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Abstract

The increasing importance of data in the modern world has created a need

for new mathematical techniques to analyze this data. We explore and de-

velop the use of geometry—specifically differential geometry—as a means

for such analysis, in two parts. First, we provide a general framework to

discover patterns contained in time series data using a geometric framework

of assigning distance, clustering, and then forecasting. Second, we attempt

to define a Riemannian metric on the space containing the data in order to

introduce a notion of distance intrinsic to the data, providing a novel way

to probe the data for insight.
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Preface

In this preface, I outline the structure of this senior thesis, which is organized

into two parts.

In Part I, I develop a methodology to detect patterns in time series data.

Although likely employed before, this methodology has not been laid out

as explicitly as or in the generality that this document does. It consists of

three components. In Chapter 2, I break the time series into segments of a

given duration and define a distance metric on this space of segments that

quantifies how similar two segments are. A group of segments sufficiently

close together under this metric constitutes a pattern; standard clustering
algorithms such as k-means clustering, or BUBBLE clustering may be used

to find these groups, as explored in Chapter 3. Finally, I use these clusters

to forecast the time series, as in Chapter 4. I present the results of this

approach applied to stock price data in Chapter 5.

Inspired by this problem, I turn to the geometry of data in Part II.

The methodology above rests crucially on how distance is defined on the

space of data, raising the following question: is there a general way of

assigning distance to a space of data, without domain-specific knowledge?

In Chapter 7, I attempt to define a Riemannian metric on the space of data,

in such an intrinsic way. In Chapter 8, I review information geometry, and
in Chapter 9, I attempt to use it to gain a new perspective on the problem,

developing a duality between statistical manifolds and the space of data.

Many avenues for further research are left open in these later chapters;

these open questions are outlined in Chapter 10. My hope is that the results

in this thesis pave the way for further research in this topic. I invite the

reader to take a look at and think about these questions, questions that are

becoming increasingly relevant in today’s world of big data.
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Part I

Geometric discovery of
patterns in time series





Chapter 1

Introduction: patterns in time
series

This first part will attempt to solve the following easy-to-state problem:

Key Question 1. Given one or many time series, how do we extract patterns that
occur frequently in the data? Furthermore, can we use these patterns to forecast the
behavior of a time series into the immediate future?

In the following chapters, we seek to develop a methodology to solve

this problem.

1.1 Examples of applications

One immediate application of an algorithm that extracts patterns is to stock

data. Suppose we have the price and volume data for the past five years

of 100 stocks. There are patterns that occur frequently in stock data that

supposedly indicate the trajectory of the stock. The so-called head-and-

shoulders pattern is one example, depicted in Figure 1.1. Its formation is

said to indicate that the price will fall in the near future if it breaks the so-

called shoulder line, and similarly, an inverse head-and-shoulders pattern is

said to indicate that the price will rise under the same condition. In theory,

the head-and-shoulders patterns are driven by many factors, including the

psychology and traders, news, or the economic climate.

There are other known patterns in stock data, such as the flag pattern, as

shown in Figure 1.2. Are there other patterns that have not been recognized
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Figure 1.1* A head-and-shoulders pattern in stock price data.

Figure 1.2* A flag pattern in stock price data.
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but are strong predictors of future stock price? An algorithm that extracts

such patterns from time series would prove useful in such an analysis.

Another application has to do with shopping data. Imagine that we are

a supermarket, and we have access to a list of transactions by customer. For

example, we know that Customer A purchased milk and eggs on Tuesday,

followed by bread and cheese on Thursday. Such a record can be interpreted

as a time series of purchases, and an algorithm that extracts patterns may

be able to provide crucial insights, such aswhether, for example, a purchase

of eggs is likely to be followed by a purchase of cheese.

1.2 The setup

Let us first define what we mean by a time series. Informally, a time series

is a sequence of observations from some set Σmade at some times T. Thus,
formally, we write the following definition.

Definition 1 (Time series). A time series is a function q : T → Σ, where T is a
finite index set and Σ is an arbitrary set.

We will take T to be finite subsets of R, and we will use the convention

that q(0) corresponds to the value of the time series at the present time,

meaning that q(t) for t < 0 denotes values in the past. Also, whenever we

enumerate values of T � {t1 , . . . , tM}, we will assume that t1 < · · · < tM .

We will call each ti a sample time.
Let us define two ways to take smaller time series from an existing time

series q. The first is the prefix time series, which restricts the domain of q to

the first i sample times.

Definition 2 (Prefix time series). Let q : {t1 , . . . , tN} → Rn be a time series.
The prefix time series q1:i : {t1 , . . . , ti}→ Rn of q is another time series, defined
for 1 ≤ i ≤ N , is defined by q1:i(t) � q(t).

Notice that the prefix time series q1:N is simply q itself.

The second is the history at time t of a time series q, which restricts the

domain of q but also shifts it so that time t is the present.

Definition 3 (History of a time series). The history at time t of a time series
q : T → Rn is another time series qt : T′→ Rn , such that qt(τ) � q(t + τ) for all
τ ∈ T′, where T′ � (T − t) ∩ {t ∈ R | t ≤ 0}.
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Notice that the history of q at time t � 0 is simply q itself. It is also

convenient to collect all histories into one object. Thus, we define an orbit
as follows.

Definition 4 (Orbit of a time series). The orbit of a time series q : T → Rn is
the set of its histories

Q � {qt | t ∈ T}.

1.3 The problem statement

The problem that this part of the thesis aims to solve is then written more

formally as follows. Suppose we are given a set of time series

{q1
: T1 → Σ, . . . , qk : Tk → Σ}.

What are the most common patterns that occur in these time series? The

concept of a “pattern” is intentionally vague—we will define it more for-

mally in the following chapters. For now, let us see how our two examples

fit into this framework.

In the stock price example, suppose we are given the data for k stocks,

that is, information such as the price and volume of the stock for each day

for the past, say, five years. In this case, each time series represents a stock,

or more explicitly, the price, volume, etc. of the stock at a given time. The

codomain Σ isRn
, where n is the number of pieces of information given for

each time.

In the shopping example, suppose we are given the transaction data for

k customers. In this case, each time series represents a customer, or more

explictly, what the customer purchased at a given time. The codomain Σ

is the power set of the set of possible items; it contains sets of purchased

items.

1.4 Related work

The problem of forecasting stock prices from historical data is obviously

heavily studied. However, less attention has been placed on the unsuper-

vised extraction of patterns from stock data and, more generally, time series

data. Most similar to the approach taken in this thesis are the following.

Choi and Chukkapalli (2009) apply the same broad framework that this

thesis does to identify patterns in time series data, although their approach
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of using change points and an autoregressive model to define distance is

not applicable to the generic problem. Guo et al. (2007) use a clustering

approach as well, although they use a neural network known as a self-

organizingmap that is difficult to apply the probabilistic interpretation that

is needed for prediction.

The shopping data problem is a canonical example problem in sequential
pattern mining, which was introduced by Agrawal and Srikant (1995). Han

et al. (2007) provide a review of common techniques in sequential pattern

mining, including GSP by Srikant and Agrawal (1996), SPADE by Zaki

(2001), and PrefixSpan by Pei et al. (2001). These methods are effective

but take advantage of the specific power-set structure of the shopping data

problem. On the other hand, we would like to handle this problem more

generically, so that the same technique can be applied to any time series

data, including stock price data.

1.5 Looking ahead

To perform pattern discovery in a time series, we must first quantify what

it means for two time series to contain similar patterns. To do so, we will

define a distance d(p , q) between two time series p and q to give a non-

negative real number that is low when the pattern contained in p is close to

the pattern contained in q. Defining this function is the subject of Chapter 2.

Once this distance is defined, we can consider the orbit of one time

series, the set of all of its histories. We want to group together the differ-

ent histories in the orbit based on their distance, thus grouping based on

patterns contained inside the original time series. This process is called

clustering and is the subject of Chapter 3.

Once we have different time series grouped into different patterns, we

would like to use these patterns to forecast the behavior of a time series in

the immediate future. This is the subject of Chapter 4.

We shall see that each of these stages have interesting and varied math

underlying them.





Chapter 2

Defining distance

In this chapter, let p : T1 → Σ and q : T2 → Σ be two time series. We want

to define a distance function d(p , q) that indicates whether p and q contain

the same pattern (for some region of time close to the present). In analogy

with physical distance, we would like d(p , q) to be small when p and q do

contain the same pattern, and d(p , q) to be large when p and q do not.

Before we can quantify similarity between time series, wemust quantify

similarity between the values that the time series takes on, namely elements

of Σ. Concretely, we would like a distance
ˆd : Σ×Σ→ R between elements

of Σ. Once we do this, we will be able to aggregate this similarity between

elements ofΣ to create ameasure of similarity on time serieswith codomain

Σ.

This distance on Σ is domain-specific and will depend on the problem

at hand. For the stock price problem, Σ � Rn
comes with a natural choice

of distance, namely Euclidean distance

ˆd(x , y) � | |x − y | |,

although a better choice may be hand-picked. For the shopping problem, Σ

is the power set of possible items, so we need a function that compares sets

of items for similarity. One simple distance to define is

ˆd(X,Y) �



1 if X ∩ Y � ∅
0 otherwise

.

This measures whether two shopping baskets share at least one item in

common.

From now on, we will assume the existence of a distance
ˆd on Σ, and

proceed to define distance between two time series on Σ.



10 Defining distance

2.1 Euclidean distance

One simple approach to define distance between two time series on Σ is to

again use Euclidean distance.

Since we only care about the recent history of p and q when looking for

patterns, we will assume from now on that T1 and T2 are bounded below

by t � −w for some window width w > 0. Suppose for simplicity that

T1 � T2 � {t1 , . . . , tk}; if Σ � Rn
, then we can always use some kind of

interpolation to ensure that T1 � T2. Then the Euclidean distance between p
and q is defined as follows.

Definition 5 (Euclidean distance). The Euclidean distance between two time
series p : T → Σ and q : T → Σ is

d(p , q) �
√∑

t∈T

ˆd
�
p(t), q(t)�2

.

This meets some of the requirements for a distance between time series.

For example, if p and q are the same as each other, then d(p , q) � 0.

One problem with this approach in the case of Σ � Rn
is if the two time

series differ by vertical shift, namely that

p(t) ≈ q(t) + c

for some constant c ∈ Rn
. Then the Euclidean distance is large, even though

in our problem we consider vertically-shifted patterns to be equivalent. To

solve this, instead of calculating the distance between p and q, we calculate

the distance between the two series, shifted by their mean.

d′(p , q) � d(p − p̄ , q − q̄),
where

p̄ �
1

k

k∑
i�1

p(ti) q̄ �
1

k

k∑
i�1

q(ti).

One more difficult problem to fix is a difference in pace. Consider

Figure 2.1. Visually, the patterns are the same; however, the Euclidean

distance is not small because the corresponding features of the two time

series are not aligned at the same time. How can we define a distance that

accounts for such a difference in pace?
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2.2 Dynamic time warping

Onewaywecanaccount for this difference inpace is using a technique called

dynamic timewarping. Dynamic timewarping is a technique that assesses the

similarity between two time series that potentially vary in speed. We follow

the presentation of Müller (2007). Consider the time series p : T1 → Σ and

q : T2 → Σ, and assume that |T1 | � M and |T2 | � N with M not necessarily

equal to N . Dynamic time warping attempts to align the two time series

such that the first and last sample of p and q are alignedwith each other, but

the samples in between are allowed to be out of alignment, as in Figure 2.1.

We encapsulate this idea with the concept of an alignment.1

Definition 6 (Alignment). Let p : T1 → Σ and q : T2 → Σ be two time series,
with T1 � {t1 , . . . , tM} and T2 � {s1 , . . . , sN}. An alignment between p and q
is a sequence of elements (a1 , . . . , a`) with ai ∈ T1 × T2, satisfying the following
two conditions:

1. Boundary conditions: a1 � (t1 , s1), and a` � (tM , sN).
2. Step size condition: If ai � (t j , sk), then ai+1 ∈ {(t j , sk+1

), (t j+1 , sk), (t j+1 , s j+1)}.
An alignment associates the times in T1 with times in T2. The boundary

conditions ensure that every time in T1 is paired with a time in T2, and vice

versa. The step size condition ensures that as we move forwards in time in

T1, we do not move backwards in time in T2. We can visualize alignments

by plotting T1 on one axis and T2 on the other axis, as in Figure 2.2. Then

alignments are paths that run from the bottom-left to the top-right in steps

of 1 sample time.

1This is a warping path in Müller (2007).

Figure 2.1* Two time series with similar features, although they vary in pace.
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Figure 2.2* Two time series, one on each axis. ˆd(p(ti), q(s j)) is plotted as
grayscale, with lower values corresponding to darker areas. Alignments are
monotonic paths from the lower-le� corner to the upper-right corner.

There are many possible such alignments. Intuitively, the “best” align-

ment is one where the features of p are aligned with the features of q. To

find the best alignment, we minimize the following cost function over all

possible alignments.

Definition 7 (Cost of an alignment). The cost of an alignment X is

c(X) �
∑

(t ,s)∈X

ˆd
�
p(t), q(s)� .

This gives us the following definition for the DTW (dynamic time warp-

ing) distance:

Definition 8 (DTW distance). The DTW distance between two time series p
and q is

dDTW(p , q) � min

X is an alignment of p and q
c(X).

This is a distance we can use to measure how similar two time series are.

Note that it is not a metric, as it does not satisfy the triangle inequality, and
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Figure 2.3* The optimal alignment (white) runs along a “valley” of dark.

it is not positive-definite, meaning that it is possible that d(p , q) � 0 with

p , q.
One way to carry out the optimization problem of calculating the DTW

is to enumerate all possible alignments and computing the minimum value

of the cost function. However, even with a heuristic search algorithm like

A* search, this is prohibitively expensive in the worst case with a computa-

tional complexity that is exponential in M and N . Luckily, there exists an

efficient computation of the DTW distance in O(MN) time using dynamic

programming.

The idea is that the DTWdistance between p and q is related to the DTW

distance between their prefixes.

Definition 9 (Accumulated cost matrix). The accumulated cost matrix of
two time series p and q is

Di , j � dDTW (p1:i , q1: j),
for 1 ≤ i ≤ M and 1 ≤ j ≤ N .

Note that under this definition, we can calculate dDTW (p , q) � DM,N . It

turns out that D can be computed efficiently using the following recurrence

relation.
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Theorem1. The accumulated cost matrix D of two time series p : {t1 , . . . , tM}→
Σ and q : {s1 , . . . , sN}→ Σ satisfies the following recurrence relation:

Di ,1 �

∑
1≤k≤i

ˆd
�
p(tk), q(s1)�

D1, j �
∑

1≤k≤ j

ˆd
�
p(t1), q(sk)�

Di+1, j+1 � min(Di , j+1 , Di+1, j , Di , j) + ˆd
(
p(ti+1), q(s j+1)

)
.

Proof. First, we prove the expression for Di ,1 � dDTW (p1:i , q1:1). There is

only one alignment between p1:i : {t1 , . . . , ti} → Rn
and q1:1

: {s1} → Rn
,

namely X �
�(t1 , s1), . . . , (ti , s1)�, so

Di ,1 � dDTW (p1:i , q1:1) � c(X) �
∑

1≤k≤i

ˆd
�
p(tk), q(s1)� .

