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A quantile estimation approach to indentify income and age variation in the value of a 
statistical life 

 

Abstract: 

Theory predicts variation in the marginal willingness to pay for a mortality risk reduction 

with individual characteristics.  Two dimensions of heterogeneity, associated with income 

and age differences, have recently received attention due to their policy relevance.  We 

propose a quantile regression approach to simultaneously explore these two sources of 

heterogeneity and their interactions within the context of the hedonic wage model, the most 

common revealed preference approach for obtaining value of statistical life estimates.  We 

illustrate the approach using data from the Health and Retirement Study (HRS).  Our results 

confirm differences in the wage-risk tradeoff with age and across the wage distribution.  In 

addition, we find that the effect of age on the wage-risk tradeoff varies across the wage 

distribution.  Thus, the conventional mean hedonic wage regression, even when the mean 

effect is allowed to vary with age, masks important hetereogeneity. 

 

Key words: value of a statistical life, quantile regression 
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I. Introduction 

The valuation of mortality risk reductions has important implications for numerous policy 

arenas including transportation, occupational safety, food safety, and environmental quality 

because mortality risk reductions represent a large share of the estimated benefits of these 

policies.  For example, for each of the three final air quality rules promulgated in 2004, 

reduced mortality risks represented approximately ninety percent of total monetized benefits 

(Robinson (2007)).   Because the risk reductions associated with these policies are distributed 

non-uniformly across individuals, indentifying variation in the willingness to pay for 

mortality risk reductions across individuals is policy-relevant.  

An extensive literature examines various sources of heterogeneity in estimates of the 

marginal willingness to pay for a fatality risk reduction, the so-called value of a statistical life 

(VSL).  Economic theory suggests factors that influence the magnitude of the tradeoffs 

including (but not limited to) preferences and ability to pay.  The two potential sources of 

VSL heterogeneity that have received the most attention in the literature are due to age and 

income differences.  

The hedonic wage model is the dominant approach to obtaining estimates of the 

VSL ((Viscusi, 1993).  The empirical explorations of VSL heterogeneity within this 

framework often involve the inclusion of an interaction between the fatality risk measure 

and a variable that captures the relevant dimension of heterogeneity (e.g., age) as a regressor 

in the hedonic wage specification.  Income heterogeneity is not amenable to this interaction 

technique with hedonic wage models.  As Hammitt et al. (2003) note, “Because income (or 

the wage rate) is the dependent variable, it cannot be used as an explanatory variable, and so 

these studies typically do not provide information about income elasticity” (p. 1).  Existing 
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techniques for exploring income heterogeneity of the VSL either rely on revealed preference 

data from several samples (e.g., hedonic wage meta-analyses) or on stated preference data. 

We propose a quantile regression approach to examine income (i.e., wage) 

heterogeneity.  To our knowledge, our framework represents the only revealed preference 

approach to exploring wage heterogeneity in the VSL with individual-level data.  By 

including additional controls to account for age heterogeneity, our empirical models also 

allow for a differential effect of age on the wage-risk tradeoff at different points in the wage 

distribution. This is important because numerous important changes, some of which affect 

the jobs individuals choose and thus their income and/or their valuation of mortality risks, 

occur in parallel with aging (Riley and Chow (1992), DeShazo and Cameron (2005), Aldy and 

Viscusi (2007), Evans and Smith (2008)).   

Previous revealed preference applications that examine the impact of either wage or 

age heterogeneity on VSL estimates without controlling for the other source of variation are 

unable to isolate the specific influence of either source.  Quantile regressions solve this 

identification problem and parse these two policy-relevant dimensions of heterogeneity.  We 

motivate the use of quantile regressions with a conceptual model based on the conventional 

hedonic wage framework.  Our conceptual framework supports an empirical model, such as 

the quantile regression, that identifies the risk-wage tradeoff across different percentiles of 

the wage distribution.       

The topic of VSL heterogeneity with respect to age differences motivated a recent 

symposium in the Review of Environmental Economics and Policy.  The introduction to the 

symposium describes the VSL-age relationship as “an issue of considerable controversy in 

policy circles and keen interest within the research community” (p. 169, Stavins et al. (2007)).  

To illustrate the potential policy relevance of age variation in the VSL, Evans and Smith 
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(2006) mention four economically significant air quality rules for which mortality risk 

reductions for individuals over age 65 account for between 65 and 70 percent of the 

estimated total benefits.  Robinson (2007) notes that for policies that decrease particulate 

matter concentrations, roughly 80 percent of the mortality risk reductions accrue to 

individuals over age 65.  Thus, adjustment to VSL estimates on the basis of age, as reported 

for example in the “alternative” benefit analyses of the Clear Skies Initiative, can give rise to 

vast differences in total monetized benefits (U.S. Environmental Protection Agency (2002)). 

Following the controversy surrounding the so-called “senior death discount”, John 

Graham, then Administrator of the Office of Information and Regulatory Affairs, issued a 

memorandum discouraging the adjustment of VSL for age differences (2003).1  The U.S. 

Environmental Protection Agency’s (EPA) recently revised Guidelines for Preparing Economic 

Analyses reiterate this recommendation and refer to the mixed theoretical and empirical 

findings with regard to the relationship between age and the VSL (U.S. Environmental 

Protection Agency (2008)).2  Aldy and Viscusi (2007) and Krupnick (2007) provide 

informative discussions of the empirical techniques that exist for exploring variation in the 

VSL with age using revealed and stated preference data, respectively. 

