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Abstract

The region immediately surrounding an actively accreting supermassive black hole

at the centre of a massive galaxy, the accretion disk, produces an enormous amount

of radiation resulting in a luminous, short-lived phenomenon called a quasar. About

20% of quasars show broad, blue-shifted absorption features in their UV spectra,

indicative of an outflowing wind from the accretion disk. These winds can remove

angular momentum from the accretion disk, thereby contributing to the growth of

the central black hole. Understanding these winds will help us to better constrain

the details of how black holes grow during the quasar phase. The structures of the

absorption features are sensitive to the properties (ionization state, velocity profile,

and thickness) of the winds. Consequently, the broad absorption line profiles of these

objects show great diversity in depth and velocity width. Using a sample of 1, 084

broad absorption line quasar spectra from the Sloan Digital Sky Survey, we apply an

agglomerative hierarchical clustering algorithm to group spectra by similar C iv ab-

sorption line shapes. For each cluster, we compose median spectra and compare the

shapes of the C iv broad absorption lines with the properties of prominent, broad

emission lines. In agreement with results in the literature, low-velocity, deep troughs

are found preferentially in objects for which the radiation from the accretion disk

is more energetic. The link between broad absorption line properties and those of

emission lines holds promise for allowing us to constrain the structure and dynamics

of the outflowing winds.



Chapter 1

Introduction

1.1 Observational Properties of Quasars

The centres of massive galaxies are home to supermassive black holes that, during

a short phase of the host galaxy’s lifetime, grow through the gravitational infall of

matter onto a hot accretion disk. During this phase, the central black hole grows as

a luminous quasar. The light emitted from the central accretion disk is sometimes

enough to outshine the stellar light from the entire host galaxy by a factor of 100 or

more [Peterson, 1997]. Since accretion disks are on the order of only a few light-days

across1, the above model for the central engine of a quasar was proposed to account

for its size relative to its energy output. In quasars, masses of supermassive black

holes typically exceed MSMBH ≈ 108 M⊙ and their luminosities are on the order of

Lquasar ≈ 1046 erg s−1 [Peterson, 1997].

Quasars are the most luminous subclass of a more general type of phenomena

called active galactic nuclei. First observed in radio surveys, quasars are charac-

terized not only by their radio properties, but also by small angular sizes (star-like

appearance), continuum variability, large ultraviolet (UV) fluxes, large redshifts, and

broad emission lines [Peterson, 1997].

Quasars are a valuable tool for astronomers wishing to study the evolution of

galaxies over cosmic time because they are so luminous and, as a result, can be

11 light-day = 2.54× 1015 cm

1
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detected at high cosmological redshifts. Redshift z is defined as

z ≡
λobs − λemit

λemit

, (1.1)

where λobs and λemit are the observed and emitted wavelengths, respectively. Cos-

mological redshift is a direct consequence of the expansion of the Universe, causing

the light emitted from distant objects to be shifted to longer wavelengths as it trav-

els to Earth. Rearranging Equation 1.1, we can calculate the rest-frame (emitted)

wavelengths of a spectrum to be

λemit =
λobs

1 + z
. (1.2)

Variations in the continuum of a quasar spectrum can be observed on timescales

as short as a few days [Peterson, 1997], helping to constrain the size of the contin-

uum source and supporting the idea that quasars are powered by accretion onto a

supermassive black hole.

Quasars show both broad and narrow emission lines in their spectra. These emis-

sion lines originate from distinct regions outside the accretion disk, called the broad

line region and narrow line region, respectively. We cannot observe the accretion disk

directly, but we can use these regions to probe the underlying continuum with use

of emission and absorption lines. The broad emission lines are Doppler-broadened

by bulk motions of individual clouds and can have velocity widths on the order of

∆vFWHM ≈ 500 km s−1 up to ∆vFWHM > 104 km s−1 [Peterson, 1997].

1.2 The Quasar Spectral Energy Distribution

Multi-wavelength studies have been used to compose spectral energy distributions

(SEDs) of quasars from radio wavelengths (∼10 cm) all the way to the X-ray (>1.2 keV).

Figure 1.1 shows the SEDs for populations of both radio-loud2 and radio-quiet quasars.

Each frequency regime in the figure corresponds to a different physical driver

2These objects show strong emission from relativistic particle jets.
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Figure 1.1: Mean rest-frame SEDs of 18 radio-loud (dashed line) and 29 radio-quiet
(solid line) normal quasars. The SEDs are normalized at 1.25 µm. (Figure 4.1
in Peterson 1997 as adapted from Figure 10 in Elvis et al. 1994 and annotated here).

within the quasar system. According to Elvis et al. [1994], the continuum emission of

a quasar can be well-modeled by the composition of two power law components, one

for the hard (high-energy) X-ray component and the other for the 1−100 µm infrared

(IR) band. These two power laws intersect at about 1 keV and are superposed with

several “continuum features”. These features include: (1) the submillimeter break,

(2) the IR bump, (3) the big blue bump, (4) the soft X-ray excess, and (5) a rising

X-ray slope in radio-loud objects.

The main sources of flux at radio wavelengths can be attributed to (non-thermal)

synchrotron emission from either a compact central source or extended emission from

lobes of material from the host galaxy interacting with the surrounding intergalactic

medium. Relativistic particle jets can also contribute to the radio continuum flux.

The IR bump and the minimum occuring at 1 µm can be attributed almost exclu-
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sively to thermal emission by dust. In this interpretation, the UV/optical continuum

heats dust that is hundreds of light-days from the central source [Peterson, 1997]. The

dust grains absorb the continuum emission from the accretion disk and emit thermal

IR photons as they cool.

The UV/optical portion of the spectrum (the big blue bump) comes mostly from

thermal emission by the accretion disk. Since the accretion disk is not all the same

temperature, we cannot treat it as a single blackbody at a given temperature. The

temperature depends on the radial position within the disk. We must integrate the

“local” luminosity over all possible disk radii to obtain the total luminosity of the

accretion disk [Netzer, 2006]. That is, the UV/optical continuum is most likely dom-

inated by emission from a continuous distribution of blackbodies at different temper-

atures.

At energies of about 0.1−1 keV, it is assumed that particles in a hot medium

inverse Compton scatter photons emitted by the disk, thereby increasing their energy

and producing a simple power law [Kembhavi and Narlikar, 1999]. At the highest

energies (>1 keV), a hot corona contributes to the hard X-ray portion of the spectrum

[Netzer, 2006].

The wavelength range of this work will be the rest-frame UV (see Figure 1.2).

In addition to the continuum flux, there are also several broad and narrow emission

features present. Values for the line centres of prominent emission lines in the rest-

frame UV quasar spectrum are summarized in Table 1.1.

1.3 Broad Absorption Line Quasars

In general, quasar spectra can be further classified as those that show broad absorption

features (broad absorption line quasars) and those that do not (normal quasars). Al-

though broad absorption line quasars are relatively rare, with approximately 10−20%

of quasars showing broad absorption lines in their spectra [Morris, 1988, Weymann

et al., 1991, Gibson et al., 2009], they provide useful insights into the quasar sys-

tem. Specifically, broad absorption line quasar spectra can be used as a probe of
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Figure 1.2: Mean rest-frame UV/optical spectrum of over 700 normal quasars from
the Large Bright Quasar Survey. The 6000 Å mark corresponds to ∼2 eV. Image
taken from Peterson [1997] as adapted from Francis et al. [1991].

the central regions and the gas immediately surrounding it. Both radiation pressure

and gas pressure become important in such high-energy environments and gas can

be expelled in high-velocity outflows called winds [Murray et al., 1995, Gibson et al.,

2009]. These winds can be accelerated to velocities of ∼0.1c [Murray et al., 1995].

