successful fertilization one

needs something to fertilize. Figure 3 also shows that the effect of changing helper sex-

allocation, γ, is predicted to be modified by both the amount of resources available to a

helper, and the sex-specific costs of investing in breeder reproductive success. In particular,

we see that larger kh increases the range of γ values over which helping is advantageous for

a given cost (e.g., blue annotation in Figure 3c). This agrees with our earlier finding that

helper sex-allocation strategy plays almost no role in the emergence of help when resources

are extremely abundant. At the other extreme, we see that sex allocation has a limited role

to play in the emergence of help when kh is small. This is evidenced by the flattening of

curves in Figure 3 as kh is decreased. Overall, the role of γ is most prominent at intermediate

levels of kh. When helper sex allocation has a role to play, we see that increased allocation

to male function promotes (resp. inhibits) the emergence of help when γ is less than (resp.
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greater than) c|/(c| + c~) (Figure 3). This result agrees with the expression for γmax in

equation (9), for both the NTI and TI Models (for the latter take the limit as kb tends to

zero).

As a supplement to Figure 3 we have included Figure 4 that shows the direct cost (helper

mortality) as a function of the ES sex allocation and assumes that a helper is using the

allocation strategy γmax. In accordance with Figure 3, Figure 4 also demonstrates that as Fig 4

the cost of female units of reproductive function decrease (resp. increase) helping is promoted

(resp. inhibited). In addition, Figure 4 shows that helping is promoted as more resources

are allocated towards female units of reproductive function, and in this scenario (kb → 0+)

since α∗ = (1− φ)/2, a smaller α∗ corresponds to increased relatedness.

Intermediate Resource Availability

In this section we relax the assumption that breeders are extremely resource limited, and

consider intermediate values of kb.

In this case, we find that increasing self-fertilization rate (φ) does not always increase

the scope for the emergence of helping. Specifically, in the NTI Model larger φ can inhibit

the emergence of help (Figure 5a). This result stems from the fact that larger φ promotes Fig 5

breeder investment in female function. In turn, increased breeder investment decreases the

marginal returns to helpers through breeder female function. Although marginal returns on

helper investment in male function are also increased, larger φ (i.e. more selfing) means that

gains through male function are less frequently realized. In the TI Model, stronger inhibitory

effects of increased φ are due to the negative effects of competition among relatives (Figure
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6c). Fig 6

We also find increasing kb, itself, has mixed consequences for helping when breeders have

greater access to resources. In the NTI model, increasing kb (when c~ is sufficiently small)

reduces the marginal benefits awarded to helpers as described immediately above (Figure

5). A similar effect occurs in the TI model, but increasing kb has the added effect, there,

of decreasing the discrepancy between offspring survival with an without help—effectively

limiting the costs of competition among relatives (Figure 6). It should be noted that the NTI

result, here, is different from one reported by Wild and Koykka (2014). In Wild and Koykka

(2014) increasing the probability of offspring production (e.g. through larger kb) uniformly

improved the advantage of helping. Investment in that paper, however, was not divided

between males and females. Here, when increasing kb inhibits helping, it also increases

investment in male function (Figure 2a). Consequently, increasing kb can diminish the direct

benefit of helping via an evolutionarily labile breeder sex-allocation strategy.

Finally, we find that increasing helper resources (kh) increases the scope for the emergence

of helping all around (figure not shown). This result mirrors the result obtained in the small-

kb limit.

Discussion

Sex Allocation and the Advantage of Helping

Our goal with this paper was to investigate the ways in which sex allocation influences

the emergence of helping in cooperative breeding systems. Using an inclusive-fitness based
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model, we demonstrated that sex allocation can promote the emergence of helping in certain

situations. Specifically, we found that resource availability provides an organizing principle

that separates situations in which sex allocation plays a significant role in the emergence of

help from those in which it does not. When resources are abundant (equivalently, overall costs

of investment low) our model predicts that helper sex allocation strategy has little effect on

the emergence of helping—it is direct-fitness effects that matter in these cases. By contrast,

when resources are scarce (equivalently, overall costs of investment high) we find that helper

sex allocation strategy can be a determining factor in the emergence of help. Although

the result for the former case could likely have been developed with verbal reasoning alone,

exposition of the latter case required a mathematical model to ensure appropriate limits

were taken correctly.

Previous theoretical work has indicated that the sex allocation strategy adopted by a

helpful individual will play a limited role in determining the advantage of help itself (Taylor,

1992; Johnstone and Cant, 2008). That work, however, was based on the standard assump-

tion that breeders produce large numbers of offspring; in other words, breeders have large

amounts of resource at their disposal. Given that our model predicts a role for sex allocation

only in cases where resources are limited, we suggest that resource scarcity is responsible for

the difference between our predictions and those made elsewhere.

Our finding that helper sex allocation plays a significant role in the emergence of help in

resource-limited species makes one important prediction about helper behaviour in the field.

Emlen (1982a) argued that two very different kinds of ecological constraints contribute to the

emergence of cooperative breeding systems. He drew a distinction between constraints that

reduce the probability of establishing a breeding territory (e.g. habitat saturation, availabil-
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ity of mates), and those that limit the production of offspring once established (e.g. large

cost of raising offspring, equivalently insufficient resources to raise offspring). Emlen also em-

phasized that constraints like habitat saturation should predominate in stable environments,

whereas those like high costs reproduction should predominate in fluctuating environments.

Combining Emlen’s arguments with those made here, we predict that helper sex allocation

will have the greatest effect on helping in fluctuating environments where offspring produc-

tion, not habitat saturation, is the predominant ecological constraint. Granted, our model

includes habitat saturation, but the probability with which a floater becomes established in

our model is always 1/R0 which need not be small when resources are scarce (i.e., in the

limit kb → 0+).

Helper’s Perspective Versus Breeder’s Perspective and Some Spec-

ulation

In the course of analysing our model, we identified a helper sex-allocation strategy, γmax in

equation (9), that maximizes the advantage of help. We do not claim that this strategy will

necessarily be adopted by helpers. In fact, it seems unlikely to us that a de novo mutation

would simultaneously produce a helper and a maximally advantageous sex-allocation strat-

egy. Still, the fact that γmax differs from the ES breeder allocation strategy α∗ may have

implications for what kind genetic evidence for helping is sought.

Before launching into a possible implication of the difference between γmax and α∗, we

should address one source of potential confusion. It may seem surprising that the strategy

that maximizes helper’s inclusive-fitness benefit is not the same as the ES breeder strategy
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given that relatedness leads both helpers and breeders to weigh success through male function

and success through female function equally. After all, asymmetries in relatedness coefficients

are often responsible for differing perspectives and conflict over sex allocation (e.g. Pen and

Taylor, 2005; Wild and Taylor, 2005; Pen, 2006; Wild and West, 2009). Nevertheless, surprise

is not warranted because γmax is not an equilibrium result. Selection acts on breeder sex

allocation in the absence of help, ultimately leading the population to express a strategy

(α∗) that balances fitness returns through male function with those made through female

function. When helpful behaviour initially arises, then, the most effective helpers will not

have the same regard for sex-specific returns on fitness as that shown by the breeders they

attend. Instead, the most effective helpers will act as resource-unlimited breeders (or resource

unlimited breeders who express concern for kin competition, as in the TI Model), because

selection has effectively taken care of concerns associated with resource scarcity by acting

on breeders.

Given that we do not necessarily expect helpers to express γmax, then what significance

does it hold? One might argue that cases in which cooperative breeding successfully emerged,

are also likely to have been cases in which helpers had the ability to allocate resources in a

manner that was different from breeders. Rather than helper behaviour co-opting an existing

locus controlling breeder behaviour, successful invasions may have been supported by gene

duplication events that allowed helpers to express behaviours closer to γmax. Even though

present-day breeders and helpers may have very similar equilibrium behaviours, evidence for

the “ghost of successful invasions past” might still be sought in their genomes. Of course,

this is highly speculative, but interest in elucidating the genetic basis of helpful behaviour is

building—buoyed by the fact that genetics plays a key part in the theoretical foundations of
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sociobiology (Thompson et al., 2013). Identifying vestigial gene duplication events, if they

have occurred, could add strength to the prevailing gene-centred view of social evolution,

and maybe even quiet related debates (e.g. Laland et al., 2014).