The argument for the expression for D1, j is identical.

Next, we prove the expression for Di+1, j+1. Let X � (a1 , . . . , a` , a`+1) be
an optimal alignment between p1:i+1 and q1: j+1. The boundary condition

implies that a`+1 � (p(ti+1), q(s j+1)), so that the cost of X can be decomposed

as

c(X) � c(X′) + ˆd
(
p(ti+1), q(s j+1)

)
,

for X′ � (a1 , . . . , a`). It is easy to check that X′ is itself an alignment.

The step size condition implies that

a` ∈ {(ti , s j+1), (ti+1 , s j), (ti , s j)},
so that because c(X) is optimal,

c(X′) � min(Di , j+1 , Di+1, j , Di , j).
It follows that

Di+1, j+1 � c(X) � min(Di , j+1 , Di+1, j , Di , j) + ˆd
(
p(ti+1), q(s j+1)

)
.

�

For ease of computation, we formally extend Di , j where i and j can now

be 0.
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Corollary 1. The accumulated costmatrixD of two time series p : {t1 , . . . , tM}→
Rn and q : {s1 , . . . , sN}→ Rn satisfies the following recurrence relation:

D0,0 � 0

Di ,0 � ∞

D0, j � ∞

Di+1, j+1 � min(Di , j+1 , Di+1, j , Di , j) + ˆd
(
p(ti+1), q(s j+1)

)
for 1 ≤ i < M and 1 ≤ j < N .

Proof. We can obtain the equations in Theorem 1 from these equations. �

This recurrence relationallowsus to calculate theDTWdistance dDTW (p , q)
as DM,N efficiently in O(MN) time by iteratively computing Di , j for each i
in increasing order, for all j in increasing order.

This measure of distance is ideal for pattern discovery in time series, be-

cause unlike Euclidean distance, dynamic time warping allows for variance

in the speed of the pattern, as well as the height of the pattern. Indeed, it is

used for many time series applications already, such as speech recognition

from an audio signal.





Chapter 3

Clustering on a metric space

Once we have a way of specifying the distance between two time series, we

can cluster them into different groups, where ideally we’d like time series

containing similar patterns to be in the same group. We can approach

this problem in different ways. In this chapter, let P � {p1 , . . . , pN} be N
time series, with the distance between two time series given by a distance

function d(p , q). Recall that we’ve defined d such that d(p , q) is close to 0

if p and q contain similar patterns, and d(p , q) � 0 if p and q do not. We

would like to cluster P, meaning that we would like to partition P into k
sets O1 , . . . ,Ok that contain mutually close objects.

Figure 3.1* The clustering of points inR2 into 3 clusters.
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3.1 Isometric embedding and clustering in Rn

Oneapproach to cluster is tonote that there existmany clustering algorithms

for points in Rn
, the most common being k-means clustering. Therefore, if

we embed our time series into Rn
as points, then we can take advantage of

such algorithms. This process, isometric embedding, consists of taking a set

of objects with known distances between them and finding corresponding

points in Rn
that have the same, or similar, distances.

3.1.1 Multidimensional scaling

Multidimensional scaling is one technique to isometrically embed a set of

objects P intoRn
. Formally, we would like a mapping f : P → Rn

such that

| | f (p) − f (q)| | ≈ d(p , q).
for all p , q ∈ P. It is not always possible to find an embedding that makes

this equality hold for a given n. Instead, we can formulate this problem as

the following optimization problem

minimize

x1 ,...,xN∈Rn

∑
i< j

(
| |xi − x j | | − d(pi , p j)

)
2

.

Multidimensional scaling uses the solution to this optimization problem

to isometrically embed a set of objects. For completeness, an algorithm to

compute the optimal coordinates is given in the following theorem.

Theorem 2. Let P � {p1 , . . . , pN} be a set with a distance d(p , q) defined on it.
Then a set of coordinates {x1 , . . . , xN} ⊆ Rn that solve the following optimization
problem

minimize

x1 ,...,xN∈Rn

∑
i< j

(
| |xi − x j | | − d(pi , p j)

)
2

can be computed as follows.
Let A be a matrix with entries Ai j � −

1

2
d(pi , p j)2, and let B � HAH, where

H � I − 1

N eeT , where I is the identity matrix and e is a vector of 1s. Let
{v1 , . . . , vn} be the eigenvectors of B corresponding to the n largest eigenvalues
λ1 ≥ · · · ≥ λn of B. Then xi �

√
λi vi .

Cox and Cox (2000) provide the details of using this theorem. Figure 3.3

depicts an example of multidimensional scaling, used to place American

cities into R2
from only a table of flight distances.
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Atlanta Chicago DC Denver Houston LA Miami NYC SF Seattle

Atlanta 587 543 1212 701 1936 604 748 2139 2182

Chicago 587 597 920 940 1745 1188 713 1858 1737

DC 543 597 1494 1220 2300 923 205 2442 2329

Denver 1212 920 1494 879 831 1726 1631 949 1021

Houston 701 940 1220 879 1374 968 1420 1645 1891

LA 1936 1745 2300 831 1374 2339 2451 347 959

Miami 604 1188 923 1726 968 2339 1092 2594 2734

NYC 748 713 205 1631 1420 2451 1092 2571 2408

SF 2139 1858 2442 949 1645 346 2594 2571 678

Seattle 2182 1737 2329 1021 1891 959 2734 2408 678

Table 3.2* A table of distances between American cities in miles.

Figure 3.3* The result of usingmultidimensional scaling to tomap the cities
intoR2, with cardinal directions manually added in.
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Multidimensional scaling represents a simple solution to the embedding

of time series into Rn
. However, its running time is O(N2), where N is the

number of points, which makes it impractical for data that is potentially

real-time. Also, it requires the calculation of the distance between each

pair of time series, which is not desirable when using an expensive distance

function like theDTWdistance. Anexampleof amore sophisticatedmethod

of isometric embedding is known as FastMap and is described by Faloutsos

and Lin (1995). It is an approximate method, but it runs much faster than

classical multidimensional scaling.

3.1.2 k-means clustering

Once we have the points X ⊂ Rn
corresponding to our time series in P, we

can run one of many clustering algorithms that operate in Rn
. The most

common such algorithm is called k-means clustering. The algorithmworks

as follows. The goal is to partition X into k clusters O1 , . . . ,Ok .

Before describing the algorithm, we generalize the notion of the average

of a set of numbers to the centroid of a set of points in Rn
.

Definition 10 (Centroid). The centroid of a set of points X ⊂ Rn is

ˆX �
1

|X |
∑
x∈X

x.

The k-means algorithm works as follows. We initialize k cluster centers
o1 , . . . , ok to random points in Rn

(for example, take a k-element subset of

X). Then the set X is partitioned such that the points closest to the cluster

center oi is assigned to the cluster Oi . Then we set oi � ˆOi , the centroid of

the set Oi , and repeat until convergence. The result is a partition of X into

k clusters.

Since each point in X is a representative of a time series in P, we have

achieved a partition of P into clusters, with the clusters representing differ-

ent patterns. However, many practical problems appear in using k-means

for this application. In particular, it requires our entire dataset to fit into

memory, which is not necessarily the case. In fact, we might not even have

the entire dataset yet, in the case of real-time data.

Beforemoving onto an improved algorithm, notice that in the algorithm,

each cluster is represented by a cluster center oi , which is updated until a

desirable partition is achieved. The BIRCH algorithm described later will

generalize the notion of a cluster center.
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3.1.3 Gaussian mixture models

It is worth noting that a technique known as Gaussian mixture models is a

generalization of k-means clustering that assigns a probability that each data

point belongs to a particular cluster, instead of simplymembership. Having

a probability may become important when we attempt to forecast using the

discovered patterns; using Gaussian mixture models to cluster should be

explored in future research.

3.1.4 The BIRCH algorithm

Another clustering algorithm is the BIRCH algorithm, as described by

Zhang et al. (1996). It is an online algorithm, meaning that it can efficiently

process a stream of data points, instead of requiring that we initially have

the entire dataset.

Intuitively, it works as follows. Suppose we are provided with a new

point that we must either place into one of several existing clusters or place

into a newly created cluster. The algorithm takes the point and finds its

closest existing cluster and inserts the point into that cluster. If the resulting

cluster is too “big” in some sense to be a cluster, the algorithm splits that

cluster into two clusters.

We quantify this last part with the following definition.

Definition 11 (Radius). The radius of a cluster O ⊆ X is the root-mean-square
distance between its points and its centroid:

R(O) �
√

1

|O |
∑
x∈O

| |x − ˆO | |2.

We can use the radius to quantify when to split the cluster: when the

radius of a cluster exceeds some threshold R0, we create two clusters of

smaller radius.

This algorithm can be made efficient by using a different representation

of existing clusters. Instead of cluster centers as in k-means, we define

cluster features.

Definition 12 (Cluster feature). The cluster feature (CF) of a cluster O ⊆ X
is a triple (N, s , S2), where

N � |O | s �

∑
x∈O

x S2

�

∑
x∈O

||x ||2.
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Lemma 1. If (N, s , S2) is a cluster feature of a cluster O, then its centroid and
radius are

ˆO �
s
N

R(O) �
√

S2 − 2〈s , ˆO〉 + | | ˆO | |2

N
respectively.

Proof.

ˆO �
1

|O |
∑
x∈O

x

�
s
N
.

R(O) �
√

1

|O |
∑
x∈O

| |x − ˆO | |2

�

√
1

|O |
∑
x∈O

[
| |x | |2 − 2〈x , ˆO〉 + | | ˆO | |2

]

�

√
S2 − 2〈s , ˆO〉 + | | ˆO | |2

N
.

�

Lemma 2. If the cluster feature of O is (N, s , S2), then the cluster feature of
O ∪ {x} is (N + 1, s + o , S2 + | |x | |2).
Proof. This is straightforward to verify through computation. �

Therefore, instead of maintaining a list of clusters in memory, we can

maintain a list of cluster features. When we insert a new point, we find its

closest existing cluster by calculating the distance to the centroid of each

cluster feature. For efficient access of the list of cluster features, we can store

the list of cluster features in a CF tree (cluster feature tree).

Definition 13 (CF tree). A CF tree with maximum branching factor B ≥ 2 and
threshold radius R0 is a tree with cluster features as nodes, where the number of
children of each node does not exceed B, and the radius of the cluster corresponding
to each leaf node is less than R0.

Theorem 3. The following algorithm for the insertion of a new item x into a CF
tree preserves the CF tree structure:
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1. Descend the CF tree by recursively choosing the node whose centroid is closest
to x, until we reach a leaf cluster feature o.

2. If the radius of o would exceed R0 if x were added to its corresponding cluster,
insert a new cluster feature corresponding to an empty cluster as a sibling of
o. Let o now denote this new cluster feature.

3. Insert x into each of the clusters on the path from the leaf o to the root of the
tree, and update each cluster feature appropriately to reflect the addition of x.

4. If, due to the insertion of a new cluster feature in step 2, the number of
children of a node o′ exceeds B, split the node as follows. Let o1 and o2 be the
two child nodes of o′ whose centroids are farthest from each other. Remove
every child node of o′ except o1 and o2, and reinsert these removed child nodes
as child nodes of o1 and o2, depending on which one is closer. Update o1 and
o2 to reflect the insertion of these new child nodes.

Proof. Steps 2 and 4 preserve the constraint on leaf node radius and branch-

ing factor, respectively. �

The simplest version of the BIRCH algorithm is the following two-step

process for clustering a set of points inRn
. First, initialize an empty CF tree

and insert every point into the tree. Second, perform a global clustering

method such as k-means clustering on the centroids of each leaf node in

the CF tree. The resulting clusters of centroids can be regarded as clusters

of the original data, containing points corresponding to the centroids they

contain. This second step is necessary because the structure of the CF tree

is strongly determined by the order in which points are inserted. One

true cluster can easily be split up across two cluster features. The global

clustering algorithm serves to fix these differences. The BIRCH algorithm

remains fast even though it takes advantage of a global clustering algorithm,

as it only operates on a compact representation of the points.

The main advantage of BIRCH is speed and that it requires only a single

pass over the points, as contrasted with a global method like k-means

clustering.

3.2 Clustering beyond Rn

The two-step process of mapping our time series intoRn
and then perform-

ing clustering is easy to understand but is roundabout and expensive. Can
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we avoid having to embed our time series into Rn
? It turns out that the

BIRCH algorithm has a natural generalization, called BUBBLE, that avoids

having to do this.

3.2.1 The BUBBLE algorithm

Notice that the BIRCH algorithm relies on calculating the centroids of each

cluster, which can only be performed in Rn
. In other words, the BIRCH

algorithm can only cluster subsets of Rn
. Can we cluster arbitrary sets,

provided that there is a distance defined on that set? This is achieved by an

algorithm called BUBBLE, as described by Ganti et al. (1999).

To achieve this goal, the BUBBLE algorithm defines a generalization of

the centroid.

Definition 14 (Clustroid). The clustroid of a set X is

ˆX � arg min

x∈X

∑
x′∈X

d(x , x′)2 ,

the element in X that minimizes the total squared distance to every other element
in the set.

We also generalize the radius:

Definition 15 (Radius). The radius of a cluster O is the root-mean-square dis-
tance between its points and its clustroid:

R(O) �
√

1

|O |
∑
x∈O

d(x , ˆO)2.

We are now ready to generalize cluster feature.

Definition 16 (Cluster feature*). The cluster feature* of a cluster O is a tuple
containing the following information:

1. the number of elements |O |
2. the clustroid ˆO

3. 2p elements of O, where p is user-defined

4. the value of
∑

x′∈X d(x , x′)2 for each representative element

5. the radius R(O).
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All of these statistics in the cluster feature* can be incrementally main-

tained as elements are inserted and play a role in the maintenance of the

clusters, just as the cluster feature did in the BIRCH algorithm. For details,

refer to Ganti et al. (1999).

With BUBBLE, we have an efficient clustering method for clustering

time series into different patterns. These clusters correspond to patterns

discovered in the time series. How can we use the discovered patterns for

prediction?





Chapter 4

Forecasting with discovered
clusters

Suppose now that our time series are now all clustered into different pat-

terns. We now know that, for example, our time series exhibits Pattern 1

at time t1, Pattern 2 at time t2, etc. One naive probabilistic approach to

forecasting uses what is called aMarkov chain.

4.1 Markov chain

Wewill use daily stock price data as an example. Imagine thatwe’ve labeled

each day in our AAPL stock data as exhibiting Patterns 1, 2, or 3. Suppose

that in our training data, we notice that if on one day the time series exhibits

Pattern 1, the next day it exhibits Pattern 1 a quarter of the time, Pattern 2

a half of the time, and Pattern 3 a quarter of the time. Now suppose that

we observe that today, the AAPL stock exhibits Pattern 1. Then one naive

approach would be to predict that tomorrow, the AAPL stock will exhibit

Pattern 1 with probability
1

4
, Pattern 2 with probability

1

2
, and Pattern 3 with

probability
1

4
.