The responsiveness of the VSL with respect to income variation has implications for 

inter-temporal and cross-country benefit transfers.  The EPA’s practice of longitudinal 

adjustment represents an example of the former.  The EPA adjusts VSL estimates to 

account for anticipated income growth based on theoretical and empirical support for a 

                                                 
1 See Aldy and Viscusi (2007), Robinson (2007), and Evans and Smith (2006) for more detailed discussions of 
the senior death discount.  
2 We received permission to cite this document from Kelly Maguire, National Center for Environmental 
Economics, U.S. Environmental Protection. 
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positive income elasticity of the value of a statistical life (IEVSL). 3  Since many current 

policy changes result in reductions in future mortality risks, the IEVSL is often a central 

component in estimating the benefits of large-scale policy changes.   

Evans and Smith (2008) cite the prospective report on the costs and benefits of the 

Clean Air Act Amendments for 1990 to 2010 to illustrate the implications of this adjustment.  

The report includes a sensitivity analysis using IEVSL estimates of 0.08, 0.4, and 1.0, which 

result in VSL estimates for 2010 of $4.9, $5.3, and $6.3 million (in undiscounted 1990 

dollars) respectively.  Because mortality risk reductions represent a large fraction of the 

benefits of improved air quality, the more than $1 million difference between the estimated 

VSL for 2010 based on the upper and lower IEVSL translates into drastically different 

aggregate benefit estimates.   

To illustrate the implications of the IEVSL for cross-country benefit transfer, we 

present an example using parameters from a study by Strukova et al. (2006) that estimates 

the mortality costs of air pollution in major Ukrainian cities.  The lack of VSL estimates 

based on Ukrainian data necessitated the benefit transfer.  The authors assume that the ratio 

of VSLs in Ukraine and in a group of higher income countries equals the ratio of associated 

per-capita incomes, an assumption that is equivalent to setting the IEVSL to one.  With 

22,000 deaths annually attributed to air pollution in Ukraine, they obtain an estimated annual 

mortality cost of air pollution of $2 billion (2004 dollars).  Consider the implications of 

alternate assumptions about the IEVSL.  Values of 0.08 and 0.4 (the same values used in the 

EPA report) imply estimated annual mortality costs of air pollution in Ukraine of $40.7 

billion and $27.3 billion respectively.  The policy implications of different values of the 

IEVSL are striking. 
                                                 
3 The EPA does not, however, adjust for cross-sectional variation in income.  See. 
http://yosemite.epa.gov/ee/epa/eed.nsf/webpages/Mortality%20Risk%20Valuation.html#WhatAdjustments  

http://yosemite.epa.gov/ee/epa/eed.nsf/webpages/Mortality%20Risk%20Valuation.html#WhatAdjustments
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Several empirical studies, adopting various strategies, estimate the size of VSL 

responsiveness to income changes and confirm the theoretical sign prediction although 

estimates of the IEVSL vary in magnitude across studies.  The empirical studies vary along 

several dimensions, including the way in which income is measured.  Some studies exploit 

variation in unearned income while others use variation in earned income or in total income.  

We are aware of four methodologies used to estimate the IEVSL.  Examples of the first 

methodology, which exploit variation in (sample mean) incomes across the hedonic wage 

studies included in meta-analyses to estimate the IEVSL, include Mrozek and Taylor (2003), 

Viscusi and Aldy (2003), and Bowland and Beghin (2001).  A second method, employed by 

Hammitt et al. (2006) and Costa and Kahn (2004), estimates the IEVSL by comparing VSL 

estimates, based on hedonic wage studies, at different points in time for a single country 

(Taiwan for the Hammitt et al. study and the U.S. for the Costa and Kahn analysis).  A third 

technique, also discussed in Hammitt et al. (2006), involves cross-country comparisons of 

VSL estimates from hedonic wage studies.  These first three methods are akin to estimating 

second stage demand models, a technique more common in the hedonic property value 

literature.  As a result, they require VSL estimates from multiple hedonic wage regressions.  

The final methodology relies on stated preference (i.e., contingent valuation), rather than 

revealed preference (i.e., hedonic wage), data.  For examples, see Hammitt and Graham 

(2000), Hammitt and Zhou (2000), and Mitchell and Carson (1986). 

While these methods differ in their use of revealed or stated preference, individual or 

aggregate data, they each focus on the responsiveness of the VSL to changes in income at a 

specific point in the wage distribution.  Our quantile specifications allow us to estimate the 

wage-risk tradeoff at various points in the wage distribution.  By introducing a standard 

method used to explore other dimensions of heterogeneity into our quantile framework, our 
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models also examine age variation in the VSL.  Comparisons across income quantiles and 

different ages provide insight into how the VSL varies with income and age.     

Section II presents a conceptual model to motivate our use of quantile models for 

exploring income heterogeneity in the VSL.  Our conceptual framework focuses on the 

income-VSL relationship since there is general consensus in the literature that the VSL is 

likely to vary with age (see the discussion in Hammitt (2007) and the citations therein).  

Section III discusses the empirical specifications and introduces the data we exploit to 

illustrate our methodology.  Section IV contains our empirical results and section V 

concludes. 