Limitations and Future Work

The evolutionary dynamics of sex allocation were changed by the functional forms associated

with the reproductive functions—the diminishing returns and logistic paradigms. In this

paper, we disregard the scenario that led to an evolutionary branching point or possibly split

sex allocation – the logistic paradigm – and instead focus on ES sex allocation strategies given

by assuming diminishing returns. In a population with split sex allocation some individuals

would favour investment in male reproductive function and others would favour investment

in female reproductive function compared to the average allocation strategy (Grafen, 1986).

Exploring exactly how split sex allocation influences the emergence of cooperative breeding

would be an interesting avenue for future research.

Assumptions like uniform territory quality, lack of inbreeding depression, and high re-

productive skew could be relaxed and would certainly influence model predictions. We leave

the investigation of the effects due to further elaboration of our model for future work. One

important assumption – one that deserves discussion – is that of weak selection. We needed

to invoke weak selection in order to develop the inclusive-fitness interpretation of the invasion

condition (Taylor, 1989). Here, weak selection meant that the tendency to help (equivalently,

the tendency to remain on one’s natal site) was small. This is in contrast to the way in which

some authors understand weak selection: as implying that the behaviour in question has a
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small impact on fitness when expressed (Wild and Traulsen, 2007). Although it has the

advantage of allowing helping to effect appreciable benefits when expressed, our version of

weak selection ignore synergistic effects due to helpers aiding helpful breeders (Grafen, 1985).

Thus, our version of weak selection necessarily ignores benefits due to delayed reciprocity

(Wiley and Rabenold, 1984), and any associated benefits that might be realized by adjust-

ing sex allocation. Such benefits could be realized, for example, by a helper who invests

more in a breeder’s female function in an effort to secure a helper for itself in the event

it inherits the territory. Although previous theoretical work has investigated the effect of

delayed reciprocity in cooperative breeders (Kokko et al., 2001), it has not done so using an

explicit population dynamic model as we have done here. Moreover, to our knowledge, no

previous theoretical work has combined the possibility of delayed reciprocity and variable

sex allocation. Future work should address this gap.

We have presented the resource availability, above, as an environmental variable that

can help us organize our understanding about the effect helper sex allocation has on the

emergence of helping. As resource availability changes, we have also seen that the relative

importance of indirect and direct benefits of help change. When resources are abundant,

our models predict that the advantage of helping will rely primarily on direct benefits like

territory inheritance. However, when resources are scarce, our models predict that the

advantage stems primarily from the indirect benefits associated with raising non-descendant

kin. These two extremes – direct benefits on one hand, and indirect benefits on the other

– frame much of the discussion among biologists about cooperative breeding (Stacey and

Ligon, 1991; Pen and Weissing, 2000b; Clutton-Brock, 2002; Griffin and West, 2003). Future

work could explore the extent to which resource availability could act as a broader organizing
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principle for cooperative breeders, one that provides an environmental mechanism capable

of mediating a transition between importance of direct benefits and indirect benefits (and

vice versa).
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Figure Captions
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Figure 1: Comparison of the diminishing returns and logistic paradigms for reproductive

functions. Recall that a breeder has kb resources and each unit of female reproductive

function costs c~ resources. Panel (a) shows p~(α) in the diminishing returns paradigm as a

function of the fraction of resources allocated towards reproduction through female function.

In this panel we set kb/c~ = 0.2, 0.5, 1, 3, 10. Panel (b) shows p~(α) in the logistic paradigm

as a function of the fraction of resources allocated towards reproduction through female

function. In this panel we set kb/c~ = 6, 8, 12, 20, 45 with ε~ = 0.001. If both reproductive

functions (only p~ is shown in this figure) are above (resp. below) the dashed line we know

α∗ is (resp. is not) evolutionarily stable. When the reproductive functions are less than

0.5 (below the dashed line) there are increasing rates of return on investment. When the

reproductive functions are greater than 0.5 (above the dashed line) there are diminishing

returns on investment.
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Figure 2: The ES sex-allocation strategy, α∗, responds to changes in the rate of self-

ferlization, φ, and to changes in sex-specific costs of investing in reproductive function,

c~ and c|. Panels show the ES sex-allocation strategy α∗ as a function of φ when (a) in-

vestment in male function is more costly (c~ = 0.5 and c| = 1), (b) investment in male

function and investment female function are equally costly (equation 4) (c~ = 1 and c| = 1),

and (c) investment in female function is more costly (c~ = 2 and c| = 1). The diagonal

dashed curve shows the case of extreme resource limitation, kb → 0+ (Hamilton’s local mate

competition, equation 5). The dashed horizontal curve shows the case of extreme resource

abundance, kb → ∞ (Fisher’s equal production of sexes, equation 6). Solid curves show

results for intermediate resource availability (kb = 2, 5, 10).
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Figure 3: The critical direct cost, 1−sh, as a function of helper sex allocation strategy, γ, pre-

dicted by equation (10) when φ = 0.2. Note that α∗ = 0.4 in this figure since α∗ = (1−φ)/2

in the limit as kb → 0+. Each panel presents a range of kh values, beginning at 0.5 (bottom-

most curve) and ending at 5 (top-most curve). The values are kh = 0.5, 1, 1.5, 2, 2.5, 3, 4, 5.

Panel (a) shows the case where c~ = 2 > c| = 1, panel (b) shows the case where c~ = c| = 1,

and panel(c) shows the case where c~ = 0.5 < c| = 1. Helping is favoured (resp. disfavoured)

in the region below (resp. above) a given curve (e.g. red annotation). The vertical dashed

line shows γmax = c|/(c| + c~) to highlight the qualitative change in the effect increasing

gamma has on the emergence of helping: positive effect to the left, and negative effect to

the right. The horizontal dashed line in blue is included to emphasize that increasing kh

changes only quantitative features of the effect that γ exerts on the critical direct cost, not

the qualitative ones.
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Figure 4: The critical direct cost, 1−sh, as a function of breeder ES sex allocation strategy,

α∗ = (1− φ)/2, predicted by equation (10). For ease of illustration we assume that helpers

use the allocation strategy γ = γmax = c|/(c| + c~). Each panel varies the amount of helper

resources, kh = 0.5, 1, 3, 4, 10. Panel (a) shows the case where c~ = 2 and c| = 1, panel

(b) shows the case where c~ = 1 and c| = 1, and panel (c) shows the case where c~ = 0.5

and c| = 1. Helping is favoured (resp. disfavoured) in the region below (resp. above) a

given curve. This figure demonstrates how increasing α∗ – essentially decreasing relatedness

– hinders the emergence of helpful behaviour for this limiting case (kb → 0+). For a given

amount of helper resources, reducing the cost of female units of reproduction promotes the

emergence of helpful behaviour.
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(b) c~ = 1.0
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Figure 5: The critical direct cost, 1 − sh, for the NTI Model as a function of the rate of

self-fertilization, φ when breeders have non-vanishing levels of resource, kb. For simplicity

all plots assume γ = γmax, as this was sufficient to illustrate qualitative trends. Each panel

presents a range of kb values (kb = 0.5, 0.75, 1, 1.5, 2). Each panel also sets sb = 0.9, kh = 1,

c| = 1, but c~ is varied across panels ((a) c~ = 0.2, (b) c~ = 1, (c) c~ = 1.8). Helping is

favoured (resp. disfavoured) in the region below (resp. above) a given curve.
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(b) c~ = 0.68
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Figure 6: The critical direct cost, 1 − sh, for the TI Model as a function of the rate of

self-fertilization, φ when breeders have non-vanishing levels of resource, kb. For simplicity

all plots assume γ = γmax, as this was sufficient to illustrate qualitative trends. Each panel

presents a range of kb values (kb = 0.5, 2, 3, 4). Each panel also sets sb = 0.9, kh = 1, c| = 1,

but c~ is varied across panels ((a) c~ = 0.5, (b) c~ = 0.68, (c) c~ = 1.3). Helping is favoured

(resp. disfavoured) in the region below (resp. above) a given curve.
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Appendix

A Equilibrium Solutions

For the NTI Model, the description in the main text gives us

NTI Model:

F (t+ 1) =

(
1− 1

1 + aB(t)

)
sfF (t) + p~B(t)

B(t+ 1) =
sfF (t)

1 + aB(t)
+ sbB(t)


and for the TI Model, the description in the main text gives us

TI Model:

F (t+ 1) =

(
1− 1

1 + aB(t)

)
sfF (t) + p~sbB(t)

B(t+ 1) =
sfF (t)

1 + aB(t)
+
(
sb + (1− sb)p~

)
B(t).