Spectral features (emission and absorption) are Doppler broadened by the bulk mo-

tions of this high-velocity gas. Gas moving toward the observer gives rise to broad

absorption lines that are blue-shifted (i.e., shifted to shorter wavelengths) from the

rest-frame wavelength of their corresponding emission lines. These shifts can be as

high as 25, 000 km s−1 away from the emission line centre.

Several suggestions have been made regarding the origin of broad absorption line

quasars. For example, Surdej and Hutsemekers [1987] suggested that broad absorp-

tion line quasars form a distinct population, and that about 10% of all quasars con-
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Table 1.1: Rest-frame wavelengths of prominent emission features in the rest-frame
UV quasar spectrum (values taken from Table 2 in Vanden Berk et al. 2001).

Emission Line Rest-frame Wavelength
at Line Centre (Å)

C ii 1335.30

Si iv 1396.76

C iv 1549.06

He ii 1640.42

O iii] 1663.48

Al iii 1857.40

Si iii] 1892.03

C iii] 1908.73

tain the material responsible for broad absorption line winds, which covers the central

source of the quasar. In contrast, Turnshek et al. [1988], among others, suggested

that viewing angle is important in the definition of broad absorption line quasars and

that we can only see the broad absorption line winds 10% of the time depending on

the angle of inclination of the quasar with respect to the observer. The more gen-

erally accepted approach put forth by Morris [1988] suggests that all quasars have

outflowing winds, but different covering fractions of the central source by the broad

absorption line region material allow us to see broad absorption line quasars only a

fraction of the time. This broad absorption line region material was suggested by

Murray et al. [1995] to be a “wind” and not individual “clouds” since a wind will nat-

urally produce smooth line profiles. More recently, however, some authors [Baldwin

et al., 1996, Nenkova et al., 2002, Elitzur and Shlosman, 2006] have suggested that

the wind is not entirely homogeneous, but rather clumpy. In addition, Weymann

et al. [1991] showed that broad absorption line quasars and normal quasars are in

fact drawn from the same parent population and do not form two distinct classes of

objects. For example, they showed that the emission line and continuum properties

of broad absorption line and normal quasars are very similar, with few exceptions.
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This further supports Morris [1988]’s interpretation of a distribution of different broad

absorption line covering fractions.

Gallagher and Everett [2007] presented a schematic of a stratified model for the

quasar accretion disk and outflowing wind system and discussed the physical drivers

of the outflowing wind. In this model, the wind from the accretion disk is split into

three components, all corresponding to different distance scales within the quasar

system and different wavelength regimes. Figure 1.3 shows this model (Figure 2

from Gallagher and Everett 2007). Closest to the central black hole is where the

most energetic (X-ray) photons are emitted. In this model, there is a high column

density, ionized X-ray absorbing (“shielding”) gas at radii of 1015−16 cm between

the inner accretion disk and the observer [Murray et al., 1995]. Further out in the

accretion disk, about 1017 cm from the central black hole, a radiatively driven broad

absorption line wind is present [Gallagher and Everett, 2007]. We can detect this wind

spectroscopically at UV wavelengths. In this case, gas is pushed vertically out of the

accretion disk and is accelerated radially outward from the source of UV continuum

emission by radiation pressure [Murray et al., 1995]. At about 1018.5 cm from the

black hole, a dusty outflow can be seen at IR wavelengths. The focus of this work is

to investigate the spectral contributors due to the broad absorption line wind.

Figure 1.4 shows examples of both normal (“Non-BALs”) and broad absorption

line (“HiBALs + LoBALs”) quasar rest-frame UV spectra. At longer wavelengths,

the two composites match up well, but the broad absorption line spectrum has a

significant flux deficit at shorter wavelengths [Reichard et al., 2003, Gibson et al.,

2009], giving rise to a “redder” continuum.

One key feature of the broad absorption line spectrum is in the wavelength range

from about 1400−1600 Å. The blue wing of the C iv emission feature has a large

portion of its flux cut out by a broad, blue-shifted C iv absorption line, causing the

C iv emission to appear asymmetric. Recall that this blue-shift is a result of the high-

velocity winds being driven up and out of the accretion disk [Murray et al., 1995]. In

addition, there is some velocity structure to the C iv broad absorption line.

In a qualitative sense, we can look at the spectra of most quasars and visually
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Figure 1.3: Schematic of the black hole, accretion disk, and outflowing wind system in
a quasar (Figure 2 from Gallagher and Everett 2007). The black dot is the black hole
and the purple-to-red gradient-coloured wedges are the accretion disk viewed edge-on.
Solid purple blocks are the shielding gas, solid blue lines are the broad absorption line
wind, and dotted orange lines are the dusty outflow. The black arrows show possible
lines of sight through these components and point to the approximate position of
origin of the continuum radiation in each wavelength regime.

classify them as broad absorption line or normal quasars. Weymann et al. [1991]

introduced a quantitative way to separate broad absorption line quasars from normal

quasars. They defined a balnicity index, BI, to quantify the amount by which an

object’s spectrum is affected by broad absorption lines. The balnicity index is a

continuous measure of the strength of the broad absorption line features and it is

defined using the C iv absorption feature. The spectra of objects with higher values

of the balnicity index are more affected by broad absorption lines, whereas those with

lower values of the balnicity index are less affected by broad absorption lines. A value

of 0 for the balnicity index refers to a normal quasar with no broad absorption lines

in its spectrum. The balnicity index is given by

BI ≡

∫ 25,000

3000

[

1−
f(V )

0.9

]

CdV, (1.3)

where V is the velocity displacement from the line centre and f(V ) is the continuum-

normalized flux. The parameter C is equal to zero when the quantity in brackets

is negative. It is equal to 1 when that same quantity has been positive (i.e., when

the spectrum has fallen at least 10% below the continuum) for a velocity range of
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Figure 1.4: Composite spectra of normal and broad absorption line samples taken
from the SDSS Early Data Release. Similar to Figure 1 from Reichard et al. [2003].
The black (red) solid line is the composite spectrum from a sample of normal (broad
absorption line) quasars and the vertical black dashed lines mark vacuum wavelengths
of prominent emission features (see Table 1.1).

>2000 km s−1. The index is in units of km s−1 and is positive for broad absorption

line quasars. Gibson et al. [2009] modified this definition slightly and introduced a

modified balnicity index, BI0, given by

BI0 ≡

∫ 25,000

0

[

1−
f(V )

0.9

]

CdV. (1.4)

Defining BI and BI0 becomes especially useful in borderline cases where spectra

may be affected by poor resolution or low signal-to-noise ratios, thereby causing

classification by visual inspection to be uncertain [Weymann et al., 1991].
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1.4 Motivation for this Project

As mentioned in the previous section, broad absorption line quasars show broad,

blue-shifted absorption features in their spectra indicative of high-velocity outflowing

material along the line of sight. Broad absorption line winds are important because

they may carry away angular momentum from the central regions of the quasar,

allowing for accretion to occur. The extra energy may be injected into the host

galaxy by the winds. Studying the properties of broad absorption lines could help us

to understand how the evolution of the quasar system is affected by the winds.

Studies of broad absorption line troughs have been carried out in the hopes of

constraining the properties of these systems and the material that comprises them.

For example, Gibson et al. [2009] used a sample of broad absorption line quasars to

investigate the properties of broad absorption line and normal quasars. Their results

implied that although broad absorption line and normal quasars are not intrinsically

different classes of objects, their spectra still show different properties.

The properties of broad absorption line quasars is the interest of this work. Specif-

ically, we will investigate the C iv broad absorption line feature in 1, 110 broad ab-

sorption line quasars from a subsample of the catalog used in Gibson et al. [2009].

C iv broad absorption lines show great diversity in shape, examples of which are

shown in Figure 1.5. The different broad absorption line features show varying depths,

widths, and velocity shifts from the C iv emission line centre. In addition they also

show different structure within the broad absorption line.

