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Abstract On the South of Portugal, namely in Quinta do Lago – Algarve the water 

consumption pattern changes from winter to summer, mainly due to the seasonality of 

touristic occupation and irrigation of green areas.  

In Quinta do Lago many plots have boreholes to extract groundwater for irrigation, 

however in summer, when the irrigation demand has its peak, the groundwater table lowers 

and it is observed saline intrusion into the aquifer. The increased concentration of salts in 

groundwater also increases the water demand for irrigation as the soil lixiviation must be 

attended. This phenomenon forces the owners to irrigate the private green areas with fresh 

water from the water supply system. In the last years, the number of plots irrigated with 

fresh water has increased and the current trend may cause the failure of the water supply 

system.  

In the present study the hydraulic and operational performance of the water supply system 

of Quinta do Lago is assessed, considering the increase on water demand for the irrigation 

of the private green areas.  

The used methodology is based on the hydraulic modelling of the water supply system and 

evaluation of performance indicators using penalty functions.  

From the analysis it is pointed out that undertaking appropriate operational modes, the 

water supply system may be resilient to the increase in water demand and investment in 

new infrastructure to attend this phenomenon may not be required. 
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1. INTRODUCTION 

Quinta do Lago is located in Algarve, South of Portugal, and it is a touristic resort with 

infrastructures and services proper to this activity, managed by Infraquinta. The touristic 

seasonality in Quinta do Lago is characterized by instability in occupation rates, with high 

asymmetry between summer and winter. In summer, the occupation rate reaches its peak, 

while in winter it is considerably lower. 

The water supply system has to respond to Infraquinta customers with high quality level, 

considering the occupation seasonality and also the water demands for irrigation.  

According to Agência Portuguesa do Ambiente (APA), all the aquifer in the area of 

Infraquinta has risk of saline intrusion, which may lead to the overload of the water supply 

infrastructures in a near future, due to the irrigation of the private green areas with fresh 

water from the water supply network.  

This phenomenon has high impact on the fresh water consumption, which may lead to the 

necessity of investment in the increment of the hydraulic capacity of the existing 

infrastructure. 

This study shows that by changing the operational mode of the water supply network it is 

possible to increase the resilience of the system in a scenario where the fresh water demand 

increases. 

2. WATER SUPPLY SYSTEM  

The water supply system from Infraquinta has a distribution network with approximately 

72.8km in pipe length, a reservoir with two cells and a total capacity of 5630m3 and three 

pump stations with electronic frequency control, which allows to maintain the head, H, 

constant even with the flowrate, Q, variation. The application of this technology saves 

energy by decreasing the required power, Pe. On Table 1 it is indicated the flowrate, head 

and power of the three pump stations, EE1, EE2 and EE3.  

Table 1 – Properties of the existing pump stations 

ID Nº of pumps 
Q 

(l/s) 

H 

(m) 

Pe 

(kW) 

EE1 (2+1)+(3+1) 100.00 37.60 36.90 

EE2 3+1 37.50 38.70 14.24 

EE3 2+1 18.33 54.95 9.88 

The representation of the physical components of the water supply system and consumers 

is shown in Figure 1a, and the areas of influence of the three existing pump stations may be 

observed in Figure 1b.  
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(a) 

 

(b) 

 

Figure 1- Representation of the water supply system: (a) physical components and consumers; (b) areas of 

influence of the three pump stations 

3. CONSUMPTIONS 

To understand the effect of the touristic seasonality on the water consumption and the 

irrigation requirements over the year, it was used as reference the monthly water invoiced 

during 2014. The monthly load factor presented in Figure 2 was obtained normalizing the 

monthly water consumption by the average monthly water consumption. 
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Figure 2 – Monthly load factor 

From Figure 2 it is observed that there are two seasons per year with very homogeneous 

monthly load factors, namely, a high season, between June and August, with monthly load 

factors of about 1.8, and a low season between November and February, with monthly load 

factors of 0.4. The tourist seasonality and the changes in the irrigation needs throughout the 

year are reflected on these consumptions. 