The equilibrium solutions and their associated stability follow trivially from Wild and

Koykka (2014) and a summary of those results are shown below. This is because the prob-

ability of producing a viable oocyte (p in their models, p~ in ours) is still defined on the

interval (0,1). In this paper, we denote the equilibrium floater and breeder densities as F̄

and B̄, respectively. The table below holds true for both the NTI and TI models when the

associated values for R0 are used. Recall that in the NTI model R0 =
p~(α)

1− sb
sf and in the

TI model R0 =
p~(α)

1− sb
sb

1− p~(α)
sf .

F̄ B̄ Condition for Stability

Trivial Equilibrium 0 0 R0 < 1

Positive Equilibrium

(
p~(α)

1− sb
− 1

)
1− sb
1− sf

R0 − 1

a(1− sf )
R0 − 1

a(1− sf )
R0 > 1
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B Coefficients of Relatedness

Throughout the main text we use coefficients of relatedness that were calculated using a

coefficient of consanguinity argument. The first step in this argument is to determine the

coefficient of inbreeding, which we will call ϑ. This is the probability both alleles in an

individual are identical by descent. To find the coefficient of inbreeding in the next season

we use a simple replacement argument. The subscript n denotes the current season and the

subscript n+ 1 denotes the next season. With probability φ a breeder self-fertilizes and with

equal probability the offspring inherits two of the same allele, which are clearly identical

by descent or different alleles, which are identical by descent with probability ϑn. When a

breeder outcrosses the alleles in the offspring are never identical by descent by assumption.

Mathematically,

ϑn+1 = φ
1 + ϑn

2
.

We expect ϑn+1 = ϑn = ϑ̄ at equilibrium, and conclude the equilibrium coefficient of in-

breeding is,

ϑ̄ =
φ

2− φ
.

The next part of this argument derives the desired coefficient of consanguinities (CC).

This is the blood relatedness between two individuals. To determine the CC between an

individual and itself we will choose one of their two alleles (we assume individuals are diploid)

at random, replace it, and choose again at random. Half of the time we will choose the same

allele, which is clearly identical by descent. Half of the time we will choose different alleles,

36



which are identical by descent with probability ϑ̄. Mathematically,

1 + ϑ̄

2
=

1

2− φ
. (B.1)

We had to calculate the CC between an individual and itself because relatedness terms

are expressed as a ratio of CCs. For example, the relatedness between an individual and

its mother is the CC between an individual and its mother divided by the CC between an

individual and itself.

Now we will calculate the relatedness between a breeder and its offspring produced

through male function as a product of outcrossing, rb,|. A quarter of the time we choose

the same allele in the paternal parent and offspring, which is clearly identical by descent.

A quarter of the time we choose different alleles (but still from the paternal parent), which

are identical by descent with probability ϑ̄. The CC between a breeder and its offspring

produced through female function is,

1 + ϑ̄

4
=

1

2

1

2− φ
.

Recall that relatedness is calculated as the ratio of CCs. Following this logic, we must

divide the above equation by the CC between an individual and itself (equation (B.1)). The

coefficient of relatedness between an offspring and its paternal parent is,

rb,| =
1

2
.

Next, we will calculate the relatedness between a breeder and its offspring produced

through female function, rb,~. The CC between a breeder and its offspring produced through

female function is the the sum of two probabilities. The first occurs with probability φ, and

is when the offspring is a product of self-fertilization. Half of the time we choose the same
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allele, which is clearly identical by descent, and half of the time we choose a different allele,

which is identical by descent with probability ϑ̄. The second occurs with probability 1− φ,

and is when the offspring is a product of outcrossing. A quarter of the time we choose the

same allele, which is clearly identical by descent. A quarter of the time we choose a different

allele (but still from the maternal parent), and it is identical by descent with probability ϑ̄.

The CC between the maternal parent and an offspring produced through female function is,

φ
1 + ϑ̄

2
+ (1− φ)

1 + ϑ̄

4
=

1

2

1 + φ

2− φ
.

Once again, we must divide the above equation by the CC between an individual and itself

(equation (B.1)). This gives the relatedness between an individual and its maternal parent,

rb,~ =
1 + φ

2
.

We can express the relatedness between siblings with a common parent as product of

rb,~ and rb,|. The relatedness between siblings with the same maternal parent (i.e., each

individual has relatedness rb,~ with this parent) is,

rh,~ = rb,~rb,~ =

(
1 + φ

2

)2

.

The relatedness between siblings with a common parent where one is produced through

female function and the other through male function (i.e., one individual has relatedness rb,~

and the other has relatedness rb,| with this parent) is,

rh,| = rb,~rb,| =
1 + φ

4
.
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C Mutant Fitness for Sex Allocation

Since individuals are diploid and can self-fertilize, offspring may receive either zero, one,

or two copies of the mutant allele. These individuals will be referred to as homozygous

resident, heterozygous, and homozygous mutant, respectively. As mentioned in the main

text, this mutation alters an individual’s sex allocation resulting in a change to the fraction

of resources invested in male components of breeder fitness, α. The change in investment is

proportional to the number of mutant alleles an individual has. We assume additive genetic

effects. We define an individual’s sex allocation as αi = α0 + iδ, where i = 0, 1, 2 are the

number of mutant alleles an individual has and δ is the phenotypic deviation per mutant

allele. The phenotypic deviation is assumed to be small (weak selection) and can be either

positive or negative. Following the population dynamics described in the main text, the

mutant population can be described by four compartments:

• the density of heterozygous floaters, u1;

• the density of homozygous mutant floaters, u2;

• the density of heterozygous breeders, v1;

• the density of homozygous mutant breeders, v2.

C.1 Model I: No Territory Inheritance (NTI)

To carry out this invasion analysis we follow the method presented in Wild and Koykka

(2014). When there is no territory inheritance in the resident population, the dynamics of
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the mutant population is described by,

u′1

u′2

v′1

v′2


=



J11 0 J13 J14

0 J22 J23 J24

J31 0 J33 0

0 J42 0 J44


︸ ︷︷ ︸

≡J



u1

u2

v1

v2


, (C.1)

where primes denote the next time step. The non-zero entries of J are found in Table 1.

A linear stability analysis is used to find the conditions for invasion. Invasion is determined

by the magnitude of the largest eigenvalue, λ, and can be interpreted biologically as the

long term geometric growth rate. If λ < 1 the mutant, on average, is unable to replace

itself and is eliminated. However, if λ > 1 the mutant, on average, does better than replace

itself and as a result, the invasion is successful. If λ = 1 the mutant is neither eliminated

nor favoured by selection. To verify if our model is biologically reasonable, we calculate the

largest eigenvalue when there is no phenotypic change in the population (i.e., the mutant

uses the same strategy as a normal individual, δ = 0) using a computer algebra package. As

expected, we find λ = 1 in this case.

A first order Taylor expansion is used to approximate the long term geometric growth rate.