To formalize this, we define the notion of aMarkov chain.

Definition 17 (Markov chain). A Markov chain is a sequence of random vari-
ables X1 ,X2 , . . . such that for all t ∈ N,

P(Xt+1 | X1 , . . . ,Xt) � P(Xt+1 | Xt).
The random variables X1 ,X2 , . . . represent the state of the system; the
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condition states that the state Xt+1 at time t + 1 depends only on the state

Xt at time t, and nothing else before.

If we let Xt be the pattern exhibited by the stock at time t, this is exactly
the assumption that we made at the beginning of this section. Formally,

then, to forecast a time series that has k patterns, we will let {X1 ,X2 , . . .} be
aMarkov chain of patterns; in other words, Xt takes on values in {1, . . . , k},
where Xt � α indicates that the stock is exhibiting Pattern α at time t. We

will empirically determine P(Xt+1 � β | Xt � α) by counting the number

of times in our training data that Pattern α transitioned to Pattern β and

dividing by the total number of times in our trainingdata. Then, ifwewould

like to predict the pattern that will be exhibited tomorrow, knowing that

today the stock is exhibiting Pattern α, we simply take P(Xt+1 � β | Xt � α)
to be the probability that tomorrow’s pattern is Pattern β.

We can generalize this approach in the following way. With the above

approach to forecasting, we must know that today the stock exhibits a

specific Pattern α. However, forecasting may be more accurate if we could

express that we believe that today the stock exhibits, for example, 50%

Pattern 1 and 50% Pattern 2. We can formalize this example as saying that

P(Xt � α) �



1

2
if α � 1

1

2
if α � 2

.

Then, to predict tomorrow’s state, we can use the product rule

P(Xt+1) �
∑
α

P(Xt+1 | Xt � α)P(Xt � α). (4.1)

We can simplify this calculation with the following notation.

Definition 18 (State vector). Let X be a random variable taking on values in a
set {α1 , . . . , αk} with probabilities P(X � αi) � pi . Then we say that X has a
state vector 

p1

...
pk



.

Note that

∑
i pi � 1. Note that we will often abuse notation and write

X �



p1

...
pk
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for the statement that X is a random variable with P(X � αi) � pi .

Next, we define the transition matrix of a Markov chain.

Definition 19 (Transition matrix). The transition matrix of a Markov chain
{X1 ,X2 , . . .} whose random variables take on values of a set {α1 , . . . , αk} is a
k-by-k matrix A whose entries are

Ai j � P(Xt+1 � αi | Xt � α j).
Let A be the transition matrix of a Markov chain, and let Xt and Xt+1

be today’s and tomorrow’s state vector respectively. In our situation, the

state vector describes how likely we believe each pattern is at the current

time. Then with this additional notation, we can rewrite the prediction rule

Equation 4.1 as simply

Xt+1 � AXt ,

where the multiplication on the right is matrix-vector multiplication. This

makes it very easy to predict the probabilities of a given pattern being

exhibited at the next time.

This leaves the question of how exactly to assign a state vector to the

current time. Indeed, the clustering approach outlined in Chapter 3 assigns

a single pattern (cluster) to each time step. Amore powerful approach such

as Gaussian mixture models will assign not just a single pattern to a time but

a probability of each pattern to a single time.

TheMarkov assumptionmay be overly restrictive; it seems unreasonable

that thepatternof a stockononedaydependsonlyon thepatternof the stock

the day before. While true, as a first attempt at prediction, this simplistic

model will help us assess whether our method of pattern discovery is

remotely effective. Also, recall that when we determine which pattern of a

stock is exhibiting, we are actually taking into account the previous recent

history of the stock at that time; thus, looking one time step prior actually

involves considering more of the stock’s recent history than just one day.

4.2 Other time series forecasting methods

This Markov chain approach is only one possible approach. Notice that

by discovering patterns in a time series, we have effectively converted our

original time series p : T → Σ into a time series p′ : T → P, where P is

a space of patterns. Therefore, after applying this methodology, we can

employ any other method for forecasting time series to this new time series
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p′. In this way, we can think of this method as a dimensional reduction

method, where we’ve reduced the information in a time series to what

really matters, the pattern exhibited at each time.



Chapter 5

Results

To summarize, themethodology I havedescribed todiscover patterns in and

to forecast time series is as follows. First, we define a distance between his-

tories at different times, using Euclidean distance or dynamic timewarping.

Next, we use this distance to cluster, using isometric embedding followed

by clustering in Rn
, or using a clustering method like BUBBLE to cluster

the time series directly. Then, we can use a Markov chain approach or any

number of existing forecasting methods to forecast the time series.

5.1 Implementing the framework

To put this general framework of this method for pattern discovery to the

test, I implemented a basic version of this framework. First, I acquired

historical daily price data for the S&P 500 index for the past ten years; this

data is depicted in Figure 5.1. This resulted in a time series with 2727 data

points, one for each day, excluding weekends and holidays. Next, I split the

data into overlapping moving windows of width w � 15, resulting in 2712

segments of 15 days each. From each of these segments, I subtracted the

mean of the price within the segment so that the price was now centered

around 0 within each segment.

Next, I used Euclidean distance to calculate the similarity between each

of these segments, as described in Chapter 2. Since these segments were

already elements of R15
, I did not need to use isometric embedding to

embed them in Rn
before clustering. I used k-means clustering with k � 6

clusters to determine the patterns in Table 5.2. Each of the 2712 segments

was assigned to a pattern.
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500 1000 1500 2000 2500
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Figure 5.1 TheS&P500 index fromJanuary 1, 2005 toNovember 1, 2015, plot-
ted with days on the horizontal axis and the index on the vertical axis.

Finally, I constructed a Markov chain, as described in Chapter 4, using

the observed transitions in the stock data. The states of this Markov chain

(the different patterns) and their transition probabilities are illustrated in

Figure 5.3.

5.2 Discussion and future work

First, let us evaluate this approach to pattern discovery using these pre-

liminary results. Of what quality are the discovered patterns? There are

several observations, observations that mostly point favorably towards this

method:

• If the algorithm is rerun, the same patterns are discovered, meaning

that the patterns discovered are not particularly volatile, as is some-

times the case in k-means clustering. This means that this approach

to pattern discovery is consistent.

• The patterns thatwe have discovered are comparatively uninteresting.

They are mostly increasing or decreasing trends (Patterns 1, 4, and 6),

although patterns like Patterns 2 and 5 are somewhat interesting.

They are no head-and-shoulders patterns, but they may prove to be

more useful for predicting behavior.
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Label Pattern Examples Count

1 5 10 15

-60

-40

-20

20

40

60

5 10 15

-60

-40

-20

20

40

60

785

2 5 10 15

-60

-40

-20

20

40

60

5 10 15

-60

-40

-20

20

40

60

203

3 5 10 15

-60

-40

-20

20

40

60

5 10 15

-60

-40

-20

20

40

60

249

4 5 10 15

-60

-40

-20

20

40

60

5 10 15

-60

-40

-20

20

40

60

983

5 5 10 15

-60

-40

-20

20

40

60

5 10 15

-60

-40

-20

20

40

60

243

6 5 10 15

-60

-40

-20

20

40

60

5 10 15

-60

-40

-20

20

40

60

249

Table 5.2 Patterns discovered in the S&P 500 data.
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Figure 5.3 The Markov chain of patterns, learned from the S&P 500 data.
Darker arrows indicate higher probabilities of transitions between the con-
nected states.

• Looking at the patterns discovered, we find that each pattern is rep-

resented at many different times in the S&P 500. It might have been

problematic if there were patterns with only one or two examples

within the data.

• The variance is high within some of the patterns; in other words,

there are some examples within a pattern that, by eye, do not seem

to correspond very well to the pattern in question. For example, in

Pattern 5, there are extreme outliers that on average cancel to produce

a flatline pattern in the first ten days. Perhaps this is an indicator that

a way to eliminate outliers in the data is needed.

Overall, the clustering approach to pattern discovery seems promising,

especially as we move to more sophisticated measures of distance. There is

potentially a need for a way to eliminate extreme segments, ones that don’t
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clearly belong to one cluster.

Next, let us evaluate the Markov chain model as an approach to predic-

tion. The primary assumption is that historical data can be used to predict

future data. One simple way to test this assumption is to calculate the

Markov chain transition probabilities for data prior to a certain date and

data after a certain date and compare the probabilities. If they are consis-

tent, then it is plausible that the Markov chain model is an acceptable way

to perform forecasting. These probabilities are depicted in Figure 5.4; we

can see that they are mostly consistent for data before and after May 21,

2010. Figure 5.5 illustrates that the difference between the two matrices is

small. Since they are consistent, this Markov chain approach seems very

promising.

One observation is that the transition probabilities are highest for self-

transitions, transitions from a state to itself. Thismakes a lot of sense; in fact,

it forms the basis for a stock trading technique called momentum trading,

in which one bets on rising stocks to continue rising and falling stocks to

continue falling. This may pose a challenge, however, to this method: this

momentum strategy may be hard to improve upon.

For true prediction, I hope to use the strategy outlined in Chapter 4, to

consider a state vector of patterns rather than just a single pattern. To do

this, I will need tomove to using a Gaussianmixturemodel to cluster rather

than simply k-means clustering.

There are two hyperparameters in this algorithm: k, the number of pat-

terns to look for, and w, the width of each segment of the time series. These

were both chosen arbitrarily; it would be nice to have an iterative scheme

to choose these parameters. To tune k, we could incrementally increase k
until the quality of patterns degrades, where the quality is assessed by some

criteria. To tune thewindowwidth w, the same principle could in theory be

applied. However, observe that Patterns 2, 3, and 5 all exhibit some sharp

change around days 5 and 10, raising the possibility of an intrinsic time

scale of around 5 days. In fact, this is very natural, as the trading week lasts

5 days (trading does not occur on the weekends). I believe that it is possible

to extract this intrinsic time scale from the data, an exciting direction of

research in itself.
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*........
,

0.7580 0.0988 0.0403 0.0707 0.0290 0.0029

0.2220 0.4880 0.0133 0.0231 0.2500 0.0033

0.0458 0.0088 0.8400 0.0538 0.0230 0.0290

0.3530 0.0081 0.0267 0.6090 0.0020 0.0020

0.0783 0.0141 0.4200 0.0248 0.4590 0.0035

0.0052 0.0051 0.2380 0.0052 0.0051 0.7410

+////////
-

*........
,

0.6810 0.1670 0.0278 0.0868 0.0364 0.0010

0.2130 0.5090 0.0097 0.0314 0.2340 0.0024

0.0407 0.0154 0.8200 0.0426 0.0237 0.0573

0.3500 0.0089 0.0223 0.6150 0.0022 0.0022

0.0572 0.0120 0.4010 0.0300 0.4880 0.0120

0.0021 0.0021 0.1760 0.0021 0.0021 0.8160

+////////
-

Figure 5.4 The transition probabilities of the Markov chain learned from the
S&P 500 data before (le�) and a�er (right) May 21, 2010.

*........
,

0.0769 0.0679 0.0125 0.0161 0.0074 0.0019

0.0091 0.0217 0.0036 0.0083 0.0164 0.0009

0.0051 0.0066 0.0193 0.0111 0.0007 0.0283

0.0029 0.0007 0.0044 0.0062 0.0002 0.0002

0.0211 0.0021 0.0193 0.0052 0.0289 0.0085

0.0030 0.0030 0.0625 0.0030 0.0030 0.0745

+////////
-

Figure 5.5 The absolute di�erence between the transition probabilities.
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Introducing a Riemannian
metric on data manifolds





Chapter 6

Introduction: data as a
manifold

In Chapter 2, we developed a distance d on the set Σ of elements that the

time series we are studying take on. In Chapter 3, we thought of Σ as not

simply a set but also a space, in which it is possible to perform clustering.

The distances we defined, however, are not applicable to data in general.

For example, the dynamic time warping distance that we used is definable

between time series windows, but it is not a useful notion between, say,

images of different handwritten numbers, or the characteristics of different

voters’ voting preferences. Is it possible to define a notion of distance on a

set that contains arbitrary data, a unified definition that can be applied to

any type of data?
In the following chapters, we will attempt to generalize from the discus-

sion in Part I and move to a more abstract setting. This chapter will make

concrete what is meant by “data” and motivate the use of Riemannian ge-

ometry to study it. Chapter 7 will attempt to define a Riemannian metric

on the space of data. Then, Chapter 8 will introduce basic concepts in a

relatively new field called information geometry that will allow us to view

the space of data in a new light, in Chapter 9.

6.1 Manifolds, Riemannian metrics, and geodesics

This section will describe some basic concepts in Riemannian geometry at

an intuitive level. For a rigorous description, see any standard textbook on

Riemannian geometry, such as do Carmo (1992).
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Figure 6.1* Google Maps uses the Mercator projection and erronenously de-
picts the shortest path between Los Angeles and Dubai as (approximately) the
straight line connecting them.

Figure 6.2* The true shortest path travels north of the Arctic Circle.
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A differentiable manifold, or manifold for short, is a generalization of

surfaces embedded in R3
that are in some sense smooth. Whereas surfaces

must be two-dimensional, manifolds may be n-dimensional. One intuitive

characteristic of n-dimensional manifolds is that if at any point, you zoom

in far enough, it looks flat like a copy of Rn
. Since a curve looks like R

when zoomed in far enough, and a surface looks like R2
when zoomed in

far enough, curves and surfaces are one- and two-dimensional manifolds

if they are smooth enough. The Earth, for example, can be thought of as a

two-dimensional manifold, since at each point on the Earth, it locally looks

like a flat, two-dimensional plane.

Moreover, whereas surfaces are usually thought of as embedded in R3

(or a higher-dimensional space), manifolds can be thought of as indepen-

dent objects, free of any embedding space. Just as the Earth can be described

using a bunch of flat two-dimensional maps that cover the entire surface,

n-dimensional manifolds are described with by a bunch of subsets of Rn

that act as maps that cover the entire manifold. The technical term for this

collection of maps is an atlas for the manifold.

Riemannian manifolds add additional structure, namely the ability to

redefine distance between points. This is best explained with an example.

The map shown in Figure 6.1 uses the Mercator projection, and a line

connecting two points is not necessarily the shortest path. A flight from

Los Angeles to Dubai—which takes the shortest path—does not take the

path in Figure 6.1, even though it is a straight line on this particular map.

Instead, it takes the path in Figure 6.2, which would appear very different

from a straight line on themap in Figure 6.1. Thus, in order to fully describe

a manifold, we must somehow specify how shortest paths are distorted, in

addition to an atlas. This true shortest path between to points is called a

geodesic between those two points.