Infraquinta has telemetry technology installed on all consumers which allows to get data 

with hourly frequency and obtain the pattern of daily consumption during the high season. 

As identified in Figure 3, the standard daily consumption pattern reveals a typical behavior 

which clearly varies in a situation where the customer has a borehole for irrigation or not.  

 (a) 

 

 (b) 

 

Figure 3 – Typical consumption pattern: (a) plot with borehole; (b) plot without borehole 

Figure 3a shows the typical domestic consumption pattern of a consumer which uses water 

from a borehole to irrigate, while Figure 3b reveals the domestic and irrigation consumption 

for those who don’t use groundwater to irrigate. Figure 3b reveals that the higher 
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consumption occurs in two periods of the day, namely from 02h00 to 04h00 and from 19:00 

to 21:00. The irrigation component has high values comparing with the domestic 

consumption, concluding that the water used for irrigation is approximately 50 times higher 

than the water used for domestic proposes. This consumption pattern occurs because most 

plots have a large percentage of area occupied by gardens. 

When the concentration of salts in the groundwater extracted from the boreholes increases 

due to saline intrusion into the aquifer, the customers, as it appears, chooses to use fresh 

water from the supply system of Infraquinta and consequently the fresh water consumption 

tends to increases in response to the irrigation needs.  

4. HYDRAULIC MODELLING 

Facing the future scenario where it is expected an increment of water consumption, 

Infraquinta, is concerned about the hydraulic capacity and resilience of the existing 

infrastructure. Even with constant observations of flowrate, head and chlorine concentration 

in several locations, the hydraulic behaviour of the water supply system is not very well 

understood. In order to assess the effect of the increase of water demand on the water supply 

system, a hydraulic model based on Epanet 2.0 linked with QGIS was applied. This tool 

predicts the hydraulic response of the water supply system from the properties of its 

components, allowing the choice of the optimal operational mode [3]. 

The hydraulic model of the water supply system was applied for the high season and the 

alternative operational mode was adjusted to minimise head losses and increase the network 

resilience to the future water demand [1]. 

From the analysis of the results obtained by the hydraulic model mentioned above, it was 

observed high head losses in certain conduits for the current operational mode. Reducing 

those head losses it is possible to reduce the number of pump stations and increase the head 

on the remaining network. So, in order to find out which would be the alternative 

operational, several simulation tests were conducted, and at the end it was selected an 

alternative operational mode that minimises the head losses with the minimum number of 

physical changes in the system.  

To implement the alternative operational mode it is necessary to construct a new conduit 

with a nominal diameter (DN) of 250mm and 300m long, and also change the state of some 

existing valves in order to redirect the network flow. In Figure 4a may be observed the new 

conduit and also the location of those valves. 

The achieved reduction in head losses maximises the total head across the pipe network and 

also allows smaller heads on the pump stations. During the simulations were tested several 

heads on the pump stations and by turning off EE3 and keeping EE1 and EE2, with heads 

of 22m and 15m respectively, the head on the consumers improves significantly. The areas 

of influence of pump stations EE1 and EE2 are represented in Figure 4b. 
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(a) 

 

(b) 

 

Figure 4 – Water supply system: (a) pipe network with the physical modifications required for the alternative 

operational mode; (b) areas of influence for the pump stations EE1 and EE2 on the alternative operational mode 

4.1. Evaluation criteria 

The obtained results from the model are expressed as hydraulic variables (flowrate, flow 

velocity, head) [3], which make difficult the direct comparison between the actual 

operational mode and the alternative operational mode.  

The comparison is possible through the assessment of the objectives using penalty functions 

(Figure 5) [2] [5]. This methodology allows the conversion of hydraulic variables in 

performance indicators. The alternative operational mode is selected according to Tactic 

Plan of Infraquinta [5] and it is related with the head delivered to the consumers. 

The maximum head performance indicator may be related with leaks and water losses across 

the pipe network [1]. The minimum head performance indicator is used to assure that across 

the network the head is above the minimum value of 20m in order to avoid low head points 

and risk of water contamination [1]. 