This is valid because of our weak selection assumption (δ is small). We find, λ ≈ 1−δ dλ
dδ

∣∣∣∣
δ=0

,

plus terms of O(δ2), which we ignore due to our weak selection assumption. Consequently,

invasion occurs when
dλ

dδ

∣∣∣∣
δ=0

and δ are the opposite sign. To find
dλ

dδ

∣∣∣∣
δ=0

we implicitly

differentiate the characteristic equation of J using a computer algebra package and set

δ = 0 and λ = 1. When we use the diminishing returns paradigm the selection gradient for
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the geometric growth rate is,

dλ

dδ

∣∣∣∣
δ=0

=
2

2− φ
(1− sb)(1− sf )p~(α0)

(2− sf − sb)p~(α0)− (1− sb)2{
−rb,~

(
kh
c~

)
e−kh(1−α0)/c~

p~(α0)
+ rb,|

(
kh
c|

)
(1− φ)

e−khα0/c|

p|(α0)

}
, (C.2)

and is

dλ

dδ

∣∣∣∣
δ=0

=
2

2− φ
(1− sb)(1− sf )p~(α0)

(2− sf − sb)p~(α0)− (1− sb)2{
−rb,~

kb
c~

(1− p~(α0)) + rb,|(1− φ)
kb
c|

(1− p|(α0))

}
,

in the logistic paradigm. The term inside the curled brackets determines the sign of the

selection gradient. This is because the term outside the curled brackets is always positive.

Trivially, (1−sb)(1−sf )p~(α∗) > 0 and
2

2− φ
> 0, but (2−sf−sb)p~(α0)−(1−sb)2 requires

some investigation. We claim,

(2− sf − sb)p~(α0)− (1− sb)2 ,

is always positive. The above expression decreases as sf is increased. If this function is

positive when sf = 1 all other cases (0 < sf < 1) will follow trivially. After making this

substitution we obtain,

(1− sb)p~(α0)− (1− sb)2 = (1− sb)(p~(α0) + sb − 1) .

For positivity, we require (p~(α0) + sb − 1) > 0. By assumption, R0 =
p~(α0)sf
1− sb

> 1 so we

know p~(α0) > p~(α0)sf > 1− sb, which easily rearranges to p~(α0) + sb−1 > 0. This proves

the expression outside the curled brackets in equation (C.2) is always positive. As a result,

the mutant invades when the term inside the curled braces and the phenotypic deviation, δ,

are the opposite sign.
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C.2 Model II: Territory Inheritance (TI)

When there is no territory inheritance in the resident population the dynamics of the mutant

population is described by,



u′1

u′2

v′1

v′2


=



K11 0 K13 K14

0 K22 K23 K24

K31 0 K33 K34

0 K42 K43 K44


︸ ︷︷ ︸

≡K



u1

u2

v1

v2


, (C.3)

where prime denotes the next time step. The non-zero entries of K can be found in Table 2.

Following the previous section, we calculate the largest eigenvalue using a computer algebra

package when there is no phenotypic change in the population (i.e., the mutant uses the

same strategy as a normal individual) as a check. We find λ = 1 in this case, which again is

expected.

We use the same approximation for the long-term geometric growth rate of the mutant

population, λ ≈ 1 − δ
dλ

dδ

∣∣∣∣
δ=0

, and recall that invasion happens when
dλ

dδ

∣∣∣∣
δ=0

and δ are

the opposite sign. Similar to the NTI model, we implicitly differentiate the characteristic

equation of K using a computer algebra package and set δ = 0 and λ = 1 . In the diminishing

returns paradigm the expression for the selection gradient of the long term geometric growth

rate is,

dλ

dδ

∣∣∣∣
δ=0

=
2

2− φ
(1− sb)(1− sf )sbp~(α0)

(s2
b − sb(2 + sf ) + 2)p~(α0)− (1− sb)2 − (1− sb)p~(α0)2{

−rb,~
(
kh
c~

)
1− p~(α0)

p~(α0)
+ rb,|

(
kh
c|

)
(1− φ)

1− p|(α0)

p|(α0)

}
, (C.4)
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and is

dλ

dδ

∣∣∣∣
δ=0

=
2

2− φ
(1− sb)(1− sf )sbp~(α0)

(s2
b − sb(2 + sf ) + 2)p~(α0)− (1− sb)2 − (1− sb)p~(α0)2{

−rb,~
kb
c~

(1− p~(α0)) + rb,|(1− φ)
kb
c|

(1− p|(α0))

}
,

in the logistic paradigm. The term inside the curled braces determines the sign of the

selection gradient. This is because we claim the term in the denominator outside of the

curled braces is always positive. Once again, it is easy to see (1 − sb)(1 − sf )sbp~(α0) > 0

and
2

2− φ
> 0, but the sign of the denominator is unclear. We must show,

(s2
b − sb(2 + sf ) + 2)p~(α0)− (1− sb)2 − (1− sb)p~(α0)2 > 0 .

The LHS of the inequality above is a decreasing function of sf and we are interested in its

value when sf = 1. If the above inequality holds true in this case, it will trivially hold for

all other cases when 0 < sf < 1. After making this substitution we must now show,

(s2
b − 3sb + 2)p~(α0)− (1− sb)2− (1− sb)p~(α0)2 = (1− sb)(1− p~(α0))(p~(α0) + sb− 1) > 0 .

Similar to the NTI model, the proof relies on (p~(α0) + sb− 1) being positive, which is again

true because of the assumption that R0 =
p~(α0)sf
1− sb

sb
1− p~(α0)

> 1. We find p~(α0)sb >

p~(α0)sbsf > (1− sb)(1−p~(α0)), which easily rearranges to p~(α0) + sb− 1 > 0, as required.

As a result, we conclude that the mutant invades whenever the term inside the curled braces

and the phenotypic deviation, δ, are the opposite sign.
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D Classifying Strategies – Diminishing Returns

D.1 Evolutionary Equilibrium (EE)

The condition for the evolutionary equilibrium is
dλ

dδ

∣∣∣∣
δ=0

= 0, and we solve for α0 = α∗.

Based on equation (C.2) and (C.4) we can easily see that these conditions are the same as

the one found in the main text. For a sex allocation to be an evolutionary equilibrium it

must satisfy,

−rb,~
(
kb
c~

)
1− p~(α∗)
p~(α∗)

+ rb,|(1− φ)

(
kb
c|

)
1− p|(α∗)

p|(α∗)
= 0 . (D.1)

We require φ ∈ [0, 1). The above equation can be solved explicitly for α∗ when the costs of

reproduction are equal (c~ = c| = c), and numerically for all other cases. This expression

is,

α∗ =
c

kb
log

(
φ+

√
φ2 + (1− φ2)ekb/c

1 + φ

)
.

D.2 Evolutionarily Stable (ES)

To determine whether an EE strategy, α∗, is ES we use a derivative condition from Courteau

& Lessard (2000). Since we assume the genetic effects are additive we know that α2 =

2α1 − α0, which is an essential redefinition to make use of the results from their paper.

Biologically, when a strategy is ES it means that all other strategies provide a lower fitness,

and as a result cannot invade. The strategy α∗ is ES when

∂2fNTI

∂α2
1

∣∣∣∣
α1=α0=α∗

> 0 , where fNTI = det(I−J (α0, α1)) , (D.2)
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for the NTI model and

∂2fTI

∂α2
1

∣∣∣∣
α1=α0=α∗

> 0 , where fTI = det(I−K(α0, α1)) , (D.3)

for the TI model, where I is the identity matrix. The invasion matrices J and K are

discussed in equations (C.1) and (C.2), respectively.

D.2.1 NTI Model

We use a computer algebra package to check the derivative condition in equation (D.2). To

simplify the output we make use of the fact that all candidate ES strategies are EE. With

this simplification, the resulting condition is

2kb
2 (1− sf )2 (1− sb)2 p~

3 (1− p|)2 (1− p~) (c~ + c|)

c| (c~ p~ p| + c| p~ p| − c~ p~ − c| p|)2 (p~ + sb − 1)2 > 0 ,

which is clearly always positive. Thus, when we assume diminishing returns, α∗ is always

ES in the TI model.