Gibson et al. [2009] stated that trough shapes can be determined by the geometry

of the outflowing material. In addition, the outflow stucture is different for different

ionization states and for different species. Parameters not directly associated with

the C iv broad absorption lines can also have an effect on the shapes of these troughs

(see, for example, Baskin et al. 2013).

We would like to understand why the C iv broad absorption lines have different

shapes. Might there be a way to classify these troughs based on their shapes? What,

then, could we say about the mechanisms (physical, geometric, or otherwise) govern-
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Figure 1.5: Examples of rest-frame UV broad absorption line quasar spectra from the
SDSS DR5. Prominent features in each of the spectra are labelled.

ing each of these different shapes? To answer the above questions, we will employ

machine learning clustering techniques to separate broad absorption line quasars into

a number of groups based on their C iv trough shape. We will then examine the

properties of the quasars within the different clusters and compare our results to

previous work.



Chapter 2

Catalog Details and Data

Reduction

2.1 Description of the Data

The quasars used in this study are drawn from the broad absorption line quasar

catalog of Gibson et al. [2009], which itself is drawn from the Fifth Data Release of the

Sloan Digital Sky Survey (SDSS DR5, Adelman-McCarthy et al. 2007)1. The SDSS is

a sky survey taken by the 2.5m Sloan Foundation Telescope, a ground-based telescope

at Apache Point Observatory in New Mexico. The Fifth Data Release mapped one-

quarter of the entire sky and collected photometric (imaging) and spectroscopic data

for galaxies, quasars, and stars. Spectroscopic data were made available for 1,048,960

objects, 90,611 of which were classified as quasars.

Gibson et al. [2009] placed constraints on the SDSS DR5 quasar catalog to only

select objects that contain broad absorption lines. We place a number of additional

constraints on the Gibson et al. [2009] catalog to select objects that contain the

C iv broad absorption line.

The first constraint is on the range of redshifts for the objects in our sample.

The observed-frame wavelength coverage of the spectra in the full DR5 catalog

(3800−9200 Å) limits the number of objects for which we can measure the C iv broad

1http://classic.sdss.org/dr5/

12
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absorption line. Gibson et al. [2009] suggests a redshift range of 1.68 < z < 4.93 be

imposed on their full catalog of 5039 objects such that when shifted into the rest

frame, the C iv broad absorption line still falls within the SDSS bandpass. Fig-

ure 2.1 shows the distribution of redshifts for the broad absorption line quasars in

our sample.

In addition to the redshift constraint, we require that there be complete wave-

length and flux density coverage in the rest-frame wavelength range 1320−1800 Å.

This ensures a sufficient data range on either side of the C iv broad absorption line.

The second constraint is a signal-to-noise ratio cutoff of ≥ 9 so that our spectra will

all have roughly the same amount of noise. The third constraint is a modified balnic-

ity index of BI0 > 0 (see Equation 1.4); i.e., a C iv broad absorption line is present

in the spectrum.

After these restrictions, our initial sample includes the UV spectra of 1,110 broad

absorption line quasars, along with additional quantities from the Gibson et al. [2009]

catalog. These quantities include the modified balnicity index BI0 as described in

Section 1.3, and the minimum and maximum outflow velocities for the C iv broad

absorption line, vmin and vmax, respectively. The values of vmin and vmax correspond

to the minimum and maximum wavelengths, respectively, of the broad absorption line

as defined using BI0. Physically, vmin and vmax give an idea of the width of the broad

absorption line as well as the range of velocities to which the wind can be accelerated.

2.2 Spectral-fitting Procedure

2.2.1 The Original Reduction Pipeline

After downloading the spectra from the SDSS DR5 archive, we use the redshifts

provided in the headers of the spectrum files and Equation 1.2 to convert to rest-frame

wavelengths. To isolate the C iv broad absorption line for further study, we model

the continuum and emission lines immediately around the C iv broad absorption

line so these features may be removed. Exploratory fitting of spectra was carried
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Figure 2.1: Distribution of cosmological redshifts for the 1,110 broad absorption line
quasars in our sample. The data were arbitrarily chosen to be divided into 25 bins.

out using Rob Dimeo’s wrapper function to the IDL mpfit routine, Peak Analysis

(PAN)2. Written by Craig Markwardt3, the IDL mpfit routine employs a Levenberg-

Marquardt non-linear least squares algorithm to fit a pre-defined model to the data

[Markwardt, 2009]. It is an iterative procedure that finds the local minimum of the

sum of squared errors between the data and the model.

Our model to fit the region around the C iv broad absorption line (1320−1800 Å)

consists of four components: (1) a first-order polynomial for the continuum, (2) a

single Gaussian for the Si iv emission line, (3) a single Gaussian for the broad com-

ponent of the C iv emission line, and (4) a single Gaussian for the narrow component

of the C iv emission line. We use Gaussian profiles (as opposed to Lorentzian) be-

cause the emission lines are Doppler broadened due to bulk motions of the gas. We

use 2 Gaussians to fit the C iv emission line profiles because they are often complex

2http://www.ncnr.nist.gov/staff/dimeo/panweb/pan.html
3http://cow.physics.wisc.edu/~craigm/idl/idl.html
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and asymmetric. The mpfit routine takes initial guesses for the parameters of a

composite model, which is the addition of the four components described above. In

our case, there are 11 parameters: the slope and intercept for the continuum, and the

area under the Gaussian, the line centre, and full width at half maximum (FWHM)

for each of the three Gaussian profiles.

The initial guesses for the parameters of the linear continuum model are calculated

using flux densities and wavelengths in the ranges 1320−1340 Å and 1690−1800 Å

and the Python function numpy.ma.polyfit. All 1,110 continuum fits are visually in-

spected. The initial guesses for the Gaussian parameters are estimated by performing

manual fits to ten randomly selected spectra using the PAN interface. The estimated

initial parameters are summarized in Table 2.1.

The model produced by the fitting routine is sensitive to the initial guesses for

the emission line centres. Richards et al. [2011] showed that C iv emission lines have

a wide range of possible line centres and that blueshifting in the C iv emission line is

common (see Figure 2.2). We must thus allow the C iv line centres to vary over the

course of the routine to account for this difference across objects, but not by much so

as to avoid major displacements of the line to other parts of the spectrum. We place

constraints on the amount by which both the C iv narrow and broad component line

centres can vary by considering the possible range of values for C iv emission line

blueshifts. Looking at Figure 2.2, velocity shifts of −1500 km s−1 and +500 km s−1

from the C iv emission line centre (∼1549 Å) reasonably capture most of their sam-

ple. Converting these velocities into wavelengths, we find that the C iv emission line

centre can vary from about 1541−1551.6 Å if given the above velocity shifts. Fur-

thermore, we require the areas of all three Gaussian emission lines to remain positive

so as to eliminate the possibility of fitting absorption features or negative dips in the

spectrum due to noise. The constraints on each parameter of the model are included

in Table 2.1.

Before the spectra are fit, we mask out features that do not contribute to the

composite model of “linear continuum + two emission lines”. These features include

the Si iv broad absorption line (when present), the C iv broad absorption line, and
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Figure 2.2: Figure 2 from Richards et al. [2011]. Range of C iv emission line centre
blueshifts in a sample of ∼30,000 quasars from the SDSS DR7. The red and black
histograms represent radio-loud and radio-quiet quasars, respectively. Here, positive
values denote blueshift, whereas negative values denote redshift.

the He ii + O iii] complex just redward (i.e., toward longer wavelengths) of the

C iv emission line. To mask the He ii + O iii] complex, we exclude all data in the

wavelength range 1605−1690 Å. This range has been verified by visual inspection of

all spectra. To exclude the Si iv and C iv broad absorption lines, we apply unique

masks to each spectrum based on the vmin and vmax values for each of Si iv and

C iv given in the Gibson et al. [2009] catalog. In the case where no Si iv vmin and

vmax values are given, no mask is applied for the Si iv broad absorption line. All

objects have vmin and vmax values listed for the C iv broad absorption line.