Recall that in Euclidean space, the length of a curve γ : I → Rn
is

`(γ) ≡
∫

I

√
dγ
dt ·

dγ
dt dt �

∫
I

�����
dγ

dt

�����
dt ,

where · is the Euclidean dot product. Thus, to alter what is considered a

geodesic on a manifold, we replace the dot product with an inner product

of our choosing:

`(γ) ≡
∫

I

√
〈dγ

dt ,
dγ
dt 〉γ(t) dt ,

where the curve γ is now defined on maps in the atlas. The inner product

〈·, ·〉· is called the Riemannian metric on the manifold. To complete the
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Price/$1000 Baths Bedrooms Elevation/ft Area/ft
2

Age/yr

999 2 1 10 1000 56

1350 2 2 9 2150 116

629 1 1 9 500 113

Table 6.3* Three rows of a dataset of housing prices in San Francisco.

example, the correct Riemannian metric for Mercator projection maps of

the Earth, as computed by Rowe (2015), is

〈u , v〉(x ,y) � 4π2R2

cosh
2( 2πy

H )

[
ux vx

W2

+
uy vy

H2

]
,

where (x , y) denotes a point on the map, R is the radius of the Earth, H and

W are the height and the width of the map, and ux , uy , vx , and vy denote

the x and y components of u and v. By specifying a Riemannian metric

along with an atlas, we capture the true geometry of the manifold.

The distance between two points of a manifold is then defined as the

length of the geodesic connecting those two points.

6.2 The manifold hypothesis

Consider a dataset of housing prices in San Francisco, a sample of which

is shown in Table 6.3. Each row corresponds to a house in San Francisco

and contains 6 columns of numerical information, such as price, number

of bedrooms, and age. In this way, we can view the entire dataset as a set

of houses, where each house corresponds to a point in R6
. If we had more

information about each house, each new piece of information would adjoin

an new dimension, assuming it is real-valued. We will restrict ourselves to

numerical data in our discussion.

Therefore, one naive characterization of data might simply be to declare

all (finite) subsets of Rn
to be datasets. However, this ignores the condition

that data must in some sense contains information. The manifold hypothesis
is an assumption about the nature of data that captures this notion: it says

that observed data tends to lies near a low-dimensionalmanifold embedded

within thehigher-dimensional spaceRn
. It suffices tovisualize themanifold

as a curve, a surface, or a generalization thereof in higher dimensions.
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Figure 6.4* Co�ee sales by hour lie on a one-dimensional curve inR2.

Two examples of the manifold hypothesis in action are found in Fig-

ure 6.4 and Figure 6.5.

Figure 6.4 depicts coffee sales vs. hour of the day over many days; we

can see that the data is approximately constrained to a one-dimensional

curve. Thus the data approximately lies on a one-dimensional manifold

embedded in R2
.

Figure 6.5 depicts a set of 64-by-64-pixel black-and-white images. Each

image can be viewed as a point in R4096
, with each dimension indicating

the brightness of each of the 64
2 � 4096 pixels. However, the images are

taken with only three degrees of freedom: left-right pose, up-down pose,

and lighting direction. This means that the images likely lie near a three-

dimensional manifold embedded in R4096
.

It is worth noting that there exists a recent algorithm due to Fefferman

et al. (2013) that tests whether a particular dataset satisfies the manifold

hypothesis, i.e. whether there exists a manifold such that the points in

the dataset lie close to it. There are also many algorithms that attempt to

find coordinates for the points on the manifold; generally, this is known as

dimensional reduction. One such algorithm that directly uses the intuition

of the manifold hypothesis is called local tangent space alignment, explored
in Appendix A.

This brings us to the impetus behind this research. Since Riemannian

geometry is a natural candidate of a tool to endow manifolds with a notion

of distance, it is natural to ask if a Riemannian metric can be assigned to
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tion to geodesic distance. For faraway points,
geodesic distance can be approximated by
adding up a sequence of “short hops” be-
tween neighboring points. These approxima-
tions are computed efficiently by finding
shortest paths in a graph with edges connect-
ing neighboring data points.

The complete isometric feature mapping,
or Isomap, algorithm has three steps, which
are detailed in Table 1. The first step deter-
mines which points are neighbors on the
manifold M, based on the distances dX (i, j)
between pairs of points i, j in the input space

X. Two simple methods are to connect each
point to all points within some fixed radius !,
or to all of its K nearest neighbors (15). These
neighborhood relations are represented as a
weighted graph G over the data points, with
edges of weight dX(i, j) between neighboring
points (Fig. 3B).

In its second step, Isomap estimates the
geodesic distances dM (i, j) between all pairs
of points on the manifold M by computing
their shortest path distances dG(i, j) in the
graph G. One simple algorithm (16) for find-
ing shortest paths is given in Table 1.

The final step applies classical MDS to
the matrix of graph distances DG " {dG(i, j)},
constructing an embedding of the data in a
d-dimensional Euclidean space Y that best
preserves the manifold’s estimated intrinsic
geometry (Fig. 3C). The coordinate vectors yi

for points in Y are chosen to minimize the
cost function

E ! !#$DG% " #$DY%!L2 (1)

where DY denotes the matrix of Euclidean
distances {dY(i, j) " !yi & yj!} and !A!L2

the L2 matrix norm '(i, j Ai j
2 . The # operator

Fig. 1. (A) A canonical dimensionality reduction
problem from visual perception. The input consists
of a sequence of 4096-dimensional vectors, rep-
resenting the brightness values of 64 pixel by 64
pixel images of a face rendered with different
poses and lighting directions. Applied to N " 698
raw images, Isomap (K" 6) learns a three-dimen-
sional embedding of the data’s intrinsic geometric
structure. A two-dimensional projection is shown,
with a sample of the original input images (red
circles) superimposed on all the data points (blue)
and horizontal sliders (under the images) repre-
senting the third dimension. Each coordinate axis
of the embedding correlates highly with one de-
gree of freedom underlying the original data: left-
right pose (x axis, R " 0.99), up-down pose ( y
axis, R " 0.90), and lighting direction (slider posi-
tion, R " 0.92). The input-space distances dX(i, j )
given to Isomap were Euclidean distances be-
tween the 4096-dimensional image vectors. (B)
Isomap applied to N " 1000 handwritten “2”s
from the MNIST database (40). The two most
significant dimensions in the Isomap embedding,
shown here, articulate the major features of the
“2”: bottom loop (x axis) and top arch ( y axis).
Input-space distances dX(i, j ) were measured by
tangent distance, a metric designed to capture the
invariances relevant in handwriting recognition
(41). Here we used !-Isomap (with ! " 4.2) be-
cause we did not expect a constant dimensionality
to hold over the whole data set; consistent with
this, Isomap finds several tendrils projecting from
the higher dimensional mass of data and repre-
senting successive exaggerations of an extra
stroke or ornament in the digit.

R E P O R T S

22 DECEMBER 2000 VOL 290 SCIENCE www.sciencemag.org2320

Figure 6.5* A set of 64-by-64-pixel images lie on a three-dimensional mani-
fold inR4096.

the data manifold. Because the data manifold is difficult to extract from

the embedding space, we will tackle a similar problem: can we assign a

Riemannian metric to the embedding spaceRn
, in such a way that embedded

data manifold inherits useful properties? This, then, is the question to be

tackled in this part:

Key Question 2. Given data represented as points in Rn , is it possible to assign
a Riemannian metric to the embedding space Rn in a natural way?

6.3 Data as a probability distribution

Data typically comes in the form of a finite sample of points. Because

the machinery of Riemannian geometry deals with smooth manifolds, we

must convert the observed data points into a smooth object to facilitate its

translation into the world of manifolds. Probability theory provides one

way to do so.

Suppose we are given a finite sample of m data points {x1 , . . . , xm} ⊆
Σ � Rn

. As is standard in statistical learning theory, we assume that these

points are samples drawn from some unknown probability distribution
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with a probability density function p : Σ → R, which will act as our

smooth object. There are several ways to estimate p from {x1 , . . . , xm},
three examples of which are discussed below.

6.3.1 Maximum likelihood estimation

In maximum likelihood estimation, we assume that the observed data comes

only from a family of possible probability distributions. For example, sup-

pose we know that the data is one-dimensional and comes from a normal

distribution, but with unknown parameters µ and σ. In this case, estimat-

ing µ and σ from the data points {x1 , . . . , xm} will suffice to estimate the

probability density function p.
In general, let Θ be the set of possible parameters, and let pθ(x) denote

the probability density function parameterized by θ ∈ Θ. Then the maxi-
mum likelihood parameter ˆθ is the parameter θ ∈ Θ such that the likelihood, the
probability of observing {x1 , . . . , xm} under the probability density func-

tion pθ, is maximized. The maximum likelihood distribution is the optimal

distribution p ˆθ.

In the normal distribution example above, we let

Θ � {(µ, σ) | µ ∈ R, σ ∈ R+}
and maximize the likelihood

L(θ) �
m∏

i�1

pθ(xi)

while varying θ ∈ Θ. If ˆθ is the optimal θ ∈ Θ, then p ˆθ is the estimated dis-

tribution. We will see an interesting way to view this method in Chapter 8.

The downside to this method is that the family of distributions must be

specified a priori. While this may produce excellent results when there is

reason to believe that data comes from a certain distribution, it is in general

difficult to know from which family of distributions given data is from.

Indeed, the construction of a probability density function from arbitrary

data is better suited for so-called non-parametric methods, which do not

require such prespecification.

6.3.2 Kernel density estimation

Themost common non-parametric method for density estimation is known

as kernel density estimation. In this method, the set of data points in Σ is
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Figure 6.6* Kernel density estimation in one dimension. Kernel density esti-
mation produces an estimate of the probability density function from a set of
points (shownalong the x-axis here) by summingnormal distributions at those
points.

Figure 6.7* Kernel density estimation in two dimensions. The set of points
and their associated normal distributions are on the le�, and the estimated
probability density function is on the right.
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represented as a sum of Dirac delta functions centered on those points,

and these spikes of mass 1 are then convolved with a kernel K, usually

a normal distribution. We can think of this process as taking the finite

set of observations and “smearing them” out into a smooth probability

distribution. For example, let

K(x) � 1

√
2π

exp

(
−

1

2

x2

)
be the probability density function of the standard normal distribution.

Then the estimated probability density function is

p(x) � 1

m

m∑
i�1

K(x − xi).

It can be proven that such an estimate converges to the true probability

density function as the number of observed points m approaches∞.

We can see illustrations of kernel density estimation in one and two

dimensions in Figure 6.6 and Figure 6.7.

This process tends to work very well in low-dimensional spaces (with

approximately n < 6), but convergence in higher dimensions is too slow for

the probability density function to be accurate with a reasonable number of

data points.

6.3.3 Deep density models

The recent increase in popularity of so-called deep neural networks has

inspired new approaches to density estimation. Among them is the concept

of deep density models as introduced by Rippel and Adams (2013). In it,

techniques from training neural networks are used to construct an invertible

function f from the space Σ � Rn
of datapoints to the unit hypercube

[0, 1]n
, in such a way that the distribution of the image of the datapoints in

the unit hypercube is prescribed. For example, the unit hypercube could be

prescribed to have a uniformdistribution, or a product of beta distributions.

Once the function f is learned and the probability density function on

the unit hypercube is specified to be p̄, the estimated probability density

function on Σ is given by the usual change of variables formula:

p(x) � |det D f | p̄( f (x)).
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Figure 6.8* A subset of the MNIST dataset of handwritten numbers.

Figure 6.9* Generated samples from a deep density model trained on the
MNIST dataset.



Data as a probability distribution 49

Thismethodyields excellent resultswhen testedon real, high-dimensional

datasets. Rippel andAdams (2013) trained a three-layer deep densitymodel

to learn the probability distribution of theMNISTdataset, a dataset of 60,000

28-by-28-pixel images of handwritten digits, curated by LeCun et al. (2010).

A subset of the MNIST dataset is shown in Figure 6.8. Once the probability

distribution was learned, they then sampled directly from this distribution,

resulting in the samples shown in Figure 6.9. These generated images are

clearly recognizable as handwritten digits, indicating that the deep den-

sity model has constructed an accurate probability density function, even

though the dimension of the embedding space is 28
2 � 784.

From here, we will assume that the probability density function p cor-

responding to the observed data points has been found using one of these

methods. It is clear that the state-of-the-art in density estimation is advanc-

ing in such a way that we will be able to rely on it as a means to convert the

discrete set of data points into a smooth object.





Chapter 7

Proposals for Riemannian
metrics on the data space

We would like to define a Riemannian metric on the data space Σ � Rn
, a

continuous inner product on the tangent spaces of Σ. In this chapter, we

use Σ to denote Rn
, viewed only as a differentiable manifold. For example,

we will never use the vector space structure that Σ has as Rn
.

When trying to define themetric, it is useful to consider what properties

we would like our metric to have. The most important property of the

Riemannianmetric is for the distancemetric induced by it to act in a natural

way. Recall that the Riemannian distance d between two points is the

infimum of the lengths of all piecewise differentiable curves between those

two points, where the length of a curve γ is defined as

`(γ) �
∫ √

〈γ′(t), γ′(t)〉γ(t) dt .

Since length-minimizing curves therefore are geodesics, it is therefore fruit-

ful to think of the properties we would like for geodesics on the space. Let

x , y ∈ Σ. Intuitively, where should a geodesic between x and y travel?

7.1 Behavior of geodesics

Recall that data tends to lie on a low-dimensional data manifold; therefore,

it is natural that distance-minimizing curves should travel “along” the data

manifold. It should avoid regions with low probability. This means that the

metric tensor should be high in regions of low probability density, so that
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curves that pass through the region will have high lengths and therefore

will not be length-minimizing. Similarly, we would like the metric tensor

to be low in regions of high probability density so that length-minimizing

curves will pass through those regions.

7.1.1 Scaled Euclidean metric

The simplest metric that satisfies this property simply scales the Euclidean

dot product: we define

〈u , v〉x �
u · v
p(x)α , (7.1)

where α > 0, x ∈ Σ, and u , v ∈ TxΣ. Written in matrix form, the metric

induced by p is

g[p]x �
1

p(x)α In , (7.2)

where In is the n-by-n identity matrix. Wewill attempt to determine α later.

We can numerically perform a sanity check on this metric to see if it

matches our intuition. We will arbitrarily set α � 1, so that the Riemannian

metric is

〈u , v〉x �
u · v
p(x) .

First, let us try a simple choice of probability distribution, the two-

dimensional standard multivariate normal distribution, with probability

density function

p0(x , y) � 1

2π
exp

(
−

1

2

(x2

+ y2)) .
In Figure 7.1, we visualize this multivariate normal both as a contour plot

and as a graph.

To understand how this metric behaves, wewould like to visualize what

all the points a distance at most r away from a given point p look like under

this metric. This is known as a geodesic ball of radius r around a point p.
To approximate what a geodesic ball of radius r looks like, we can pick a

point p and integrate a geodesic for a time r in an arbitrary direction; the

resulting pointwill be a distance r away from the original point. Ifwe repeat

this procedure for many different directions, eventually we will form a ring

of points, all a distance r from the original point. This ring will outline the

geodesic ball of radius r. If we repeat this procedure for increasing radii r,
we will gain an understanding of what the space is like.



Behavior of geodesics 53

Figure 7.1 A standard normal distribution, visualized as a contour plot and as
a graph.

Figure 7.2 Geodesic balls (rings of constant radius) around the point
(−2,−2), under the scaled Euclidean metric (α � 1) with the standard normal
distribution. The high probabilitymass at the origin deforms them towards the
origin.
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Figure 7.2 depicts geodesic balls of various radii around the point

(−2,−2) under this metric, where we numerically integrate the geodesic

equations using a Mathematica notebook adapted from Hartle (2002). Re-

call that in the Euclidean plane, rings of constant radius look like circles.