 

II. Conceptual framework 

The conventional hedonic wage model estimates the wage-risk tradeoff at a single point in 

the wage distribution (i.e., the mean).  One might conclude from this that either (1) we care 

only about the wage-risk tradeoff at this point or (2) we expect little variation in the wage-

risk tradeoff across the wage distribution and therefore the wage-risk tradeoff at the mean is 

a reasonable proxy for the wage-risk tradeoff at other points of the distribution.  The policy 

implications discussed above contradict (1).  The discussion in this section provides grounds 

for questioning (2) and motivates the quantile regressions to identify variation in the 

estimated wage-risk tradeoff across the wage distribution.  We motivate our quantile 

approach by exploring the implications of a wage change for the wage-risk tradeoff within 

the conceptual model typically used to motivate the hedonic wage framework.   

Let ( ) DAscU s ,, =  represent the state-dependent utilities associated with the 

consumption of a numeraire good, denoted c, in alive (A) and dead (D) states, respectively.  In 

addition, assume, as is standard in the literature (Jones-Lee, 1974), ( ) ( )cUcU DA > , 
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( ) 0>′ cU s  for DAs ,= , and ( ) ( )cUcU DA
′>′ .  The probability of death is denoted p where 

we assume the sole source of mortality risk is occupational.4  The individual budget 

constraint is ( )pWc =   where ( )pW  is the equilibrium wage function.  Substitution yields 

the expected utility function defined in equation (1). 

( )( ) ( ) ( )( )pWUppWpUEU AD −+= 1      (1)  

Assuming EU  is strictly concave in p, the first order condition for a maximum is given in 

(2). 

 ( ) ( ) ( ) 01 =′+′−+−= WpUWUp
dp
dWUUEU DAADp    (2) 

Following Thaler and Rosen [1976], define an acceptance wage θ  as the amount of 

money that makes the worker indifferent to jobs with different levels of risk. With 0EU  

representing a specific level of expected utility, expression (3) implicitly defines θ  as a 

function of p and 0EU : 

 ( ) ( ) ( ) 01 0 =−−+ EUUppU AD θθ       (3). 

The slope of the acceptance wage with respect to p is equal to the marginal rate of 

substitution between p and θ , or the value of a statistical life (VSL) as in equation (4). 

( ) ( )[ ]
( ) ( ) ( )

VSL
pUUp

UU

DA

DA
p =′+′−

−
=

θθ

θθθ
1

      (4) 

Thaler and Rosen show 0>pθ  and derive the following additional properties associated 

with θ : 

 0,0 >> pEUpp θθ .        (5) 

                                                 
4 See Evans and Smith (2006) for a discussion of multiple sources of mortality risk. 
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Figure 1 illustrates the risk-earnings indifference curves, ( )EUp;θ , for different 

levels of expected utility with 210 EUEUEU << .  In equilibrium, 
dp
dW

p =θ .  With data on 

wages and occupational fatality risk measures, 
dp
dW  can be estimated using a hedonic wage 

model (see Rosen [1974]) that characterizes the equilibrium locus of wage/job attributes 

(including job-related risks).   

We consider the implications of this basic conceptual framework to explore how a 

specific form of income variation, holding preferences constant, affects the marginal rate of 

substitution between p and θ .  Our empirical specifications introduced in the next section 

exploit cross sectional (i.e., between) variation as well as temporal (i.e., within) variation in 

income.  Thus, the conceptual exercise we present here, based on Thaler and Rosen (1976), 

illustrates an extreme case: even with fixed preferences, differences in income are associated 

with differences in pθ .   

Following Thaler and Rosen, parameterize ( )pW  such that 

( ) ( )ppW ωγ +=  

with ( )pω  an increasing function of p.  We consider the effect of an increase in γ  on pθ  

where γ  represents a component of the wage unrelated to the job’s riskiness.  As noted by 

Thaler and Rosen, a change in γ  parallels a pure income effect in demand theory.  Thus an 

increase in γ  leads the worker to choose a safer job; job safety is a normal good with respect 

to changes in γ  (see Proposition I of Thaler and Rosen, p. 276).  With respect to pθ , an 

increase in γ  has three effects, the relative magnitudes of which determine the net effect of 

an increase in earnings on the VSL.   
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Figure 1 provides a graphical illustration of these effects.  Begin at point A, where 

the individual, faced with the budget line labeled ( ) ( )ppW ϖγ += 00 , optimally chooses a 

job with risk 0p .  Her choice yields expected utility of 0EU .  From here, consider an 

increase in γ  from 0γ  to 1γ .  This implies a parallel upward shift in the budget line from 

( ) ( )ppW ϖγ += 00  to ( ) ( )ppW ϖγ += 11 .  With p fixed at 0p , the increase in earnings 

moves the individual from point A, with expected utility of 0EU , to point B, where 

expected utility is 01 EUEU > .  Although expected utility is higher at point B, given the 

change in the budget line, point B does not represent an optimum.  Note, however, that by 

(5), pθ  (the VSL) is higher at point B than at point A.   