The above method describes the original version of the spectral-fitting pipeline ap-

plied to the 1,110 broad absorption line quasar spectra in our sample (see Figure 2.3).

Output was given in the form of plots to be used for visual inspection, arrays of the

model values at each wavelength value, and the 11 parameters of the model. Nor-

malized residuals were calculated using resid=(model-flux)/err, where err is the

noise in the spectrum, i.e., standard deviation, in the same units as the flux density.
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Table 2.1: Initial guesses and constraints for the parameters of the composite model
to the emission lines and continuum around the C iv broad absorption line.

Parameter Initial Guess Constraints

Continuum Slope Unique to each spectrum

Continuum Intercept Unique to each spectrum

Si iv Area 67× 10−17 erg s−1 cm−2 Å−1 ≥ 0

Si iv Centre 1396 Å

Si iv Width 20 Å

C iv (narrow) Area 120× 10−17 erg s−1 cm−2 Å−1 ≥ 0

C iv (narrow) Centre 1545 Å ∈ [1541.0, 1551.6] Å

C iv (narrow) Width 15 Å

C iv (broad) Area 60× 10−17 erg s−1 cm−2 Å−1 ≥ 0

C iv (broad) Centre 1545 Å ∈ [1541.0, 1551.6] Å

C iv (broad) Width 45 Å

All 1,110 spectra along with their models and residuals were visually inspected and

categorized based on the “goodness of fit”. We define a spectrum with a “good fit” to

be one for which the model overlaps most of the data in the wavelength range around

the C iv broad absroption line (1400−1550 Å) and for which the residuals in that

same range fall within [−1,+1] of the zero mark. This definition excludes the parts of

the spectrum in that range that correspond to the C iv broad absorption line itself.

Using this technique, 500 of the 1,110 models were visually categorized as “good fits”

and the other 610 spectra needed some modification to this procedure. Figure 2.4

shows an example of a composite model fit to a broad absorption line quasar spectrum

using the original pipeline. Figure 2.5 shows the residuals calculated for the model

fit in Figure 2.4.
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2.2.2 Modifications to the Pipeline

The original pipeline discussed in the previous section was modified to produce better

fits for the remaining 610 spectra. We construct two different modifications to the

original pipeline. We apply manual masking in the wavelength range 1320−1800 Å to

all 610 of the remaining spectra. We also change the constraints for some spectra to

allow for major shifts in the emission lines with respect to the expected line centres.

In summary, we were able to successfully fit 1,084 of the 1,110 spectra in our

sample using the above modifications. We perform all of our analyses in the upcoming

sections using the sample of 1,084 spectra. We summarize the modifications to the

original pipeline and the number of objects fit using each modification in Table 2.2.

Table 2.2: Summary of the modifications to the original pipeline along with the
number of spectra fit using each modification.

Pipeline Used Description of Pipeline # of Spectra Fit

Original Pipeline (OP) See Section 2.2.1 500

Modification 1 (M1) OP + Manual Masking + 458

Modification 2 M1 + Expanded C iv + 126
Emission Line Range

No Pipeline Used − 26

Total for subsequent analysis: = 1, 110− 26
= 1, 084

2.2.3 Normalization and Resampling

After fitting the spectra, we normalize them to the local continuum and emission lines

by dividing the data by the composite model (i.e., linear continuum + 3 Gaussian

profiles). Normalizing the spectra in this way allows for all data that is closely fit by

the model to lie around 1.0 and any other features to show up as deviations from 1.0

on the normalized flux scale.
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Start

Input: UV broad absorption line quasar
spectrum from SDSS DR5 archive

Step 1: Shift spectrum into rest frame using SDSS redshift

Step 2: Provide initial guesses to the mpfit routine
for 11 model fit parameters (see Table 2.1)

Step 3: Apply constraints to initial guesses (see Table 2.1)

Step 4: Apply masks to He ii + O iii] complex,
Si iv broad absorption line, and C iv broad absorption line

Step 5: Fit model to spectrum in wavelength range 1320−1800 Å

Output: Model fit, parameters, residuals

Step 6: Visually inspect model and residuals
and classify fit as “good” or “bad”

Stop

Figure 2.3: Summary of the “original pipeline” used to fit 500 of the 1,110 broad
absorption line spectra. Modifications to this pipeline are described in Section 2.2.2.

Next, we resample each spectrum to the same wavelength grid such that they

can be compared to one another. We define a grid from 1320−1800 Å with linear
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Figure 2.4: Composite model fit to a broad absorption line quasar spectrum. The
black line is the data and the solid red line is the model fit using the original pipeline.
There is no Si iv absorption in this spectrum, so there is no masking in the region
blueward of the Si iv emission line.

Figure 2.5: Residuals for the model fit in Figure 2.4. Black dashed lines mark ±1
standard deviation above and below the zero mark. Red dotted lines mark 1400 and
1550 Å, the region inside which the residuals are considered when assessing goodness
of fit. Missing values correspond to the masked regions in the fit (here, we mask the
C iv broad absorption line and the He ii + O iii] complex).

spacing of 0.3 Å, similar to the spectral resolution of the SDSS spectra. When each

spectrum is resampled to this grid, a linear interpolant is used to infer a normalized

flux value at each of the sampled points in the new grid. We use the Python function
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numpy.interp to perform the resampling.

We truncate the spectra to the wavelength range 1400−1550 Å, which includes the

C iv broad absorption line, the red wing of the Si iv emission line, and the blue wing of

the C iv emission line. This is done so we are only considering the range immediately

around the C iv broad absorption line in our analysis. In the next chapter, we will

consider the methods used to analyze the 1,084 normalized, resampled spectra.

Figure 2.6: Normalized, resampled spectra produced using the method described in
Section 2.2.3. The red, dashed line corresponds to a data-to-model ratio of 1. (a)
Same object as in Figure 2.4. (b) Another object for comparison.



Chapter 3

Application of Machine Learning

3.1 The Similarity of Spectra

3.1.1 Pearson Product-moment Correlation Coefficients

The purpose of this study is to assess the similarity between broad absorption line

quasar spectra based on the shapes of their C iv broad absorption lines in the wave-

length range of the normalized, resampled spectra (1400−1550 Å). How a quanti-

tative measure of the similarity between two spectra can be provided begins with

the concept of correlation. In this work, we use Pearson product-moment correlation

coefficients. The pairwise Pearson product-moment correlation coefficient between

spectrum X and spectrum Y is defined as follows [Kaufman and Rousseeuw, 1990]

rXY ≡

n
∑

i=1

((xi − x̄) (yi − ȳ))

√

n
∑

i=1

(xi − x̄)2
n
∑

i=1

(yi − ȳ)2
, (3.1)

where xi and yi are the normalized flux densities in wavelength bin i of spectrum X

and Y , respectively, and ā = x̄, ȳ is the mean value of the normalized flux density

for spectrum A with A = X, Y . The Pearson product-moment correlation coefficient

can take values between −1 and +1. Values close to +1 (−1) are given to pairs of

spectra that show a strong positive (negative) correlation with one another. Values

22
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close to zero correspond to weak pairwise correlations between spectra.

Intuitively, rXY takes the normalized flux densities in each of n wavelength bins

for both spectrum X and Y and makes an ordered pair. We plot these n ordered pairs

in the “flux-flux” plane and assess how well the data points can be fit to a straight

line. If they all fall perfectly on a line with positive slope, the Pearson coefficient

is exactly equal to +1.0 and the two spectra correlate perfectly with one another.