However, because the multivariate normal distribution’s probability mass

is concentrated at the origin (0, 0), we would like the geodesic balls to favor

that region; indeed, the rings of constant radius are skewed towards the

higher-probability regions. Thus, the metric we have defined is acting as

intended.

An alternativeway to conceptualize thismetric is onewhere the negative

probability −p(x) acts as a “gravitational potential” that attracts geodesics.

This is visualized in Figure 7.3; again contours are points equidistant from

(−2,−2), in red.

This result is very promising for the scaled Euclideanmetric. Let us now

test this metric on a more complicated probability distribution. Consider

a mixture of two normal distributions, one centered at (− 3

2
, 0) and one

centered at ( 3

2
, 0). Its probability density function is

p(x , y) � 1

2
p0(x − 3

2
, y) + 1

2
p0(x +

3

2
, y),

where p0 is definedabove, as theprobabilitydensity functionof the standard

multivariate normal distribution.

Geodesic balls under the metric with this more complicated probability

distribution are shown in Figure 7.4. Again, the rings of constant radii are

biased towards regions of higher probability. Figure 7.5 provides another

way to visualize the space; it depicts a selection of geodesics of the same

length, starting from the point (−2,−2). Recall that geodesics in the usual

Euclideanplane are simply straight lines; in contrast, these geodesics tend to

be deflected towards the regions of high probability. This metric therefore

clearly satisfies the property that we desire.

Although promising, this metric is not particularly natural, especially

because α is not defined. It is clear we need to develop more criteria for a

natural metric.

7.2 Invariance under transformations

One important property we would like our metric to have is that geodesics

should be invariant under transformations. In other words, we would

like distances to in some sense remain the same even if we transform the
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Figure 7.3 An alternative visualization of Figure 7.2. Geodesic balls of various
radii around the redpoint are “attracted” towards the lowpoints on the surface
of negative probability.
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Figure 7.4 The contours represent points equidistant from (−2,−2), under
the scaled Euclideanmetric (α � 1) with amixture of two normal distributions
centered at ( 3

2
, 0) and (− 3

2
, 0).

Figure 7.5 A selection of geodesics of the same length from (−2,−2), when
measured using the scaled Euclideanmetric (α � 1).
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probability distribution. As a basic example, suppose we are talking about

a dataset of houses, with each house associated with information about

how large the property is. Then we would expect the fact that point a to be

closer to b than c not to change if the area is measured in square feet instead

of square meters.

Concretely, suppose f is a diffeomorphism Σ → Σ′, so that the proba-

bility density function p̄ : Σ′→ R induced by p : Σ→ R is

p̄ �
p ◦ f −1

| det D f | . (7.3)

Then if γ is a geodesic on Σ with respect to the metric induced by p, then
f ◦ γ should be a geodesic on Σ′ with respect to the metric induced by p̄.

A justification for this requirement comes from an algebraic viewpoint.

Suppose we consider two probability spaces to be isomorphic if there ex-

ists a diffeomorphism f between them such that their probability density

functions are related as in Equation 7.3. Two Riemannian manifolds are

isomorphic if there exists an isometry between them. Therefore, an ob-

ject that combines the properties of a probability space and a Riemannian

manifold—as we are trying to define—should have isomorphisms that are

isomorphisms in both senses.
One easy way for this requirement to be satisfied is if we force the

transformation f to be an isometry: that is,

〈u , v〉x � 〈D fx u ,D fx v〉 f (x)
for all x ∈ Σ and u , v ∈ TxΣ.

Let g[p] denote the matrix of the Riemannian metric induced by the

probability distribution p, so that we can express this condition on the

Riemannian metric in matrix form as

uT g[p]x v � uT
D f T

x g[p̄] f (x)D fx v.

Since this is true for all u and v, it suffices to write the condition as

g[p]x � D f T
x g[p̄] f (x)D fx . (7.4)

7.2.1 Testing the scaled Euclidean metric

Let us test the scaled Euclidean metric that we defined. If we plug in

Equation 7.2 for g, then we find that

1

p(x)α In �
1

p̄( f (x))α D f T
x D fx ,
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or

In � |det D fx |α D f T
x D fx .

If we take the determinant of both sides, we find that this implies that

1 � |det D fx |αn(det D fx)2 ,
which is the case if |det D fx | � 1 for all x ∈ Σ, or if α � −

2

n . Thus, isometries

under the scaled Euclidean metric for arbitrary α are volume-preserving

maps with orthogonal Jacobian; orthogonal linear maps f ∈ O(n) are one

possibility, although not particularly interesting.

Alternatively, if α � −
2

n , then all diffeomorphisms are isometries. We

had previously constrained α > 0 because this ensures the behavior of

geodesics we desire, but it may be worth investigating this case as well. In

this case, we have the Riemannian metric

〈u , v〉x � p(x)2/n(u · v),
or

g[p]x � p(x)2/n In .

It turns out that this metric has a nice property: the volume measure

induced by the Riemannian metric is the probability density. We see this

with a simple calculation:√
det g[p]dV �

√
det p2/n In dV �

√
p2

dV � p dV.

This property, along with the invariance under diffeomorphisms, makes

this metric an attractive one. Future research is necessary to determine

when this metric is useful.

7.2.2 An invariant metric capturing the derivative of p

Returning to Equation 7.4, we have

g[p]x � D f T
x g[p̄] f (x)D fx .

Supposeweenforce that f haveanorthogonal Jacobian, so that |det D f | �
1, and p̄ � p ◦ f −1

. One ansatz we might make is that

g[p] � DpT
Dp ,
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where in this case D is the gradient operator. Note that this g is not neces-

sarily positive-definite and thus not a Riemannian metric, but we proceed

anyway. Equation 7.4 becomes

DpT
x Dpx � D f T

x D(p ◦ f −1)Tf (x) D(p ◦ f −1) f (x)D fx ,

which, by the chain rule, becomes

DpT
x Dpx � D f T

x (D f −1)Tf (x) DpT
x Dpx(D f −1) f (x)D fx ,

which is true, meaning that the DpT
Dp is invariant, if only it were a metric.

In fact, similar logic says that

g[p] � C(DpT
Dp)k

is invariant as well, for any integer k ≥ 0 and C not a function of p. Thus,

g[p] � exp(DpT
Dp)

is a trueRiemannianmetric, as thematrix exponential of a symmetricmatrix

is symmetric and positive-definite. The properties of this metric should be

the subject of further study.

7.3 Pullback from unit hypercube

Another easy way to satisfy the property of invariance under transforma-

tions is as follows. Supposewe specify some standardRiemannianmanifold

Σ0. Let p : Σ→ R be a probability density function, and let fΣ : Σ→ Σ0 be

a diffeomorphism constructed in a standard way from p. Then we can use

fΣ to pullback the metric from Σ0 to Σ, i.e.

〈u , v〉Σ � 〈D f u ,D f v〉Σ0
.

This way, fΣ is an isometry automatically, and moreover, for any space Σ′,

fΣ′ is an isometry. Thus, we can have Σ � Σ′ via Σ � Σ0 � Σ′.
For simplicity, we can specify that the standard space Σ0 be the unit

hypercube [0, 1]n
with the Euclidean metric, and let us enforce that the

diffeomorphism fΣ is defined in such a way that the induced probability

distribution

p̄ �
p ◦ f −1

|det D f |
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Σ�Rn , p

f
−−−−−−−−−−−−−−−−→

Σ0�[0, 1]n , p̄

Figure 7.6 Suppose that f induces a uniform distribution on Σ0. The Eu-
clideanmetric onΣ0 induces a Riemannian metric onΣ via f .

on the hypercube is uniform. This makes sense because in the absence

of information (as is the case if the hypercube is uniformly distributed),

then the straight-line Euclidean distance is as good as any. This method of

defining a metric is illustrated in Figure 7.6.

7.3.1 Deep density models

Rippel and Adams (2013), as described in Subsection 6.3.3, describe deep
density models, a way to infer a diffeomorphism f : Σ → [0, 1]n

from Σ to a

unit hypercube such that the unit hypercube has a prescribed probability

distribution. If we prescribe a uniform distribution for the unit hypercube,

then the standard Euclideanmetric is a natural choice for ametric on [0, 1]n
.

The metric is then defined as a pullback of the Euclidean metric under f .
This metric may verywell be the best metric defined so far. However, due to

difficulty of implementing deep density models, it is perhaps worthwhile

to attempt to define a simpler way to construct the diffeomorphisms.

7.3.2 Cumulative distribution functions

One simplerway to define a transformation fromΣ to [0, 1]n
, the unit hyper-

cube of n dimensions, is using a high-dimensional analogue of cumulative

distribution functions.

To see how, consider the one-dimensional case, where we would like a

function from R to [0, 1] such that the probability distribution induced on
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[0, 1] fromR is uniform. The cumulative distribution function F : R→ [0, 1]

F(x) �
∫ x

−∞

p(ξ)dξ

does the job. In this case, F(x) represents the percentage of the total proba-
bility mass encountered in this axis up to x.

Now we generalize to n dimensions. Let p : Rn
→ R be a probability

density function. Then the desired function F : Rn
→ [0, 1]n

is

F(x1 , . . . , xn) �



∫ x1

−∞
p(ξ, x2 , . . . , xn)dξ∫

∞

−∞
p(ξ, x2 , . . . , xn)dξ

...∫ xn

−∞
p(x1 , x2 , . . . , ξ)dξ∫

∞

−∞
p(x1 , x2 , . . . , ξ)dξ



,

where we have the same interpretation as in the one-dimensional case: the

ith component of F(x) represents the percentage of the total probability

mass encountered in the ith axis in Rn
up to x. With this, we can pullback

the Euclidean metric from the unit hypercube as before.

This metric satisfies our requirement that geodesics travel in regions of

high probability in simple cases, but does not necessarily to so inmore com-

plicated probability distributions. For example, if the low-density regions

of a multimodal distribution are not exactly zero, the geodesics may cross

through the low-density region.

7.4 Other approaches

7.4.1 Maximum likelihood curves

Another approach is to attempt to have geodesics directly be the curve of

“maximum likelihood.” To do this, we must define the likelihood of a

curve. Note that the likelihood of a set of points is simply the product of

their probabilities; in other words, the log-likelihood of a set of points is

simply the sum of their log probabilities. Therefore, an initial conjecture for

the log-likelihood of a curve γ : I → Σmight be a continuous generalization

of the sum of log-probabilities:

`(γ) � 1

|I |
∫

I
log p(γ(t))dt .
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It is however unclear how to extract a Riemannian metric from this defini-

tion. More research in this direction is necessary.1

7.4.2 Prescribed scalar curvature

An entirely different approach is as follows. Recall that the scalar curvature
K : M → R defined on a manifold M is

K(x) � 1

n(n − 1)
∑
i , j

〈R(∂i , ∂j)∂i , ∂j〉,

where ∂1 , . . . , ∂n is an orthonormal basis for the tangent space Tx M, and R
is the Riemann curvature tensor. The scalar curvature describes howmuch

the volume of an infinitesimal ball differs from the usual Euclidean volume

at each point x ∈ M.

This concept is useful in our problem: we would like a Riemannian

metric in which the infinitesimal volume is somehow dependent on the

probability density function p(x) at that point. The problem of determining

a Riemannian metric from a prescribed scalar curvature is well-studied:

Kazdan and Warner (1975) provide classical results in the subject, while

Rosenberg (2007) provides a review of some modern results. The details of

such a prescription for our problem has yet to be studied.

7.5 Summary of desired properties

Let us summarize the properties that the metric should satisfy:

1. Geodesics should lie “along the data manifold” and avoid regions

where there is no data. The metric tensor should thus be lower in

regions of high density, and higher in regions of low density.

2. Geodesics should be invariant under transformations of thedata. Sup-

pose f is a transformation Σ → Σ′, so that the induced probability

distribution on Σ′ is

p̄ �
p ◦ f −1

|det D f | .
Then if γ is a geodesic on Σ with respect to the metric induced by

p, then f ◦ γ should be a geodesic on Σ′ with respect to the metric

induced by p̄.

1Perhaps some inspiration couldbedrawn from thepath integral formulationof quantum

mechanics, to which this approach bears some superficial resemblance.



Applications of a Riemannian metric 63

3. Distance on a space containing uniformly-distributed data should

correspond to Euclidean distance.

7.6 Applications of a Riemannian metric

There are several potential applications to a Riemannian metric on the data

space Σ; two are listed here.

First, geodesics on the space would allow for smooth interpolation be-

tween two high-dimensional points. This may have applications in com-

puter vision, where smooth animations between images can be constructed

by traveling along a geodesic between the two images.

Second, the metric we define has the potential to revolutionize ma-

chine learning techniques such as dimensional reduction and clustering

by providing a more accurate measure of distance in data spaces than the

Euclidean distance prevalent today.

Of course, the generality of such a notion of distance makes it likely that

it will find a myriad of applications in unexpected domains.





Chapter 8

Background: statistical
manifolds

We have been tackling the problem of turning the space that the data lives

in into a Riemannian manifold. However, much work has gone into a

related but different problem: transforming spaces of probability distributions
into Riemannian manifolds. These manifolds are useful when trying to

draw conclusions from data and thus may prove relevant to our research

problem. In this chapter, we describe the basic results of this field, known

as information geometry. This chapter follows the presentation of Amari and

Nagaoka (2007), the best-known monograph on the subject.

Information geometry is the study of statistical manifolds, which allow

us to consider all possible probability distributions on a sample space Σ as

one object. Each point of such a manifold is a probability distribution:

Definition 20 (Statistical manifold). A statistical manifold M is a differen-
tiable manifold of probability distribution functions pθ : Σ → R with parameter
θ ∈ Θ,

M � {pθ ≡ p(x; θ) | θ ∈ Θ ⊆ Rk}.
This is related to the maximum likelihood estimation problem as de-

scribed in Subsection 6.3.1: given a set of observations {x1 , . . . , xm} ⊆ Σ
and a family of distributions {pθ | θ ∈ Θ}, we seek the parameter

ˆθ ∈ Θ
that most likely generated the observed data. Rephrased in the language

of information geometry, this process is optimization over the statistical

manifold M, seeking an optimal point p∗ ∈ M.

We will eventually define a Riemannian metric as well as several affine

connections on a statistical manifold M in pursuit of a solution to this



66 Background: statistical manifolds

problem.

8.1 Dual connections, divergence, and the projection
theorem

We begin by defining some concepts in Riemannian geometry.

First, we generalize the notion of a metric connection on a Riemannian

manifold M. Recall that an affine connection ∇ is metric if it satisfies

Z〈X,Y〉 � 〈∇ZX,Y〉 + 〈X,∇ZY〉
for all vector fields X, Y, and Z. The most commonly defined connections

on Riemannian manifolds are metric; however, in information geometry,

non-metric connections are actually quite useful. Towards this end, we

define the notion of a dual connection.