Since point B is suboptimal given ( )pW1 , the individual will not remain at B; she will 

reoptimize by choosing the level of risk at which the risk-earnings indifference curve is 

tangent to ( )pW1 .  This occurs at point C with a risk level of 1p  and expected utility of 

2EU .  The movement from point B to point C results in decreased risk and increased 

expected utility.  To isolate these two effects on pθ , we add a fourth point, labeled point D, 

to the figure.  At point D, the level of risk is the same as at point C ( 1p ) but expected utility 

is the same as at point B ( 1EU ).  As we move from point B to point D, risk decreases (from 

0p  to 1p ) but expected utility is constant at 1EU .  Since 0>ppθ , pθ  at point D is lower 

than at point B (i.e., the movement from B to D decreases the VSL).5  Pratt and Zeckhauser 

(1996) refer to this as the dead anyway effect.  On the other hand, as we move from point D 

to point C, expected utility increases (from 1EU  to 2EU ) but risk is constant.  Since 

                                                 
5 Since points B and D do not represent tangencies, they are unobserved for this particular worker.  However, 
they may be observed in the data if these points represent optima for other workers. 
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0>pEUθ , pθ  at point C is higher than at point D (i.e., the movement from D to C increases 

the VSL).  A comparison of pθ  at points A and C requires accounting for the magnitudes of 

these three effects.  Unless the dead anyway effect, which decreases the VSL as γ  increases, 

dominates the other two effects, which both increase the VSL as γ increases, then we expect 

to observe higher VSL estimates as earnings increase.   

Regardless of the magnitudes of the effects, the model motivates consideration of 

empirical specifications that allow the estimated wage-risk tradeoff to vary with earnings.  

Since a conventional hedonic wage model provides an estimate of pθ  at the mean of the 

earnings/wage distribution, it may inaccurately reflect the wage-risk tradeoff for individuals 

at other points in the wage distribution.  The quantile estimation approach we discuss in the 

next section allows us to estimate pθ  at different points in the wage distribution.  To 

simultaneously explore income and age heterogeneity, we augment our quantile 

specifications using the interaction technique mentioned above and described in more detail 

in the next section. 

 

III. Data and empirical specifications  

Conventional hedonic wage models relate the logarithm of the hourly wage of worker i to 

individual and job characteristics, including a measure of the occupational job risk faced by i.  

With cross sectional variation in wages and risks, ordinary least squares (OLS) estimates the 

wage-risk tradeoff at the mean of the wage distribution.  Our conceptual model suggests 

variation in the wage-risk tradeoff at different points of the wage distribution.  Quantile 

regressions identify the empirical significance of such variation.  To account for age 

heterogeneity, our quantile models include an interaction term between job risk and age, a 
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technique first proposed for conventional hedonic wage models by Thaler and Rosen 

(1976).6   

We use data from the Health and Retirement Study (HRS). 7  The HRS is a national 

panel survey representative of those individuals between the ages of 51 and 61 (and their 

spouses) in 1991.  The first interview occurred in 1992 (wave 1) with subsequent interviews 

every two years.  Our sample consists of any HRS respondent over age 30 who worked in at 

least one of waves 2 (1994), 3 (1996), or 4 (1998).   

As a benchmark for comparison, we estimate a log-linear hedonic wage regression 

with an interaction term to allow for variation in the estimated wage-risk tradeoff with age as 

in Aldy and Viscusi (2003).  This specification relates the log of the real wage of individual i  

at time t to individual and job characteristics including on-the-job fatality risk, age, gender, 

experience, occupation-specific indicators collected in the vector itOC , education-specific 

indicators collected in vector iE , race-specific indicators collected in vector iR , and time 

period-specific (or wave-specific) indicators collected in vector tT  to obtain 

( )
ittiiititi

ititititit

uTREOCmale
riskageageriskwage

+++++++
+++=

wθδgξφ
βββa

exp
*ln 321 . (6) 

The HRS provides information on nominal hourly wages, actual for workers paid 

hourly and imputed for salaried workers.  From these data, we calculate real hourly wages, 

with 1998 as the base year, using the annual average Consumer Price Index provided by the 

U.S. Bureau of Labor Statistics.  Table 1 contains summary statistics on real wages as well as 

other demographic variables of interest for our sample. 

                                                 
6 See Aldy and Viscusi (2007) for a discussion of other studies that have used this technique. 
7 The HRS (Health and Retirement Study) is sponsored by the National Institute of Aging (grant number NIA 
U01AG09740) and conducted by the University of Michigan.  We rely on the RAND Corporation’s cleaned 
version of the HRS available at http://www.rand.org/labor/aging/dataprod/#randhrs. 

http://www.rand.org/labor/aging/dataprod/#randhrs


 14 

Our measure of on-the-job fatality risk is industry- and age-differentiated as in 

Viscusi and Aldy (2007) and Evans and Smith (2008).  That is, we structure fatality risk cells 

for each industry (by 2-digit SIC code) and age group using data from the Bureau of Labor 

Statistics (BLS) Census of Fatal Occupational Injuries (CFOI) to develop a more refined 

measure of job risk than is typical of hedonic wage studies.  Our risk measure gives the 

number of fatalities, from the CFOI, per 10,000 workers, from the Current Population 

Survey, in the respondent’s industry and age group.8   

 Our benchmark model employs the standard approach of minimizing the sum of 

squared residuals to estimate the coefficients in (6).  In the absence of the interaction term, 

1β  measures the marginal impact of job risk on the conditional mean of the log wage, 

( )( )itit XwageE ln , where X denotes the included covariates.  With the inclusion of the 

interaction term, the marginal impact of job risk on the conditional mean of the log wage for 

an individual with mean age, denoted 
_____
age , is given by 

_____

31 ageββ + . 