Conversely, the more scattered the points are, the closer the Pearson coefficient is to

0.0. If, however, the value of the Pearson coefficient is exactly −1.0, the points all fall

perfectly on a line with negative slope. The slope of the line does not contribute to the

value of the Pearson coefficient. What is important is how closely all of the points fit

a straight line. Since we are interested in grouping together similar spectra, no matter

the sign of the correlation, we take the absolute value of the Pearson product-moment

correlation coefficient when conducting our analyses.

We can arrange the pairwise absolute Pearson coefficients in matrix form to con-

struct a correlation matrix. For our sample, we have 1,084 spectra against which we

would like to compare those same 1,084 spectra. Our correlation matrix will have

dimensions 1084 × 1084. It will have values of 1.0 along the diagonal since self-

correlations will return 100% similarity and it will be symmetric about the diagonal.

The entry at position (x, y) for x, y ∈ [1, 2, 3, ..., 1084] will correspond to the absolute

value of the pairwise Pearson coefficient between spectrum X and spectrum Y . The

correlation matrix will have the following form:

R ≡























1.0 r1,2 r1,3 . . . r1,1084

r2,1 1.0 r2,3 . . . r2,1084

r3,1 r3,2 1.0 . . . r3,1084
...

...
...

. . .
...

r1084,1 r1084,2 r1084,3 . . . 1.0























. (3.2)
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3.1.2 Distances Between Points

Another useful measure of the similarity between two data sets is distance. Abstractly,

we treat each spectrum as a data point in some parameter space. If we take the

“distance” between two spectra, similar spectra are closer to one another, whereas

dissimilar spectra are further apart. We define the pairwise Pearson distance between

spectrum X and spectrum Y to be [Xu and Wunsch]

dXY ≡ 1− |rXY |. (3.3)

Similar to the Pearson coefficient, we can arrange the pairwise Pearson distances

in a matrix called the distance matrix. In this case, our (Pearson) distance matrix

will have the following form:

D ≡ 1− |R| =























0.0 d1,2 d1,3 . . . d1,1084

d2,1 0.0 d2,3 . . . d2,1084

d3,1 d3,2 0.0 . . . d3,1084
...

...
...

. . .
...

d1084,1 d1084,2 d1084,3 . . . 0.0























, (3.4)

where |R| represents the absolute value of the correlation matrix (taken elementwise).

An alternative measure of distance to the Pearson distance is the Euclidean dis-

tance. To take the Euclidean distance between two spectra, we must once again imag-

ine the abstract parameter space inside which we plot our spectra as data points. In

the Euclidean case, the pairwise distances between spectra are no longer the Pear-

son distances, but rather the Euclidean distances between the rows (or columns) of

the Pearson distance matrix. For example, the pairwise Euclidean distance between

Spectrum 1 and Spectrum 2 is given by

dE1,2 =
√

(0.0− d2,1)2 + (d1,2 − 0.0)2 + (d1,3 − d2,3)2 + · · ·+ (d1,1084 − d2,1084)2. (3.5)

This pairwise distance is added to elements 1,2 and 2,1 of the new Euclidean distance
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matrix. The full Euclidean distance matrix will have the following form:

DE =























0.0 dE1,2 dE1,3 . . . dE1,1084

dE2,1 0.0 dE2,3 . . . dE2,1084

dE3,1 dE3,2 0.0 . . . dE3,1084
...

...
...

. . .
...

dE1084,1 dE1084,2 dE1084,3 . . . 0.0























. (3.6)

This 1084× 1084 Euclidean distance matrix contains the information about the sim-

ilarity between spectra, but is not ordered in any way. We must thus sort, or cluster,

this matrix in order to obtain meaningful results.

3.1.3 Distances Between Clusters

When clustering the distance matrix, we must introduce the concept of cluster dis-

tance. There are several ways to compute the distances between two clusters. In this

work we use a method called complete linkage [McQuitty, 1960]. Consider two clus-

ters of points in an arbitrary parameter space. We would like to measure the distance

between those two clusters using the complete linkage method. To do this we find the

two points, one in each cluster, for which the pairwise Euclidean distance between

the points is a maximum. This is then defined as the cluster distance, dC . Say, now,

that we merge those two clusters into a single cluster. By using complete linkage, we

ensure that each point in the new, merged cluster is reasonably close to every other

point (d ≤ dC), thereby creating a more “spherically shaped” cluster. This measure

of cluster distance is especially useful in our case since we would like the clusters of

spectra to contain objects that are all reasonably similar to each other.

3.2 Agglomerative Hierarchical Clustering

In the previous sections, we discussed how the similarity between spectra is quantified

with distance. Using these distance measures as our starting point, we can now



26

describe the application of a clustering algorithm to the Euclidean distance matrix

(Equation 3.6).

The algorithm used in this work is called agglomerative hierarchical clustering

[Xu and Wunsch]. What this means is that the algorithm takes a bottom-up or

merging (agglomerative) approach to the clustering, and the results correspond to all

possible clusterings (hierarchical). To visualize this, imagine we have a data set in 2

dimensions with each data point corresponding to an ordered pair in the x, y-plane

(see Figure 3.2(a)). We would like to cluster the data based on their x- and y-values.

To do this, we begin by taking the pairwise Pearson product-moment correlation

coefficients and placing them in a correlation matrix similar to Equation 3.2, but

with dimensions equal to the number of data points in the x, y-plane (here, there

are 20). Next, we calculate the Pearson distance matrix (see Equation 3.4). To take

the pairwise Euclidean distances between each of the points, we use the rows of the

Pearson distance matrix and the 20-dimensional version of Equation 3.5. This gives

us a 20 × 20 Euclidean distance matrix. It is this matrix that will be used in the

clustering algorithm.

The agglomerative hierarchical clustering algorithm begins by taking each data

point and placing it in its own singleton cluster. The pairwise Euclidean distances

between all of the clusters are calculated. By constructing the distance matrix, we

have already done this for the first iteration. Using these distances, the two closest

clusters are merged and our first iteration of the algorithm is complete. At the

second iteration, we recompute the pairwise distances between clusters and update the

distance matrix accordingly. Recall that the methods used to calculate the distances

between individual points (Section 3.1.2) and between clusters (Section 3.1.3) are

different. To calculate the distance between clusters we use complete linkage as

described in Section 3.1.3. We again choose the two closest clusters and merge them.

This corresponds to permuting the rows of and columns of the distance matrix to bring

similar clusters closer together. The above method is iterated until all of the points

are merged into a single cluster. See Figure 3.1 for an overview of the algorithm.
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Start

Input: Set of data
points along with
their positions in

n-dimensional space

Step 1: Place all points in
their own singleton clusters

Step 2: Calculate pairwise Euclidean
distances between clusters using complete
linkage and update the distance matrix

Step 3: Merge the two closest clusters

Decision: Are all points
in the same cluster yet?

Output: Dendrogram
of the hierarchical

clustering

Step 4: Apply threshold to the
dendrogram to obtain a flat clustering

Stop

yes

no

Figure 3.1: Summary of the agglomerative hierarchical clustering algorithm used to
cluster an n× n Euclidean distance matrix.
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Figure 3.2: Agglomerative hierarchical clustering algorithm example (modified from
Bovermann et al.). (a) Sample data set of 20 points in the x, y-plane. The colours
and shapes of the data points correspond to the flat clustering obtained by applying
a threshold to the dendrogram. (b) Dendrogram for the hierarchy of clusters formed
after applying the algorithm. A threshold is applied that defines 6 clusters.
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3.3 Interpretation of the Dendrogram

By applying the algorithm in Section 3.2 to a Euclidean distance matrix we obtain

what is called a dendrogram. A dendrogram is a tree structure that contains the

information of the cluster merging process taken by the algorithm. Figure 3.2(b)

shows the resulting dendrogram from applying a hierarchical clustering algorithm to

the sample data set in Figure 3.2(a). At the bottom of the dendrogram, each data

point is in its own cluster and the distance between points within each of the clusters

is zero. At the top of the dendrogram, all of the points are in one cluster and the

distance between points within the cluster is at a maximum.