Definition 21 (Dual connection). Let M be a Riemannian manifold with an
affine connection ∇. Then its dual connection ∇∗ is the affine connection that
uniquely satisfies

Z〈X,Y〉 � 〈∇ZX,Y〉 + 〈X,∇∗ZY〉
for all vector fields X, Y, and Z.

Notice that the condition that ∇ � ∇∗ implies that ∇ is metric. To build

intuition, consider the following behavior of parallel transport with respect

to a connection and its dual.

Theorem 4. Let Π and Π∗ be the parallel transport along a curve γ with respect
to ∇ and ∇∗ respectively. Then for all vector fields X and Y,

〈ΠX,Π∗Y〉 � 〈X,Y〉.
Thus, if we parallel transport X under ∇, we must parallel transport Y

under ∇
∗
to preserve the angle between them.

Now let us define flatness with respect to a connection. Consider:

Definition 22 (Affine coordinate system). Let M be a differentiable manifold
with an affine connection ∇. Then [ξ i] is an affine coordinate system for ∇ if

∇∂i∂j � 0,

where [∂i] is the natural basis of the tangent space for [ξ i].
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Definition 23 (∇-flat). Let M be a differentiablemanifoldwith an affine connection
∇. Then M is ∇-flat if there exists affine coordinate system for ∇.

The intuition for flatness is that Euclidean space is flat with respect to

its standard coordinates. There are several interesting properties of flat

manifolds. For example, for any flat manifold, the curvature and torsion

tensors are both R � T � 0. Additionally, the parallel transport of a vector

between p and q does not depend on the curve used to connect them.

Now we define the notion of a divergence.

Definition 24 (Divergence). Let M be a differentiable manifold, and let D(· || ·) :

M ×M → R be a smooth function satisfying D(p || q) ≥ 0 and D(p || q) � 0 iff
p � q for all p , q ∈ S. Then D is a divergence if

〈X,Y〉(D)
� −D(X || Y)

is a Riemannian metric.

Some explanation of the notation is necessary. Suppose
∂
∂ξi

and
∂
∂ξ j

are

elements of Tp M. Then we define

D( ∂
∂ξi

|| ∂
∂ξ j

) � ∂

∂ξ i
∂

∂ξ′j
D(p(ξ1 , . . . , ξn) || p(ξ′1 , . . . , ξ′n)).

The most important point is that the divergence behaves almost like a dis-

tance metric between two points on a manifold, except it is not necessarily

symmetric and does not satisfy the triangle inequality. A divergence on M
not only induces a Riemannian metric on M; it also induces the divergence,

as below.

Definition 25 (Affine connection induced by a divergence). The affine con-
nection ∇(D) induced by a divergence D on M is

〈∇(D)
X Y, Z〉(D)

� −D(XY || Z).
We define the dual divergence as follows:

Definition 26 (Dual divergence). Let D be a divergence. Its dual divergence
D∗ is defined as

D∗(p || q) � D(q || p).
The canonical divergence is then induced by the Riemannianmetric, the

affine connection, and its dual, via the following definition.
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Figure 8.1* The projection theorem on Riemannian manifolds illustrated.

Definition 27 (Canonical divergence). Let M be a Riemannian manifold with
the symmetric affine connection ∇, and suppose that M is both ∇-flat and ∇∗-flat.
The canonical divergence is the unique divergence that induces the Riemannian
metric of M, ∇(D) � ∇, and ∇(D∗) � ∇∗.

The canonical divergence allows a generalization of the projection the-

orem to hold:

Theorem 5 (Projection). Let M be a Riemannian manifold with metric g, and let
S be a submanifold of M. Let D be the canonical divergence with respect to g, ∇,
and ∇∗. Then q ∈ S is a stationary point of D(p || ·) for p ∈ M if and only if the
∇-geodesic connecting p and q is orthogonal to S at q.

That is, if we want to minimize the canonical divergence between a

point p ∈ M and a submanifold S ⊆ M, then we simply project with the ∇-

geodesic that is orthogonal to S. A visualization of the projection theorem

is depicted in Figure 8.1. This theorem proves very useful in working with

statistical manifolds.

8.2 The Fisher information metric

Weare now ready to define aRiemannianmetric called the Fisher information
metric on a statistical manifold M. To motivate its definition, recall that
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maximum likelihood estimation maximizes the log-likelihood

`(θ; x1 , . . . , xm) ≡ log L(θ; x1 , . . . , xm) �
m∑

i�1

log p(xi ; θ),

of a set of observations {x1 , . . . , xm}. We assume thatΘ is one-dimensional.

To find the maximum, we differentiate the log-likelihood and set it to 0:

0 �
∂`
∂θ

.

Then, we solve for θ to find the parameter that most likely generated the

observations we observed. Once we have a maximum likelihood estimator

ˆθ, we might be interested in how optimal this estimate is—how much can

we trust this estimate? In the following, we will quantify how optimal a

givenmaximum likelihood estimator is. The resulting quantity is called the

Fisher information I : Θ→ R.

Since a measure of how optimal θ is is only relevant if θ is indeed

a maximum, when interpreting the quantity I(θ) we will assume in the

following that θ does indeed maximize the log-likelihood; in other words,

we will assume that Σ does have the PDF p(x; θ) for a fixed θ.
In this case, θ is a local maximum of the log-likelihood function. If

the log-likelihood function ` is sharply peaked around θ, then the values

surrounding θ are extremely unlikely compared to θ, in which case θ is an

excellent estimate. By contrast, if the log-likelihood function is relatively

flat around θ, then surrounding parameters are less likely than θ, but still
comparatively likely. In this case θ, is a poor estimator.

In calculus, the second derivative gives a measure of how sharply a

function is curving; therefore, the second derivative of the log-likelihood

function will be a good measure of how sharply peaked the log-likelihood

is. Thus, we define the Fisher information of m points to be

I(θ; x1 , . . . , xm) ≡ − ∂
2`

∂θ2

� −

m∑
i�1

∂2

∂θ2

log p(xi ; θ),

where the minus sign is a convention to ensure that I(θ) ≥ 0 for an maxi-

mum θ. The better the estimator θ is, the greater I(θ) is.
Now we move to the limit where the number of observations m → ∞.

In this limit, by the law of large numbers,

1

m
I(θ; x1 , . . . , xm)→ −E

[
∂2

∂θ2

log p(X; θ)
]
,
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where E denotes the expectation value with respect to X, a random variable

with values in Σ distributed according to the probability density function

p(x; θ). With this in mind, we define the Fisher information as follows:

Definition 28 (Fisher information). The Fisher information I : Θ→ R is

I(θ) ≡ −E
[
∂2

∂θ2

log p(X; θ)
]
� −

∫
p(x; θ) ∂

2

∂θ2

log p(x; θ)dx.

It measures how sharply the log-likelihood would peaked at the pa-

rameter θ, if θ is the true parameter, in the limit of an infinite number of

observations.

It is useful to derive an alternate expression for the Fisher information.

The efficient score V(θ; x) is defined as

V(θ; x) � ∂
∂θ

log p(x; θ).

Recall that the maximum likelihood condition was setting

0 �
∂`
∂θ

�

n∑
i�1

V(θ; xi).

Therefore, it is not surprising that if θ is the maximum likelihood estimator,

then

E[V(θ; X)] �
∫

V(θ; x) p(x; θ)dx

�

∫ [
∂
∂θ

log p(x; θ)
]

p(x; θ)dx

�

∫ ∂
∂θ p(x; θ)
p(x; θ) · p(x; θ)dx

�

∫
∂
∂θ

p(x; θ)dx

�
∂
∂θ

∫
p(x; θ)dx

�
∂
∂θ

1

� 0.
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Now differentiate both sides of

E[V(θ; X)] �
∫

V(θ; x) p(x; θ)dx � 0

with respect to θ to get∫ [
∂
∂θ

V(θ; x)
]

p(x; θ)dx +

∫
V(θ; x)

[
∂
∂θ

p(x; θ)
]

dx � 0.

The first term is∫ [
∂
∂θ

V(θ; x)
]

p(x; θ)dx � E

[
∂2

∂θ2

log p(X; θ)
]

� −I(θ).
The second term is∫

V(θ; x)
[
∂
∂θ

p(x; θ)
]

dx �

∫
V(θ; x)

[
∂
∂θ

log p(x; θ)
]

p(x; θ)dx

�

∫ �
V(θ; x)�2 p(x; θ)dx

� E

[�
V(θ; X)�2

]
.

Putting these two together, we have an alternate expression for the Fisher

information:

I(θ) � E

[�
V(θ; X)�2

]
� E



(
∂
∂θ

log p(X; θ)
)

2
.

Additionally, because E[V(θ; X)] � 0, we also have

I(θ) � Var(V(θ; X)),
where Var denotes the variance with respect to X.

This expression is best for generalization towhere there are k parameters

(θ1 , . . . , θk) instead of just one. Note that in general, we will abuse notation

and let θ � (θ1 , . . . , θk) represent the whole list of parameters. In this case,

we can look at the mixed derivatives and define the matrix g as

gi j ≡ −E



∂2

∂θi∂θj
log p(X; θ)


� E


*
,
∂
∂θi

log p(X; θ)+
-

*.
,

∂
∂θj

log p(X; θ)+/
-
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or, in terms of efficient scores,

gi j ≡ −E



∂Vi

∂θj


� E

[
Vi(θ; X)Vj(θ; X)] ,

with

Vi(θ; x) ≡ ∂
∂θi

log p(x; θ).

It is also the covariance of the efficient scores

g ≡ Cov

�
V1(θ; X), . . . , Vk(θ; X)� .

It turns out that this matrix can serve as a Riemannianmetric on a statistical

manifold M:

Definition 29 (Fisher information metric). The Fisher information metric is
a metric on a statistical manifold M given by G � [gi j], where

gi j ≡ −E



∂2

∂θi∂θj
log p(X; θ)


� E


*
,
∂
∂θi

log p(X; θ)+
-

*.
,

∂
∂θj

log p(X; θ)+/
-


.

Statistical manifolds are naturally equippedwith the Fisher information

metric, which is a natural metric as it is invariant to reparameterizations of

θ.

8.3 The α-connectionandKullback-Leiblerdivergence

Now let us define a useful connection on statistical manifolds, the α-
connection.

Definition 30 (α-connection). The α-connection ∇(α) on a statistical manifold
M is given by the Christoffel symbols

Γ
(α)
i j,k � E[(∂i∂j`θ + 1−α

2
∂i`θ∂j`θ)(∂k`θ)],

where `θ � log p(x; θ) and ∂i �
∂
∂θi

.

It is also invariant under reparameterization and enjoys special duality

properties:
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Theorem 6. The connections ∇(α) and ∇(−α) are dual connections of each other.

Theorem 7. M is ∇(α)-flat if and only if M is ∇(−α)-flat.

We also define the Kullback-Leibler divergence:

Definition 31 (Kullback-Leibler divergence). The Kullback-Leibler diver-
gence D(−1)

: M ×M → R on a statistical manifold M is

D(−1)(p || q) �
∫

p log

p
q

dx.

TheKullback-Leibler divergence is used inprobability theory tomeasure

how different two probability distributions p and q on the same space are

and has an interpretation in terms of the entropy of the two distributions.

What is important for our purposes, however, is the following remarkable

theorem.

Theorem 8. The Kullback-Leibler divergence is the canonical divergence with
respect to the Fisher information metric and the ∓1-connection.

This means that we can use the projection theorem as stated in the first

section to minimize the Kullback-Leibler divergence.

8.4 The manifold of normal distributions

Now let us work through an example of a statistical manifold.

8.4.1 An application of the Levi-Civita connection

Recall that a normal distribution with mean µ and variance σ2
is defined by

the probability distribution function

p(x; µ, σ2) � 1

√
2πσ

exp
*
,
−
(x − µ)2

2σ2

+
-
.

Wecan thereforeview the spaceofnormaldistributions as a two-dimensional

manifoldN , parameterized by µ and σ > 0. Moreover, the Fisher informa-

tion metric defines a natural metric on this space with θ1 � µ and θ2 � σ.

To simplify calculations, wewill actually take θ1 � µ and θ2 �
√

2σ. The
probability distribution function becomes

p(x; θ1 , θ2) � 1

√
πθ2

exp
*
,
−
(x − θ1)2

θ2

2

+
-
.
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Figure 8.2* Geodesics in the Poincaré half-plane model.

Now we calculate the Fisher information metric from the expression

gi j ≡ −E



∂2

∂θi∂θj
log p(X; θ)


,

which we find to be

g11 � g22 �
2

θ2

2

g12 � g21 � 0.

Incidentally, this is a well-known situation in non-Euclidean geometry.

The Poincaré half-plane model is the upper half-plane

H2

� {(x1 , x2) ∈ R2 | x2 > 0},
with the metric

g11 � g22 �
1

x2

2

g12 � g21 � 0.

Compare this to the current situation: the manifold of normal distribu-

tions is

N � {(θ1 , θ2) ∈ R2 | θ2 > 0}
with the metric

g11 � g22 �
2

θ2

2

g12 � g21 � 0.

Since a scaling by 2 of metric does not affect geodesics, the geodesics in

N with respect to the Levi-Civita (metric) connection, when parameterized

by θ1 � µ and θ2 �
√

2σ, are the same as those of the half-plane model.
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The geodesics of the half-plain model can be calculated by solving the

geodesic equations

ẍi +
∑
j,k

Γi
jk ẋ j ẋk � 0,

where the Γi
jk are the Christoffel symbols

Γ2

11
�

1

x2

Γ2

22
� −

1

x2

Γ1

12
� Γ1

21
� −

1

x2

.

The solution is well known to be the semicircles

x1(t) � c − r tanh t x2(t) � r sech t .

and vertical lines

x1(t) � c x2(t) � e t ,

for c , r ∈ R with r > 0, as depicted in Figure 8.2. The geodesics in N ,

therefore, are also semicircles centered on the µ-axis.
Oneneat application of thesemetric geodesics is the ability to interpolate

normal distributions. That is, suppose we are given two normal distribu-

tions (µ1 ,
√

2σ1) and (µ2 ,
√

2σ2). To find the “average” normal distribution,

we simply connect the two corresponding points in the θ1-θ2 plane with

an arc of a semicircle, and find the point equidistant to both endpoints,

according to the Fisher metric. This middle point is the “average” normal

distribution. This is illustrated in Figure 8.3.

Note that this notion of average fits our expectation of what an average

of probability distributions would be. With this average, the average of

two normal distributions with the same variance σ but centered at µ1 and

µ2 respectively is not simply a normal distribution with the same variance

Figure 8.3* Normal distributions along a geodesic. The average of A and B
is C.
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centered at the arithmetic average between µ1 and µ2. Instead, the average

of the two is a distribution that is much broader, covering both original

distributions.

8.4.2 An application of the ±1-connection

A common problem in statistics is to devise good estimators. Suppose that

we sample a point x ∈ Σ from a probability distribution function p(x; θ)
with an unknown parameter θ that we would like to determine. We define

an estimator
ˆθ(x) that is a function of the observation x that we would like

to use to approximate the true value θ. The maximum likelihood estimator

is one such estimator. Note that sampling m points fromΣ constitutes

sampling one point from the m-fold Cartesian product Σm
, so it suffices to

consider sampling only a single point. Let us briefly consider some theory

of estimators.