Instead of evaluating the impact of risk on the mean, our quantile regressions 

estimate the marginal impact of risk on the log wage at the 10th, 25th, 50th, 75th, and 90th 

percentiles of the wage distribution.  We specify the conditional quantile function for 

quantile τ , denoted τQ , as in (7): 

( )( )
tiiitii

itititititit

TREOCmale
riskageageriskXwageQ

tttttt

ttttt

wθδgξφ

βββa

++++++

+++=

exp
*ln 321 (7) 

As is standard in the literature, expression (7) represents a linear approximation for the 

conditional quantile (see, for example, Koenker and Basset (1982), Abrevaya and Dahl 

                                                 
8 The risk measures are formed for the following age groups according to the CFOI data availability: 16-19, 19-
24, 24-34, 34-44, 44-54, 54-64, and over 64.  The first age group is not represented in the HRS data.  The wave 
2 risk measure uses data from 1994.  The measures for waves 3 and 4 average data from 1995/1996 and 
1997/1998 respectively. 
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(2008)).  The slope coefficients represent the marginal impacts of the explanatory variables 

on the tht  quantile of the log wage.  Consistent with the theory, the model does not assume 

that an individual at the tht  quantile will remain at that point of the wage distribution if any 

of the explanatory variables change.  

In our pooled quantile regression, the coefficients minimize  

( ) ( )( )( )∑∑ −
t

ititit
i

XwageQwage lnln ttρ      (8) 

where ( ) τρτ uu =  if 0>u  and ( ) ( )1−= τρτ uu  if 0<u .  See Koenker (2005) for a more 

detailed discussion.  We estimate two quantile models based on the specification described 

by (7).   The models differ in the bootstrapping method we employ to obtain standard 

errors.  For our first quantile model, we obtain standard errors through bootstrapping using 

a simple sub-sampling method (see, for example, Cameron and Trivedi (2005)).  This 

bootstrapping technique treats observations from the same individual as independent.  In 

our second quantile model, we obtain the standard errors using a bootstrapping technique 

that recognizes the potential dependence of wages within individuals.  We follow Abrevaya 

and Dahl (2008) and draw random subsamples of individuals repeatedly with replacement.  

For consistency, we use the same bootstrapping techniques to obtain standard errors for our 

benchmark log-linear hedonic wage models. 

To summarize, our empirical strategy to simultaneously explore age and income 

heterogeneity involves estimating two sets of models.  First, we estimate pooled OLS and 

pooled quantile hedonic wage models, bootstrapping the standard errors using a technique 

that assumes independence among observations from the same individual.  Second, we 

estimate the same pooled OLS and pooled quantile specifications but employ a block 

bootstrapping technique that recognizes the potential dependence of wages within 
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individuals.  Before turning to these results, we begin in the next section by reporting results 

from a series of benchmark models. 

 

IV. Results 

Our first set of results isolates the role of income hetereogeneity.  That is, we begin by 

estimating a quantile hedonic wage model without the age-risk interaction term.  For 

comparison, we estimate a similarly specified ordinary least squares model.  Table 2 reports 

these results.  Results from the quantile regressions with bootstrapped standard errors are 

given in columns two through six and the OLS results are reported in the final column.  All 

specifications include occupational fixed effects.9  The excluded categories for the respective 

indicator variables are operator/handlers from the occupation indicators, college education 

and above from the education indicators, a broad other category from the race indicators, 

and the final time period (wave 4) from the wave indicators.  The estimated marginal impact 

of risk on the conditional mean of the (log) real wage distribution, 0.021, implies a VSL of 

$6.7 million (1998$), which falls within the range identified in hedonic wage meta-analyses by 

Mrozek and Taylor (2002) and Viscusi and Aldy (2003).   

Turning to the results from the quantile regressions in Table 2, the coefficient on job 

risk is insignificant for the 10th and 25th percentiles but positive and significant for the 50th, 

75th, and 90th percentiles.  The marginal impact of risk at the 75th and 90th percentiles exceeds 

that at the median of the real wage distribution.  Note that a comparison of the quantile and 

OLS results indicate about a fifty percent increase in the estimated wage-risk tradeoff at the 

median compared with the mean of the wage distribution.  Figure 2 illustrates the results of 

the OLS and quantile models.  The shaded area in the figure represents the 95 percent 
                                                 
9 We do not report the coefficient estimates on the occupational fixed effects.  Full results are available by 
request from the authors. 
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confidence interval for the estimated risk coefficients in the quantile regressions.  The 

comparison suggests that while the OLS results may represent the sample at lower 

percentiles of the wage distribution well, the impact on the conditional mean falls below the 

estimate at the 75th and 90th percentiles.   

The results for the other covariates in the pooled OLS and quantile regressions 

coincide with the previous hedonic wage literature.  The education indicators indicate 

positive returns to schooling.  That is, across all specifications, individuals with less than 

college education make lower wages than individuals with college education or higher (the 

excluded category).  The positive and generally significant coefficients on the race indicators 

show that the ethnicities included in the specification tend to make higher wages than a 

broad other category.  The occupational indicators absorb unobserved job characteristics 

without interpretation.  The consistently positive and significant coefficient on experience is 

intuitive.  Given the inclusion of a control for experience in the models, the negative and 

significant coefficients on age suggest lower wages among older workers of similar 

experience levels.  The coefficient on the male indicator variable is consistently positive and 

increases over the wage distribution.  This suggests a higher male-female wage gap at the 

upper end of the wage distribution, a finding consistent with Garcia et al. (2001).  The time 

indicators generally indicate lower real wages in the first two sample periods (wave 2 and 3) 

compared to the final sample period (wave 4).   