In the analysis were assessed the following performance indicators in the network nodes: 

minimum head, maximum head and head range; 
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(a) 

 

(b) 

 

(c) 

 

Figure 5- Penalty functions: (a) minimum head; (b) maximum head; (c) head range 

Thereafter the performance indicators on each node are weighed by the water consumption 

on the respective node, Equation 1, and the element level calculation is extended across the 

water supply network to obtain the global performance indicator, Equation 2 [1].  

 𝜔𝑝𝑖  =  
𝑄𝑖

∑ 𝑄𝑖
𝑁
𝑖=1

 (1) 

 

 𝑃𝑝  =  ∑(𝜔𝑝𝑖 × 𝑝𝑚𝑝𝑖)

𝑁

𝑖=1

 (2) 

where: Pp – global performance indicator (%); N – number of nodes on the water supply network 

model (-); ωpi – weight factor at node i (non dimensional); pmpi  – performance indicators at 

node  i (%); Qi  – consumption at node i (m3/h). 
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5. RESULT ANALYSIS 

Since the methodology adopted generates a huge volume of results, it was decided to present 

them in a graphical mode, in order to make it easier to analyse. 

The Figures 6, 7 and 8 represents several different water demands imposed to the system. 

Each one of those water demands corresponds to a static simulation, in which the nodal 

consumption is affected by load factors ranging from 1.0 to 2.0 [1]. This last one tries to 

take into account the increment of the population due to tourism and also the effect of the 

saline intrusion. With these graphical representations of the results the same become non-

dimensional, being non-dependent of the network size and type. 

In order to characterize the performance of the water network system presented in Figure 6, 

there were used curves representing the percentage of the water supply network pipe  

lengths with performances lower than the percentile curve [4], for a specific load factor.  

Figure 7 represents the maximum heads performance indicators and Figure 8 shows the 

head range performance indicators. 

(a) 

 

(b) 

 

Figure 6- System diagram for the minimum head: (a) actual operational mode; (b) alternative operational mode 

From Figure 6 it is remarked that the alternative operational mode significant improves the 

minimum heads performance indicators. It also shows that it is possible to increase 20% the 

water consumption and maintaining the head above the minimum limits on the consumption 

points. 
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(a) 

 

(b) 

 

Figure 7- System diagram for maximum head: (a) actual operational mode; (b) alternative operational mode 

In Figure 7, the diagram associated to the maximum heads presents an increment of the 

performance indicators with the load factor, in both conditions, which means that when the 

consumption increases, the head decrease due to the head losses in the conduits and become 

close to the ideal service head (performance equal to 100%). 

Although of the smooth slope of the performance curve in both situations, the actual 

operational system of the water network presents a higher sensibility in face of the demand 

variation. 

(a) 

 

(b) 

 

Figure 8 – System diagram of head range: (a) actual operational mode; (b) alternative operational mode 

Figure 8 shows the head fluctuations in both operational modes and it is possible to observe 

a huge difference between them. The width of each band increases with the load factor, 
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indicating an increment of the head range on the network. Another significant deduction 

can be taken from the head fluctuations on the system diagram regarding the alternative 

operational system; in this case the head stability is much higher, since the variation is 

inferior to the values registered in the actual operational mode. 

6. CONCLUSIONS 

This study enhances that before investing in a new potable water supply infrastructure for 

Quinta do Lago, it is necessary to assess, in detail, the actual operational mode of the system 

and determine their weakness and fragile points. By doing so, it is possible to study several 

alternative operational modes, in order to minimize the head losses in the conduits and, 

consequently, the problems may be solved quicker and without affecting the population as  

well as the services and other infrastructures in the area.  

In the present study, the considered alternative operational mode for the water supply 

infrastructure, show a significant improvement on the network performance indicators, even 

when considering the water consumption increment for this area in the future years. Another 

important aspect observed is the decrease of the total head in the water supply pump 

stations, resulting on the decrease on energy consumption for their operation as well as the 

reduction of water losses on the pipe network. 
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