Ideally, an estimator, however we choose to define it, will be unbiased:

Definition 32 (Unbiased estimator). An estimator ˆθ : Σ→ U is an unbiased
estimator if E[ ˆθ] � θ for all θ ∈ U.

It is also useful for an unbiased estimator to have minimal variance.

The condition for an estimator to have minimal variance is defined by the

Cramér-Rao inequality:

Theorem 9 (Cramér-Rao inequality). Let ˆθ be an unbiased estimator. Its co-
variance matrix S is bounded below by the inverse of the Fisher information matrix
G−1, in the sense that S − G−1 is positive semidefinite.

An estimator with such minimal variance is called an efficient estimator:

Definition 33 (Efficient estimator). An unbiased estimator ˆθ : Σ → U is an
efficient estimator if its covariance matrix S is equal to the inverse of the Fisher
information matrix G−1.

Suppose for now that we know that an observation x is sampled from

a normal distribution with unknown µ and σ. It is possible to define an

efficient estimator for the parameters.

Consider the two coordinate systems, the natural coordinates [θi] and the
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expectation coordinates [ηi] given by

θ1

�
µ

σ2

θ2

� −
1

2σ2

η1

� E[x] � µ
η2

� E[x2] � µ2

+ σ2.

These coordinates define two alternative parameterizations forN ; given θ1

and θ2
, or η1

and η2
, it is possible solve for µ and σ and thus fully determine

the normal distribution. It turns out that [θi] is the affine coordinate system

thatmakes M ∇(1)-flat, and [ηi] is the affine coordinate system thatmakes M
∇
(−1)

-flat, which is a requirement for us to eventually apply the projection

theorem.

Consider the following estimators for η:

η̂1

� x

η̂2

� x2.

It turns out that η̂ as defined is an efficient estimator: it is unbiased by

definition, and it is efficient as its covariance matrix becomes the Fisher

information metric after some calculation. Thus, to estimate µ and σ, we

simply estimate η ≈ η̂ � (x , x2) and solve for µ and σ using the relations

used to define η.
This process does not leverage the machinery of α-connections that we

built. However, now suppose that the normal distribution that we are

drawing from is known to have variance equal to its mean, that is σ � µ.
What is the best (most likely) estimate for µ and σ now?

The space of possible normal distributions is now a one-dimensional

submanifold S of M. Thus, using the projection theorem, the probability

distribution η̂0 that minimizes the Kullback-Leibler divergence D(η̂ || η̂0)
from η̂ is the η̂0 ∈ S that is connected to η̂with an orthogonal geodesic with

respect to∇
(−1)

(because the Kullback-Leibler divergence is the canonical di-

vergence with respect to ∇
(−1)

). It turns out that such a η̂0 alsomaximizes the
likelihood of those parameters given x, and thus acts as the best estimator

we can hope for that is constrained to S.
We have thus used themachinery of the α-connections and divergences,

in order to arrive at a geometric understanding of maximum likelihood es-

timation.
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It is remarkable that the maximum-likelihood problem can be solved

with the geometric intuition of the projection theorem, as we did above. It

turns out that the above process is easily generalizable to general exponen-

tial family distributions, thus covering most of the commonly encountered

distributions. Thus, we see that information geometry is remarkably gen-

eral; let us attempt to use it to gain insight into our problem.



Chapter 9

A new duality between data
and statistical manifolds

Information geometry gives a way to add structure to statistical manifolds,

a space of probability density functions on a data space Σ. Is there a way

for the data space to borrow from the rich structure of a statistical manifold

given in the previous chapter? The field of Bayesian statistics provides one

possible link.

9.1 Bayesian inference

Bayesian statistics is a powerful branch of statistics that applies the theory

of probability to hypotheses. This is best illustrated in contrast to classical

frequentist statistics, which is perhapsmore common thanBayesian statistics.

Recall that frequentist statistics defines probability strictly as the frequency

of repeated trials: the probability of a coin landing on heads is
1

2
because in

the limit of infinite trials, the number of heads will be
1

2
the total number of

trials. This strict adherence to the interpretation of probabilities, however,

limits the power of frequentist statistics in inferring information from data.

Suppose for example that we are trying to determine the calcium car-

bonate content of a solid sample from a series of chemical experiments.

After the data is collected, the frequentist statistician would shy away from

asserting that “with a probability 0.8, the sample contains 100 ± 5 grams of

calcium carbonate.” He or shewould instead prefer to express these conclu-

sions in terms of confidence intervals or accepting and rejecting hypotheses.

This is because in truth, the sample either does or does not contain 100 ± 5
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grams—it does not change on repeated trials. Thus, the frequentist relies on

circumlocutions, being careful not to use the word probability for beliefs.

In contrast, the Bayesian statistician would not have any qualms about

that assertion, since in Bayesian statistics, probability is interpreted as a

degree of belief based on the given information, rather than the frequency in the

limit of repeated trials. This interpretation of probability is more in line

with the layman’s usage of probability and is thus arguably more intuitive.

For example, even though a particular sports team either will or will not

win their game tonight, a fan would have no problem estimating that there

is, say, an 80% chance that they will win.

9.1.1 Bayes’ theorem

Consider the following example of Bayesian inference, the same exam-

ple that we used to illustrate maximum likelihood estimation in Subsec-

tion 6.3.1.1 Suppose we know that a sequence of data points {x1 , . . . , xm}
comes from a normal distribution with unknown parameters µ and σ, and
we would like to estimate these unknown parameters.

The fundamental process of Bayesian inference relies onBayes’ theorem,

which says that

p(θ | X) � p(X | θ) p(θ)
p(X) .

This is typically written as

p(θ | X) ∝ p(X | θ) p(θ),
and is interpreted as the following: the probability of a particular parameter

θ oncewehaveobservedX is proportional to theprobability thatweobserve

X given θ, times our existing belief of the probability of θ. The first term,

p(θ | X), is known as the posterior distribution, and the last term, p(θ),
is known as the prior distribution. We can disregard the constant in the

bottom of the fraction, since it is easily recovered as

p(X) �
∫

p(X | θ) p(θ) dθ,

in order to make p(θ | X) a proper probability distribution that sums to 1.2

1Maximum likelihood estimation is a frequentist method.

2In practice, none of the distributions discussed here actually need to be normalized (or

need tobenormalizable at all), since it is still possible to interpret unnormalizeddistributions

as the relative belief of one value versus another. One might see, for example, a uniform

distribution on R, which is unnormalizable.
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Therefore, in our example, to infer parameters, we initialize our belief

for pθ to some initial prior distribution:

pθ ← p(θ),
for all θ ∈ Θ � {(µ, σ) | µ ∈ R, σ ∈ R+}. (The choice of prior distribution

is discussed in the next section.) Then, for each piece of data xi , we update

our belief by multiplying according to Bayes’ rule:

pθ ← p(xi | θ) · pθ ,
where, as usual,

p(x | µ, σ) � 1

√
2πσ

exp

(
−
(x − µ)2

2σ2

)
.

Finally, once all the data has been accounted for, we recover a proper prob-

ability distribution by normalizing it, as

p(θ | X) � pθ∫
pθ dθ

.

We then interpret p(θ |X) as our degree of belief that the true parameter

is θ; with enough data, the distribution will be peaked at the true value

of θ. There are several methods to obtain an explicit estimate for θ, if
desired. For example, we may take the expected value of the distribution to

obtain an estimate for θ, or we may take the maximum, which corresponds

approximately to the maximum likelihood estimate in frequentist statistics.

Note that the Bayesianposterior ismore powerful thanmaximum likelihood

methods, since it is able to capture situations where the distribution over θ
is multimodal, for example.

9.1.2 Jeffreys prior

The prior distribution p(θ) represents the degree of belief that θ ∈ Θ is

the true parameter before any observations of data. This may be chosen

by incorporating information from previous experiments or through the

intuition of an expert in the domain. The prior tends not to matter much

when lots of data is involved.

A so-called uninformative prior is typically used if we do not have any

expectation aboutwhat the parametermight be. Itmay seem that setting the
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priordistribution to auniformdistributionwould incorporate our ignorance

about the value of the parameter, but this is naive, since, for example,

specifying a uniform distribution on the standard deviation σ would not

specify a uniform distribution on the variance σ2
, and vice versa. The

uniform distribution is dependent on parameterization, in other words.

The Jeffreys prior is an example of a prior distribution that is invariant

to such reparameterization and thus serves as a particularly natural unin-

formative prior. It relies on the invariance of the Fisher information metric

G(θ) and is defined as

p(θ)dθ ∝
√

det G(θ)dθ.

In Section 8.4, we have seen that on themanifold of normal distributions,

the Fisher information metric is

G(θ1 , θ2) �
[
2θ−2

2
0

0 2θ−2

2

]
,

where θ1 � µ and θ2 �
√

2σ. Thus, the Jeffreys prior on the manifold of

normal distributions is

p(µ, σ)dµ dσ ∝ 2θ−2

2
dθ1 dθ2

∝ σ−2

dµ dσ.

9.2 Duality in Bayesian inference

Now let us use the idea of Bayesian inference to study the connection be-

tween data and statistical manifolds. Let Σ be a data space, a space of

possible observations. Then let Θ be a statistical manifold on Σ, so that the

elements of Θ are probability distributions on Σ.

Notice that Σ and Θ share a neat duality property. By selecting an

element θ ∈ Θ, we obtain a probability distribution pθ on Σ. Conversely,

by selecting an element x ∈ Σ, we obtain a probability distribution p(θ | x)
on Θ, the posterior distribution on Θ after having observed x. We can thus

view both spaces from two different perspectives, the “data” perspective,

and the “probability” perspective:

Σ : x ↔ p(θ | x)
Θ : θ ↔ p(x | θ).
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This new perspective leads to a number of interesting ideas.

Originally, we viewed Θ as containing probability distributions on Σ,

but now we can think of Σ as containing probability distributions on Θ,

since each element x ∈ Σ corresponds to the posterior distribution on Θ

after having observed x. In this way, we can view Σ as a statistical manifold

as well, parameterized by Θ, under certain regularity conditions. Thus, we

may also endow Σwith the Fisher information metric, as

gi j � −Eθ



∂2

∂xi∂x j
log p(θ | x)


,

where the expected value is now taken over Θ instead of Σ like usual.

This metric may have interesting properties, properties that are yet to be

explored.

It appears limiting that this viewpoint seems not to support sampling

multiple observations from Σ to update the posterior distribution onΘ, but

this is not the case. If one wants to observe m samples, we simply take Σ

to be the m-fold Cartesian product Σm
; one sample of Σm

corresponds to m
samples of Σ.

Notice that endowing Σ with the Fisher information metric is only pos-

sible with the existence of another statistical manifold Θ for Σ to “reflect”

on. What choice of Θ can we make—what choice is most natural? One

possibility is that we choose the set of all probability distributions on Σ. Let

us denote this space H(Σ), for the hypothesis space on X. Note that this set is

not necessarily a manifold: if Σ has infinite cardinality, then H(Σ)would be

an infinite-dimensional manifold. We will continue analysis nonetheless.

This notionallowsus to consider the secondhypothesis space, H(H(Σ)) �
H2(Σ), the space of probability distributions on H(Σ). Then because the

Bayesian inference process above identifies x ∈ Σ with the posterior distri-

bution p(θ | x) on Θ, we can view Bayesian inference as providing a map

ΠΘ : Σ→ H2(Σ) that maps an observation x into the posterior distribution

p(θ |x) ∈ H2(Σ). Thus, under some regularity conditions,Σ can be viewed as

a true statistical manifold, albeit potentially infinite-dimensional, through

the pullback of themapΠΘ. Moving one step further, the space of functions

from Σ→ H2(Σ) can be viewed as the space of statistical manifolds on Σ.
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9.3 Interpretation as vector space duality

This dual structure is reminiscent of the dual structure of vector spaces,

so it is tempting to try to make an explicit connection. We will attempt to

conceive of both Σ and Θ as subsets of vector spaces.

Let Σ be a space of observations, and let Θ be a statistical manifold.

Elements of Θ are probability distributions on Σ, which are functions from

Σ → R satisfying certain conditions (non-negativity, integrate to 1, etc.).

Recall that the set of functions Σ → R forms a vector space, so Θ can be

thought of as a subset of the vector space of functions Σ→ R.

Recall also that this function space is canonically isomorphic to the free

vector space on Σ, R[Σ]. This space R[Σ] contains formal finite linear

combinations of elements in Σ

a1x1 ⊕ · · · ⊕ am xm ∈ R[Σ],
where a1 , . . . , am ∈ R, x1 , . . . , xm ∈ Σ, and ⊕ denotes the addition in R[X].
Note that in this construction, we treat Σ as simply a set with no additive

structure, ignoring any existing structureΣmayhave. For example, suppose

Σ � Rn
, and let a , b ∈ R and x , y ∈ Rn

; then ax + b y , ax ⊕ b y, where +

denotes the standard addition in Rn
. Note that Σ can also be thought of as

a subset of R[Σ].
To recap, Σ ⊆ R[Σ] with the identification x 7→ 1 · x, and Θ ⊆ (Σ→ R).

Then R[Σ] � (Σ→ R)with the isomorphism x ↔ δx , where δx is the Dirac

delta or Kronecker delta centered at x. Therefore, we can think of Σ and

Θ as actually the same type of object, subsets of R[Σ]. This is in spite of

their superficial differences, one being a space of observations and the other

being a statistical manifold.

Let us consider what interpretation we may endow an element of R[Σ].
We find that an observation x ∈ Σ ⊆ R[Σ] � (Σ → R) is naturally identi-

fied as the probability distribution that assigns probability 1 to x and 0 to

everything else. A natural interpretation for

a � a1x1 ⊕ · · · ⊕ am xm ∈ R[Σ],
therefore, is as a sequence of observations. That is, if the ai are integers,

then we can think of a as representing the process of observing the data

point x1 a1 times, etc. If the ai are real (but non-negative), then we can think

of a as representing an infinite sequence of observations where the element

xi occurs with frequency

xi∑
i xi

.
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The probability distribution corresponding to a would yield the observation

a in the limit.

We would now like to endow this vector space R[Σ] with an inner

product to fully exploit the duality properties of vector spaces. Let a �∑
i ai xi ∈ R[Σ] and p �

∑
i piδi ∈ (Σ→ R). The standard inner product

〈a , p〉 �
∑

i

ai pi

does not have an obvious interpretation. Instead, consider the similar prod-

uct on R[Σ] defined by

(a || p) ≡ −
∑

i

ai log pi .

It turns out that this product has several nice properties.

First, when a is interpreted as an observation and p is interpreted as

a probability distribution, this product is negative the log-likelihood of

observing a under p:

(a || p) ≡ −
∑

i

ai log pi � − log

∏
i

pai
i .

Second, when p is considered both an observation and a probability

distribution, we recover the entropy of p:

H(p) � (p || p) � −
∑

i

pi log pi .