Table 3 reports our primary results, from quantile hedonic wage regressions that 

account for age (and of course wage) heterogeneity.  The standard errors reported in 

parentheses below the coefficient estimates assume independence whereas those in brackets 

are obtained using the block bootstrapping technique described above.  The final column of 

Table 3 reports results from comparable OLS models.  The general pattern of results is 
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similar to that of Table 2.  We focus our discussion on the results with respect to variation in 

the wage-risk tradeoff with age and across the wage distribution.  First, the consistently 

negative coefficient on the risk-age interaction suggests a lower wage-risk tradeoff among 

older individuals at each wage quantile.  Second, a comparison of the estimated coefficients 

on the risk-age interactions across the quantiles suggests a differential effect of age on the 

wage-risk tradeoff across the wage distribution.  The results suggest that the dampening 

effect of age on the wage-risk tradeoff is strongest at the lowest quantiles.  Thus, the mean 

hedonic wage regression (i.e., OLS), even when we include an age-risk interaction term, 

masks important hetereogeneity.  

To explore the impact of age and wage heterogeneity on VSL estimates, we use the 

(marginally) statistically significant estimated wage-risk tradeoffs reported in Table 3 to 

calculate VSL estimates for representative 50, 55, and 60 year old individuals with real wages 

at different points in the wage distribution. 10  The VSL estimates assume the individual 

works forty hours per week for fifty weeks per year.  Table 4 reports these results.  

Comparisons across points of the real wage distribution for an individual at a given age 

reveal the considerable effect of income heterogeneity on the VSL estimates.  Variation in 

the real wage affects VSL estimates in two ways, through its impact on the marginal effect of 

risk and by affecting the wage used in calculating the VSL estimate.  Focus on the results for 

a 50 year old individual and consider these effects as we move from the 10th to 75th 

percentile of the wage distribution.  Assuming the same marginal impact of risk, we expect 

the VSL estimates to increase in proportion to the increase in real wages (the second effect).  

However, this is not the case since the marginal impact of risk first increases then decreases 

as we move up the wage distribution (the first effect).  The substantial increase in the VSL 
                                                 
10 Since the distribution of age is similar across the different quantiles of the real wage distribution, we focus on 
three ages of which the HRS is intended to be representative. 
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estimates between the 25th and 50th percentiles, across all three ages, is due more to the 

almost three-fold increase in the marginal impact of risk than to the approximately $4 

increase in the real hourly wage.  Restricting attention to a given point in the real wage 

distribution and comparing across the three ages suggests that the effect of age 

heterogeneity, which results in lower VSL estimates with age in our application, is less 

pronounced than the effect of income variation.   

We note several caveats with respect to our findings.  First, Smith et al. (2001) 

estimate hedonic wage models with data from the HRS and note the importance of 

controlling for sample selection given the age profile of the sample.  Our models do not do 

so, as sample selection in quantile regression is a challenging open research topic (Koenker 

and Hallock 2001a).  Buchinsky (2001) represents an example of significant progress in this 

direction.  His method includes all explanatory variables of the target specification in the 

selection equation.  We are unable to satisfy this data requirement because we do not 

observe job risk or occupation for those HRS respondents who are not working. 

Applications that account for sample selection or different populations represent an 

important complement to our research.   

Second, while the pooled quantile regression approach is consistent with the theory 

in that it allows the marginal impact of risk and age to vary across the wage distribution, it 

does not account for unobserved heterogeneity that may contribute to variations in earnings. 

A recent paper by Kneisner et al. (2005) that compares conventional VSL estimates obtained 

from cross sectional data to VSL estimates from panel data models highlights the 

importance of controlling for unobserved heterogeneity in conventional (i.e., mean) hedonic 

wage models.   While the literature examining the treatment of unobserved effects in 

quantile regressions is in its naissance, there currently exist a few candidate approaches.  As 
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an important recent addition to the literature, Abrevaya and Dahl (2008) develop a correlated 

random effects approach.  Alternatively, Koenker (2004) suggests a dummy variable 

regression that restricts the impacts of the unobserved effects across quantiles.  Bache, Dahl, 

and Kristensen (2008) propose augmenting the quantile specifications to allow for correlated 

random effects based on the so-called Mundlak-device (1978).  Identification of the marginal 

impact of risk on the wage in these models requires sufficient variation within individuals.  

The nature of the industry/age job risk measure we employ and the low incidence of job 

switching among the HRS respondents limit this variation and preclude the panel quantile 

approaches for our data.11  An alternative panel dataset with more variation in the job risk 

measure, both between and within, such as that used in Kneisner et al. (2006), may broaden 

the set of applicable panel quantile models.  A comparison of the approaches for modeling 

unobserved heterogeneity within the context of the hedonic wage framework represents an 

interesting extension of our results. 

 

V. Conclusion 

Our quantile regression approach provides insight into the relevance of earnings and 

age variation for estimates of the marginal willingness to pay for mortality risk reductions.  