D.2.2 TI Model

Similar to the NTI model, we use a computer algebra package to check the derivative con-

dition in equation (D.3). Again, we simplify the output by knowing that all candidate ES

strategies are also EE. The resulting condition is

2kb
2s2
b (1− sf )2 (1− sb)2 p~

3 (1− p|)2 (1− p~) (c~ + c|)

c| (c~ p~ p| + c| p~ p| − c~ p~ − c| p|)2 (p~ + sb − 1)2 > 0 ,

which, again, is always positive. Thus, by assuming diminishing returns, α∗ is always ES in

the NTI model.
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D.3 Convergence Stable (CS)

To determine whether the EE strategy, α∗, is CS we use the derivative condition

d

dα

[
∂W

∂β

∣∣∣∣
β=α

]
α=α∗

< 0 ,

discussed in Taylor (1996). When a strategy is CS it means that the direction from which

selection approaches the EE strategy does not matter. This calculation is the same for both

the NTI and TI model. Note that when we assume diminishing returns for the reproductive

functions

dp~(X)

dX
= −kb

c~
(1− p~(X)) and

dp|(X)

dX
=
kb
c|

(1− p|(X)) ,

where X = α, β. We begin with the expression for fitness, W , found in the manuscript. The

proof for CS is as follows:

W = rb,~
p~(β)

p~(α)
+ rb,|(1− φ)

p|(β)

p|(α)

∂W

∂β

∣∣∣∣
β=α

= −rb,~
kb
c~

1− pf (α)

p~(α)
+ rb,|(1− φ)

kb
c|

1− p|(α)

p|(α)

∂W

∂β

∣∣∣∣
β=α

= −rb,~
kb
c~

(
1

p~(α)
− 1

)
+ rb,|(1− φ)

kb
c|

(
1

p|(α)
− 1

)
d

dα

[
∂W

∂β

∣∣∣∣
β=α

]
α=α∗

= −rb,~
k2
b

c2
~

1− p~(α∗)
p2
~(α

∗)
− rb,|(1− φ)

k2
b

c2
|

1− p|(α∗)

p2
|(α∗)

< 0



.

Thus, α∗ is always CS in both the NTI and TI models when we assume diminishing returns

for the reproductive functions.

D.4 Limited resources (kb → 0+)

The ES sex allocation in these models is Hamilton’s Local Mate Competition (LMC) result

when breeders are extremely resource limited. We use the approximation p~ ≈ kb(1 −
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x)/c~ +O((−kb(1− x)/c~)
2) and p| ≈ kbx/c| +O((−kbx/c|)2), which are first order Taylor

expansions. Substituting these approximations into the corresponding fitness function (in

the main text), we find,

W (β, α) ≈ Wapprox(β, α) = rb,~
kb(1− β)/c~ +O((−kb(1− β)/c~)

2)

kb(1− α)/c~ +O((−kb(1− α)/c~)2)

+ rb,|(1− φ)
kbβ/c| +O((−kbβ/c|)2)

kbα/c| +O((−kbα/c|)2)
.

In the limit as kb → 0+ the higher order terms approach zero. After taking this limit the

expression becomes,

Wapprox(β, α) = rb,~
1− β
1− α

+ rb,|(1− φ)
β

α
.

We differentiate the above equation with respect to β to find the condition for a sex allocation

to be an evolutionary equilibrium in this limiting case. This condition is,

∂Wapprox(β, α)

∂β

∣∣∣∣
β=α=α∗

= −rb,~
1

1− α∗
+ rb,|(1− φ)

1

α∗
= 0 .

Recall rb,~ = (1 +φ)/2 and rb,| = 1/2. Solving the above derivative condition for α∗ we find,

α∗ =
1− φ

2
.

D.5 Unlimited resources (kb →∞)

We show that in the limit as kb →∞ (breeders become resource unlimited) the evolutionary

equilibrium breeder sex allocation, α∗, reduces to a simple expression involving sex specific

costs of reproduction. Mathematically, we recover,

α∗ =
c|

c| + c~
.
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Before we take this limit we must first do some rearrangement. For a breeder sex alloca-

tion to be an evolutionary equilibrium, α = α∗, it must satisfy,

− rb,~
(
kb
c~

)(
1− p~
p~

)
+ rb,|(1− φ)

(
kb
c|

)(
1− p|
p|

)
= 0

=⇒ − rb,~
(

1

c~

)(
1− p~
p~

)
+ rb,|(1− φ)

(
1

c|

)(
1− p|
p|

)
= 0

=⇒ rb,~

(
1

c~

)(
1− p~
p~

)
= rb,|(1− φ)

(
1

c|

)(
1− p|
p|

)
=⇒ rb,~

rb,|(1− φ)

c|
c~

=

(
1− p|
p|

)(
p~

1− p~

)
=⇒ log

{
rb,~

rb,|(1− φ)

c|
c~

}
= log

{(
1− p|
p|

)(
p~

1− p~

)}



.

Since c~, c|, rb,~, and rb,| are all positive, p~ and p| are defined on the interval (0, 1),

and φ is defined on the interval [0, 1), the above step is justified. For the subsequent steps

of this proof let a = log

{
rb,~

rb,|(1− φ)

c|
c~

}
. Note that this expression does not depend on the

amount of breeder resources, kb, since rb,~ = (1 + φ)/2 and rb,| = 1/2. Recall that when

α = α∗, p~ = 1 − exp{−kb(1 − α∗)/c~} and p| = 1 − exp{−kbα∗/c|}. From the above

equation we know that

a = log

{(
1− p|
p|

)(
p~

1− p~

)}
= log {1− p|} − log {p|}+ log {p~} − log {1− p~}

= log
{
e−kbα

∗/c|
}
− log

{
1− e−kbα∗/c|

}
+ log

{
1− e−kb(1−α∗)/c~

}
− log

{
e−kb(1−α∗)/c~

}
= −kbα

∗

c|
− log

{
1− e−kbα∗/c|

}
+ log

{
1− e−kb(1−α∗)/c~

}
+
kb(1− α∗)

c~


.

With some rearrangement we find,

α∗ =
c|

c| + c~
+

1

kb

(
c|c~
c| + c~

)(
log
{

1− e−kb(1−α∗)/c~
}
− log

{
1− e−kbα∗/c|

}
− a
)
.

The prior steps isolated the terms that do not shrink as kb becomes large, which allows
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us to take the limit as kb →∞ and recover important results. The limit is

lim
kb→∞

α∗ = lim
kb→∞

c|
c| + c~

+ lim
kb→∞

1

kb

c|c~
c| + c~

(
log
{

1− e−kb(1−α∗)/c~
}
− log

{
1− e−kbα∗/c|

}
− a
)
.

We substitute the value of a back into the above equation to easily take all limits. The

resulting limit is

lim
kb→∞

α∗ = lim
kb→∞

c|
c| + c~

+ lim
kb→∞

1

kb

c|c~
c| + c~

(
log
{

1− e−kb(1−α∗)/c~
}
− log

{
1− e−kbα∗/c|

})
− lim

kb→∞

1

kb

c|c~
c| + c~

(
log

{
rb,~

rb,|(1− φ)

c|
c~

})
.

Both logarithms that depend on kb approach 0, and the denominator of the last two

limits approach ∞. Finally, as breeders become resource unlimited, we find

α∗ =
c|

c| + c~
.

E Classifying Strategies – Logistic

E.1 Evolutionary Equilibrium (EE)

The EE sex allocation, α∗, occurs when

∂W

∂β

∣∣∣∣
β=α

= −rb,~
kb
c~

(1− p~(α)) + rb,|(1− φ)
kb
c|

(1− p|(α)) = 0 ,

for both the NTI and TI models when we assume the reproductive functions are logistic.

This condition was verified using the method discussed in appendix C, but using logistic

reproductive functions. This condition is verified using the eigenvalues of the invasion matrix.
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E.2 Evolutionarily Stable (ES)

Using the method discussed in appendix D.2 we are able to determine whether an EE strat-

egy, α∗, is ES.