Indeed, this product (p || q) is traditionally known as the cross entropy,
and the Kullback-Leibler divergence between p and q (see Section 8.3) can

be seen as

D(p || q) � (p || q) − (p || p).
It is a subject of further research as to whether this product leads to the

duality properties similar to those a standard inner product endows on a

vector space.
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Open questions

These last few chapters leave open many avenues for future research, some

straightforward, some difficult. I collect them here, organized by topic.

10.1 On defining a Riemannian metric

• What is the role of α in the scaled Euclideanmetric (Subsection 7.1.1)?

What is the significance of α � −
2

n ? Is there a natural way to choose

α based on, say, the dimension of the data?

• The scaled Euclidean metric does not satisfy the invariance property

in Section 7.2. Does it satisfy some other invariance property? Can

conformal geometry be involved?

• How well do the scaled Euclidean metric (Subsection 7.1.1) and pull-

back metric with deep density models (Subsection 7.3.1) perform on

high-dimensional, realistic data?

• What is the significance of the invariant exponential metric (Subsec-

tion 7.2.2)?

• Can the ideas of maximum likelihood curves (Subsection 7.4.1) and

prescribed scalar curvature (Subsection 7.4.2) be developed further?

• The intrinsic distance given by our Riemannian metric may improve

the accuracy of machine learning techniques. What tests can we per-

form to evaluate the effectiveness of the metric?
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• What are some other applications of an intrinsic distance on the space

of data?

10.2 On the duality between data and statistical man-
ifolds

• What are the properties of the Fisher informationmetricwhen applied

to the space of data, as in Section 9.2?

• What insight can be gained by thinking of the space of functions from

Σ→ H2(Σ) as the space of statistical manifolds onΣ, as in Section 9.2?

• There is much literature on the space of probability distributions on a

set. How do existing results about this space relate to the discussion

in Section 9.3?

• Howcanwe conceptualize the secondhypothesis spaceH2(Σ) in terms

of vector spaces, in a manner similar to Section 9.3?

• What role does Bayesian statistics play in the interpretation of the

vector spaces in Section 9.3?

I invite the reader to think about these open questions, and, more gener-

ally, consider what insights can be drawn from thinking about data from a

geometric viewpoint. There is clearly much to be done in this exciting area

of mathematics!
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Appendix A

Local tangent space alignment

An important problem in the field of machine learning is that of dimensional
reduction, or manifold learning. This is illustrated in Figure A.1. Suppose we

are given many points in a high-dimensional space Rn
(B) that we suspect

lies on a d-dimensionalmanifold M ⊆ Rn
for d � n (A). This is themanifold

hypothesis. Can we reconstruct coordinates in a low-dimensional spaceRd

for d � n that preserves the structure of the original points (C)? Concretely,

can we keep points that are nearby inRn
nearby inRd

and keep points that

are apart in Rn
apart in Rd

? The process of reconstructing coordinates in

this way is called manifold learning.

We will explore one algorithm for manifold learning, local tangent space
alignment, as explained by Zhang and Zha (2002, 2003).

Figure A.1* Dimensional reduction in action.
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Figure A.2* Points that lie in a 2-dimensional subspace ofR3.

A.1 Principal component analysis

First, we will study linear dimensional reduction using principal component
analysis (PCA). This technique assumes that the data points {y1 , . . . , yN} ⊂
Rn

lie approximately on a d-dimensional subspace of Rn
. For d � 2 and

n � 3, this corresponds to the data lying on a plane through the origin. We

will also assume that the data has zero mean.

If it is indeed the case that the data points lie approximately on a d-
dimensional subspace, we should be able to decompose Rn

into the d-
dimensional subspace that approximately contains the data and the (n− d)-
dimensional subspace in which the data points are approximately 0.

We would like to construct an orthonormal basis of Rn
where the first

d vectors span the first subspace and the other vectors span the second.

When the data is expressed under such a basis, we will call the first d
coordinates the data’s principal components, and the other components non-
principal components.

The key observation is that when expressed in such a basis, the coordi-

nates of the data points will have large variance in its principal components

and nearly 0 variance in its non-principal components. Therefore, to find a

principal component, we will attempt to maximize the variance when the

data is projected onto that component.

Recall that the sample variance of N real numbers q1 , . . . , qN with 0

mean is defined as

σ2

�
1

N − 1

∑
i

q2

i .
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Therefore, the sample variance E of the N data points when projected onto

a unit vector u is

E(u) � 1

N − 1

∑
i

| |uT yi | |
2. (A.1)

We wish to maximize the variance E(u) while varying the direction u,
subject to the constraint that | |u | | � 1.

Define the sample covariance matrix Σ

Σ �
1

N − 1

∑
i

yi yT
i �

YYT

N − 1

,

so that we can rewrite Equation A.1 as

E(u) � uTΣu.

Optimizing this quantity for a symmetric Σ by varying u while requiring

that that uT u � 1 is a well-known optimization problem; this quantity is

called the Rayleigh quotient. It turns out that if λ1 ≥ · · · ≥ λn are eigenvalues

of Σ, then the corresponding eigenvectors u1 , . . . , un are local optima of

E(u), where E(u1) ≥ · · · ≥ E(un).1
Since Σ is a symmetric matrix, {u1 , . . . , un} forms an orthogonal basis

for Rn
. Because we wanted to maximize the variance E(u) for d com-

ponents, we simply take the d eigenvectors of Σ corresponding to the d
largest eigenvalues. Thus, {u1 , . . . , ud} forms an orthonormal basis for the

d-dimensional subspace in which our data lies.

In the following, let θi ∈ R
d
denote the coordinates of yi when expressed

in this basis, and let Q : Rd
→ Rn

be the corresponding transformation,

where yi � Qθi . The columns of QT
are precisely {u1 , . . . , ud}.

This transformation Q solves the dimensional reduction problem for

data lying in linear subspaces, as we have effectively summarized points in

Rn
with points in Rd

. We shall see next that this technique generalizes to

non-linear dimensional reduction.

A.2 Approximating the tangent spaces using PCA

Suppose that we have observed k points {y1 , . . . , yk} ⊂ Rn
that we suspect

lies approximately on a d-dimensional manifold M ⊂ Rn
. At this point,

1This can be shown using calculus and Lagrange multipliers.
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assume that the k points are nearby enough that they can be approximated

well by an affine subspace (a translated linear subspace).

Let ȳ be the mean of {y1 , . . . , yk}:

ȳ �
1

k

∑
i

yi .

If we run PCA on the set {y1 − ȳ , . . . , yk − ȳ} (shifted so that the set has

0 mean), we obtain k PCA coordinates {θ1 , . . . , θk} ⊂ Rd
and a linear

transformation Q : Rd
→ Rn

such that

yi ≈ ȳ + Qθi . (A.2)

At this point, we make the crucial observation that the tangent space

Tȳ M at ȳ can be approximated by the d-dimensional subspace im Q found

using PCA.We see this in what follows.

Let f : Rd
→ Rn

be an unknown parameterization of the manifold M,

and let x̄ ∈ Rd
be such that f (x̄) � ȳ.2 Then the tangent approximation of

f at ȳ is

f (x) ≈ ȳ + d fx̄(x − x̄),
where d fx̄ is the Jacobian matrix of f at x̄. Evaluating this approximation

at xi , we have

yi ≈ ȳ + d fx̄(xi − x̄). (A.3)

Comparing Equation A.2 and Equation A.3, we see that

d fx̄(xi − x̄) ≈ Qθi .

This is a statement of our prior observation that the tangent space can be

approximated by the subspace spanned by the data’s principal components.

Moving further, d f is regular because M is a manifold, so that we can

invert d fx̄ to get

xi − x̄ ≈ d f −1

x̄ Q θi .

If we define L � d f −1

x̄ Q and denote the error in this approximation by εi ,

we have that

xi � x̄ + Lθi + εi ,

for some L.

2We assume that ȳ ∈ M.
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Our goal is to minimize the total squared error ξ by selecting xi and L
appropriately:

ξ2(x1 , . . . , xk , L) �
∑

i

| |εi | |
2

�

∑
i

| |xi − x̄ − Lθi | |
2.

At this point, the minimization is trivial as we can simply select xi � x̄ +

Lθi for any L, yielding ξ � 0. However, we will impose further constraints

later; for now we will continue to simplify this expression.

To make progress, let us make a simplifying assumption. Recall that

ȳ �
1

k

∑
i

yi .

We will assume also that

x̄ ≈
1

k

∑
i

xi ,

so that the squared error becomes

ξ2(x1 , . . . , xk , L) �
∑

i

| |xi −
1

k

∑
j

x j − Lθi | |
2

Wewill now switch to matrix notation. Let X be a matrix with columns

{x1 , . . . , xk}, Θ be a matrix with columns {θ1 , . . . , θk}, and e be a vector of

1’s. Then we can rewrite ξ as

ξ2(X, L) � | |X − 1

k XeeT
− LΘ| |2F � | |X(I − 1

k eeT) − LΘ| |2F ,

where the norm is now the Frobenius norm, defined as

| |A| |2F � tr(ATA) � tr(AAT).
Next, we will eliminate the dependence on L. Notice that if Θ was

invertible, then for a fixed X, we could choose

L � X(I − 1

k eeT)Θ−1

and minimize ξ with ξ � 0. Unfortunately,Θ is rarely invertible. However,

we can use a generalization of the inverse for this same purpose. For fixed

X, it turns out that we can minimize ξ at a fixed X by choosing

L � X(I − 1

k eeT)Θ+ ,
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whereΘ+
is theMoore-Penrose pseudoinverse ofΘ, which always exists. This

further simplifies ξ to become

ξ2(X) � | |X(I − 1

k eeT)(I −Θ+Θ)| |2F .
The solution X that minimizes ξ gives the coordinates of the k points ofRd

as X’s columns, such that f (xi) ≈ yi . This simplified expression for ξ will

be useful in the next step: the alignment of the tangent spaces.

A.3 Alignment of tangent spaces

Recall that in the previous section, we restricted our attention to a single

neighborhood in M; we assumed that the k points we observe are close

enough to be approximated linearly. Now we will relax this assumption.

Suppose now that we have observed N points {y1 , . . . , yN} ⊂ Rn
that

we suspect lies approximately on a d-dimensional manifold M ⊂ Rn
.

We will use the same idea as before, where we approximate the tangent

space using the d-dimensional subspace found with PCA. The difference

is that for each point, we will only use a point’s k nearest neighbors to

determine its local tangent space.

Let X be a matrix with {x1 , . . . , xN} as its column. Then let Si be an

N-by-k matrix that extracts the columns corresponding to the k nearest

neighbors to yi . That is, define Si such that XSi preserves the columns of

X corresponding to yi’s k nearest neighbors. Concretely, Si is the N-by-N
identity matrix with N − k columns deleted.

Then instead of minimizing just

ξ2(X) � | |X(I − 1

k eeT)(I −Θ+Θ)| |2F ,
we now define

ξ2

i (X) � | |XSi(I − 1

k eeT)(I −Θ+

i Θi)| |2F
and minimize the total squared error for all neighborhoods:

min

X

∑
i

ξ2

i (X).
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We will now simplify∑
i

ξ2

i (X) �
∑

i

| |XSi(I − 1

k eeT)(I −Θ+

i Θi)| |2F
�

∑
i

tr(XSi(I − 1

k eeT)(I −Θ+

i Θi)(I −Θ+

i Θi)T(I − 1

k eeT)TST
i XT)

� tr(XBXT),
where we’ve defined

B �

∑
i

Si(I − 1

k eeT)(I −Θ+

i Θi)(I −Θ+

i Θi)T(I − 1

k eeT)TST
i .

Therefore, the final minimization problem becomes

min

X
tr(XBXT).

Wenow impose the constraint that XXT � I; as thismatrix is proportional to

the covariancematrix, this constraint ensures that each coordinate inRd
has

the same variance.3 This is an analogue of the Rayleigh quotient problem

mentioned above; since we’re looking for a minimum, the solution turns

out to be such that X contains d eigenvectors of B corresponding to the d
smallest eigenvalues. It turns out that the vector of 1s e is an eigenvector of

B, so it is more productive to take the d eigenvectors of B corresponding to

the 2nd through (d + 1)th smallest eigenvalues.

The solution X gives the coordinates of the dimensionally-reduced co-

ordinates in Rd
as its columns.

A.4 Example

The following example demonstrates a neat application of dimensional

reduction. Consider the images in Figure A.3. They are black-and-white

64-by-64 photos of a face from different angles, and can thus be regarded

as vectors in R64
2

, with one dimension for each pixel. In reality, however,

since the images are of a face from different angles, we expect that the set of

images exist in a low-dimensional manifold, perhaps isomorphic to SO(3).
If we run the local tangent space alignment algorithm on these images

and attempt to dimensionally reduce the points to R2
, we produce the

3Note that this is one ofmany constraintswe couldhave imposed. We chose this condition

for convenience.
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Figure A.3* The LTSA algorithm applied to a set of images.

map shown in Figure A.3. Each colored point is an image, and the images

corresponding to the points on the edge of the map are shown along the

edge. Notice how the images vary smoothly along the edge of the map,

meaning that the algorithm has successfully extracted the low-dimensional

structure from the high-dimensional space.



Image and table sources

The symbol * appearing in a figure indicates that the image or table is from

an external source, listed below. Their inclusion in this work is intended to

constitute “fair use,” for non-profit, scholarly use only.

Figure 1.1, Figure 1.2: Investopedia (http://www.investopedia.com/university/
charts/).

Figure 2.1, Figure 2.2, Figure 2.3: Müller (2007).

Figure 3.1: Hellisp, Wikimedia Commons (https://commons.wikimedia.org/
w/index.php?curid=9442336). Public domain.

Table 3.2, Figure 3.3: Kruskal and Wish (1978).

Table 6.3: R2D3 (http://www.r2d3.us/visual-intro-to-machine-learning-part-
1/).

Figure 6.1: Google Maps (https://www.google.com/maps).

Figure 6.2: flightsdubai.org (http://flightsdubai.org/Los-Angeles/Dubai-LosAngeles-
flights.php5).

Figure 6.4: MicrosoftAzure (https://azure.microso�.com/en-us/documentation/
articles/machine-learning-algorithm-choice/).

Figure 6.5: Tenenbaum et al. (2000).

Figure 6.6: Drleft, Wikipedia (https://en.wikipedia.org/w/index.php?curid=
28979849). cc by-sa 3.0.

Figure 6.7: Drleft, Wikimedia Commons (https://commons.wikimedia.org/
w/index.php?curid=11500097). cc by-sa 3.0.
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Figure 6.8: LeCun et al. (2010).

Figure 6.9: Rippel and Adams (2013).

Figure 8.1: Amari and Nagaoka (2007).

Figure 8.2: Januszkaja, Wikimedia Commons (https://commons.wikimedia.
org/w/index.php?curid=18176441). cc by-sa 3.0.

Figure 8.3: Costa et al. (2015).

Figure A.1: Ryan Lei (https://ryanlei.wordpress.com/2011/04/05/ammai_07-
nonlinear-dimensionality-reduction-by-locally-linear-embedding/).

Figure A.2: Gaël Varoquaux (http://gael-varoquaux.info/science/ica_vs_pca.
html).

Figure A.3: Zhang and Zha (2002).
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