Our approach has several advantages over other techniques used to explore income or age 

heterogeneity in the VSL.  First, most approaches either focus on income or age 

heterogeneity, rather than exploring both dimensions within a single framework.12  Our 

unified model allows us to examine the relative importance of these two dimensions of 
                                                 
11 In an effort to explore the potential importance of controlling for unobserved heterogeneity in our 
application, we also estimated a standard fixed effects model where we obtain an estimated coefficient on risk 
similar to the OLS estimated wage-risk tradeoff.  This result is in contrast to Kneisner et al. (2006) who use 
data from the Panel Study of Income Dynamics (PSID).  Differences in the characteristics of the respondents 
represented in the HRS and those represented in the PSID may explain this divergent result. 
12 See recent work by DeShazo and Cameron (2005) for a stated preference approach to simultaneously 
exploring the impacts of several factors that vary with age on the valuation of risk reductions. 
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heterogeneity.  Our results, based on the HRS data, suggest that earnings heterogeneity 

contributes more to variation in VSL estimates than do differences in age.  Second, in 

contrast to other revealed preference approaches to examining income heterogeneity of the 

VSL, the data requirement for implementing the method we propose is less demanding.  

Our approach can be implemented with the same individual-level data on occupational 

choices that would be required to estimate a conventional hedonic wage model.  Finally, 

because our approach is motivated by the same conceptual model used to support the 

conventional hedonic wage specification, comparisons between our findings and results 

from standard hedonic wage regressions are straightforward.     
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Table 1. Summary statistics 

Variable name Variable description Mean 
(standard 
deviation) 

Wage Real hourly wage rate (1998 U.S. dollars) 15.971 
(11.740) 

Risk # fatalities per 10,000 workers in the individual’s 
industry and age category 

0.651 
(0.693) 

Age Individual’s age in years 56.729 
(5.006) 

Male Dummy variable indicating individual is male 0.519 
(0.500) 

Experience Total number of years worked, self-reported 34.604 
(9.865) 

Less than high 
school 

Dummy variable that equals 1 if individual obtained has 
less than 12 years of education (and did not obtain a 
GED) 

0.181 
(0.385) 

GED Dummy variable that equals 1 if individual obtained a 
GED 

0.049 
(0.215) 

High school 
graduate 

Dummy variable that equals 1 if individual has 12 years 
of education but no college degree  

0.333 
(0.471) 

Some college Dummy variable that equals 1 if individual has more 
than 12 years of education 

0.218 
(0.413) 

White/ 
Caucasian 

Dummy variable = 1 if individual’s race is reported as 
white/Caucasian 

0.821 
(0.384) 

Black / African 
American 

Dummy variable = 1 if individual’s race is reported as 
black/African American 

0.141 
(0.348) 

Number of observations 11380 
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Table 2.  Results from benchmark OLS and quantile hedonic wage regressions—
bootstrapped standard errors 

 

Variable Quantile regression OLS 
10% 25% 50% 75% 90% 

Risk -0.005 0.017 0.038* 0.053* 0.052* 0.021* 
 (0.019) (0.014) (0.011) (0.011) (0.012) (0.011) 
Age -0.013* -0.010* -0.007* -0.005* -0.006* -0.009* 
 (0.002) (0.001) (0.001) (0.001) (0.002) (0.001) 
Male 0.181* 0.237* 0.265* 0.278* 0.301* 0.269* 
 (0.021) (0.016) (0.013) (0.014) (0.015) (0.012) 
Wave 2 -0.046* -0.040* -0.020 -0.021 -0.026 -0.033* 
 (0.021) (0.014) (0.012) (0.014) (0.016) (0.011) 
Wave 3 -0.047* -0.035* -0.034* -0.034* -0.040* -0.039* 
 (0.020) (0.015) (0.012) (0.014) (0.016) (0.011) 
Less than high school -0.413* -0.460* -0.521* -0.506* -0.477* -0.494* 
 (0.031) (0.024) (0.019) (0.025) (0.029) (0.019) 
GED -0.421* -0.428* -0.469* -0.390* -0.394* -0.434* 
 (0.036) (0.029) (0.027) (0.042) (0.039) (0.024) 
High school graduate -0.299* -0.320* -0.342* -0.354* -0.372* -0.353* 
 (0.025) (0.019) (0.017) (0.021) (0.026) (0.016) 
Some college -0.249* -0.262* -0.258* -0.255* -0.294* -0.265* 
 (0.027) (0.020) (0.016) (0.019) (0.025) (0.016) 
Experience 0.004* 0.004* 0.005* 0.005* 0.004* 0.004* 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
White/Caucasian 0.013* 0.047* 0.027 0.045 0.060* 0.045* 
 (0.037) (0.026) (0.031) (0.027) (0.030) (0.022) 
Black/African American 0.085* 0.075* 0.053 0.058* 0.068 0.063* 
 (0.039) (0.028) (0.033) (0.029) (0.033) (0.024) 
Constant 2.650* 2.611* 2.704* 2.769* 3.014* 2.816* 
 (0.098) (0.074) (0.067) (0.085) (0.096) (0.066) 
Occupational fixed effects included in all specifications.  Excluded education category: College 
and above, Excluded time indicator: Wave 4, * indicates significance at the 5% level based on a 
standard normal distribution 
Bootstrapped standard errors are reported in parentheses. Bootstrap sample size: 4000, Iterations: 
1000. Nr. Of observations: 11380 
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Table 3. Results from quantile and OLS hedonic wage regressions with age-risk 
interaction—bootstrapped and block bootstrapped standard errors 
Variable Quantile regression OLS 