E.2.1 NTI Model

We use a computer algebra package to check the derivative condition in equation (D.2)

assuming that all reproductive functions are logistic. To simplify the output we make use

of the fact that all candidate ES strategies are EE. With this simplification, the resulting

condition is

4kb
2 (1− sf )2 (1− sb)2 (1− p|)2 (1− p~) p~

2

c2
|c~ (c~ p| + c| p~ − c~ − c|)2 (p~ + sb − 1)2

{
1

c~

(
p~ −

1

2

)
+

1

c|

(
p| −

1

2

)}
.

Clearly, the term outside the curled braces in the above equation is always positive. Thus,

α∗ is ES in the NTI model when

1

c~

(
p~ −

1

2

)
+

1

c|

(
p| −

1

2

)
> 0 .

E.2.2 TI Model

Again, we use a computer algebra package to check the derivative condition in equation (D.3)

assuming that all reproductive functions are logistic. We again can simplify the output since

all ES strategies are EE. After this simplification, the resulting condition is

4kb
2s2
b (1− sf )2 (1− sb)2 (1− p|)2 (1− p~) p~

2

c2
|c~ (c~ p| + c| p~ − c~ − c|)2 (p~ + sb − 1)2

{
1

c~

(
p~ −

1

2

)
+

1

c|

(
p| −

1

2

)}
.
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As with the NTI model the term outside the curled braces is always positive. Thus, α∗ is

ES in the TI model when

1

c~

(
p~ −

1

2

)
+

1

c|

(
p| −

1

2

)
> 0 .

E.3 Convergence Stable (CS)

We use the same method discussed in appendix D.3 to determine whether α∗ is CS. Note

that when we assume the reproductive functions are logistic the derivatives are

dp~(X)

dX
= −kb

c~
p~(X)(1− p~(X)) and

dp|(X)

dX
=
kb
c|
p|(X)(1− p|(X)) ,

where X = α, β. We begin with the expression for fitness, W , found in the manuscript. The

proof for CS is as follows:

W = rb,~
p~(β)

p~(α)
+ rb,|(1− φ)

p|(β)

p|(α)

∂W

∂β

∣∣∣∣
β=α

= −rb,~
kb
c~

p~(α)(1− p~(α))

p~(α)
+ rb,|(1− φ)

kb
c|

p|(α)(1− p|(α))

p|(α)

∂W

∂β

∣∣∣∣
β=α

= −rb,~
kb
c~

(1− p~(α)) + rb,|(1− φ)
kb
c|

(1− p|(α))

d

dα

[
∂W

∂β

∣∣∣∣
β=α

]
α=α∗

= −rb,~
k2
b

c2
~
p~(α

∗)(1− p~(α∗))− rb,|(1− φ)
k2
b

c2
|

p|(α∗)(1− p|(α∗)) < 0



.

Thus, α∗ is always CS in both the NTI and TI models when we assume the reproductive

functions are logistic.

F Mutant Fitness for Helpful Behaviour

Once again, the inclusion of self-fertilization causes us to consider both heterozygous, and

homozygous mutant individuals in the invasion analysis. We assume that the breeder sex-
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allocation strategy is at its ES value, α∗. By following a similar method as we did when

studying the evolution of sex allocation, we are able to determine when helpful behaviour

is selectively advantageous in a previously selfish population. In this scenario, the mutant

allele causes a phenotypic deviation, ε ≥ 0, in the offspring dispersal rate. This deviation

cannot be negative since selfish individuals are not able to disperse more frequently than

they already do. We define di = 1− i

2
ε, as the dispersal rate of an offspring from their natal

patch. Once again, i = 0, 1, 2 and is the number of copies of the mutant allele an individual

has. We are interested in determining the condition for helpful behaviour to emerge in both

the NTI and TI models. Unlike the prior sex allocation results, the conditions for invasion

differ between the two models. Following the population dynamics set out in the main text,

the mutant population can be described by nine compartments:

• the density of heterozygous floaters, u1;

• the density of homozygous mutant floaters, u2;

• the density of homozygous normal breeders with heterozygous helpers, v01

• the density of solitary heterozygous breeders, v1•;

• the density of heterozygous breeders with heterozygous helpers, v11;

• the density of heterozygous breeders with homozygous mutant helpers, v12;

• the density of solitary homozygous mutant breeders, v2•;

• the density of homozygous mutant breeders with heterozygous helpers, v21;

• the density of homozygous mutant breeders with homozygous mutant helpers, v22;
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F.1 Model I: No Territory Inheritance (NTI)

We again follow the steps outline in Wild and Koykka (2014) for this invasion analysis.

When there is no territory inheritance in the resident population the dynamics of the mutant

population is described by,

u′1

u′2

v′01

v′1•

v′11

v′12

v′2•

v′21

v′22



=



G11 0 G13 G14 G15 G16 G17 G18 G19

0 G22 0 G24 G25 G26 G27 G28 G29

0 0 0 G34 G35 G36 G37 G38 G39

G41 0 G43 G44 G45 G46 0 G48 0

0 0 0 G54 G55 G56 0 G58 0

0 0 0 G64 G65 G66 0 G68 0

0 G72 0 0 0 G76 G77 G78 G79

0 0 0 0 0 G86 G87 G88 G89

0 0 0 0 0 G96 G97 G98 G99


︸ ︷︷ ︸

≡G



u1

u2

v01

v1•

v11

v12

v2•

v21

v22



, (F.1)

where prime denotes the next time step. The non-zero entries of G can be found in Tables

3-6. As a check we calculate the largest eigenvalue when there is no phenotypic change in

the population (i.e., the mutant uses the same strategy as a normal individual, ε = 0). We

find λ = 1 in this case, which is expected because an individual following the same strategy

as in the resident population should neither be eliminated nor favoured by selection.

As before, we make an approximation to the long term geometric growth rate, λ, using

a Taylor expansion and recall that mutant invasion occurs when λ > 1. The approximation

for the long term geometric growth rate for helpful behaviour is λ ≈ 1 +
ε

2

dλ

dε

∣∣∣∣
ε=0

plus
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terms of order O(ε2), which we can ignore because of the weak selection assumption. Since

ε ≥ 0, mutant invasion occurs when
dλ

dε

∣∣∣∣
ε=0

is positive. To find this expression we implicitly

differentiate the characteristic equation of G using a computer algebra package and set ε = 0

and λ = 1. For brevity, p~ ≡ p~(α
∗), q~ ≡ q~(α

∗, γ), p| ≡ p|(α∗), and q| ≡ q|(α∗, γ) below.

We find,

dλ

dε

∣∣∣∣
ε=0

=
1

2− φ
(1− sb)(1− sf )p~sb

(2− sf − sb)p~ − (1− sb)2{
rh,~(q~ − p~) + rh,|(1− φ)

(
q|
p|
− 1

)
p~ + sh(1− sb)

(
p~

1− sb
− 1

)
− (1− sh)

}
. (F.2)

The term outside the curled brackets is always positive when R0 > 1 and the argument

follows from the one presented in section C.1. The term in the curled brackets (note that it

is the same as the one found in the main text) determines the sign of the selection gradient

and when positive, mutant invasion occurs.
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F.2 Model II: Territory Inheritance (TI)

When there is territory inheritance in the normal population the dynamics of the mutant

population is described by,

u′1

u′2

v′01

v′1•

v′11

v′12

v′2•

v′21

v′22



=



H11 0 H13 H14 H15 H16 H17 H18 H19

0 H22 0 H24 H25 H26 H27 H28 H29

0 0 0 H34 H35 H36 H37 H38 H39

H41 0 H43 H44 H45 H46 H47 H48 H49

0 0 0 H54 H55 H56 0 H58 0

0 0 0 H64 H65 H66 0 H68 0

0 H72 0 H74 H75 H76 H77 H78 H79

0 0 0 0 0 H86 H87 H88 H89

0 0 0 0 0 H96 H97 H98 H99


︸ ︷︷ ︸

≡H



u1

u2

v01

v1•

v11

v12

v2•

v21

v22



, (F.3)

where prime denotes the next time ste. The non-zero entries of H can be found in Tables 7-

11. To check if our model is biologically reasonable we calculate the largest eigenvalue when

there is no phenotypic change in the population (i.e., the mutant uses the same strategy as

a normal individual, ε = 0). We find λ = 1 in this case, which again is expected.