To extract information from a dendrogram we must choose a threshold distance

(i.e., the maximum distance allowed between points within a cluster) and apply a

horizontal cut. When the threshold is applied, each unique branch below the cut

becomes its own cluster and a set of flat clusters is produced: that is, the threshold

distance is the same for all clusters. If we take a top-down approach to interpreting

the dendrogram, we can think of the largest cluster as being split into smaller clusters.

As we move down the dendrogram, the distances between points in each of the clusters

decreases or, in other words, data points within a single cluster are more alike.

The beauty of this algorithm lies in the hierarchical nature of the results it pro-

duces. We, the user, are permitted to make as many cuts as we wish and may follow

the merging process, examining the results of the clustering at each new cut. In the

next section, we will apply this algorithm to the 1,084 broad absorption line quasar

spectra in our sample.

3.4 Clustering the Distance Matrix

We calculate the Pearson correlation matrix for the 1,084 broad absorption line quasar

spectra in our sample using Equation 3.2. In Python, this corresponds to mat.corr()

if mat is a 500×1084 pandas.DataFrame matrix containing 1,084 normalized, resam-

pled spectra each with 500 wavelength values. Recall that we resampled our spec-
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tra to a wavelength grid of 1400−1550 Å with 0.3 Å linear spacing. This gives us

500 normalized, resampled flux values for each broad absorption line quasar (since

(1550−1400)/0.3 = 500). The Python statsmodels.api.graphics.plot corr func-

tion was used to produce Figure 3.3, which shows the absolute-valued correlation

matrix as a heat map.

Figure 3.3: Absolute-valued Pearson correlation matrix for the 1,084 broad absorption
line quasar spectra in our sample. Redder colours denote strong correlation or high
similarity between spectra, whereas bluer colours denote little to no correlation or
similarity between spectra. Each row (or column) of the matrix corresponds to a
point in 1,084-dimensional space for a single broad absorption line quasar.

The next step is to calculate the square Euclidean distance matrix using Equa-

tion 3.5. Then, we may apply the agglomerative hierarchical clustering algorithm to

obtain the clustered distance matrix and the dendrogram of the merging process.

We apply the built-in Python function scipy.cluster.hierarchy.linkage to
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obtain the hierarchical clustering results encoded as a linkage matrix, Y. This func-

tion both calculates the pairwise distances between clusters at each iteration of the

algorithm and sorts the distance matrix by permuting its rows and columns. We

then apply the built-in scipy.cluster.hierarchy.dendrogram function to plot the

dendrogram corresponding to the linkage matrix. Figure 3.4 shows the results of

applying the hierarchical clustering algorithm to our data.

Figure 3.4: Clustered Euclidean distance matrix after the application of the agglom-
erative hierarchical clustering algorithm. Darker colours in the matrix correspond to
smaller pairwise Euclidean distances between spectra. The two dendrograms are the
same and their colours denote the flat clustering given the default distance threshold
in Python.



Chapter 4

Results and Discussion

4.1 Median Composite Spectra

As shown by Figure 3.4 in Section 3.4, the application of a hierarchical clustering

algorithm to our data set was successful: that is, distances between points within

a cluster are low and distances between points in adjacent clusters are high. It is

important to keep in mind that not all data sets are capable of being clustered. Take,

for example, a data set nearly homogeneous in its features. This would likely produce

one large cluster containing the majority of data points and a few smaller clusters

containing outliers. In our case, however, there are several distinct clusters formed.

To analyze the results of the clustering, we begin at the top of the dendrogram

and work our way down. We form flat clusterings of the data by applying the Python

function scipy.cluster.hierarchy.fcluster to the linkage matrix, Y. We then

visualize each of the clusters with a median composite spectrum.

To create a median composite spectrum of the objects within a cluster, we begin

by defining a wavelength grid spanning 1100−4000 Å with linear spacing 0.3 Å. Each

spectrum in the cluster is resampled to this wavelength grid. Next, we normalize

each spectrum to the median value in the wavelength range ∼1808−1817 Å. This

is the region in the spectrum just blueward of the Al iii, Si iii], and C iii] emission

lines. Each spectrum in the cluster is 3-σ clipped to minimize outlying points such

as cosmic ray spikes or excessive noise. The spectra are then median combined and

32
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a standard deviation array is calculated for the median combined spectrum. This is

done for each cluster within a flat clustering until 28 flat clusters are produced.

We then examine the median composite spectra at each of the cluster divisions and

decide (visually) whether a division should be made. To make our decision we consider

the following: (1) the standard deviation array of the spectrum being divided, (2) the

shapes of the two spectra being formed by the division, and (3) the number of objects

in the clusters formed as a result of the division. If the standard deviations around

the C iv broad absorption line seem large, then a division is considered. Furthermore,

if the broad absorption lines and/or the emission lines in the two spectra formed by

the division look different, we make the division and continue down that branch of

the dendrogram. If after a proposed division there are too few objects in the resulting

clusters and the signal-to-noise ratio is too low, we do not make the division. This

approach allows for a clustering to be made that is not flat; i.e., we are able to stop

cluster divisions when they seem redundant and continue dividing those that seem

important.

After deciding which cluster divisions should or should not be made, we conclude

that the application of hierarchical clustering to our spectra produces at least 10

clusters. Figure 4.1 shows the median composite spectra of the 10 clusters in the

region around the C iv broad absorption line (1320−1700 Å). Figure 4.2 shows the

median composite spectra of the 10 clusters in the region around the Al iii, Si iii],

and C iii] emission lines (1800−2000 Å). Figure 4.3 shows the (not flat) dendrogram

for the 10 clusters formed. For the remainder of the discussion, we refer to the spectra

using the key in Table 4.1. We examine the spectra more closely in the next section.

4.2 Interpretation of the Results

We identify at least 10 different clusters of broad absorption line quasars based on

the shapes of their C iv broad absorption line profiles. For clarity, we further regroup

the 10 clusters into three categories based on the general shapes of their C iv broad

absorption lines: (1) broad and extending to high terminal outflow velocities (Fig-
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Table 4.1: Key used when referring to median composite spectra in Sections 4.2.1,
4.2.2, and 4.2.3.

Cluster Colour Number of Objects Key (used in text)

First Category

Dark Raspberry 60 DR60

Light Pink 119 LP119

Black 186 B186

Second Category

Yellow 61 Y61

Bright Pink 64 BP64

Purple 79 P79

Third Category

Jean Blue 78 JB78

Green 117 G117

Light Turquoise 141 LT141

Deep Salmon 179 DS179
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Figure 4.1: Median composite spectra for the 10 clusters. A wavelength range of 1320−1700 Å is chosen to emphasize differences
in the C iv broad absorption line and the He ii + O iii] complex.
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Figure 4.2: Median composite spectra for the 10 clusters. A wavelength range of
1800−2000 Å is chosen to emphasize differences in the Al iii, Si iii], and C iii] emis-
sion lines. The cluster with the highest energy continuum is the jean blue cluster (78
objects).
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Figure 4.3: Dendrogram showing the 10 clusters formed after deciding which cluster divisions to keep/reject. Distance scale
corresponds to that of a truncated 5-level dendrogram. Labels at the end of each branch use the key in Table 4.1. The P79,
BP64, LP119, and B186 clusters remain undivided at zero distance in this 5-level example.
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ure 4.4), (2) shallow and extending to low terminal outflow velocities (Figure 4.6),

and (3) deep and extending to any outflow velocity (Figure 4.8). Figures 4.5, 4.7, and

4.9 show the regions around the Al iii, Si iii], and C iii] emission lines for the three

categories. Figures 4.4 through 4.9 use the same colour code and refer to the same

clusters as in Figures 4.1 and 4.2.