10% 25% 50% 75% 90% 
Risk 0.520* 0.489* 0.451* 0.306 0.152 0.346* 
 (0.166) (0.127) (0.120) (0.144) (0.149) (0.111) 
 [0.198] [0.158] [0.153] [0.170] [0.179] [0.151] 
Age -0.010* -0.007* -0.004* -0.003 -0.006* -0.006* 
 (0.002) (0.002) (0.001) (0.002) (0.002) (0.001) 
 [0.003] [0.002] [0.002] [0.002] [0.003] [0.002] 
Risk*age -0.009* -0.008* -0.007* -0.004 -0.002 -0.005 
 (0.003) (0.002) (0.002) (0.002) (0.003) (0.002) 
 [0.003] [0.003] [0.003] [0.003] [0.003] [0.003] 
Male 0.181* 0.230* 0.263* 0.279* 0.299* 0.265* 
 (0.022) (0.016) (0.013) (0.014) (0.016) (0.012) 
 [0.027] [0.022] [0.018] [0.019] [0.021] [0.016] 
Wave 2 -0.060* -0.049* -0.021 -0.022 -0.029 -0.036* 
 (0.020) (0.014) (0.012) (0.014) (0.017) (0.012) 
 [0.018] [0.012] [0.010] [0.012] [0.014] [0.010] 
Wave 3 -0.050* -0.044* -0.036* -0.034* -0.042* -0.041* 
 (0.019) (0.014) (0.012) (0.014) (0.017) (0.011) 
 [0.015] [0.010] [0.008] [0.010] [0.012] [0.008] 
Less than high school -0.434* -0.472* -0.517* -0.502* -0.481* -0.496* 
 (0.030) (0.023) (0.019) (0.025) (0.030) (0.019) 
 [0.037] [0.030] [0.027] [0.035] [0.037] [0.026] 
GED -0.404* -0.438* -0.464* -0.384* -0.391* -0.433* 
 (0.037) (0.026) (0.027) (0.039) (0.038) (0.024) 
 [0.044] [0.035] [0.038] [0.056] [0.048] [0.035] 
High school graduate -0.309* -0.326* -0.336* -0.351* -0.372* -0.354* 
 (0.026) (0.019) (0.016) (0.020) (0.025) (0.016) 
 [0.030] [0.025] [0.022] [0.028] [0.034] [0.021] 
Some college -0.257* -0.261* -0.252* -0.254* -0.295* -0.266* 
 (0.026) (0.021) (0.016) (0.018) (0.025) (0.016) 
 [0.031] [0.027] [0.023] [0.025] [0.032] [0.021] 
Experience 0.004* 0.004* 0.005* 0.005* 0.004* 0.004* 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
 [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] 
White /Caucasian 0.021 0.045 0.040 0.042 0.058 0.047 
 (0.040) (0.025) (0.031) (0.025) (0.031) (0.022) 
 [0.051] [0.034] [0.040] [0.035] [0.041] [0.031] 
Black/African American 0.093 0.080* 0.067 0.053 0.067 0.064* 
 (0.042) (0.027) (0.033) (0.028) (0.035) (0.024) 
 [0.055] [0.038] [0.044] [0.038] [0.041] [0.031] 
Constant 2.431* 2.413* 2.497* 2.620* 2.973* 2.635* 
 (0.123) (0.094) (0.089) (0.115) (0.121) (0.084) 
 [0.145] [0.118] [0.114] [0.145] [0.155] [0.110] 
Occupational fixed effects included in all specifications.  Excluded education category: 
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College and above, Excluded time indicator: Wave 4, * indicates significance at the 5% 
level based on a standard normal distribution with bootstrapped and block 
bootstrapped standard errors  
Bootstrapped standard errors are reported in parentheses.  Block bootstrapped 
standard errors are reported in brackets. Bootstrap sample size: 4000, Iterations: 1000. 
Nr. of observations: 11380 
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Table 4. Estimated marginal impacts of risk on the real wage and associated value of 
statistical life estimates by age and real wage 
 
Point in the 
real wage 
distribution 

Real 
hourly 
wage 

Marginal 
impact 
of risk 

VSL 
(million 
$) 

Marginal 
impact 
of risk 

VSL 
(million 
$) 

Marginal 
impact 
of risk 

VSL 
(million 
$) 

50 year old 55 year old 60 year old 
10% $6.49 0.070 9.08 0.025 3.24 <0 <0 
25% $8.85 0.089 15.75 0.049 8.67 0.009 1.59 
50% $13.07 0.251 65.59 0.231 60.36 0.211 55.14 
75% $19.49 0.156 60.81 0.141 54.97 0.126 49.12 
Mean $15.97 0.046 14.69 0.016 5.11 <0 <0 
VSL estimates are measured in 1998 dollars and are calculated as the marginal impact of 
risk*real wage*40*50*10,000. 
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Figure 1. Risk-earnings indifference curves 
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Figure 2. Comparison of estimated risk coefficients across the quantiles with the mean 
estimate—results from benchmark OLS and quantile hedonic wage regressions with 
bootstrapped standard errors 
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Shaded area: 95th percent confidence interval of the quantile estimates based on a standard 
normal distribution.  
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	Let   represent the state-dependent utilities associated with wage income W in alive (A) and dead (D) states, respectively