The approximation λ ≈ 1 +
ε

2

dλ

dε

∣∣∣∣
ε=0

is still used for the long-term geometric growth

rate of the mutant population in this model. As before, the fact that ε ≥ 0 causes mutant

invasion to occur when
dλ

dε

∣∣∣∣
ε=0

is positive. To find
dλ

dε

∣∣∣∣
ε=0

we implicitly differentiate the

characteristic equation of H using a computer algebra package and set ε = 0 and λ = 1.

Once again for brevity, p~ ≡ p~(α
∗), q~ ≡ q~(α

∗, γ), p| ≡ p|(α∗), and q| ≡ q|(α∗, γ) below.
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We find,

dλ

dε

∣∣∣∣
ε=0

=
1

2− φ
(1− sb)(1− sf )s2

bp~
(s2
b − sb(2 + sf ) + 2)p~ − (1− sb)2 − (1− sb)p2

~{
rh,~(q~ − p~)(1− sh + shsbvf ) + rh,|(1− φ)

(
q|
p|
− 1

)
p~

+sh(1− sb)(vi − vf )− (1− sh)vf − sh(1− sb)rh,~(p~vi − q~vf )
}
. (F.4)

The term outside the curled brackets is always positive when R0 > 1 and the argument

follows the one presented in section C.2. The term in the curled brackets (note that it is the

same as the one found in the main text) determines the sign of the selection gradient and

when positive, mutant invasion occurs.

G Optimal Resource Allocation for a Helper

Now we will go through our derivation for the optimal resource allocation, which we call

γmax. We collect the terms of the inclusive fitness expression that the helper can directly

influence (i.e., terms inside the curled brackets involving q~ or q| in equations (F.2) and

(F.4)). The collection of terms is,

M = v~rh,~
q~(α

∗, γ)

p~(α∗)
+ v|rh,|(1− φ)

q|(α∗, γ)

p|(α∗)
,

where rh,~ = (1+φ)2/4, rh,| = (1+φ)/4, v| = 1, and finally, in the NTI model v~ = 1 and in

the TI model v~ = (1−sh)+shvf . Recall vf =
p~

1− sb
. To find the maximizing helper resource

allocation, γmax, we take the first derivative with respect to this parameter, and solve for

when the derivative condition is equal to zero. Note that rh,~ = rb,~rb,~ and rh,| = rb,|rb,~ as

discussed in Appendix B and recall q~(α
∗, γ) = 1− exp{−(kb(1− α∗) + kh(1− γ))/c~} and
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q|(α∗, γ) = 1− exp{−(kbα
∗ + khγ)/c|}. The derivative condition is,

∂M

∂γ

∣∣∣∣
γ=γmax

= rb,~

[
−v~rb,~

(
kh
c|

)
e−kb(1−α∗)/c~

p~(α∗)
e−kh(1−γmax)/c~

+ v|rb,|(1− φ)

(
kh
c|

)
e−kbα

∗/c|

p|(α∗)
e−khγmax/c|

]
= 0 . (G.1)

Since the population is using strategy α∗, the term in curled braces in equations (C.2) and

(C.4) must be equal to zero. Consequently, we know,

rb,~
e−kb(1−α∗)/c~

p~(α∗)
= rb,|(1− φ)

e−kbα
∗/c|

p|(α∗)
= ζ .

The above expression is then substituted into equation (G.1) and we now require,

ζrb,~kh
[
−v~e−kh(1−γmax)/c~ + v|e

−khγmax/c|
]

= 0 . (G.2)

Now we can explicitly solve for γmax and it is,

γmax = min

{
c|

c| + c~
+

(
kh
c|

+
kh
c~

)−1

log

(
v|
v~

)
, 1

}
.

The minimum appears because mathematically γmax cannot exceed 1, but is not biologically

reasonable. It is easy to verify that γmax is indeed the helper sex allocation that provides the

greatest inclusive fitness effect. This is proven by taking the partial derivative of equation

(G.2), (essentially the 2nd derivative of M) with respect to γ. It follows trivially that,

∂

∂γ
ζrb,~kh

[
−v~e−kh(1−γ)/c~ + v|e

−khγ/c|
]

= ζrb,~kh

[
−v~

kh
c~
e−kh(1−γ)/c~ − v|

kh
c|
e−khγ/c|

]
< 0 .

Since the above condition is always negative we know γmax maximizes equation (G.1).
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Table 1: Model I - Expressions for non-zero entires in matrix J (equation (C.1)).

Matrix Entry Expression

Column 1

J11

(
1− 1

1 + aB̄

)
sf

J31
sf

1 + aB̄

Column 2

J22

(
1− 1

1 + aB̄

)
sf

J42
sf

1 + aB̄

Column 3

J13
1

2
φp~(α1) +

1

2
(1− φ)p~(α1) +

1

2
(1− φ)p~(α0)

p|(α1)

p|(α0)

J23
1

4
φp~(α1)

J33 sb

Column 4

J14 (1− φ)p~(α2) + (1− φ)p~(α0)
p|(α2)

p|(α0)

J24 φp~(α2)

J44 sb
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Table 2: Model II - Expressions for non-zero entires in matrix K ( equation (C.3)).

Matrix Entry Expression

Column 1

K11

(
1− 1

1 + aB̄

)
sf

K31
sf

1 + aB̄

Column 2

K22

(
1− 1

1 + aB̄

)
sf

K42
sf

1 + aB̄

Column 3

K13 sb

(
1

2
φp~(α1) +

1

2
(1− φ)p~(α1) +

1

2
(1− φ)p~(α0)

p|(α1)

p|(α0)

)
K23 sb

1

4
φp~(α1)

K33 sb + (1− sb)
(

1

2
φp~(α1) +

1

2
(1− φ)p~(α1) +

1

2
(1− φ)p~(α0)

p|(α1)

p|(α0)

)
K43 (1− sb)

1

4
φp~(α1)

Column 4

K14 sb

(
(1− φ)p~(α2) + (1− φ)p~(α0)

p|(α2)

p|(α0)

)
K24 sbφp~(α2)

K34 (1− sb)
(

(1− φ)p~(α2) + (1− φ)p~(α0)
p|(α2)

p|(α0)

)
K44 sb + (1− sb)φp~(α2)
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Table 3: Model I - Expressions for non-zero entires in matrix G (equation (F.1)).

Matrix Entry Expression

Column 1

G11

(
1− 1

1 + aB̄

)
sf

G41
sf

1 + aB̄

Column 2

G22

(
1− 1

1 + aB̄

)
sf

G72
sf

1 + aB̄

Column 3

G13 shsb

G43 sh(1− sb)

Column 4

G14
1

2
p~ (1− (1− d1) sb) (2− φ)

G24
1

4
φ p~ (1− (1− d2) sb)

G34
1

2
(1− φ) p~sb (1− d1)

G44 sb

(
1−

(
1

4
(1− d2)φ+

1

2
(1− d1)

)
p~

)
G54

1

2
p~sb (1− d1)

G64
1

4
φ p~sb (1− d2)
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Table 4: Model I - Expressions for non-zero entires in matrix G (equation (F.1)).