To interpret the results of these composites, we must understand the physical

interpretation of the emission lines and how they relate to the broad absorption lines.

Each of the emission lines has an associated ionization potential, which refers to the

amount of energy needed to ionize an atom to a specific ionization state. For example,

18.8 eV is required to ionize the Al ii ion to Al iii [Lotz, 1967]. Table 4.2 summarizes

the ionization potentials of the Si iv, C iv, He ii, O iii], Al iii, Si iii], and C iii] ions

in order of increasing ionization potential. Considering the values in Table 4.2, we

refer to the Al iii and Si iii] emission lines as low-ionization lines and the Si iv, C iv,

He ii, O iii], and C iii] emission lines as high-ionization lines.

Table 4.2: Ionization potentials for emission lines around the C iv broad absorption
line [Lotz, 1967]. Values reported are those required to ionize the atom in the previous
ionization state to the state listed (i.e., C iii → C iv requires 47.9 eV).

Emission Line Rest-Frame Wavelength (Å) Ionization Potential (eV)

Si iii] 1892.03 16.3

Al iii 1857.40 18.8

C iii] 1908.73 24.4

He ii 1640.42 24.6

Si iv 1396.76 33.5

O iii] 1663.48 35.1

C iv 1549.06 47.9

The strength of an emission line (i.e., the integrated luminosity in the line) is

dependent on several factors: the energetics of the ionizing continuum, the density

of line-emitting gas, the probability of transition, and the temperature of the gas.
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Assuming all of the above factors are held constant, the energetics of the ionizing

continuum can be understood using the shape of the SED for a quasar. Recall that

the SED contains information about the energy output of a source across a wide

range of wavelengths (Figure 1.1 shows radio to X-ray). The continuum photon

source (i.e., the accretion disk) is said to be “hard” if there is more flux density at

X-ray wavelengths when compared to the UV. Conversely, the ionizing continuum is

said to be “soft” when the SED shows more energy in the UV when compared to

the X-ray. The energy output of the source, or the shape of the SED, affects which

emission lines are present, and to what degree, in a spectrum. Therefore, we can use

the relative strengths of high- to low-ionization lines to constrain the properties of

the ionizing continuum.

If there is more relative strength in high-ionization lines, the continuum source car-

ries more high energy photons (hard) and there is sufficient energy to ionize atoms to

higher ionization states. Conversely, if there is more relative strength in low-ionization

lines when compared to high-ionization lines, this tells us that the continuum source

carries fewer high energy photons (soft). In this case, there is insufficient energy

to ionize atoms to higher ionization states. If the ions of high-ionization lines are

not present due to insufficient energy from the continuum, they cannot be excited

electronically and therefore cannot contribute to the strength of the line.

With this in mind, we can consider the following as coarse diagnostics of the

strength of the ionizing continuum: (1) the height of the He ii and O iii] emis-

sion line peaks above the local continuum, and (2) the ratio, Al iii/C iii], of the

emission line peaks above the local continuum for the low- and high-ionization lines

Al iii and C iii], respectively. If the peaks of the He ii and O iii] lines are high or if

the Al iii/C iii] ratio is low, then the ionizing continuum is more energetic (hard).

The properties of the outflowing wind are sensitive to the properties of the ionizing

continuum. In addition, the terminal velocity of the outflow is closely related to the

location (radius) within the accretion disk from which the wind is launched [Gallagher

et al., 2006, Chartas et al., 2003]. If winds are launched from smaller radii within the

disk, they must have higher velocities in order to escape the black hole.
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With respect to the radiation from the accretion disk, a less energetic continuum

allows for outflows to be launched to higher velocities. This is because the higher

the energy of the ionizing photons, the more likely the launched particles will be

overionized. If, however, the continuum is less energetic (yet still energetic enough

to contain photons at the resonant frequency of C iv), the ions in the wind will stay

intact and will be able to be launched to higher velocities than they would be if the

wind were overionized. We would thus expect to see C iv broad absorption lines

with troughs extending to high outflow velocities to have a lower peak heights in

the He ii and O iii] lines and higher Al iii/C iii] line ratios (as a result of a softer

ionizing continuum). Conversely, C iv broad absorption lines that do not extend to

high outflow velocities should have higher He ii and O iii] emission line peak heights

and lower Al iii/C iii] line ratios (as a result of a harder ionizing continuum).

4.2.1 First Category

Using the above interpretations, we can examine the relative shapes of the composites

in the 10 clusters. The first category contains the DR60, LP119, and B186 clusters

which contain 60, 119, and 186 objects, respectively (see Figures 4.4 and 4.5). Objects

in these clusters have C iv troughs that are broad, relatively shallow, and extending

to high outflow velocities.

Both the C iv and Si iv emission lines are very similar for all composites in the first

category. The C iv broad absorption line in theDR60 cluster extends to high outflow

velocities and is moderately deep. Its He ii and O iii] emission is not very strong

and its Al iii/C iii] line ratio is larger than that of the LP119 or B186 clusters.

These results are consistent with our discussion above on the effects of the ionizing

continuum on the broad absorption line profile.

The C iv broad absorption lines in the LP119 and B186 clusters have sim-

ilar initial and final outflow velocities, He ii and O iii] emission line peaks, and

Al iii/C iii] line ratios suggesting similar continuum source and broad line region

properties. The only difference between the LP119 and B186 composites is the

depth of the C iv broad absorption line. This may imply that the objects in these
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Figure 4.4: Median composite spectra in the wavelength range 1320−1700 Å for the three clusters with broad, high-velocity
C iv profiles (DR60, LP119, and B186) discussed in Section 4.2.1.
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Figure 4.5: Median composite spectra in the wavelength range 1800−2000 Å for the
three clusters with broad, high-velocity C iv profiles (DR60, LP119, and B186)
discussed in Section 4.2.1.
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two clusters come from the same parent class of objects, but contain different amounts

of material along the line of sight (i.e., the wind is thicker in the LP119 case).

4.2.2 Second Category

The second category contains the Y61, BP64, and P79 clusters which contain 61,

64, and 79 objects, respectively (see Figures 4.6 and 4.7). Objects in these clusters

have C iv broad absorption line troughs that are relatively narrow and shallow, and

extend to lower outflow velocities.

The C iv and Si iv emission lines in the Y61 and BP64 clusters are similar, but

not exactly the same. Furthermore, their He ii and O iii] emission line peaks and

Al iii/C iii] line ratios are almost identical. This implies that the source of their

continuum emission may be quite similar. As for the broad absorption lines in the

Y61 and BP64 clusters, the Y61 trough does not extend to as high or as low outflow

velocities as the BP64 trough. The blue wing of the Y61 C iv emission line is less

absorbed than that of the BP64.

Interestingly, the BP64 cluster shows both a narrow, shallow, low-velocity com-

ponent and a broad, shallow, high-velocity component. The Y61 cluster also shows

a very shallow high-velocity component in addition to its low-velocity component.

The presence of these high-velocity components are supported by low peak heights

in He ii and O iii] emission and lower Al iii/C iii] ratios when compared to the

P79 cluster.

The C iv broad absorption line in the P79 cluster does not show a broad, high-

velocity component as supported by its emission line properties. In addition, the

P79 C iv emission line is not heavily absorbed on its blue side.