Matrix Entry Expression

Column 5

G15
1

2
(1− (1− d1) ((1− sh) sb + sh)) q~ + sb sh +

1

2

q|
p|

(1− (1− d1) sb) (1− φ) pf

G25
1

4
φ (1− (1− d2) (sh + (1− s)sb)) q~

G35
1

2

q|
p|

(1− φ) p~sb (1− d1)

G45
1

4
((1− sh) sb + sh)

(
1−

(
1

4
(1− d2)φ+

1

2
(1− d1)

)
q~

)
G55

1

2
((1− sh) sb + sh) q~ (1− d1)

G65
1

4
((1− sh) sb + sh)φ q~ (1− d2)

Column 6

G16
1

2
q~ (1− (1− d1) ((1− sh) sb + sh)) +

1

2

q|
p|

(1− (1− d1) sb) (1− φ) p~

G26
1

4
φ (1− (1− d2) ((1− sh) sb + sh)) q~ + shsb

G36
1

2

q|
p|

(1− φ) p~sb (1− d1)

G46

(
1−

(
1

4
(1− d2)φ+

1

2
(1− d1)

)
q~

)
sb

G56
1

2
q~sb (1− d1)

G66
1

4
φ q~sb (1− d2)

G76

(
1−

(
1

4
(1− d2)φ+

1

2
(1− d1)

)
q~

)
sh (1− sb)

G86
1

2
q~sh (1− sb) (1− d1)

G96
1

4
φ q~sh (1− sb) (1− d2)
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Table 5: Model I - Expressions for non-zero entires in matrix G (equation (F.1)).

Matrix Entry Expression

Column 7

G17 2 (1− φ) p~ (1− (1− d1) sb)

G27 p~ (1− (1− d2) sb)φ

G37 (1− φ) p~sb (1− d1)

G77 sb (1− (1− (1− φ) d1 − φ d2) p~)

G87 (1− φ) p~sb (1− d1)

G97 φ p~sb (1− d2)

Column 8

G18 (1− (1− d1) ((1− sh) sb + sh)) q~ (1− φ) + sb sh +
q|
p|

(1− (1− d1) sb) (1− φ) p~

G28 φ q~ (1− (1− d2) ((1− s) sb + sh))

G38
q|
p|

(1− φ) p~sb (1− d1)

G48 (1− (1− (1− φ) d1 − φ d2) q~) sh (1− sb)

G58 (1− φ) q~s (1− sb) (1− d1)

G68 φ q~sh (1− sb) (1− d2)

G78 (1− (1− (1− φ) d1 − φ d2) q~) sb

G88 (1− φ) q~sb (1− d1)

G98 φ q~sb (1− d2)
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Table 6: Model I - Expressions for non-zero entires in matrix G (equation (F.1)).

Matrix Entry Expression

Column 9

G19 (1− (1− d1) ((1− sh) sb + sh)) q~ (1− φ) +
q|
p|

(1− (1− d1) sb) (1− φ)pf

G29 φ q~ (1− (1− d2) ((1− sh) sb + sh)) + shsb

G39
q|
p|

(1− φ) p~sb (1− d1)

G79 (1− (1− (1− φ) d1 − φ d2) q~) ((1− sh) sb + sh)

G89 (1− φ) (1− d1) q~ ((1− sh) sb + sh)

G99 φ (1− d2) q~ ((1− sh) sb + sh)
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Table 7: Model II - Expressions for non-zero entires in matrix H (equation (F.3)).

Matrix Entry Expression

Column 1

H11

(
1− 1

1 + aB̄

)
sf

H41
sf

1 + aB̄

Column 2

H22

(
1− 1

1 + aB̄

)
sf

H72
sf

1 + aB̄

Column 3

H13 shsb

H43 sh(1− sb)

Column 4

H14
1

2
p~sb d1 (2− φ)

H24
1

4
φ p~sb d2

H34
1

2
(1− φ) p~sb (1− d1)

H44
1

2
p~sb d1 +

1

4
φ p~sb d2 + (1− p~) sb +

1

2
φ p~ (1− sb) + (1− φ) p~ (1− sb) +

1

2
(1− φ) p~sb +

1

4
φ p~sb

H54
1

2
p~sb (1− d1)

H64
1

4
φ p~sb (1− d2)

H74
1

4
φ p~ (1− sb)
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Table 8: Model II - Expressions for non-zero entires in matrix H (equation (F.3)).

Matrix Entry Expression

Column 5

H15
1

2
q~ ((1− s) sb + sh) d1 + ssb +

1

2

q|
p|

(1− φ) p~sb d1

H25
1

4
φ d2q~ ((1− sh) sb + sh)

H35
1

2

q|
p|

(1− φ) p~sb (1− d1)

H45
1

2

q|
p|

(1− φ) p~ (1− sb) + qf ((1− sh) sb + sh)

(
1

2
d1 +

1

4
φ d2

)
+

1

2
q~ +

(sh + (1− sh) sb)
(

1− 1

4
(φ+ 4) q~

)
H55

1

2
(1− d1) q~ ((1− sh) sb + sh)

H65
1

4
φ (1− d2) q~ ((1− sh) sb + sh)

H75
1

4
φ q~ (1− sh) (1− sb)
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Table 9: Model II - Expressions for non-zero entires in matrix H (equation (F.3)).

Matrix Entry Expression

Column 6

H16
1

2

q|
p|

(1− φ) p~sb d1 +
1

2
q~ ((1− sh) sb + sh) d1

H26
1

4
φ d2q~ ((1− sh) sb + sh) + ssb

H36
1

2

q|
p|

(1− φ) p~sb (1− d1)

H46
1

2

q|
p|

(1− φ) p~ (1− sb) + φqfsb

(
1

2
d1 +

1

4
d2

)
+

1

2
(1− sh) (1− sb) q~ +(

1− 1

4
q~ (2 + φ)

)
sb

H56
1

2
q~sb (1− d1)

H66
1

4
φ q~sb (1− d2)

H76
1

2
(1− sb)

(
1

2
φq~ + sh (1− φ q~) + sh (1− q~)

)
+

1

2
shqfd1(1 − sb) +

1

4
φqfsh(1− sb)d2

H86
1

2
q~sh (1− sb) (1− d1)

H96
1

2
φ q~sh (1− sb) (1− d2)
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Table 10: Model II - Expressions for non-zero entires in matrix H (equation (F.3)).

Matrix Entry Expression

Column 7

H17 2 (1− φ) p~sb d1

H27 φ p~sb d2

H37 (1− φ) p~sb (1− d1)

H47 2 (1− φ) p~ (1− sb)

H77 (1− φ) sb (p~d1 + 1− p~) + φ p~ (1− sb + sb d2) + φ (1− p~) sb

H87 (1− φ) p~sb (1− d1)

H97 φ p~sb (1− d2)

Column 8

H18
q|
p|

(1− φ) p~sb d1 + ((1− sh) sb + sh) (1− φ) q~d1 + ssb

H28 φ d2q~ ((1− sh) sb + sh)

H38
q|
p|

(1− φ) p~sb (1− d1)

H48
q|
p|

(1− φ) p~ (1− sb) + (1− φ) q~sh (1− sb) d1 + φ q~sh (1− sb) d2 +

(1− sb) ((1− φ) q~ (1− sh) + sh (1− q~))

H58 (1− φ) q~sh (1− sb) (1− d1)

H68 φ q~sh (1− sb) (1− d2)

H78 qfsbd1(1− φ) + φqfsbd2 + φ q~ (1− sh) (1− sb) + (1− qf ) sb

H88 (1− φ) q~sb (1− d1)

H98 φ q~sb (1− d2)

67



Table 11: Model II - Expressions for non-zero entires in matrix H (equation (F.3)).

Matrix Entry Expression

Column 9

H19
q|
p|

(1− φ) p~sb d1 + ((1− sh) sb + sh) (1− φ) q~d1

H29 φ d2q~ ((1− sh) sb + sh) + shsb

H39
q|
p|

(1− φ) p~sb (1− d1)

H49 (1− φ) q~ (1− sh) (1− sb) +
q|
p|

(1− φ) p~ (1− sb)

H79 d1 (1− φ) q~ ((1− sh) sb + sh) + ((1− sh) sb + sh) q~φ d2 +

φ q~ (1− sh − (1− sh) sb) + (sh + (1− sh) sb) (1− q~)

H89 (1− d1) (1− φ) q~ ((1− sh) sb + sh)

H99 φ (1− d2) q~ ((1− sh) sb + sh)
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