4.2.3 Third Category

The third category contains the JB78, G117, LT141, and DS179 clusters which

contain 78, 117, 141, and 179 objects, respectively (see Figures 4.8 and 4.9). Objects

in these clusters have relatively deep C iv broad absorption line profiles extending to
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Figure 4.6: Same as Figure 4.4, but for the three clusters with shallow, low-velocity C iv profiles (Y61, BP64, and P79)
discussed in Section 4.2.2.
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Figure 4.7: Same as Figure 4.5, but for the three clusters with shallow, low-velocity
C iv profiles (Y61, BP64, and P79) discussed in Section 4.2.2.
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any outflow velocity.

The C iv, Si iv, He ii, and O iii] emission lines are the strongest and the Al iii/C iii]

ratio is the lowest, out of all 10 clusters, in the JB78 cluster. The high-velocity end

of the C iv broad absorption line in the JB78 cluster is the least absorbed out of all

10 clusters. The above observations imply a highly energetic ionizing continuum. In

addition, the onset of initial outflow velocity in the JB78 cluster is gradual. This

means we are seeing a range of initial outflow velocities, which could imply a range

of different launching radii for the winds.

In theG117 cluster, there appear to be two components to the C iv broad absorp-

tion line: a narrow, deep, low-velocity component and a broad, shallow, high-velocity

component. In addition, the low-velocity absorption is embedded in the C iv emis-

sion line and completely separated from the broad component since the blue wing

of the C iv emission line is clearly visible in the composite. When comparing this

profile to the emission line properties, the He ii and O iii] emission is weak (implying

a softer continuum) and the Al iii/C iii] ratio is low when compared to most other

clusters (implying a harder continuum). So where, then, does the narrow, low-velocity

absorption come from and why is there a contradiction in the continuum energetics?

Since broad absorption line winds are not smooth, but rather clumpy, the two

components could arise as a result of different parts of the wind moving at different

velocities. It could also be the case that we are observing different zones within the

same wind- one being launched from close in and the other from further out in the

accretion disk. Alternatively, it could be that the continuum of the G117 cluster

is reddened by dust along the line of sight, but exterior to the wind. In this case,

the high-velocity component would only be an artifact of the redder continuum and

there would likely only be a low-velocity component. This could imply that since the

continuum of the G117 cluster would be in fact quite strong (comparable to that

of the DS179 cluster, see Figure 4.9), the particles in the wind would be destroyed

before they could be launched and accelerated. Alternatively, the possibly redder

continuum of the G117 cluster may imply a different viewing angle. When the wind

is launched, the velocities of the particles at the base of the wind are lower and as
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Figure 4.8: Same as Figure 4.4, but for the four clusters with deep C iv profiles (JB78, G117, LT141, and DS179) discussed
in Section 4.2.3.
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the wind is driven up and out of the disk, it is accelerated to higher velocities. If the

viewing angle were less inclined, we would be looking through more dust (causing a

redder continuum) and toward the base of the wind (accounting for the low-velocity

component).

The onset of initial outflow velocity in the low-velocity component of theG117 clus-

ter shows a sharp drop. This sharp drop implies that there is a lot of gas along the

line of sight at low radial (i.e., line of sight) velocities. In addition, we could be

looking through the wind in a direction transverse to the velocity vector of the wind

(i.e., the vector starting from the base and pointing in the direction of motion of the

wind). If we were looking transverse to this vector, we would see a lot of gas at a

single velocity, resulting in a sharp drop in the broad absorption line profile.

The LT141 cluster shows a broad, deep C iv broad absorption line profile with a

gradual initial onset in outflow velocities, similar to the JB78 cluster, but more grad-

ual, and reaching a trough minimum at a higher velocity than that of the JB78 clus-

ter. The C iv emission line, however, is shifted to slightly shorter wavelengths than

the C iv emission in most of the other clusters.

The DS179 cluster has a C iv broad absorption line with a narrow, deep, low-

velocity component. The initial onset of the outflow is sharp, similar to that of the

G117 cluster. All of the emission lines in the DS179 cluster are similarly shaped to

those in the JB78 cluster, but are not as strong. This could mean that the ionizing

continuum in both the JB78 andDS179 clusters is similar and that in the JB78 case

the covering fraction of the broad line region gas is higher, allowing it to absorb and

re-emit more of the light from the accretion disk.

Finally, the G117 cluster shows similar emission line properties (Al iii, Si iii],

and C iii]) to the DS179 and JB78 clusters. This could mean that the quasars in

these three clusters (JB78, DS179, and G117) are similar in their physical nature,

but are at different levels of brightness. This claim could be further validated using

other properties of the quasar such as the black hole mass. If true, this would be

an interesting result since although the emission line properties are similar (i.e., the

broad line region properties are similar), the wind shows differences. In this case,
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the brightest quasars (in the JB78 cluster) are able to launch their winds to higher

outflow velocities than the faintest ones (in the G117 cluster).

4.2.4 Summary

The above discussion can be used to further separate our clusters into at least 5

classes of physically distinct objects. If we merge the BP64 and Y61 clusters, the

B186 and LP119 clusters, and the P79, JB78, DS179, and G117 clusters, then

we have 5 classes of objects total. We have merged the JB78, P79, DS179, and

G117 clusters because their emission line properties are similar (assuming that the

continuum of the G117 cluster is reddened). This gives us the following 5 classes of

objects:

1. Broad, shallow, medium- to high-velocity C iv troughs with a less energetic ion-

izing continuum. This category, which combines the B186 and LP119 clusters,

accounts for about 28% of our sample.

2. Broad, moderately deep, highest-velocity C iv troughs with a less energetic ion-

izing continuum. This category, which includes the objects in theDR60 cluster,

accounts for about 5.5% of our sample.

3. Two-component C iv troughs (broad, shallow, high-velocity and narrow, shal-

low, low-velocity) with a less energetic ionizing continuum. This category, which

combines the BP64 and Y61 clusters, accounts for about 11.5% of our sample.

4. Broad, deep, medium- to high-velocity C iv troughs with a less energetic ioniz-

ing continuum. This category, which includes the objects in the LT141 cluster,

accounts for about 13% of our sample.

5. Narrow, low-velocity C iv troughs with a more energetic ionizing continuum.

This category, which combines the JB78, P79, DS179, and G117 clusters,

accounts for about 42% of our sample.
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The above results can be compared with recent results in the literature. For

example, Tammour et al. (in prep.) applies a K-means clustering algorithm to a

sample of broad absorption line quasars in the Gibson et al. [2009] catalog. They

cluster their spectra based on the properties (equivalent width, vmin, and vmax) of the

C iv broad absorption line. The results of their clustering show similar composite

spectra, in that objects with more energetic ionizing continua preferentially show

broad absorption lines with lower outflow velocities.



Chapter 5

Conclusions

We have applied a hierarchical clustering algorithm to a sample of 1,084 broad ab-

sorption line quasar spectra from the SDSS DR5. We identify at least 5-10 subclasses

of broad absorption line quasars based on the shapes of their C iv broad absorption

line profiles. We use median combined spectra of the objects in each cluster to val-

idate the clustering technique. By comparing the shapes of the C iv profiles within

clusters of objects to other features in the ultraviolet spectrum, we can examine how

the properties of the underlying continuum are intimately connected with the prop-

erties of the broad absorption line wind. The results of this work show similarities

to the results found in the literature using both different clustering techniques and

different parameters over which to perform the clustering [Tammour et al., in prep.].

We emphasize that the classification put forth in this work is one of many possible

interpretations of the results of the clustering. Nevertheless, physical insight can still

be gained by comparing the properties of the spectra in each of the clusters. Broad

absorption line shapes are governed by a variety of contributing effects such as the

geometry of the outflow, the launching radius of the wind, and even the strength of

the continuum radiation from the accretion disk. Thus, we can constrain the structure

and dynamics of the outflowing wind by understanding how they respond to changes

in factors such as the strength of the ionizing continuum and the geometry of the

outflow.
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